mm/hugetlb: add cache of descriptors to resv_map for region_add
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg)
376                         return -ENOMEM;
377
378                 spin_lock(&resv->lock);
379                 list_add(&trg->link, &resv->region_cache);
380                 resv->region_cache_count++;
381                 goto retry_locked;
382         }
383
384         /* Locate the region we are before or in. */
385         list_for_each_entry(rg, head, link)
386                 if (f <= rg->to)
387                         break;
388
389         /* If we are below the current region then a new region is required.
390          * Subtle, allocate a new region at the position but make it zero
391          * size such that we can guarantee to record the reservation. */
392         if (&rg->link == head || t < rg->from) {
393                 if (!nrg) {
394                         resv->adds_in_progress--;
395                         spin_unlock(&resv->lock);
396                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397                         if (!nrg)
398                                 return -ENOMEM;
399
400                         nrg->from = f;
401                         nrg->to   = f;
402                         INIT_LIST_HEAD(&nrg->link);
403                         goto retry;
404                 }
405
406                 list_add(&nrg->link, rg->link.prev);
407                 chg = t - f;
408                 goto out_nrg;
409         }
410
411         /* Round our left edge to the current segment if it encloses us. */
412         if (f > rg->from)
413                 f = rg->from;
414         chg = t - f;
415
416         /* Check for and consume any regions we now overlap with. */
417         list_for_each_entry(rg, rg->link.prev, link) {
418                 if (&rg->link == head)
419                         break;
420                 if (rg->from > t)
421                         goto out;
422
423                 /* We overlap with this area, if it extends further than
424                  * us then we must extend ourselves.  Account for its
425                  * existing reservation. */
426                 if (rg->to > t) {
427                         chg += rg->to - t;
428                         t = rg->to;
429                 }
430                 chg -= rg->to - rg->from;
431         }
432
433 out:
434         spin_unlock(&resv->lock);
435         /*  We already know we raced and no longer need the new region */
436         kfree(nrg);
437         return chg;
438 out_nrg:
439         spin_unlock(&resv->lock);
440         return chg;
441 }
442
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456         spin_lock(&resv->lock);
457         VM_BUG_ON(!resv->region_cache_count);
458         resv->adds_in_progress--;
459         spin_unlock(&resv->lock);
460 }
461
462 /*
463  * Truncate the reserve map at index 'end'.  Modify/truncate any
464  * region which contains end.  Delete any regions past end.
465  * Return the number of huge pages removed from the map.
466  */
467 static long region_truncate(struct resv_map *resv, long end)
468 {
469         struct list_head *head = &resv->regions;
470         struct file_region *rg, *trg;
471         long chg = 0;
472
473         spin_lock(&resv->lock);
474         /* Locate the region we are either in or before. */
475         list_for_each_entry(rg, head, link)
476                 if (end <= rg->to)
477                         break;
478         if (&rg->link == head)
479                 goto out;
480
481         /* If we are in the middle of a region then adjust it. */
482         if (end > rg->from) {
483                 chg = rg->to - end;
484                 rg->to = end;
485                 rg = list_entry(rg->link.next, typeof(*rg), link);
486         }
487
488         /* Drop any remaining regions. */
489         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
490                 if (&rg->link == head)
491                         break;
492                 chg += rg->to - rg->from;
493                 list_del(&rg->link);
494                 kfree(rg);
495         }
496
497 out:
498         spin_unlock(&resv->lock);
499         return chg;
500 }
501
502 /*
503  * Count and return the number of huge pages in the reserve map
504  * that intersect with the range [f, t).
505  */
506 static long region_count(struct resv_map *resv, long f, long t)
507 {
508         struct list_head *head = &resv->regions;
509         struct file_region *rg;
510         long chg = 0;
511
512         spin_lock(&resv->lock);
513         /* Locate each segment we overlap with, and count that overlap. */
514         list_for_each_entry(rg, head, link) {
515                 long seg_from;
516                 long seg_to;
517
518                 if (rg->to <= f)
519                         continue;
520                 if (rg->from >= t)
521                         break;
522
523                 seg_from = max(rg->from, f);
524                 seg_to = min(rg->to, t);
525
526                 chg += seg_to - seg_from;
527         }
528         spin_unlock(&resv->lock);
529
530         return chg;
531 }
532
533 /*
534  * Convert the address within this vma to the page offset within
535  * the mapping, in pagecache page units; huge pages here.
536  */
537 static pgoff_t vma_hugecache_offset(struct hstate *h,
538                         struct vm_area_struct *vma, unsigned long address)
539 {
540         return ((address - vma->vm_start) >> huge_page_shift(h)) +
541                         (vma->vm_pgoff >> huge_page_order(h));
542 }
543
544 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
545                                      unsigned long address)
546 {
547         return vma_hugecache_offset(hstate_vma(vma), vma, address);
548 }
549
550 /*
551  * Return the size of the pages allocated when backing a VMA. In the majority
552  * cases this will be same size as used by the page table entries.
553  */
554 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
555 {
556         struct hstate *hstate;
557
558         if (!is_vm_hugetlb_page(vma))
559                 return PAGE_SIZE;
560
561         hstate = hstate_vma(vma);
562
563         return 1UL << huge_page_shift(hstate);
564 }
565 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
566
567 /*
568  * Return the page size being used by the MMU to back a VMA. In the majority
569  * of cases, the page size used by the kernel matches the MMU size. On
570  * architectures where it differs, an architecture-specific version of this
571  * function is required.
572  */
573 #ifndef vma_mmu_pagesize
574 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
575 {
576         return vma_kernel_pagesize(vma);
577 }
578 #endif
579
580 /*
581  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
582  * bits of the reservation map pointer, which are always clear due to
583  * alignment.
584  */
585 #define HPAGE_RESV_OWNER    (1UL << 0)
586 #define HPAGE_RESV_UNMAPPED (1UL << 1)
587 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
588
589 /*
590  * These helpers are used to track how many pages are reserved for
591  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
592  * is guaranteed to have their future faults succeed.
593  *
594  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
595  * the reserve counters are updated with the hugetlb_lock held. It is safe
596  * to reset the VMA at fork() time as it is not in use yet and there is no
597  * chance of the global counters getting corrupted as a result of the values.
598  *
599  * The private mapping reservation is represented in a subtly different
600  * manner to a shared mapping.  A shared mapping has a region map associated
601  * with the underlying file, this region map represents the backing file
602  * pages which have ever had a reservation assigned which this persists even
603  * after the page is instantiated.  A private mapping has a region map
604  * associated with the original mmap which is attached to all VMAs which
605  * reference it, this region map represents those offsets which have consumed
606  * reservation ie. where pages have been instantiated.
607  */
608 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
609 {
610         return (unsigned long)vma->vm_private_data;
611 }
612
613 static void set_vma_private_data(struct vm_area_struct *vma,
614                                                         unsigned long value)
615 {
616         vma->vm_private_data = (void *)value;
617 }
618
619 struct resv_map *resv_map_alloc(void)
620 {
621         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
622         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
623
624         if (!resv_map || !rg) {
625                 kfree(resv_map);
626                 kfree(rg);
627                 return NULL;
628         }
629
630         kref_init(&resv_map->refs);
631         spin_lock_init(&resv_map->lock);
632         INIT_LIST_HEAD(&resv_map->regions);
633
634         resv_map->adds_in_progress = 0;
635
636         INIT_LIST_HEAD(&resv_map->region_cache);
637         list_add(&rg->link, &resv_map->region_cache);
638         resv_map->region_cache_count = 1;
639
640         return resv_map;
641 }
642
643 void resv_map_release(struct kref *ref)
644 {
645         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
646         struct list_head *head = &resv_map->region_cache;
647         struct file_region *rg, *trg;
648
649         /* Clear out any active regions before we release the map. */
650         region_truncate(resv_map, 0);
651
652         /* ... and any entries left in the cache */
653         list_for_each_entry_safe(rg, trg, head, link) {
654                 list_del(&rg->link);
655                 kfree(rg);
656         }
657
658         VM_BUG_ON(resv_map->adds_in_progress);
659
660         kfree(resv_map);
661 }
662
663 static inline struct resv_map *inode_resv_map(struct inode *inode)
664 {
665         return inode->i_mapping->private_data;
666 }
667
668 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
669 {
670         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
671         if (vma->vm_flags & VM_MAYSHARE) {
672                 struct address_space *mapping = vma->vm_file->f_mapping;
673                 struct inode *inode = mapping->host;
674
675                 return inode_resv_map(inode);
676
677         } else {
678                 return (struct resv_map *)(get_vma_private_data(vma) &
679                                                         ~HPAGE_RESV_MASK);
680         }
681 }
682
683 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
684 {
685         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
686         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
687
688         set_vma_private_data(vma, (get_vma_private_data(vma) &
689                                 HPAGE_RESV_MASK) | (unsigned long)map);
690 }
691
692 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
693 {
694         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
695         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
696
697         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
698 }
699
700 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
701 {
702         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
703
704         return (get_vma_private_data(vma) & flag) != 0;
705 }
706
707 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
708 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
709 {
710         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
711         if (!(vma->vm_flags & VM_MAYSHARE))
712                 vma->vm_private_data = (void *)0;
713 }
714
715 /* Returns true if the VMA has associated reserve pages */
716 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
717 {
718         if (vma->vm_flags & VM_NORESERVE) {
719                 /*
720                  * This address is already reserved by other process(chg == 0),
721                  * so, we should decrement reserved count. Without decrementing,
722                  * reserve count remains after releasing inode, because this
723                  * allocated page will go into page cache and is regarded as
724                  * coming from reserved pool in releasing step.  Currently, we
725                  * don't have any other solution to deal with this situation
726                  * properly, so add work-around here.
727                  */
728                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
729                         return true;
730                 else
731                         return false;
732         }
733
734         /* Shared mappings always use reserves */
735         if (vma->vm_flags & VM_MAYSHARE)
736                 return true;
737
738         /*
739          * Only the process that called mmap() has reserves for
740          * private mappings.
741          */
742         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
743                 return true;
744
745         return false;
746 }
747
748 static void enqueue_huge_page(struct hstate *h, struct page *page)
749 {
750         int nid = page_to_nid(page);
751         list_move(&page->lru, &h->hugepage_freelists[nid]);
752         h->free_huge_pages++;
753         h->free_huge_pages_node[nid]++;
754 }
755
756 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
757 {
758         struct page *page;
759
760         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
761                 if (!is_migrate_isolate_page(page))
762                         break;
763         /*
764          * if 'non-isolated free hugepage' not found on the list,
765          * the allocation fails.
766          */
767         if (&h->hugepage_freelists[nid] == &page->lru)
768                 return NULL;
769         list_move(&page->lru, &h->hugepage_activelist);
770         set_page_refcounted(page);
771         h->free_huge_pages--;
772         h->free_huge_pages_node[nid]--;
773         return page;
774 }
775
776 /* Movability of hugepages depends on migration support. */
777 static inline gfp_t htlb_alloc_mask(struct hstate *h)
778 {
779         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
780                 return GFP_HIGHUSER_MOVABLE;
781         else
782                 return GFP_HIGHUSER;
783 }
784
785 static struct page *dequeue_huge_page_vma(struct hstate *h,
786                                 struct vm_area_struct *vma,
787                                 unsigned long address, int avoid_reserve,
788                                 long chg)
789 {
790         struct page *page = NULL;
791         struct mempolicy *mpol;
792         nodemask_t *nodemask;
793         struct zonelist *zonelist;
794         struct zone *zone;
795         struct zoneref *z;
796         unsigned int cpuset_mems_cookie;
797
798         /*
799          * A child process with MAP_PRIVATE mappings created by their parent
800          * have no page reserves. This check ensures that reservations are
801          * not "stolen". The child may still get SIGKILLed
802          */
803         if (!vma_has_reserves(vma, chg) &&
804                         h->free_huge_pages - h->resv_huge_pages == 0)
805                 goto err;
806
807         /* If reserves cannot be used, ensure enough pages are in the pool */
808         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
809                 goto err;
810
811 retry_cpuset:
812         cpuset_mems_cookie = read_mems_allowed_begin();
813         zonelist = huge_zonelist(vma, address,
814                                         htlb_alloc_mask(h), &mpol, &nodemask);
815
816         for_each_zone_zonelist_nodemask(zone, z, zonelist,
817                                                 MAX_NR_ZONES - 1, nodemask) {
818                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
819                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
820                         if (page) {
821                                 if (avoid_reserve)
822                                         break;
823                                 if (!vma_has_reserves(vma, chg))
824                                         break;
825
826                                 SetPagePrivate(page);
827                                 h->resv_huge_pages--;
828                                 break;
829                         }
830                 }
831         }
832
833         mpol_cond_put(mpol);
834         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
835                 goto retry_cpuset;
836         return page;
837
838 err:
839         return NULL;
840 }
841
842 /*
843  * common helper functions for hstate_next_node_to_{alloc|free}.
844  * We may have allocated or freed a huge page based on a different
845  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
846  * be outside of *nodes_allowed.  Ensure that we use an allowed
847  * node for alloc or free.
848  */
849 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
850 {
851         nid = next_node(nid, *nodes_allowed);
852         if (nid == MAX_NUMNODES)
853                 nid = first_node(*nodes_allowed);
854         VM_BUG_ON(nid >= MAX_NUMNODES);
855
856         return nid;
857 }
858
859 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
860 {
861         if (!node_isset(nid, *nodes_allowed))
862                 nid = next_node_allowed(nid, nodes_allowed);
863         return nid;
864 }
865
866 /*
867  * returns the previously saved node ["this node"] from which to
868  * allocate a persistent huge page for the pool and advance the
869  * next node from which to allocate, handling wrap at end of node
870  * mask.
871  */
872 static int hstate_next_node_to_alloc(struct hstate *h,
873                                         nodemask_t *nodes_allowed)
874 {
875         int nid;
876
877         VM_BUG_ON(!nodes_allowed);
878
879         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
880         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
881
882         return nid;
883 }
884
885 /*
886  * helper for free_pool_huge_page() - return the previously saved
887  * node ["this node"] from which to free a huge page.  Advance the
888  * next node id whether or not we find a free huge page to free so
889  * that the next attempt to free addresses the next node.
