mm, thp: restructure thp avoidance of light synchronous migration
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53  * free_huge_pages, and surplus_huge_pages.
54  */
55 DEFINE_SPINLOCK(hugetlb_lock);
56
57 /*
58  * Serializes faults on the same logical page.  This is used to
59  * prevent spurious OOMs when the hugepage pool is fully utilized.
60  */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65 {
66         bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68         spin_unlock(&spool->lock);
69
70         /* If no pages are used, and no other handles to the subpool
71          * remain, free the subpool the subpool remain */
72         if (free)
73                 kfree(spool);
74 }
75
76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77 {
78         struct hugepage_subpool *spool;
79
80         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81         if (!spool)
82                 return NULL;
83
84         spin_lock_init(&spool->lock);
85         spool->count = 1;
86         spool->max_hpages = nr_blocks;
87         spool->used_hpages = 0;
88
89         return spool;
90 }
91
92 void hugepage_put_subpool(struct hugepage_subpool *spool)
93 {
94         spin_lock(&spool->lock);
95         BUG_ON(!spool->count);
96         spool->count--;
97         unlock_or_release_subpool(spool);
98 }
99
100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101                                       long delta)
102 {
103         int ret = 0;
104
105         if (!spool)
106                 return 0;
107
108         spin_lock(&spool->lock);
109         if ((spool->used_hpages + delta) <= spool->max_hpages) {
110                 spool->used_hpages += delta;
111         } else {
112                 ret = -ENOMEM;
113         }
114         spin_unlock(&spool->lock);
115
116         return ret;
117 }
118
119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120                                        long delta)
121 {
122         if (!spool)
123                 return;
124
125         spin_lock(&spool->lock);
126         spool->used_hpages -= delta;
127         /* If hugetlbfs_put_super couldn't free spool due to
128         * an outstanding quota reference, free it now. */
129         unlock_or_release_subpool(spool);
130 }
131
132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133 {
134         return HUGETLBFS_SB(inode->i_sb)->spool;
135 }
136
137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138 {
139         return subpool_inode(file_inode(vma->vm_file));
140 }
141
142 /*
143  * Region tracking -- allows tracking of reservations and instantiated pages
144  *                    across the pages in a mapping.
145  *
146  * The region data structures are embedded into a resv_map and
147  * protected by a resv_map's lock
148  */
149 struct file_region {
150         struct list_head link;
151         long from;
152         long to;
153 };
154
155 static long region_add(struct resv_map *resv, long f, long t)
156 {
157         struct list_head *head = &resv->regions;
158         struct file_region *rg, *nrg, *trg;
159
160         spin_lock(&resv->lock);
161         /* Locate the region we are either in or before. */
162         list_for_each_entry(rg, head, link)
163                 if (f <= rg->to)
164                         break;
165
166         /* Round our left edge to the current segment if it encloses us. */
167         if (f > rg->from)
168                 f = rg->from;
169
170         /* Check for and consume any regions we now overlap with. */
171         nrg = rg;
172         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173                 if (&rg->link == head)
174                         break;
175                 if (rg->from > t)
176                         break;
177
178                 /* If this area reaches higher then extend our area to
179                  * include it completely.  If this is not the first area
180                  * which we intend to reuse, free it. */
181                 if (rg->to > t)
182                         t = rg->to;
183                 if (rg != nrg) {
184                         list_del(&rg->link);
185                         kfree(rg);
186                 }
187         }
188         nrg->from = f;
189         nrg->to = t;
190         spin_unlock(&resv->lock);
191         return 0;
192 }
193
194 static long region_chg(struct resv_map *resv, long f, long t)
195 {
196         struct list_head *head = &resv->regions;
197         struct file_region *rg, *nrg = NULL;
198         long chg = 0;
199
200 retry:
201         spin_lock(&resv->lock);
202         /* Locate the region we are before or in. */
203         list_for_each_entry(rg, head, link)
204                 if (f <= rg->to)
205                         break;
206
207         /* If we are below the current region then a new region is required.
208          * Subtle, allocate a new region at the position but make it zero
209          * size such that we can guarantee to record the reservation. */
210         if (&rg->link == head || t < rg->from) {
211                 if (!nrg) {
212                         spin_unlock(&resv->lock);
213                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214                         if (!nrg)
215                                 return -ENOMEM;
216
217                         nrg->from = f;
218                         nrg->to   = f;
219                         INIT_LIST_HEAD(&nrg->link);
220                         goto retry;
221                 }
222
223                 list_add(&nrg->link, rg->link.prev);
224                 chg = t - f;
225                 goto out_nrg;
226         }
227
228         /* Round our left edge to the current segment if it encloses us. */
229         if (f > rg->from)
230                 f = rg->from;
231         chg = t - f;
232
233         /* Check for and consume any regions we now overlap with. */
234         list_for_each_entry(rg, rg->link.prev, link) {
235                 if (&rg->link == head)
236                         break;
237                 if (rg->from > t)
238                         goto out;
239
240                 /* We overlap with this area, if it extends further than
241                  * us then we must extend ourselves.  Account for its
242                  * existing reservation. */
243                 if (rg->to > t) {
244                         chg += rg->to - t;
245                         t = rg->to;
246                 }
247                 chg -= rg->to - rg->from;
248         }
249
250 out:
251         spin_unlock(&resv->lock);
252         /*  We already know we raced and no longer need the new region */
253         kfree(nrg);
254         return chg;
255 out_nrg:
256         spin_unlock(&resv->lock);
257         return chg;
258 }
259
260 static long region_truncate(struct resv_map *resv, long end)
261 {
262         struct list_head *head = &resv->regions;
263         struct file_region *rg, *trg;
264         long chg = 0;
265
266         spin_lock(&resv->lock);
267         /* Locate the region we are either in or before. */
268         list_for_each_entry(rg, head, link)
269                 if (end <= rg->to)
270                         break;
271         if (&rg->link == head)
272                 goto out;
273
274         /* If we are in the middle of a region then adjust it. */
275         if (end > rg->from) {
276                 chg = rg->to - end;
277                 rg->to = end;
278                 rg = list_entry(rg->link.next, typeof(*rg), link);
279         }
280
281         /* Drop any remaining regions. */
282         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283                 if (&rg->link == head)
284                         break;
285                 chg += rg->to - rg->from;
286                 list_del(&rg->link);
287                 kfree(rg);
288         }
289
290 out:
291         spin_unlock(&resv->lock);
292         return chg;
293 }
294
295 static long region_count(struct resv_map *resv, long f, long t)
296 {
297         struct list_head *head = &resv->regions;
298         struct file_region *rg;
299         long chg = 0;
300
301         spin_lock(&resv->lock);
302         /* Locate each segment we overlap with, and count that overlap. */
303         list_for_each_entry(rg, head, link) {
304                 long seg_from;
305                 long seg_to;
306
307                 if (rg->to <= f)
308                         continue;
309                 if (rg->from >= t)
310                         break;
311
312                 seg_from = max(rg->from, f);
313                 seg_to = min(rg->to, t);
314
315                 chg += seg_to - seg_from;
316         }
317         spin_unlock(&resv->lock);
318
319         return chg;
320 }
321
322 /*
323  * Convert the address within this vma to the page offset within
324  * the mapping, in pagecache page units; huge pages here.
325  */
326 static pgoff_t vma_hugecache_offset(struct hstate *h,
327                         struct vm_area_struct *vma, unsigned long address)
328 {
329         return ((address - vma->vm_start) >> huge_page_shift(h)) +
330                         (vma->vm_pgoff >> huge_page_order(h));
331 }
332
333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334                                      unsigned long address)
335 {
336         return vma_hugecache_offset(hstate_vma(vma), vma, address);
337 }
338
339 /*
340  * Return the size of the pages allocated when backing a VMA. In the majority
341  * cases this will be same size as used by the page table entries.
342  */
343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344 {
345         struct hstate *hstate;
346
347         if (!is_vm_hugetlb_page(vma))
348                 return PAGE_SIZE;
349
350         hstate = hstate_vma(vma);
351
352         return 1UL << huge_page_shift(hstate);
353 }
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355
356 /*
357  * Return the page size being used by the MMU to back a VMA. In the majority
358  * of cases, the page size used by the kernel matches the MMU size. On
359  * architectures where it differs, an architecture-specific version of this
360  * function is required.
361  */
362 #ifndef vma_mmu_pagesize
363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364 {
365         return vma_kernel_pagesize(vma);
366 }
367 #endif
368
369 /*
370  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
371  * bits of the reservation map pointer, which are always clear due to
372  * alignment.
373  */
374 #define HPAGE_RESV_OWNER    (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377
378 /*
379  * These helpers are used to track how many pages are reserved for
380  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381  * is guaranteed to have their future faults succeed.
382  *
383  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384  * the reserve counters are updated with the hugetlb_lock held. It is safe
385  * to reset the VMA at fork() time as it is not in use yet and there is no
386  * chance of the global counters getting corrupted as a result of the values.
387  *
388  * The private mapping reservation is represented in a subtly different
389  * manner to a shared mapping.  A shared mapping has a region map associated
390  * with the underlying file, this region map represents the backing file
391  * pages which have ever had a reservation assigned which this persists even
392  * after the page is instantiated.  A private mapping has a region map
393  * associated with the original mmap which is attached to all VMAs which
394  * reference it, this region map represents those offsets which have consumed
395  * reservation ie. where pages have been instantiated.
396  */
397 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398 {
399         return (unsigned long)vma->vm_private_data;
400 }
401
402 static void set_vma_private_data(struct vm_area_struct *vma,
403                                                         unsigned long value)
404 {
405         vma->vm_private_data = (void *)value;
406 }
407
408 struct resv_map *resv_map_alloc(void)
409 {
410         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411         if (!resv_map)
412                 return NULL;
413
414         kref_init(&resv_map->refs);
415         spin_lock_init(&resv_map->lock);
416         INIT_LIST_HEAD(&resv_map->regions);
417
418         return resv_map;
419 }
420
421 void resv_map_release(struct kref *ref)
422 {
423         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425         /* Clear out any active regions before we release the map. */
426         region_truncate(resv_map, 0);
427         kfree(resv_map);
428 }
429
430 static inline struct resv_map *inode_resv_map(struct inode *inode)
431 {
432         return inode->i_mapping->private_data;
433 }
434
435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 {
437         VM_BUG_ON(!is_vm_hugetlb_page(vma));
438         if (vma->vm_flags & VM_MAYSHARE) {
439                 struct address_space *mapping = vma->vm_file->f_mapping;
440                 struct inode *inode = mapping->host;
441
442                 return inode_resv_map(inode);
443
444         } else {
445                 return (struct resv_map *)(get_vma_private_data(vma) &
446                                                         ~HPAGE_RESV_MASK);
447         }
448 }
449
450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 {
452         VM_BUG_ON(!is_vm_hugetlb_page(vma));
453         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
454
455         set_vma_private_data(vma, (get_vma_private_data(vma) &
456                                 HPAGE_RESV_MASK) | (unsigned long)map);
457 }
458
459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460 {
461         VM_BUG_ON(!is_vm_hugetlb_page(vma));
462         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
463
464         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 }
466
467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468 {
469         VM_BUG_ON(!is_vm_hugetlb_page(vma));
470
471         return (get_vma_private_data(vma) & flag) != 0;
472 }
473
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476 {
477         VM_BUG_ON(!is_vm_hugetlb_page(vma));
478         if (!(vma->vm_flags & VM_MAYSHARE))
479                 vma->vm_private_data = (void *)0;
480 }
481
482 /* Returns true if the VMA has associated reserve pages */
483 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484 {
485         if (vma->vm_flags & VM_NORESERVE) {
486                 /*
487                  * This address is already reserved by other process(chg == 0),
488                  * so, we should decrement reserved count. Without decrementing,
489                  * reserve count remains after releasing inode, because this
490                  * allocated page will go into page cache and is regarded as
491                  * coming from reserved pool in releasing step.  Currently, we
492                  * don't have any other solution to deal with this situation
493                  * properly, so add work-around here.
494                  */
495                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496                         return 1;
497                 else
498                         return 0;
499         }
500
501         /* Shared mappings always use reserves */
502         if (vma->vm_flags & VM_MAYSHARE)
503                 return 1;
504
505         /*
506          * Only the process that called mmap() has reserves for
507          * private mappings.
508          */
509         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510                 return 1;
511
512         return 0;
513 }
514
515 static void enqueue_huge_page(struct hstate *h, struct page *page)
516 {
517         int nid = page_to_nid(page);
518         list_move(&page->lru, &h->hugepage_freelists[nid]);
519         h->free_huge_pages++;
520         h->free_huge_pages_node[nid]++;
521 }
522
523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524 {
525         struct page *page;
526
527         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528                 if (!is_migrate_isolate_page(page))
529                         break;
530         /*
531          * if 'non-isolated free hugepage' not found on the list,
532          * the allocation fails.
533          */
534         if (&h->hugepage_freelists[nid] == &page->lru)
535                 return NULL;
536         list_move(&page->lru, &h->hugepage_activelist);
537         set_page_refcounted(page);
538         h->free_huge_pages--;
539         h->free_huge_pages_node[nid]--;
540         return page;
541 }
542
543 /* Movability of hugepages depends on migration support. */
544 static inline gfp_t htlb_alloc_mask(struct hstate *h)
545 {
546         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
547                 return GFP_HIGHUSER_MOVABLE;
548         else
549                 return GFP_HIGHUSER;
550 }
551
552 static struct page *dequeue_huge_page_vma(struct hstate *h,
553                                 struct vm_area_struct *vma,
554                                 unsigned long address, int avoid_reserve,
555                                 long chg)
556 {
557         struct page *page = NULL;
558         struct mempolicy *mpol;
559         nodemask_t *nodemask;
560         struct zonelist *zonelist;
561         struct zone *zone;
562         struct zoneref *z;
563         unsigned int cpuset_mems_cookie;
564
565         /*
566          * A child process with MAP_PRIVATE mappings created by their parent
567          * have no page reserves. This check ensures that reservations are
568          * not "stolen". The child may still get SIGKILLed
569          */
570         if (!vma_has_reserves(vma, chg) &&
571                         h->free_huge_pages - h->resv_huge_pages == 0)
572                 goto err;
573
574         /* If reserves cannot be used, ensure enough pages are in the pool */
575         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576                 goto err;
577
578 retry_cpuset:
579         cpuset_mems_cookie = read_mems_allowed_begin();
580         zonelist = huge_zonelist(vma, address,
581                                         htlb_alloc_mask(h), &mpol, &nodemask);
582
583         for_each_zone_zonelist_nodemask(zone, z, zonelist,
584                                                 MAX_NR_ZONES - 1, nodemask) {
585                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
587                         if (page) {
588                                 if (avoid_reserve)
589                                         break;
590                                 if (!vma_has_reserves(vma, chg))
591                                         break;
592
593                                 SetPagePrivate(page);
594                                 h->resv_huge_pages--;
595                                 break;
596                         }
597                 }
598         }
599
600         mpol_cond_put(mpol);
601         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602                 goto retry_cpuset;
603         return page;
604
605 err:
606         return NULL;
607 }
608
609 /*
610  * common helper functions for hstate_next_node_to_{alloc|free}.
