mm, hugetlb: remove decrement_hugepage_resv_vma()
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation_mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440         VM_BUG_ON(!is_vm_hugetlb_page(vma));
441         if (!(vma->vm_flags & VM_MAYSHARE))
442                 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma)
447 {
448         if (vma->vm_flags & VM_NORESERVE)
449                 return 0;
450
451         /* Shared mappings always use reserves */
452         if (vma->vm_flags & VM_MAYSHARE)
453                 return 1;
454
455         /*
456          * Only the process that called mmap() has reserves for
457          * private mappings.
458          */
459         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
460                 return 1;
461
462         return 0;
463 }
464
465 static void copy_gigantic_page(struct page *dst, struct page *src)
466 {
467         int i;
468         struct hstate *h = page_hstate(src);
469         struct page *dst_base = dst;
470         struct page *src_base = src;
471
472         for (i = 0; i < pages_per_huge_page(h); ) {
473                 cond_resched();
474                 copy_highpage(dst, src);
475
476                 i++;
477                 dst = mem_map_next(dst, dst_base, i);
478                 src = mem_map_next(src, src_base, i);
479         }
480 }
481
482 void copy_huge_page(struct page *dst, struct page *src)
483 {
484         int i;
485         struct hstate *h = page_hstate(src);
486
487         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
488                 copy_gigantic_page(dst, src);
489                 return;
490         }
491
492         might_sleep();
493         for (i = 0; i < pages_per_huge_page(h); i++) {
494                 cond_resched();
495                 copy_highpage(dst + i, src + i);
496         }
497 }
498
499 static void enqueue_huge_page(struct hstate *h, struct page *page)
500 {
501         int nid = page_to_nid(page);
502         list_move(&page->lru, &h->hugepage_freelists[nid]);
503         h->free_huge_pages++;
504         h->free_huge_pages_node[nid]++;
505 }
506
507 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
508 {
509         struct page *page;
510
511         if (list_empty(&h->hugepage_freelists[nid]))
512                 return NULL;
513         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
514         list_move(&page->lru, &h->hugepage_activelist);
515         set_page_refcounted(page);
516         h->free_huge_pages--;
517         h->free_huge_pages_node[nid]--;
518         return page;
519 }
520
521 static struct page *dequeue_huge_page_vma(struct hstate *h,
522                                 struct vm_area_struct *vma,
523                                 unsigned long address, int avoid_reserve)
524 {
525         struct page *page = NULL;
526         struct mempolicy *mpol;
527         nodemask_t *nodemask;
528         struct zonelist *zonelist;
529         struct zone *zone;
530         struct zoneref *z;
531         unsigned int cpuset_mems_cookie;
532
533         /*
534          * A child process with MAP_PRIVATE mappings created by their parent
535          * have no page reserves. This check ensures that reservations are
536          * not "stolen". The child may still get SIGKILLed
537          */
538         if (!vma_has_reserves(vma) &&
539                         h->free_huge_pages - h->resv_huge_pages == 0)
540                 goto err;
541
542         /* If reserves cannot be used, ensure enough pages are in the pool */
543         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
544                 goto err;
545
546 retry_cpuset:
547         cpuset_mems_cookie = get_mems_allowed();
548         zonelist = huge_zonelist(vma, address,
549                                         htlb_alloc_mask, &mpol, &nodemask);
550
551         for_each_zone_zonelist_nodemask(zone, z, zonelist,
552                                                 MAX_NR_ZONES - 1, nodemask) {
553                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
554                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
555                         if (page) {
556                                 if (!avoid_reserve && vma_has_reserves(vma))
557                                         h->resv_huge_pages--;
558                                 break;
559                         }
560                 }
561         }
562
563         mpol_cond_put(mpol);
564         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
565                 goto retry_cpuset;
566         return page;
567
568 err:
569         return NULL;
570 }
571
572 static void update_and_free_page(struct hstate *h, struct page *page)
573 {
574         int i;
575
576         VM_BUG_ON(h->order >= MAX_ORDER);
577
578         h->nr_huge_pages--;
579         h->nr_huge_pages_node[page_to_nid(page)]--;
580         for (i = 0; i < pages_per_huge_page(h); i++) {
581                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
582                                 1 << PG_referenced | 1 << PG_dirty |
583                                 1 << PG_active | 1 << PG_reserved |
584                                 1 << PG_private | 1 << PG_writeback);
585         }
586         VM_BUG_ON(hugetlb_cgroup_from_page(page));
587         set_compound_page_dtor(page, NULL);
588         set_page_refcounted(page);
589         arch_release_hugepage(page);
590         __free_pages(page, huge_page_order(h));
591 }
592
593 struct hstate *size_to_hstate(unsigned long size)
594 {
595         struct hstate *h;
596
597         for_each_hstate(h) {
598                 if (huge_page_size(h) == size)
599                         return h;
600         }
601         return NULL;
602 }
603
604 static void free_huge_page(struct page *page)
605 {
606         /*
607          * Can't pass hstate in here because it is called from the
608          * compound page destructor.
609          */
610         struct hstate *h = page_hstate(page);
611         int nid = page_to_nid(page);
612         struct hugepage_subpool *spool =
613                 (struct hugepage_subpool *)page_private(page);
614
615         set_page_private(page, 0);
616         page->mapping = NULL;
617         BUG_ON(page_count(page));
618         BUG_ON(page_mapcount(page));
619
620         spin_lock(&hugetlb_lock);
621         hugetlb_cgroup_uncharge_page(hstate_index(h),
622                                      pages_per_huge_page(h), page);
623         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
624                 /* remove the page from active list */
625                 list_del(&page->lru);
626                 update_and_free_page(h, page);
627                 h->surplus_huge_pages--;
628                 h->surplus_huge_pages_node[nid]--;
629         } else {
630                 arch_clear_hugepage_flags(page);
631                 enqueue_huge_page(h, page);
632         }
633         spin_unlock(&hugetlb_lock);
634         hugepage_subpool_put_pages(spool, 1);
635 }
636
637 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
638 {
639         INIT_LIST_HEAD(&page->lru);
640         set_compound_page_dtor(page, free_huge_page);
641         spin_lock(&hugetlb_lock);
642         set_hugetlb_cgroup(page, NULL);
643         h->nr_huge_pages++;
644         h->nr_huge_pages_node[nid]++;
645         spin_unlock(&hugetlb_lock);
646         put_page(page); /* free it into the hugepage allocator */
647 }
648
649 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
650 {
651         int i;
652         int nr_pages = 1 << order;
653         struct page *p = page + 1;
654
655         /* we rely on prep_new_huge_page to set the destructor */
656         set_compound_order(page, order);
657         __SetPageHead(page);
658         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
659                 __SetPageTail(p);
660                 set_page_count(p, 0);
661                 p->first_page = page;
662         }
663 }
664
665 /*
666  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
667  * transparent huge pages.  See the PageTransHuge() documentation for more
668  * details.
669  */
670 int PageHuge(struct page *page)
671 {
672         compound_page_dtor *dtor;
673
674         if (!PageCompound(page))
675                 return 0;
676
677         page = compound_head(page);
678         dtor = get_compound_page_dtor(page);
679
680         return dtor == free_huge_page;
681 }
682 EXPORT_SYMBOL_GPL(PageHuge);
683
684 pgoff_t __basepage_index(struct page *page)
685 {
686         struct page *page_head = compound_head(page);
687         pgoff_t index = page_index(page_head);
688         unsigned long compound_idx;
689
690         if (!PageHuge(page_head))
691                 return page_index(page);
692
693         if (compound_order(page_head) >= MAX_ORDER)
694                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
695         else
696                 compound_idx = page - page_head;
697
698         return (index << compound_order(page_head)) + compound_idx;
699 }
700
701 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
702 {
703         struct page *page;
704
705         if (h->order >= MAX_ORDER)
706                 return NULL;
707
708         page = alloc_pages_exact_node(nid,
709                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
710                                                 __GFP_REPEAT|__GFP_NOWARN,
711                 huge_page_order(h));
712         if (page) {
713                 if (arch_prepare_hugepage(page)) {
714                         __free_pages(page, huge_page_order(h));
715                         return NULL;
716                 }
717                 prep_new_huge_page(h, page, nid);
718         }
719
720         return page;
721 }
722
723 /*
724  * common helper functions for hstate_next_node_to_{alloc|free}.
725  * We may have allocated or freed a huge page based on a different
726  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
727  * be outside of *nodes_allowed.  Ensure that we use an allowed
728  * node for alloc or free.
729  */
730 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
731 {
732         nid = next_node(nid, *nodes_allowed);
733         if (nid == MAX_NUMNODES)
734                 nid = first_node(*nodes_allowed);
735         VM_BUG_ON(nid >= MAX_NUMNODES);
736
737         return nid;
738 }
739
740 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
741 {
742         if (!node_isset(nid, *nodes_allowed))
743                 nid = next_node_allowed(nid, nodes_allowed);
744         return nid;
745 }
746
747 /*
748  * returns the previously saved node ["this node"] from which to
749  * allocate a persistent huge page for the pool and advance the
750  * next node from which to allocate, handling wrap at end of node
751  * mask.
752  */
753 static int hstate_next_node_to_alloc(struct hstate *h,
754                                         nodemask_t *nodes_allowed)
755 {
756         int nid;
757
758         VM_BUG_ON(!nodes_allowed);
759
760         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
761         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
762
763         return nid;
764 }
765
766 /*
767  * helper for free_pool_huge_page() - return the previously saved
768  * node ["this node"] from which to free a huge page.  Advance the
769  * next node id whether or not we find a free huge page to free so
770  * that the next attempt to free addresses the next node.
771  */
772 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
773 {
774         int nid;
775
776         VM_BUG_ON(!nodes_allowed);
777
778         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
779         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
780
781         return nid;
782 }
783
784 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
785         for (nr_nodes = nodes_weight(*mask);                            \
786                 nr_nodes > 0 &&                                         \
787                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
788                 nr_nodes--)
789
790 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
791         for (nr_nodes = nodes_weight(*mask);                            \
792                 nr_nodes > 0 &&                                         \
793                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
794                 nr_nodes--)
795
796 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
797 {
798         struct page *page;
799         int nr_nodes, node;
800         int ret = 0;
801
802         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
803                 page = alloc_fresh_huge_page_node(h, node);
804                 if (page) {
805                         ret = 1;
806                         break;
807                 }
808         }
809
810         if (ret)
811                 count_vm_event(HTLB_BUDDY_PGALLOC);
812         else
813                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
814
815         return ret;
816 }
817
818 /*
819  * Free huge page from pool from next node to free.
820  * Attempt to keep persistent huge pages more or less
821  * balanced over allowed nodes.
822  * Called with hugetlb_lock locked.
823  */
824 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
825                                                          bool acct_surplus)
826 {
827         int nr_nodes, node;
828         int ret = 0;
829
830         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
831                 /*
832                  * If we're returning unused surplus pages, only examine
833                  * nodes with surplus pages.
