Merge tag 'hwmon-for-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[linux-block.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265         if (__vma_shareable_lock(vma)) {
266                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268                 down_read(&vma_lock->rw_sema);
269         }
270 }
271
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274         if (__vma_shareable_lock(vma)) {
275                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277                 up_read(&vma_lock->rw_sema);
278         }
279 }
280
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283         if (__vma_shareable_lock(vma)) {
284                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286                 down_write(&vma_lock->rw_sema);
287         }
288 }
289
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292         if (__vma_shareable_lock(vma)) {
293                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295                 up_write(&vma_lock->rw_sema);
296         }
297 }
298
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303         if (!__vma_shareable_lock(vma))
304                 return 1;
305
306         return down_write_trylock(&vma_lock->rw_sema);
307 }
308
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311         if (__vma_shareable_lock(vma)) {
312                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314                 lockdep_assert_held(&vma_lock->rw_sema);
315         }
316 }
317
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320         struct hugetlb_vma_lock *vma_lock = container_of(kref,
321                         struct hugetlb_vma_lock, refs);
322
323         kfree(vma_lock);
324 }
325
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328         struct vm_area_struct *vma = vma_lock->vma;
329
330         /*
331          * vma_lock structure may or not be released as a result of put,
332          * it certainly will no longer be attached to vma so clear pointer.
333          * Semaphore synchronizes access to vma_lock->vma field.
334          */
335         vma_lock->vma = NULL;
336         vma->vm_private_data = NULL;
337         up_write(&vma_lock->rw_sema);
338         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343         if (__vma_shareable_lock(vma)) {
344                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346                 __hugetlb_vma_unlock_write_put(vma_lock);
347         }
348 }
349
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352         /*
353          * Only present in sharable vmas.
354          */
355         if (!vma || !__vma_shareable_lock(vma))
356                 return;
357
358         if (vma->vm_private_data) {
359                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361                 down_write(&vma_lock->rw_sema);
362                 __hugetlb_vma_unlock_write_put(vma_lock);
363         }
364 }
365
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368         struct hugetlb_vma_lock *vma_lock;
369
370         /* Only establish in (flags) sharable vmas */
371         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372                 return;
373
374         /* Should never get here with non-NULL vm_private_data */
375         if (vma->vm_private_data)
376                 return;
377
378         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379         if (!vma_lock) {
380                 /*
381                  * If we can not allocate structure, then vma can not
382                  * participate in pmd sharing.  This is only a possible
383                  * performance enhancement and memory saving issue.
384                  * However, the lock is also used to synchronize page
385                  * faults with truncation.  If the lock is not present,
386                  * unlikely races could leave pages in a file past i_size
387                  * until the file is removed.  Warn in the unlikely case of
388                  * allocation failure.
389                  */
390                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391                 return;
392         }
393
394         kref_init(&vma_lock->refs);
395         init_rwsem(&vma_lock->rw_sema);
396         vma_lock->vma = vma;
397         vma->vm_private_data = vma_lock;
398 }
399
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406         struct file_region *nrg;
407
408         VM_BUG_ON(resv->region_cache_count <= 0);
409
410         resv->region_cache_count--;
411         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412         list_del(&nrg->link);
413
414         nrg->from = from;
415         nrg->to = to;
416
417         return nrg;
418 }
419
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421                                               struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424         nrg->reservation_counter = rg->reservation_counter;
425         nrg->css = rg->css;
426         if (rg->css)
427                 css_get(rg->css);
428 #endif
429 }
430
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433                                                 struct hstate *h,
434                                                 struct resv_map *resv,
435                                                 struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438         if (h_cg) {
439                 nrg->reservation_counter =
440                         &h_cg->rsvd_hugepage[hstate_index(h)];
441                 nrg->css = &h_cg->css;
442                 /*
443                  * The caller will hold exactly one h_cg->css reference for the
444                  * whole contiguous reservation region. But this area might be
445                  * scattered when there are already some file_regions reside in
446                  * it. As a result, many file_regions may share only one css
447                  * reference. In order to ensure that one file_region must hold
448                  * exactly one h_cg->css reference, we should do css_get for
449                  * each file_region and leave the reference held by caller
450                  * untouched.
451                  */
452                 css_get(&h_cg->css);
453                 if (!resv->pages_per_hpage)
454                         resv->pages_per_hpage = pages_per_huge_page(h);
455                 /* pages_per_hpage should be the same for all entries in
456                  * a resv_map.
457                  */
458                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459         } else {
460                 nrg->reservation_counter = NULL;
461                 nrg->css = NULL;
462         }
463 #endif
464 }
465
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469         if (rg->css)
470                 css_put(rg->css);
471 #endif
472 }
473
474 static bool has_same_uncharge_info(struct file_region *rg,
475                                    struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478         return rg->reservation_counter == org->reservation_counter &&
479                rg->css == org->css;
480
481 #else
482         return true;
483 #endif
484 }
485
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488         struct file_region *nrg, *prg;
489
490         prg = list_prev_entry(rg, link);
491         if (&prg->link != &resv->regions && prg->to == rg->from &&
492             has_same_uncharge_info(prg, rg)) {
493                 prg->to = rg->to;
494
495                 list_del(&rg->link);
496                 put_uncharge_info(rg);
497                 kfree(rg);
498
499                 rg = prg;
500         }
501
502         nrg = list_next_entry(rg, link);
503         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504             has_same_uncharge_info(nrg, rg)) {
505                 nrg->from = rg->from;
506
507                 list_del(&rg->link);
508                 put_uncharge_info(rg);
509                 kfree(rg);
510         }
511 }
512
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
516                      long *regions_needed)
517 {
518         struct file_region *nrg;
519
520         if (!regions_needed) {
521                 nrg = get_file_region_entry_from_cache(map, from, to);
522                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523                 list_add(&nrg->link, rg);
524                 coalesce_file_region(map, nrg);
525         } else
526                 *regions_needed += 1;
527
528         return to - from;
529 }
530
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540                                      struct hugetlb_cgroup *h_cg,
541                                      struct hstate *h, long *regions_needed)
542 {
543         long add = 0;
544         struct list_head *head = &resv->regions;
545         long last_accounted_offset = f;
546         struct file_region *iter, *trg = NULL;
547         struct list_head *rg = NULL;
548
549         if (regions_needed)
550                 *regions_needed = 0;
551
552         /* In this loop, we essentially handle an entry for the range
553          * [last_accounted_offset, iter->from), at every iteration, with some
554          * bounds checking.
555          */
556         list_for_each_entry_safe(iter, trg, head, link) {
557                 /* Skip irrelevant regions that start before our range. */
558                 if (iter->from < f) {
559                         /* If this region ends after the last accounted offset,
560                          * then we need to update last_accounted_offset.
561                          */
562                         if (iter->to > last_accounted_offset)
563                                 last_accounted_offset = iter->to;
564                         continue;
565                 }
566
567                 /* When we find a region that starts beyond our range, we've
568                  * finished.
569                  */
570                 if (iter->from >= t) {
571                         rg = iter->link.prev;
572                         break;
573                 }
574
575                 /* Add an entry for last_accounted_offset -> iter->from, and
576                  * update last_accounted_offset.
577                  */
578                 if (iter->from > last_accounted_offset)
579                         add += hugetlb_resv_map_add(resv, iter->link.prev,
580                                                     last_accounted_offset,
581                                                     iter->from, h, h_cg,
582                                                     regions_needed);
583
584                 last_accounted_offset = iter->to;
585         }
586
587         /* Handle the case where our range extends beyond
588          * last_accounted_offset.
589          */
590         if (!rg)
591                 rg = head->prev;
592         if (last_accounted_offset < t)
593                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594                                             t, h, h_cg, regions_needed);
595
596         return add;
597 }
598
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602                                         int regions_needed)
603         __must_hold(&resv->lock)
604 {
605         LIST_HEAD(allocated_regions);
606         int to_allocate = 0, i = 0;
607         struct file_region *trg = NULL, *rg = NULL;
608
609         VM_BUG_ON(regions_needed < 0);
610
611         /*
612          * Check for sufficient descriptors in the cache to accommodate
613          * the number of in progress add operations plus regions_needed.
614          *
615          * This is a while loop because when we drop the lock, some other call
616          * to region_add or region_del may have consumed some region_entries,
617          * so we keep looping here until we finally have enough entries for
618          * (adds_in_progress + regions_needed).
619          */
620         while (resv->region_cache_count <
621                (resv->adds_in_progress + regions_needed)) {
622                 to_allocate = resv->adds_in_progress + regions_needed -
623                               resv->region_cache_count;
624
625                 /* At this point, we should have enough entries in the cache
626                  * for all the existing adds_in_progress. We should only be
627                  * needing to allocate for regions_needed.
628                  */
629                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631                 spin_unlock(&resv->lock);
632                 for (i = 0; i < to_allocate; i++) {
633                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634                         if (!trg)
635                                 goto out_of_memory;
636                         list_add(&trg->link, &allocated_regions);
637                 }
638
639                 spin_lock(&resv->lock);
640
641                 list_splice(&allocated_regions, &resv->region_cache);
642                 resv->region_cache_count += to_allocate;
643         }
644
645         return 0;
646
647 out_of_memory:
648         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649                 list_del(&rg->link);
650                 kfree(rg);
651         }
652         return -ENOMEM;
653 }
654
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673                        long in_regions_needed, struct hstate *h,
674                        struct hugetlb_cgroup *h_cg)
675 {
676         long add = 0, actual_regions_needed = 0;
677
678         spin_lock(&resv->lock);
679 retry:
680
681         /* Count how many regions are actually needed to execute this add. */
682         add_reservation_in_range(resv, f, t, NULL, NULL,
683                                  &actual_regions_needed);
684
685         /*
686          * Check for sufficient descriptors in the cache to accommodate
687          * this add operation. Note that actual_regions_needed may be greater
688          * than in_regions_needed, as the resv_map may have been modified since
689          * the region_chg call. In this case, we need to make sure that we
690          * allocate extra entries, such that we have enough for all the
691          * existing adds_in_progress, plus the excess needed for this
692          * operation.
693          */
694         if (actual_regions_needed > in_regions_needed &&
695             resv->region_cache_count <
696                     resv->adds_in_progress +
697                             (actual_regions_needed - in_regions_needed)) {
698                 /* region_add operation of range 1 should never need to
699                  * allocate file_region entries.
700                  */
701                 VM_BUG_ON(t - f <= 1);
702
703                 if (allocate_file_region_entries(
704                             resv, actual_regions_needed - in_regions_needed)) {
705                         return -ENOMEM;
706                 }
707
708                 goto retry;
709         }
710
711         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713         resv->adds_in_progress -= in_regions_needed;
714
715         spin_unlock(&resv->lock);
716         return add;
717 }
718
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740                        long *out_regions_needed)
741 {
742         long chg = 0;
743
744         spin_lock(&resv->lock);
745
746         /* Count how many hugepages in this range are NOT represented. */
747         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748                                        out_regions_needed);
749
750         if (*out_regions_needed == 0)
751                 *out_regions_needed = 1;
752
753         if (allocate_file_region_entries(resv, *out_regions_needed))
754                 return -ENOMEM;
755
756         resv->adds_in_progress += *out_regions_needed;
757
758         spin_unlock(&resv->lock);
759         return chg;
760 }
761
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776                          long regions_needed)
777 {
778         spin_lock(&resv->lock);
779         VM_BUG_ON(!resv->region_cache_count);
780         resv->adds_in_progress -= regions_needed;
781         spin_unlock(&resv->lock);
782 }
783
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800         struct list_head *head = &resv->regions;
801         struct file_region *rg, *trg;
802         struct file_region *nrg = NULL;
803         long del = 0;
804
805 retry:
806         spin_lock(&resv->lock);
807         list_for_each_entry_safe(rg, trg, head, link) {
808                 /*
809                  * Skip regions before the range to be deleted.  file_region
810                  * ranges are normally of the form [from, to).  However, there
811                  * may be a "placeholder" entry in the map which is of the form
812                  * (from, to) with from == to.  Check for placeholder entries
813                  * at the beginning of the range to be deleted.
814                  */
815                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816                         continue;
817
818                 if (rg->from >= t)
819                         break;
820
821                 if (f > rg->from && t < rg->to) { /* Must split region */
822                         /*
823                          * Check for an entry in the cache before dropping
824                          * lock and attempting allocation.
825                          */
826                         if (!nrg &&
827                             resv->region_cache_count > resv->adds_in_progress) {
828                                 nrg = list_first_entry(&resv->region_cache,
829                                                         struct file_region,
830                                                         link);
831                                 list_del(&nrg->link);
832                                 resv->region_cache_count--;
833                         }
834
835                         if (!nrg) {
836                                 spin_unlock(&resv->lock);
837                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838                                 if (!nrg)
839                                         return -ENOMEM;
840                                 goto retry;
841                         }
842
843                         del += t - f;
844                         hugetlb_cgroup_uncharge_file_region(
845                                 resv, rg, t - f, false);
846
847                         /* New entry for end of split region */
848                         nrg->from = t;
849                         nrg->to = rg->to;
850
851                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853                         INIT_LIST_HEAD(&nrg->link);
854
855                         /* Original entry is trimmed */
856                         rg->to = f;
857
858                         list_add(&nrg->link, &rg->link);
859                         nrg = NULL;
860                         break;
861                 }
862
863                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864                         del += rg->to - rg->from;
865                         hugetlb_cgroup_uncharge_file_region(resv, rg,
866                                                             rg->to - rg->from, true);
867                         list_del(&rg->link);
868                         kfree(rg);
869                         continue;
870                 }
871
872                 if (f <= rg->from) {    /* Trim beginning of region */
873                         hugetlb_cgroup_uncharge_file_region(resv, rg,
874                                                             t - rg->from, false);
875
876                         del += t - rg->from;
877                         rg->from = t;
878                 } else {                /* Trim end of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             rg->to - f, false);
881
882                         del += rg->to - f;
883                         rg->to = f;
884                 }
885         }
886
887         spin_unlock(&resv->lock);
888         kfree(nrg);
889         return del;
890 }
891
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903         struct hugepage_subpool *spool = subpool_inode(inode);
904         long rsv_adjust;
905         bool reserved = false;
906
907         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908         if (rsv_adjust > 0) {
909                 struct hstate *h = hstate_inode(inode);
910
911                 if (!hugetlb_acct_memory(h, 1))
912                         reserved = true;
913         } else if (!rsv_adjust) {
914                 reserved = true;
915         }
916
917         if (!reserved)
918                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927         struct list_head *head = &resv->regions;
928         struct file_region *rg;
929         long chg = 0;
930
931         spin_lock(&resv->lock);
932         /* Locate each segment we overlap with, and count that overlap. */
933         list_for_each_entry(rg, head, link) {
934                 long seg_from;
935                 long seg_to;
936
937                 if (rg->to <= f)
938                         continue;
939                 if (rg->from >= t)
940                         break;
941
942                 seg_from = max(rg->from, f);
943                 seg_to = min(rg->to, t);
944
945                 chg += seg_to - seg_from;
946         }
947         spin_unlock(&resv->lock);
948
949         return chg;
950 }
951
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957                         struct vm_area_struct *vma, unsigned long address)
958 {
959         return ((address - vma->vm_start) >> huge_page_shift(h)) +
960                         (vma->vm_pgoff >> huge_page_order(h));
961 }
962
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964                                      unsigned long address)
965 {
966         return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976         if (vma->vm_ops && vma->vm_ops->pagesize)
977                 return vma->vm_ops->pagesize(vma);
978         return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990         return vma_kernel_pagesize(vma);
991 }
992
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023         return (unsigned long)vma->vm_private_data;
1024 }
1025
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027                                                         unsigned long value)
1028 {
1029         vma->vm_private_data = (void *)value;
1030 }
1031
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034                                           struct hugetlb_cgroup *h_cg,
1035                                           struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038         if (!h_cg || !h) {
1039                 resv_map->reservation_counter = NULL;
1040                 resv_map->pages_per_hpage = 0;
1041                 resv_map->css = NULL;
1042         } else {
1043                 resv_map->reservation_counter =
1044                         &h_cg->rsvd_hugepage[hstate_index(h)];
1045                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046                 resv_map->css = &h_cg->css;
1047         }
1048 #endif
1049 }
1050
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056         if (!resv_map || !rg) {
1057                 kfree(resv_map);
1058                 kfree(rg);
1059                 return NULL;
1060         }
1061
1062         kref_init(&resv_map->refs);
1063         spin_lock_init(&resv_map->lock);
1064         INIT_LIST_HEAD(&resv_map->regions);
1065
1066         resv_map->adds_in_progress = 0;
1067         /*
1068          * Initialize these to 0. On shared mappings, 0's here indicate these
1069          * fields don't do cgroup accounting. On private mappings, these will be
1070          * re-initialized to the proper values, to indicate that hugetlb cgroup
1071          * reservations are to be un-charged from here.