890  */
891 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
892 {
893         int nid;
894
895         VM_BUG_ON(!nodes_allowed);
896
897         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
898         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
899
900         return nid;
901 }
902
903 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
904         for (nr_nodes = nodes_weight(*mask);                            \
905                 nr_nodes > 0 &&                                         \
906                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
907                 nr_nodes--)
908
909 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
910         for (nr_nodes = nodes_weight(*mask);                            \
911                 nr_nodes > 0 &&                                         \
912                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
913                 nr_nodes--)
914
915 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
916 static void destroy_compound_gigantic_page(struct page *page,
917                                         unsigned long order)
918 {
919         int i;
920         int nr_pages = 1 << order;
921         struct page *p = page + 1;
922
923         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
924                 __ClearPageTail(p);
925                 set_page_refcounted(p);
926                 p->first_page = NULL;
927         }
928
929         set_compound_order(page, 0);
930         __ClearPageHead(page);
931 }
932
933 static void free_gigantic_page(struct page *page, unsigned order)
934 {
935         free_contig_range(page_to_pfn(page), 1 << order);
936 }
937
938 static int __alloc_gigantic_page(unsigned long start_pfn,
939                                 unsigned long nr_pages)
940 {
941         unsigned long end_pfn = start_pfn + nr_pages;
942         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
943 }
944
945 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
946                                 unsigned long nr_pages)
947 {
948         unsigned long i, end_pfn = start_pfn + nr_pages;
949         struct page *page;
950
951         for (i = start_pfn; i < end_pfn; i++) {
952                 if (!pfn_valid(i))
953                         return false;
954
955                 page = pfn_to_page(i);
956
957                 if (PageReserved(page))
958                         return false;
959
960                 if (page_count(page) > 0)
961                         return false;
962
963                 if (PageHuge(page))
964                         return false;
965         }
966
967         return true;
968 }
969
970 static bool zone_spans_last_pfn(const struct zone *zone,
971                         unsigned long start_pfn, unsigned long nr_pages)
972 {
973         unsigned long last_pfn = start_pfn + nr_pages - 1;
974         return zone_spans_pfn(zone, last_pfn);
975 }
976
977 static struct page *alloc_gigantic_page(int nid, unsigned order)
978 {
979         unsigned long nr_pages = 1 << order;
980         unsigned long ret, pfn, flags;
981         struct zone *z;
982
983         z = NODE_DATA(nid)->node_zones;
984         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
985                 spin_lock_irqsave(&z->lock, flags);
986
987                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
988                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
989                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
990                                 /*
991                                  * We release the zone lock here because
992                                  * alloc_contig_range() will also lock the zone
993                                  * at some point. If there's an allocation
994                                  * spinning on this lock, it may win the race
995                                  * and cause alloc_contig_range() to fail...
996                                  */
997                                 spin_unlock_irqrestore(&z->lock, flags);
998                                 ret = __alloc_gigantic_page(pfn, nr_pages);
999                                 if (!ret)
1000                                         return pfn_to_page(pfn);
1001                                 spin_lock_irqsave(&z->lock, flags);
1002                         }
1003                         pfn += nr_pages;
1004                 }
1005
1006                 spin_unlock_irqrestore(&z->lock, flags);
1007         }
1008
1009         return NULL;
1010 }
1011
1012 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1013 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1014
1015 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1016 {
1017         struct page *page;
1018
1019         page = alloc_gigantic_page(nid, huge_page_order(h));
1020         if (page) {
1021                 prep_compound_gigantic_page(page, huge_page_order(h));
1022                 prep_new_huge_page(h, page, nid);
1023         }
1024
1025         return page;
1026 }
1027
1028 static int alloc_fresh_gigantic_page(struct hstate *h,
1029                                 nodemask_t *nodes_allowed)
1030 {
1031         struct page *page = NULL;
1032         int nr_nodes, node;
1033
1034         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1035                 page = alloc_fresh_gigantic_page_node(h, node);
1036                 if (page)
1037                         return 1;
1038         }
1039
1040         return 0;
1041 }
1042
1043 static inline bool gigantic_page_supported(void) { return true; }
1044 #else
1045 static inline bool gigantic_page_supported(void) { return false; }
1046 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1047 static inline void destroy_compound_gigantic_page(struct page *page,
1048                                                 unsigned long order) { }
1049 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1050                                         nodemask_t *nodes_allowed) { return 0; }
1051 #endif
1052
1053 static void update_and_free_page(struct hstate *h, struct page *page)
1054 {
1055         int i;
1056
1057         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1058                 return;
1059
1060         h->nr_huge_pages--;
1061         h->nr_huge_pages_node[page_to_nid(page)]--;
1062         for (i = 0; i < pages_per_huge_page(h); i++) {
1063                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1064                                 1 << PG_referenced | 1 << PG_dirty |
1065                                 1 << PG_active | 1 << PG_private |
1066                                 1 << PG_writeback);
1067         }
1068         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1069         set_compound_page_dtor(page, NULL);
1070         set_page_refcounted(page);
1071         if (hstate_is_gigantic(h)) {
1072                 destroy_compound_gigantic_page(page, huge_page_order(h));
1073                 free_gigantic_page(page, huge_page_order(h));
1074         } else {
1075                 __free_pages(page, huge_page_order(h));
1076         }
1077 }
1078
1079 struct hstate *size_to_hstate(unsigned long size)
1080 {
1081         struct hstate *h;
1082
1083         for_each_hstate(h) {
1084                 if (huge_page_size(h) == size)
1085                         return h;
1086         }
1087         return NULL;
1088 }
1089
1090 /*
1091  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1092  * to hstate->hugepage_activelist.)
1093  *
1094  * This function can be called for tail pages, but never returns true for them.
1095  */
1096 bool page_huge_active(struct page *page)
1097 {
1098         VM_BUG_ON_PAGE(!PageHuge(page), page);
1099         return PageHead(page) && PagePrivate(&page[1]);
1100 }
1101
1102 /* never called for tail page */
1103 static void set_page_huge_active(struct page *page)
1104 {
1105         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1106         SetPagePrivate(&page[1]);
1107 }
1108
1109 static void clear_page_huge_active(struct page *page)
1110 {
1111         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1112         ClearPagePrivate(&page[1]);
1113 }
1114
1115 void free_huge_page(struct page *page)
1116 {
1117         /*
1118          * Can't pass hstate in here because it is called from the
1119          * compound page destructor.
1120          */
1121         struct hstate *h = page_hstate(page);
1122         int nid = page_to_nid(page);
1123         struct hugepage_subpool *spool =
1124                 (struct hugepage_subpool *)page_private(page);
1125         bool restore_reserve;
1126
1127         set_page_private(page, 0);
1128         page->mapping = NULL;
1129         BUG_ON(page_count(page));
1130         BUG_ON(page_mapcount(page));
1131         restore_reserve = PagePrivate(page);
1132         ClearPagePrivate(page);
1133
1134         /*
1135          * A return code of zero implies that the subpool will be under its
1136          * minimum size if the reservation is not restored after page is free.
1137          * Therefore, force restore_reserve operation.
1138          */
1139         if (hugepage_subpool_put_pages(spool, 1) == 0)
1140                 restore_reserve = true;
1141
1142         spin_lock(&hugetlb_lock);
1143         clear_page_huge_active(page);
1144         hugetlb_cgroup_uncharge_page(hstate_index(h),
1145                                      pages_per_huge_page(h), page);
1146         if (restore_reserve)
1147                 h->resv_huge_pages++;
1148
1149         if (h->surplus_huge_pages_node[nid]) {
1150                 /* remove the page from active list */
1151                 list_del(&page->lru);
1152                 update_and_free_page(h, page);
1153                 h->surplus_huge_pages--;
1154                 h->surplus_huge_pages_node[nid]--;
1155         } else {
1156                 arch_clear_hugepage_flags(page);
1157                 enqueue_huge_page(h, page);
1158         }
1159         spin_unlock(&hugetlb_lock);
1160 }
1161
1162 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1163 {
1164         INIT_LIST_HEAD(&page->lru);
1165         set_compound_page_dtor(page, free_huge_page);
1166         spin_lock(&hugetlb_lock);
1167         set_hugetlb_cgroup(page, NULL);
1168         h->nr_huge_pages++;
1169         h->nr_huge_pages_node[nid]++;
1170         spin_unlock(&hugetlb_lock);
1171         put_page(page); /* free it into the hugepage allocator */
1172 }
1173
1174 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1175 {
1176         int i;
1177         int nr_pages = 1 << order;
1178         struct page *p = page + 1;
1179
1180         /* we rely on prep_new_huge_page to set the destructor */
1181         set_compound_order(page, order);
1182         __SetPageHead(page);
1183         __ClearPageReserved(page);
1184         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1185                 /*
1186                  * For gigantic hugepages allocated through bootmem at
1187                  * boot, it's safer to be consistent with the not-gigantic
1188                  * hugepages and clear the PG_reserved bit from all tail pages
1189                  * too.  Otherwse drivers using get_user_pages() to access tail
1190                  * pages may get the reference counting wrong if they see
1191                  * PG_reserved set on a tail page (despite the head page not
1192                  * having PG_reserved set).  Enforcing this consistency between
1193                  * head and tail pages allows drivers to optimize away a check
1194                  * on the head page when they need know if put_page() is needed
1195                  * after get_user_pages().
1196                  */
1197                 __ClearPageReserved(p);
1198                 set_page_count(p, 0);
1199                 p->first_page = page;
1200                 /* Make sure p->first_page is always valid for PageTail() */
1201                 smp_wmb();
1202                 __SetPageTail(p);
1203         }
1204 }
1205
1206 /*
1207  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1208  * transparent huge pages.  See the PageTransHuge() documentation for more
1209  * details.
1210  */
1211 int PageHuge(struct page *page)
1212 {
1213         if (!PageCompound(page))
1214                 return 0;
1215
1216         page = compound_head(page);
1217         return get_compound_page_dtor(page) == free_huge_page;
1218 }
1219 EXPORT_SYMBOL_GPL(PageHuge);
1220
1221 /*
1222  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1223  * normal or transparent huge pages.
1224  */
1225 int PageHeadHuge(struct page *page_head)
1226 {
1227         if (!PageHead(page_head))
1228                 return 0;
1229
1230         return get_compound_page_dtor(page_head) == free_huge_page;
1231 }
1232
1233 pgoff_t __basepage_index(struct page *page)
1234 {
1235         struct page *page_head = compound_head(page);
1236         pgoff_t index = page_index(page_head);
1237         unsigned long compound_idx;
1238
1239         if (!PageHuge(page_head))
1240                 return page_index(page);
1241
1242         if (compound_order(page_head) >= MAX_ORDER)
1243                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1244         else
1245                 compound_idx = page - page_head;
1246
1247         return (index << compound_order(page_head)) + compound_idx;
1248 }
1249
1250 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1251 {
1252         struct page *page;
1253
1254         page = alloc_pages_exact_node(nid,
1255                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1256                                                 __GFP_REPEAT|__GFP_NOWARN,
1257                 huge_page_order(h));
1258         if (page) {
1259                 prep_new_huge_page(h, page, nid);
1260         }
1261
1262         return page;
1263 }
1264
1265 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1266 {
1267         struct page *page;
1268         int nr_nodes, node;
1269         int ret = 0;
1270
1271         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1272                 page = alloc_fresh_huge_page_node(h, node);
1273                 if (page) {
1274                         ret = 1;
1275                         break;
1276                 }
1277         }
1278
1279         if (ret)
1280                 count_vm_event(HTLB_BUDDY_PGALLOC);
1281         else
1282                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1283
1284         return ret;
1285 }
1286
1287 /*
1288  * Free huge page from pool from next node to free.
1289  * Attempt to keep persistent huge pages more or less
1290  * balanced over allowed nodes.
1291  * Called with hugetlb_lock locked.
1292  */
1293 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1294                                                          bool acct_surplus)
1295 {
1296         int nr_nodes, node;
1297         int ret = 0;
1298
1299         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1300                 /*
1301                  * If we're returning unused surplus pages, only examine
1302                  * nodes with surplus pages.
1303                  */
1304                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1305                     !list_empty(&h->hugepage_freelists[node])) {
1306                         struct page *page =
1307                                 list_entry(h->hugepage_freelists[node].next,
1308                                           struct page, lru);
1309                         list_del(&page->lru);
1310                         h->free_huge_pages--;
1311                         h->free_huge_pages_node[node]--;
1312                         if (acct_surplus) {
1313                                 h->surplus_huge_pages--;
1314                                 h->surplus_huge_pages_node[node]--;
1315                         }
1316                         update_and_free_page(h, page);
1317                         ret = 1;
1318                         break;
1319                 }
1320         }
1321
1322         return ret;
1323 }
1324
1325 /*
1326  * Dissolve a given free hugepage into free buddy pages. This function does
1327  * nothing for in-use (including surplus) hugepages.
1328  */
1329 static void dissolve_free_huge_page(struct page *page)
1330 {
1331         spin_lock(&hugetlb_lock);
1332         if (PageHuge(page) && !page_count(page)) {
1333                 struct hstate *h = page_hstate(page);
1334                 int nid = page_to_nid(page);
1335                 list_del(&page->lru);
1336                 h->free_huge_pages--;
1337                 h->free_huge_pages_node[nid]--;
1338                 update_and_free_page(h, page);
1339         }
1340         spin_unlock(&hugetlb_lock);
1341 }
1342
1343 /*
1344  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1345  * make specified memory blocks removable from the system.
1346  * Note that start_pfn should aligned with (minimum) hugepage size.
1347  */
1348 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1349 {
1350         unsigned long pfn;
1351
1352         if (!hugepages_supported())
1353                 return;
1354
1355         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1356         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1357                 dissolve_free_huge_page(pfn_to_page(pfn));
1358 }
1359
1360 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1361 {
1362         struct page *page;
1363         unsigned int r_nid;
1364
1365         if (hstate_is_gigantic(h))
1366                 return NULL;
1367
1368         /*
1369          * Assume we will successfully allocate the surplus page to
1370          * prevent racing processes from causing the surplus to exceed
1371          * overcommit
1372          *
1373          * This however introduces a different race, where a process B
1374          * tries to grow the static hugepage pool while alloc_pages() is
1375          * called by process A. B will only examine the per-node
1376          * counters in determining if surplus huge pages can be
1377          * converted to normal huge pages in adjust_pool_surplus(). A
1378          * won't be able to increment the per-node counter, until the
1379          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1380          * no more huge pages can be converted from surplus to normal
1381          * state (and doesn't try to convert again). Thus, we have a
1382          * case where a surplus huge page exists, the pool is grown, and
1383          * the surplus huge page still exists after, even though it
1384          * should just have been converted to a normal huge page. This
1385          * does not leak memory, though, as the hugepage will be freed
1386          * once it is out of use. It also does not allow the counters to
1387          * go out of whack in adjust_pool_surplus() as we don't modify
1388          * the node values until we've gotten the hugepage and only the
1389          * per-node value is checked there.