834                  */
835                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
836                     !list_empty(&h->hugepage_freelists[node])) {
837                         struct page *page =
838                                 list_entry(h->hugepage_freelists[node].next,
839                                           struct page, lru);
840                         list_del(&page->lru);
841                         h->free_huge_pages--;
842                         h->free_huge_pages_node[node]--;
843                         if (acct_surplus) {
844                                 h->surplus_huge_pages--;
845                                 h->surplus_huge_pages_node[node]--;
846                         }
847                         update_and_free_page(h, page);
848                         ret = 1;
849                         break;
850                 }
851         }
852
853         return ret;
854 }
855
856 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
857 {
858         struct page *page;
859         unsigned int r_nid;
860
861         if (h->order >= MAX_ORDER)
862                 return NULL;
863
864         /*
865          * Assume we will successfully allocate the surplus page to
866          * prevent racing processes from causing the surplus to exceed
867          * overcommit
868          *
869          * This however introduces a different race, where a process B
870          * tries to grow the static hugepage pool while alloc_pages() is
871          * called by process A. B will only examine the per-node
872          * counters in determining if surplus huge pages can be
873          * converted to normal huge pages in adjust_pool_surplus(). A
874          * won't be able to increment the per-node counter, until the
875          * lock is dropped by B, but B doesn't drop hugetlb_lock until
876          * no more huge pages can be converted from surplus to normal
877          * state (and doesn't try to convert again). Thus, we have a
878          * case where a surplus huge page exists, the pool is grown, and
879          * the surplus huge page still exists after, even though it
880          * should just have been converted to a normal huge page. This
881          * does not leak memory, though, as the hugepage will be freed
882          * once it is out of use. It also does not allow the counters to
883          * go out of whack in adjust_pool_surplus() as we don't modify
884          * the node values until we've gotten the hugepage and only the
885          * per-node value is checked there.
886          */
887         spin_lock(&hugetlb_lock);
888         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
889                 spin_unlock(&hugetlb_lock);
890                 return NULL;
891         } else {
892                 h->nr_huge_pages++;
893                 h->surplus_huge_pages++;
894         }
895         spin_unlock(&hugetlb_lock);
896
897         if (nid == NUMA_NO_NODE)
898                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
899                                    __GFP_REPEAT|__GFP_NOWARN,
900                                    huge_page_order(h));
901         else
902                 page = alloc_pages_exact_node(nid,
903                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
904                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
905
906         if (page && arch_prepare_hugepage(page)) {
907                 __free_pages(page, huge_page_order(h));
908                 page = NULL;
909         }
910
911         spin_lock(&hugetlb_lock);
912         if (page) {
913                 INIT_LIST_HEAD(&page->lru);
914                 r_nid = page_to_nid(page);
915                 set_compound_page_dtor(page, free_huge_page);
916                 set_hugetlb_cgroup(page, NULL);
917                 /*
918                  * We incremented the global counters already
919                  */
920                 h->nr_huge_pages_node[r_nid]++;
921                 h->surplus_huge_pages_node[r_nid]++;
922                 __count_vm_event(HTLB_BUDDY_PGALLOC);
923         } else {
924                 h->nr_huge_pages--;
925                 h->surplus_huge_pages--;
926                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
927         }
928         spin_unlock(&hugetlb_lock);
929
930         return page;
931 }
932
933 /*
934  * This allocation function is useful in the context where vma is irrelevant.
935  * E.g. soft-offlining uses this function because it only cares physical
936  * address of error page.
937  */
938 struct page *alloc_huge_page_node(struct hstate *h, int nid)
939 {
940         struct page *page;
941
942         spin_lock(&hugetlb_lock);
943         page = dequeue_huge_page_node(h, nid);
944         spin_unlock(&hugetlb_lock);
945
946         if (!page)
947                 page = alloc_buddy_huge_page(h, nid);
948
949         return page;
950 }
951
952 /*
953  * Increase the hugetlb pool such that it can accommodate a reservation
954  * of size 'delta'.
955  */
956 static int gather_surplus_pages(struct hstate *h, int delta)
957 {
958         struct list_head surplus_list;
959         struct page *page, *tmp;
960         int ret, i;
961         int needed, allocated;
962         bool alloc_ok = true;
963
964         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
965         if (needed <= 0) {
966                 h->resv_huge_pages += delta;
967                 return 0;
968         }
969
970         allocated = 0;
971         INIT_LIST_HEAD(&surplus_list);
972
973         ret = -ENOMEM;
974 retry:
975         spin_unlock(&hugetlb_lock);
976         for (i = 0; i < needed; i++) {
977                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
978                 if (!page) {
979                         alloc_ok = false;
980                         break;
981                 }
982                 list_add(&page->lru, &surplus_list);
983         }
984         allocated += i;
985
986         /*
987          * After retaking hugetlb_lock, we need to recalculate 'needed'
988          * because either resv_huge_pages or free_huge_pages may have changed.
989          */
990         spin_lock(&hugetlb_lock);
991         needed = (h->resv_huge_pages + delta) -
992                         (h->free_huge_pages + allocated);
993         if (needed > 0) {
994                 if (alloc_ok)
995                         goto retry;
996                 /*
997                  * We were not able to allocate enough pages to
998                  * satisfy the entire reservation so we free what
999                  * we've allocated so far.
1000                  */
1001                 goto free;
1002         }
1003         /*
1004          * The surplus_list now contains _at_least_ the number of extra pages
1005          * needed to accommodate the reservation.  Add the appropriate number
1006          * of pages to the hugetlb pool and free the extras back to the buddy
1007          * allocator.  Commit the entire reservation here to prevent another
1008          * process from stealing the pages as they are added to the pool but
1009          * before they are reserved.
1010          */
1011         needed += allocated;
1012         h->resv_huge_pages += delta;
1013         ret = 0;
1014
1015         /* Free the needed pages to the hugetlb pool */
1016         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1017                 if ((--needed) < 0)
1018                         break;
1019                 /*
1020                  * This page is now managed by the hugetlb allocator and has
1021                  * no users -- drop the buddy allocator's reference.
1022                  */
1023                 put_page_testzero(page);
1024                 VM_BUG_ON(page_count(page));
1025                 enqueue_huge_page(h, page);
1026         }
1027 free:
1028         spin_unlock(&hugetlb_lock);
1029
1030         /* Free unnecessary surplus pages to the buddy allocator */
1031         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1032                 put_page(page);
1033         spin_lock(&hugetlb_lock);
1034
1035         return ret;
1036 }
1037
1038 /*
1039  * When releasing a hugetlb pool reservation, any surplus pages that were
1040  * allocated to satisfy the reservation must be explicitly freed if they were
1041  * never used.
1042  * Called with hugetlb_lock held.
1043  */
1044 static void return_unused_surplus_pages(struct hstate *h,
1045                                         unsigned long unused_resv_pages)
1046 {
1047         unsigned long nr_pages;
1048
1049         /* Uncommit the reservation */
1050         h->resv_huge_pages -= unused_resv_pages;
1051
1052         /* Cannot return gigantic pages currently */
1053         if (h->order >= MAX_ORDER)
1054                 return;
1055
1056         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1057
1058         /*
1059          * We want to release as many surplus pages as possible, spread
1060          * evenly across all nodes with memory. Iterate across these nodes
1061          * until we can no longer free unreserved surplus pages. This occurs
1062          * when the nodes with surplus pages have no free pages.
1063          * free_pool_huge_page() will balance the the freed pages across the
1064          * on-line nodes with memory and will handle the hstate accounting.
1065          */
1066         while (nr_pages--) {
1067                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1068                         break;
1069         }
1070 }
1071
1072 /*
1073  * Determine if the huge page at addr within the vma has an associated
1074  * reservation.  Where it does not we will need to logically increase
1075  * reservation and actually increase subpool usage before an allocation
1076  * can occur.  Where any new reservation would be required the
1077  * reservation change is prepared, but not committed.  Once the page
1078  * has been allocated from the subpool and instantiated the change should
1079  * be committed via vma_commit_reservation.  No action is required on
1080  * failure.
1081  */
1082 static long vma_needs_reservation(struct hstate *h,
1083                         struct vm_area_struct *vma, unsigned long addr)
1084 {
1085         struct address_space *mapping = vma->vm_file->f_mapping;
1086         struct inode *inode = mapping->host;
1087
1088         if (vma->vm_flags & VM_MAYSHARE) {
1089                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1090                 return region_chg(&inode->i_mapping->private_list,
1091                                                         idx, idx + 1);
1092
1093         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1094                 return 1;
1095
1096         } else  {
1097                 long err;
1098                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1099                 struct resv_map *reservations = vma_resv_map(vma);
1100
1101                 err = region_chg(&reservations->regions, idx, idx + 1);
1102                 if (err < 0)
1103                         return err;
1104                 return 0;
1105         }
1106 }
1107 static void vma_commit_reservation(struct hstate *h,
1108                         struct vm_area_struct *vma, unsigned long addr)
1109 {
1110         struct address_space *mapping = vma->vm_file->f_mapping;
1111         struct inode *inode = mapping->host;
1112
1113         if (vma->vm_flags & VM_MAYSHARE) {
1114                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1115                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1116
1117         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1118                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1119                 struct resv_map *reservations = vma_resv_map(vma);
1120
1121                 /* Mark this page used in the map. */
1122                 region_add(&reservations->regions, idx, idx + 1);
1123         }
1124 }
1125
1126 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1127                                     unsigned long addr, int avoid_reserve)
1128 {
1129         struct hugepage_subpool *spool = subpool_vma(vma);
1130         struct hstate *h = hstate_vma(vma);
1131         struct page *page;
1132         long chg;
1133         int ret, idx;
1134         struct hugetlb_cgroup *h_cg;
1135
1136         idx = hstate_index(h);
1137         /*
1138          * Processes that did not create the mapping will have no
1139          * reserves and will not have accounted against subpool
1140          * limit. Check that the subpool limit can be made before
1141          * satisfying the allocation MAP_NORESERVE mappings may also
1142          * need pages and subpool limit allocated allocated if no reserve
1143          * mapping overlaps.
1144          */
1145         chg = vma_needs_reservation(h, vma, addr);
1146         if (chg < 0)
1147                 return ERR_PTR(-ENOMEM);
1148         if (chg)
1149                 if (hugepage_subpool_get_pages(spool, chg))
1150                         return ERR_PTR(-ENOSPC);
1151
1152         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1153         if (ret) {
1154                 hugepage_subpool_put_pages(spool, chg);
1155                 return ERR_PTR(-ENOSPC);
1156         }
1157         spin_lock(&hugetlb_lock);
1158         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1159         if (!page) {
1160                 spin_unlock(&hugetlb_lock);
1161                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1162                 if (!page) {
1163                         hugetlb_cgroup_uncharge_cgroup(idx,
1164                                                        pages_per_huge_page(h),
1165                                                        h_cg);
1166                         hugepage_subpool_put_pages(spool, chg);
1167                         return ERR_PTR(-ENOSPC);
1168                 }
1169                 spin_lock(&hugetlb_lock);
1170                 list_move(&page->lru, &h->hugepage_activelist);
1171                 /* Fall through */
1172         }
1173         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1174         spin_unlock(&hugetlb_lock);
1175
1176         set_page_private(page, (unsigned long)spool);
1177
1178         vma_commit_reservation(h, vma, addr);
1179         return page;
1180 }
1181
1182 int __weak alloc_bootmem_huge_page(struct hstate *h)
1183 {
1184         struct huge_bootmem_page *m;
1185         int nr_nodes, node;
1186
1187         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1188                 void *addr;
1189
1190                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1191                                 huge_page_size(h), huge_page_size(h), 0);
1192
1193                 if (addr) {
1194                         /*
1195                          * Use the beginning of the huge page to store the
1196                          * huge_bootmem_page struct (until gather_bootmem
1197                          * puts them into the mem_map).