1072          */
1073         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075         INIT_LIST_HEAD(&resv_map->region_cache);
1076         list_add(&rg->link, &resv_map->region_cache);
1077         resv_map->region_cache_count = 1;
1078
1079         return resv_map;
1080 }
1081
1082 void resv_map_release(struct kref *ref)
1083 {
1084         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085         struct list_head *head = &resv_map->region_cache;
1086         struct file_region *rg, *trg;
1087
1088         /* Clear out any active regions before we release the map. */
1089         region_del(resv_map, 0, LONG_MAX);
1090
1091         /* ... and any entries left in the cache */
1092         list_for_each_entry_safe(rg, trg, head, link) {
1093                 list_del(&rg->link);
1094                 kfree(rg);
1095         }
1096
1097         VM_BUG_ON(resv_map->adds_in_progress);
1098
1099         kfree(resv_map);
1100 }
1101
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104         /*
1105          * At inode evict time, i_mapping may not point to the original
1106          * address space within the inode.  This original address space
1107          * contains the pointer to the resv_map.  So, always use the
1108          * address space embedded within the inode.
1109          * The VERY common case is inode->mapping == &inode->i_data but,
1110          * this may not be true for device special inodes.
1111          */
1112         return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118         if (vma->vm_flags & VM_MAYSHARE) {
1119                 struct address_space *mapping = vma->vm_file->f_mapping;
1120                 struct inode *inode = mapping->host;
1121
1122                 return inode_resv_map(inode);
1123
1124         } else {
1125                 return (struct resv_map *)(get_vma_private_data(vma) &
1126                                                         ~HPAGE_RESV_MASK);
1127         }
1128 }
1129
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135         set_vma_private_data(vma, (get_vma_private_data(vma) &
1136                                 HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151         return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         /*
1158          * Clear vm_private_data
1159          * - For shared mappings this is a per-vma semaphore that may be
1160          *   allocated in a subsequent call to hugetlb_vm_op_open.
1161          *   Before clearing, make sure pointer is not associated with vma
1162          *   as this will leak the structure.  This is the case when called
1163          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164          *   been called to allocate a new structure.
1165          * - For MAP_PRIVATE mappings, this is the reserve map which does
1166          *   not apply to children.  Faults generated by the children are
1167          *   not guaranteed to succeed, even if read-only.
1168          */
1169         if (vma->vm_flags & VM_MAYSHARE) {
1170                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172                 if (vma_lock && vma_lock->vma != vma)
1173                         vma->vm_private_data = NULL;
1174         } else
1175                 vma->vm_private_data = NULL;
1176 }
1177
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187         /*
1188          * Clear the old hugetlb private page reservation.
1189          * It has already been transferred to new_vma.
1190          *
1191          * During a mremap() operation of a hugetlb vma we call move_vma()
1192          * which copies vma into new_vma and unmaps vma. After the copy
1193          * operation both new_vma and vma share a reference to the resv_map
1194          * struct, and at that point vma is about to be unmapped. We don't
1195          * want to return the reservation to the pool at unmap of vma because
1196          * the reservation still lives on in new_vma, so simply decrement the
1197          * ref here and remove the resv_map reference from this vma.
1198          */
1199         struct resv_map *reservations = vma_resv_map(vma);
1200
1201         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203                 kref_put(&reservations->refs, resv_map_release);
1204         }
1205
1206         hugetlb_dup_vma_private(vma);
1207 }
1208
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212         if (vma->vm_flags & VM_NORESERVE) {
1213                 /*
1214                  * This address is already reserved by other process(chg == 0),
1215                  * so, we should decrement reserved count. Without decrementing,
1216                  * reserve count remains after releasing inode, because this
1217                  * allocated page will go into page cache and is regarded as
1218                  * coming from reserved pool in releasing step.  Currently, we
1219                  * don't have any other solution to deal with this situation
1220                  * properly, so add work-around here.
1221                  */
1222                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223                         return true;
1224                 else
1225                         return false;
1226         }
1227
1228         /* Shared mappings always use reserves */
1229         if (vma->vm_flags & VM_MAYSHARE) {
1230                 /*
1231                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232                  * be a region map for all pages.  The only situation where
1233                  * there is no region map is if a hole was punched via
1234                  * fallocate.  In this case, there really are no reserves to
1235                  * use.  This situation is indicated if chg != 0.
1236                  */
1237                 if (chg)
1238                         return false;
1239                 else
1240                         return true;
1241         }
1242
1243         /*
1244          * Only the process that called mmap() has reserves for
1245          * private mappings.
1246          */
1247         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248                 /*
1249                  * Like the shared case above, a hole punch or truncate
1250                  * could have been performed on the private mapping.
1251                  * Examine the value of chg to determine if reserves
1252                  * actually exist or were previously consumed.
1253                  * Very Subtle - The value of chg comes from a previous
1254                  * call to vma_needs_reserves().  The reserve map for
1255                  * private mappings has different (opposite) semantics
1256                  * than that of shared mappings.  vma_needs_reserves()
1257                  * has already taken this difference in semantics into
1258                  * account.  Therefore, the meaning of chg is the same
1259                  * as in the shared case above.  Code could easily be
1260                  * combined, but keeping it separate draws attention to
1261                  * subtle differences.
1262                  */
1263                 if (chg)
1264                         return false;
1265                 else
1266                         return true;
1267         }
1268
1269         return false;
1270 }
1271
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274         int nid = folio_nid(folio);
1275
1276         lockdep_assert_held(&hugetlb_lock);
1277         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280         h->free_huge_pages++;
1281         h->free_huge_pages_node[nid]++;
1282         folio_set_hugetlb_freed(folio);
1283 }
1284
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286                                                                 int nid)
1287 {
1288         struct folio *folio;
1289         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290
1291         lockdep_assert_held(&hugetlb_lock);
1292         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293                 if (pin && !folio_is_longterm_pinnable(folio))
1294                         continue;
1295
1296                 if (folio_test_hwpoison(folio))
1297                         continue;
1298
1299                 list_move(&folio->lru, &h->hugepage_activelist);
1300                 folio_ref_unfreeze(folio, 1);
1301                 folio_clear_hugetlb_freed(folio);
1302                 h->free_huge_pages--;
1303                 h->free_huge_pages_node[nid]--;
1304                 return folio;
1305         }
1306
1307         return NULL;
1308 }
1309
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311                                                         int nid, nodemask_t *nmask)
1312 {
1313         unsigned int cpuset_mems_cookie;
1314         struct zonelist *zonelist;
1315         struct zone *zone;
1316         struct zoneref *z;
1317         int node = NUMA_NO_NODE;
1318
1319         zonelist = node_zonelist(nid, gfp_mask);
1320
1321 retry_cpuset:
1322         cpuset_mems_cookie = read_mems_allowed_begin();
1323         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324                 struct folio *folio;
1325
1326                 if (!cpuset_zone_allowed(zone, gfp_mask))
1327                         continue;
1328                 /*
1329                  * no need to ask again on the same node. Pool is node rather than
1330                  * zone aware
1331                  */
1332                 if (zone_to_nid(zone) == node)
1333                         continue;
1334                 node = zone_to_nid(zone);
1335
1336                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1337                 if (folio)
1338                         return folio;
1339         }
1340         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341                 goto retry_cpuset;
1342
1343         return NULL;
1344 }
1345
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348         return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352                                 struct vm_area_struct *vma,
1353                                 unsigned long address, int avoid_reserve,
1354                                 long chg)
1355 {
1356         struct folio *folio = NULL;
1357         struct mempolicy *mpol;
1358         gfp_t gfp_mask;
1359         nodemask_t *nodemask;
1360         int nid;
1361
1362         /*
1363          * A child process with MAP_PRIVATE mappings created by their parent
1364          * have no page reserves. This check ensures that reservations are
1365          * not "stolen". The child may still get SIGKILLed
1366          */
1367         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368                 goto err;
1369
1370         /* If reserves cannot be used, ensure enough pages are in the pool */
1371         if (avoid_reserve && !available_huge_pages(h))
1372                 goto err;
1373
1374         gfp_mask = htlb_alloc_mask(h);
1375         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376
1377         if (mpol_is_preferred_many(mpol)) {
1378                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379                                                         nid, nodemask);
1380
1381                 /* Fallback to all nodes if page==NULL */
1382                 nodemask = NULL;
1383         }
1384
1385         if (!folio)
1386                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387                                                         nid, nodemask);
1388
1389         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390                 folio_set_hugetlb_restore_reserve(folio);
1391                 h->resv_huge_pages--;
1392         }
1393
1394         mpol_cond_put(mpol);
1395         return folio;
1396
1397 err:
1398         return NULL;
1399 }
1400
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410         nid = next_node_in(nid, *nodes_allowed);
1411         VM_BUG_ON(nid >= MAX_NUMNODES);
1412
1413         return nid;
1414 }
1415
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418         if (!node_isset(nid, *nodes_allowed))
1419                 nid = next_node_allowed(nid, nodes_allowed);
1420         return nid;
1421 }
1422
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430                                         nodemask_t *nodes_allowed)
1431 {
1432         int nid;
1433
1434         VM_BUG_ON(!nodes_allowed);
1435
1436         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438
1439         return nid;
1440 }
1441
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450         int nid;
1451
1452         VM_BUG_ON(!nodes_allowed);
1453
1454         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456
1457         return nid;
1458 }
1459
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1461         for (nr_nodes = nodes_weight(*mask);                            \
1462                 nr_nodes > 0 &&                                         \
1463                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1464                 nr_nodes--)
1465
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1467         for (nr_nodes = nodes_weight(*mask);                            \
1468                 nr_nodes > 0 &&                                         \
1469                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1470                 nr_nodes--)
1471
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474                                         unsigned int order, bool demote)
1475 {
1476         int i;
1477         int nr_pages = 1 << order;
1478         struct page *p;
1479
1480         atomic_set(&folio->_entire_mapcount, 0);
1481         atomic_set(&folio->_nr_pages_mapped, 0);
1482         atomic_set(&folio->_pincount, 0);
1483
1484         for (i = 1; i < nr_pages; i++) {
1485                 p = folio_page(folio, i);
1486                 p->mapping = NULL;
1487                 clear_compound_head(p);
1488                 if (!demote)
1489                         set_page_refcounted(p);
1490         }
1491
1492         folio_set_order(folio, 0);
1493         __folio_clear_head(folio);
1494 }
1495
1496 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497                                         unsigned int order)
1498 {
1499         __destroy_compound_gigantic_folio(folio, order, true);
1500 }
1501
1502 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503 static void destroy_compound_gigantic_folio(struct folio *folio,
1504                                         unsigned int order)
1505 {
1506         __destroy_compound_gigantic_folio(folio, order, false);
1507 }
1508
1509 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510 {
1511         /*
1512          * If the page isn't allocated using the cma allocator,
1513          * cma_release() returns false.
1514          */
1515 #ifdef CONFIG_CMA
1516         int nid = folio_nid(folio);
1517
1518         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519                 return;
1520 #endif
1521
1522         free_contig_range(folio_pfn(folio), 1 << order);
1523 }
1524
1525 #ifdef CONFIG_CONTIG_ALLOC
1526 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527                 int nid, nodemask_t *nodemask)
1528 {
1529         struct page *page;
1530         unsigned long nr_pages = pages_per_huge_page(h);
1531         if (nid == NUMA_NO_NODE)
1532                 nid = numa_mem_id();
1533
1534 #ifdef CONFIG_CMA
1535         {
1536                 int node;
1537
1538                 if (hugetlb_cma[nid]) {
1539                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540                                         huge_page_order(h), true);
1541                         if (page)
1542                                 return page_folio(page);
1543                 }
1544
1545                 if (!(gfp_mask & __GFP_THISNODE)) {
1546                         for_each_node_mask(node, *nodemask) {
1547                                 if (node == nid || !hugetlb_cma[node])
1548                                         continue;
1549
1550                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551                                                 huge_page_order(h), true);
1552                                 if (page)
1553                                         return page_folio(page);
1554                         }
1555                 }
1556         }
1557 #endif
1558
1559         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560         return page ? page_folio(page) : NULL;
1561 }
1562
1563 #else /* !CONFIG_CONTIG_ALLOC */
1564 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565                                         int nid, nodemask_t *nodemask)
1566 {
1567         return NULL;
1568 }
1569 #endif /* CONFIG_CONTIG_ALLOC */
1570
1571 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573                                         int nid, nodemask_t *nodemask)
1574 {
1575         return NULL;
1576 }
1577 static inline void free_gigantic_folio(struct folio *folio,
1578                                                 unsigned int order) { }
1579 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580                                                 unsigned int order) { }
1581 #endif
1582
1583 /*
1584  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585  * as just a compound page.
1586  *
1587  * A reference is held on the folio, except in the case of demote.
1588  *
1589  * Must be called with hugetlb lock held.
1590  */
1591 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592                                                         bool adjust_surplus,
1593                                                         bool demote)
1594 {
1595         int nid = folio_nid(folio);
1596
1597         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599
1600         lockdep_assert_held(&hugetlb_lock);
1601         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1602                 return;
1603
1604         list_del(&folio->lru);
1605
1606         if (folio_test_hugetlb_freed(folio)) {
1607                 h->free_huge_pages--;
1608                 h->free_huge_pages_node[nid]--;
1609         }
1610         if (adjust_surplus) {
1611                 h->surplus_huge_pages--;
1612                 h->surplus_huge_pages_node[nid]--;
1613         }
1614
1615         /*
1616          * Very subtle
1617          *
1618          * For non-gigantic pages set the destructor to the normal compound
1619          * page dtor.  This is needed in case someone takes an additional
1620          * temporary ref to the page, and freeing is delayed until they drop
1621          * their reference.