611  * We may have allocated or freed a huge page based on a different
612  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613  * be outside of *nodes_allowed.  Ensure that we use an allowed
614  * node for alloc or free.
615  */
616 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
617 {
618         nid = next_node(nid, *nodes_allowed);
619         if (nid == MAX_NUMNODES)
620                 nid = first_node(*nodes_allowed);
621         VM_BUG_ON(nid >= MAX_NUMNODES);
622
623         return nid;
624 }
625
626 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
627 {
628         if (!node_isset(nid, *nodes_allowed))
629                 nid = next_node_allowed(nid, nodes_allowed);
630         return nid;
631 }
632
633 /*
634  * returns the previously saved node ["this node"] from which to
635  * allocate a persistent huge page for the pool and advance the
636  * next node from which to allocate, handling wrap at end of node
637  * mask.
638  */
639 static int hstate_next_node_to_alloc(struct hstate *h,
640                                         nodemask_t *nodes_allowed)
641 {
642         int nid;
643
644         VM_BUG_ON(!nodes_allowed);
645
646         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
648
649         return nid;
650 }
651
652 /*
653  * helper for free_pool_huge_page() - return the previously saved
654  * node ["this node"] from which to free a huge page.  Advance the
655  * next node id whether or not we find a free huge page to free so
656  * that the next attempt to free addresses the next node.
657  */
658 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
659 {
660         int nid;
661
662         VM_BUG_ON(!nodes_allowed);
663
664         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
666
667         return nid;
668 }
669
670 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
671         for (nr_nodes = nodes_weight(*mask);                            \
672                 nr_nodes > 0 &&                                         \
673                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
674                 nr_nodes--)
675
676 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
677         for (nr_nodes = nodes_weight(*mask);                            \
678                 nr_nodes > 0 &&                                         \
679                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
680                 nr_nodes--)
681
682 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683 static void destroy_compound_gigantic_page(struct page *page,
684                                         unsigned long order)
685 {
686         int i;
687         int nr_pages = 1 << order;
688         struct page *p = page + 1;
689
690         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691                 __ClearPageTail(p);
692                 set_page_refcounted(p);
693                 p->first_page = NULL;
694         }
695
696         set_compound_order(page, 0);
697         __ClearPageHead(page);
698 }
699
700 static void free_gigantic_page(struct page *page, unsigned order)
701 {
702         free_contig_range(page_to_pfn(page), 1 << order);
703 }
704
705 static int __alloc_gigantic_page(unsigned long start_pfn,
706                                 unsigned long nr_pages)
707 {
708         unsigned long end_pfn = start_pfn + nr_pages;
709         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
710 }
711
712 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713                                 unsigned long nr_pages)
714 {
715         unsigned long i, end_pfn = start_pfn + nr_pages;
716         struct page *page;
717
718         for (i = start_pfn; i < end_pfn; i++) {
719                 if (!pfn_valid(i))
720                         return false;
721
722                 page = pfn_to_page(i);
723
724                 if (PageReserved(page))
725                         return false;
726
727                 if (page_count(page) > 0)
728                         return false;
729
730                 if (PageHuge(page))
731                         return false;
732         }
733
734         return true;
735 }
736
737 static bool zone_spans_last_pfn(const struct zone *zone,
738                         unsigned long start_pfn, unsigned long nr_pages)
739 {
740         unsigned long last_pfn = start_pfn + nr_pages - 1;
741         return zone_spans_pfn(zone, last_pfn);
742 }
743
744 static struct page *alloc_gigantic_page(int nid, unsigned order)
745 {
746         unsigned long nr_pages = 1 << order;
747         unsigned long ret, pfn, flags;
748         struct zone *z;
749
750         z = NODE_DATA(nid)->node_zones;
751         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752                 spin_lock_irqsave(&z->lock, flags);
753
754                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
755                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
757                                 /*
758                                  * We release the zone lock here because
759                                  * alloc_contig_range() will also lock the zone
760                                  * at some point. If there's an allocation
761                                  * spinning on this lock, it may win the race
762                                  * and cause alloc_contig_range() to fail...
763                                  */
764                                 spin_unlock_irqrestore(&z->lock, flags);
765                                 ret = __alloc_gigantic_page(pfn, nr_pages);
766                                 if (!ret)
767                                         return pfn_to_page(pfn);
768                                 spin_lock_irqsave(&z->lock, flags);
769                         }
770                         pfn += nr_pages;
771                 }
772
773                 spin_unlock_irqrestore(&z->lock, flags);
774         }
775
776         return NULL;
777 }
778
779 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
781
782 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
783 {
784         struct page *page;
785
786         page = alloc_gigantic_page(nid, huge_page_order(h));
787         if (page) {
788                 prep_compound_gigantic_page(page, huge_page_order(h));
789                 prep_new_huge_page(h, page, nid);
790         }
791
792         return page;
793 }
794
795 static int alloc_fresh_gigantic_page(struct hstate *h,
796                                 nodemask_t *nodes_allowed)
797 {
798         struct page *page = NULL;
799         int nr_nodes, node;
800
801         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802                 page = alloc_fresh_gigantic_page_node(h, node);
803                 if (page)
804                         return 1;
805         }
806
807         return 0;
808 }
809
810 static inline bool gigantic_page_supported(void) { return true; }
811 #else
812 static inline bool gigantic_page_supported(void) { return false; }
813 static inline void free_gigantic_page(struct page *page, unsigned order) { }
814 static inline void destroy_compound_gigantic_page(struct page *page,
815                                                 unsigned long order) { }
816 static inline int alloc_fresh_gigantic_page(struct hstate *h,
817                                         nodemask_t *nodes_allowed) { return 0; }
818 #endif
819
820 static void update_and_free_page(struct hstate *h, struct page *page)
821 {
822         int i;
823
824         if (hstate_is_gigantic(h) && !gigantic_page_supported())
825                 return;
826
827         h->nr_huge_pages--;
828         h->nr_huge_pages_node[page_to_nid(page)]--;
829         for (i = 0; i < pages_per_huge_page(h); i++) {
830                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831                                 1 << PG_referenced | 1 << PG_dirty |
832                                 1 << PG_active | 1 << PG_private |
833                                 1 << PG_writeback);
834         }
835         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
836         set_compound_page_dtor(page, NULL);
837         set_page_refcounted(page);
838         if (hstate_is_gigantic(h)) {
839                 destroy_compound_gigantic_page(page, huge_page_order(h));
840                 free_gigantic_page(page, huge_page_order(h));
841         } else {
842                 arch_release_hugepage(page);
843                 __free_pages(page, huge_page_order(h));
844         }
845 }
846
847 struct hstate *size_to_hstate(unsigned long size)
848 {
849         struct hstate *h;
850
851         for_each_hstate(h) {
852                 if (huge_page_size(h) == size)
853                         return h;
854         }
855         return NULL;
856 }
857
858 void free_huge_page(struct page *page)
859 {
860         /*
861          * Can't pass hstate in here because it is called from the
862          * compound page destructor.
863          */
864         struct hstate *h = page_hstate(page);
865         int nid = page_to_nid(page);
866         struct hugepage_subpool *spool =
867                 (struct hugepage_subpool *)page_private(page);
868         bool restore_reserve;
869
870         set_page_private(page, 0);
871         page->mapping = NULL;
872         BUG_ON(page_count(page));
873         BUG_ON(page_mapcount(page));
874         restore_reserve = PagePrivate(page);
875         ClearPagePrivate(page);
876
877         spin_lock(&hugetlb_lock);
878         hugetlb_cgroup_uncharge_page(hstate_index(h),
879                                      pages_per_huge_page(h), page);
880         if (restore_reserve)
881                 h->resv_huge_pages++;
882
883         if (h->surplus_huge_pages_node[nid]) {
884                 /* remove the page from active list */
885                 list_del(&page->lru);
886                 update_and_free_page(h, page);
887                 h->surplus_huge_pages--;
888                 h->surplus_huge_pages_node[nid]--;
889         } else {
890                 arch_clear_hugepage_flags(page);
891                 enqueue_huge_page(h, page);
892         }
893         spin_unlock(&hugetlb_lock);
894         hugepage_subpool_put_pages(spool, 1);
895 }
896
897 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
898 {
899         INIT_LIST_HEAD(&page->lru);
900         set_compound_page_dtor(page, free_huge_page);
901         spin_lock(&hugetlb_lock);
902         set_hugetlb_cgroup(page, NULL);
903         h->nr_huge_pages++;
904         h->nr_huge_pages_node[nid]++;
905         spin_unlock(&hugetlb_lock);
906         put_page(page); /* free it into the hugepage allocator */
907 }
908
909 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
910 {
911         int i;
912         int nr_pages = 1 << order;
913         struct page *p = page + 1;
914
915         /* we rely on prep_new_huge_page to set the destructor */
916         set_compound_order(page, order);
917         __SetPageHead(page);
918         __ClearPageReserved(page);
919         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
920                 __SetPageTail(p);
921                 /*
922                  * For gigantic hugepages allocated through bootmem at
923                  * boot, it's safer to be consistent with the not-gigantic
924                  * hugepages and clear the PG_reserved bit from all tail pages
925                  * too.  Otherwse drivers using get_user_pages() to access tail
926                  * pages may get the reference counting wrong if they see
927                  * PG_reserved set on a tail page (despite the head page not
928                  * having PG_reserved set).  Enforcing this consistency between
929                  * head and tail pages allows drivers to optimize away a check
930                  * on the head page when they need know if put_page() is needed
931                  * after get_user_pages().
932                  */
933                 __ClearPageReserved(p);
934                 set_page_count(p, 0);
935                 p->first_page = page;
936         }
937 }
938
939 /*
940  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
941  * transparent huge pages.  See the PageTransHuge() documentation for more
942  * details.
943  */
944 int PageHuge(struct page *page)
945 {
946         if (!PageCompound(page))
947                 return 0;
948
949         page = compound_head(page);
950         return get_compound_page_dtor(page) == free_huge_page;
951 }
952 EXPORT_SYMBOL_GPL(PageHuge);
953
954 /*
955  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
956  * normal or transparent huge pages.
957  */
958 int PageHeadHuge(struct page *page_head)
959 {
960         if (!PageHead(page_head))
961                 return 0;
962
963         return get_compound_page_dtor(page_head) == free_huge_page;
964 }
965
966 pgoff_t __basepage_index(struct page *page)
967 {
968         struct page *page_head = compound_head(page);
969         pgoff_t index = page_index(page_head);
970         unsigned long compound_idx;
971
972         if (!PageHuge(page_head))
973                 return page_index(page);
974
975         if (compound_order(page_head) >= MAX_ORDER)
976                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
977         else
978                 compound_idx = page - page_head;
979
980         return (index << compound_order(page_head)) + compound_idx;
981 }
982
983 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
984 {
985         struct page *page;
986
987         page = alloc_pages_exact_node(nid,
988                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
989                                                 __GFP_REPEAT|__GFP_NOWARN,
990                 huge_page_order(h));
991         if (page) {
992                 if (arch_prepare_hugepage(page)) {
993                         __free_pages(page, huge_page_order(h));
994                         return NULL;
995                 }
996                 prep_new_huge_page(h, page, nid);
997         }
998
999         return page;
1000 }
1001
1002 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1003 {
1004         struct page *page;
1005         int nr_nodes, node;
1006         int ret = 0;
1007
1008         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1009                 page = alloc_fresh_huge_page_node(h, node);
1010                 if (page) {
1011                         ret = 1;
1012                         break;
1013                 }
1014         }
1015
1016         if (ret)
1017                 count_vm_event(HTLB_BUDDY_PGALLOC);
1018         else
1019                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020
1021         return ret;
1022 }
1023
1024 /*
1025  * Free huge page from pool from next node to free.
1026  * Attempt to keep persistent huge pages more or less
1027  * balanced over allowed nodes.
1028  * Called with hugetlb_lock locked.
1029  */
1030 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1031                                                          bool acct_surplus)
1032 {
1033         int nr_nodes, node;
1034         int ret = 0;
1035
1036         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1037                 /*
1038                  * If we're returning unused surplus pages, only examine
1039                  * nodes with surplus pages.
1040                  */
1041                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1042                     !list_empty(&h->hugepage_freelists[node])) {
1043                         struct page *page =
1044                                 list_entry(h->hugepage_freelists[node].next,
1045                                           struct page, lru);
1046                         list_del(&page->lru);
1047                         h->free_huge_pages--;
1048                         h->free_huge_pages_node[node]--;
1049                         if (acct_surplus) {
1050                                 h->surplus_huge_pages--;
1051                                 h->surplus_huge_pages_node[node]--;
1052                         }
1053                         update_and_free_page(h, page);
1054                         ret = 1;
1055                         break;
1056                 }
1057         }
1058
1059         return ret;
1060 }
1061
1062 /*
1063  * Dissolve a given free hugepage into free buddy pages. This function does
1064  * nothing for in-use (including surplus) hugepages.