1198                          */
1199                         m = addr;
1200                         goto found;
1201                 }
1202         }
1203         return 0;
1204
1205 found:
1206         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1207         /* Put them into a private list first because mem_map is not up yet */
1208         list_add(&m->list, &huge_boot_pages);
1209         m->hstate = h;
1210         return 1;
1211 }
1212
1213 static void prep_compound_huge_page(struct page *page, int order)
1214 {
1215         if (unlikely(order > (MAX_ORDER - 1)))
1216                 prep_compound_gigantic_page(page, order);
1217         else
1218                 prep_compound_page(page, order);
1219 }
1220
1221 /* Put bootmem huge pages into the standard lists after mem_map is up */
1222 static void __init gather_bootmem_prealloc(void)
1223 {
1224         struct huge_bootmem_page *m;
1225
1226         list_for_each_entry(m, &huge_boot_pages, list) {
1227                 struct hstate *h = m->hstate;
1228                 struct page *page;
1229
1230 #ifdef CONFIG_HIGHMEM
1231                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1232                 free_bootmem_late((unsigned long)m,
1233                                   sizeof(struct huge_bootmem_page));
1234 #else
1235                 page = virt_to_page(m);
1236 #endif
1237                 __ClearPageReserved(page);
1238                 WARN_ON(page_count(page) != 1);
1239                 prep_compound_huge_page(page, h->order);
1240                 prep_new_huge_page(h, page, page_to_nid(page));
1241                 /*
1242                  * If we had gigantic hugepages allocated at boot time, we need
1243                  * to restore the 'stolen' pages to totalram_pages in order to
1244                  * fix confusing memory reports from free(1) and another
1245                  * side-effects, like CommitLimit going negative.
1246                  */
1247                 if (h->order > (MAX_ORDER - 1))
1248                         adjust_managed_page_count(page, 1 << h->order);
1249         }
1250 }
1251
1252 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1253 {
1254         unsigned long i;
1255
1256         for (i = 0; i < h->max_huge_pages; ++i) {
1257                 if (h->order >= MAX_ORDER) {
1258                         if (!alloc_bootmem_huge_page(h))
1259                                 break;
1260                 } else if (!alloc_fresh_huge_page(h,
1261                                          &node_states[N_MEMORY]))
1262                         break;
1263         }
1264         h->max_huge_pages = i;
1265 }
1266
1267 static void __init hugetlb_init_hstates(void)
1268 {
1269         struct hstate *h;
1270
1271         for_each_hstate(h) {
1272                 /* oversize hugepages were init'ed in early boot */
1273                 if (h->order < MAX_ORDER)
1274                         hugetlb_hstate_alloc_pages(h);
1275         }
1276 }
1277
1278 static char * __init memfmt(char *buf, unsigned long n)
1279 {
1280         if (n >= (1UL << 30))
1281                 sprintf(buf, "%lu GB", n >> 30);
1282         else if (n >= (1UL << 20))
1283                 sprintf(buf, "%lu MB", n >> 20);
1284         else
1285                 sprintf(buf, "%lu KB", n >> 10);
1286         return buf;
1287 }
1288
1289 static void __init report_hugepages(void)
1290 {
1291         struct hstate *h;
1292
1293         for_each_hstate(h) {
1294                 char buf[32];
1295                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1296                         memfmt(buf, huge_page_size(h)),
1297                         h->free_huge_pages);
1298         }
1299 }
1300
1301 #ifdef CONFIG_HIGHMEM
1302 static void try_to_free_low(struct hstate *h, unsigned long count,
1303                                                 nodemask_t *nodes_allowed)
1304 {
1305         int i;
1306
1307         if (h->order >= MAX_ORDER)
1308                 return;
1309
1310         for_each_node_mask(i, *nodes_allowed) {
1311                 struct page *page, *next;
1312                 struct list_head *freel = &h->hugepage_freelists[i];
1313                 list_for_each_entry_safe(page, next, freel, lru) {
1314                         if (count >= h->nr_huge_pages)
1315                                 return;
1316                         if (PageHighMem(page))
1317                                 continue;
1318                         list_del(&page->lru);
1319                         update_and_free_page(h, page);
1320                         h->free_huge_pages--;
1321                         h->free_huge_pages_node[page_to_nid(page)]--;
1322                 }
1323         }
1324 }
1325 #else
1326 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1327                                                 nodemask_t *nodes_allowed)
1328 {
1329 }
1330 #endif
1331
1332 /*
1333  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1334  * balanced by operating on them in a round-robin fashion.
1335  * Returns 1 if an adjustment was made.
1336  */
1337 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1338                                 int delta)
1339 {
1340         int nr_nodes, node;
1341
1342         VM_BUG_ON(delta != -1 && delta != 1);
1343
1344         if (delta < 0) {
1345                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1346                         if (h->surplus_huge_pages_node[node])
1347                                 goto found;
1348                 }
1349         } else {
1350                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1351                         if (h->surplus_huge_pages_node[node] <
1352                                         h->nr_huge_pages_node[node])
1353                                 goto found;
1354                 }
1355         }
1356         return 0;
1357
1358 found:
1359         h->surplus_huge_pages += delta;
1360         h->surplus_huge_pages_node[node] += delta;
1361         return 1;
1362 }
1363
1364 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1365 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1366                                                 nodemask_t *nodes_allowed)
1367 {
1368         unsigned long min_count, ret;
1369
1370         if (h->order >= MAX_ORDER)
1371                 return h->max_huge_pages;
1372
1373         /*
1374          * Increase the pool size
1375          * First take pages out of surplus state.  Then make up the
1376          * remaining difference by allocating fresh huge pages.
1377          *
1378          * We might race with alloc_buddy_huge_page() here and be unable
1379          * to convert a surplus huge page to a normal huge page. That is
1380          * not critical, though, it just means the overall size of the
1381          * pool might be one hugepage larger than it needs to be, but
1382          * within all the constraints specified by the sysctls.
1383          */
1384         spin_lock(&hugetlb_lock);
1385         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1386                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1387                         break;
1388         }
1389
1390         while (count > persistent_huge_pages(h)) {
1391                 /*
1392                  * If this allocation races such that we no longer need the
1393                  * page, free_huge_page will handle it by freeing the page
1394                  * and reducing the surplus.
1395                  */
1396                 spin_unlock(&hugetlb_lock);
1397                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1398                 spin_lock(&hugetlb_lock);
1399                 if (!ret)
1400                         goto out;
1401
1402                 /* Bail for signals. Probably ctrl-c from user */
1403                 if (signal_pending(current))
1404                         goto out;
1405         }
1406
1407         /*
1408          * Decrease the pool size
1409          * First return free pages to the buddy allocator (being careful
1410          * to keep enough around to satisfy reservations).  Then place
1411          * pages into surplus state as needed so the pool will shrink
1412          * to the desired size as pages become free.
1413          *
1414          * By placing pages into the surplus state independent of the
1415          * overcommit value, we are allowing the surplus pool size to
1416          * exceed overcommit. There are few sane options here. Since
1417          * alloc_buddy_huge_page() is checking the global counter,
1418          * though, we'll note that we're not allowed to exceed surplus
1419          * and won't grow the pool anywhere else. Not until one of the
1420          * sysctls are changed, or the surplus pages go out of use.
1421          */
1422         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1423         min_count = max(count, min_count);
1424         try_to_free_low(h, min_count, nodes_allowed);
1425         while (min_count < persistent_huge_pages(h)) {
1426                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1427                         break;
1428         }
1429         while (count < persistent_huge_pages(h)) {
1430                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1431                         break;
1432         }
1433 out:
1434         ret = persistent_huge_pages(h);
1435         spin_unlock(&hugetlb_lock);
1436         return ret;
1437 }
1438
1439 #define HSTATE_ATTR_RO(_name) \
1440         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1441
1442 #define HSTATE_ATTR(_name) \
1443         static struct kobj_attribute _name##_attr = \
1444                 __ATTR(_name, 0644, _name##_show, _name##_store)
1445
1446 static struct kobject *hugepages_kobj;
1447 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1448
1449 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1450
1451 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1452 {
1453         int i;
1454
1455         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1456                 if (hstate_kobjs[i] == kobj) {
1457                         if (nidp)
1458                                 *nidp = NUMA_NO_NODE;
1459                         return &hstates[i];
1460                 }
1461
1462         return kobj_to_node_hstate(kobj, nidp);
1463 }
1464
1465 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1466                                         struct kobj_attribute *attr, char *buf)
1467 {
1468         struct hstate *h;
1469         unsigned long nr_huge_pages;
1470         int nid;
1471
1472         h = kobj_to_hstate(kobj, &nid);
1473         if (nid == NUMA_NO_NODE)
1474                 nr_huge_pages = h->nr_huge_pages;
1475         else
1476                 nr_huge_pages = h->nr_huge_pages_node[nid];
1477
1478         return sprintf(buf, "%lu\n", nr_huge_pages);
1479 }
1480
1481 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1482                         struct kobject *kobj, struct kobj_attribute *attr,
1483                         const char *buf, size_t len)
1484 {
1485         int err;
1486         int nid;
1487         unsigned long count;
1488         struct hstate *h;
1489         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1490
1491         err = kstrtoul(buf, 10, &count);
1492         if (err)
1493                 goto out;
1494
1495         h = kobj_to_hstate(kobj, &nid);
1496         if (h->order >= MAX_ORDER) {
1497                 err = -EINVAL;
1498                 goto out;
1499         }
1500
1501         if (nid == NUMA_NO_NODE) {
1502                 /*
1503                  * global hstate attribute
1504                  */
1505                 if (!(obey_mempolicy &&
1506                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1507                         NODEMASK_FREE(nodes_allowed);
1508                         nodes_allowed = &node_states[N_MEMORY];
1509                 }
1510         } else if (nodes_allowed) {
1511                 /*
1512                  * per node hstate attribute: adjust count to global,
1513                  * but restrict alloc/free to the specified node.
1514                  */
1515                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1516                 init_nodemask_of_node(nodes_allowed, nid);
1517         } else
1518                 nodes_allowed = &node_states[N_MEMORY];
1519
1520         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1521
1522         if (nodes_allowed != &node_states[N_MEMORY])
1523                 NODEMASK_FREE(nodes_allowed);
1524
1525         return len;
1526 out:
1527         NODEMASK_FREE(nodes_allowed);
1528         return err;
1529 }
1530
1531 static ssize_t nr_hugepages_show(struct kobject *kobj,
1532                                        struct kobj_attribute *attr, char *buf)
1533 {
1534         return nr_hugepages_show_common(kobj, attr, buf);
1535 }
1536
1537 static ssize_t nr_hugepages_store(struct kobject *kobj,
1538                struct kobj_attribute *attr, const char *buf, size_t len)
1539 {
1540         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1541 }
1542 HSTATE_ATTR(nr_hugepages);
1543
1544 #ifdef CONFIG_NUMA
1545
1546 /*
1547  * hstate attribute for optionally mempolicy-based constraint on persistent
1548  * huge page alloc/free.