1622          *
1623          * For gigantic pages set the destructor to the null dtor.  This
1624          * destructor will never be called.  Before freeing the gigantic
1625          * page destroy_compound_gigantic_folio will turn the folio into a
1626          * simple group of pages.  After this the destructor does not
1627          * apply.
1628          *
1629          * This handles the case where more than one ref is held when and
1630          * after update_and_free_hugetlb_folio is called.
1631          *
1632          * In the case of demote we do not ref count the page as it will soon
1633          * be turned into a page of smaller size.
1634          */
1635         if (!demote)
1636                 folio_ref_unfreeze(folio, 1);
1637         if (hstate_is_gigantic(h))
1638                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639         else
1640                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1641
1642         h->nr_huge_pages--;
1643         h->nr_huge_pages_node[nid]--;
1644 }
1645
1646 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647                                                         bool adjust_surplus)
1648 {
1649         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1650 }
1651
1652 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653                                                         bool adjust_surplus)
1654 {
1655         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1656 }
1657
1658 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659                              bool adjust_surplus)
1660 {
1661         int zeroed;
1662         int nid = folio_nid(folio);
1663
1664         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665
1666         lockdep_assert_held(&hugetlb_lock);
1667
1668         INIT_LIST_HEAD(&folio->lru);
1669         h->nr_huge_pages++;
1670         h->nr_huge_pages_node[nid]++;
1671
1672         if (adjust_surplus) {
1673                 h->surplus_huge_pages++;
1674                 h->surplus_huge_pages_node[nid]++;
1675         }
1676
1677         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678         folio_change_private(folio, NULL);
1679         /*
1680          * We have to set hugetlb_vmemmap_optimized again as above
1681          * folio_change_private(folio, NULL) cleared it.
1682          */
1683         folio_set_hugetlb_vmemmap_optimized(folio);
1684
1685         /*
1686          * This folio is about to be managed by the hugetlb allocator and
1687          * should have no users.  Drop our reference, and check for others
1688          * just in case.
1689          */
1690         zeroed = folio_put_testzero(folio);
1691         if (unlikely(!zeroed))
1692                 /*
1693                  * It is VERY unlikely soneone else has taken a ref on
1694                  * the page.  In this case, we simply return as the
1695                  * hugetlb destructor (free_huge_page) will be called
1696                  * when this other ref is dropped.
1697                  */
1698                 return;
1699
1700         arch_clear_hugepage_flags(&folio->page);
1701         enqueue_hugetlb_folio(h, folio);
1702 }
1703
1704 static void __update_and_free_hugetlb_folio(struct hstate *h,
1705                                                 struct folio *folio)
1706 {
1707         int i;
1708         struct page *subpage;
1709
1710         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711                 return;
1712
1713         /*
1714          * If we don't know which subpages are hwpoisoned, we can't free
1715          * the hugepage, so it's leaked intentionally.
1716          */
1717         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1718                 return;
1719
1720         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721                 spin_lock_irq(&hugetlb_lock);
1722                 /*
1723                  * If we cannot allocate vmemmap pages, just refuse to free the
1724                  * page and put the page back on the hugetlb free list and treat
1725                  * as a surplus page.
1726                  */
1727                 add_hugetlb_folio(h, folio, true);
1728                 spin_unlock_irq(&hugetlb_lock);
1729                 return;
1730         }
1731
1732         /*
1733          * Move PageHWPoison flag from head page to the raw error pages,
1734          * which makes any healthy subpages reusable.
1735          */
1736         if (unlikely(folio_test_hwpoison(folio)))
1737                 folio_clear_hugetlb_hwpoison(folio);
1738
1739         for (i = 0; i < pages_per_huge_page(h); i++) {
1740                 subpage = folio_page(folio, i);
1741                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742                                 1 << PG_referenced | 1 << PG_dirty |
1743                                 1 << PG_active | 1 << PG_private |
1744                                 1 << PG_writeback);
1745         }
1746
1747         /*
1748          * Non-gigantic pages demoted from CMA allocated gigantic pages
1749          * need to be given back to CMA in free_gigantic_folio.
1750          */
1751         if (hstate_is_gigantic(h) ||
1752             hugetlb_cma_folio(folio, huge_page_order(h))) {
1753                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754                 free_gigantic_folio(folio, huge_page_order(h));
1755         } else {
1756                 __free_pages(&folio->page, huge_page_order(h));
1757         }
1758 }
1759
1760 /*
1761  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764  * the vmemmap pages.
1765  *
1766  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767  * freed and frees them one-by-one. As the page->mapping pointer is going
1768  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769  * structure of a lockless linked list of huge pages to be freed.
1770  */
1771 static LLIST_HEAD(hpage_freelist);
1772
1773 static void free_hpage_workfn(struct work_struct *work)
1774 {
1775         struct llist_node *node;
1776
1777         node = llist_del_all(&hpage_freelist);
1778
1779         while (node) {
1780                 struct page *page;
1781                 struct hstate *h;
1782
1783                 page = container_of((struct address_space **)node,
1784                                      struct page, mapping);
1785                 node = node->next;
1786                 page->mapping = NULL;
1787                 /*
1788                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789                  * is going to trigger because a previous call to
1790                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1791                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1792                  * directly.
1793                  */
1794                 h = size_to_hstate(page_size(page));
1795
1796                 __update_and_free_hugetlb_folio(h, page_folio(page));
1797
1798                 cond_resched();
1799         }
1800 }
1801 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802
1803 static inline void flush_free_hpage_work(struct hstate *h)
1804 {
1805         if (hugetlb_vmemmap_optimizable(h))
1806                 flush_work(&free_hpage_work);
1807 }
1808
1809 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810                                  bool atomic)
1811 {
1812         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813                 __update_and_free_hugetlb_folio(h, folio);
1814                 return;
1815         }
1816
1817         /*
1818          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819          *
1820          * Only call schedule_work() if hpage_freelist is previously
1821          * empty. Otherwise, schedule_work() had been called but the workfn
1822          * hasn't retrieved the list yet.
1823          */
1824         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825                 schedule_work(&free_hpage_work);
1826 }
1827
1828 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829 {
1830         struct page *page, *t_page;
1831         struct folio *folio;
1832
1833         list_for_each_entry_safe(page, t_page, list, lru) {
1834                 folio = page_folio(page);
1835                 update_and_free_hugetlb_folio(h, folio, false);
1836                 cond_resched();
1837         }
1838 }
1839
1840 struct hstate *size_to_hstate(unsigned long size)
1841 {
1842         struct hstate *h;
1843
1844         for_each_hstate(h) {
1845                 if (huge_page_size(h) == size)
1846                         return h;
1847         }
1848         return NULL;
1849 }
1850
1851 void free_huge_page(struct page *page)
1852 {
1853         /*
1854          * Can't pass hstate in here because it is called from the
1855          * compound page destructor.
1856          */
1857         struct folio *folio = page_folio(page);
1858         struct hstate *h = folio_hstate(folio);
1859         int nid = folio_nid(folio);
1860         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861         bool restore_reserve;
1862         unsigned long flags;
1863
1864         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866
1867         hugetlb_set_folio_subpool(folio, NULL);
1868         if (folio_test_anon(folio))
1869                 __ClearPageAnonExclusive(&folio->page);
1870         folio->mapping = NULL;
1871         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872         folio_clear_hugetlb_restore_reserve(folio);
1873
1874         /*
1875          * If HPageRestoreReserve was set on page, page allocation consumed a
1876          * reservation.  If the page was associated with a subpool, there
1877          * would have been a page reserved in the subpool before allocation
1878          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1879          * reservation, do not call hugepage_subpool_put_pages() as this will
1880          * remove the reserved page from the subpool.
1881          */
1882         if (!restore_reserve) {
1883                 /*
1884                  * A return code of zero implies that the subpool will be
1885                  * under its minimum size if the reservation is not restored
1886                  * after page is free.  Therefore, force restore_reserve
1887                  * operation.
1888                  */
1889                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1890                         restore_reserve = true;
1891         }
1892
1893         spin_lock_irqsave(&hugetlb_lock, flags);
1894         folio_clear_hugetlb_migratable(folio);
1895         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896                                      pages_per_huge_page(h), folio);
1897         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898                                           pages_per_huge_page(h), folio);
1899         if (restore_reserve)
1900                 h->resv_huge_pages++;
1901
1902         if (folio_test_hugetlb_temporary(folio)) {
1903                 remove_hugetlb_folio(h, folio, false);
1904                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1905                 update_and_free_hugetlb_folio(h, folio, true);
1906         } else if (h->surplus_huge_pages_node[nid]) {
1907                 /* remove the page from active list */
1908                 remove_hugetlb_folio(h, folio, true);
1909                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1910                 update_and_free_hugetlb_folio(h, folio, true);
1911         } else {
1912                 arch_clear_hugepage_flags(page);
1913                 enqueue_hugetlb_folio(h, folio);
1914                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1915         }
1916 }
1917
1918 /*
1919  * Must be called with the hugetlb lock held
1920  */
1921 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922 {
1923         lockdep_assert_held(&hugetlb_lock);
1924         h->nr_huge_pages++;
1925         h->nr_huge_pages_node[nid]++;
1926 }
1927
1928 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929 {
1930         hugetlb_vmemmap_optimize(h, &folio->page);
1931         INIT_LIST_HEAD(&folio->lru);
1932         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933         hugetlb_set_folio_subpool(folio, NULL);
1934         set_hugetlb_cgroup(folio, NULL);
1935         set_hugetlb_cgroup_rsvd(folio, NULL);
1936 }
1937
1938 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939 {
1940         __prep_new_hugetlb_folio(h, folio);
1941         spin_lock_irq(&hugetlb_lock);
1942         __prep_account_new_huge_page(h, nid);
1943         spin_unlock_irq(&hugetlb_lock);
1944 }
1945
1946 static bool __prep_compound_gigantic_folio(struct folio *folio,
1947                                         unsigned int order, bool demote)
1948 {
1949         int i, j;
1950         int nr_pages = 1 << order;
1951         struct page *p;
1952
1953         __folio_clear_reserved(folio);
1954         __folio_set_head(folio);
1955         /* we rely on prep_new_hugetlb_folio to set the destructor */
1956         folio_set_order(folio, order);
1957         for (i = 0; i < nr_pages; i++) {
1958                 p = folio_page(folio, i);
1959
1960                 /*
1961                  * For gigantic hugepages allocated through bootmem at
1962                  * boot, it's safer to be consistent with the not-gigantic
1963                  * hugepages and clear the PG_reserved bit from all tail pages
1964                  * too.  Otherwise drivers using get_user_pages() to access tail
1965                  * pages may get the reference counting wrong if they see
1966                  * PG_reserved set on a tail page (despite the head page not
1967                  * having PG_reserved set).  Enforcing this consistency between
1968                  * head and tail pages allows drivers to optimize away a check
1969                  * on the head page when they need know if put_page() is needed
1970                  * after get_user_pages().
1971                  */
1972                 if (i != 0)     /* head page cleared above */
1973                         __ClearPageReserved(p);
1974                 /*
1975                  * Subtle and very unlikely
1976                  *
1977                  * Gigantic 'page allocators' such as memblock or cma will
1978                  * return a set of pages with each page ref counted.  We need
1979                  * to turn this set of pages into a compound page with tail
1980                  * page ref counts set to zero.  Code such as speculative page
1981                  * cache adding could take a ref on a 'to be' tail page.
1982                  * We need to respect any increased ref count, and only set
1983                  * the ref count to zero if count is currently 1.  If count
1984                  * is not 1, we return an error.  An error return indicates
1985                  * the set of pages can not be converted to a gigantic page.
1986                  * The caller who allocated the pages should then discard the
1987                  * pages using the appropriate free interface.
1988                  *
1989                  * In the case of demote, the ref count will be zero.
1990                  */
1991                 if (!demote) {
1992                         if (!page_ref_freeze(p, 1)) {
1993                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994                                 goto out_error;
1995                         }
1996                 } else {
1997                         VM_BUG_ON_PAGE(page_count(p), p);
1998                 }
1999                 if (i != 0)
2000                         set_compound_head(p, &folio->page);
2001         }
2002         atomic_set(&folio->_entire_mapcount, -1);
2003         atomic_set(&folio->_nr_pages_mapped, 0);
2004         atomic_set(&folio->_pincount, 0);
2005         return true;
2006
2007 out_error:
2008         /* undo page modifications made above */
2009         for (j = 0; j < i; j++) {
2010                 p = folio_page(folio, j);
2011                 if (j != 0)
2012                         clear_compound_head(p);
2013                 set_page_refcounted(p);
2014         }
2015         /* need to clear PG_reserved on remaining tail pages  */
2016         for (; j < nr_pages; j++) {
2017                 p = folio_page(folio, j);
2018                 __ClearPageReserved(p);
2019         }
2020         folio_set_order(folio, 0);
2021         __folio_clear_head(folio);
2022         return false;
2023 }
2024
2025 static bool prep_compound_gigantic_folio(struct folio *folio,
2026                                                         unsigned int order)
2027 {
2028         return __prep_compound_gigantic_folio(folio, order, false);
2029 }
2030
2031 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2032                                                         unsigned int order)
2033 {
2034         return __prep_compound_gigantic_folio(folio, order, true);
2035 }
2036
2037 /*
2038  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2039  * transparent huge pages.  See the PageTransHuge() documentation for more
2040  * details.
2041  */
2042 int PageHuge(struct page *page)
2043 {
2044         struct folio *folio;
2045
2046         if (!PageCompound(page))
2047                 return 0;
2048         folio = page_folio(page);
2049         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2050 }
2051 EXPORT_SYMBOL_GPL(PageHuge);
2052
2053 /*
2054  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2055  * normal or transparent huge pages.
2056  */
2057 int PageHeadHuge(struct page *page_head)
2058 {
2059         struct folio *folio = (struct folio *)page_head;
2060         if (!folio_test_large(folio))
2061                 return 0;
2062
2063         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2064 }
2065 EXPORT_SYMBOL_GPL(PageHeadHuge);
2066
2067 /*
2068  * Find and lock address space (mapping) in write mode.
2069  *
2070  * Upon entry, the page is locked which means that page_mapping() is
2071  * stable.  Due to locking order, we can only trylock_write.  If we can
2072  * not get the lock, simply return NULL to caller.
2073  */
2074 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2075 {
2076         struct address_space *mapping = page_mapping(hpage);
2077
2078         if (!mapping)
2079                 return mapping;
2080
2081         if (i_mmap_trylock_write(mapping))
2082                 return mapping;
2083
2084         return NULL;
2085 }
2086
2087 pgoff_t hugetlb_basepage_index(struct page *page)
2088 {
2089         struct page *page_head = compound_head(page);
2090         pgoff_t index = page_index(page_head);
2091         unsigned long compound_idx;
2092
2093         if (compound_order(page_head) >= MAX_ORDER)
2094                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2095         else
2096                 compound_idx = page - page_head;
2097
2098         return (index << compound_order(page_head)) + compound_idx;
2099 }
2100
2101 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2102                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2103                 nodemask_t *node_alloc_noretry)
2104 {
2105         int order = huge_page_order(h);
2106         struct page *page;
2107         bool alloc_try_hard = true;
2108         bool retry = true;
2109
2110         /*
2111          * By default we always try hard to allocate the page with
2112          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2113          * a loop (to adjust global huge page counts) and previous allocation
2114          * failed, do not continue to try hard on the same node.  Use the
2115          * node_alloc_noretry bitmap to manage this state information.