1065  */
1066 static void dissolve_free_huge_page(struct page *page)
1067 {
1068         spin_lock(&hugetlb_lock);
1069         if (PageHuge(page) && !page_count(page)) {
1070                 struct hstate *h = page_hstate(page);
1071                 int nid = page_to_nid(page);
1072                 list_del(&page->lru);
1073                 h->free_huge_pages--;
1074                 h->free_huge_pages_node[nid]--;
1075                 update_and_free_page(h, page);
1076         }
1077         spin_unlock(&hugetlb_lock);
1078 }
1079
1080 /*
1081  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1082  * make specified memory blocks removable from the system.
1083  * Note that start_pfn should aligned with (minimum) hugepage size.
1084  */
1085 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1086 {
1087         unsigned int order = 8 * sizeof(void *);
1088         unsigned long pfn;
1089         struct hstate *h;
1090
1091         /* Set scan step to minimum hugepage size */
1092         for_each_hstate(h)
1093                 if (order > huge_page_order(h))
1094                         order = huge_page_order(h);
1095         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1096         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1097                 dissolve_free_huge_page(pfn_to_page(pfn));
1098 }
1099
1100 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1101 {
1102         struct page *page;
1103         unsigned int r_nid;
1104
1105         if (hstate_is_gigantic(h))
1106                 return NULL;
1107
1108         /*
1109          * Assume we will successfully allocate the surplus page to
1110          * prevent racing processes from causing the surplus to exceed
1111          * overcommit
1112          *
1113          * This however introduces a different race, where a process B
1114          * tries to grow the static hugepage pool while alloc_pages() is
1115          * called by process A. B will only examine the per-node
1116          * counters in determining if surplus huge pages can be
1117          * converted to normal huge pages in adjust_pool_surplus(). A
1118          * won't be able to increment the per-node counter, until the
1119          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1120          * no more huge pages can be converted from surplus to normal
1121          * state (and doesn't try to convert again). Thus, we have a
1122          * case where a surplus huge page exists, the pool is grown, and
1123          * the surplus huge page still exists after, even though it
1124          * should just have been converted to a normal huge page. This
1125          * does not leak memory, though, as the hugepage will be freed
1126          * once it is out of use. It also does not allow the counters to
1127          * go out of whack in adjust_pool_surplus() as we don't modify
1128          * the node values until we've gotten the hugepage and only the
1129          * per-node value is checked there.
1130          */
1131         spin_lock(&hugetlb_lock);
1132         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1133                 spin_unlock(&hugetlb_lock);
1134                 return NULL;
1135         } else {
1136                 h->nr_huge_pages++;
1137                 h->surplus_huge_pages++;
1138         }
1139         spin_unlock(&hugetlb_lock);
1140
1141         if (nid == NUMA_NO_NODE)
1142                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1143                                    __GFP_REPEAT|__GFP_NOWARN,
1144                                    huge_page_order(h));
1145         else
1146                 page = alloc_pages_exact_node(nid,
1147                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1148                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1149
1150         if (page && arch_prepare_hugepage(page)) {
1151                 __free_pages(page, huge_page_order(h));
1152                 page = NULL;
1153         }
1154
1155         spin_lock(&hugetlb_lock);
1156         if (page) {
1157                 INIT_LIST_HEAD(&page->lru);
1158                 r_nid = page_to_nid(page);
1159                 set_compound_page_dtor(page, free_huge_page);
1160                 set_hugetlb_cgroup(page, NULL);
1161                 /*
1162                  * We incremented the global counters already
1163                  */
1164                 h->nr_huge_pages_node[r_nid]++;
1165                 h->surplus_huge_pages_node[r_nid]++;
1166                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1167         } else {
1168                 h->nr_huge_pages--;
1169                 h->surplus_huge_pages--;
1170                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1171         }
1172         spin_unlock(&hugetlb_lock);
1173
1174         return page;
1175 }
1176
1177 /*
1178  * This allocation function is useful in the context where vma is irrelevant.
1179  * E.g. soft-offlining uses this function because it only cares physical
1180  * address of error page.
1181  */
1182 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1183 {
1184         struct page *page = NULL;
1185
1186         spin_lock(&hugetlb_lock);
1187         if (h->free_huge_pages - h->resv_huge_pages > 0)
1188                 page = dequeue_huge_page_node(h, nid);
1189         spin_unlock(&hugetlb_lock);
1190
1191         if (!page)
1192                 page = alloc_buddy_huge_page(h, nid);
1193
1194         return page;
1195 }
1196
1197 /*
1198  * Increase the hugetlb pool such that it can accommodate a reservation
1199  * of size 'delta'.
1200  */
1201 static int gather_surplus_pages(struct hstate *h, int delta)
1202 {
1203         struct list_head surplus_list;
1204         struct page *page, *tmp;
1205         int ret, i;
1206         int needed, allocated;
1207         bool alloc_ok = true;
1208
1209         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1210         if (needed <= 0) {
1211                 h->resv_huge_pages += delta;
1212                 return 0;
1213         }
1214
1215         allocated = 0;
1216         INIT_LIST_HEAD(&surplus_list);
1217
1218         ret = -ENOMEM;
1219 retry:
1220         spin_unlock(&hugetlb_lock);
1221         for (i = 0; i < needed; i++) {
1222                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1223                 if (!page) {
1224                         alloc_ok = false;
1225                         break;
1226                 }
1227                 list_add(&page->lru, &surplus_list);
1228         }
1229         allocated += i;
1230
1231         /*
1232          * After retaking hugetlb_lock, we need to recalculate 'needed'
1233          * because either resv_huge_pages or free_huge_pages may have changed.
1234          */
1235         spin_lock(&hugetlb_lock);
1236         needed = (h->resv_huge_pages + delta) -
1237                         (h->free_huge_pages + allocated);
1238         if (needed > 0) {
1239                 if (alloc_ok)
1240                         goto retry;
1241                 /*
1242                  * We were not able to allocate enough pages to
1243                  * satisfy the entire reservation so we free what
1244                  * we've allocated so far.
1245                  */
1246                 goto free;
1247         }
1248         /*
1249          * The surplus_list now contains _at_least_ the number of extra pages
1250          * needed to accommodate the reservation.  Add the appropriate number
1251          * of pages to the hugetlb pool and free the extras back to the buddy
1252          * allocator.  Commit the entire reservation here to prevent another
1253          * process from stealing the pages as they are added to the pool but
1254          * before they are reserved.
1255          */
1256         needed += allocated;
1257         h->resv_huge_pages += delta;
1258         ret = 0;
1259
1260         /* Free the needed pages to the hugetlb pool */
1261         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1262                 if ((--needed) < 0)
1263                         break;
1264                 /*
1265                  * This page is now managed by the hugetlb allocator and has
1266                  * no users -- drop the buddy allocator's reference.
1267                  */
1268                 put_page_testzero(page);
1269                 VM_BUG_ON_PAGE(page_count(page), page);
1270                 enqueue_huge_page(h, page);
1271         }
1272 free:
1273         spin_unlock(&hugetlb_lock);
1274
1275         /* Free unnecessary surplus pages to the buddy allocator */
1276         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1277                 put_page(page);
1278         spin_lock(&hugetlb_lock);
1279
1280         return ret;
1281 }
1282
1283 /*
1284  * When releasing a hugetlb pool reservation, any surplus pages that were
1285  * allocated to satisfy the reservation must be explicitly freed if they were
1286  * never used.
1287  * Called with hugetlb_lock held.
1288  */
1289 static void return_unused_surplus_pages(struct hstate *h,
1290                                         unsigned long unused_resv_pages)
1291 {
1292         unsigned long nr_pages;
1293
1294         /* Uncommit the reservation */
1295         h->resv_huge_pages -= unused_resv_pages;
1296
1297         /* Cannot return gigantic pages currently */
1298         if (hstate_is_gigantic(h))
1299                 return;
1300
1301         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1302
1303         /*
1304          * We want to release as many surplus pages as possible, spread
1305          * evenly across all nodes with memory. Iterate across these nodes
1306          * until we can no longer free unreserved surplus pages. This occurs
1307          * when the nodes with surplus pages have no free pages.
1308          * free_pool_huge_page() will balance the the freed pages across the
1309          * on-line nodes with memory and will handle the hstate accounting.
1310          */
1311         while (nr_pages--) {
1312                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1313                         break;
1314                 cond_resched_lock(&hugetlb_lock);
1315         }
1316 }
1317
1318 /*
1319  * Determine if the huge page at addr within the vma has an associated
1320  * reservation.  Where it does not we will need to logically increase
1321  * reservation and actually increase subpool usage before an allocation
1322  * can occur.  Where any new reservation would be required the
1323  * reservation change is prepared, but not committed.  Once the page
1324  * has been allocated from the subpool and instantiated the change should
1325  * be committed via vma_commit_reservation.  No action is required on
1326  * failure.
1327  */
1328 static long vma_needs_reservation(struct hstate *h,
1329                         struct vm_area_struct *vma, unsigned long addr)
1330 {
1331         struct resv_map *resv;
1332         pgoff_t idx;
1333         long chg;
1334
1335         resv = vma_resv_map(vma);
1336         if (!resv)
1337                 return 1;
1338
1339         idx = vma_hugecache_offset(h, vma, addr);
1340         chg = region_chg(resv, idx, idx + 1);
1341
1342         if (vma->vm_flags & VM_MAYSHARE)
1343                 return chg;
1344         else
1345                 return chg < 0 ? chg : 0;
1346 }
1347 static void vma_commit_reservation(struct hstate *h,
1348                         struct vm_area_struct *vma, unsigned long addr)
1349 {
1350         struct resv_map *resv;
1351         pgoff_t idx;
1352
1353         resv = vma_resv_map(vma);
1354         if (!resv)
1355                 return;
1356
1357         idx = vma_hugecache_offset(h, vma, addr);
1358         region_add(resv, idx, idx + 1);
1359 }
1360
1361 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1362                                     unsigned long addr, int avoid_reserve)
1363 {
1364         struct hugepage_subpool *spool = subpool_vma(vma);
1365         struct hstate *h = hstate_vma(vma);
1366         struct page *page;
1367         long chg;
1368         int ret, idx;
1369         struct hugetlb_cgroup *h_cg;
1370
1371         idx = hstate_index(h);
1372         /*
1373          * Processes that did not create the mapping will have no
1374          * reserves and will not have accounted against subpool
1375          * limit. Check that the subpool limit can be made before
1376          * satisfying the allocation MAP_NORESERVE mappings may also
1377          * need pages and subpool limit allocated allocated if no reserve
1378          * mapping overlaps.
1379          */
1380         chg = vma_needs_reservation(h, vma, addr);
1381         if (chg < 0)
1382                 return ERR_PTR(-ENOMEM);
1383         if (chg || avoid_reserve)
1384                 if (hugepage_subpool_get_pages(spool, 1))
1385                         return ERR_PTR(-ENOSPC);
1386
1387         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1388         if (ret)
1389                 goto out_subpool_put;
1390
1391         spin_lock(&hugetlb_lock);
1392         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1393         if (!page) {
1394                 spin_unlock(&hugetlb_lock);
1395                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1396                 if (!page)
1397                         goto out_uncharge_cgroup;
1398
1399                 spin_lock(&hugetlb_lock);
1400                 list_move(&page->lru, &h->hugepage_activelist);
1401                 /* Fall through */
1402         }
1403         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1404         spin_unlock(&hugetlb_lock);
1405
1406         set_page_private(page, (unsigned long)spool);
1407
1408         vma_commit_reservation(h, vma, addr);
1409         return page;
1410
1411 out_uncharge_cgroup:
1412         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1413 out_subpool_put:
1414         if (chg || avoid_reserve)
1415                 hugepage_subpool_put_pages(spool, 1);
1416         return ERR_PTR(-ENOSPC);
1417 }
1418
1419 /*
1420  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1421  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1422  * where no ERR_VALUE is expected to be returned.
1423  */
1424 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1425                                 unsigned long addr, int avoid_reserve)
1426 {
1427         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1428         if (IS_ERR(page))
1429                 page = NULL;
1430         return page;
1431 }
1432
1433 int __weak alloc_bootmem_huge_page(struct hstate *h)
1434 {
1435         struct huge_bootmem_page *m;
1436         int nr_nodes, node;
1437
1438         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1439                 void *addr;
1440
1441                 addr = memblock_virt_alloc_try_nid_nopanic(
1442                                 huge_page_size(h), huge_page_size(h),
1443                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1444                 if (addr) {
1445                         /*
1446                          * Use the beginning of the huge page to store the
1447                          * huge_bootmem_page struct (until gather_bootmem
1448                          * puts them into the mem_map).
1449                          */
1450                         m = addr;
1451                         goto found;
1452                 }
1453         }
1454         return 0;
1455
1456 found:
1457         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1458         /* Put them into a private list first because mem_map is not up yet */
1459         list_add(&m->list, &huge_boot_pages);
1460         m->hstate = h;
1461         return 1;
1462 }
1463
1464 static void __init prep_compound_huge_page(struct page *page, int order)
1465 {
1466         if (unlikely(order > (MAX_ORDER - 1)))
1467                 prep_compound_gigantic_page(page, order);
1468         else
1469                 prep_compound_page(page, order);
1470 }
1471
1472 /* Put bootmem huge pages into the standard lists after mem_map is up */
1473 static void __init gather_bootmem_prealloc(void)
1474 {
1475         struct huge_bootmem_page *m;
1476
1477         list_for_each_entry(m, &huge_boot_pages, list) {
1478                 struct hstate *h = m->hstate;
1479                 struct page *page;
1480
1481 #ifdef CONFIG_HIGHMEM
1482                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1483                 memblock_free_late(__pa(m),
1484                                    sizeof(struct huge_bootmem_page));
1485 #else
1486                 page = virt_to_page(m);
1487 #endif
1488                 WARN_ON(page_count(page) != 1);
1489                 prep_compound_huge_page(page, h->order);
1490                 WARN_ON(PageReserved(page));
1491                 prep_new_huge_page(h, page, page_to_nid(page));
1492                 /*
1493                  * If we had gigantic hugepages allocated at boot time, we need
1494                  * to restore the 'stolen' pages to totalram_pages in order to
1495                  * fix confusing memory reports from free(1) and another
1496                  * side-effects, like CommitLimit going negative.