1390          */
1391         spin_lock(&hugetlb_lock);
1392         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1393                 spin_unlock(&hugetlb_lock);
1394                 return NULL;
1395         } else {
1396                 h->nr_huge_pages++;
1397                 h->surplus_huge_pages++;
1398         }
1399         spin_unlock(&hugetlb_lock);
1400
1401         if (nid == NUMA_NO_NODE)
1402                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1403                                    __GFP_REPEAT|__GFP_NOWARN,
1404                                    huge_page_order(h));
1405         else
1406                 page = alloc_pages_exact_node(nid,
1407                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1408                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1409
1410         spin_lock(&hugetlb_lock);
1411         if (page) {
1412                 INIT_LIST_HEAD(&page->lru);
1413                 r_nid = page_to_nid(page);
1414                 set_compound_page_dtor(page, free_huge_page);
1415                 set_hugetlb_cgroup(page, NULL);
1416                 /*
1417                  * We incremented the global counters already
1418                  */
1419                 h->nr_huge_pages_node[r_nid]++;
1420                 h->surplus_huge_pages_node[r_nid]++;
1421                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1422         } else {
1423                 h->nr_huge_pages--;
1424                 h->surplus_huge_pages--;
1425                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1426         }
1427         spin_unlock(&hugetlb_lock);
1428
1429         return page;
1430 }
1431
1432 /*
1433  * This allocation function is useful in the context where vma is irrelevant.
1434  * E.g. soft-offlining uses this function because it only cares physical
1435  * address of error page.
1436  */
1437 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1438 {
1439         struct page *page = NULL;
1440
1441         spin_lock(&hugetlb_lock);
1442         if (h->free_huge_pages - h->resv_huge_pages > 0)
1443                 page = dequeue_huge_page_node(h, nid);
1444         spin_unlock(&hugetlb_lock);
1445
1446         if (!page)
1447                 page = alloc_buddy_huge_page(h, nid);
1448
1449         return page;
1450 }
1451
1452 /*
1453  * Increase the hugetlb pool such that it can accommodate a reservation
1454  * of size 'delta'.
1455  */
1456 static int gather_surplus_pages(struct hstate *h, int delta)
1457 {
1458         struct list_head surplus_list;
1459         struct page *page, *tmp;
1460         int ret, i;
1461         int needed, allocated;
1462         bool alloc_ok = true;
1463
1464         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1465         if (needed <= 0) {
1466                 h->resv_huge_pages += delta;
1467                 return 0;
1468         }
1469
1470         allocated = 0;
1471         INIT_LIST_HEAD(&surplus_list);
1472
1473         ret = -ENOMEM;
1474 retry:
1475         spin_unlock(&hugetlb_lock);
1476         for (i = 0; i < needed; i++) {
1477                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1478                 if (!page) {
1479                         alloc_ok = false;
1480                         break;
1481                 }
1482                 list_add(&page->lru, &surplus_list);
1483         }
1484         allocated += i;
1485
1486         /*
1487          * After retaking hugetlb_lock, we need to recalculate 'needed'
1488          * because either resv_huge_pages or free_huge_pages may have changed.
1489          */
1490         spin_lock(&hugetlb_lock);
1491         needed = (h->resv_huge_pages + delta) -
1492                         (h->free_huge_pages + allocated);
1493         if (needed > 0) {
1494                 if (alloc_ok)
1495                         goto retry;
1496                 /*
1497                  * We were not able to allocate enough pages to
1498                  * satisfy the entire reservation so we free what
1499                  * we've allocated so far.
1500                  */
1501                 goto free;
1502         }
1503         /*
1504          * The surplus_list now contains _at_least_ the number of extra pages
1505          * needed to accommodate the reservation.  Add the appropriate number
1506          * of pages to the hugetlb pool and free the extras back to the buddy
1507          * allocator.  Commit the entire reservation here to prevent another
1508          * process from stealing the pages as they are added to the pool but
1509          * before they are reserved.
1510          */
1511         needed += allocated;
1512         h->resv_huge_pages += delta;
1513         ret = 0;
1514
1515         /* Free the needed pages to the hugetlb pool */
1516         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1517                 if ((--needed) < 0)
1518                         break;
1519                 /*
1520                  * This page is now managed by the hugetlb allocator and has
1521                  * no users -- drop the buddy allocator's reference.
1522                  */
1523                 put_page_testzero(page);
1524                 VM_BUG_ON_PAGE(page_count(page), page);
1525                 enqueue_huge_page(h, page);
1526         }
1527 free:
1528         spin_unlock(&hugetlb_lock);
1529
1530         /* Free unnecessary surplus pages to the buddy allocator */
1531         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1532                 put_page(page);
1533         spin_lock(&hugetlb_lock);
1534
1535         return ret;
1536 }
1537
1538 /*
1539  * When releasing a hugetlb pool reservation, any surplus pages that were
1540  * allocated to satisfy the reservation must be explicitly freed if they were
1541  * never used.
1542  * Called with hugetlb_lock held.
1543  */
1544 static void return_unused_surplus_pages(struct hstate *h,
1545                                         unsigned long unused_resv_pages)
1546 {
1547         unsigned long nr_pages;
1548
1549         /* Uncommit the reservation */
1550         h->resv_huge_pages -= unused_resv_pages;
1551
1552         /* Cannot return gigantic pages currently */
1553         if (hstate_is_gigantic(h))
1554                 return;
1555
1556         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1557
1558         /*
1559          * We want to release as many surplus pages as possible, spread
1560          * evenly across all nodes with memory. Iterate across these nodes
1561          * until we can no longer free unreserved surplus pages. This occurs
1562          * when the nodes with surplus pages have no free pages.
1563          * free_pool_huge_page() will balance the the freed pages across the
1564          * on-line nodes with memory and will handle the hstate accounting.
1565          */
1566         while (nr_pages--) {
1567                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1568                         break;
1569                 cond_resched_lock(&hugetlb_lock);
1570         }
1571 }
1572
1573
1574 /*
1575  * vma_needs_reservation, vma_commit_reservation and vma_abort_reservation
1576  * are used by the huge page allocation routines to manage reservations.
1577  *
1578  * vma_needs_reservation is called to determine if the huge page at addr
1579  * within the vma has an associated reservation.  If a reservation is
1580  * needed, the value 1 is returned.  The caller is then responsible for
1581  * managing the global reservation and subpool usage counts.  After
1582  * the huge page has been allocated, vma_commit_reservation is called
1583  * to add the page to the reservation map.  If the reservation must be
1584  * aborted instead of committed, vma_abort_reservation is called.
1585  *
1586  * In the normal case, vma_commit_reservation returns the same value
1587  * as the preceding vma_needs_reservation call.  The only time this
1588  * is not the case is if a reserve map was changed between calls.  It
1589  * is the responsibility of the caller to notice the difference and
1590  * take appropriate action.
1591  */
1592 enum vma_resv_mode {
1593         VMA_NEEDS_RESV,
1594         VMA_COMMIT_RESV,
1595         VMA_ABORT_RESV,
1596 };
1597 static long __vma_reservation_common(struct hstate *h,
1598                                 struct vm_area_struct *vma, unsigned long addr,
1599                                 enum vma_resv_mode mode)
1600 {
1601         struct resv_map *resv;
1602         pgoff_t idx;
1603         long ret;
1604
1605         resv = vma_resv_map(vma);
1606         if (!resv)
1607                 return 1;
1608
1609         idx = vma_hugecache_offset(h, vma, addr);
1610         switch (mode) {
1611         case VMA_NEEDS_RESV:
1612                 ret = region_chg(resv, idx, idx + 1);
1613                 break;
1614         case VMA_COMMIT_RESV:
1615                 ret = region_add(resv, idx, idx + 1);
1616                 break;
1617         case VMA_ABORT_RESV:
1618                 region_abort(resv, idx, idx + 1);
1619                 ret = 0;
1620                 break;
1621         default:
1622                 BUG();
1623         }
1624
1625         if (vma->vm_flags & VM_MAYSHARE)
1626                 return ret;
1627         else
1628                 return ret < 0 ? ret : 0;
1629 }
1630
1631 static long vma_needs_reservation(struct hstate *h,
1632                         struct vm_area_struct *vma, unsigned long addr)
1633 {
1634         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1635 }
1636
1637 static long vma_commit_reservation(struct hstate *h,
1638                         struct vm_area_struct *vma, unsigned long addr)
1639 {
1640         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1641 }
1642
1643 static void vma_abort_reservation(struct hstate *h,
1644                         struct vm_area_struct *vma, unsigned long addr)
1645 {
1646         (void)__vma_reservation_common(h, vma, addr, VMA_ABORT_RESV);
1647 }
1648
1649 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1650                                     unsigned long addr, int avoid_reserve)
1651 {
1652         struct hugepage_subpool *spool = subpool_vma(vma);
1653         struct hstate *h = hstate_vma(vma);
1654         struct page *page;
1655         long chg, commit;
1656         int ret, idx;
1657         struct hugetlb_cgroup *h_cg;
1658
1659         idx = hstate_index(h);
1660         /*
1661          * Processes that did not create the mapping will have no
1662          * reserves and will not have accounted against subpool
1663          * limit. Check that the subpool limit can be made before
1664          * satisfying the allocation MAP_NORESERVE mappings may also
1665          * need pages and subpool limit allocated allocated if no reserve
1666          * mapping overlaps.
1667          */
1668         chg = vma_needs_reservation(h, vma, addr);
1669         if (chg < 0)
1670                 return ERR_PTR(-ENOMEM);
1671         if (chg || avoid_reserve)
1672                 if (hugepage_subpool_get_pages(spool, 1) < 0) {
1673                         vma_abort_reservation(h, vma, addr);
1674                         return ERR_PTR(-ENOSPC);
1675                 }
1676
1677         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1678         if (ret)
1679                 goto out_subpool_put;
1680
1681         spin_lock(&hugetlb_lock);
1682         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1683         if (!page) {
1684                 spin_unlock(&hugetlb_lock);
1685                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1686                 if (!page)
1687                         goto out_uncharge_cgroup;
1688
1689                 spin_lock(&hugetlb_lock);
1690                 list_move(&page->lru, &h->hugepage_activelist);
1691                 /* Fall through */
1692         }
1693         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1694         spin_unlock(&hugetlb_lock);
1695
1696         set_page_private(page, (unsigned long)spool);
1697
1698         commit = vma_commit_reservation(h, vma, addr);
1699         if (unlikely(chg > commit)) {
1700                 /*
1701                  * The page was added to the reservation map between
1702                  * vma_needs_reservation and vma_commit_reservation.
1703                  * This indicates a race with hugetlb_reserve_pages.
1704                  * Adjust for the subpool count incremented above AND
1705                  * in hugetlb_reserve_pages for the same page.  Also,
1706                  * the reservation count added in hugetlb_reserve_pages
1707                  * no longer applies.
1708                  */
1709                 long rsv_adjust;
1710
1711                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1712                 hugetlb_acct_memory(h, -rsv_adjust);
1713         }
1714         return page;
1715
1716 out_uncharge_cgroup:
1717         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1718 out_subpool_put:
1719         if (chg || avoid_reserve)
1720                 hugepage_subpool_put_pages(spool, 1);
1721         vma_abort_reservation(h, vma, addr);
1722         return ERR_PTR(-ENOSPC);
1723 }
1724
1725 /*
1726  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1727  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1728  * where no ERR_VALUE is expected to be returned.
1729  */
1730 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1731                                 unsigned long addr, int avoid_reserve)
1732 {
1733         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1734         if (IS_ERR(page))
1735                 page = NULL;
1736         return page;
1737 }
1738
1739 int __weak alloc_bootmem_huge_page(struct hstate *h)
1740 {
1741         struct huge_bootmem_page *m;
1742         int nr_nodes, node;
1743
1744         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1745                 void *addr;
1746
1747                 addr = memblock_virt_alloc_try_nid_nopanic(
1748                                 huge_page_size(h), huge_page_size(h),
1749                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1750                 if (addr) {
1751                         /*
1752                          * Use the beginning of the huge page to store the
1753                          * huge_bootmem_page struct (until gather_bootmem
1754                          * puts them into the mem_map).
1755                          */
1756                         m = addr;
1757                         goto found;
1758                 }
1759         }
1760         return 0;
1761
1762 found:
1763         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1764         /* Put them into a private list first because mem_map is not up yet */
1765         list_add(&m->list, &huge_boot_pages);
1766         m->hstate = h;
1767         return 1;
1768 }
1769
1770 static void __init prep_compound_huge_page(struct page *page, int order)
1771 {
1772         if (unlikely(order > (MAX_ORDER - 1)))
1773                 prep_compound_gigantic_page(page, order);
1774         else
1775                 prep_compound_page(page, order);
1776 }
1777
1778 /* Put bootmem huge pages into the standard lists after mem_map is up */
1779 static void __init gather_bootmem_prealloc(void)
1780 {
1781         struct huge_bootmem_page *m;
1782
1783         list_for_each_entry(m, &huge_boot_pages, list) {
1784                 struct hstate *h = m->hstate;
1785                 struct page *page;
1786
1787 #ifdef CONFIG_HIGHMEM
1788                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1789                 memblock_free_late(__pa(m),
1790                                    sizeof(struct huge_bootmem_page));
1791 #else
1792                 page = virt_to_page(m);
1793 #endif
1794                 WARN_ON(page_count(page) != 1);
1795                 prep_compound_huge_page(page, h->order);
1796                 WARN_ON(PageReserved(page));
1797                 prep_new_huge_page(h, page, page_to_nid(page));
1798                 /*
1799                  * If we had gigantic hugepages allocated at boot time, we need
1800                  * to restore the 'stolen' pages to totalram_pages in order to
1801                  * fix confusing memory reports from free(1) and another
1802                  * side-effects, like CommitLimit going negative.