2116          */
2117         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2118                 alloc_try_hard = false;
2119         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2120         if (alloc_try_hard)
2121                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2122         if (nid == NUMA_NO_NODE)
2123                 nid = numa_mem_id();
2124 retry:
2125         page = __alloc_pages(gfp_mask, order, nid, nmask);
2126
2127         /* Freeze head page */
2128         if (page && !page_ref_freeze(page, 1)) {
2129                 __free_pages(page, order);
2130                 if (retry) {    /* retry once */
2131                         retry = false;
2132                         goto retry;
2133                 }
2134                 /* WOW!  twice in a row. */
2135                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2136                 page = NULL;
2137         }
2138
2139         /*
2140          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2141          * indicates an overall state change.  Clear bit so that we resume
2142          * normal 'try hard' allocations.
2143          */
2144         if (node_alloc_noretry && page && !alloc_try_hard)
2145                 node_clear(nid, *node_alloc_noretry);
2146
2147         /*
2148          * If we tried hard to get a page but failed, set bit so that
2149          * subsequent attempts will not try as hard until there is an
2150          * overall state change.
2151          */
2152         if (node_alloc_noretry && !page && alloc_try_hard)
2153                 node_set(nid, *node_alloc_noretry);
2154
2155         if (!page) {
2156                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2157                 return NULL;
2158         }
2159
2160         __count_vm_event(HTLB_BUDDY_PGALLOC);
2161         return page_folio(page);
2162 }
2163
2164 /*
2165  * Common helper to allocate a fresh hugetlb page. All specific allocators
2166  * should use this function to get new hugetlb pages
2167  *
2168  * Note that returned page is 'frozen':  ref count of head page and all tail
2169  * pages is zero.
2170  */
2171 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2172                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2173                 nodemask_t *node_alloc_noretry)
2174 {
2175         struct folio *folio;
2176         bool retry = false;
2177
2178 retry:
2179         if (hstate_is_gigantic(h))
2180                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2181         else
2182                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2183                                 nid, nmask, node_alloc_noretry);
2184         if (!folio)
2185                 return NULL;
2186         if (hstate_is_gigantic(h)) {
2187                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2188                         /*
2189                          * Rare failure to convert pages to compound page.
2190                          * Free pages and try again - ONCE!
2191                          */
2192                         free_gigantic_folio(folio, huge_page_order(h));
2193                         if (!retry) {
2194                                 retry = true;
2195                                 goto retry;
2196                         }
2197                         return NULL;
2198                 }
2199         }
2200         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2201
2202         return folio;
2203 }
2204
2205 /*
2206  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2207  * manner.
2208  */
2209 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2210                                 nodemask_t *node_alloc_noretry)
2211 {
2212         struct folio *folio;
2213         int nr_nodes, node;
2214         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2215
2216         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2217                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2218                                         nodes_allowed, node_alloc_noretry);
2219                 if (folio) {
2220                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2221                         return 1;
2222                 }
2223         }
2224
2225         return 0;
2226 }
2227
2228 /*
2229  * Remove huge page from pool from next node to free.  Attempt to keep
2230  * persistent huge pages more or less balanced over allowed nodes.
2231  * This routine only 'removes' the hugetlb page.  The caller must make
2232  * an additional call to free the page to low level allocators.
2233  * Called with hugetlb_lock locked.
2234  */
2235 static struct page *remove_pool_huge_page(struct hstate *h,
2236                                                 nodemask_t *nodes_allowed,
2237                                                  bool acct_surplus)
2238 {
2239         int nr_nodes, node;
2240         struct page *page = NULL;
2241         struct folio *folio;
2242
2243         lockdep_assert_held(&hugetlb_lock);
2244         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2245                 /*
2246                  * If we're returning unused surplus pages, only examine
2247                  * nodes with surplus pages.
2248                  */
2249                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2250                     !list_empty(&h->hugepage_freelists[node])) {
2251                         page = list_entry(h->hugepage_freelists[node].next,
2252                                           struct page, lru);
2253                         folio = page_folio(page);
2254                         remove_hugetlb_folio(h, folio, acct_surplus);
2255                         break;
2256                 }
2257         }
2258
2259         return page;
2260 }
2261
2262 /*
2263  * Dissolve a given free hugepage into free buddy pages. This function does
2264  * nothing for in-use hugepages and non-hugepages.
2265  * This function returns values like below:
2266  *
2267  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2268  *           when the system is under memory pressure and the feature of
2269  *           freeing unused vmemmap pages associated with each hugetlb page
2270  *           is enabled.
2271  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2272  *           (allocated or reserved.)
2273  *       0:  successfully dissolved free hugepages or the page is not a
2274  *           hugepage (considered as already dissolved)
2275  */
2276 int dissolve_free_huge_page(struct page *page)
2277 {
2278         int rc = -EBUSY;
2279         struct folio *folio = page_folio(page);
2280
2281 retry:
2282         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2283         if (!folio_test_hugetlb(folio))
2284                 return 0;
2285
2286         spin_lock_irq(&hugetlb_lock);
2287         if (!folio_test_hugetlb(folio)) {
2288                 rc = 0;
2289                 goto out;
2290         }
2291
2292         if (!folio_ref_count(folio)) {
2293                 struct hstate *h = folio_hstate(folio);
2294                 if (!available_huge_pages(h))
2295                         goto out;
2296
2297                 /*
2298                  * We should make sure that the page is already on the free list
2299                  * when it is dissolved.
2300                  */
2301                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2302                         spin_unlock_irq(&hugetlb_lock);
2303                         cond_resched();
2304
2305                         /*
2306                          * Theoretically, we should return -EBUSY when we
2307                          * encounter this race. In fact, we have a chance
2308                          * to successfully dissolve the page if we do a
2309                          * retry. Because the race window is quite small.
2310                          * If we seize this opportunity, it is an optimization
2311                          * for increasing the success rate of dissolving page.
2312                          */
2313                         goto retry;
2314                 }
2315
2316                 remove_hugetlb_folio(h, folio, false);
2317                 h->max_huge_pages--;
2318                 spin_unlock_irq(&hugetlb_lock);
2319
2320                 /*
2321                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2322                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2323                  * free the page if it can not allocate required vmemmap.  We
2324                  * need to adjust max_huge_pages if the page is not freed.
2325                  * Attempt to allocate vmemmmap here so that we can take
2326                  * appropriate action on failure.
2327                  */
2328                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2329                 if (!rc) {
2330                         update_and_free_hugetlb_folio(h, folio, false);
2331                 } else {
2332                         spin_lock_irq(&hugetlb_lock);
2333                         add_hugetlb_folio(h, folio, false);
2334                         h->max_huge_pages++;
2335                         spin_unlock_irq(&hugetlb_lock);
2336                 }
2337
2338                 return rc;
2339         }
2340 out:
2341         spin_unlock_irq(&hugetlb_lock);
2342         return rc;
2343 }
2344
2345 /*
2346  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2347  * make specified memory blocks removable from the system.
2348  * Note that this will dissolve a free gigantic hugepage completely, if any
2349  * part of it lies within the given range.
2350  * Also note that if dissolve_free_huge_page() returns with an error, all
2351  * free hugepages that were dissolved before that error are lost.
2352  */
2353 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2354 {
2355         unsigned long pfn;
2356         struct page *page;
2357         int rc = 0;
2358         unsigned int order;
2359         struct hstate *h;
2360
2361         if (!hugepages_supported())
2362                 return rc;
2363
2364         order = huge_page_order(&default_hstate);
2365         for_each_hstate(h)
2366                 order = min(order, huge_page_order(h));
2367
2368         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2369                 page = pfn_to_page(pfn);
2370                 rc = dissolve_free_huge_page(page);
2371                 if (rc)
2372                         break;
2373         }
2374
2375         return rc;
2376 }
2377
2378 /*
2379  * Allocates a fresh surplus page from the page allocator.
2380  */
2381 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2382                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2383 {
2384         struct folio *folio = NULL;
2385
2386         if (hstate_is_gigantic(h))
2387                 return NULL;
2388
2389         spin_lock_irq(&hugetlb_lock);
2390         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2391                 goto out_unlock;
2392         spin_unlock_irq(&hugetlb_lock);
2393
2394         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2395         if (!folio)
2396                 return NULL;
2397
2398         spin_lock_irq(&hugetlb_lock);
2399         /*
2400          * We could have raced with the pool size change.
2401          * Double check that and simply deallocate the new page
2402          * if we would end up overcommiting the surpluses. Abuse
2403          * temporary page to workaround the nasty free_huge_page
2404          * codeflow
2405          */
2406         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2407                 folio_set_hugetlb_temporary(folio);
2408                 spin_unlock_irq(&hugetlb_lock);
2409                 free_huge_page(&folio->page);
2410                 return NULL;
2411         }
2412
2413         h->surplus_huge_pages++;
2414         h->surplus_huge_pages_node[folio_nid(folio)]++;
2415
2416 out_unlock:
2417         spin_unlock_irq(&hugetlb_lock);
2418
2419         return folio;
2420 }
2421
2422 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2423                                      int nid, nodemask_t *nmask)
2424 {
2425         struct folio *folio;
2426
2427         if (hstate_is_gigantic(h))
2428                 return NULL;
2429
2430         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2431         if (!folio)
2432                 return NULL;
2433
2434         /* fresh huge pages are frozen */
2435         folio_ref_unfreeze(folio, 1);
2436         /*
2437          * We do not account these pages as surplus because they are only
2438          * temporary and will be released properly on the last reference
2439          */
2440         folio_set_hugetlb_temporary(folio);
2441
2442         return folio;
2443 }
2444
2445 /*
2446  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2447  */
2448 static
2449 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2450                 struct vm_area_struct *vma, unsigned long addr)
2451 {
2452         struct folio *folio = NULL;
2453         struct mempolicy *mpol;
2454         gfp_t gfp_mask = htlb_alloc_mask(h);
2455         int nid;
2456         nodemask_t *nodemask;
2457
2458         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2459         if (mpol_is_preferred_many(mpol)) {
2460                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2461
2462                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2463                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2464
2465                 /* Fallback to all nodes if page==NULL */
2466                 nodemask = NULL;
2467         }
2468
2469         if (!folio)
2470                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2471         mpol_cond_put(mpol);
2472         return folio;
2473 }
2474
2475 /* folio migration callback function */
2476 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2477                 nodemask_t *nmask, gfp_t gfp_mask)
2478 {
2479         spin_lock_irq(&hugetlb_lock);
2480         if (available_huge_pages(h)) {
2481                 struct folio *folio;
2482
2483                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2484                                                 preferred_nid, nmask);
2485                 if (folio) {
2486                         spin_unlock_irq(&hugetlb_lock);
2487                         return folio;
2488                 }
2489         }
2490         spin_unlock_irq(&hugetlb_lock);
2491
2492         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2493 }
2494
2495 /* mempolicy aware migration callback */
2496 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2497                 unsigned long address)
2498 {
2499         struct mempolicy *mpol;
2500         nodemask_t *nodemask;
2501         struct folio *folio;
2502         gfp_t gfp_mask;
2503         int node;
2504
2505         gfp_mask = htlb_alloc_mask(h);
2506         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2508         mpol_cond_put(mpol);
2509
2510         return folio;
2511 }
2512
2513 /*
2514  * Increase the hugetlb pool such that it can accommodate a reservation
2515  * of size 'delta'.
2516  */
2517 static int gather_surplus_pages(struct hstate *h, long delta)
2518         __must_hold(&hugetlb_lock)
2519 {
2520         LIST_HEAD(surplus_list);
2521         struct folio *folio;
2522         struct page *page, *tmp;
2523         int ret;
2524         long i;
2525         long needed, allocated;
2526         bool alloc_ok = true;
2527
2528         lockdep_assert_held(&hugetlb_lock);
2529         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2530         if (needed <= 0) {
2531                 h->resv_huge_pages += delta;
2532                 return 0;
2533         }
2534
2535         allocated = 0;
2536
2537         ret = -ENOMEM;
2538 retry:
2539         spin_unlock_irq(&hugetlb_lock);
2540         for (i = 0; i < needed; i++) {
2541                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2542                                 NUMA_NO_NODE, NULL);
2543                 if (!folio) {
2544                         alloc_ok = false;
2545                         break;
2546                 }
2547                 list_add(&folio->lru, &surplus_list);
2548                 cond_resched();
2549         }
2550         allocated += i;
2551
2552         /*
2553          * After retaking hugetlb_lock, we need to recalculate 'needed'
2554          * because either resv_huge_pages or free_huge_pages may have changed.
2555          */
2556         spin_lock_irq(&hugetlb_lock);
2557         needed = (h->resv_huge_pages + delta) -
2558                         (h->free_huge_pages + allocated);
2559         if (needed > 0) {
2560                 if (alloc_ok)
2561                         goto retry;
2562                 /*
2563                  * We were not able to allocate enough pages to
2564                  * satisfy the entire reservation so we free what
2565                  * we've allocated so far.
2566                  */
2567                 goto free;
2568         }
2569         /*
2570          * The surplus_list now contains _at_least_ the number of extra pages
2571          * needed to accommodate the reservation.  Add the appropriate number
2572          * of pages to the hugetlb pool and free the extras back to the buddy
2573          * allocator.  Commit the entire reservation here to prevent another
2574          * process from stealing the pages as they are added to the pool but
2575          * before they are reserved.
2576          */
2577         needed += allocated;
2578         h->resv_huge_pages += delta;
2579         ret = 0;
2580
2581         /* Free the needed pages to the hugetlb pool */
2582         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2583                 if ((--needed) < 0)
2584                         break;
2585                 /* Add the page to the hugetlb allocator */
2586                 enqueue_hugetlb_folio(h, page_folio(page));
2587         }
2588 free:
2589         spin_unlock_irq(&hugetlb_lock);
2590
2591         /*
2592          * Free unnecessary surplus pages to the buddy allocator.
2593          * Pages have no ref count, call free_huge_page directly.
2594          */
2595         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2596                 free_huge_page(page);
2597         spin_lock_irq(&hugetlb_lock);
2598
2599         return ret;
2600 }
2601
2602 /*
2603  * This routine has two main purposes:
2604  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2605  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2606  *    to the associated reservation map.
2607  * 2) Free any unused surplus pages that may have been allocated to satisfy
2608  *    the reservation.  As many as unused_resv_pages may be freed.
2609  */
2610 static void return_unused_surplus_pages(struct hstate *h,
2611                                         unsigned long unused_resv_pages)
2612 {
2613         unsigned long nr_pages;
2614         struct page *page;
2615         LIST_HEAD(page_list);
2616
2617         lockdep_assert_held(&hugetlb_lock);
2618         /* Uncommit the reservation */
2619         h->resv_huge_pages -= unused_resv_pages;
2620
2621         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2622                 goto out;
2623
2624         /*
2625          * Part (or even all) of the reservation could have been backed
2626          * by pre-allocated pages. Only free surplus pages.