1549  */
1550 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1551                                        struct kobj_attribute *attr, char *buf)
1552 {
1553         return nr_hugepages_show_common(kobj, attr, buf);
1554 }
1555
1556 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1557                struct kobj_attribute *attr, const char *buf, size_t len)
1558 {
1559         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1560 }
1561 HSTATE_ATTR(nr_hugepages_mempolicy);
1562 #endif
1563
1564
1565 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1566                                         struct kobj_attribute *attr, char *buf)
1567 {
1568         struct hstate *h = kobj_to_hstate(kobj, NULL);
1569         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1570 }
1571
1572 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1573                 struct kobj_attribute *attr, const char *buf, size_t count)
1574 {
1575         int err;
1576         unsigned long input;
1577         struct hstate *h = kobj_to_hstate(kobj, NULL);
1578
1579         if (h->order >= MAX_ORDER)
1580                 return -EINVAL;
1581
1582         err = kstrtoul(buf, 10, &input);
1583         if (err)
1584                 return err;
1585
1586         spin_lock(&hugetlb_lock);
1587         h->nr_overcommit_huge_pages = input;
1588         spin_unlock(&hugetlb_lock);
1589
1590         return count;
1591 }
1592 HSTATE_ATTR(nr_overcommit_hugepages);
1593
1594 static ssize_t free_hugepages_show(struct kobject *kobj,
1595                                         struct kobj_attribute *attr, char *buf)
1596 {
1597         struct hstate *h;
1598         unsigned long free_huge_pages;
1599         int nid;
1600
1601         h = kobj_to_hstate(kobj, &nid);
1602         if (nid == NUMA_NO_NODE)
1603                 free_huge_pages = h->free_huge_pages;
1604         else
1605                 free_huge_pages = h->free_huge_pages_node[nid];
1606
1607         return sprintf(buf, "%lu\n", free_huge_pages);
1608 }
1609 HSTATE_ATTR_RO(free_hugepages);
1610
1611 static ssize_t resv_hugepages_show(struct kobject *kobj,
1612                                         struct kobj_attribute *attr, char *buf)
1613 {
1614         struct hstate *h = kobj_to_hstate(kobj, NULL);
1615         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1616 }
1617 HSTATE_ATTR_RO(resv_hugepages);
1618
1619 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1620                                         struct kobj_attribute *attr, char *buf)
1621 {
1622         struct hstate *h;
1623         unsigned long surplus_huge_pages;
1624         int nid;
1625
1626         h = kobj_to_hstate(kobj, &nid);
1627         if (nid == NUMA_NO_NODE)
1628                 surplus_huge_pages = h->surplus_huge_pages;
1629         else
1630                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1631
1632         return sprintf(buf, "%lu\n", surplus_huge_pages);
1633 }
1634 HSTATE_ATTR_RO(surplus_hugepages);
1635
1636 static struct attribute *hstate_attrs[] = {
1637         &nr_hugepages_attr.attr,
1638         &nr_overcommit_hugepages_attr.attr,
1639         &free_hugepages_attr.attr,
1640         &resv_hugepages_attr.attr,
1641         &surplus_hugepages_attr.attr,
1642 #ifdef CONFIG_NUMA
1643         &nr_hugepages_mempolicy_attr.attr,
1644 #endif
1645         NULL,
1646 };
1647
1648 static struct attribute_group hstate_attr_group = {
1649         .attrs = hstate_attrs,
1650 };
1651
1652 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1653                                     struct kobject **hstate_kobjs,
1654                                     struct attribute_group *hstate_attr_group)
1655 {
1656         int retval;
1657         int hi = hstate_index(h);
1658
1659         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1660         if (!hstate_kobjs[hi])
1661                 return -ENOMEM;
1662
1663         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1664         if (retval)
1665                 kobject_put(hstate_kobjs[hi]);
1666
1667         return retval;
1668 }
1669
1670 static void __init hugetlb_sysfs_init(void)
1671 {
1672         struct hstate *h;
1673         int err;
1674
1675         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1676         if (!hugepages_kobj)
1677                 return;
1678
1679         for_each_hstate(h) {
1680                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1681                                          hstate_kobjs, &hstate_attr_group);
1682                 if (err)
1683                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1684         }
1685 }
1686
1687 #ifdef CONFIG_NUMA
1688
1689 /*
1690  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1691  * with node devices in node_devices[] using a parallel array.  The array
1692  * index of a node device or _hstate == node id.
1693  * This is here to avoid any static dependency of the node device driver, in
1694  * the base kernel, on the hugetlb module.
1695  */
1696 struct node_hstate {
1697         struct kobject          *hugepages_kobj;
1698         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1699 };
1700 struct node_hstate node_hstates[MAX_NUMNODES];
1701
1702 /*
1703  * A subset of global hstate attributes for node devices
1704  */
1705 static struct attribute *per_node_hstate_attrs[] = {
1706         &nr_hugepages_attr.attr,
1707         &free_hugepages_attr.attr,
1708         &surplus_hugepages_attr.attr,
1709         NULL,
1710 };
1711
1712 static struct attribute_group per_node_hstate_attr_group = {
1713         .attrs = per_node_hstate_attrs,
1714 };
1715
1716 /*
1717  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1718  * Returns node id via non-NULL nidp.
1719  */
1720 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1721 {
1722         int nid;
1723
1724         for (nid = 0; nid < nr_node_ids; nid++) {
1725                 struct node_hstate *nhs = &node_hstates[nid];
1726                 int i;
1727                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1728                         if (nhs->hstate_kobjs[i] == kobj) {
1729                                 if (nidp)
1730                                         *nidp = nid;
1731                                 return &hstates[i];
1732                         }
1733         }
1734
1735         BUG();
1736         return NULL;
1737 }
1738
1739 /*
1740  * Unregister hstate attributes from a single node device.
1741  * No-op if no hstate attributes attached.
1742  */
1743 static void hugetlb_unregister_node(struct node *node)
1744 {
1745         struct hstate *h;
1746         struct node_hstate *nhs = &node_hstates[node->dev.id];
1747
1748         if (!nhs->hugepages_kobj)
1749                 return;         /* no hstate attributes */
1750
1751         for_each_hstate(h) {
1752                 int idx = hstate_index(h);
1753                 if (nhs->hstate_kobjs[idx]) {
1754                         kobject_put(nhs->hstate_kobjs[idx]);
1755                         nhs->hstate_kobjs[idx] = NULL;
1756                 }
1757         }
1758
1759         kobject_put(nhs->hugepages_kobj);
1760         nhs->hugepages_kobj = NULL;
1761 }
1762
1763 /*
1764  * hugetlb module exit:  unregister hstate attributes from node devices
1765  * that have them.
1766  */
1767 static void hugetlb_unregister_all_nodes(void)
1768 {
1769         int nid;
1770
1771         /*
1772          * disable node device registrations.
1773          */
1774         register_hugetlbfs_with_node(NULL, NULL);
1775
1776         /*
1777          * remove hstate attributes from any nodes that have them.
1778          */
1779         for (nid = 0; nid < nr_node_ids; nid++)
1780                 hugetlb_unregister_node(node_devices[nid]);
1781 }
1782
1783 /*
1784  * Register hstate attributes for a single node device.
1785  * No-op if attributes already registered.
1786  */
1787 static void hugetlb_register_node(struct node *node)
1788 {
1789         struct hstate *h;
1790         struct node_hstate *nhs = &node_hstates[node->dev.id];
1791         int err;
1792
1793         if (nhs->hugepages_kobj)
1794                 return;         /* already allocated */
1795
1796         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1797                                                         &node->dev.kobj);
1798         if (!nhs->hugepages_kobj)
1799                 return;
1800
1801         for_each_hstate(h) {
1802                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1803                                                 nhs->hstate_kobjs,
1804                                                 &per_node_hstate_attr_group);
1805                 if (err) {
1806                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1807                                 h->name, node->dev.id);
1808                         hugetlb_unregister_node(node);
1809                         break;
1810                 }
1811         }
1812 }
1813
1814 /*
1815  * hugetlb init time:  register hstate attributes for all registered node
1816  * devices of nodes that have memory.  All on-line nodes should have
1817  * registered their associated device by this time.
1818  */
1819 static void hugetlb_register_all_nodes(void)
1820 {
1821         int nid;
1822
1823         for_each_node_state(nid, N_MEMORY) {
1824                 struct node *node = node_devices[nid];
1825                 if (node->dev.id == nid)
1826                         hugetlb_register_node(node);
1827         }
1828
1829         /*
1830          * Let the node device driver know we're here so it can
1831          * [un]register hstate attributes on node hotplug.
1832          */
1833         register_hugetlbfs_with_node(hugetlb_register_node,
1834                                      hugetlb_unregister_node);
1835 }
1836 #else   /* !CONFIG_NUMA */
1837
1838 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1839 {
1840         BUG();
1841         if (nidp)
1842                 *nidp = -1;
1843         return NULL;
1844 }
1845
1846 static void hugetlb_unregister_all_nodes(void) { }
1847
1848 static void hugetlb_register_all_nodes(void) { }
1849
1850 #endif
1851
1852 static void __exit hugetlb_exit(void)
1853 {
1854         struct hstate *h;
1855
1856         hugetlb_unregister_all_nodes();
1857
1858         for_each_hstate(h) {
1859                 kobject_put(hstate_kobjs[hstate_index(h)]);
1860         }
1861
1862         kobject_put(hugepages_kobj);
1863 }
1864 module_exit(hugetlb_exit);
1865
1866 static int __init hugetlb_init(void)
1867 {
1868         /* Some platform decide whether they support huge pages at boot
1869          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1870          * there is no such support
1871          */
1872         if (HPAGE_SHIFT == 0)
1873                 return 0;
1874
1875         if (!size_to_hstate(default_hstate_size)) {
1876                 default_hstate_size = HPAGE_SIZE;
1877                 if (!size_to_hstate(default_hstate_size))
1878                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1879         }
1880         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1881         if (default_hstate_max_huge_pages)
1882                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1883
1884         hugetlb_init_hstates();
1885         gather_bootmem_prealloc();
1886         report_hugepages();
1887
1888         hugetlb_sysfs_init();
1889         hugetlb_register_all_nodes();
1890         hugetlb_cgroup_file_init();
1891
1892         return 0;
1893 }
1894 module_init(hugetlb_init);
1895
1896 /* Should be called on processing a hugepagesz=... option */
1897 void __init hugetlb_add_hstate(unsigned order)
1898 {
1899         struct hstate *h;
1900         unsigned long i;
1901
1902         if (size_to_hstate(PAGE_SIZE << order)) {
1903                 pr_warning("hugepagesz= specified twice, ignoring\n");
1904                 return;
1905         }
1906         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1907         BUG_ON(order == 0);
1908         h = &hstates[hugetlb_max_hstate++];
1909         h->order = order;
1910         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1911         h->nr_huge_pages = 0;
1912         h->free_huge_pages = 0;
1913         for (i = 0; i < MAX_NUMNODES; ++i)
1914                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1915         INIT_LIST_HEAD(&h->hugepage_activelist);
1916         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1917         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1918         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1919                                         huge_page_size(h)/1024);
1920
1921         parsed_hstate = h;
1922 }
1923
1924 static int __init hugetlb_nrpages_setup(char *s)
1925 {
1926         unsigned long *mhp;
1927         static unsigned long *last_mhp;
1928
1929         /*
1930          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1931          * so this hugepages= parameter goes to the "default hstate".
1932          */
1933         if (!hugetlb_max_hstate)
1934                 mhp = &default_hstate_max_huge_pages;
1935         else
1936                 mhp = &parsed_hstate->max_huge_pages;
1937
1938         if (mhp == last_mhp) {
1939                 pr_warning("hugepages= specified twice without "
1940                            "interleaving hugepagesz=, ignoring\n");
1941                 return 1;
1942         }
1943
1944         if (sscanf(s, "%lu", mhp) <= 0)
1945                 *mhp = 0;
1946
1947         /*
1948          * Global state is always initialized later in hugetlb_init.