1803                  */
1804                 if (hstate_is_gigantic(h))
1805                         adjust_managed_page_count(page, 1 << h->order);
1806         }
1807 }
1808
1809 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1810 {
1811         unsigned long i;
1812
1813         for (i = 0; i < h->max_huge_pages; ++i) {
1814                 if (hstate_is_gigantic(h)) {
1815                         if (!alloc_bootmem_huge_page(h))
1816                                 break;
1817                 } else if (!alloc_fresh_huge_page(h,
1818                                          &node_states[N_MEMORY]))
1819                         break;
1820         }
1821         h->max_huge_pages = i;
1822 }
1823
1824 static void __init hugetlb_init_hstates(void)
1825 {
1826         struct hstate *h;
1827
1828         for_each_hstate(h) {
1829                 if (minimum_order > huge_page_order(h))
1830                         minimum_order = huge_page_order(h);
1831
1832                 /* oversize hugepages were init'ed in early boot */
1833                 if (!hstate_is_gigantic(h))
1834                         hugetlb_hstate_alloc_pages(h);
1835         }
1836         VM_BUG_ON(minimum_order == UINT_MAX);
1837 }
1838
1839 static char * __init memfmt(char *buf, unsigned long n)
1840 {
1841         if (n >= (1UL << 30))
1842                 sprintf(buf, "%lu GB", n >> 30);
1843         else if (n >= (1UL << 20))
1844                 sprintf(buf, "%lu MB", n >> 20);
1845         else
1846                 sprintf(buf, "%lu KB", n >> 10);
1847         return buf;
1848 }
1849
1850 static void __init report_hugepages(void)
1851 {
1852         struct hstate *h;
1853
1854         for_each_hstate(h) {
1855                 char buf[32];
1856                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1857                         memfmt(buf, huge_page_size(h)),
1858                         h->free_huge_pages);
1859         }
1860 }
1861
1862 #ifdef CONFIG_HIGHMEM
1863 static void try_to_free_low(struct hstate *h, unsigned long count,
1864                                                 nodemask_t *nodes_allowed)
1865 {
1866         int i;
1867
1868         if (hstate_is_gigantic(h))
1869                 return;
1870
1871         for_each_node_mask(i, *nodes_allowed) {
1872                 struct page *page, *next;
1873                 struct list_head *freel = &h->hugepage_freelists[i];
1874                 list_for_each_entry_safe(page, next, freel, lru) {
1875                         if (count >= h->nr_huge_pages)
1876                                 return;
1877                         if (PageHighMem(page))
1878                                 continue;
1879                         list_del(&page->lru);
1880                         update_and_free_page(h, page);
1881                         h->free_huge_pages--;
1882                         h->free_huge_pages_node[page_to_nid(page)]--;
1883                 }
1884         }
1885 }
1886 #else
1887 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1888                                                 nodemask_t *nodes_allowed)
1889 {
1890 }
1891 #endif
1892
1893 /*
1894  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1895  * balanced by operating on them in a round-robin fashion.
1896  * Returns 1 if an adjustment was made.
1897  */
1898 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1899                                 int delta)
1900 {
1901         int nr_nodes, node;
1902
1903         VM_BUG_ON(delta != -1 && delta != 1);
1904
1905         if (delta < 0) {
1906                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1907                         if (h->surplus_huge_pages_node[node])
1908                                 goto found;
1909                 }
1910         } else {
1911                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1912                         if (h->surplus_huge_pages_node[node] <
1913                                         h->nr_huge_pages_node[node])
1914                                 goto found;
1915                 }
1916         }
1917         return 0;
1918
1919 found:
1920         h->surplus_huge_pages += delta;
1921         h->surplus_huge_pages_node[node] += delta;
1922         return 1;
1923 }
1924
1925 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1926 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1927                                                 nodemask_t *nodes_allowed)
1928 {
1929         unsigned long min_count, ret;
1930
1931         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1932                 return h->max_huge_pages;
1933
1934         /*
1935          * Increase the pool size
1936          * First take pages out of surplus state.  Then make up the
1937          * remaining difference by allocating fresh huge pages.
1938          *
1939          * We might race with alloc_buddy_huge_page() here and be unable
1940          * to convert a surplus huge page to a normal huge page. That is
1941          * not critical, though, it just means the overall size of the
1942          * pool might be one hugepage larger than it needs to be, but
1943          * within all the constraints specified by the sysctls.
1944          */
1945         spin_lock(&hugetlb_lock);
1946         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1947                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1948                         break;
1949         }
1950
1951         while (count > persistent_huge_pages(h)) {
1952                 /*
1953                  * If this allocation races such that we no longer need the
1954                  * page, free_huge_page will handle it by freeing the page
1955                  * and reducing the surplus.
1956                  */
1957                 spin_unlock(&hugetlb_lock);
1958                 if (hstate_is_gigantic(h))
1959                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1960                 else
1961                         ret = alloc_fresh_huge_page(h, nodes_allowed);
1962                 spin_lock(&hugetlb_lock);
1963                 if (!ret)
1964                         goto out;
1965
1966                 /* Bail for signals. Probably ctrl-c from user */
1967                 if (signal_pending(current))
1968                         goto out;
1969         }
1970
1971         /*
1972          * Decrease the pool size
1973          * First return free pages to the buddy allocator (being careful
1974          * to keep enough around to satisfy reservations).  Then place
1975          * pages into surplus state as needed so the pool will shrink
1976          * to the desired size as pages become free.
1977          *
1978          * By placing pages into the surplus state independent of the
1979          * overcommit value, we are allowing the surplus pool size to
1980          * exceed overcommit. There are few sane options here. Since
1981          * alloc_buddy_huge_page() is checking the global counter,
1982          * though, we'll note that we're not allowed to exceed surplus
1983          * and won't grow the pool anywhere else. Not until one of the
1984          * sysctls are changed, or the surplus pages go out of use.
1985          */
1986         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1987         min_count = max(count, min_count);
1988         try_to_free_low(h, min_count, nodes_allowed);
1989         while (min_count < persistent_huge_pages(h)) {
1990                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1991                         break;
1992                 cond_resched_lock(&hugetlb_lock);
1993         }
1994         while (count < persistent_huge_pages(h)) {
1995                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1996                         break;
1997         }
1998 out:
1999         ret = persistent_huge_pages(h);
2000         spin_unlock(&hugetlb_lock);
2001         return ret;
2002 }
2003
2004 #define HSTATE_ATTR_RO(_name) \
2005         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2006
2007 #define HSTATE_ATTR(_name) \
2008         static struct kobj_attribute _name##_attr = \
2009                 __ATTR(_name, 0644, _name##_show, _name##_store)
2010
2011 static struct kobject *hugepages_kobj;
2012 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2013
2014 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2015
2016 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2017 {
2018         int i;
2019
2020         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2021                 if (hstate_kobjs[i] == kobj) {
2022                         if (nidp)
2023                                 *nidp = NUMA_NO_NODE;
2024                         return &hstates[i];
2025                 }
2026
2027         return kobj_to_node_hstate(kobj, nidp);
2028 }
2029
2030 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2031                                         struct kobj_attribute *attr, char *buf)
2032 {
2033         struct hstate *h;
2034         unsigned long nr_huge_pages;
2035         int nid;
2036
2037         h = kobj_to_hstate(kobj, &nid);
2038         if (nid == NUMA_NO_NODE)
2039                 nr_huge_pages = h->nr_huge_pages;
2040         else
2041                 nr_huge_pages = h->nr_huge_pages_node[nid];
2042
2043         return sprintf(buf, "%lu\n", nr_huge_pages);
2044 }
2045
2046 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2047                                            struct hstate *h, int nid,
2048                                            unsigned long count, size_t len)
2049 {
2050         int err;
2051         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2052
2053         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2054                 err = -EINVAL;
2055                 goto out;
2056         }
2057
2058         if (nid == NUMA_NO_NODE) {
2059                 /*
2060                  * global hstate attribute
2061                  */
2062                 if (!(obey_mempolicy &&
2063                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2064                         NODEMASK_FREE(nodes_allowed);
2065                         nodes_allowed = &node_states[N_MEMORY];
2066                 }
2067         } else if (nodes_allowed) {
2068                 /*
2069                  * per node hstate attribute: adjust count to global,
2070                  * but restrict alloc/free to the specified node.
2071                  */
2072                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2073                 init_nodemask_of_node(nodes_allowed, nid);
2074         } else
2075                 nodes_allowed = &node_states[N_MEMORY];
2076
2077         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2078
2079         if (nodes_allowed != &node_states[N_MEMORY])
2080                 NODEMASK_FREE(nodes_allowed);
2081
2082         return len;
2083 out:
2084         NODEMASK_FREE(nodes_allowed);
2085         return err;
2086 }
2087
2088 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2089                                          struct kobject *kobj, const char *buf,
2090                                          size_t len)
2091 {
2092         struct hstate *h;
2093         unsigned long count;
2094         int nid;
2095         int err;
2096
2097         err = kstrtoul(buf, 10, &count);
2098         if (err)
2099                 return err;
2100
2101         h = kobj_to_hstate(kobj, &nid);
2102         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2103 }
2104
2105 static ssize_t nr_hugepages_show(struct kobject *kobj,
2106                                        struct kobj_attribute *attr, char *buf)
2107 {
2108         return nr_hugepages_show_common(kobj, attr, buf);
2109 }
2110
2111 static ssize_t nr_hugepages_store(struct kobject *kobj,
2112                struct kobj_attribute *attr, const char *buf, size_t len)
2113 {
2114         return nr_hugepages_store_common(false, kobj, buf, len);
2115 }
2116 HSTATE_ATTR(nr_hugepages);
2117
2118 #ifdef CONFIG_NUMA
2119
2120 /*
2121  * hstate attribute for optionally mempolicy-based constraint on persistent
2122  * huge page alloc/free.
2123  */
2124 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2125                                        struct kobj_attribute *attr, char *buf)
2126 {
2127         return nr_hugepages_show_common(kobj, attr, buf);
2128 }
2129
2130 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2131                struct kobj_attribute *attr, const char *buf, size_t len)
2132 {
2133         return nr_hugepages_store_common(true, kobj, buf, len);
2134 }
2135 HSTATE_ATTR(nr_hugepages_mempolicy);
2136 #endif
2137
2138
2139 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2140                                         struct kobj_attribute *attr, char *buf)
2141 {
2142         struct hstate *h = kobj_to_hstate(kobj, NULL);
2143         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2144 }
2145
2146 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2147                 struct kobj_attribute *attr, const char *buf, size_t count)
2148 {
2149         int err;
2150         unsigned long input;
2151         struct hstate *h = kobj_to_hstate(kobj, NULL);
2152
2153         if (hstate_is_gigantic(h))
2154                 return -EINVAL;
2155
2156         err = kstrtoul(buf, 10, &input);
2157         if (err)
2158                 return err;
2159
2160         spin_lock(&hugetlb_lock);
2161         h->nr_overcommit_huge_pages = input;
2162         spin_unlock(&hugetlb_lock);
2163
2164         return count;
2165 }
2166 HSTATE_ATTR(nr_overcommit_hugepages);
2167
2168 static ssize_t free_hugepages_show(struct kobject *kobj,
2169                                         struct kobj_attribute *attr, char *buf)
2170 {
2171         struct hstate *h;
2172         unsigned long free_huge_pages;
2173         int nid;
2174
2175         h = kobj_to_hstate(kobj, &nid);
2176         if (nid == NUMA_NO_NODE)
2177                 free_huge_pages = h->free_huge_pages;
2178         else
2179                 free_huge_pages = h->free_huge_pages_node[nid];
2180
2181         return sprintf(buf, "%lu\n", free_huge_pages);
2182 }
2183 HSTATE_ATTR_RO(free_hugepages);
2184
2185 static ssize_t resv_hugepages_show(struct kobject *kobj,
2186                                         struct kobj_attribute *attr, char *buf)
2187 {
2188         struct hstate *h = kobj_to_hstate(kobj, NULL);
2189         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2190 }
2191 HSTATE_ATTR_RO(resv_hugepages);
2192
2193 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2194                                         struct kobj_attribute *attr, char *buf)
2195 {
2196         struct hstate *h;
2197         unsigned long surplus_huge_pages;
2198         int nid;
2199
2200         h = kobj_to_hstate(kobj, &nid);
2201         if (nid == NUMA_NO_NODE)
2202                 surplus_huge_pages = h->surplus_huge_pages;
2203         else
2204                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2205
2206         return sprintf(buf, "%lu\n", surplus_huge_pages);
2207 }
2208 HSTATE_ATTR_RO(surplus_hugepages);
2209
2210 static struct attribute *hstate_attrs[] = {
2211         &nr_hugepages_attr.attr,
2212         &nr_overcommit_hugepages_attr.attr,
2213         &free_hugepages_attr.attr,
2214         &resv_hugepages_attr.attr,
2215         &surplus_hugepages_attr.attr,
2216 #ifdef CONFIG_NUMA
2217         &nr_hugepages_mempolicy_attr.attr,
2218 #endif
2219         NULL,
2220 };
2221
2222 static struct attribute_group hstate_attr_group = {
2223         .attrs = hstate_attrs,
2224 };
2225
2226 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2227                                     struct kobject **hstate_kobjs,
2228                                     struct attribute_group *hstate_attr_group)
2229 {
2230         int retval;
2231         int hi = hstate_index(h);
2232
2233         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2234         if (!hstate_kobjs[hi])
2235                 return -ENOMEM;
2236
2237         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2238         if (retval)
2239                 kobject_put(hstate_kobjs[hi]);
2240
2241         return retval;
2242 }
2243
2244 static void __init hugetlb_sysfs_init(void)
2245 {
2246         struct hstate *h;
2247         int err;
2248
2249         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2250         if (!hugepages_kobj)
2251                 return;
2252
2253         for_each_hstate(h) {
2254                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2255                                          hstate_kobjs, &hstate_attr_group);
2256                 if (err)
2257                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2258         }
2259 }
2260
2261 #ifdef CONFIG_NUMA
2262
2263 /*
2264  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2265  * with node devices in node_devices[] using a parallel array.  The array
2266  * index of a node device or _hstate == node id.
2267  * This is here to avoid any static dependency of the node device driver, in
2268  * the base kernel, on the hugetlb module.
2269  */
2270 struct node_hstate {
2271         struct kobject          *hugepages_kobj;
2272         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2273 };
2274 struct node_hstate node_hstates[MAX_NUMNODES];
2275
2276 /*
2277  * A subset of global hstate attributes for node devices
2278  */
2279 static struct attribute *per_node_hstate_attrs[] = {
2280         &nr_hugepages_attr.attr,
2281         &free_hugepages_attr.attr,
2282         &surplus_hugepages_attr.attr,
2283         NULL,
2284 };
2285
2286 static struct attribute_group per_node_hstate_attr_group = {
2287         .attrs = per_node_hstate_attrs,
2288 };
2289
2290 /*
2291  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2292  * Returns node id via non-NULL nidp.
2293  */
2294 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2295 {
2296         int nid;
2297
2298         for (nid = 0; nid < nr_node_ids; nid++) {
2299                 struct node_hstate *nhs = &node_hstates[nid];
2300                 int i;
2301                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2302                         if (nhs->hstate_kobjs[i] == kobj) {
2303                                 if (nidp)
2304                                         *nidp = nid;
2305                                 return &hstates[i];
2306                         }
2307         }
2308
2309         BUG();
2310         return NULL;
2311 }
2312
2313 /*
2314  * Unregister hstate attributes from a single node device.
2315  * No-op if no hstate attributes attached.