2627          */
2628         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2629
2630         /*
2631          * We want to release as many surplus pages as possible, spread
2632          * evenly across all nodes with memory. Iterate across these nodes
2633          * until we can no longer free unreserved surplus pages. This occurs
2634          * when the nodes with surplus pages have no free pages.
2635          * remove_pool_huge_page() will balance the freed pages across the
2636          * on-line nodes with memory and will handle the hstate accounting.
2637          */
2638         while (nr_pages--) {
2639                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2640                 if (!page)
2641                         goto out;
2642
2643                 list_add(&page->lru, &page_list);
2644         }
2645
2646 out:
2647         spin_unlock_irq(&hugetlb_lock);
2648         update_and_free_pages_bulk(h, &page_list);
2649         spin_lock_irq(&hugetlb_lock);
2650 }
2651
2652
2653 /*
2654  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2655  * are used by the huge page allocation routines to manage reservations.
2656  *
2657  * vma_needs_reservation is called to determine if the huge page at addr
2658  * within the vma has an associated reservation.  If a reservation is
2659  * needed, the value 1 is returned.  The caller is then responsible for
2660  * managing the global reservation and subpool usage counts.  After
2661  * the huge page has been allocated, vma_commit_reservation is called
2662  * to add the page to the reservation map.  If the page allocation fails,
2663  * the reservation must be ended instead of committed.  vma_end_reservation
2664  * is called in such cases.
2665  *
2666  * In the normal case, vma_commit_reservation returns the same value
2667  * as the preceding vma_needs_reservation call.  The only time this
2668  * is not the case is if a reserve map was changed between calls.  It
2669  * is the responsibility of the caller to notice the difference and
2670  * take appropriate action.
2671  *
2672  * vma_add_reservation is used in error paths where a reservation must
2673  * be restored when a newly allocated huge page must be freed.  It is
2674  * to be called after calling vma_needs_reservation to determine if a
2675  * reservation exists.
2676  *
2677  * vma_del_reservation is used in error paths where an entry in the reserve
2678  * map was created during huge page allocation and must be removed.  It is to
2679  * be called after calling vma_needs_reservation to determine if a reservation
2680  * exists.
2681  */
2682 enum vma_resv_mode {
2683         VMA_NEEDS_RESV,
2684         VMA_COMMIT_RESV,
2685         VMA_END_RESV,
2686         VMA_ADD_RESV,
2687         VMA_DEL_RESV,
2688 };
2689 static long __vma_reservation_common(struct hstate *h,
2690                                 struct vm_area_struct *vma, unsigned long addr,
2691                                 enum vma_resv_mode mode)
2692 {
2693         struct resv_map *resv;
2694         pgoff_t idx;
2695         long ret;
2696         long dummy_out_regions_needed;
2697
2698         resv = vma_resv_map(vma);
2699         if (!resv)
2700                 return 1;
2701
2702         idx = vma_hugecache_offset(h, vma, addr);
2703         switch (mode) {
2704         case VMA_NEEDS_RESV:
2705                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2706                 /* We assume that vma_reservation_* routines always operate on
2707                  * 1 page, and that adding to resv map a 1 page entry can only
2708                  * ever require 1 region.
2709                  */
2710                 VM_BUG_ON(dummy_out_regions_needed != 1);
2711                 break;
2712         case VMA_COMMIT_RESV:
2713                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2714                 /* region_add calls of range 1 should never fail. */
2715                 VM_BUG_ON(ret < 0);
2716                 break;
2717         case VMA_END_RESV:
2718                 region_abort(resv, idx, idx + 1, 1);
2719                 ret = 0;
2720                 break;
2721         case VMA_ADD_RESV:
2722                 if (vma->vm_flags & VM_MAYSHARE) {
2723                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2724                         /* region_add calls of range 1 should never fail. */
2725                         VM_BUG_ON(ret < 0);
2726                 } else {
2727                         region_abort(resv, idx, idx + 1, 1);
2728                         ret = region_del(resv, idx, idx + 1);
2729                 }
2730                 break;
2731         case VMA_DEL_RESV:
2732                 if (vma->vm_flags & VM_MAYSHARE) {
2733                         region_abort(resv, idx, idx + 1, 1);
2734                         ret = region_del(resv, idx, idx + 1);
2735                 } else {
2736                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2737                         /* region_add calls of range 1 should never fail. */
2738                         VM_BUG_ON(ret < 0);
2739                 }
2740                 break;
2741         default:
2742                 BUG();
2743         }
2744
2745         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2746                 return ret;
2747         /*
2748          * We know private mapping must have HPAGE_RESV_OWNER set.
2749          *
2750          * In most cases, reserves always exist for private mappings.
2751          * However, a file associated with mapping could have been
2752          * hole punched or truncated after reserves were consumed.
2753          * As subsequent fault on such a range will not use reserves.
2754          * Subtle - The reserve map for private mappings has the
2755          * opposite meaning than that of shared mappings.  If NO
2756          * entry is in the reserve map, it means a reservation exists.
2757          * If an entry exists in the reserve map, it means the
2758          * reservation has already been consumed.  As a result, the
2759          * return value of this routine is the opposite of the
2760          * value returned from reserve map manipulation routines above.
2761          */
2762         if (ret > 0)
2763                 return 0;
2764         if (ret == 0)
2765                 return 1;
2766         return ret;
2767 }
2768
2769 static long vma_needs_reservation(struct hstate *h,
2770                         struct vm_area_struct *vma, unsigned long addr)
2771 {
2772         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2773 }
2774
2775 static long vma_commit_reservation(struct hstate *h,
2776                         struct vm_area_struct *vma, unsigned long addr)
2777 {
2778         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2779 }
2780
2781 static void vma_end_reservation(struct hstate *h,
2782                         struct vm_area_struct *vma, unsigned long addr)
2783 {
2784         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2785 }
2786
2787 static long vma_add_reservation(struct hstate *h,
2788                         struct vm_area_struct *vma, unsigned long addr)
2789 {
2790         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2791 }
2792
2793 static long vma_del_reservation(struct hstate *h,
2794                         struct vm_area_struct *vma, unsigned long addr)
2795 {
2796         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2797 }
2798
2799 /*
2800  * This routine is called to restore reservation information on error paths.
2801  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2802  * and the hugetlb mutex should remain held when calling this routine.
2803  *
2804  * It handles two specific cases:
2805  * 1) A reservation was in place and the folio consumed the reservation.
2806  *    hugetlb_restore_reserve is set in the folio.
2807  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2808  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2809  *
2810  * In case 1, free_huge_page later in the error path will increment the
2811  * global reserve count.  But, free_huge_page does not have enough context
2812  * to adjust the reservation map.  This case deals primarily with private
2813  * mappings.  Adjust the reserve map here to be consistent with global
2814  * reserve count adjustments to be made by free_huge_page.  Make sure the
2815  * reserve map indicates there is a reservation present.
2816  *
2817  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2818  */
2819 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2820                         unsigned long address, struct folio *folio)
2821 {
2822         long rc = vma_needs_reservation(h, vma, address);
2823
2824         if (folio_test_hugetlb_restore_reserve(folio)) {
2825                 if (unlikely(rc < 0))
2826                         /*
2827                          * Rare out of memory condition in reserve map
2828                          * manipulation.  Clear hugetlb_restore_reserve so
2829                          * that global reserve count will not be incremented
2830                          * by free_huge_page.  This will make it appear
2831                          * as though the reservation for this folio was
2832                          * consumed.  This may prevent the task from
2833                          * faulting in the folio at a later time.  This
2834                          * is better than inconsistent global huge page
2835                          * accounting of reserve counts.
2836                          */
2837                         folio_clear_hugetlb_restore_reserve(folio);
2838                 else if (rc)
2839                         (void)vma_add_reservation(h, vma, address);
2840                 else
2841                         vma_end_reservation(h, vma, address);
2842         } else {
2843                 if (!rc) {
2844                         /*
2845                          * This indicates there is an entry in the reserve map
2846                          * not added by alloc_hugetlb_folio.  We know it was added
2847                          * before the alloc_hugetlb_folio call, otherwise
2848                          * hugetlb_restore_reserve would be set on the folio.
2849                          * Remove the entry so that a subsequent allocation
2850                          * does not consume a reservation.
2851                          */
2852                         rc = vma_del_reservation(h, vma, address);
2853                         if (rc < 0)
2854                                 /*
2855                                  * VERY rare out of memory condition.  Since
2856                                  * we can not delete the entry, set
2857                                  * hugetlb_restore_reserve so that the reserve
2858                                  * count will be incremented when the folio
2859                                  * is freed.  This reserve will be consumed
2860                                  * on a subsequent allocation.
2861                                  */
2862                                 folio_set_hugetlb_restore_reserve(folio);
2863                 } else if (rc < 0) {
2864                         /*
2865                          * Rare out of memory condition from
2866                          * vma_needs_reservation call.  Memory allocation is
2867                          * only attempted if a new entry is needed.  Therefore,
2868                          * this implies there is not an entry in the
2869                          * reserve map.
2870                          *
2871                          * For shared mappings, no entry in the map indicates
2872                          * no reservation.  We are done.
2873                          */
2874                         if (!(vma->vm_flags & VM_MAYSHARE))
2875                                 /*
2876                                  * For private mappings, no entry indicates
2877                                  * a reservation is present.  Since we can
2878                                  * not add an entry, set hugetlb_restore_reserve
2879                                  * on the folio so reserve count will be
2880                                  * incremented when freed.  This reserve will
2881                                  * be consumed on a subsequent allocation.
2882                                  */
2883                                 folio_set_hugetlb_restore_reserve(folio);
2884                 } else
2885                         /*
2886                          * No reservation present, do nothing
2887                          */
2888                          vma_end_reservation(h, vma, address);
2889         }
2890 }
2891
2892 /*
2893  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2894  * the old one
2895  * @h: struct hstate old page belongs to
2896  * @old_folio: Old folio to dissolve
2897  * @list: List to isolate the page in case we need to
2898  * Returns 0 on success, otherwise negated error.
2899  */
2900 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2901                         struct folio *old_folio, struct list_head *list)
2902 {
2903         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2904         int nid = folio_nid(old_folio);
2905         struct folio *new_folio;
2906         int ret = 0;
2907
2908         /*
2909          * Before dissolving the folio, we need to allocate a new one for the
2910          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2911          * by doing everything but actually updating counters and adding to
2912          * the pool.  This simplifies and let us do most of the processing
2913          * under the lock.
2914          */
2915         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2916         if (!new_folio)
2917                 return -ENOMEM;
2918         __prep_new_hugetlb_folio(h, new_folio);
2919
2920 retry:
2921         spin_lock_irq(&hugetlb_lock);
2922         if (!folio_test_hugetlb(old_folio)) {
2923                 /*
2924                  * Freed from under us. Drop new_folio too.
2925                  */
2926                 goto free_new;
2927         } else if (folio_ref_count(old_folio)) {
2928                 bool isolated;
2929
2930                 /*
2931                  * Someone has grabbed the folio, try to isolate it here.
2932                  * Fail with -EBUSY if not possible.
2933                  */
2934                 spin_unlock_irq(&hugetlb_lock);
2935                 isolated = isolate_hugetlb(old_folio, list);
2936                 ret = isolated ? 0 : -EBUSY;
2937                 spin_lock_irq(&hugetlb_lock);
2938                 goto free_new;
2939         } else if (!folio_test_hugetlb_freed(old_folio)) {
2940                 /*
2941                  * Folio's refcount is 0 but it has not been enqueued in the
2942                  * freelist yet. Race window is small, so we can succeed here if
2943                  * we retry.
2944                  */
2945                 spin_unlock_irq(&hugetlb_lock);
2946                 cond_resched();
2947                 goto retry;
2948         } else {
2949                 /*
2950                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2951                  * the freelist and decrease the counters. These will be
2952                  * incremented again when calling __prep_account_new_huge_page()
2953                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2954                  * remain stable since this happens under the lock.
2955                  */
2956                 remove_hugetlb_folio(h, old_folio, false);
2957
2958                 /*
2959                  * Ref count on new_folio is already zero as it was dropped
2960                  * earlier.  It can be directly added to the pool free list.
2961                  */
2962                 __prep_account_new_huge_page(h, nid);
2963                 enqueue_hugetlb_folio(h, new_folio);
2964
2965                 /*
2966                  * Folio has been replaced, we can safely free the old one.
2967                  */
2968                 spin_unlock_irq(&hugetlb_lock);
2969                 update_and_free_hugetlb_folio(h, old_folio, false);
2970         }
2971
2972         return ret;
2973
2974 free_new:
2975         spin_unlock_irq(&hugetlb_lock);
2976         /* Folio has a zero ref count, but needs a ref to be freed */
2977         folio_ref_unfreeze(new_folio, 1);
2978         update_and_free_hugetlb_folio(h, new_folio, false);
2979
2980         return ret;
2981 }
2982
2983 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2984 {
2985         struct hstate *h;
2986         struct folio *folio = page_folio(page);
2987         int ret = -EBUSY;
2988
2989         /*
2990          * The page might have been dissolved from under our feet, so make sure
2991          * to carefully check the state under the lock.
2992          * Return success when racing as if we dissolved the page ourselves.
2993          */
2994         spin_lock_irq(&hugetlb_lock);
2995         if (folio_test_hugetlb(folio)) {
2996                 h = folio_hstate(folio);
2997         } else {
2998                 spin_unlock_irq(&hugetlb_lock);
2999                 return 0;
3000         }
3001         spin_unlock_irq(&hugetlb_lock);
3002
3003         /*
3004          * Fence off gigantic pages as there is a cyclic dependency between
3005          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3006          * of bailing out right away without further retrying.
3007          */
3008         if (hstate_is_gigantic(h))
3009                 return -ENOMEM;
3010
3011         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3012                 ret = 0;
3013         else if (!folio_ref_count(folio))
3014                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3015
3016         return ret;
3017 }
3018
3019 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3020                                     unsigned long addr, int avoid_reserve)
3021 {
3022         struct hugepage_subpool *spool = subpool_vma(vma);
3023         struct hstate *h = hstate_vma(vma);
3024         struct folio *folio;
3025         long map_chg, map_commit;
3026         long gbl_chg;
3027         int ret, idx;
3028         struct hugetlb_cgroup *h_cg = NULL;
3029         bool deferred_reserve;
3030
3031         idx = hstate_index(h);
3032         /*
3033          * Examine the region/reserve map to determine if the process
3034          * has a reservation for the page to be allocated.  A return
3035          * code of zero indicates a reservation exists (no change).
3036          */
3037         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3038         if (map_chg < 0)
3039                 return ERR_PTR(-ENOMEM);
3040
3041         /*
3042          * Processes that did not create the mapping will have no
3043          * reserves as indicated by the region/reserve map. Check
3044          * that the allocation will not exceed the subpool limit.
3045          * Allocations for MAP_NORESERVE mappings also need to be
3046          * checked against any subpool limit.