1949          * But we need to allocate >= MAX_ORDER hstates here early to still
1950          * use the bootmem allocator.
1951          */
1952         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1953                 hugetlb_hstate_alloc_pages(parsed_hstate);
1954
1955         last_mhp = mhp;
1956
1957         return 1;
1958 }
1959 __setup("hugepages=", hugetlb_nrpages_setup);
1960
1961 static int __init hugetlb_default_setup(char *s)
1962 {
1963         default_hstate_size = memparse(s, &s);
1964         return 1;
1965 }
1966 __setup("default_hugepagesz=", hugetlb_default_setup);
1967
1968 static unsigned int cpuset_mems_nr(unsigned int *array)
1969 {
1970         int node;
1971         unsigned int nr = 0;
1972
1973         for_each_node_mask(node, cpuset_current_mems_allowed)
1974                 nr += array[node];
1975
1976         return nr;
1977 }
1978
1979 #ifdef CONFIG_SYSCTL
1980 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1981                          struct ctl_table *table, int write,
1982                          void __user *buffer, size_t *length, loff_t *ppos)
1983 {
1984         struct hstate *h = &default_hstate;
1985         unsigned long tmp;
1986         int ret;
1987
1988         tmp = h->max_huge_pages;
1989
1990         if (write && h->order >= MAX_ORDER)
1991                 return -EINVAL;
1992
1993         table->data = &tmp;
1994         table->maxlen = sizeof(unsigned long);
1995         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1996         if (ret)
1997                 goto out;
1998
1999         if (write) {
2000                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2001                                                 GFP_KERNEL | __GFP_NORETRY);
2002                 if (!(obey_mempolicy &&
2003                                init_nodemask_of_mempolicy(nodes_allowed))) {
2004                         NODEMASK_FREE(nodes_allowed);
2005                         nodes_allowed = &node_states[N_MEMORY];
2006                 }
2007                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2008
2009                 if (nodes_allowed != &node_states[N_MEMORY])
2010                         NODEMASK_FREE(nodes_allowed);
2011         }
2012 out:
2013         return ret;
2014 }
2015
2016 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2017                           void __user *buffer, size_t *length, loff_t *ppos)
2018 {
2019
2020         return hugetlb_sysctl_handler_common(false, table, write,
2021                                                         buffer, length, ppos);
2022 }
2023
2024 #ifdef CONFIG_NUMA
2025 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2026                           void __user *buffer, size_t *length, loff_t *ppos)
2027 {
2028         return hugetlb_sysctl_handler_common(true, table, write,
2029                                                         buffer, length, ppos);
2030 }
2031 #endif /* CONFIG_NUMA */
2032
2033 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2034                         void __user *buffer,
2035                         size_t *length, loff_t *ppos)
2036 {
2037         proc_dointvec(table, write, buffer, length, ppos);
2038         if (hugepages_treat_as_movable)
2039                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2040         else
2041                 htlb_alloc_mask = GFP_HIGHUSER;
2042         return 0;
2043 }
2044
2045 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2046                         void __user *buffer,
2047                         size_t *length, loff_t *ppos)
2048 {
2049         struct hstate *h = &default_hstate;
2050         unsigned long tmp;
2051         int ret;
2052
2053         tmp = h->nr_overcommit_huge_pages;
2054
2055         if (write && h->order >= MAX_ORDER)
2056                 return -EINVAL;
2057
2058         table->data = &tmp;
2059         table->maxlen = sizeof(unsigned long);
2060         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2061         if (ret)
2062                 goto out;
2063
2064         if (write) {
2065                 spin_lock(&hugetlb_lock);
2066                 h->nr_overcommit_huge_pages = tmp;
2067                 spin_unlock(&hugetlb_lock);
2068         }
2069 out:
2070         return ret;
2071 }
2072
2073 #endif /* CONFIG_SYSCTL */
2074
2075 void hugetlb_report_meminfo(struct seq_file *m)
2076 {
2077         struct hstate *h = &default_hstate;
2078         seq_printf(m,
2079                         "HugePages_Total:   %5lu\n"
2080                         "HugePages_Free:    %5lu\n"
2081                         "HugePages_Rsvd:    %5lu\n"
2082                         "HugePages_Surp:    %5lu\n"
2083                         "Hugepagesize:   %8lu kB\n",
2084                         h->nr_huge_pages,
2085                         h->free_huge_pages,
2086                         h->resv_huge_pages,
2087                         h->surplus_huge_pages,
2088                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2089 }
2090
2091 int hugetlb_report_node_meminfo(int nid, char *buf)
2092 {
2093         struct hstate *h = &default_hstate;
2094         return sprintf(buf,
2095                 "Node %d HugePages_Total: %5u\n"
2096                 "Node %d HugePages_Free:  %5u\n"
2097                 "Node %d HugePages_Surp:  %5u\n",
2098                 nid, h->nr_huge_pages_node[nid],
2099                 nid, h->free_huge_pages_node[nid],
2100                 nid, h->surplus_huge_pages_node[nid]);
2101 }
2102
2103 void hugetlb_show_meminfo(void)
2104 {
2105         struct hstate *h;
2106         int nid;
2107
2108         for_each_node_state(nid, N_MEMORY)
2109                 for_each_hstate(h)
2110                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2111                                 nid,
2112                                 h->nr_huge_pages_node[nid],
2113                                 h->free_huge_pages_node[nid],
2114                                 h->surplus_huge_pages_node[nid],
2115                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2116 }
2117
2118 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2119 unsigned long hugetlb_total_pages(void)
2120 {
2121         struct hstate *h;
2122         unsigned long nr_total_pages = 0;
2123
2124         for_each_hstate(h)
2125                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2126         return nr_total_pages;
2127 }
2128
2129 static int hugetlb_acct_memory(struct hstate *h, long delta)
2130 {
2131         int ret = -ENOMEM;
2132
2133         spin_lock(&hugetlb_lock);
2134         /*
2135          * When cpuset is configured, it breaks the strict hugetlb page
2136          * reservation as the accounting is done on a global variable. Such
2137          * reservation is completely rubbish in the presence of cpuset because
2138          * the reservation is not checked against page availability for the
2139          * current cpuset. Application can still potentially OOM'ed by kernel
2140          * with lack of free htlb page in cpuset that the task is in.
2141          * Attempt to enforce strict accounting with cpuset is almost
2142          * impossible (or too ugly) because cpuset is too fluid that
2143          * task or memory node can be dynamically moved between cpusets.
2144          *
2145          * The change of semantics for shared hugetlb mapping with cpuset is
2146          * undesirable. However, in order to preserve some of the semantics,
2147          * we fall back to check against current free page availability as
2148          * a best attempt and hopefully to minimize the impact of changing
2149          * semantics that cpuset has.
2150          */
2151         if (delta > 0) {
2152                 if (gather_surplus_pages(h, delta) < 0)
2153                         goto out;
2154
2155                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2156                         return_unused_surplus_pages(h, delta);
2157                         goto out;
2158                 }
2159         }
2160
2161         ret = 0;
2162         if (delta < 0)
2163                 return_unused_surplus_pages(h, (unsigned long) -delta);
2164
2165 out:
2166         spin_unlock(&hugetlb_lock);
2167         return ret;
2168 }
2169
2170 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2171 {
2172         struct resv_map *reservations = vma_resv_map(vma);
2173
2174         /*
2175          * This new VMA should share its siblings reservation map if present.
2176          * The VMA will only ever have a valid reservation map pointer where
2177          * it is being copied for another still existing VMA.  As that VMA
2178          * has a reference to the reservation map it cannot disappear until
2179          * after this open call completes.  It is therefore safe to take a
2180          * new reference here without additional locking.
2181          */
2182         if (reservations)
2183                 kref_get(&reservations->refs);
2184 }
2185
2186 static void resv_map_put(struct vm_area_struct *vma)
2187 {
2188         struct resv_map *reservations = vma_resv_map(vma);
2189
2190         if (!reservations)
2191                 return;
2192         kref_put(&reservations->refs, resv_map_release);
2193 }
2194
2195 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2196 {
2197         struct hstate *h = hstate_vma(vma);
2198         struct resv_map *reservations = vma_resv_map(vma);
2199         struct hugepage_subpool *spool = subpool_vma(vma);
2200         unsigned long reserve;
2201         unsigned long start;
2202         unsigned long end;
2203
2204         if (reservations) {
2205                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2206                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2207
2208                 reserve = (end - start) -
2209                         region_count(&reservations->regions, start, end);
2210
2211                 resv_map_put(vma);
2212
2213                 if (reserve) {
2214                         hugetlb_acct_memory(h, -reserve);
2215                         hugepage_subpool_put_pages(spool, reserve);
2216                 }
2217         }
2218 }
2219
2220 /*
2221  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2222  * handle_mm_fault() to try to instantiate regular-sized pages in the
2223  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2224  * this far.
2225  */
2226 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2227 {
2228         BUG();
2229         return 0;
2230 }
2231
2232 const struct vm_operations_struct hugetlb_vm_ops = {
2233         .fault = hugetlb_vm_op_fault,
2234         .open = hugetlb_vm_op_open,
2235         .close = hugetlb_vm_op_close,
2236 };
2237
2238 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2239                                 int writable)
2240 {
2241         pte_t entry;
2242
2243         if (writable) {
2244                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2245                                          vma->vm_page_prot)));
2246         } else {
2247                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2248                                            vma->vm_page_prot));
2249         }
2250         entry = pte_mkyoung(entry);
2251         entry = pte_mkhuge(entry);
2252         entry = arch_make_huge_pte(entry, vma, page, writable);
2253
2254         return entry;
2255 }
2256
2257 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2258                                    unsigned long address, pte_t *ptep)
2259 {
2260         pte_t entry;
2261
2262         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2263         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2264                 update_mmu_cache(vma, address, ptep);
2265 }
2266
2267
2268 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2269                             struct vm_area_struct *vma)
2270 {
2271         pte_t *src_pte, *dst_pte, entry;
2272         struct page *ptepage;
2273         unsigned long addr;
2274         int cow;
2275         struct hstate *h = hstate_vma(vma);
2276         unsigned long sz = huge_page_size(h);
2277
2278         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2279
2280         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2281                 src_pte = huge_pte_offset(src, addr);
2282                 if (!src_pte)
2283                         continue;
2284                 dst_pte = huge_pte_alloc(dst, addr, sz);
2285                 if (!dst_pte)
2286                         goto nomem;
2287
2288                 /* If the pagetables are shared don't copy or take references */
2289                 if (dst_pte == src_pte)
2290                         continue;
2291
2292                 spin_lock(&dst->page_table_lock);
2293                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2294                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2295                         if (cow)
2296                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2297                         entry = huge_ptep_get(src_pte);
2298                         ptepage = pte_page(entry);
2299                         get_page(ptepage);
2300                         page_dup_rmap(ptepage);
2301                         set_huge_pte_at(dst, addr, dst_pte, entry);
2302                 }
2303                 spin_unlock(&src->page_table_lock);
2304                 spin_unlock(&dst->page_table_lock);
2305         }
2306         return 0;
2307
2308 nomem:
2309         return -ENOMEM;
2310 }
2311
2312 static int is_hugetlb_entry_migration(pte_t pte)
2313 {
2314         swp_entry_t swp;
2315
2316         if (huge_pte_none(pte) || pte_present(pte))
2317                 return 0;
2318         swp = pte_to_swp_entry(pte);
2319         if (non_swap_entry(swp) && is_migration_entry(swp))
2320                 return 1;
2321         else
2322                 return 0;
2323 }
2324
2325 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2326 {
2327         swp_entry_t swp;
2328
2329         if (huge_pte_none(pte) || pte_present(pte))
2330                 return 0;
2331         swp = pte_to_swp_entry(pte);
2332         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2333                 return 1;
2334         else
2335                 return 0;
2336 }
2337
2338 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2339                             unsigned long start, unsigned long end,
2340                             struct page *ref_page)
2341 {
2342         int force_flush = 0;
2343         struct mm_struct *mm = vma->vm_mm;
2344         unsigned long address;
2345         pte_t *ptep;
2346         pte_t pte;
2347         struct page *page;
2348         struct hstate *h = hstate_vma(vma);
2349         unsigned long sz = huge_page_size(h);
2350         const unsigned long mmun_start = start; /* For mmu_notifiers */
2351         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2352
2353         WARN_ON(!is_vm_hugetlb_page(vma));
2354         BUG_ON(start & ~huge_page_mask(h));
2355         BUG_ON(end & ~huge_page_mask(h));
2356
2357         tlb_start_vma(tlb, vma);
2358         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2359 again:
2360         spin_lock(&mm->page_table_lock);
2361         for (address = start; address < end; address += sz) {
2362                 ptep = huge_pte_offset(mm, address);
2363                 if (!ptep)
2364                         continue;
2365
2366                 if (huge_pmd_unshare(mm, &address, ptep))
2367                         continue;
2368
2369                 pte = huge_ptep_get(ptep);
2370                 if (huge_pte_none(pte))
2371                         continue;
2372
2373                 /*
2374                  * HWPoisoned hugepage is already unmapped and dropped reference
2375                  */
2376                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2377                         huge_pte_clear(mm, address, ptep);
2378                         continue;
2379                 }
2380
2381                 page = pte_page(pte);
2382                 /*
2383                  * If a reference page is supplied, it is because a specific
2384                  * page is being unmapped, not a range. Ensure the page we
2385                  * are about to unmap is the actual page of interest.