1497                  */
1498                 if (hstate_is_gigantic(h))
1499                         adjust_managed_page_count(page, 1 << h->order);
1500         }
1501 }
1502
1503 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1504 {
1505         unsigned long i;
1506
1507         for (i = 0; i < h->max_huge_pages; ++i) {
1508                 if (hstate_is_gigantic(h)) {
1509                         if (!alloc_bootmem_huge_page(h))
1510                                 break;
1511                 } else if (!alloc_fresh_huge_page(h,
1512                                          &node_states[N_MEMORY]))
1513                         break;
1514         }
1515         h->max_huge_pages = i;
1516 }
1517
1518 static void __init hugetlb_init_hstates(void)
1519 {
1520         struct hstate *h;
1521
1522         for_each_hstate(h) {
1523                 /* oversize hugepages were init'ed in early boot */
1524                 if (!hstate_is_gigantic(h))
1525                         hugetlb_hstate_alloc_pages(h);
1526         }
1527 }
1528
1529 static char * __init memfmt(char *buf, unsigned long n)
1530 {
1531         if (n >= (1UL << 30))
1532                 sprintf(buf, "%lu GB", n >> 30);
1533         else if (n >= (1UL << 20))
1534                 sprintf(buf, "%lu MB", n >> 20);
1535         else
1536                 sprintf(buf, "%lu KB", n >> 10);
1537         return buf;
1538 }
1539
1540 static void __init report_hugepages(void)
1541 {
1542         struct hstate *h;
1543
1544         for_each_hstate(h) {
1545                 char buf[32];
1546                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1547                         memfmt(buf, huge_page_size(h)),
1548                         h->free_huge_pages);
1549         }
1550 }
1551
1552 #ifdef CONFIG_HIGHMEM
1553 static void try_to_free_low(struct hstate *h, unsigned long count,
1554                                                 nodemask_t *nodes_allowed)
1555 {
1556         int i;
1557
1558         if (hstate_is_gigantic(h))
1559                 return;
1560
1561         for_each_node_mask(i, *nodes_allowed) {
1562                 struct page *page, *next;
1563                 struct list_head *freel = &h->hugepage_freelists[i];
1564                 list_for_each_entry_safe(page, next, freel, lru) {
1565                         if (count >= h->nr_huge_pages)
1566                                 return;
1567                         if (PageHighMem(page))
1568                                 continue;
1569                         list_del(&page->lru);
1570                         update_and_free_page(h, page);
1571                         h->free_huge_pages--;
1572                         h->free_huge_pages_node[page_to_nid(page)]--;
1573                 }
1574         }
1575 }
1576 #else
1577 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1578                                                 nodemask_t *nodes_allowed)
1579 {
1580 }
1581 #endif
1582
1583 /*
1584  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1585  * balanced by operating on them in a round-robin fashion.
1586  * Returns 1 if an adjustment was made.
1587  */
1588 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1589                                 int delta)
1590 {
1591         int nr_nodes, node;
1592
1593         VM_BUG_ON(delta != -1 && delta != 1);
1594
1595         if (delta < 0) {
1596                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1597                         if (h->surplus_huge_pages_node[node])
1598                                 goto found;
1599                 }
1600         } else {
1601                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1602                         if (h->surplus_huge_pages_node[node] <
1603                                         h->nr_huge_pages_node[node])
1604                                 goto found;
1605                 }
1606         }
1607         return 0;
1608
1609 found:
1610         h->surplus_huge_pages += delta;
1611         h->surplus_huge_pages_node[node] += delta;
1612         return 1;
1613 }
1614
1615 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1616 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1617                                                 nodemask_t *nodes_allowed)
1618 {
1619         unsigned long min_count, ret;
1620
1621         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1622                 return h->max_huge_pages;
1623
1624         /*
1625          * Increase the pool size
1626          * First take pages out of surplus state.  Then make up the
1627          * remaining difference by allocating fresh huge pages.
1628          *
1629          * We might race with alloc_buddy_huge_page() here and be unable
1630          * to convert a surplus huge page to a normal huge page. That is
1631          * not critical, though, it just means the overall size of the
1632          * pool might be one hugepage larger than it needs to be, but
1633          * within all the constraints specified by the sysctls.
1634          */
1635         spin_lock(&hugetlb_lock);
1636         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1637                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1638                         break;
1639         }
1640
1641         while (count > persistent_huge_pages(h)) {
1642                 /*
1643                  * If this allocation races such that we no longer need the
1644                  * page, free_huge_page will handle it by freeing the page
1645                  * and reducing the surplus.
1646                  */
1647                 spin_unlock(&hugetlb_lock);
1648                 if (hstate_is_gigantic(h))
1649                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1650                 else
1651                         ret = alloc_fresh_huge_page(h, nodes_allowed);
1652                 spin_lock(&hugetlb_lock);
1653                 if (!ret)
1654                         goto out;
1655
1656                 /* Bail for signals. Probably ctrl-c from user */
1657                 if (signal_pending(current))
1658                         goto out;
1659         }
1660
1661         /*
1662          * Decrease the pool size
1663          * First return free pages to the buddy allocator (being careful
1664          * to keep enough around to satisfy reservations).  Then place
1665          * pages into surplus state as needed so the pool will shrink
1666          * to the desired size as pages become free.
1667          *
1668          * By placing pages into the surplus state independent of the
1669          * overcommit value, we are allowing the surplus pool size to
1670          * exceed overcommit. There are few sane options here. Since
1671          * alloc_buddy_huge_page() is checking the global counter,
1672          * though, we'll note that we're not allowed to exceed surplus
1673          * and won't grow the pool anywhere else. Not until one of the
1674          * sysctls are changed, or the surplus pages go out of use.
1675          */
1676         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1677         min_count = max(count, min_count);
1678         try_to_free_low(h, min_count, nodes_allowed);
1679         while (min_count < persistent_huge_pages(h)) {
1680                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1681                         break;
1682                 cond_resched_lock(&hugetlb_lock);
1683         }
1684         while (count < persistent_huge_pages(h)) {
1685                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1686                         break;
1687         }
1688 out:
1689         ret = persistent_huge_pages(h);
1690         spin_unlock(&hugetlb_lock);
1691         return ret;
1692 }
1693
1694 #define HSTATE_ATTR_RO(_name) \
1695         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1696
1697 #define HSTATE_ATTR(_name) \
1698         static struct kobj_attribute _name##_attr = \
1699                 __ATTR(_name, 0644, _name##_show, _name##_store)
1700
1701 static struct kobject *hugepages_kobj;
1702 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1703
1704 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1705
1706 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1707 {
1708         int i;
1709
1710         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1711                 if (hstate_kobjs[i] == kobj) {
1712                         if (nidp)
1713                                 *nidp = NUMA_NO_NODE;
1714                         return &hstates[i];
1715                 }
1716
1717         return kobj_to_node_hstate(kobj, nidp);
1718 }
1719
1720 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1721                                         struct kobj_attribute *attr, char *buf)
1722 {
1723         struct hstate *h;
1724         unsigned long nr_huge_pages;
1725         int nid;
1726
1727         h = kobj_to_hstate(kobj, &nid);
1728         if (nid == NUMA_NO_NODE)
1729                 nr_huge_pages = h->nr_huge_pages;
1730         else
1731                 nr_huge_pages = h->nr_huge_pages_node[nid];
1732
1733         return sprintf(buf, "%lu\n", nr_huge_pages);
1734 }
1735
1736 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1737                                            struct hstate *h, int nid,
1738                                            unsigned long count, size_t len)
1739 {
1740         int err;
1741         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1742
1743         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1744                 err = -EINVAL;
1745                 goto out;
1746         }
1747
1748         if (nid == NUMA_NO_NODE) {
1749                 /*
1750                  * global hstate attribute
1751                  */
1752                 if (!(obey_mempolicy &&
1753                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1754                         NODEMASK_FREE(nodes_allowed);
1755                         nodes_allowed = &node_states[N_MEMORY];
1756                 }
1757         } else if (nodes_allowed) {
1758                 /*
1759                  * per node hstate attribute: adjust count to global,
1760                  * but restrict alloc/free to the specified node.
1761                  */
1762                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1763                 init_nodemask_of_node(nodes_allowed, nid);
1764         } else
1765                 nodes_allowed = &node_states[N_MEMORY];
1766
1767         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1768
1769         if (nodes_allowed != &node_states[N_MEMORY])
1770                 NODEMASK_FREE(nodes_allowed);
1771
1772         return len;
1773 out:
1774         NODEMASK_FREE(nodes_allowed);
1775         return err;
1776 }
1777
1778 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1779                                          struct kobject *kobj, const char *buf,
1780                                          size_t len)
1781 {
1782         struct hstate *h;
1783         unsigned long count;
1784         int nid;
1785         int err;
1786
1787         err = kstrtoul(buf, 10, &count);
1788         if (err)
1789                 return err;
1790
1791         h = kobj_to_hstate(kobj, &nid);
1792         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1793 }
1794
1795 static ssize_t nr_hugepages_show(struct kobject *kobj,
1796                                        struct kobj_attribute *attr, char *buf)
1797 {
1798         return nr_hugepages_show_common(kobj, attr, buf);
1799 }
1800
1801 static ssize_t nr_hugepages_store(struct kobject *kobj,
1802                struct kobj_attribute *attr, const char *buf, size_t len)
1803 {
1804         return nr_hugepages_store_common(false, kobj, buf, len);
1805 }
1806 HSTATE_ATTR(nr_hugepages);
1807
1808 #ifdef CONFIG_NUMA
1809
1810 /*
1811  * hstate attribute for optionally mempolicy-based constraint on persistent
1812  * huge page alloc/free.
1813  */
1814 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1815                                        struct kobj_attribute *attr, char *buf)
1816 {
1817         return nr_hugepages_show_common(kobj, attr, buf);
1818 }
1819
1820 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1821                struct kobj_attribute *attr, const char *buf, size_t len)
1822 {
1823         return nr_hugepages_store_common(true, kobj, buf, len);
1824 }
1825 HSTATE_ATTR(nr_hugepages_mempolicy);
1826 #endif
1827
1828
1829 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1830                                         struct kobj_attribute *attr, char *buf)
1831 {
1832         struct hstate *h = kobj_to_hstate(kobj, NULL);
1833         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1834 }
1835
1836 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1837                 struct kobj_attribute *attr, const char *buf, size_t count)
1838 {
1839         int err;
1840         unsigned long input;
1841         struct hstate *h = kobj_to_hstate(kobj, NULL);
1842
1843         if (hstate_is_gigantic(h))
1844                 return -EINVAL;
1845
1846         err = kstrtoul(buf, 10, &input);
1847         if (err)
1848                 return err;
1849
1850         spin_lock(&hugetlb_lock);
1851         h->nr_overcommit_huge_pages = input;
1852         spin_unlock(&hugetlb_lock);
1853
1854         return count;
1855 }
1856 HSTATE_ATTR(nr_overcommit_hugepages);
1857
1858 static ssize_t free_hugepages_show(struct kobject *kobj,
1859                                         struct kobj_attribute *attr, char *buf)
1860 {
1861         struct hstate *h;
1862         unsigned long free_huge_pages;
1863         int nid;
1864
1865         h = kobj_to_hstate(kobj, &nid);
1866         if (nid == NUMA_NO_NODE)
1867                 free_huge_pages = h->free_huge_pages;
1868         else
1869                 free_huge_pages = h->free_huge_pages_node[nid];
1870
1871         return sprintf(buf, "%lu\n", free_huge_pages);
1872 }
1873 HSTATE_ATTR_RO(free_hugepages);
1874
1875 static ssize_t resv_hugepages_show(struct kobject *kobj,
1876                                         struct kobj_attribute *attr, char *buf)
1877 {
1878         struct hstate *h = kobj_to_hstate(kobj, NULL);
1879         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1880 }
1881 HSTATE_ATTR_RO(resv_hugepages);
1882
1883 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1884                                         struct kobj_attribute *attr, char *buf)
1885 {
1886         struct hstate *h;
1887         unsigned long surplus_huge_pages;
1888         int nid;
1889
1890         h = kobj_to_hstate(kobj, &nid);
1891         if (nid == NUMA_NO_NODE)
1892                 surplus_huge_pages = h->surplus_huge_pages;
1893         else
1894                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1895
1896         return sprintf(buf, "%lu\n", surplus_huge_pages);
1897 }
1898 HSTATE_ATTR_RO(surplus_hugepages);
1899
1900 static struct attribute *hstate_attrs[] = {
1901         &nr_hugepages_attr.attr,
1902         &nr_overcommit_hugepages_attr.attr,
1903         &free_hugepages_attr.attr,
1904         &resv_hugepages_attr.attr,
1905         &surplus_hugepages_attr.attr,
1906 #ifdef CONFIG_NUMA
1907         &nr_hugepages_mempolicy_attr.attr,
1908 #endif
1909         NULL,
1910 };
1911
1912 static struct attribute_group hstate_attr_group = {
1913         .attrs = hstate_attrs,
1914 };
1915
1916 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1917                                     struct kobject **hstate_kobjs,
1918                                     struct attribute_group *hstate_attr_group)
1919 {
1920         int retval;
1921         int hi = hstate_index(h);
1922
1923         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1924         if (!hstate_kobjs[hi])
1925                 return -ENOMEM;
1926
1927         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1928         if (retval)
1929                 kobject_put(hstate_kobjs[hi]);
1930
1931         return retval;
1932 }
1933
1934 static void __init hugetlb_sysfs_init(void)
1935 {
1936         struct hstate *h;
1937         int err;
1938
1939         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1940         if (!hugepages_kobj)
1941                 return;
1942
1943         for_each_hstate(h) {
1944                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1945                                          hstate_kobjs, &hstate_attr_group);
1946                 if (err)
1947                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1948         }
1949 }
1950
1951 #ifdef CONFIG_NUMA
1952
1953 /*
1954  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1955  * with node devices in node_devices[] using a parallel array.  The array
1956  * index of a node device or _hstate == node id.
1957  * This is here to avoid any static dependency of the node device driver, in
1958  * the base kernel, on the hugetlb module.