2316  */
2317 static void hugetlb_unregister_node(struct node *node)
2318 {
2319         struct hstate *h;
2320         struct node_hstate *nhs = &node_hstates[node->dev.id];
2321
2322         if (!nhs->hugepages_kobj)
2323                 return;         /* no hstate attributes */
2324
2325         for_each_hstate(h) {
2326                 int idx = hstate_index(h);
2327                 if (nhs->hstate_kobjs[idx]) {
2328                         kobject_put(nhs->hstate_kobjs[idx]);
2329                         nhs->hstate_kobjs[idx] = NULL;
2330                 }
2331         }
2332
2333         kobject_put(nhs->hugepages_kobj);
2334         nhs->hugepages_kobj = NULL;
2335 }
2336
2337 /*
2338  * hugetlb module exit:  unregister hstate attributes from node devices
2339  * that have them.
2340  */
2341 static void hugetlb_unregister_all_nodes(void)
2342 {
2343         int nid;
2344
2345         /*
2346          * disable node device registrations.
2347          */
2348         register_hugetlbfs_with_node(NULL, NULL);
2349
2350         /*
2351          * remove hstate attributes from any nodes that have them.
2352          */
2353         for (nid = 0; nid < nr_node_ids; nid++)
2354                 hugetlb_unregister_node(node_devices[nid]);
2355 }
2356
2357 /*
2358  * Register hstate attributes for a single node device.
2359  * No-op if attributes already registered.
2360  */
2361 static void hugetlb_register_node(struct node *node)
2362 {
2363         struct hstate *h;
2364         struct node_hstate *nhs = &node_hstates[node->dev.id];
2365         int err;
2366
2367         if (nhs->hugepages_kobj)
2368                 return;         /* already allocated */
2369
2370         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2371                                                         &node->dev.kobj);
2372         if (!nhs->hugepages_kobj)
2373                 return;
2374
2375         for_each_hstate(h) {
2376                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2377                                                 nhs->hstate_kobjs,
2378                                                 &per_node_hstate_attr_group);
2379                 if (err) {
2380                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2381                                 h->name, node->dev.id);
2382                         hugetlb_unregister_node(node);
2383                         break;
2384                 }
2385         }
2386 }
2387
2388 /*
2389  * hugetlb init time:  register hstate attributes for all registered node
2390  * devices of nodes that have memory.  All on-line nodes should have
2391  * registered their associated device by this time.
2392  */
2393 static void __init hugetlb_register_all_nodes(void)
2394 {
2395         int nid;
2396
2397         for_each_node_state(nid, N_MEMORY) {
2398                 struct node *node = node_devices[nid];
2399                 if (node->dev.id == nid)
2400                         hugetlb_register_node(node);
2401         }
2402
2403         /*
2404          * Let the node device driver know we're here so it can
2405          * [un]register hstate attributes on node hotplug.
2406          */
2407         register_hugetlbfs_with_node(hugetlb_register_node,
2408                                      hugetlb_unregister_node);
2409 }
2410 #else   /* !CONFIG_NUMA */
2411
2412 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2413 {
2414         BUG();
2415         if (nidp)
2416                 *nidp = -1;
2417         return NULL;
2418 }
2419
2420 static void hugetlb_unregister_all_nodes(void) { }
2421
2422 static void hugetlb_register_all_nodes(void) { }
2423
2424 #endif
2425
2426 static void __exit hugetlb_exit(void)
2427 {
2428         struct hstate *h;
2429
2430         hugetlb_unregister_all_nodes();
2431
2432         for_each_hstate(h) {
2433                 kobject_put(hstate_kobjs[hstate_index(h)]);
2434         }
2435
2436         kobject_put(hugepages_kobj);
2437         kfree(htlb_fault_mutex_table);
2438 }
2439 module_exit(hugetlb_exit);
2440
2441 static int __init hugetlb_init(void)
2442 {
2443         int i;
2444
2445         if (!hugepages_supported())
2446                 return 0;
2447
2448         if (!size_to_hstate(default_hstate_size)) {
2449                 default_hstate_size = HPAGE_SIZE;
2450                 if (!size_to_hstate(default_hstate_size))
2451                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2452         }
2453         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2454         if (default_hstate_max_huge_pages)
2455                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2456
2457         hugetlb_init_hstates();
2458         gather_bootmem_prealloc();
2459         report_hugepages();
2460
2461         hugetlb_sysfs_init();
2462         hugetlb_register_all_nodes();
2463         hugetlb_cgroup_file_init();
2464
2465 #ifdef CONFIG_SMP
2466         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2467 #else
2468         num_fault_mutexes = 1;
2469 #endif
2470         htlb_fault_mutex_table =
2471                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2472         BUG_ON(!htlb_fault_mutex_table);
2473
2474         for (i = 0; i < num_fault_mutexes; i++)
2475                 mutex_init(&htlb_fault_mutex_table[i]);
2476         return 0;
2477 }
2478 module_init(hugetlb_init);
2479
2480 /* Should be called on processing a hugepagesz=... option */
2481 void __init hugetlb_add_hstate(unsigned order)
2482 {
2483         struct hstate *h;
2484         unsigned long i;
2485
2486         if (size_to_hstate(PAGE_SIZE << order)) {
2487                 pr_warning("hugepagesz= specified twice, ignoring\n");
2488                 return;
2489         }
2490         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2491         BUG_ON(order == 0);
2492         h = &hstates[hugetlb_max_hstate++];
2493         h->order = order;
2494         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2495         h->nr_huge_pages = 0;
2496         h->free_huge_pages = 0;
2497         for (i = 0; i < MAX_NUMNODES; ++i)
2498                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2499         INIT_LIST_HEAD(&h->hugepage_activelist);
2500         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2501         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2502         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2503                                         huge_page_size(h)/1024);
2504
2505         parsed_hstate = h;
2506 }
2507
2508 static int __init hugetlb_nrpages_setup(char *s)
2509 {
2510         unsigned long *mhp;
2511         static unsigned long *last_mhp;
2512
2513         /*
2514          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2515          * so this hugepages= parameter goes to the "default hstate".
2516          */
2517         if (!hugetlb_max_hstate)
2518                 mhp = &default_hstate_max_huge_pages;
2519         else
2520                 mhp = &parsed_hstate->max_huge_pages;
2521
2522         if (mhp == last_mhp) {
2523                 pr_warning("hugepages= specified twice without "
2524                            "interleaving hugepagesz=, ignoring\n");
2525                 return 1;
2526         }
2527
2528         if (sscanf(s, "%lu", mhp) <= 0)
2529                 *mhp = 0;
2530
2531         /*
2532          * Global state is always initialized later in hugetlb_init.
2533          * But we need to allocate >= MAX_ORDER hstates here early to still
2534          * use the bootmem allocator.
2535          */
2536         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2537                 hugetlb_hstate_alloc_pages(parsed_hstate);
2538
2539         last_mhp = mhp;
2540
2541         return 1;
2542 }
2543 __setup("hugepages=", hugetlb_nrpages_setup);
2544
2545 static int __init hugetlb_default_setup(char *s)
2546 {
2547         default_hstate_size = memparse(s, &s);
2548         return 1;
2549 }
2550 __setup("default_hugepagesz=", hugetlb_default_setup);
2551
2552 static unsigned int cpuset_mems_nr(unsigned int *array)
2553 {
2554         int node;
2555         unsigned int nr = 0;
2556
2557         for_each_node_mask(node, cpuset_current_mems_allowed)
2558                 nr += array[node];
2559
2560         return nr;
2561 }
2562
2563 #ifdef CONFIG_SYSCTL
2564 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2565                          struct ctl_table *table, int write,
2566                          void __user *buffer, size_t *length, loff_t *ppos)
2567 {
2568         struct hstate *h = &default_hstate;
2569         unsigned long tmp = h->max_huge_pages;
2570         int ret;
2571
2572         if (!hugepages_supported())
2573                 return -ENOTSUPP;
2574
2575         table->data = &tmp;
2576         table->maxlen = sizeof(unsigned long);
2577         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2578         if (ret)
2579                 goto out;
2580
2581         if (write)
2582                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2583                                                   NUMA_NO_NODE, tmp, *length);
2584 out:
2585         return ret;
2586 }
2587
2588 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2589                           void __user *buffer, size_t *length, loff_t *ppos)
2590 {
2591
2592         return hugetlb_sysctl_handler_common(false, table, write,
2593                                                         buffer, length, ppos);
2594 }
2595
2596 #ifdef CONFIG_NUMA
2597 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2598                           void __user *buffer, size_t *length, loff_t *ppos)
2599 {
2600         return hugetlb_sysctl_handler_common(true, table, write,
2601                                                         buffer, length, ppos);
2602 }
2603 #endif /* CONFIG_NUMA */
2604
2605 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2606                         void __user *buffer,
2607                         size_t *length, loff_t *ppos)
2608 {
2609         struct hstate *h = &default_hstate;
2610         unsigned long tmp;
2611         int ret;
2612
2613         if (!hugepages_supported())
2614                 return -ENOTSUPP;
2615
2616         tmp = h->nr_overcommit_huge_pages;
2617
2618         if (write && hstate_is_gigantic(h))
2619                 return -EINVAL;
2620
2621         table->data = &tmp;
2622         table->maxlen = sizeof(unsigned long);
2623         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2624         if (ret)
2625                 goto out;
2626
2627         if (write) {
2628                 spin_lock(&hugetlb_lock);
2629                 h->nr_overcommit_huge_pages = tmp;
2630                 spin_unlock(&hugetlb_lock);
2631         }
2632 out:
2633         return ret;
2634 }
2635
2636 #endif /* CONFIG_SYSCTL */
2637
2638 void hugetlb_report_meminfo(struct seq_file *m)
2639 {
2640         struct hstate *h = &default_hstate;
2641         if (!hugepages_supported())
2642                 return;
2643         seq_printf(m,
2644                         "HugePages_Total:   %5lu\n"
2645                         "HugePages_Free:    %5lu\n"
2646                         "HugePages_Rsvd:    %5lu\n"
2647                         "HugePages_Surp:    %5lu\n"
2648                         "Hugepagesize:   %8lu kB\n",
2649                         h->nr_huge_pages,
2650                         h->free_huge_pages,
2651                         h->resv_huge_pages,
2652                         h->surplus_huge_pages,
2653                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2654 }
2655
2656 int hugetlb_report_node_meminfo(int nid, char *buf)
2657 {
2658         struct hstate *h = &default_hstate;
2659         if (!hugepages_supported())
2660                 return 0;
2661         return sprintf(buf,
2662                 "Node %d HugePages_Total: %5u\n"
2663                 "Node %d HugePages_Free:  %5u\n"
2664                 "Node %d HugePages_Surp:  %5u\n",
2665                 nid, h->nr_huge_pages_node[nid],
2666                 nid, h->free_huge_pages_node[nid],
2667                 nid, h->surplus_huge_pages_node[nid]);
2668 }
2669
2670 void hugetlb_show_meminfo(void)
2671 {
2672         struct hstate *h;
2673         int nid;
2674
2675         if (!hugepages_supported())
2676                 return;
2677
2678         for_each_node_state(nid, N_MEMORY)
2679                 for_each_hstate(h)
2680                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2681                                 nid,
2682                                 h->nr_huge_pages_node[nid],
2683                                 h->free_huge_pages_node[nid],
2684                                 h->surplus_huge_pages_node[nid],
2685                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2686 }
2687
2688 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2689 unsigned long hugetlb_total_pages(void)
2690 {
2691         struct hstate *h;
2692         unsigned long nr_total_pages = 0;
2693
2694         for_each_hstate(h)
2695                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2696         return nr_total_pages;
2697 }
2698
2699 static int hugetlb_acct_memory(struct hstate *h, long delta)
2700 {
2701         int ret = -ENOMEM;
2702
2703         spin_lock(&hugetlb_lock);
2704         /*
2705          * When cpuset is configured, it breaks the strict hugetlb page
2706          * reservation as the accounting is done on a global variable. Such
2707          * reservation is completely rubbish in the presence of cpuset because
2708          * the reservation is not checked against page availability for the
2709          * current cpuset. Application can still potentially OOM'ed by kernel
2710          * with lack of free htlb page in cpuset that the task is in.
2711          * Attempt to enforce strict accounting with cpuset is almost
2712          * impossible (or too ugly) because cpuset is too fluid that
2713          * task or memory node can be dynamically moved between cpusets.
2714          *
2715          * The change of semantics for shared hugetlb mapping with cpuset is
2716          * undesirable. However, in order to preserve some of the semantics,
2717          * we fall back to check against current free page availability as
2718          * a best attempt and hopefully to minimize the impact of changing
2719          * semantics that cpuset has.
2720          */
2721         if (delta > 0) {
2722                 if (gather_surplus_pages(h, delta) < 0)
2723                         goto out;
2724
2725                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2726                         return_unused_surplus_pages(h, delta);
2727                         goto out;
2728                 }
2729         }
2730
2731         ret = 0;
2732         if (delta < 0)
2733                 return_unused_surplus_pages(h, (unsigned long) -delta);
2734
2735 out:
2736         spin_unlock(&hugetlb_lock);
2737         return ret;
2738 }
2739
2740 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2741 {
2742         struct resv_map *resv = vma_resv_map(vma);
2743
2744         /*
2745          * This new VMA should share its siblings reservation map if present.
2746          * The VMA will only ever have a valid reservation map pointer where
2747          * it is being copied for another still existing VMA.  As that VMA
2748          * has a reference to the reservation map it cannot disappear until
2749          * after this open call completes.  It is therefore safe to take a
2750          * new reference here without additional locking.
2751          */
2752         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2753                 kref_get(&resv->refs);
2754 }
2755
2756 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2757 {
2758         struct hstate *h = hstate_vma(vma);
2759         struct resv_map *resv = vma_resv_map(vma);
2760         struct hugepage_subpool *spool = subpool_vma(vma);
2761         unsigned long reserve, start, end;
2762         long gbl_reserve;
2763
2764         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2765                 return;
2766
2767         start = vma_hugecache_offset(h, vma, vma->vm_start);
2768         end = vma_hugecache_offset(h, vma, vma->vm_end);
2769
2770         reserve = (end - start) - region_count(resv, start, end);
2771
2772         kref_put(&resv->refs, resv_map_release);
2773
2774         if (reserve) {
2775                 /*
2776                  * Decrement reserve counts.  The global reserve count may be
2777                  * adjusted if the subpool has a minimum size.
2778                  */
2779                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2780                 hugetlb_acct_memory(h, -gbl_reserve);
2781         }
2782 }
2783
2784 /*
2785  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2786  * handle_mm_fault() to try to instantiate regular-sized pages in the
2787  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2788  * this far.