2386                  */
2387                 if (ref_page) {
2388                         if (page != ref_page)
2389                                 continue;
2390
2391                         /*
2392                          * Mark the VMA as having unmapped its page so that
2393                          * future faults in this VMA will fail rather than
2394                          * looking like data was lost
2395                          */
2396                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2397                 }
2398
2399                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2400                 tlb_remove_tlb_entry(tlb, ptep, address);
2401                 if (huge_pte_dirty(pte))
2402                         set_page_dirty(page);
2403
2404                 page_remove_rmap(page);
2405                 force_flush = !__tlb_remove_page(tlb, page);
2406                 if (force_flush)
2407                         break;
2408                 /* Bail out after unmapping reference page if supplied */
2409                 if (ref_page)
2410                         break;
2411         }
2412         spin_unlock(&mm->page_table_lock);
2413         /*
2414          * mmu_gather ran out of room to batch pages, we break out of
2415          * the PTE lock to avoid doing the potential expensive TLB invalidate
2416          * and page-free while holding it.
2417          */
2418         if (force_flush) {
2419                 force_flush = 0;
2420                 tlb_flush_mmu(tlb);
2421                 if (address < end && !ref_page)
2422                         goto again;
2423         }
2424         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2425         tlb_end_vma(tlb, vma);
2426 }
2427
2428 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2429                           struct vm_area_struct *vma, unsigned long start,
2430                           unsigned long end, struct page *ref_page)
2431 {
2432         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2433
2434         /*
2435          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2436          * test will fail on a vma being torn down, and not grab a page table
2437          * on its way out.  We're lucky that the flag has such an appropriate
2438          * name, and can in fact be safely cleared here. We could clear it
2439          * before the __unmap_hugepage_range above, but all that's necessary
2440          * is to clear it before releasing the i_mmap_mutex. This works
2441          * because in the context this is called, the VMA is about to be
2442          * destroyed and the i_mmap_mutex is held.
2443          */
2444         vma->vm_flags &= ~VM_MAYSHARE;
2445 }
2446
2447 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2448                           unsigned long end, struct page *ref_page)
2449 {
2450         struct mm_struct *mm;
2451         struct mmu_gather tlb;
2452
2453         mm = vma->vm_mm;
2454
2455         tlb_gather_mmu(&tlb, mm, start, end);
2456         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2457         tlb_finish_mmu(&tlb, start, end);
2458 }
2459
2460 /*
2461  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2462  * mappping it owns the reserve page for. The intention is to unmap the page
2463  * from other VMAs and let the children be SIGKILLed if they are faulting the
2464  * same region.
2465  */
2466 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2467                                 struct page *page, unsigned long address)
2468 {
2469         struct hstate *h = hstate_vma(vma);
2470         struct vm_area_struct *iter_vma;
2471         struct address_space *mapping;
2472         pgoff_t pgoff;
2473
2474         /*
2475          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2476          * from page cache lookup which is in HPAGE_SIZE units.
2477          */
2478         address = address & huge_page_mask(h);
2479         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2480                         vma->vm_pgoff;
2481         mapping = file_inode(vma->vm_file)->i_mapping;
2482
2483         /*
2484          * Take the mapping lock for the duration of the table walk. As
2485          * this mapping should be shared between all the VMAs,
2486          * __unmap_hugepage_range() is called as the lock is already held
2487          */
2488         mutex_lock(&mapping->i_mmap_mutex);
2489         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2490                 /* Do not unmap the current VMA */
2491                 if (iter_vma == vma)
2492                         continue;
2493
2494                 /*
2495                  * Unmap the page from other VMAs without their own reserves.
2496                  * They get marked to be SIGKILLed if they fault in these
2497                  * areas. This is because a future no-page fault on this VMA
2498                  * could insert a zeroed page instead of the data existing
2499                  * from the time of fork. This would look like data corruption
2500                  */
2501                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2502                         unmap_hugepage_range(iter_vma, address,
2503                                              address + huge_page_size(h), page);
2504         }
2505         mutex_unlock(&mapping->i_mmap_mutex);
2506
2507         return 1;
2508 }
2509
2510 /*
2511  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2512  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2513  * cannot race with other handlers or page migration.
2514  * Keep the pte_same checks anyway to make transition from the mutex easier.
2515  */
2516 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2517                         unsigned long address, pte_t *ptep, pte_t pte,
2518                         struct page *pagecache_page)
2519 {
2520         struct hstate *h = hstate_vma(vma);
2521         struct page *old_page, *new_page;
2522         int outside_reserve = 0;
2523         unsigned long mmun_start;       /* For mmu_notifiers */
2524         unsigned long mmun_end;         /* For mmu_notifiers */
2525
2526         old_page = pte_page(pte);
2527
2528 retry_avoidcopy:
2529         /* If no-one else is actually using this page, avoid the copy
2530          * and just make the page writable */
2531         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2532                 page_move_anon_rmap(old_page, vma, address);
2533                 set_huge_ptep_writable(vma, address, ptep);
2534                 return 0;
2535         }
2536
2537         /*
2538          * If the process that created a MAP_PRIVATE mapping is about to
2539          * perform a COW due to a shared page count, attempt to satisfy
2540          * the allocation without using the existing reserves. The pagecache
2541          * page is used to determine if the reserve at this address was
2542          * consumed or not. If reserves were used, a partial faulted mapping
2543          * at the time of fork() could consume its reserves on COW instead
2544          * of the full address range.
2545          */
2546         if (!(vma->vm_flags & VM_MAYSHARE) &&
2547                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2548                         old_page != pagecache_page)
2549                 outside_reserve = 1;
2550
2551         page_cache_get(old_page);
2552
2553         /* Drop page_table_lock as buddy allocator may be called */
2554         spin_unlock(&mm->page_table_lock);
2555         new_page = alloc_huge_page(vma, address, outside_reserve);
2556
2557         if (IS_ERR(new_page)) {
2558                 long err = PTR_ERR(new_page);
2559                 page_cache_release(old_page);
2560
2561                 /*
2562                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2563                  * it is due to references held by a child and an insufficient
2564                  * huge page pool. To guarantee the original mappers
2565                  * reliability, unmap the page from child processes. The child
2566                  * may get SIGKILLed if it later faults.
2567                  */
2568                 if (outside_reserve) {
2569                         BUG_ON(huge_pte_none(pte));
2570                         if (unmap_ref_private(mm, vma, old_page, address)) {
2571                                 BUG_ON(huge_pte_none(pte));
2572                                 spin_lock(&mm->page_table_lock);
2573                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2574                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2575                                         goto retry_avoidcopy;
2576                                 /*
2577                                  * race occurs while re-acquiring page_table_lock, and
2578                                  * our job is done.
2579                                  */
2580                                 return 0;
2581                         }
2582                         WARN_ON_ONCE(1);
2583                 }
2584
2585                 /* Caller expects lock to be held */
2586                 spin_lock(&mm->page_table_lock);
2587                 if (err == -ENOMEM)
2588                         return VM_FAULT_OOM;
2589                 else
2590                         return VM_FAULT_SIGBUS;
2591         }
2592
2593         /*
2594          * When the original hugepage is shared one, it does not have
2595          * anon_vma prepared.
2596          */
2597         if (unlikely(anon_vma_prepare(vma))) {
2598                 page_cache_release(new_page);
2599                 page_cache_release(old_page);
2600                 /* Caller expects lock to be held */
2601                 spin_lock(&mm->page_table_lock);
2602                 return VM_FAULT_OOM;
2603         }
2604
2605         copy_user_huge_page(new_page, old_page, address, vma,
2606                             pages_per_huge_page(h));
2607         __SetPageUptodate(new_page);
2608
2609         mmun_start = address & huge_page_mask(h);
2610         mmun_end = mmun_start + huge_page_size(h);
2611         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2612         /*
2613          * Retake the page_table_lock to check for racing updates
2614          * before the page tables are altered
2615          */
2616         spin_lock(&mm->page_table_lock);
2617         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2618         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2619                 /* Break COW */
2620                 huge_ptep_clear_flush(vma, address, ptep);
2621                 set_huge_pte_at(mm, address, ptep,
2622                                 make_huge_pte(vma, new_page, 1));
2623                 page_remove_rmap(old_page);
2624                 hugepage_add_new_anon_rmap(new_page, vma, address);
2625                 /* Make the old page be freed below */
2626                 new_page = old_page;
2627         }
2628         spin_unlock(&mm->page_table_lock);
2629         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2630         /* Caller expects lock to be held */
2631         spin_lock(&mm->page_table_lock);
2632         page_cache_release(new_page);
2633         page_cache_release(old_page);
2634         return 0;
2635 }
2636
2637 /* Return the pagecache page at a given address within a VMA */
2638 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2639                         struct vm_area_struct *vma, unsigned long address)
2640 {
2641         struct address_space *mapping;
2642         pgoff_t idx;
2643
2644         mapping = vma->vm_file->f_mapping;
2645         idx = vma_hugecache_offset(h, vma, address);
2646
2647         return find_lock_page(mapping, idx);
2648 }
2649
2650 /*
2651  * Return whether there is a pagecache page to back given address within VMA.