1959  */
1960 struct node_hstate {
1961         struct kobject          *hugepages_kobj;
1962         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1963 };
1964 struct node_hstate node_hstates[MAX_NUMNODES];
1965
1966 /*
1967  * A subset of global hstate attributes for node devices
1968  */
1969 static struct attribute *per_node_hstate_attrs[] = {
1970         &nr_hugepages_attr.attr,
1971         &free_hugepages_attr.attr,
1972         &surplus_hugepages_attr.attr,
1973         NULL,
1974 };
1975
1976 static struct attribute_group per_node_hstate_attr_group = {
1977         .attrs = per_node_hstate_attrs,
1978 };
1979
1980 /*
1981  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1982  * Returns node id via non-NULL nidp.
1983  */
1984 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1985 {
1986         int nid;
1987
1988         for (nid = 0; nid < nr_node_ids; nid++) {
1989                 struct node_hstate *nhs = &node_hstates[nid];
1990                 int i;
1991                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1992                         if (nhs->hstate_kobjs[i] == kobj) {
1993                                 if (nidp)
1994                                         *nidp = nid;
1995                                 return &hstates[i];
1996                         }
1997         }
1998
1999         BUG();
2000         return NULL;
2001 }
2002
2003 /*
2004  * Unregister hstate attributes from a single node device.
2005  * No-op if no hstate attributes attached.
2006  */
2007 static void hugetlb_unregister_node(struct node *node)
2008 {
2009         struct hstate *h;
2010         struct node_hstate *nhs = &node_hstates[node->dev.id];
2011
2012         if (!nhs->hugepages_kobj)
2013                 return;         /* no hstate attributes */
2014
2015         for_each_hstate(h) {
2016                 int idx = hstate_index(h);
2017                 if (nhs->hstate_kobjs[idx]) {
2018                         kobject_put(nhs->hstate_kobjs[idx]);
2019                         nhs->hstate_kobjs[idx] = NULL;
2020                 }
2021         }
2022
2023         kobject_put(nhs->hugepages_kobj);
2024         nhs->hugepages_kobj = NULL;
2025 }
2026
2027 /*
2028  * hugetlb module exit:  unregister hstate attributes from node devices
2029  * that have them.
2030  */
2031 static void hugetlb_unregister_all_nodes(void)
2032 {
2033         int nid;
2034
2035         /*
2036          * disable node device registrations.
2037          */
2038         register_hugetlbfs_with_node(NULL, NULL);
2039
2040         /*
2041          * remove hstate attributes from any nodes that have them.
2042          */
2043         for (nid = 0; nid < nr_node_ids; nid++)
2044                 hugetlb_unregister_node(node_devices[nid]);
2045 }
2046
2047 /*
2048  * Register hstate attributes for a single node device.
2049  * No-op if attributes already registered.
2050  */
2051 static void hugetlb_register_node(struct node *node)
2052 {
2053         struct hstate *h;
2054         struct node_hstate *nhs = &node_hstates[node->dev.id];
2055         int err;
2056
2057         if (nhs->hugepages_kobj)
2058                 return;         /* already allocated */
2059
2060         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2061                                                         &node->dev.kobj);
2062         if (!nhs->hugepages_kobj)
2063                 return;
2064
2065         for_each_hstate(h) {
2066                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2067                                                 nhs->hstate_kobjs,
2068                                                 &per_node_hstate_attr_group);
2069                 if (err) {
2070                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2071                                 h->name, node->dev.id);
2072                         hugetlb_unregister_node(node);
2073                         break;
2074                 }
2075         }
2076 }
2077
2078 /*
2079  * hugetlb init time:  register hstate attributes for all registered node
2080  * devices of nodes that have memory.  All on-line nodes should have
2081  * registered their associated device by this time.
2082  */
2083 static void hugetlb_register_all_nodes(void)
2084 {
2085         int nid;
2086
2087         for_each_node_state(nid, N_MEMORY) {
2088                 struct node *node = node_devices[nid];
2089                 if (node->dev.id == nid)
2090                         hugetlb_register_node(node);
2091         }
2092
2093         /*
2094          * Let the node device driver know we're here so it can
2095          * [un]register hstate attributes on node hotplug.
2096          */
2097         register_hugetlbfs_with_node(hugetlb_register_node,
2098                                      hugetlb_unregister_node);
2099 }
2100 #else   /* !CONFIG_NUMA */
2101
2102 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2103 {
2104         BUG();
2105         if (nidp)
2106                 *nidp = -1;
2107         return NULL;
2108 }
2109
2110 static void hugetlb_unregister_all_nodes(void) { }
2111
2112 static void hugetlb_register_all_nodes(void) { }
2113
2114 #endif
2115
2116 static void __exit hugetlb_exit(void)
2117 {
2118         struct hstate *h;
2119
2120         hugetlb_unregister_all_nodes();
2121
2122         for_each_hstate(h) {
2123                 kobject_put(hstate_kobjs[hstate_index(h)]);
2124         }
2125
2126         kobject_put(hugepages_kobj);
2127         kfree(htlb_fault_mutex_table);
2128 }
2129 module_exit(hugetlb_exit);
2130
2131 static int __init hugetlb_init(void)
2132 {
2133         int i;
2134
2135         if (!hugepages_supported())
2136                 return 0;
2137
2138         if (!size_to_hstate(default_hstate_size)) {
2139                 default_hstate_size = HPAGE_SIZE;
2140                 if (!size_to_hstate(default_hstate_size))
2141                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2142         }
2143         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2144         if (default_hstate_max_huge_pages)
2145                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2146
2147         hugetlb_init_hstates();
2148         gather_bootmem_prealloc();
2149         report_hugepages();
2150
2151         hugetlb_sysfs_init();
2152         hugetlb_register_all_nodes();
2153         hugetlb_cgroup_file_init();
2154
2155 #ifdef CONFIG_SMP
2156         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2157 #else
2158         num_fault_mutexes = 1;
2159 #endif
2160         htlb_fault_mutex_table =
2161                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2162         BUG_ON(!htlb_fault_mutex_table);
2163
2164         for (i = 0; i < num_fault_mutexes; i++)
2165                 mutex_init(&htlb_fault_mutex_table[i]);
2166         return 0;
2167 }
2168 module_init(hugetlb_init);
2169
2170 /* Should be called on processing a hugepagesz=... option */
2171 void __init hugetlb_add_hstate(unsigned order)
2172 {
2173         struct hstate *h;
2174         unsigned long i;
2175
2176         if (size_to_hstate(PAGE_SIZE << order)) {
2177                 pr_warning("hugepagesz= specified twice, ignoring\n");
2178                 return;
2179         }
2180         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2181         BUG_ON(order == 0);
2182         h = &hstates[hugetlb_max_hstate++];
2183         h->order = order;
2184         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2185         h->nr_huge_pages = 0;
2186         h->free_huge_pages = 0;
2187         for (i = 0; i < MAX_NUMNODES; ++i)
2188                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2189         INIT_LIST_HEAD(&h->hugepage_activelist);
2190         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2191         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2192         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2193                                         huge_page_size(h)/1024);
2194
2195         parsed_hstate = h;
2196 }
2197
2198 static int __init hugetlb_nrpages_setup(char *s)
2199 {
2200         unsigned long *mhp;
2201         static unsigned long *last_mhp;
2202
2203         /*
2204          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2205          * so this hugepages= parameter goes to the "default hstate".
2206          */
2207         if (!hugetlb_max_hstate)
2208                 mhp = &default_hstate_max_huge_pages;
2209         else
2210                 mhp = &parsed_hstate->max_huge_pages;
2211
2212         if (mhp == last_mhp) {
2213                 pr_warning("hugepages= specified twice without "
2214                            "interleaving hugepagesz=, ignoring\n");
2215                 return 1;
2216         }
2217
2218         if (sscanf(s, "%lu", mhp) <= 0)
2219                 *mhp = 0;
2220
2221         /*
2222          * Global state is always initialized later in hugetlb_init.
2223          * But we need to allocate >= MAX_ORDER hstates here early to still
2224          * use the bootmem allocator.
2225          */
2226         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2227                 hugetlb_hstate_alloc_pages(parsed_hstate);
2228
2229         last_mhp = mhp;
2230
2231         return 1;
2232 }
2233 __setup("hugepages=", hugetlb_nrpages_setup);
2234
2235 static int __init hugetlb_default_setup(char *s)
2236 {
2237         default_hstate_size = memparse(s, &s);
2238         return 1;
2239 }
2240 __setup("default_hugepagesz=", hugetlb_default_setup);
2241
2242 static unsigned int cpuset_mems_nr(unsigned int *array)
2243 {
2244         int node;
2245         unsigned int nr = 0;
2246
2247         for_each_node_mask(node, cpuset_current_mems_allowed)
2248                 nr += array[node];
2249
2250         return nr;
2251 }
2252
2253 #ifdef CONFIG_SYSCTL
2254 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2255                          struct ctl_table *table, int write,
2256                          void __user *buffer, size_t *length, loff_t *ppos)
2257 {
2258         struct hstate *h = &default_hstate;
2259         unsigned long tmp = h->max_huge_pages;
2260         int ret;
2261
2262         if (!hugepages_supported())
2263                 return -ENOTSUPP;
2264
2265         table->data = &tmp;
2266         table->maxlen = sizeof(unsigned long);
2267         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2268         if (ret)
2269                 goto out;
2270
2271         if (write)
2272                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2273                                                   NUMA_NO_NODE, tmp, *length);
2274 out:
2275         return ret;
2276 }
2277
2278 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2279                           void __user *buffer, size_t *length, loff_t *ppos)
2280 {
2281
2282         return hugetlb_sysctl_handler_common(false, table, write,
2283                                                         buffer, length, ppos);
2284 }
2285
2286 #ifdef CONFIG_NUMA
2287 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2288                           void __user *buffer, size_t *length, loff_t *ppos)
2289 {
2290         return hugetlb_sysctl_handler_common(true, table, write,
2291                                                         buffer, length, ppos);
2292 }
2293 #endif /* CONFIG_NUMA */
2294
2295 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2296                         void __user *buffer,
2297                         size_t *length, loff_t *ppos)
2298 {
2299         struct hstate *h = &default_hstate;
2300         unsigned long tmp;
2301         int ret;
2302
2303         if (!hugepages_supported())
2304                 return -ENOTSUPP;
2305
2306         tmp = h->nr_overcommit_huge_pages;
2307
2308         if (write && hstate_is_gigantic(h))
2309                 return -EINVAL;
2310
2311         table->data = &tmp;
2312         table->maxlen = sizeof(unsigned long);
2313         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2314         if (ret)
2315                 goto out;
2316
2317         if (write) {
2318                 spin_lock(&hugetlb_lock);
2319                 h->nr_overcommit_huge_pages = tmp;
2320                 spin_unlock(&hugetlb_lock);
2321         }
2322 out:
2323         return ret;
2324 }
2325
2326 #endif /* CONFIG_SYSCTL */
2327
2328 void hugetlb_report_meminfo(struct seq_file *m)
2329 {
2330         struct hstate *h = &default_hstate;
2331         if (!hugepages_supported())
2332                 return;
2333         seq_printf(m,
2334                         "HugePages_Total:   %5lu\n"
2335                         "HugePages_Free:    %5lu\n"
2336                         "HugePages_Rsvd:    %5lu\n"
2337                         "HugePages_Surp:    %5lu\n"
2338                         "Hugepagesize:   %8lu kB\n",
2339                         h->nr_huge_pages,
2340                         h->free_huge_pages,
2341                         h->resv_huge_pages,
2342                         h->surplus_huge_pages,
2343                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2344 }
2345
2346 int hugetlb_report_node_meminfo(int nid, char *buf)
2347 {
2348         struct hstate *h = &default_hstate;
2349         if (!hugepages_supported())
2350                 return 0;
2351         return sprintf(buf,
2352                 "Node %d HugePages_Total: %5u\n"
2353                 "Node %d HugePages_Free:  %5u\n"
2354                 "Node %d HugePages_Surp:  %5u\n",
2355                 nid, h->nr_huge_pages_node[nid],
2356                 nid, h->free_huge_pages_node[nid],
2357                 nid, h->surplus_huge_pages_node[nid]);
2358 }
2359
2360 void hugetlb_show_meminfo(void)
2361 {
2362         struct hstate *h;
2363         int nid;
2364
2365         if (!hugepages_supported())
2366                 return;
2367
2368         for_each_node_state(nid, N_MEMORY)
2369                 for_each_hstate(h)
2370                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2371                                 nid,
2372                                 h->nr_huge_pages_node[nid],
2373                                 h->free_huge_pages_node[nid],
2374                                 h->surplus_huge_pages_node[nid],
2375                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2376 }
2377
2378 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2379 unsigned long hugetlb_total_pages(void)
2380 {
2381         struct hstate *h;
2382         unsigned long nr_total_pages = 0;
2383
2384         for_each_hstate(h)
2385                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2386         return nr_total_pages;
2387 }
2388
2389 static int hugetlb_acct_memory(struct hstate *h, long delta)
2390 {
2391         int ret = -ENOMEM;
2392
2393         spin_lock(&hugetlb_lock);
2394         /*
2395          * When cpuset is configured, it breaks the strict hugetlb page
2396          * reservation as the accounting is done on a global variable. Such
2397          * reservation is completely rubbish in the presence of cpuset because
2398          * the reservation is not checked against page availability for the
2399          * current cpuset. Application can still potentially OOM'ed by kernel
2400          * with lack of free htlb page in cpuset that the task is in.
2401          * Attempt to enforce strict accounting with cpuset is almost
2402          * impossible (or too ugly) because cpuset is too fluid that
2403          * task or memory node can be dynamically moved between cpusets.
2404          *
2405          * The change of semantics for shared hugetlb mapping with cpuset is
2406          * undesirable. However, in order to preserve some of the semantics,
2407          * we fall back to check against current free page availability as
2408          * a best attempt and hopefully to minimize the impact of changing
2409          * semantics that cpuset has.
2410          */
2411         if (delta > 0) {
2412                 if (gather_surplus_pages(h, delta) < 0)
2413                         goto out;
2414
2415                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2416                         return_unused_surplus_pages(h, delta);
2417                         goto out;
2418                 }
2419         }
2420
2421         ret = 0;
2422         if (delta < 0)
2423                 return_unused_surplus_pages(h, (unsigned long) -delta);
2424
2425 out:
2426         spin_unlock(&hugetlb_lock);
2427         return ret;
2428 }
2429
2430 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2431 {
2432         struct resv_map *resv = vma_resv_map(vma);
2433
2434         /*
2435          * This new VMA should share its siblings reservation map if present.