2789  */
2790 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2791 {
2792         BUG();
2793         return 0;
2794 }
2795
2796 const struct vm_operations_struct hugetlb_vm_ops = {
2797         .fault = hugetlb_vm_op_fault,
2798         .open = hugetlb_vm_op_open,
2799         .close = hugetlb_vm_op_close,
2800 };
2801
2802 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2803                                 int writable)
2804 {
2805         pte_t entry;
2806
2807         if (writable) {
2808                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2809                                          vma->vm_page_prot)));
2810         } else {
2811                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2812                                            vma->vm_page_prot));
2813         }
2814         entry = pte_mkyoung(entry);
2815         entry = pte_mkhuge(entry);
2816         entry = arch_make_huge_pte(entry, vma, page, writable);
2817
2818         return entry;
2819 }
2820
2821 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2822                                    unsigned long address, pte_t *ptep)
2823 {
2824         pte_t entry;
2825
2826         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2827         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2828                 update_mmu_cache(vma, address, ptep);
2829 }
2830
2831 static int is_hugetlb_entry_migration(pte_t pte)
2832 {
2833         swp_entry_t swp;
2834
2835         if (huge_pte_none(pte) || pte_present(pte))
2836                 return 0;
2837         swp = pte_to_swp_entry(pte);
2838         if (non_swap_entry(swp) && is_migration_entry(swp))
2839                 return 1;
2840         else
2841                 return 0;
2842 }
2843
2844 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2845 {
2846         swp_entry_t swp;
2847
2848         if (huge_pte_none(pte) || pte_present(pte))
2849                 return 0;
2850         swp = pte_to_swp_entry(pte);
2851         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2852                 return 1;
2853         else
2854                 return 0;
2855 }
2856
2857 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2858                             struct vm_area_struct *vma)
2859 {
2860         pte_t *src_pte, *dst_pte, entry;
2861         struct page *ptepage;
2862         unsigned long addr;
2863         int cow;
2864         struct hstate *h = hstate_vma(vma);
2865         unsigned long sz = huge_page_size(h);
2866         unsigned long mmun_start;       /* For mmu_notifiers */
2867         unsigned long mmun_end;         /* For mmu_notifiers */
2868         int ret = 0;
2869
2870         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2871
2872         mmun_start = vma->vm_start;
2873         mmun_end = vma->vm_end;
2874         if (cow)
2875                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2876
2877         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2878                 spinlock_t *src_ptl, *dst_ptl;
2879                 src_pte = huge_pte_offset(src, addr);
2880                 if (!src_pte)
2881                         continue;
2882                 dst_pte = huge_pte_alloc(dst, addr, sz);
2883                 if (!dst_pte) {
2884                         ret = -ENOMEM;
2885                         break;
2886                 }
2887
2888                 /* If the pagetables are shared don't copy or take references */
2889                 if (dst_pte == src_pte)
2890                         continue;
2891
2892                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2893                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2894                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2895                 entry = huge_ptep_get(src_pte);
2896                 if (huge_pte_none(entry)) { /* skip none entry */
2897                         ;
2898                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2899                                     is_hugetlb_entry_hwpoisoned(entry))) {
2900                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2901
2902                         if (is_write_migration_entry(swp_entry) && cow) {
2903                                 /*
2904                                  * COW mappings require pages in both
2905                                  * parent and child to be set to read.
2906                                  */
2907                                 make_migration_entry_read(&swp_entry);
2908                                 entry = swp_entry_to_pte(swp_entry);
2909                                 set_huge_pte_at(src, addr, src_pte, entry);
2910                         }
2911                         set_huge_pte_at(dst, addr, dst_pte, entry);
2912                 } else {
2913                         if (cow) {
2914                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2915                                 mmu_notifier_invalidate_range(src, mmun_start,
2916                                                                    mmun_end);
2917                         }
2918                         entry = huge_ptep_get(src_pte);
2919                         ptepage = pte_page(entry);
2920                         get_page(ptepage);
2921                         page_dup_rmap(ptepage);
2922                         set_huge_pte_at(dst, addr, dst_pte, entry);
2923                 }
2924                 spin_unlock(src_ptl);
2925                 spin_unlock(dst_ptl);
2926         }
2927
2928         if (cow)
2929                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2930
2931         return ret;
2932 }
2933
2934 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2935                             unsigned long start, unsigned long end,
2936                             struct page *ref_page)
2937 {
2938         int force_flush = 0;
2939         struct mm_struct *mm = vma->vm_mm;
2940         unsigned long address;
2941         pte_t *ptep;
2942         pte_t pte;
2943         spinlock_t *ptl;
2944         struct page *page;
2945         struct hstate *h = hstate_vma(vma);
2946         unsigned long sz = huge_page_size(h);
2947         const unsigned long mmun_start = start; /* For mmu_notifiers */
2948         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2949
2950         WARN_ON(!is_vm_hugetlb_page(vma));
2951         BUG_ON(start & ~huge_page_mask(h));
2952         BUG_ON(end & ~huge_page_mask(h));
2953
2954         tlb_start_vma(tlb, vma);
2955         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2956         address = start;
2957 again:
2958         for (; address < end; address += sz) {
2959                 ptep = huge_pte_offset(mm, address);
2960                 if (!ptep)
2961                         continue;
2962
2963                 ptl = huge_pte_lock(h, mm, ptep);
2964                 if (huge_pmd_unshare(mm, &address, ptep))
2965                         goto unlock;
2966
2967                 pte = huge_ptep_get(ptep);
2968                 if (huge_pte_none(pte))
2969                         goto unlock;
2970
2971                 /*
2972                  * Migrating hugepage or HWPoisoned hugepage is already
2973                  * unmapped and its refcount is dropped, so just clear pte here.
2974                  */
2975                 if (unlikely(!pte_present(pte))) {
2976                         huge_pte_clear(mm, address, ptep);
2977                         goto unlock;
2978                 }
2979
2980                 page = pte_page(pte);
2981                 /*
2982                  * If a reference page is supplied, it is because a specific
2983                  * page is being unmapped, not a range. Ensure the page we
2984                  * are about to unmap is the actual page of interest.
2985                  */
2986                 if (ref_page) {
2987                         if (page != ref_page)
2988                                 goto unlock;
2989
2990                         /*
2991                          * Mark the VMA as having unmapped its page so that
2992                          * future faults in this VMA will fail rather than
2993                          * looking like data was lost
2994                          */
2995                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2996                 }
2997
2998                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2999                 tlb_remove_tlb_entry(tlb, ptep, address);
3000                 if (huge_pte_dirty(pte))
3001                         set_page_dirty(page);
3002
3003                 page_remove_rmap(page);
3004                 force_flush = !__tlb_remove_page(tlb, page);
3005                 if (force_flush) {
3006                         address += sz;
3007                         spin_unlock(ptl);
3008                         break;
3009                 }
3010                 /* Bail out after unmapping reference page if supplied */
3011                 if (ref_page) {
3012                         spin_unlock(ptl);
3013                         break;
3014                 }
3015 unlock:
3016                 spin_unlock(ptl);
3017         }
3018         /*
3019          * mmu_gather ran out of room to batch pages, we break out of
3020          * the PTE lock to avoid doing the potential expensive TLB invalidate
3021          * and page-free while holding it.
3022          */
3023         if (force_flush) {
3024                 force_flush = 0;
3025                 tlb_flush_mmu(tlb);
3026                 if (address < end && !ref_page)
3027                         goto again;
3028         }
3029         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3030         tlb_end_vma(tlb, vma);
3031 }
3032
3033 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3034                           struct vm_area_struct *vma, unsigned long start,
3035                           unsigned long end, struct page *ref_page)
3036 {
3037         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3038
3039         /*
3040          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3041          * test will fail on a vma being torn down, and not grab a page table
3042          * on its way out.  We're lucky that the flag has such an appropriate
3043          * name, and can in fact be safely cleared here. We could clear it
3044          * before the __unmap_hugepage_range above, but all that's necessary
3045          * is to clear it before releasing the i_mmap_rwsem. This works
3046          * because in the context this is called, the VMA is about to be
3047          * destroyed and the i_mmap_rwsem is held.
3048          */
3049         vma->vm_flags &= ~VM_MAYSHARE;
3050 }
3051
3052 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3053                           unsigned long end, struct page *ref_page)
3054 {
3055         struct mm_struct *mm;
3056         struct mmu_gather tlb;
3057
3058         mm = vma->vm_mm;
3059
3060         tlb_gather_mmu(&tlb, mm, start, end);
3061         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3062         tlb_finish_mmu(&tlb, start, end);
3063 }
3064
3065 /*
3066  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3067  * mappping it owns the reserve page for. The intention is to unmap the page
3068  * from other VMAs and let the children be SIGKILLed if they are faulting the
3069  * same region.
3070  */
3071 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3072                               struct page *page, unsigned long address)
3073 {
3074         struct hstate *h = hstate_vma(vma);
3075         struct vm_area_struct *iter_vma;
3076         struct address_space *mapping;
3077         pgoff_t pgoff;
3078
3079         /*
3080          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3081          * from page cache lookup which is in HPAGE_SIZE units.
3082          */
3083         address = address & huge_page_mask(h);
3084         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3085                         vma->vm_pgoff;
3086         mapping = file_inode(vma->vm_file)->i_mapping;
3087
3088         /*
3089          * Take the mapping lock for the duration of the table walk. As
3090          * this mapping should be shared between all the VMAs,
3091          * __unmap_hugepage_range() is called as the lock is already held
3092          */
3093         i_mmap_lock_write(mapping);
3094         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3095                 /* Do not unmap the current VMA */
3096                 if (iter_vma == vma)
3097                         continue;
3098
3099                 /*
3100                  * Unmap the page from other VMAs without their own reserves.
3101                  * They get marked to be SIGKILLed if they fault in these
3102                  * areas. This is because a future no-page fault on this VMA
3103                  * could insert a zeroed page instead of the data existing
3104                  * from the time of fork. This would look like data corruption
3105                  */
3106                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3107                         unmap_hugepage_range(iter_vma, address,
3108                                              address + huge_page_size(h), page);
3109         }
3110         i_mmap_unlock_write(mapping);
3111 }
3112
3113 /*
3114  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3115  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3116  * cannot race with other handlers or page migration.
3117  * Keep the pte_same checks anyway to make transition from the mutex easier.
3118  */
3119 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3120                         unsigned long address, pte_t *ptep, pte_t pte,
3121                         struct page *pagecache_page, spinlock_t *ptl)
3122 {
3123         struct hstate *h = hstate_vma(vma);
3124         struct page *old_page, *new_page;
3125         int ret = 0, outside_reserve = 0;
3126         unsigned long mmun_start;       /* For mmu_notifiers */
3127         unsigned long mmun_end;         /* For mmu_notifiers */
3128
3129         old_page = pte_page(pte);
3130
3131 retry_avoidcopy:
3132         /* If no-one else is actually using this page, avoid the copy
3133          * and just make the page writable */
3134         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3135                 page_move_anon_rmap(old_page, vma, address);
3136                 set_huge_ptep_writable(vma, address, ptep);
3137                 return 0;
3138         }
3139
3140         /*
3141          * If the process that created a MAP_PRIVATE mapping is about to
3142          * perform a COW due to a shared page count, attempt to satisfy
3143          * the allocation without using the existing reserves. The pagecache
3144          * page is used to determine if the reserve at this address was
3145          * consumed or not. If reserves were used, a partial faulted mapping
3146          * at the time of fork() could consume its reserves on COW instead
3147          * of the full address range.
3148          */
3149         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3150                         old_page != pagecache_page)
3151                 outside_reserve = 1;
3152
3153         page_cache_get(old_page);
3154
3155         /*
3156          * Drop page table lock as buddy allocator may be called. It will
3157          * be acquired again before returning to the caller, as expected.
3158          */
3159         spin_unlock(ptl);
3160         new_page = alloc_huge_page(vma, address, outside_reserve);
3161
3162         if (IS_ERR(new_page)) {
3163                 /*
3164                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3165                  * it is due to references held by a child and an insufficient
3166                  * huge page pool. To guarantee the original mappers
3167                  * reliability, unmap the page from child processes. The child
3168                  * may get SIGKILLed if it later faults.
3169                  */
3170                 if (outside_reserve) {
3171                         page_cache_release(old_page);
3172                         BUG_ON(huge_pte_none(pte));
3173                         unmap_ref_private(mm, vma, old_page, address);
3174                         BUG_ON(huge_pte_none(pte));
3175                         spin_lock(ptl);
3176                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3177                         if (likely(ptep &&
3178                                    pte_same(huge_ptep_get(ptep), pte)))
3179                                 goto retry_avoidcopy;
3180                         /*
3181                          * race occurs while re-acquiring page table
3182                          * lock, and our job is done.
3183                          */
3184                         return 0;
3185                 }
3186
3187                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3188                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3189                 goto out_release_old;
3190         }
3191
3192         /*
3193          * When the original hugepage is shared one, it does not have
3194          * anon_vma prepared.
3195          */
3196         if (unlikely(anon_vma_prepare(vma))) {
3197                 ret = VM_FAULT_OOM;
3198                 goto out_release_all;
3199         }
3200
3201         copy_user_huge_page(new_page, old_page, address, vma,
3202                             pages_per_huge_page(h));
3203         __SetPageUptodate(new_page);
3204         set_page_huge_active(new_page);
3205
3206         mmun_start = address & huge_page_mask(h);
3207         mmun_end = mmun_start + huge_page_size(h);
3208         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3209
3210         /*
3211          * Retake the page table lock to check for racing updates
3212          * before the page tables are altered
3213          */
3214         spin_lock(ptl);
3215         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3216         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3217                 ClearPagePrivate(new_page);
3218
3219                 /* Break COW */
3220                 huge_ptep_clear_flush(vma, address, ptep);
3221                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3222                 set_huge_pte_at(mm, address, ptep,
3223                                 make_huge_pte(vma, new_page, 1));
3224                 page_remove_rmap(old_page);
3225                 hugepage_add_new_anon_rmap(new_page, vma, address);
3226                 /* Make the old page be freed below */
3227                 new_page = old_page;
3228         }
3229         spin_unlock(ptl);
3230         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3231 out_release_all:
3232         page_cache_release(new_page);
3233 out_release_old:
3234         page_cache_release(old_page);
3235
3236         spin_lock(ptl); /* Caller expects lock to be held */
3237         return ret;
3238 }
3239
3240 /* Return the pagecache page at a given address within a VMA */
3241 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3242                         struct vm_area_struct *vma, unsigned long address)
3243 {
3244         struct address_space *mapping;
3245         pgoff_t idx;
3246
3247         mapping = vma->vm_file->f_mapping;
3248         idx = vma_hugecache_offset(h, vma, address);
3249
3250         return find_lock_page(mapping, idx);
3251 }
3252
3253 /*
3254  * Return whether there is a pagecache page to back given address within VMA.