2652  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2653  */
2654 static bool hugetlbfs_pagecache_present(struct hstate *h,
2655                         struct vm_area_struct *vma, unsigned long address)
2656 {
2657         struct address_space *mapping;
2658         pgoff_t idx;
2659         struct page *page;
2660
2661         mapping = vma->vm_file->f_mapping;
2662         idx = vma_hugecache_offset(h, vma, address);
2663
2664         page = find_get_page(mapping, idx);
2665         if (page)
2666                 put_page(page);
2667         return page != NULL;
2668 }
2669
2670 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2671                         unsigned long address, pte_t *ptep, unsigned int flags)
2672 {
2673         struct hstate *h = hstate_vma(vma);
2674         int ret = VM_FAULT_SIGBUS;
2675         int anon_rmap = 0;
2676         pgoff_t idx;
2677         unsigned long size;
2678         struct page *page;
2679         struct address_space *mapping;
2680         pte_t new_pte;
2681
2682         /*
2683          * Currently, we are forced to kill the process in the event the
2684          * original mapper has unmapped pages from the child due to a failed
2685          * COW. Warn that such a situation has occurred as it may not be obvious
2686          */
2687         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2688                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2689                            current->pid);
2690                 return ret;
2691         }
2692
2693         mapping = vma->vm_file->f_mapping;
2694         idx = vma_hugecache_offset(h, vma, address);
2695
2696         /*
2697          * Use page lock to guard against racing truncation
2698          * before we get page_table_lock.
2699          */
2700 retry:
2701         page = find_lock_page(mapping, idx);
2702         if (!page) {
2703                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2704                 if (idx >= size)
2705                         goto out;
2706                 page = alloc_huge_page(vma, address, 0);
2707                 if (IS_ERR(page)) {
2708                         ret = PTR_ERR(page);
2709                         if (ret == -ENOMEM)
2710                                 ret = VM_FAULT_OOM;
2711                         else
2712                                 ret = VM_FAULT_SIGBUS;
2713                         goto out;
2714                 }
2715                 clear_huge_page(page, address, pages_per_huge_page(h));
2716                 __SetPageUptodate(page);
2717
2718                 if (vma->vm_flags & VM_MAYSHARE) {
2719                         int err;
2720                         struct inode *inode = mapping->host;
2721
2722                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2723                         if (err) {
2724                                 put_page(page);
2725                                 if (err == -EEXIST)
2726                                         goto retry;
2727                                 goto out;
2728                         }
2729
2730                         spin_lock(&inode->i_lock);
2731                         inode->i_blocks += blocks_per_huge_page(h);
2732                         spin_unlock(&inode->i_lock);
2733                 } else {
2734                         lock_page(page);
2735                         if (unlikely(anon_vma_prepare(vma))) {
2736                                 ret = VM_FAULT_OOM;
2737                                 goto backout_unlocked;
2738                         }
2739                         anon_rmap = 1;
2740                 }
2741         } else {
2742                 /*
2743                  * If memory error occurs between mmap() and fault, some process
2744                  * don't have hwpoisoned swap entry for errored virtual address.
2745                  * So we need to block hugepage fault by PG_hwpoison bit check.
2746                  */
2747                 if (unlikely(PageHWPoison(page))) {
2748                         ret = VM_FAULT_HWPOISON |
2749                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2750                         goto backout_unlocked;
2751                 }
2752         }
2753
2754         /*
2755          * If we are going to COW a private mapping later, we examine the
2756          * pending reservations for this page now. This will ensure that
2757          * any allocations necessary to record that reservation occur outside
2758          * the spinlock.
2759          */
2760         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2761                 if (vma_needs_reservation(h, vma, address) < 0) {
2762                         ret = VM_FAULT_OOM;
2763                         goto backout_unlocked;
2764                 }
2765
2766         spin_lock(&mm->page_table_lock);
2767         size = i_size_read(mapping->host) >> huge_page_shift(h);
2768         if (idx >= size)
2769                 goto backout;
2770
2771         ret = 0;
2772         if (!huge_pte_none(huge_ptep_get(ptep)))
2773                 goto backout;
2774
2775         if (anon_rmap)
2776                 hugepage_add_new_anon_rmap(page, vma, address);
2777         else
2778                 page_dup_rmap(page);
2779         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2780                                 && (vma->vm_flags & VM_SHARED)));
2781         set_huge_pte_at(mm, address, ptep, new_pte);
2782
2783         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2784                 /* Optimization, do the COW without a second fault */
2785                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2786         }
2787
2788         spin_unlock(&mm->page_table_lock);
2789         unlock_page(page);
2790 out:
2791         return ret;
2792
2793 backout:
2794         spin_unlock(&mm->page_table_lock);
2795 backout_unlocked:
2796         unlock_page(page);
2797         put_page(page);
2798         goto out;
2799 }
2800
2801 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2802                         unsigned long address, unsigned int flags)
2803 {
2804         pte_t *ptep;
2805         pte_t entry;
2806         int ret;
2807         struct page *page = NULL;
2808         struct page *pagecache_page = NULL;
2809         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2810         struct hstate *h = hstate_vma(vma);
2811
2812         address &= huge_page_mask(h);
2813
2814         ptep = huge_pte_offset(mm, address);
2815         if (ptep) {
2816                 entry = huge_ptep_get(ptep);
2817                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2818                         migration_entry_wait_huge(mm, ptep);
2819                         return 0;
2820                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2821                         return VM_FAULT_HWPOISON_LARGE |
2822                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2823         }
2824
2825         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2826         if (!ptep)
2827                 return VM_FAULT_OOM;
2828
2829         /*
2830          * Serialize hugepage allocation and instantiation, so that we don't
2831          * get spurious allocation failures if two CPUs race to instantiate
2832          * the same page in the page cache.
2833          */
2834         mutex_lock(&hugetlb_instantiation_mutex);
2835         entry = huge_ptep_get(ptep);
2836         if (huge_pte_none(entry)) {
2837                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2838                 goto out_mutex;
2839         }
2840
2841         ret = 0;
2842
2843         /*
2844          * If we are going to COW the mapping later, we examine the pending
2845          * reservations for this page now. This will ensure that any
2846          * allocations necessary to record that reservation occur outside the
2847          * spinlock. For private mappings, we also lookup the pagecache
2848          * page now as it is used to determine if a reservation has been
2849          * consumed.
2850          */
2851         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2852                 if (vma_needs_reservation(h, vma, address) < 0) {
2853                         ret = VM_FAULT_OOM;
2854                         goto out_mutex;
2855                 }
2856
2857                 if (!(vma->vm_flags & VM_MAYSHARE))
2858                         pagecache_page = hugetlbfs_pagecache_page(h,
2859                                                                 vma, address);
2860         }
2861
2862         /*
2863          * hugetlb_cow() requires page locks of pte_page(entry) and
2864          * pagecache_page, so here we need take the former one
2865          * when page != pagecache_page or !pagecache_page.
2866          * Note that locking order is always pagecache_page -> page,
2867          * so no worry about deadlock.
2868          */
2869         page = pte_page(entry);
2870         get_page(page);
2871         if (page != pagecache_page)
2872                 lock_page(page);
2873
2874         spin_lock(&mm->page_table_lock);
2875         /* Check for a racing update before calling hugetlb_cow */
2876         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2877                 goto out_page_table_lock;
2878
2879
2880         if (flags & FAULT_FLAG_WRITE) {
2881                 if (!huge_pte_write(entry)) {
2882                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2883                                                         pagecache_page);
2884                         goto out_page_table_lock;
2885                 }
2886                 entry = huge_pte_mkdirty(entry);
2887         }
2888         entry = pte_mkyoung(entry);
2889         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2890                                                 flags & FAULT_FLAG_WRITE))
2891                 update_mmu_cache(vma, address, ptep);
2892
2893 out_page_table_lock:
2894         spin_unlock(&mm->page_table_lock);
2895
2896         if (pagecache_page) {
2897                 unlock_page(pagecache_page);
2898                 put_page(pagecache_page);
2899         }
2900         if (page != pagecache_page)
2901                 unlock_page(page);
2902         put_page(page);
2903
2904 out_mutex:
2905         mutex_unlock(&hugetlb_instantiation_mutex);
2906
2907         return ret;
2908 }
2909
2910 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2911                          struct page **pages, struct vm_area_struct **vmas,
2912                          unsigned long *position, unsigned long *nr_pages,
2913                          long i, unsigned int flags)
2914 {
2915         unsigned long pfn_offset;
2916         unsigned long vaddr = *position;
2917         unsigned long remainder = *nr_pages;
2918         struct hstate *h = hstate_vma(vma);
2919
2920         spin_lock(&mm->page_table_lock);
2921         while (vaddr < vma->vm_end && remainder) {
2922                 pte_t *pte;
2923                 int absent;
2924                 struct page *page;
2925
2926                 /*
2927                  * Some archs (sparc64, sh*) have multiple pte_ts to
2928                  * each hugepage.  We have to make sure we get the
2929                  * first, for the page indexing below to work.
2930                  */
2931                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2932                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2933
2934                 /*
2935                  * When coredumping, it suits get_dump_page if we just return
2936                  * an error where there's an empty slot with no huge pagecache
2937                  * to back it.  This way, we avoid allocating a hugepage, and
2938                  * the sparse dumpfile avoids allocating disk blocks, but its
2939                  * huge holes still show up with zeroes where they need to be.
2940                  */
2941                 if (absent && (flags & FOLL_DUMP) &&
2942                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2943                         remainder = 0;
2944                         break;
2945                 }
2946
2947                 /*
2948                  * We need call hugetlb_fault for both hugepages under migration
2949                  * (in which case hugetlb_fault waits for the migration,) and
2950                  * hwpoisoned hugepages (in which case we need to prevent the
2951                  * caller from accessing to them.) In order to do this, we use
2952                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2953                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2954                  * both cases, and because we can't follow correct pages
2955                  * directly from any kind of swap entries.
2956                  */
2957                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2958                     ((flags & FOLL_WRITE) &&
2959                       !huge_pte_write(huge_ptep_get(pte)))) {
2960                         int ret;
2961
2962                         spin_unlock(&mm->page_table_lock);
2963                         ret = hugetlb_fault(mm, vma, vaddr,
2964                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2965                         spin_lock(&mm->page_table_lock);
2966                         if (!(ret & VM_FAULT_ERROR))
2967                                 continue;
2968
2969                         remainder = 0;
2970                         break;
2971                 }
2972
2973                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2974                 page = pte_page(huge_ptep_get(pte));
2975 same_page:
2976                 if (pages) {
2977                         pages[i] = mem_map_offset(page, pfn_offset);
2978                         get_page(pages[i]);
2979                 }
2980
2981                 if (vmas)
2982                         vmas[i] = vma;
2983
2984                 vaddr += PAGE_SIZE;
2985                 ++pfn_offset;
2986                 --remainder;
2987                 ++i;
2988                 if (vaddr < vma->vm_end && remainder &&
2989                                 pfn_offset < pages_per_huge_page(h)) {
2990                         /*
2991                          * We use pfn_offset to avoid touching the pageframes
2992                          * of this compound page.