3047          */
3048         if (map_chg || avoid_reserve) {
3049                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3050                 if (gbl_chg < 0) {
3051                         vma_end_reservation(h, vma, addr);
3052                         return ERR_PTR(-ENOSPC);
3053                 }
3054
3055                 /*
3056                  * Even though there was no reservation in the region/reserve
3057                  * map, there could be reservations associated with the
3058                  * subpool that can be used.  This would be indicated if the
3059                  * return value of hugepage_subpool_get_pages() is zero.
3060                  * However, if avoid_reserve is specified we still avoid even
3061                  * the subpool reservations.
3062                  */
3063                 if (avoid_reserve)
3064                         gbl_chg = 1;
3065         }
3066
3067         /* If this allocation is not consuming a reservation, charge it now.
3068          */
3069         deferred_reserve = map_chg || avoid_reserve;
3070         if (deferred_reserve) {
3071                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3072                         idx, pages_per_huge_page(h), &h_cg);
3073                 if (ret)
3074                         goto out_subpool_put;
3075         }
3076
3077         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3078         if (ret)
3079                 goto out_uncharge_cgroup_reservation;
3080
3081         spin_lock_irq(&hugetlb_lock);
3082         /*
3083          * glb_chg is passed to indicate whether or not a page must be taken
3084          * from the global free pool (global change).  gbl_chg == 0 indicates
3085          * a reservation exists for the allocation.
3086          */
3087         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3088         if (!folio) {
3089                 spin_unlock_irq(&hugetlb_lock);
3090                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3091                 if (!folio)
3092                         goto out_uncharge_cgroup;
3093                 spin_lock_irq(&hugetlb_lock);
3094                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3095                         folio_set_hugetlb_restore_reserve(folio);
3096                         h->resv_huge_pages--;
3097                 }
3098                 list_add(&folio->lru, &h->hugepage_activelist);
3099                 folio_ref_unfreeze(folio, 1);
3100                 /* Fall through */
3101         }
3102
3103         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3104         /* If allocation is not consuming a reservation, also store the
3105          * hugetlb_cgroup pointer on the page.
3106          */
3107         if (deferred_reserve) {
3108                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3109                                                   h_cg, folio);
3110         }
3111
3112         spin_unlock_irq(&hugetlb_lock);
3113
3114         hugetlb_set_folio_subpool(folio, spool);
3115
3116         map_commit = vma_commit_reservation(h, vma, addr);
3117         if (unlikely(map_chg > map_commit)) {
3118                 /*
3119                  * The page was added to the reservation map between
3120                  * vma_needs_reservation and vma_commit_reservation.
3121                  * This indicates a race with hugetlb_reserve_pages.
3122                  * Adjust for the subpool count incremented above AND
3123                  * in hugetlb_reserve_pages for the same page.  Also,
3124                  * the reservation count added in hugetlb_reserve_pages
3125                  * no longer applies.
3126                  */
3127                 long rsv_adjust;
3128
3129                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3130                 hugetlb_acct_memory(h, -rsv_adjust);
3131                 if (deferred_reserve)
3132                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3133                                         pages_per_huge_page(h), folio);
3134         }
3135         return folio;
3136
3137 out_uncharge_cgroup:
3138         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3139 out_uncharge_cgroup_reservation:
3140         if (deferred_reserve)
3141                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3142                                                     h_cg);
3143 out_subpool_put:
3144         if (map_chg || avoid_reserve)
3145                 hugepage_subpool_put_pages(spool, 1);
3146         vma_end_reservation(h, vma, addr);
3147         return ERR_PTR(-ENOSPC);
3148 }
3149
3150 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3151         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3152 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3153 {
3154         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3155         int nr_nodes, node;
3156
3157         /* do node specific alloc */
3158         if (nid != NUMA_NO_NODE) {
3159                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3160                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3161                 if (!m)
3162                         return 0;
3163                 goto found;
3164         }
3165         /* allocate from next node when distributing huge pages */
3166         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3167                 m = memblock_alloc_try_nid_raw(
3168                                 huge_page_size(h), huge_page_size(h),
3169                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3170                 /*
3171                  * Use the beginning of the huge page to store the
3172                  * huge_bootmem_page struct (until gather_bootmem
3173                  * puts them into the mem_map).
3174                  */
3175                 if (!m)
3176                         return 0;
3177                 goto found;
3178         }
3179
3180 found:
3181         /* Put them into a private list first because mem_map is not up yet */
3182         INIT_LIST_HEAD(&m->list);
3183         list_add(&m->list, &huge_boot_pages);
3184         m->hstate = h;
3185         return 1;
3186 }
3187
3188 /*
3189  * Put bootmem huge pages into the standard lists after mem_map is up.
3190  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3191  */
3192 static void __init gather_bootmem_prealloc(void)
3193 {
3194         struct huge_bootmem_page *m;
3195
3196         list_for_each_entry(m, &huge_boot_pages, list) {
3197                 struct page *page = virt_to_page(m);
3198                 struct folio *folio = page_folio(page);
3199                 struct hstate *h = m->hstate;
3200
3201                 VM_BUG_ON(!hstate_is_gigantic(h));
3202                 WARN_ON(folio_ref_count(folio) != 1);
3203                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3204                         WARN_ON(folio_test_reserved(folio));
3205                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3206                         free_huge_page(page); /* add to the hugepage allocator */
3207                 } else {
3208                         /* VERY unlikely inflated ref count on a tail page */
3209                         free_gigantic_folio(folio, huge_page_order(h));
3210                 }
3211
3212                 /*
3213                  * We need to restore the 'stolen' pages to totalram_pages
3214                  * in order to fix confusing memory reports from free(1) and
3215                  * other side-effects, like CommitLimit going negative.
3216                  */
3217                 adjust_managed_page_count(page, pages_per_huge_page(h));
3218                 cond_resched();
3219         }
3220 }
3221 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3222 {
3223         unsigned long i;
3224         char buf[32];
3225
3226         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3227                 if (hstate_is_gigantic(h)) {
3228                         if (!alloc_bootmem_huge_page(h, nid))
3229                                 break;
3230                 } else {
3231                         struct folio *folio;
3232                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3233
3234                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3235                                         &node_states[N_MEMORY], NULL);
3236                         if (!folio)
3237                                 break;
3238                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3239                 }
3240                 cond_resched();
3241         }
3242         if (i == h->max_huge_pages_node[nid])
3243                 return;
3244
3245         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3246         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3247                 h->max_huge_pages_node[nid], buf, nid, i);
3248         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3249         h->max_huge_pages_node[nid] = i;
3250 }
3251
3252 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3253 {
3254         unsigned long i;
3255         nodemask_t *node_alloc_noretry;
3256         bool node_specific_alloc = false;
3257
3258         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3259         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3260                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3261                 return;
3262         }
3263
3264         /* do node specific alloc */
3265         for_each_online_node(i) {
3266                 if (h->max_huge_pages_node[i] > 0) {
3267                         hugetlb_hstate_alloc_pages_onenode(h, i);
3268                         node_specific_alloc = true;
3269                 }
3270         }
3271
3272         if (node_specific_alloc)
3273                 return;
3274
3275         /* below will do all node balanced alloc */
3276         if (!hstate_is_gigantic(h)) {
3277                 /*
3278                  * Bit mask controlling how hard we retry per-node allocations.
3279                  * Ignore errors as lower level routines can deal with
3280                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3281                  * time, we are likely in bigger trouble.
3282                  */
3283                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3284                                                 GFP_KERNEL);
3285         } else {
3286                 /* allocations done at boot time */
3287                 node_alloc_noretry = NULL;
3288         }
3289
3290         /* bit mask controlling how hard we retry per-node allocations */
3291         if (node_alloc_noretry)
3292                 nodes_clear(*node_alloc_noretry);
3293
3294         for (i = 0; i < h->max_huge_pages; ++i) {
3295                 if (hstate_is_gigantic(h)) {
3296                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3297                                 break;
3298                 } else if (!alloc_pool_huge_page(h,
3299                                          &node_states[N_MEMORY],
3300                                          node_alloc_noretry))
3301                         break;
3302                 cond_resched();
3303         }
3304         if (i < h->max_huge_pages) {
3305                 char buf[32];
3306
3307                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3308                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3309                         h->max_huge_pages, buf, i);
3310                 h->max_huge_pages = i;
3311         }
3312         kfree(node_alloc_noretry);
3313 }
3314
3315 static void __init hugetlb_init_hstates(void)
3316 {
3317         struct hstate *h, *h2;
3318
3319         for_each_hstate(h) {
3320                 /* oversize hugepages were init'ed in early boot */
3321                 if (!hstate_is_gigantic(h))
3322                         hugetlb_hstate_alloc_pages(h);
3323
3324                 /*
3325                  * Set demote order for each hstate.  Note that
3326                  * h->demote_order is initially 0.
3327                  * - We can not demote gigantic pages if runtime freeing
3328                  *   is not supported, so skip this.
3329                  * - If CMA allocation is possible, we can not demote
3330                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3331                  */
3332                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3333                         continue;
3334                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3335                         continue;
3336                 for_each_hstate(h2) {
3337                         if (h2 == h)
3338                                 continue;
3339                         if (h2->order < h->order &&
3340                             h2->order > h->demote_order)
3341                                 h->demote_order = h2->order;
3342                 }
3343         }
3344 }
3345
3346 static void __init report_hugepages(void)
3347 {
3348         struct hstate *h;
3349
3350         for_each_hstate(h) {
3351                 char buf[32];
3352
3353                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3354                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3355                         buf, h->free_huge_pages);
3356                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3357                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3358         }
3359 }
3360
3361 #ifdef CONFIG_HIGHMEM
3362 static void try_to_free_low(struct hstate *h, unsigned long count,
3363                                                 nodemask_t *nodes_allowed)
3364 {
3365         int i;
3366         LIST_HEAD(page_list);
3367
3368         lockdep_assert_held(&hugetlb_lock);
3369         if (hstate_is_gigantic(h))
3370                 return;
3371
3372         /*
3373          * Collect pages to be freed on a list, and free after dropping lock
3374          */
3375         for_each_node_mask(i, *nodes_allowed) {
3376                 struct page *page, *next;
3377                 struct list_head *freel = &h->hugepage_freelists[i];
3378                 list_for_each_entry_safe(page, next, freel, lru) {
3379                         if (count >= h->nr_huge_pages)
3380                                 goto out;
3381                         if (PageHighMem(page))
3382                                 continue;
3383                         remove_hugetlb_folio(h, page_folio(page), false);
3384                         list_add(&page->lru, &page_list);
3385                 }
3386         }
3387
3388 out:
3389         spin_unlock_irq(&hugetlb_lock);
3390         update_and_free_pages_bulk(h, &page_list);
3391         spin_lock_irq(&hugetlb_lock);
3392 }
3393 #else
3394 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3395                                                 nodemask_t *nodes_allowed)
3396 {
3397 }
3398 #endif
3399
3400 /*
3401  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3402  * balanced by operating on them in a round-robin fashion.
3403  * Returns 1 if an adjustment was made.
3404  */
3405 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3406                                 int delta)
3407 {
3408         int nr_nodes, node;
3409
3410         lockdep_assert_held(&hugetlb_lock);
3411         VM_BUG_ON(delta != -1 && delta != 1);
3412
3413         if (delta < 0) {
3414                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3415                         if (h->surplus_huge_pages_node[node])
3416                                 goto found;
3417                 }
3418         } else {
3419                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3420                         if (h->surplus_huge_pages_node[node] <
3421                                         h->nr_huge_pages_node[node])
3422                                 goto found;
3423                 }
3424         }
3425         return 0;
3426
3427 found:
3428         h->surplus_huge_pages += delta;
3429         h->surplus_huge_pages_node[node] += delta;
3430         return 1;
3431 }
3432
3433 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3434 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3435                               nodemask_t *nodes_allowed)
3436 {
3437         unsigned long min_count, ret;
3438         struct page *page;
3439         LIST_HEAD(page_list);
3440         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3441
3442         /*
3443          * Bit mask controlling how hard we retry per-node allocations.
3444          * If we can not allocate the bit mask, do not attempt to allocate
3445          * the requested huge pages.
3446          */
3447         if (node_alloc_noretry)
3448                 nodes_clear(*node_alloc_noretry);
3449         else
3450                 return -ENOMEM;
3451
3452         /*
3453          * resize_lock mutex prevents concurrent adjustments to number of
3454          * pages in hstate via the proc/sysfs interfaces.
3455          */
3456         mutex_lock(&h->resize_lock);
3457         flush_free_hpage_work(h);
3458         spin_lock_irq(&hugetlb_lock);
3459
3460         /*
3461          * Check for a node specific request.
3462          * Changing node specific huge page count may require a corresponding
3463          * change to the global count.  In any case, the passed node mask
3464          * (nodes_allowed) will restrict alloc/free to the specified node.
3465          */
3466         if (nid != NUMA_NO_NODE) {
3467                 unsigned long old_count = count;
3468
3469                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3470                 /*
3471                  * User may have specified a large count value which caused the
3472                  * above calculation to overflow.  In this case, they wanted
3473                  * to allocate as many huge pages as possible.  Set count to
3474                  * largest possible value to align with their intention.
3475                  */
3476                 if (count < old_count)
3477                         count = ULONG_MAX;
3478         }
3479
3480         /*
3481          * Gigantic pages runtime allocation depend on the capability for large
3482          * page range allocation.
3483          * If the system does not provide this feature, return an error when
3484          * the user tries to allocate gigantic pages but let the user free the
3485          * boottime allocated gigantic pages.
3486          */
3487         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3488                 if (count > persistent_huge_pages(h)) {
3489                         spin_unlock_irq(&hugetlb_lock);
3490                         mutex_unlock(&h->resize_lock);
3491                         NODEMASK_FREE(node_alloc_noretry);
3492                         return -EINVAL;
3493                 }
3494                 /* Fall through to decrease pool */
3495         }
3496
3497         /*
3498          * Increase the pool size
3499          * First take pages out of surplus state.  Then make up the
3500          * remaining difference by allocating fresh huge pages.
3501          *
3502          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3503          * to convert a surplus huge page to a normal huge page. That is
3504          * not critical, though, it just means the overall size of the
3505          * pool might be one hugepage larger than it needs to be, but
3506          * within all the constraints specified by the sysctls.
3507          */
3508         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3509                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3510                         break;
3511         }
3512
3513         while (count > persistent_huge_pages(h)) {
3514                 /*
3515                  * If this allocation races such that we no longer need the
3516                  * page, free_huge_page will handle it by freeing the page
3517                  * and reducing the surplus.
3518                  */
3519                 spin_unlock_irq(&hugetlb_lock);
3520
3521                 /* yield cpu to avoid soft lockup */
3522                 cond_resched();
3523
3524                 ret = alloc_pool_huge_page(h, nodes_allowed,
3525                                                 node_alloc_noretry);
3526                 spin_lock_irq(&hugetlb_lock);
3527                 if (!ret)
3528                         goto out;
3529
3530                 /* Bail for signals. Probably ctrl-c from user */
3531                 if (signal_pending(current))
3532                         goto out;
3533         }
3534
3535         /*
3536          * Decrease the pool size
3537          * First return free pages to the buddy allocator (being careful
3538          * to keep enough around to satisfy reservations).  Then place
3539          * pages into surplus state as needed so the pool will shrink
3540          * to the desired size as pages become free.