3255  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3256  */
3257 static bool hugetlbfs_pagecache_present(struct hstate *h,
3258                         struct vm_area_struct *vma, unsigned long address)
3259 {
3260         struct address_space *mapping;
3261         pgoff_t idx;
3262         struct page *page;
3263
3264         mapping = vma->vm_file->f_mapping;
3265         idx = vma_hugecache_offset(h, vma, address);
3266
3267         page = find_get_page(mapping, idx);
3268         if (page)
3269                 put_page(page);
3270         return page != NULL;
3271 }
3272
3273 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3274                            struct address_space *mapping, pgoff_t idx,
3275                            unsigned long address, pte_t *ptep, unsigned int flags)
3276 {
3277         struct hstate *h = hstate_vma(vma);
3278         int ret = VM_FAULT_SIGBUS;
3279         int anon_rmap = 0;
3280         unsigned long size;
3281         struct page *page;
3282         pte_t new_pte;
3283         spinlock_t *ptl;
3284
3285         /*
3286          * Currently, we are forced to kill the process in the event the
3287          * original mapper has unmapped pages from the child due to a failed
3288          * COW. Warn that such a situation has occurred as it may not be obvious
3289          */
3290         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3291                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3292                            current->pid);
3293                 return ret;
3294         }
3295
3296         /*
3297          * Use page lock to guard against racing truncation
3298          * before we get page_table_lock.
3299          */
3300 retry:
3301         page = find_lock_page(mapping, idx);
3302         if (!page) {
3303                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3304                 if (idx >= size)
3305                         goto out;
3306                 page = alloc_huge_page(vma, address, 0);
3307                 if (IS_ERR(page)) {
3308                         ret = PTR_ERR(page);
3309                         if (ret == -ENOMEM)
3310                                 ret = VM_FAULT_OOM;
3311                         else
3312                                 ret = VM_FAULT_SIGBUS;
3313                         goto out;
3314                 }
3315                 clear_huge_page(page, address, pages_per_huge_page(h));
3316                 __SetPageUptodate(page);
3317                 set_page_huge_active(page);
3318
3319                 if (vma->vm_flags & VM_MAYSHARE) {
3320                         int err;
3321                         struct inode *inode = mapping->host;
3322
3323                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3324                         if (err) {
3325                                 put_page(page);
3326                                 if (err == -EEXIST)
3327                                         goto retry;
3328                                 goto out;
3329                         }
3330                         ClearPagePrivate(page);
3331
3332                         spin_lock(&inode->i_lock);
3333                         inode->i_blocks += blocks_per_huge_page(h);
3334                         spin_unlock(&inode->i_lock);
3335                 } else {
3336                         lock_page(page);
3337                         if (unlikely(anon_vma_prepare(vma))) {
3338                                 ret = VM_FAULT_OOM;
3339                                 goto backout_unlocked;
3340                         }
3341                         anon_rmap = 1;
3342                 }
3343         } else {
3344                 /*
3345                  * If memory error occurs between mmap() and fault, some process
3346                  * don't have hwpoisoned swap entry for errored virtual address.
3347                  * So we need to block hugepage fault by PG_hwpoison bit check.
3348                  */
3349                 if (unlikely(PageHWPoison(page))) {
3350                         ret = VM_FAULT_HWPOISON |
3351                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3352                         goto backout_unlocked;
3353                 }
3354         }
3355
3356         /*
3357          * If we are going to COW a private mapping later, we examine the
3358          * pending reservations for this page now. This will ensure that
3359          * any allocations necessary to record that reservation occur outside
3360          * the spinlock.
3361          */
3362         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3363                 if (vma_needs_reservation(h, vma, address) < 0) {
3364                         ret = VM_FAULT_OOM;
3365                         goto backout_unlocked;
3366                 }
3367                 /* Just decrements count, does not deallocate */
3368                 vma_abort_reservation(h, vma, address);
3369         }
3370
3371         ptl = huge_pte_lockptr(h, mm, ptep);
3372         spin_lock(ptl);
3373         size = i_size_read(mapping->host) >> huge_page_shift(h);
3374         if (idx >= size)
3375                 goto backout;
3376
3377         ret = 0;
3378         if (!huge_pte_none(huge_ptep_get(ptep)))
3379                 goto backout;
3380
3381         if (anon_rmap) {
3382                 ClearPagePrivate(page);
3383                 hugepage_add_new_anon_rmap(page, vma, address);
3384         } else
3385                 page_dup_rmap(page);
3386         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3387                                 && (vma->vm_flags & VM_SHARED)));
3388         set_huge_pte_at(mm, address, ptep, new_pte);
3389
3390         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3391                 /* Optimization, do the COW without a second fault */
3392                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3393         }
3394
3395         spin_unlock(ptl);
3396         unlock_page(page);
3397 out:
3398         return ret;
3399
3400 backout:
3401         spin_unlock(ptl);
3402 backout_unlocked:
3403         unlock_page(page);
3404         put_page(page);
3405         goto out;
3406 }
3407
3408 #ifdef CONFIG_SMP
3409 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3410                             struct vm_area_struct *vma,
3411                             struct address_space *mapping,
3412                             pgoff_t idx, unsigned long address)
3413 {
3414         unsigned long key[2];
3415         u32 hash;
3416
3417         if (vma->vm_flags & VM_SHARED) {
3418                 key[0] = (unsigned long) mapping;
3419                 key[1] = idx;
3420         } else {
3421                 key[0] = (unsigned long) mm;
3422                 key[1] = address >> huge_page_shift(h);
3423         }
3424
3425         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3426
3427         return hash & (num_fault_mutexes - 1);
3428 }
3429 #else
3430 /*
3431  * For uniprocesor systems we always use a single mutex, so just
3432  * return 0 and avoid the hashing overhead.
3433  */
3434 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3435                             struct vm_area_struct *vma,
3436                             struct address_space *mapping,
3437                             pgoff_t idx, unsigned long address)
3438 {
3439         return 0;
3440 }
3441 #endif
3442
3443 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3444                         unsigned long address, unsigned int flags)
3445 {
3446         pte_t *ptep, entry;
3447         spinlock_t *ptl;
3448         int ret;
3449         u32 hash;
3450         pgoff_t idx;
3451         struct page *page = NULL;
3452         struct page *pagecache_page = NULL;
3453         struct hstate *h = hstate_vma(vma);
3454         struct address_space *mapping;
3455         int need_wait_lock = 0;
3456
3457         address &= huge_page_mask(h);
3458
3459         ptep = huge_pte_offset(mm, address);
3460         if (ptep) {
3461                 entry = huge_ptep_get(ptep);
3462                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3463                         migration_entry_wait_huge(vma, mm, ptep);
3464                         return 0;
3465                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3466                         return VM_FAULT_HWPOISON_LARGE |
3467                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3468         }
3469
3470         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3471         if (!ptep)
3472                 return VM_FAULT_OOM;
3473
3474         mapping = vma->vm_file->f_mapping;
3475         idx = vma_hugecache_offset(h, vma, address);
3476
3477         /*
3478          * Serialize hugepage allocation and instantiation, so that we don't
3479          * get spurious allocation failures if two CPUs race to instantiate
3480          * the same page in the page cache.
3481          */
3482         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3483         mutex_lock(&htlb_fault_mutex_table[hash]);
3484
3485         entry = huge_ptep_get(ptep);
3486         if (huge_pte_none(entry)) {
3487                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3488                 goto out_mutex;
3489         }
3490
3491         ret = 0;
3492
3493         /*
3494          * entry could be a migration/hwpoison entry at this point, so this
3495          * check prevents the kernel from going below assuming that we have
3496          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3497          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3498          * handle it.
3499          */
3500         if (!pte_present(entry))
3501                 goto out_mutex;
3502
3503         /*
3504          * If we are going to COW the mapping later, we examine the pending
3505          * reservations for this page now. This will ensure that any
3506          * allocations necessary to record that reservation occur outside the
3507          * spinlock. For private mappings, we also lookup the pagecache
3508          * page now as it is used to determine if a reservation has been
3509          * consumed.
3510          */
3511         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3512                 if (vma_needs_reservation(h, vma, address) < 0) {
3513                         ret = VM_FAULT_OOM;
3514                         goto out_mutex;
3515                 }
3516                 /* Just decrements count, does not deallocate */
3517                 vma_abort_reservation(h, vma, address);
3518
3519                 if (!(vma->vm_flags & VM_MAYSHARE))
3520                         pagecache_page = hugetlbfs_pagecache_page(h,
3521                                                                 vma, address);
3522         }
3523
3524         ptl = huge_pte_lock(h, mm, ptep);
3525
3526         /* Check for a racing update before calling hugetlb_cow */
3527         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3528                 goto out_ptl;
3529
3530         /*
3531          * hugetlb_cow() requires page locks of pte_page(entry) and
3532          * pagecache_page, so here we need take the former one
3533          * when page != pagecache_page or !pagecache_page.
3534          */
3535         page = pte_page(entry);
3536         if (page != pagecache_page)
3537                 if (!trylock_page(page)) {
3538                         need_wait_lock = 1;
3539                         goto out_ptl;
3540                 }
3541
3542         get_page(page);
3543
3544         if (flags & FAULT_FLAG_WRITE) {
3545                 if (!huge_pte_write(entry)) {
3546                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3547                                         pagecache_page, ptl);
3548                         goto out_put_page;
3549                 }
3550                 entry = huge_pte_mkdirty(entry);
3551         }
3552         entry = pte_mkyoung(entry);
3553         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3554                                                 flags & FAULT_FLAG_WRITE))
3555                 update_mmu_cache(vma, address, ptep);
3556 out_put_page:
3557         if (page != pagecache_page)
3558                 unlock_page(page);
3559         put_page(page);
3560 out_ptl:
3561         spin_unlock(ptl);
3562
3563         if (pagecache_page) {
3564                 unlock_page(pagecache_page);
3565                 put_page(pagecache_page);
3566         }
3567 out_mutex:
3568         mutex_unlock(&htlb_fault_mutex_table[hash]);
3569         /*
3570          * Generally it's safe to hold refcount during waiting page lock. But
3571          * here we just wait to defer the next page fault to avoid busy loop and
3572          * the page is not used after unlocked before returning from the current
3573          * page fault. So we are safe from accessing freed page, even if we wait
3574          * here without taking refcount.
3575          */
3576         if (need_wait_lock)
3577                 wait_on_page_locked(page);
3578         return ret;
3579 }
3580
3581 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3582                          struct page **pages, struct vm_area_struct **vmas,
3583                          unsigned long *position, unsigned long *nr_pages,
3584                          long i, unsigned int flags)
3585 {
3586         unsigned long pfn_offset;
3587         unsigned long vaddr = *position;
3588         unsigned long remainder = *nr_pages;
3589         struct hstate *h = hstate_vma(vma);
3590
3591         while (vaddr < vma->vm_end && remainder) {
3592                 pte_t *pte;
3593                 spinlock_t *ptl = NULL;
3594                 int absent;
3595                 struct page *page;
3596
3597                 /*
3598                  * If we have a pending SIGKILL, don't keep faulting pages and
3599                  * potentially allocating memory.
3600                  */
3601                 if (unlikely(fatal_signal_pending(current))) {
3602                         remainder = 0;
3603                         break;
3604                 }
3605
3606                 /*
3607                  * Some archs (sparc64, sh*) have multiple pte_ts to
3608                  * each hugepage.  We have to make sure we get the
3609                  * first, for the page indexing below to work.
3610                  *
3611                  * Note that page table lock is not held when pte is null.
3612                  */
3613                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3614                 if (pte)
3615                         ptl = huge_pte_lock(h, mm, pte);
3616                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3617
3618                 /*
3619                  * When coredumping, it suits get_dump_page if we just return
3620                  * an error where there's an empty slot with no huge pagecache
3621                  * to back it.  This way, we avoid allocating a hugepage, and
3622                  * the sparse dumpfile avoids allocating disk blocks, but its
3623                  * huge holes still show up with zeroes where they need to be.
3624                  */
3625                 if (absent && (flags & FOLL_DUMP) &&
3626                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3627                         if (pte)
3628                                 spin_unlock(ptl);
3629                         remainder = 0;
3630                         break;
3631                 }
3632
3633                 /*
3634                  * We need call hugetlb_fault for both hugepages under migration
3635                  * (in which case hugetlb_fault waits for the migration,) and
3636                  * hwpoisoned hugepages (in which case we need to prevent the
3637                  * caller from accessing to them.) In order to do this, we use
3638                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3639                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3640                  * both cases, and because we can't follow correct pages
3641                  * directly from any kind of swap entries.
3642                  */
3643                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3644                     ((flags & FOLL_WRITE) &&
3645                       !huge_pte_write(huge_ptep_get(pte)))) {
3646                         int ret;
3647
3648                         if (pte)
3649                                 spin_unlock(ptl);
3650                         ret = hugetlb_fault(mm, vma, vaddr,
3651                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3652                         if (!(ret & VM_FAULT_ERROR))
3653                                 continue;
3654
3655                         remainder = 0;
3656                         break;
3657                 }
3658
3659                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3660                 page = pte_page(huge_ptep_get(pte));
3661 same_page:
3662                 if (pages) {
3663                         pages[i] = mem_map_offset(page, pfn_offset);
3664                         get_page_foll(pages[i]);
3665                 }
3666
3667                 if (vmas)
3668                         vmas[i] = vma;
3669
3670                 vaddr += PAGE_SIZE;
3671                 ++pfn_offset;
3672                 --remainder;
3673                 ++i;
3674                 if (vaddr < vma->vm_end && remainder &&
3675                                 pfn_offset < pages_per_huge_page(h)) {
3676                         /*
3677                          * We use pfn_offset to avoid touching the pageframes
3678                          * of this compound page.