2436          * The VMA will only ever have a valid reservation map pointer where
2437          * it is being copied for another still existing VMA.  As that VMA
2438          * has a reference to the reservation map it cannot disappear until
2439          * after this open call completes.  It is therefore safe to take a
2440          * new reference here without additional locking.
2441          */
2442         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2443                 kref_get(&resv->refs);
2444 }
2445
2446 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2447 {
2448         struct hstate *h = hstate_vma(vma);
2449         struct resv_map *resv = vma_resv_map(vma);
2450         struct hugepage_subpool *spool = subpool_vma(vma);
2451         unsigned long reserve, start, end;
2452
2453         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2454                 return;
2455
2456         start = vma_hugecache_offset(h, vma, vma->vm_start);
2457         end = vma_hugecache_offset(h, vma, vma->vm_end);
2458
2459         reserve = (end - start) - region_count(resv, start, end);
2460
2461         kref_put(&resv->refs, resv_map_release);
2462
2463         if (reserve) {
2464                 hugetlb_acct_memory(h, -reserve);
2465                 hugepage_subpool_put_pages(spool, reserve);
2466         }
2467 }
2468
2469 /*
2470  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2471  * handle_mm_fault() to try to instantiate regular-sized pages in the
2472  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2473  * this far.
2474  */
2475 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2476 {
2477         BUG();
2478         return 0;
2479 }
2480
2481 const struct vm_operations_struct hugetlb_vm_ops = {
2482         .fault = hugetlb_vm_op_fault,
2483         .open = hugetlb_vm_op_open,
2484         .close = hugetlb_vm_op_close,
2485 };
2486
2487 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2488                                 int writable)
2489 {
2490         pte_t entry;
2491
2492         if (writable) {
2493                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2494                                          vma->vm_page_prot)));
2495         } else {
2496                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2497                                            vma->vm_page_prot));
2498         }
2499         entry = pte_mkyoung(entry);
2500         entry = pte_mkhuge(entry);
2501         entry = arch_make_huge_pte(entry, vma, page, writable);
2502
2503         return entry;
2504 }
2505
2506 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2507                                    unsigned long address, pte_t *ptep)
2508 {
2509         pte_t entry;
2510
2511         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2512         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2513                 update_mmu_cache(vma, address, ptep);
2514 }
2515
2516 static int is_hugetlb_entry_migration(pte_t pte)
2517 {
2518         swp_entry_t swp;
2519
2520         if (huge_pte_none(pte) || pte_present(pte))
2521                 return 0;
2522         swp = pte_to_swp_entry(pte);
2523         if (non_swap_entry(swp) && is_migration_entry(swp))
2524                 return 1;
2525         else
2526                 return 0;
2527 }
2528
2529 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2530 {
2531         swp_entry_t swp;
2532
2533         if (huge_pte_none(pte) || pte_present(pte))
2534                 return 0;
2535         swp = pte_to_swp_entry(pte);
2536         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2537                 return 1;
2538         else
2539                 return 0;
2540 }
2541
2542 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2543                             struct vm_area_struct *vma)
2544 {
2545         pte_t *src_pte, *dst_pte, entry;
2546         struct page *ptepage;
2547         unsigned long addr;
2548         int cow;
2549         struct hstate *h = hstate_vma(vma);
2550         unsigned long sz = huge_page_size(h);
2551         unsigned long mmun_start;       /* For mmu_notifiers */
2552         unsigned long mmun_end;         /* For mmu_notifiers */
2553         int ret = 0;
2554
2555         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2556
2557         mmun_start = vma->vm_start;
2558         mmun_end = vma->vm_end;
2559         if (cow)
2560                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2561
2562         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2563                 spinlock_t *src_ptl, *dst_ptl;
2564                 src_pte = huge_pte_offset(src, addr);
2565                 if (!src_pte)
2566                         continue;
2567                 dst_pte = huge_pte_alloc(dst, addr, sz);
2568                 if (!dst_pte) {
2569                         ret = -ENOMEM;
2570                         break;
2571                 }
2572
2573                 /* If the pagetables are shared don't copy or take references */
2574                 if (dst_pte == src_pte)
2575                         continue;
2576
2577                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2578                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2579                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2580                 entry = huge_ptep_get(src_pte);
2581                 if (huge_pte_none(entry)) { /* skip none entry */
2582                         ;
2583                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2584                                     is_hugetlb_entry_hwpoisoned(entry))) {
2585                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2586
2587                         if (is_write_migration_entry(swp_entry) && cow) {
2588                                 /*
2589                                  * COW mappings require pages in both
2590                                  * parent and child to be set to read.
2591                                  */
2592                                 make_migration_entry_read(&swp_entry);
2593                                 entry = swp_entry_to_pte(swp_entry);
2594                                 set_huge_pte_at(src, addr, src_pte, entry);
2595                         }
2596                         set_huge_pte_at(dst, addr, dst_pte, entry);
2597                 } else {
2598                         if (cow)
2599                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2600                         entry = huge_ptep_get(src_pte);
2601                         ptepage = pte_page(entry);
2602                         get_page(ptepage);
2603                         page_dup_rmap(ptepage);
2604                         set_huge_pte_at(dst, addr, dst_pte, entry);
2605                 }
2606                 spin_unlock(src_ptl);
2607                 spin_unlock(dst_ptl);
2608         }
2609
2610         if (cow)
2611                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2612
2613         return ret;
2614 }
2615
2616 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2617                             unsigned long start, unsigned long end,
2618                             struct page *ref_page)
2619 {
2620         int force_flush = 0;
2621         struct mm_struct *mm = vma->vm_mm;
2622         unsigned long address;
2623         pte_t *ptep;
2624         pte_t pte;
2625         spinlock_t *ptl;
2626         struct page *page;
2627         struct hstate *h = hstate_vma(vma);
2628         unsigned long sz = huge_page_size(h);
2629         const unsigned long mmun_start = start; /* For mmu_notifiers */
2630         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2631
2632         WARN_ON(!is_vm_hugetlb_page(vma));
2633         BUG_ON(start & ~huge_page_mask(h));
2634         BUG_ON(end & ~huge_page_mask(h));
2635
2636         tlb_start_vma(tlb, vma);
2637         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2638 again:
2639         for (address = start; address < end; address += sz) {
2640                 ptep = huge_pte_offset(mm, address);
2641                 if (!ptep)
2642                         continue;
2643
2644                 ptl = huge_pte_lock(h, mm, ptep);
2645                 if (huge_pmd_unshare(mm, &address, ptep))
2646                         goto unlock;
2647
2648                 pte = huge_ptep_get(ptep);
2649                 if (huge_pte_none(pte))
2650                         goto unlock;
2651
2652                 /*
2653                  * HWPoisoned hugepage is already unmapped and dropped reference
2654                  */
2655                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2656                         huge_pte_clear(mm, address, ptep);
2657                         goto unlock;
2658                 }
2659
2660                 page = pte_page(pte);
2661                 /*
2662                  * If a reference page is supplied, it is because a specific
2663                  * page is being unmapped, not a range. Ensure the page we
2664                  * are about to unmap is the actual page of interest.
2665                  */
2666                 if (ref_page) {
2667                         if (page != ref_page)
2668                                 goto unlock;
2669
2670                         /*
2671                          * Mark the VMA as having unmapped its page so that
2672                          * future faults in this VMA will fail rather than
2673                          * looking like data was lost
2674                          */
2675                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2676                 }
2677
2678                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2679                 tlb_remove_tlb_entry(tlb, ptep, address);
2680                 if (huge_pte_dirty(pte))
2681                         set_page_dirty(page);
2682
2683                 page_remove_rmap(page);
2684                 force_flush = !__tlb_remove_page(tlb, page);
2685                 if (force_flush) {
2686                         spin_unlock(ptl);
2687                         break;
2688                 }
2689                 /* Bail out after unmapping reference page if supplied */
2690                 if (ref_page) {
2691                         spin_unlock(ptl);
2692                         break;
2693                 }
2694 unlock:
2695                 spin_unlock(ptl);
2696         }
2697         /*
2698          * mmu_gather ran out of room to batch pages, we break out of
2699          * the PTE lock to avoid doing the potential expensive TLB invalidate
2700          * and page-free while holding it.
2701          */
2702         if (force_flush) {
2703                 force_flush = 0;
2704                 tlb_flush_mmu(tlb);
2705                 if (address < end && !ref_page)
2706                         goto again;
2707         }
2708         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2709         tlb_end_vma(tlb, vma);
2710 }
2711
2712 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2713                           struct vm_area_struct *vma, unsigned long start,
2714                           unsigned long end, struct page *ref_page)
2715 {
2716         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2717
2718         /*
2719          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2720          * test will fail on a vma being torn down, and not grab a page table
2721          * on its way out.  We're lucky that the flag has such an appropriate
2722          * name, and can in fact be safely cleared here. We could clear it
2723          * before the __unmap_hugepage_range above, but all that's necessary
2724          * is to clear it before releasing the i_mmap_mutex. This works
2725          * because in the context this is called, the VMA is about to be
2726          * destroyed and the i_mmap_mutex is held.
2727          */
2728         vma->vm_flags &= ~VM_MAYSHARE;
2729 }
2730
2731 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2732                           unsigned long end, struct page *ref_page)
2733 {
2734         struct mm_struct *mm;
2735         struct mmu_gather tlb;
2736
2737         mm = vma->vm_mm;
2738
2739         tlb_gather_mmu(&tlb, mm, start, end);
2740         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2741         tlb_finish_mmu(&tlb, start, end);
2742 }
2743
2744 /*
2745  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2746  * mappping it owns the reserve page for. The intention is to unmap the page
2747  * from other VMAs and let the children be SIGKILLed if they are faulting the
2748  * same region.
2749  */
2750 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2751                               struct page *page, unsigned long address)
2752 {
2753         struct hstate *h = hstate_vma(vma);
2754         struct vm_area_struct *iter_vma;
2755         struct address_space *mapping;
2756         pgoff_t pgoff;
2757
2758         /*
2759          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2760          * from page cache lookup which is in HPAGE_SIZE units.
2761          */
2762         address = address & huge_page_mask(h);
2763         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2764                         vma->vm_pgoff;
2765         mapping = file_inode(vma->vm_file)->i_mapping;
2766
2767         /*
2768          * Take the mapping lock for the duration of the table walk. As
2769          * this mapping should be shared between all the VMAs,
2770          * __unmap_hugepage_range() is called as the lock is already held
2771          */
2772         mutex_lock(&mapping->i_mmap_mutex);
2773         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2774                 /* Do not unmap the current VMA */
2775                 if (iter_vma == vma)
2776                         continue;
2777
2778                 /*
2779                  * Unmap the page from other VMAs without their own reserves.
2780                  * They get marked to be SIGKILLed if they fault in these
2781                  * areas. This is because a future no-page fault on this VMA
2782                  * could insert a zeroed page instead of the data existing
2783                  * from the time of fork. This would look like data corruption
2784                  */
2785                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2786                         unmap_hugepage_range(iter_vma, address,
2787                                              address + huge_page_size(h), page);
2788         }
2789         mutex_unlock(&mapping->i_mmap_mutex);
2790 }
2791
2792 /*
2793  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2794  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2795  * cannot race with other handlers or page migration.
2796  * Keep the pte_same checks anyway to make transition from the mutex easier.
2797  */
2798 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2799                         unsigned long address, pte_t *ptep, pte_t pte,
2800                         struct page *pagecache_page, spinlock_t *ptl)
2801 {
2802         struct hstate *h = hstate_vma(vma);
2803         struct page *old_page, *new_page;
2804         int ret = 0, outside_reserve = 0;
2805         unsigned long mmun_start;       /* For mmu_notifiers */
2806         unsigned long mmun_end;         /* For mmu_notifiers */
2807
2808         old_page = pte_page(pte);
2809
2810 retry_avoidcopy:
2811         /* If no-one else is actually using this page, avoid the copy
2812          * and just make the page writable */
2813         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2814                 page_move_anon_rmap(old_page, vma, address);
2815                 set_huge_ptep_writable(vma, address, ptep);
2816                 return 0;
2817         }
2818
2819         /*
2820          * If the process that created a MAP_PRIVATE mapping is about to
2821          * perform a COW due to a shared page count, attempt to satisfy
2822          * the allocation without using the existing reserves. The pagecache
2823          * page is used to determine if the reserve at this address was
2824          * consumed or not. If reserves were used, a partial faulted mapping
2825          * at the time of fork() could consume its reserves on COW instead
2826          * of the full address range.
2827          */
2828         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2829                         old_page != pagecache_page)
2830                 outside_reserve = 1;
2831
2832         page_cache_get(old_page);
2833
2834         /*
2835          * Drop page table lock as buddy allocator may be called. It will
2836          * be acquired again before returning to the caller, as expected.
2837          */
2838         spin_unlock(ptl);
2839         new_page = alloc_huge_page(vma, address, outside_reserve);
2840
2841         if (IS_ERR(new_page)) {
2842                 /*
2843                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2844                  * it is due to references held by a child and an insufficient
2845                  * huge page pool. To guarantee the original mappers
2846                  * reliability, unmap the page from child processes. The child
2847                  * may get SIGKILLed if it later faults.
2848                  */
2849                 if (outside_reserve) {
2850                         page_cache_release(old_page);
2851                         BUG_ON(huge_pte_none(pte));
2852                         unmap_ref_private(mm, vma, old_page, address);
2853                         BUG_ON(huge_pte_none(pte));
2854                         spin_lock(ptl);
2855                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2856                         if (likely(ptep &&
2857                                    pte_same(huge_ptep_get(ptep), pte)))
2858                                 goto retry_avoidcopy;
2859                         /*
2860                          * race occurs while re-acquiring page table
2861                          * lock, and our job is done.
2862                          */
2863                         return 0;
2864                 }
2865
2866                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2867                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
2868                 goto out_release_old;
2869         }
2870
2871         /*
2872          * When the original hugepage is shared one, it does not have
2873          * anon_vma prepared.