3541          *
3542          * By placing pages into the surplus state independent of the
3543          * overcommit value, we are allowing the surplus pool size to
3544          * exceed overcommit. There are few sane options here. Since
3545          * alloc_surplus_hugetlb_folio() is checking the global counter,
3546          * though, we'll note that we're not allowed to exceed surplus
3547          * and won't grow the pool anywhere else. Not until one of the
3548          * sysctls are changed, or the surplus pages go out of use.
3549          */
3550         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3551         min_count = max(count, min_count);
3552         try_to_free_low(h, min_count, nodes_allowed);
3553
3554         /*
3555          * Collect pages to be removed on list without dropping lock
3556          */
3557         while (min_count < persistent_huge_pages(h)) {
3558                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3559                 if (!page)
3560                         break;
3561
3562                 list_add(&page->lru, &page_list);
3563         }
3564         /* free the pages after dropping lock */
3565         spin_unlock_irq(&hugetlb_lock);
3566         update_and_free_pages_bulk(h, &page_list);
3567         flush_free_hpage_work(h);
3568         spin_lock_irq(&hugetlb_lock);
3569
3570         while (count < persistent_huge_pages(h)) {
3571                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3572                         break;
3573         }
3574 out:
3575         h->max_huge_pages = persistent_huge_pages(h);
3576         spin_unlock_irq(&hugetlb_lock);
3577         mutex_unlock(&h->resize_lock);
3578
3579         NODEMASK_FREE(node_alloc_noretry);
3580
3581         return 0;
3582 }
3583
3584 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3585 {
3586         int i, nid = folio_nid(folio);
3587         struct hstate *target_hstate;
3588         struct page *subpage;
3589         struct folio *inner_folio;
3590         int rc = 0;
3591
3592         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3593
3594         remove_hugetlb_folio_for_demote(h, folio, false);
3595         spin_unlock_irq(&hugetlb_lock);
3596
3597         rc = hugetlb_vmemmap_restore(h, &folio->page);
3598         if (rc) {
3599                 /* Allocation of vmemmmap failed, we can not demote folio */
3600                 spin_lock_irq(&hugetlb_lock);
3601                 folio_ref_unfreeze(folio, 1);
3602                 add_hugetlb_folio(h, folio, false);
3603                 return rc;
3604         }
3605
3606         /*
3607          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3608          * sizes as it will not ref count folios.
3609          */
3610         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3611
3612         /*
3613          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3614          * Without the mutex, pages added to target hstate could be marked
3615          * as surplus.
3616          *
3617          * Note that we already hold h->resize_lock.  To prevent deadlock,
3618          * use the convention of always taking larger size hstate mutex first.
3619          */
3620         mutex_lock(&target_hstate->resize_lock);
3621         for (i = 0; i < pages_per_huge_page(h);
3622                                 i += pages_per_huge_page(target_hstate)) {
3623                 subpage = folio_page(folio, i);
3624                 inner_folio = page_folio(subpage);
3625                 if (hstate_is_gigantic(target_hstate))
3626                         prep_compound_gigantic_folio_for_demote(inner_folio,
3627                                                         target_hstate->order);
3628                 else
3629                         prep_compound_page(subpage, target_hstate->order);
3630                 folio_change_private(inner_folio, NULL);
3631                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3632                 free_huge_page(subpage);
3633         }
3634         mutex_unlock(&target_hstate->resize_lock);
3635
3636         spin_lock_irq(&hugetlb_lock);
3637
3638         /*
3639          * Not absolutely necessary, but for consistency update max_huge_pages
3640          * based on pool changes for the demoted page.
3641          */
3642         h->max_huge_pages--;
3643         target_hstate->max_huge_pages +=
3644                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3645
3646         return rc;
3647 }
3648
3649 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3650         __must_hold(&hugetlb_lock)
3651 {
3652         int nr_nodes, node;
3653         struct folio *folio;
3654
3655         lockdep_assert_held(&hugetlb_lock);
3656
3657         /* We should never get here if no demote order */
3658         if (!h->demote_order) {
3659                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3660                 return -EINVAL;         /* internal error */
3661         }
3662
3663         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3664                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3665                         if (folio_test_hwpoison(folio))
3666                                 continue;
3667                         return demote_free_hugetlb_folio(h, folio);
3668                 }
3669         }
3670
3671         /*
3672          * Only way to get here is if all pages on free lists are poisoned.
3673          * Return -EBUSY so that caller will not retry.
3674          */
3675         return -EBUSY;
3676 }
3677
3678 #define HSTATE_ATTR_RO(_name) \
3679         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3680
3681 #define HSTATE_ATTR_WO(_name) \
3682         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3683
3684 #define HSTATE_ATTR(_name) \
3685         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3686
3687 static struct kobject *hugepages_kobj;
3688 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3689
3690 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3691
3692 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3693 {
3694         int i;
3695
3696         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3697                 if (hstate_kobjs[i] == kobj) {
3698                         if (nidp)
3699                                 *nidp = NUMA_NO_NODE;
3700                         return &hstates[i];
3701                 }
3702
3703         return kobj_to_node_hstate(kobj, nidp);
3704 }
3705
3706 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3707                                         struct kobj_attribute *attr, char *buf)
3708 {
3709         struct hstate *h;
3710         unsigned long nr_huge_pages;
3711         int nid;
3712
3713         h = kobj_to_hstate(kobj, &nid);
3714         if (nid == NUMA_NO_NODE)
3715                 nr_huge_pages = h->nr_huge_pages;
3716         else
3717                 nr_huge_pages = h->nr_huge_pages_node[nid];
3718
3719         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3720 }
3721
3722 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3723                                            struct hstate *h, int nid,
3724                                            unsigned long count, size_t len)
3725 {
3726         int err;
3727         nodemask_t nodes_allowed, *n_mask;
3728
3729         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3730                 return -EINVAL;
3731
3732         if (nid == NUMA_NO_NODE) {
3733                 /*
3734                  * global hstate attribute
3735                  */
3736                 if (!(obey_mempolicy &&
3737                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3738                         n_mask = &node_states[N_MEMORY];
3739                 else
3740                         n_mask = &nodes_allowed;
3741         } else {
3742                 /*
3743                  * Node specific request.  count adjustment happens in
3744                  * set_max_huge_pages() after acquiring hugetlb_lock.
3745                  */
3746                 init_nodemask_of_node(&nodes_allowed, nid);
3747                 n_mask = &nodes_allowed;
3748         }
3749
3750         err = set_max_huge_pages(h, count, nid, n_mask);
3751
3752         return err ? err : len;
3753 }
3754
3755 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3756                                          struct kobject *kobj, const char *buf,
3757                                          size_t len)
3758 {
3759         struct hstate *h;
3760         unsigned long count;
3761         int nid;
3762         int err;
3763
3764         err = kstrtoul(buf, 10, &count);
3765         if (err)
3766                 return err;
3767
3768         h = kobj_to_hstate(kobj, &nid);
3769         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3770 }
3771
3772 static ssize_t nr_hugepages_show(struct kobject *kobj,
3773                                        struct kobj_attribute *attr, char *buf)
3774 {
3775         return nr_hugepages_show_common(kobj, attr, buf);
3776 }
3777
3778 static ssize_t nr_hugepages_store(struct kobject *kobj,
3779                struct kobj_attribute *attr, const char *buf, size_t len)
3780 {
3781         return nr_hugepages_store_common(false, kobj, buf, len);
3782 }
3783 HSTATE_ATTR(nr_hugepages);
3784
3785 #ifdef CONFIG_NUMA
3786
3787 /*
3788  * hstate attribute for optionally mempolicy-based constraint on persistent
3789  * huge page alloc/free.
3790  */
3791 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3792                                            struct kobj_attribute *attr,
3793                                            char *buf)
3794 {
3795         return nr_hugepages_show_common(kobj, attr, buf);
3796 }
3797
3798 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3799                struct kobj_attribute *attr, const char *buf, size_t len)
3800 {
3801         return nr_hugepages_store_common(true, kobj, buf, len);
3802 }
3803 HSTATE_ATTR(nr_hugepages_mempolicy);
3804 #endif
3805
3806
3807 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3808                                         struct kobj_attribute *attr, char *buf)
3809 {
3810         struct hstate *h = kobj_to_hstate(kobj, NULL);
3811         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3812 }
3813
3814 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3815                 struct kobj_attribute *attr, const char *buf, size_t count)
3816 {
3817         int err;
3818         unsigned long input;
3819         struct hstate *h = kobj_to_hstate(kobj, NULL);
3820
3821         if (hstate_is_gigantic(h))
3822                 return -EINVAL;
3823
3824         err = kstrtoul(buf, 10, &input);
3825         if (err)
3826                 return err;
3827
3828         spin_lock_irq(&hugetlb_lock);
3829         h->nr_overcommit_huge_pages = input;
3830         spin_unlock_irq(&hugetlb_lock);
3831
3832         return count;
3833 }
3834 HSTATE_ATTR(nr_overcommit_hugepages);
3835
3836 static ssize_t free_hugepages_show(struct kobject *kobj,
3837                                         struct kobj_attribute *attr, char *buf)
3838 {
3839         struct hstate *h;
3840         unsigned long free_huge_pages;
3841         int nid;
3842
3843         h = kobj_to_hstate(kobj, &nid);
3844         if (nid == NUMA_NO_NODE)
3845                 free_huge_pages = h->free_huge_pages;
3846         else
3847                 free_huge_pages = h->free_huge_pages_node[nid];
3848
3849         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3850 }
3851 HSTATE_ATTR_RO(free_hugepages);
3852
3853 static ssize_t resv_hugepages_show(struct kobject *kobj,
3854                                         struct kobj_attribute *attr, char *buf)
3855 {
3856         struct hstate *h = kobj_to_hstate(kobj, NULL);
3857         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3858 }
3859 HSTATE_ATTR_RO(resv_hugepages);
3860
3861 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3862                                         struct kobj_attribute *attr, char *buf)
3863 {
3864         struct hstate *h;
3865         unsigned long surplus_huge_pages;
3866         int nid;
3867
3868         h = kobj_to_hstate(kobj, &nid);
3869         if (nid == NUMA_NO_NODE)
3870                 surplus_huge_pages = h->surplus_huge_pages;
3871         else
3872                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3873
3874         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3875 }
3876 HSTATE_ATTR_RO(surplus_hugepages);
3877
3878 static ssize_t demote_store(struct kobject *kobj,
3879                struct kobj_attribute *attr, const char *buf, size_t len)
3880 {
3881         unsigned long nr_demote;
3882         unsigned long nr_available;
3883         nodemask_t nodes_allowed, *n_mask;
3884         struct hstate *h;
3885         int err;
3886         int nid;
3887
3888         err = kstrtoul(buf, 10, &nr_demote);
3889         if (err)
3890                 return err;
3891         h = kobj_to_hstate(kobj, &nid);
3892
3893         if (nid != NUMA_NO_NODE) {
3894                 init_nodemask_of_node(&nodes_allowed, nid);
3895                 n_mask = &nodes_allowed;
3896         } else {
3897                 n_mask = &node_states[N_MEMORY];
3898         }
3899
3900         /* Synchronize with other sysfs operations modifying huge pages */
3901         mutex_lock(&h->resize_lock);
3902         spin_lock_irq(&hugetlb_lock);
3903
3904         while (nr_demote) {
3905                 /*
3906                  * Check for available pages to demote each time thorough the
3907                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3908                  */
3909                 if (nid != NUMA_NO_NODE)
3910                         nr_available = h->free_huge_pages_node[nid];
3911                 else
3912                         nr_available = h->free_huge_pages;
3913                 nr_available -= h->resv_huge_pages;
3914                 if (!nr_available)
3915                         break;
3916
3917                 err = demote_pool_huge_page(h, n_mask);
3918                 if (err)
3919                         break;
3920
3921                 nr_demote--;
3922         }
3923
3924         spin_unlock_irq(&hugetlb_lock);
3925         mutex_unlock(&h->resize_lock);
3926
3927         if (err)
3928                 return err;
3929         return len;
3930 }
3931 HSTATE_ATTR_WO(demote);
3932
3933 static ssize_t demote_size_show(struct kobject *kobj,
3934                                         struct kobj_attribute *attr, char *buf)
3935 {
3936         struct hstate *h = kobj_to_hstate(kobj, NULL);
3937         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3938
3939         return sysfs_emit(buf, "%lukB\n", demote_size);
3940 }
3941
3942 static ssize_t demote_size_store(struct kobject *kobj,
3943                                         struct kobj_attribute *attr,
3944                                         const char *buf, size_t count)
3945 {
3946         struct hstate *h, *demote_hstate;
3947         unsigned long demote_size;
3948         unsigned int demote_order;
3949
3950         demote_size = (unsigned long)memparse(buf, NULL);
3951
3952         demote_hstate = size_to_hstate(demote_size);
3953         if (!demote_hstate)
3954                 return -EINVAL;
3955         demote_order = demote_hstate->order;
3956         if (demote_order < HUGETLB_PAGE_ORDER)
3957                 return -EINVAL;
3958
3959         /* demote order must be smaller than hstate order */
3960         h = kobj_to_hstate(kobj, NULL);
3961         if (demote_order >= h->order)
3962                 return -EINVAL;
3963
3964         /* resize_lock synchronizes access to demote size and writes */
3965         mutex_lock(&h->resize_lock);
3966         h->demote_order = demote_order;
3967         mutex_unlock(&h->resize_lock);
3968
3969         return count;
3970 }
3971 HSTATE_ATTR(demote_size);
3972
3973 static struct attribute *hstate_attrs[] = {
3974         &nr_hugepages_attr.attr,
3975         &nr_overcommit_hugepages_attr.attr,
3976         &free_hugepages_attr.attr,
3977         &resv_hugepages_attr.attr,
3978         &surplus_hugepages_attr.attr,
3979 #ifdef CONFIG_NUMA
3980         &nr_hugepages_mempolicy_attr.attr,
3981 #endif
3982         NULL,
3983 };
3984
3985 static const struct attribute_group hstate_attr_group = {
3986         .attrs = hstate_attrs,
3987 };
3988
3989 static struct attribute *hstate_demote_attrs[] = {
3990         &demote_size_attr.attr,
3991         &demote_attr.attr,
3992         NULL,
3993 };
3994
3995 static const struct attribute_group hstate_demote_attr_group = {
3996         .attrs = hstate_demote_attrs,
3997 };
3998
3999 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4000                                     struct kobject **hstate_kobjs,
4001                                     const struct attribute_group *hstate_attr_group)
4002 {
4003         int retval;
4004         int hi = hstate_index(h);
4005
4006         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4007         if (!hstate_kobjs[hi])
4008                 return -ENOMEM;
4009
4010         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4011         if (retval) {
4012                 kobject_put(hstate_kobjs[hi]);
4013                 hstate_kobjs[hi] = NULL;
4014                 return retval;
4015         }
4016
4017         if (h->demote_order) {
4018                 retval = sysfs_create_group(hstate_kobjs[hi],
4019                                             &hstate_demote_attr_group);
4020                 if (retval) {
4021                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4022                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4023                         kobject_put(hstate_kobjs[hi]);
4024                         hstate_kobjs[hi] = NULL;
4025                         return retval;
4026                 }
4027         }
4028
4029         return 0;
4030 }
4031
4032 #ifdef CONFIG_NUMA
4033 static bool hugetlb_sysfs_initialized __ro_after_init;
4034
4035 /*
4036  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4037  * with node devices in node_devices[] using a parallel array.  The array
4038  * index of a node device or _hstate == node id.