3679                          */
3680                         goto same_page;
3681                 }
3682                 spin_unlock(ptl);
3683         }
3684         *nr_pages = remainder;
3685         *position = vaddr;
3686
3687         return i ? i : -EFAULT;
3688 }
3689
3690 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3691                 unsigned long address, unsigned long end, pgprot_t newprot)
3692 {
3693         struct mm_struct *mm = vma->vm_mm;
3694         unsigned long start = address;
3695         pte_t *ptep;
3696         pte_t pte;
3697         struct hstate *h = hstate_vma(vma);
3698         unsigned long pages = 0;
3699
3700         BUG_ON(address >= end);
3701         flush_cache_range(vma, address, end);
3702
3703         mmu_notifier_invalidate_range_start(mm, start, end);
3704         i_mmap_lock_write(vma->vm_file->f_mapping);
3705         for (; address < end; address += huge_page_size(h)) {
3706                 spinlock_t *ptl;
3707                 ptep = huge_pte_offset(mm, address);
3708                 if (!ptep)
3709                         continue;
3710                 ptl = huge_pte_lock(h, mm, ptep);
3711                 if (huge_pmd_unshare(mm, &address, ptep)) {
3712                         pages++;
3713                         spin_unlock(ptl);
3714                         continue;
3715                 }
3716                 pte = huge_ptep_get(ptep);
3717                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3718                         spin_unlock(ptl);
3719                         continue;
3720                 }
3721                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3722                         swp_entry_t entry = pte_to_swp_entry(pte);
3723
3724                         if (is_write_migration_entry(entry)) {
3725                                 pte_t newpte;
3726
3727                                 make_migration_entry_read(&entry);
3728                                 newpte = swp_entry_to_pte(entry);
3729                                 set_huge_pte_at(mm, address, ptep, newpte);
3730                                 pages++;
3731                         }
3732                         spin_unlock(ptl);
3733                         continue;
3734                 }
3735                 if (!huge_pte_none(pte)) {
3736                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3737                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3738                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3739                         set_huge_pte_at(mm, address, ptep, pte);
3740                         pages++;
3741                 }
3742                 spin_unlock(ptl);
3743         }
3744         /*
3745          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3746          * may have cleared our pud entry and done put_page on the page table:
3747          * once we release i_mmap_rwsem, another task can do the final put_page
3748          * and that page table be reused and filled with junk.
3749          */
3750         flush_tlb_range(vma, start, end);
3751         mmu_notifier_invalidate_range(mm, start, end);
3752         i_mmap_unlock_write(vma->vm_file->f_mapping);
3753         mmu_notifier_invalidate_range_end(mm, start, end);
3754
3755         return pages << h->order;
3756 }
3757
3758 int hugetlb_reserve_pages(struct inode *inode,
3759                                         long from, long to,
3760                                         struct vm_area_struct *vma,
3761                                         vm_flags_t vm_flags)
3762 {
3763         long ret, chg;
3764         struct hstate *h = hstate_inode(inode);
3765         struct hugepage_subpool *spool = subpool_inode(inode);
3766         struct resv_map *resv_map;
3767         long gbl_reserve;
3768
3769         /*
3770          * Only apply hugepage reservation if asked. At fault time, an
3771          * attempt will be made for VM_NORESERVE to allocate a page
3772          * without using reserves
3773          */
3774         if (vm_flags & VM_NORESERVE)
3775                 return 0;
3776
3777         /*
3778          * Shared mappings base their reservation on the number of pages that
3779          * are already allocated on behalf of the file. Private mappings need
3780          * to reserve the full area even if read-only as mprotect() may be
3781          * called to make the mapping read-write. Assume !vma is a shm mapping
3782          */
3783         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3784                 resv_map = inode_resv_map(inode);
3785
3786                 chg = region_chg(resv_map, from, to);
3787
3788         } else {
3789                 resv_map = resv_map_alloc();
3790                 if (!resv_map)
3791                         return -ENOMEM;
3792
3793                 chg = to - from;
3794
3795                 set_vma_resv_map(vma, resv_map);
3796                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3797         }
3798
3799         if (chg < 0) {
3800                 ret = chg;
3801                 goto out_err;
3802         }
3803
3804         /*
3805          * There must be enough pages in the subpool for the mapping. If
3806          * the subpool has a minimum size, there may be some global
3807          * reservations already in place (gbl_reserve).
3808          */
3809         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3810         if (gbl_reserve < 0) {
3811                 ret = -ENOSPC;
3812                 goto out_err;
3813         }
3814
3815         /*
3816          * Check enough hugepages are available for the reservation.
3817          * Hand the pages back to the subpool if there are not
3818          */
3819         ret = hugetlb_acct_memory(h, gbl_reserve);
3820         if (ret < 0) {
3821                 /* put back original number of pages, chg */
3822                 (void)hugepage_subpool_put_pages(spool, chg);
3823                 goto out_err;
3824         }
3825
3826         /*
3827          * Account for the reservations made. Shared mappings record regions
3828          * that have reservations as they are shared by multiple VMAs.
3829          * When the last VMA disappears, the region map says how much
3830          * the reservation was and the page cache tells how much of
3831          * the reservation was consumed. Private mappings are per-VMA and
3832          * only the consumed reservations are tracked. When the VMA
3833          * disappears, the original reservation is the VMA size and the
3834          * consumed reservations are stored in the map. Hence, nothing
3835          * else has to be done for private mappings here
3836          */
3837         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3838                 long add = region_add(resv_map, from, to);
3839
3840                 if (unlikely(chg > add)) {
3841                         /*
3842                          * pages in this range were added to the reserve
3843                          * map between region_chg and region_add.  This
3844                          * indicates a race with alloc_huge_page.  Adjust
3845                          * the subpool and reserve counts modified above
3846                          * based on the difference.
3847                          */
3848                         long rsv_adjust;
3849
3850                         rsv_adjust = hugepage_subpool_put_pages(spool,
3851                                                                 chg - add);
3852                         hugetlb_acct_memory(h, -rsv_adjust);
3853                 }
3854         }
3855         return 0;
3856 out_err:
3857         if (!vma || vma->vm_flags & VM_MAYSHARE)
3858                 region_abort(resv_map, from, to);
3859         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3860                 kref_put(&resv_map->refs, resv_map_release);
3861         return ret;
3862 }
3863
3864 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3865 {
3866         struct hstate *h = hstate_inode(inode);
3867         struct resv_map *resv_map = inode_resv_map(inode);
3868         long chg = 0;
3869         struct hugepage_subpool *spool = subpool_inode(inode);
3870         long gbl_reserve;
3871
3872         if (resv_map)
3873                 chg = region_truncate(resv_map, offset);
3874         spin_lock(&inode->i_lock);
3875         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3876         spin_unlock(&inode->i_lock);
3877
3878         /*
3879          * If the subpool has a minimum size, the number of global
3880          * reservations to be released may be adjusted.
3881          */
3882         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3883         hugetlb_acct_memory(h, -gbl_reserve);
3884 }
3885
3886 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3887 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3888                                 struct vm_area_struct *vma,
3889                                 unsigned long addr, pgoff_t idx)
3890 {
3891         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3892                                 svma->vm_start;
3893         unsigned long sbase = saddr & PUD_MASK;
3894         unsigned long s_end = sbase + PUD_SIZE;
3895
3896         /* Allow segments to share if only one is marked locked */
3897         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3898         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3899
3900         /*
3901          * match the virtual addresses, permission and the alignment of the
3902          * page table page.
3903          */
3904         if (pmd_index(addr) != pmd_index(saddr) ||
3905             vm_flags != svm_flags ||
3906             sbase < svma->vm_start || svma->vm_end < s_end)
3907                 return 0;
3908
3909         return saddr;
3910 }
3911
3912 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3913 {
3914         unsigned long base = addr & PUD_MASK;
3915         unsigned long end = base + PUD_SIZE;
3916
3917         /*
3918          * check on proper vm_flags and page table alignment
3919          */
3920         if (vma->vm_flags & VM_MAYSHARE &&
3921             vma->vm_start <= base && end <= vma->vm_end)
3922                 return true;
3923         return false;
3924 }
3925
3926 /*
3927  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3928  * and returns the corresponding pte. While this is not necessary for the
3929  * !shared pmd case because we can allocate the pmd later as well, it makes the
3930  * code much cleaner. pmd allocation is essential for the shared case because
3931  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3932  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3933  * bad pmd for sharing.
3934  */
3935 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3936 {
3937         struct vm_area_struct *vma = find_vma(mm, addr);
3938         struct address_space *mapping = vma->vm_file->f_mapping;
3939         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3940                         vma->vm_pgoff;
3941         struct vm_area_struct *svma;
3942         unsigned long saddr;
3943         pte_t *spte = NULL;
3944         pte_t *pte;
3945         spinlock_t *ptl;
3946
3947         if (!vma_shareable(vma, addr))
3948                 return (pte_t *)pmd_alloc(mm, pud, addr);
3949
3950         i_mmap_lock_write(mapping);
3951         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3952                 if (svma == vma)
3953                         continue;
3954
3955                 saddr = page_table_shareable(svma, vma, addr, idx);
3956                 if (saddr) {
3957                         spte = huge_pte_offset(svma->vm_mm, saddr);
3958                         if (spte) {
3959                                 mm_inc_nr_pmds(mm);
3960                                 get_page(virt_to_page(spte));
3961                                 break;
3962                         }
3963                 }
3964         }
3965
3966         if (!spte)
3967                 goto out;
3968
3969         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3970         spin_lock(ptl);
3971         if (pud_none(*pud)) {
3972                 pud_populate(mm, pud,
3973                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3974         } else {
3975                 put_page(virt_to_page(spte));
3976                 mm_inc_nr_pmds(mm);
3977         }
3978         spin_unlock(ptl);
3979 out:
3980         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3981         i_mmap_unlock_write(mapping);
3982         return pte;
3983 }
3984
3985 /*
3986  * unmap huge page backed by shared pte.
3987  *
3988  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3989  * indicated by page_count > 1, unmap is achieved by clearing pud and
3990  * decrementing the ref count. If count == 1, the pte page is not shared.
3991  *
3992  * called with page table lock held.
3993  *
3994  * returns: 1 successfully unmapped a shared pte page
3995  *          0 the underlying pte page is not shared, or it is the last user
3996  */
3997 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3998 {
3999         pgd_t *pgd = pgd_offset(mm, *addr);
4000         pud_t *pud = pud_offset(pgd, *addr);
4001
4002         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4003         if (page_count(virt_to_page(ptep)) == 1)
4004                 return 0;
4005
4006         pud_clear(pud);
4007         put_page(virt_to_page(ptep));
4008         mm_dec_nr_pmds(mm);
4009         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4010         return 1;
4011 }
4012 #define want_pmd_share()        (1)
4013 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4014 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4015 {
4016         return NULL;
4017 }
4018
4019 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4020 {
4021         return 0;
4022 }
4023 #define want_pmd_share()        (0)
4024 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4025
4026 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4027 pte_t *huge_pte_alloc(struct mm_struct *mm,
4028                         unsigned long addr, unsigned long sz)
4029 {
4030         pgd_t *pgd;
4031         pud_t *pud;
4032         pte_t *pte = NULL;
4033
4034         pgd = pgd_offset(mm, addr);
4035         pud = pud_alloc(mm, pgd, addr);
4036         if (pud) {
4037                 if (sz == PUD_SIZE) {
4038                         pte = (pte_t *)pud;
4039                 } else {
4040                         BUG_ON(sz != PMD_SIZE);
4041                         if (want_pmd_share() && pud_none(*pud))
4042                                 pte = huge_pmd_share(mm, addr, pud);
4043                         else
4044                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4045                 }
4046         }
4047         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4048
4049         return pte;
4050 }
4051
4052 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4053 {
4054         pgd_t *pgd;
4055         pud_t *pud;
4056         pmd_t *pmd = NULL;
4057
4058         pgd = pgd_offset(mm, addr);
4059         if (pgd_present(*pgd)) {
4060                 pud = pud_offset(pgd, addr);
4061                 if (pud_present(*pud)) {
4062                         if (pud_huge(*pud))
4063                                 return (pte_t *)pud;
4064                         pmd = pmd_offset(pud, addr);
4065                 }
4066         }
4067         return (pte_t *) pmd;
4068 }
4069
4070 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4071
4072 /*
4073  * These functions are overwritable if your architecture needs its own
4074  * behavior.
4075  */
4076 struct page * __weak
4077 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4078                               int write)
4079 {
4080         return ERR_PTR(-EINVAL);
4081 }
4082
4083 struct page * __weak
4084 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4085                 pmd_t *pmd, int flags)
4086 {
4087         struct page *page = NULL;
4088         spinlock_t *ptl;
4089 retry:
4090         ptl = pmd_lockptr(mm, pmd);
4091         spin_lock(ptl);
4092         /*
4093          * make sure that the address range covered by this pmd is not
4094          * unmapped from other threads.
4095          */
4096         if (!pmd_huge(*pmd))
4097                 goto out;
4098         if (pmd_present(*pmd)) {
4099                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4100                 if (flags & FOLL_GET)
4101                         get_page(page);
4102         } else {
4103                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4104                         spin_unlock(ptl);
4105                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4106                         goto retry;
4107                 }
4108                 /*
4109                  * hwpoisoned entry is treated as no_page_table in
4110                  * follow_page_mask().
4111                  */
4112         }
4113 out:
4114         spin_unlock(ptl);
4115         return page;
4116 }
4117
4118 struct page * __weak
4119 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4120                 pud_t *pud, int flags)
4121 {
4122         if (flags & FOLL_GET)
4123                 return NULL;
4124
4125         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4126 }
4127
4128 #ifdef CONFIG_MEMORY_FAILURE
4129
4130 /*
4131  * This function is called from memory failure code.
4132  * Assume the caller holds page lock of the head page.
4133  */
4134 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4135 {
4136         struct hstate *h = page_hstate(hpage);
4137         int nid = page_to_nid(hpage);
4138         int ret = -EBUSY;
4139
4140         spin_lock(&hugetlb_lock);
4141         /*
4142          * Just checking !page_huge_active is not enough, because that could be
4143          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4144          */
4145         if (!page_huge_active(hpage) && !page_count(hpage)) {
4146                 /*
4147                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4148                  * but dangling hpage->lru can trigger list-debug warnings
4149                  * (this happens when we call unpoison_memory() on it),
4150                  * so let it point to itself with list_del_init().
4151                  */
4152                 list_del_init(&hpage->lru);
4153                 set_page_refcounted(hpage);
4154                 h->free_huge_pages--;
4155                 h->free_huge_pages_node[nid]--;
4156                 ret = 0;
4157         }
4158         spin_unlock(&hugetlb_lock);
4159         return ret;
4160 }
4161 #endif
4162
4163 bool isolate_huge_page(struct page *page, struct list_head *list)
4164 {
4165         bool ret = true;
4166
4167         VM_BUG_ON_PAGE(!PageHead(page), page);
4168         spin_lock(&hugetlb_lock);
4169         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4170                 ret = false;
4171                 goto unlock;
4172         }
4173         clear_page_huge_active(page);
4174         list_move_tail(&page->lru, list);
4175 unlock:
4176         spin_unlock(&hugetlb_lock);
4177         return ret;
4178 }
4179
4180 void putback_active_hugepage(struct page *page)
4181 {
4182         VM_BUG_ON_PAGE(!PageHead(page), page);
4183         spin_lock(&hugetlb_lock);
4184         set_page_huge_active(page);
4185         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4186         spin_unlock(&hugetlb_lock);
4187         put_page(page);
4188 }