2874          */
2875         if (unlikely(anon_vma_prepare(vma))) {
2876                 ret = VM_FAULT_OOM;
2877                 goto out_release_all;
2878         }
2879
2880         copy_user_huge_page(new_page, old_page, address, vma,
2881                             pages_per_huge_page(h));
2882         __SetPageUptodate(new_page);
2883
2884         mmun_start = address & huge_page_mask(h);
2885         mmun_end = mmun_start + huge_page_size(h);
2886         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2887
2888         /*
2889          * Retake the page table lock to check for racing updates
2890          * before the page tables are altered
2891          */
2892         spin_lock(ptl);
2893         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2894         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2895                 ClearPagePrivate(new_page);
2896
2897                 /* Break COW */
2898                 huge_ptep_clear_flush(vma, address, ptep);
2899                 set_huge_pte_at(mm, address, ptep,
2900                                 make_huge_pte(vma, new_page, 1));
2901                 page_remove_rmap(old_page);
2902                 hugepage_add_new_anon_rmap(new_page, vma, address);
2903                 /* Make the old page be freed below */
2904                 new_page = old_page;
2905         }
2906         spin_unlock(ptl);
2907         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2908 out_release_all:
2909         page_cache_release(new_page);
2910 out_release_old:
2911         page_cache_release(old_page);
2912
2913         spin_lock(ptl); /* Caller expects lock to be held */
2914         return ret;
2915 }
2916
2917 /* Return the pagecache page at a given address within a VMA */
2918 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2919                         struct vm_area_struct *vma, unsigned long address)
2920 {
2921         struct address_space *mapping;
2922         pgoff_t idx;
2923
2924         mapping = vma->vm_file->f_mapping;
2925         idx = vma_hugecache_offset(h, vma, address);
2926
2927         return find_lock_page(mapping, idx);
2928 }
2929
2930 /*
2931  * Return whether there is a pagecache page to back given address within VMA.
2932  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2933  */
2934 static bool hugetlbfs_pagecache_present(struct hstate *h,
2935                         struct vm_area_struct *vma, unsigned long address)
2936 {
2937         struct address_space *mapping;
2938         pgoff_t idx;
2939         struct page *page;
2940
2941         mapping = vma->vm_file->f_mapping;
2942         idx = vma_hugecache_offset(h, vma, address);
2943
2944         page = find_get_page(mapping, idx);
2945         if (page)
2946                 put_page(page);
2947         return page != NULL;
2948 }
2949
2950 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2951                            struct address_space *mapping, pgoff_t idx,
2952                            unsigned long address, pte_t *ptep, unsigned int flags)
2953 {
2954         struct hstate *h = hstate_vma(vma);
2955         int ret = VM_FAULT_SIGBUS;
2956         int anon_rmap = 0;
2957         unsigned long size;
2958         struct page *page;
2959         pte_t new_pte;
2960         spinlock_t *ptl;
2961
2962         /*
2963          * Currently, we are forced to kill the process in the event the
2964          * original mapper has unmapped pages from the child due to a failed
2965          * COW. Warn that such a situation has occurred as it may not be obvious
2966          */
2967         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2968                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2969                            current->pid);
2970                 return ret;
2971         }
2972
2973         /*
2974          * Use page lock to guard against racing truncation
2975          * before we get page_table_lock.
2976          */
2977 retry:
2978         page = find_lock_page(mapping, idx);
2979         if (!page) {
2980                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2981                 if (idx >= size)
2982                         goto out;
2983                 page = alloc_huge_page(vma, address, 0);
2984                 if (IS_ERR(page)) {
2985                         ret = PTR_ERR(page);
2986                         if (ret == -ENOMEM)
2987                                 ret = VM_FAULT_OOM;
2988                         else
2989                                 ret = VM_FAULT_SIGBUS;
2990                         goto out;
2991                 }
2992                 clear_huge_page(page, address, pages_per_huge_page(h));
2993                 __SetPageUptodate(page);
2994
2995                 if (vma->vm_flags & VM_MAYSHARE) {
2996                         int err;
2997                         struct inode *inode = mapping->host;
2998
2999                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3000                         if (err) {
3001                                 put_page(page);
3002                                 if (err == -EEXIST)
3003                                         goto retry;
3004                                 goto out;
3005                         }
3006                         ClearPagePrivate(page);
3007
3008                         spin_lock(&inode->i_lock);
3009                         inode->i_blocks += blocks_per_huge_page(h);
3010                         spin_unlock(&inode->i_lock);
3011                 } else {
3012                         lock_page(page);
3013                         if (unlikely(anon_vma_prepare(vma))) {
3014                                 ret = VM_FAULT_OOM;
3015                                 goto backout_unlocked;
3016                         }
3017                         anon_rmap = 1;
3018                 }
3019         } else {
3020                 /*
3021                  * If memory error occurs between mmap() and fault, some process
3022                  * don't have hwpoisoned swap entry for errored virtual address.
3023                  * So we need to block hugepage fault by PG_hwpoison bit check.
3024                  */
3025                 if (unlikely(PageHWPoison(page))) {
3026                         ret = VM_FAULT_HWPOISON |
3027                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3028                         goto backout_unlocked;
3029                 }
3030         }
3031
3032         /*
3033          * If we are going to COW a private mapping later, we examine the
3034          * pending reservations for this page now. This will ensure that
3035          * any allocations necessary to record that reservation occur outside
3036          * the spinlock.
3037          */
3038         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3039                 if (vma_needs_reservation(h, vma, address) < 0) {
3040                         ret = VM_FAULT_OOM;
3041                         goto backout_unlocked;
3042                 }
3043
3044         ptl = huge_pte_lockptr(h, mm, ptep);
3045         spin_lock(ptl);
3046         size = i_size_read(mapping->host) >> huge_page_shift(h);
3047         if (idx >= size)
3048                 goto backout;
3049
3050         ret = 0;
3051         if (!huge_pte_none(huge_ptep_get(ptep)))
3052                 goto backout;
3053
3054         if (anon_rmap) {
3055                 ClearPagePrivate(page);
3056                 hugepage_add_new_anon_rmap(page, vma, address);
3057         } else
3058                 page_dup_rmap(page);
3059         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3060                                 && (vma->vm_flags & VM_SHARED)));
3061         set_huge_pte_at(mm, address, ptep, new_pte);
3062
3063         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3064                 /* Optimization, do the COW without a second fault */
3065                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3066         }
3067
3068         spin_unlock(ptl);
3069         unlock_page(page);
3070 out:
3071         return ret;
3072
3073 backout:
3074         spin_unlock(ptl);
3075 backout_unlocked:
3076         unlock_page(page);
3077         put_page(page);
3078         goto out;
3079 }
3080
3081 #ifdef CONFIG_SMP
3082 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3083                             struct vm_area_struct *vma,
3084                             struct address_space *mapping,
3085                             pgoff_t idx, unsigned long address)
3086 {
3087         unsigned long key[2];
3088         u32 hash;
3089
3090         if (vma->vm_flags & VM_SHARED) {
3091                 key[0] = (unsigned long) mapping;
3092                 key[1] = idx;
3093         } else {
3094                 key[0] = (unsigned long) mm;
3095                 key[1] = address >> huge_page_shift(h);
3096         }
3097
3098         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3099
3100         return hash & (num_fault_mutexes - 1);
3101 }
3102 #else
3103 /*
3104  * For uniprocesor systems we always use a single mutex, so just
3105  * return 0 and avoid the hashing overhead.
3106  */
3107 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3108                             struct vm_area_struct *vma,
3109                             struct address_space *mapping,
3110                             pgoff_t idx, unsigned long address)
3111 {
3112         return 0;
3113 }
3114 #endif
3115
3116 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3117                         unsigned long address, unsigned int flags)
3118 {
3119         pte_t *ptep, entry;
3120         spinlock_t *ptl;
3121         int ret;
3122         u32 hash;
3123         pgoff_t idx;
3124         struct page *page = NULL;
3125         struct page *pagecache_page = NULL;
3126         struct hstate *h = hstate_vma(vma);
3127         struct address_space *mapping;
3128
3129         address &= huge_page_mask(h);
3130
3131         ptep = huge_pte_offset(mm, address);
3132         if (ptep) {
3133                 entry = huge_ptep_get(ptep);
3134                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3135                         migration_entry_wait_huge(vma, mm, ptep);
3136                         return 0;
3137                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3138                         return VM_FAULT_HWPOISON_LARGE |
3139                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3140         }
3141
3142         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3143         if (!ptep)
3144                 return VM_FAULT_OOM;
3145
3146         mapping = vma->vm_file->f_mapping;
3147         idx = vma_hugecache_offset(h, vma, address);
3148
3149         /*
3150          * Serialize hugepage allocation and instantiation, so that we don't
3151          * get spurious allocation failures if two CPUs race to instantiate
3152          * the same page in the page cache.
3153          */
3154         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3155         mutex_lock(&htlb_fault_mutex_table[hash]);
3156
3157         entry = huge_ptep_get(ptep);
3158         if (huge_pte_none(entry)) {
3159                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3160                 goto out_mutex;
3161         }
3162
3163         ret = 0;
3164
3165         /*
3166          * If we are going to COW the mapping later, we examine the pending
3167          * reservations for this page now. This will ensure that any
3168          * allocations necessary to record that reservation occur outside the
3169          * spinlock. For private mappings, we also lookup the pagecache
3170          * page now as it is used to determine if a reservation has been
3171          * consumed.
3172          */
3173         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3174                 if (vma_needs_reservation(h, vma, address) < 0) {
3175                         ret = VM_FAULT_OOM;
3176                         goto out_mutex;
3177                 }
3178
3179                 if (!(vma->vm_flags & VM_MAYSHARE))
3180                         pagecache_page = hugetlbfs_pagecache_page(h,
3181                                                                 vma, address);
3182         }
3183
3184         /*
3185          * hugetlb_cow() requires page locks of pte_page(entry) and
3186          * pagecache_page, so here we need take the former one
3187          * when page != pagecache_page or !pagecache_page.
3188          * Note that locking order is always pagecache_page -> page,
3189          * so no worry about deadlock.
3190          */
3191         page = pte_page(entry);
3192         get_page(page);
3193         if (page != pagecache_page)
3194                 lock_page(page);
3195
3196         ptl = huge_pte_lockptr(h, mm, ptep);
3197         spin_lock(ptl);
3198         /* Check for a racing update before calling hugetlb_cow */
3199         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3200                 goto out_ptl;
3201
3202
3203         if (flags & FAULT_FLAG_WRITE) {
3204                 if (!huge_pte_write(entry)) {
3205                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3206                                         pagecache_page, ptl);
3207                         goto out_ptl;
3208                 }
3209                 entry = huge_pte_mkdirty(entry);
3210         }
3211         entry = pte_mkyoung(entry);
3212         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3213                                                 flags & FAULT_FLAG_WRITE))
3214                 update_mmu_cache(vma, address, ptep);
3215
3216 out_ptl:
3217         spin_unlock(ptl);
3218
3219         if (pagecache_page) {
3220                 unlock_page(pagecache_page);
3221                 put_page(pagecache_page);
3222         }
3223         if (page != pagecache_page)
3224                 unlock_page(page);
3225         put_page(page);
3226
3227 out_mutex:
3228         mutex_unlock(&htlb_fault_mutex_table[hash]);
3229         return ret;
3230 }
3231
3232 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3233                          struct page **pages, struct vm_area_struct **vmas,
3234                          unsigned long *position, unsigned long *nr_pages,
3235                          long i, unsigned int flags)
3236 {
3237         unsigned long pfn_offset;
3238         unsigned long vaddr = *position;
3239         unsigned long remainder = *nr_pages;
3240         struct hstate *h = hstate_vma(vma);
3241
3242         while (vaddr < vma->vm_end && remainder) {
3243                 pte_t *pte;
3244                 spinlock_t *ptl = NULL;
3245                 int absent;
3246                 struct page *page;
3247
3248                 /*
3249                  * Some archs (sparc64, sh*) have multiple pte_ts to
3250                  * each hugepage.  We have to make sure we get the
3251                  * first, for the page indexing below to work.
3252                  *
3253                  * Note that page table lock is not held when pte is null.
3254                  */
3255                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3256                 if (pte)
3257                         ptl = huge_pte_lock(h, mm, pte);
3258                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3259
3260                 /*
3261                  * When coredumping, it suits get_dump_page if we just return
3262                  * an error where there's an empty slot with no huge pagecache
3263                  * to back it.  This way, we avoid allocating a hugepage, and
3264                  * the sparse dumpfile avoids allocating disk blocks, but its
3265                  * huge holes still show up with zeroes where they need to be.
3266                  */
3267                 if (absent && (flags & FOLL_DUMP) &&
3268                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3269                         if (pte)
3270                                 spin_unlock(ptl);
3271                         remainder = 0;
3272                         break;
3273                 }
3274
3275                 /*
3276                  * We need call hugetlb_fault for both hugepages under migration
3277                  * (in which case hugetlb_fault waits for the migration,) and
3278                  * hwpoisoned hugepages (in which case we need to prevent the
3279                  * caller from accessing to them.) In order to do this, we use
3280                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3281                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3282                  * both cases, and because we can't follow correct pages
3283                  * directly from any kind of swap entries.
3284                  */
3285                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3286                     ((flags & FOLL_WRITE) &&
3287                       !huge_pte_write(huge_ptep_get(pte)))) {
3288                         int ret;
3289
3290                         if (pte)
3291                                 spin_unlock(ptl);
3292                         ret = hugetlb_fault(mm, vma, vaddr,
3293                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3294                         if (!(ret & VM_FAULT_ERROR))
3295                                 continue;
3296
3297                         remainder = 0;
3298                         break;
3299                 }
3300
3301                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3302                 page = pte_page(huge_ptep_get(pte));
3303 same_page:
3304                 if (pages) {
3305                         pages[i] = mem_map_offset(page, pfn_offset);
3306                         get_page_foll(pages[i]);
3307                 }
3308
3309                 if (vmas)
3310                         vmas[i] = vma;
3311
3312                 vaddr += PAGE_SIZE;
3313                 ++pfn_offset;
3314                 --remainder;
3315                 ++i;
3316                 if (vaddr < vma->vm_end && remainder &&
3317                                 pfn_offset < pages_per_huge_page(h)) {
3318                         /*
3319                          * We use pfn_offset to avoid touching the pageframes
3320                          * of this compound page.