2993                          */
2994                         goto same_page;
2995                 }
2996         }
2997         spin_unlock(&mm->page_table_lock);
2998         *nr_pages = remainder;
2999         *position = vaddr;
3000
3001         return i ? i : -EFAULT;
3002 }
3003
3004 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3005                 unsigned long address, unsigned long end, pgprot_t newprot)
3006 {
3007         struct mm_struct *mm = vma->vm_mm;
3008         unsigned long start = address;
3009         pte_t *ptep;
3010         pte_t pte;
3011         struct hstate *h = hstate_vma(vma);
3012         unsigned long pages = 0;
3013
3014         BUG_ON(address >= end);
3015         flush_cache_range(vma, address, end);
3016
3017         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3018         spin_lock(&mm->page_table_lock);
3019         for (; address < end; address += huge_page_size(h)) {
3020                 ptep = huge_pte_offset(mm, address);
3021                 if (!ptep)
3022                         continue;
3023                 if (huge_pmd_unshare(mm, &address, ptep)) {
3024                         pages++;
3025                         continue;
3026                 }
3027                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3028                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3029                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3030                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3031                         set_huge_pte_at(mm, address, ptep, pte);
3032                         pages++;
3033                 }
3034         }
3035         spin_unlock(&mm->page_table_lock);
3036         /*
3037          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3038          * may have cleared our pud entry and done put_page on the page table:
3039          * once we release i_mmap_mutex, another task can do the final put_page
3040          * and that page table be reused and filled with junk.
3041          */
3042         flush_tlb_range(vma, start, end);
3043         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3044
3045         return pages << h->order;
3046 }
3047
3048 int hugetlb_reserve_pages(struct inode *inode,
3049                                         long from, long to,
3050                                         struct vm_area_struct *vma,
3051                                         vm_flags_t vm_flags)
3052 {
3053         long ret, chg;
3054         struct hstate *h = hstate_inode(inode);
3055         struct hugepage_subpool *spool = subpool_inode(inode);
3056
3057         /*
3058          * Only apply hugepage reservation if asked. At fault time, an
3059          * attempt will be made for VM_NORESERVE to allocate a page
3060          * without using reserves
3061          */
3062         if (vm_flags & VM_NORESERVE)
3063                 return 0;
3064
3065         /*
3066          * Shared mappings base their reservation on the number of pages that
3067          * are already allocated on behalf of the file. Private mappings need
3068          * to reserve the full area even if read-only as mprotect() may be
3069          * called to make the mapping read-write. Assume !vma is a shm mapping
3070          */
3071         if (!vma || vma->vm_flags & VM_MAYSHARE)
3072                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3073         else {
3074                 struct resv_map *resv_map = resv_map_alloc();
3075                 if (!resv_map)
3076                         return -ENOMEM;
3077
3078                 chg = to - from;
3079
3080                 set_vma_resv_map(vma, resv_map);
3081                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3082         }
3083
3084         if (chg < 0) {
3085                 ret = chg;
3086                 goto out_err;
3087         }
3088
3089         /* There must be enough pages in the subpool for the mapping */
3090         if (hugepage_subpool_get_pages(spool, chg)) {
3091                 ret = -ENOSPC;
3092                 goto out_err;
3093         }
3094
3095         /*
3096          * Check enough hugepages are available for the reservation.
3097          * Hand the pages back to the subpool if there are not
3098          */
3099         ret = hugetlb_acct_memory(h, chg);
3100         if (ret < 0) {
3101                 hugepage_subpool_put_pages(spool, chg);
3102                 goto out_err;
3103         }
3104
3105         /*
3106          * Account for the reservations made. Shared mappings record regions
3107          * that have reservations as they are shared by multiple VMAs.
3108          * When the last VMA disappears, the region map says how much
3109          * the reservation was and the page cache tells how much of
3110          * the reservation was consumed. Private mappings are per-VMA and
3111          * only the consumed reservations are tracked. When the VMA
3112          * disappears, the original reservation is the VMA size and the
3113          * consumed reservations are stored in the map. Hence, nothing
3114          * else has to be done for private mappings here
3115          */
3116         if (!vma || vma->vm_flags & VM_MAYSHARE)
3117                 region_add(&inode->i_mapping->private_list, from, to);
3118         return 0;
3119 out_err:
3120         if (vma)
3121                 resv_map_put(vma);
3122         return ret;
3123 }
3124
3125 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3126 {
3127         struct hstate *h = hstate_inode(inode);
3128         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3129         struct hugepage_subpool *spool = subpool_inode(inode);
3130
3131         spin_lock(&inode->i_lock);
3132         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3133         spin_unlock(&inode->i_lock);
3134
3135         hugepage_subpool_put_pages(spool, (chg - freed));
3136         hugetlb_acct_memory(h, -(chg - freed));
3137 }
3138
3139 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3140 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3141                                 struct vm_area_struct *vma,
3142                                 unsigned long addr, pgoff_t idx)
3143 {
3144         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3145                                 svma->vm_start;
3146         unsigned long sbase = saddr & PUD_MASK;
3147         unsigned long s_end = sbase + PUD_SIZE;
3148
3149         /* Allow segments to share if only one is marked locked */
3150         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3151         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3152
3153         /*
3154          * match the virtual addresses, permission and the alignment of the
3155          * page table page.
3156          */
3157         if (pmd_index(addr) != pmd_index(saddr) ||
3158             vm_flags != svm_flags ||
3159             sbase < svma->vm_start || svma->vm_end < s_end)
3160                 return 0;
3161
3162         return saddr;
3163 }
3164
3165 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3166 {
3167         unsigned long base = addr & PUD_MASK;
3168         unsigned long end = base + PUD_SIZE;
3169
3170         /*
3171          * check on proper vm_flags and page table alignment
3172          */
3173         if (vma->vm_flags & VM_MAYSHARE &&
3174             vma->vm_start <= base && end <= vma->vm_end)
3175                 return 1;
3176         return 0;
3177 }
3178
3179 /*
3180  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3181  * and returns the corresponding pte. While this is not necessary for the
3182  * !shared pmd case because we can allocate the pmd later as well, it makes the
3183  * code much cleaner. pmd allocation is essential for the shared case because
3184  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3185  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3186  * bad pmd for sharing.
3187  */
3188 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3189 {
3190         struct vm_area_struct *vma = find_vma(mm, addr);
3191         struct address_space *mapping = vma->vm_file->f_mapping;
3192         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3193                         vma->vm_pgoff;
3194         struct vm_area_struct *svma;
3195         unsigned long saddr;
3196         pte_t *spte = NULL;
3197         pte_t *pte;
3198
3199         if (!vma_shareable(vma, addr))
3200                 return (pte_t *)pmd_alloc(mm, pud, addr);
3201
3202         mutex_lock(&mapping->i_mmap_mutex);
3203         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3204                 if (svma == vma)
3205                         continue;
3206
3207                 saddr = page_table_shareable(svma, vma, addr, idx);
3208                 if (saddr) {
3209                         spte = huge_pte_offset(svma->vm_mm, saddr);
3210                         if (spte) {
3211                                 get_page(virt_to_page(spte));
3212                                 break;
3213                         }
3214                 }
3215         }
3216
3217         if (!spte)
3218                 goto out;
3219
3220         spin_lock(&mm->page_table_lock);
3221         if (pud_none(*pud))
3222                 pud_populate(mm, pud,
3223                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3224         else
3225                 put_page(virt_to_page(spte));
3226         spin_unlock(&mm->page_table_lock);
3227 out:
3228         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3229         mutex_unlock(&mapping->i_mmap_mutex);
3230         return pte;
3231 }
3232
3233 /*
3234  * unmap huge page backed by shared pte.
3235  *
3236  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3237  * indicated by page_count > 1, unmap is achieved by clearing pud and
3238  * decrementing the ref count. If count == 1, the pte page is not shared.
3239  *
3240  * called with vma->vm_mm->page_table_lock held.
3241  *
3242  * returns: 1 successfully unmapped a shared pte page
3243  *          0 the underlying pte page is not shared, or it is the last user
3244  */
3245 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3246 {
3247         pgd_t *pgd = pgd_offset(mm, *addr);
3248         pud_t *pud = pud_offset(pgd, *addr);
3249
3250         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3251         if (page_count(virt_to_page(ptep)) == 1)
3252                 return 0;
3253
3254         pud_clear(pud);
3255         put_page(virt_to_page(ptep));
3256         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3257         return 1;
3258 }
3259 #define want_pmd_share()        (1)
3260 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3261 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3262 {
3263         return NULL;
3264 }
3265 #define want_pmd_share()        (0)
3266 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3267
3268 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3269 pte_t *huge_pte_alloc(struct mm_struct *mm,
3270                         unsigned long addr, unsigned long sz)
3271 {
3272         pgd_t *pgd;
3273         pud_t *pud;
3274         pte_t *pte = NULL;
3275
3276         pgd = pgd_offset(mm, addr);
3277         pud = pud_alloc(mm, pgd, addr);
3278         if (pud) {
3279                 if (sz == PUD_SIZE) {
3280                         pte = (pte_t *)pud;
3281                 } else {
3282                         BUG_ON(sz != PMD_SIZE);
3283                         if (want_pmd_share() && pud_none(*pud))
3284                                 pte = huge_pmd_share(mm, addr, pud);
3285                         else
3286                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3287                 }
3288         }
3289         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3290
3291         return pte;
3292 }
3293
3294 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3295 {
3296         pgd_t *pgd;
3297         pud_t *pud;
3298         pmd_t *pmd = NULL;
3299
3300         pgd = pgd_offset(mm, addr);
3301         if (pgd_present(*pgd)) {
3302                 pud = pud_offset(pgd, addr);
3303                 if (pud_present(*pud)) {
3304                         if (pud_huge(*pud))
3305                                 return (pte_t *)pud;
3306                         pmd = pmd_offset(pud, addr);
3307                 }
3308         }
3309         return (pte_t *) pmd;
3310 }
3311
3312 struct page *
3313 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3314                 pmd_t *pmd, int write)
3315 {
3316         struct page *page;
3317
3318         page = pte_page(*(pte_t *)pmd);
3319         if (page)
3320                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3321         return page;
3322 }
3323
3324 struct page *
3325 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3326                 pud_t *pud, int write)
3327 {
3328         struct page *page;
3329
3330         page = pte_page(*(pte_t *)pud);
3331         if (page)
3332                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3333         return page;
3334 }
3335
3336 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3337
3338 /* Can be overriden by architectures */
3339 __attribute__((weak)) struct page *
3340 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3341                pud_t *pud, int write)
3342 {
3343         BUG();
3344         return NULL;
3345 }
3346
3347 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3348
3349 #ifdef CONFIG_MEMORY_FAILURE
3350
3351 /* Should be called in hugetlb_lock */
3352 static int is_hugepage_on_freelist(struct page *hpage)
3353 {
3354         struct page *page;
3355         struct page *tmp;
3356         struct hstate *h = page_hstate(hpage);
3357         int nid = page_to_nid(hpage);
3358
3359         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3360                 if (page == hpage)
3361                         return 1;
3362         return 0;
3363 }
3364
3365 /*
3366  * This function is called from memory failure code.
3367  * Assume the caller holds page lock of the head page.
3368  */
3369 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3370 {
3371         struct hstate *h = page_hstate(hpage);
3372         int nid = page_to_nid(hpage);
3373         int ret = -EBUSY;
3374
3375         spin_lock(&hugetlb_lock);
3376         if (is_hugepage_on_freelist(hpage)) {
3377                 /*
3378                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3379                  * but dangling hpage->lru can trigger list-debug warnings
3380                  * (this happens when we call unpoison_memory() on it),
3381                  * so let it point to itself with list_del_init().
3382                  */
3383                 list_del_init(&hpage->lru);
3384                 set_page_refcounted(hpage);
3385                 h->free_huge_pages--;
3386                 h->free_huge_pages_node[nid]--;
3387                 ret = 0;
3388         }
3389         spin_unlock(&hugetlb_lock);
3390         return ret;
3391 }
3392 #endif