3321                          */
3322                         goto same_page;
3323                 }
3324                 spin_unlock(ptl);
3325         }
3326         *nr_pages = remainder;
3327         *position = vaddr;
3328
3329         return i ? i : -EFAULT;
3330 }
3331
3332 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3333                 unsigned long address, unsigned long end, pgprot_t newprot)
3334 {
3335         struct mm_struct *mm = vma->vm_mm;
3336         unsigned long start = address;
3337         pte_t *ptep;
3338         pte_t pte;
3339         struct hstate *h = hstate_vma(vma);
3340         unsigned long pages = 0;
3341
3342         BUG_ON(address >= end);
3343         flush_cache_range(vma, address, end);
3344
3345         mmu_notifier_invalidate_range_start(mm, start, end);
3346         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3347         for (; address < end; address += huge_page_size(h)) {
3348                 spinlock_t *ptl;
3349                 ptep = huge_pte_offset(mm, address);
3350                 if (!ptep)
3351                         continue;
3352                 ptl = huge_pte_lock(h, mm, ptep);
3353                 if (huge_pmd_unshare(mm, &address, ptep)) {
3354                         pages++;
3355                         spin_unlock(ptl);
3356                         continue;
3357                 }
3358                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3359                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3360                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3361                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3362                         set_huge_pte_at(mm, address, ptep, pte);
3363                         pages++;
3364                 }
3365                 spin_unlock(ptl);
3366         }
3367         /*
3368          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3369          * may have cleared our pud entry and done put_page on the page table:
3370          * once we release i_mmap_mutex, another task can do the final put_page
3371          * and that page table be reused and filled with junk.
3372          */
3373         flush_tlb_range(vma, start, end);
3374         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3375         mmu_notifier_invalidate_range_end(mm, start, end);
3376
3377         return pages << h->order;
3378 }
3379
3380 int hugetlb_reserve_pages(struct inode *inode,
3381                                         long from, long to,
3382                                         struct vm_area_struct *vma,
3383                                         vm_flags_t vm_flags)
3384 {
3385         long ret, chg;
3386         struct hstate *h = hstate_inode(inode);
3387         struct hugepage_subpool *spool = subpool_inode(inode);
3388         struct resv_map *resv_map;
3389
3390         /*
3391          * Only apply hugepage reservation if asked. At fault time, an
3392          * attempt will be made for VM_NORESERVE to allocate a page
3393          * without using reserves
3394          */
3395         if (vm_flags & VM_NORESERVE)
3396                 return 0;
3397
3398         /*
3399          * Shared mappings base their reservation on the number of pages that
3400          * are already allocated on behalf of the file. Private mappings need
3401          * to reserve the full area even if read-only as mprotect() may be
3402          * called to make the mapping read-write. Assume !vma is a shm mapping
3403          */
3404         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3405                 resv_map = inode_resv_map(inode);
3406
3407                 chg = region_chg(resv_map, from, to);
3408
3409         } else {
3410                 resv_map = resv_map_alloc();
3411                 if (!resv_map)
3412                         return -ENOMEM;
3413
3414                 chg = to - from;
3415
3416                 set_vma_resv_map(vma, resv_map);
3417                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3418         }
3419
3420         if (chg < 0) {
3421                 ret = chg;
3422                 goto out_err;
3423         }
3424
3425         /* There must be enough pages in the subpool for the mapping */
3426         if (hugepage_subpool_get_pages(spool, chg)) {
3427                 ret = -ENOSPC;
3428                 goto out_err;
3429         }
3430
3431         /*
3432          * Check enough hugepages are available for the reservation.
3433          * Hand the pages back to the subpool if there are not
3434          */
3435         ret = hugetlb_acct_memory(h, chg);
3436         if (ret < 0) {
3437                 hugepage_subpool_put_pages(spool, chg);
3438                 goto out_err;
3439         }
3440
3441         /*
3442          * Account for the reservations made. Shared mappings record regions
3443          * that have reservations as they are shared by multiple VMAs.
3444          * When the last VMA disappears, the region map says how much
3445          * the reservation was and the page cache tells how much of
3446          * the reservation was consumed. Private mappings are per-VMA and
3447          * only the consumed reservations are tracked. When the VMA
3448          * disappears, the original reservation is the VMA size and the
3449          * consumed reservations are stored in the map. Hence, nothing
3450          * else has to be done for private mappings here
3451          */
3452         if (!vma || vma->vm_flags & VM_MAYSHARE)
3453                 region_add(resv_map, from, to);
3454         return 0;
3455 out_err:
3456         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3457                 kref_put(&resv_map->refs, resv_map_release);
3458         return ret;
3459 }
3460
3461 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3462 {
3463         struct hstate *h = hstate_inode(inode);
3464         struct resv_map *resv_map = inode_resv_map(inode);
3465         long chg = 0;
3466         struct hugepage_subpool *spool = subpool_inode(inode);
3467
3468         if (resv_map)
3469                 chg = region_truncate(resv_map, offset);
3470         spin_lock(&inode->i_lock);
3471         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3472         spin_unlock(&inode->i_lock);
3473
3474         hugepage_subpool_put_pages(spool, (chg - freed));
3475         hugetlb_acct_memory(h, -(chg - freed));
3476 }
3477
3478 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3479 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3480                                 struct vm_area_struct *vma,
3481                                 unsigned long addr, pgoff_t idx)
3482 {
3483         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3484                                 svma->vm_start;
3485         unsigned long sbase = saddr & PUD_MASK;
3486         unsigned long s_end = sbase + PUD_SIZE;
3487
3488         /* Allow segments to share if only one is marked locked */
3489         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3490         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3491
3492         /*
3493          * match the virtual addresses, permission and the alignment of the
3494          * page table page.
3495          */
3496         if (pmd_index(addr) != pmd_index(saddr) ||
3497             vm_flags != svm_flags ||
3498             sbase < svma->vm_start || svma->vm_end < s_end)
3499                 return 0;
3500
3501         return saddr;
3502 }
3503
3504 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3505 {
3506         unsigned long base = addr & PUD_MASK;
3507         unsigned long end = base + PUD_SIZE;
3508
3509         /*
3510          * check on proper vm_flags and page table alignment
3511          */
3512         if (vma->vm_flags & VM_MAYSHARE &&
3513             vma->vm_start <= base && end <= vma->vm_end)
3514                 return 1;
3515         return 0;
3516 }
3517
3518 /*
3519  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3520  * and returns the corresponding pte. While this is not necessary for the
3521  * !shared pmd case because we can allocate the pmd later as well, it makes the
3522  * code much cleaner. pmd allocation is essential for the shared case because
3523  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3524  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3525  * bad pmd for sharing.
3526  */
3527 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3528 {
3529         struct vm_area_struct *vma = find_vma(mm, addr);
3530         struct address_space *mapping = vma->vm_file->f_mapping;
3531         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3532                         vma->vm_pgoff;
3533         struct vm_area_struct *svma;
3534         unsigned long saddr;
3535         pte_t *spte = NULL;
3536         pte_t *pte;
3537         spinlock_t *ptl;
3538
3539         if (!vma_shareable(vma, addr))
3540                 return (pte_t *)pmd_alloc(mm, pud, addr);
3541
3542         mutex_lock(&mapping->i_mmap_mutex);
3543         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3544                 if (svma == vma)
3545                         continue;
3546
3547                 saddr = page_table_shareable(svma, vma, addr, idx);
3548                 if (saddr) {
3549                         spte = huge_pte_offset(svma->vm_mm, saddr);
3550                         if (spte) {
3551                                 get_page(virt_to_page(spte));
3552                                 break;
3553                         }
3554                 }
3555         }
3556
3557         if (!spte)
3558                 goto out;
3559
3560         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3561         spin_lock(ptl);
3562         if (pud_none(*pud))
3563                 pud_populate(mm, pud,
3564                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3565         else
3566                 put_page(virt_to_page(spte));
3567         spin_unlock(ptl);
3568 out:
3569         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3570         mutex_unlock(&mapping->i_mmap_mutex);
3571         return pte;
3572 }
3573
3574 /*
3575  * unmap huge page backed by shared pte.
3576  *
3577  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3578  * indicated by page_count > 1, unmap is achieved by clearing pud and
3579  * decrementing the ref count. If count == 1, the pte page is not shared.
3580  *
3581  * called with page table lock held.
3582  *
3583  * returns: 1 successfully unmapped a shared pte page
3584  *          0 the underlying pte page is not shared, or it is the last user
3585  */
3586 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3587 {
3588         pgd_t *pgd = pgd_offset(mm, *addr);
3589         pud_t *pud = pud_offset(pgd, *addr);
3590
3591         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3592         if (page_count(virt_to_page(ptep)) == 1)
3593                 return 0;
3594
3595         pud_clear(pud);
3596         put_page(virt_to_page(ptep));
3597         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3598         return 1;
3599 }
3600 #define want_pmd_share()        (1)
3601 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3602 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3603 {
3604         return NULL;
3605 }
3606 #define want_pmd_share()        (0)
3607 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3608
3609 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3610 pte_t *huge_pte_alloc(struct mm_struct *mm,
3611                         unsigned long addr, unsigned long sz)
3612 {
3613         pgd_t *pgd;
3614         pud_t *pud;
3615         pte_t *pte = NULL;
3616
3617         pgd = pgd_offset(mm, addr);
3618         pud = pud_alloc(mm, pgd, addr);
3619         if (pud) {
3620                 if (sz == PUD_SIZE) {
3621                         pte = (pte_t *)pud;
3622                 } else {
3623                         BUG_ON(sz != PMD_SIZE);
3624                         if (want_pmd_share() && pud_none(*pud))
3625                                 pte = huge_pmd_share(mm, addr, pud);
3626                         else
3627                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3628                 }
3629         }
3630         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3631
3632         return pte;
3633 }
3634
3635 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3636 {
3637         pgd_t *pgd;
3638         pud_t *pud;
3639         pmd_t *pmd = NULL;
3640
3641         pgd = pgd_offset(mm, addr);
3642         if (pgd_present(*pgd)) {
3643                 pud = pud_offset(pgd, addr);
3644                 if (pud_present(*pud)) {
3645                         if (pud_huge(*pud))
3646                                 return (pte_t *)pud;
3647                         pmd = pmd_offset(pud, addr);
3648                 }
3649         }
3650         return (pte_t *) pmd;
3651 }
3652
3653 struct page *
3654 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3655                 pmd_t *pmd, int write)
3656 {
3657         struct page *page;
3658
3659         page = pte_page(*(pte_t *)pmd);
3660         if (page)
3661                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3662         return page;
3663 }
3664
3665 struct page *
3666 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3667                 pud_t *pud, int write)
3668 {
3669         struct page *page;
3670
3671         page = pte_page(*(pte_t *)pud);
3672         if (page)
3673                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3674         return page;
3675 }
3676
3677 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3678
3679 /* Can be overriden by architectures */
3680 struct page * __weak
3681 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3682                pud_t *pud, int write)
3683 {
3684         BUG();
3685         return NULL;
3686 }
3687
3688 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3689
3690 #ifdef CONFIG_MEMORY_FAILURE
3691
3692 /* Should be called in hugetlb_lock */
3693 static int is_hugepage_on_freelist(struct page *hpage)
3694 {
3695         struct page *page;
3696         struct page *tmp;
3697         struct hstate *h = page_hstate(hpage);
3698         int nid = page_to_nid(hpage);
3699
3700         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3701                 if (page == hpage)
3702                         return 1;
3703         return 0;
3704 }
3705
3706 /*
3707  * This function is called from memory failure code.
3708  * Assume the caller holds page lock of the head page.
3709  */
3710 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3711 {
3712         struct hstate *h = page_hstate(hpage);
3713         int nid = page_to_nid(hpage);
3714         int ret = -EBUSY;
3715
3716         spin_lock(&hugetlb_lock);
3717         if (is_hugepage_on_freelist(hpage)) {
3718                 /*
3719                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3720                  * but dangling hpage->lru can trigger list-debug warnings
3721                  * (this happens when we call unpoison_memory() on it),
3722                  * so let it point to itself with list_del_init().
3723                  */
3724                 list_del_init(&hpage->lru);
3725                 set_page_refcounted(hpage);
3726                 h->free_huge_pages--;
3727                 h->free_huge_pages_node[nid]--;
3728                 ret = 0;
3729         }
3730         spin_unlock(&hugetlb_lock);
3731         return ret;
3732 }
3733 #endif
3734
3735 bool isolate_huge_page(struct page *page, struct list_head *list)
3736 {
3737         VM_BUG_ON_PAGE(!PageHead(page), page);
3738         if (!get_page_unless_zero(page))
3739                 return false;
3740         spin_lock(&hugetlb_lock);
3741         list_move_tail(&page->lru, list);
3742         spin_unlock(&hugetlb_lock);
3743         return true;
3744 }
3745
3746 void putback_active_hugepage(struct page *page)
3747 {
3748         VM_BUG_ON_PAGE(!PageHead(page), page);
3749         spin_lock(&hugetlb_lock);
3750         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3751         spin_unlock(&hugetlb_lock);
3752         put_page(page);
3753 }
3754
3755 bool is_hugepage_active(struct page *page)
3756 {
3757         VM_BUG_ON_PAGE(!PageHuge(page), page);
3758         /*
3759          * This function can be called for a tail page because the caller,
3760          * scan_movable_pages, scans through a given pfn-range which typically
3761          * covers one memory block. In systems using gigantic hugepage (1GB
3762          * for x86_64,) a hugepage is larger than a memory block, and we don't
3763          * support migrating such large hugepages for now, so return false
3764          * when called for tail pages.
3765          */
3766         if (PageTail(page))
3767                 return false;
3768         /*
3769          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3770          * so we should return false for them.
3771          */
3772         if (unlikely(PageHWPoison(page)))
3773                 return false;
3774         return page_count(page) > 0;
3775 }