4039  * This is here to avoid any static dependency of the node device driver, in
4040  * the base kernel, on the hugetlb module.
4041  */
4042 struct node_hstate {
4043         struct kobject          *hugepages_kobj;
4044         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4045 };
4046 static struct node_hstate node_hstates[MAX_NUMNODES];
4047
4048 /*
4049  * A subset of global hstate attributes for node devices
4050  */
4051 static struct attribute *per_node_hstate_attrs[] = {
4052         &nr_hugepages_attr.attr,
4053         &free_hugepages_attr.attr,
4054         &surplus_hugepages_attr.attr,
4055         NULL,
4056 };
4057
4058 static const struct attribute_group per_node_hstate_attr_group = {
4059         .attrs = per_node_hstate_attrs,
4060 };
4061
4062 /*
4063  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4064  * Returns node id via non-NULL nidp.
4065  */
4066 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4067 {
4068         int nid;
4069
4070         for (nid = 0; nid < nr_node_ids; nid++) {
4071                 struct node_hstate *nhs = &node_hstates[nid];
4072                 int i;
4073                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4074                         if (nhs->hstate_kobjs[i] == kobj) {
4075                                 if (nidp)
4076                                         *nidp = nid;
4077                                 return &hstates[i];
4078                         }
4079         }
4080
4081         BUG();
4082         return NULL;
4083 }
4084
4085 /*
4086  * Unregister hstate attributes from a single node device.
4087  * No-op if no hstate attributes attached.
4088  */
4089 void hugetlb_unregister_node(struct node *node)
4090 {
4091         struct hstate *h;
4092         struct node_hstate *nhs = &node_hstates[node->dev.id];
4093
4094         if (!nhs->hugepages_kobj)
4095                 return;         /* no hstate attributes */
4096
4097         for_each_hstate(h) {
4098                 int idx = hstate_index(h);
4099                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4100
4101                 if (!hstate_kobj)
4102                         continue;
4103                 if (h->demote_order)
4104                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4105                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4106                 kobject_put(hstate_kobj);
4107                 nhs->hstate_kobjs[idx] = NULL;
4108         }
4109
4110         kobject_put(nhs->hugepages_kobj);
4111         nhs->hugepages_kobj = NULL;
4112 }
4113
4114
4115 /*
4116  * Register hstate attributes for a single node device.
4117  * No-op if attributes already registered.
4118  */
4119 void hugetlb_register_node(struct node *node)
4120 {
4121         struct hstate *h;
4122         struct node_hstate *nhs = &node_hstates[node->dev.id];
4123         int err;
4124
4125         if (!hugetlb_sysfs_initialized)
4126                 return;
4127
4128         if (nhs->hugepages_kobj)
4129                 return;         /* already allocated */
4130
4131         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4132                                                         &node->dev.kobj);
4133         if (!nhs->hugepages_kobj)
4134                 return;
4135
4136         for_each_hstate(h) {
4137                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4138                                                 nhs->hstate_kobjs,
4139                                                 &per_node_hstate_attr_group);
4140                 if (err) {
4141                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4142                                 h->name, node->dev.id);
4143                         hugetlb_unregister_node(node);
4144                         break;
4145                 }
4146         }
4147 }
4148
4149 /*
4150  * hugetlb init time:  register hstate attributes for all registered node
4151  * devices of nodes that have memory.  All on-line nodes should have
4152  * registered their associated device by this time.
4153  */
4154 static void __init hugetlb_register_all_nodes(void)
4155 {
4156         int nid;
4157
4158         for_each_online_node(nid)
4159                 hugetlb_register_node(node_devices[nid]);
4160 }
4161 #else   /* !CONFIG_NUMA */
4162
4163 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4164 {
4165         BUG();
4166         if (nidp)
4167                 *nidp = -1;
4168         return NULL;
4169 }
4170
4171 static void hugetlb_register_all_nodes(void) { }
4172
4173 #endif
4174
4175 #ifdef CONFIG_CMA
4176 static void __init hugetlb_cma_check(void);
4177 #else
4178 static inline __init void hugetlb_cma_check(void)
4179 {
4180 }
4181 #endif
4182
4183 static void __init hugetlb_sysfs_init(void)
4184 {
4185         struct hstate *h;
4186         int err;
4187
4188         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4189         if (!hugepages_kobj)
4190                 return;
4191
4192         for_each_hstate(h) {
4193                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4194                                          hstate_kobjs, &hstate_attr_group);
4195                 if (err)
4196                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4197         }
4198
4199 #ifdef CONFIG_NUMA
4200         hugetlb_sysfs_initialized = true;
4201 #endif
4202         hugetlb_register_all_nodes();
4203 }
4204
4205 static int __init hugetlb_init(void)
4206 {
4207         int i;
4208
4209         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4210                         __NR_HPAGEFLAGS);
4211
4212         if (!hugepages_supported()) {
4213                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4214                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4215                 return 0;
4216         }
4217
4218         /*
4219          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4220          * architectures depend on setup being done here.
4221          */
4222         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4223         if (!parsed_default_hugepagesz) {
4224                 /*
4225                  * If we did not parse a default huge page size, set
4226                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4227                  * number of huge pages for this default size was implicitly
4228                  * specified, set that here as well.
4229                  * Note that the implicit setting will overwrite an explicit
4230                  * setting.  A warning will be printed in this case.
4231                  */
4232                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4233                 if (default_hstate_max_huge_pages) {
4234                         if (default_hstate.max_huge_pages) {
4235                                 char buf[32];
4236
4237                                 string_get_size(huge_page_size(&default_hstate),
4238                                         1, STRING_UNITS_2, buf, 32);
4239                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4240                                         default_hstate.max_huge_pages, buf);
4241                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4242                                         default_hstate_max_huge_pages);
4243                         }
4244                         default_hstate.max_huge_pages =
4245                                 default_hstate_max_huge_pages;
4246
4247                         for_each_online_node(i)
4248                                 default_hstate.max_huge_pages_node[i] =
4249                                         default_hugepages_in_node[i];
4250                 }
4251         }
4252
4253         hugetlb_cma_check();
4254         hugetlb_init_hstates();
4255         gather_bootmem_prealloc();
4256         report_hugepages();
4257
4258         hugetlb_sysfs_init();
4259         hugetlb_cgroup_file_init();
4260
4261 #ifdef CONFIG_SMP
4262         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4263 #else
4264         num_fault_mutexes = 1;
4265 #endif
4266         hugetlb_fault_mutex_table =
4267                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4268                               GFP_KERNEL);
4269         BUG_ON(!hugetlb_fault_mutex_table);
4270
4271         for (i = 0; i < num_fault_mutexes; i++)
4272                 mutex_init(&hugetlb_fault_mutex_table[i]);
4273         return 0;
4274 }
4275 subsys_initcall(hugetlb_init);
4276
4277 /* Overwritten by architectures with more huge page sizes */
4278 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4279 {
4280         return size == HPAGE_SIZE;
4281 }
4282
4283 void __init hugetlb_add_hstate(unsigned int order)
4284 {
4285         struct hstate *h;
4286         unsigned long i;
4287
4288         if (size_to_hstate(PAGE_SIZE << order)) {
4289                 return;
4290         }
4291         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4292         BUG_ON(order == 0);
4293         h = &hstates[hugetlb_max_hstate++];
4294         mutex_init(&h->resize_lock);
4295         h->order = order;
4296         h->mask = ~(huge_page_size(h) - 1);
4297         for (i = 0; i < MAX_NUMNODES; ++i)
4298                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4299         INIT_LIST_HEAD(&h->hugepage_activelist);
4300         h->next_nid_to_alloc = first_memory_node;
4301         h->next_nid_to_free = first_memory_node;
4302         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4303                                         huge_page_size(h)/SZ_1K);
4304
4305         parsed_hstate = h;
4306 }
4307
4308 bool __init __weak hugetlb_node_alloc_supported(void)
4309 {
4310         return true;
4311 }
4312
4313 static void __init hugepages_clear_pages_in_node(void)
4314 {
4315         if (!hugetlb_max_hstate) {
4316                 default_hstate_max_huge_pages = 0;
4317                 memset(default_hugepages_in_node, 0,
4318                         sizeof(default_hugepages_in_node));
4319         } else {
4320                 parsed_hstate->max_huge_pages = 0;
4321                 memset(parsed_hstate->max_huge_pages_node, 0,
4322                         sizeof(parsed_hstate->max_huge_pages_node));
4323         }
4324 }
4325
4326 /*
4327  * hugepages command line processing
4328  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4329  * specification.  If not, ignore the hugepages value.  hugepages can also
4330  * be the first huge page command line  option in which case it implicitly
4331  * specifies the number of huge pages for the default size.
4332  */
4333 static int __init hugepages_setup(char *s)
4334 {
4335         unsigned long *mhp;
4336         static unsigned long *last_mhp;
4337         int node = NUMA_NO_NODE;
4338         int count;
4339         unsigned long tmp;
4340         char *p = s;
4341
4342         if (!parsed_valid_hugepagesz) {
4343                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4344                 parsed_valid_hugepagesz = true;
4345                 return 1;
4346         }
4347
4348         /*
4349          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4350          * yet, so this hugepages= parameter goes to the "default hstate".
4351          * Otherwise, it goes with the previously parsed hugepagesz or
4352          * default_hugepagesz.
4353          */
4354         else if (!hugetlb_max_hstate)
4355                 mhp = &default_hstate_max_huge_pages;
4356         else
4357                 mhp = &parsed_hstate->max_huge_pages;
4358
4359         if (mhp == last_mhp) {
4360                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4361                 return 1;
4362         }
4363
4364         while (*p) {
4365                 count = 0;
4366                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4367                         goto invalid;
4368                 /* Parameter is node format */
4369                 if (p[count] == ':') {
4370                         if (!hugetlb_node_alloc_supported()) {
4371                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4372                                 return 1;
4373                         }
4374                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4375                                 goto invalid;
4376                         node = array_index_nospec(tmp, MAX_NUMNODES);
4377                         p += count + 1;
4378                         /* Parse hugepages */
4379                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4380                                 goto invalid;
4381                         if (!hugetlb_max_hstate)
4382                                 default_hugepages_in_node[node] = tmp;
4383                         else
4384                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4385                         *mhp += tmp;
4386                         /* Go to parse next node*/
4387                         if (p[count] == ',')
4388                                 p += count + 1;
4389                         else
4390                                 break;
4391                 } else {
4392                         if (p != s)
4393                                 goto invalid;
4394                         *mhp = tmp;
4395                         break;
4396                 }
4397         }
4398
4399         /*
4400          * Global state is always initialized later in hugetlb_init.
4401          * But we need to allocate gigantic hstates here early to still
4402          * use the bootmem allocator.
4403          */
4404         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4405                 hugetlb_hstate_alloc_pages(parsed_hstate);
4406
4407         last_mhp = mhp;
4408
4409         return 1;
4410
4411 invalid:
4412         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4413         hugepages_clear_pages_in_node();
4414         return 1;
4415 }
4416 __setup("hugepages=", hugepages_setup);
4417
4418 /*
4419  * hugepagesz command line processing
4420  * A specific huge page size can only be specified once with hugepagesz.
4421  * hugepagesz is followed by hugepages on the command line.  The global
4422  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4423  * hugepagesz argument was valid.
4424  */
4425 static int __init hugepagesz_setup(char *s)
4426 {
4427         unsigned long size;
4428         struct hstate *h;
4429
4430         parsed_valid_hugepagesz = false;
4431         size = (unsigned long)memparse(s, NULL);
4432
4433         if (!arch_hugetlb_valid_size(size)) {
4434                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4435                 return 1;
4436         }
4437
4438         h = size_to_hstate(size);
4439         if (h) {
4440                 /*
4441                  * hstate for this size already exists.  This is normally
4442                  * an error, but is allowed if the existing hstate is the
4443                  * default hstate.  More specifically, it is only allowed if
4444                  * the number of huge pages for the default hstate was not
4445                  * previously specified.
4446                  */
4447                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4448                     default_hstate.max_huge_pages) {
4449                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4450                         return 1;
4451                 }
4452
4453                 /*
4454                  * No need to call hugetlb_add_hstate() as hstate already
4455                  * exists.  But, do set parsed_hstate so that a following
4456                  * hugepages= parameter will be applied to this hstate.
4457                  */
4458                 parsed_hstate = h;
4459                 parsed_valid_hugepagesz = true;
4460                 return 1;
4461         }
4462
4463         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4464         parsed_valid_hugepagesz = true;
4465         return 1;
4466 }
4467 __setup("hugepagesz=", hugepagesz_setup);
4468
4469 /*
4470  * default_hugepagesz command line input
4471  * Only one instance of default_hugepagesz allowed on command line.
4472  */
4473 static int __init default_hugepagesz_setup(char *s)
4474 {
4475         unsigned long size;
4476         int i;
4477
4478         parsed_valid_hugepagesz = false;
4479         if (parsed_default_hugepagesz) {
4480                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4481                 return 1;
4482         }
4483
4484         size = (unsigned long)memparse(s, NULL);
4485
4486         if (!arch_hugetlb_valid_size(size)) {
4487                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4488                 return 1;
4489         }
4490
4491         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4492         parsed_valid_hugepagesz = true;
4493         parsed_default_hugepagesz = true;
4494         default_hstate_idx = hstate_index(size_to_hstate(size));
4495
4496         /*
4497          * The number of default huge pages (for this size) could have been
4498          * specified as the first hugetlb parameter: hugepages=X.  If so,
4499          * then default_hstate_max_huge_pages is set.  If the default huge
4500          * page size is gigantic (>= MAX_ORDER), then the pages must be
4501          * allocated here from bootmem allocator.
4502          */
4503         if (default_hstate_max_huge_pages) {
4504                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4505                 for_each_online_node(i)
4506                         default_hstate.max_huge_pages_node[i] =
4507                                 default_hugepages_in_node[i];
4508                 if (hstate_is_gigantic(&default_hstate))
4509                         hugetlb_hstate_alloc_pages(&default_hstate);
4510                 default_hstate_max_huge_pages = 0;
4511         }
4512
4513         return 1;
4514 }
4515 __setup("default_hugepagesz=", default_hugepagesz_setup);
4516
4517 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4518 {
4519 #ifdef CONFIG_NUMA
4520         struct mempolicy *mpol = get_task_policy(current);
4521
4522         /*
4523          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4524          * (from policy_nodemask) specifically for hugetlb case
4525          */
4526         if (mpol->mode == MPOL_BIND &&
4527                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4528                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4529                 return &mpol->nodes;
4530 #endif
4531         return NULL;
4532 }
4533
4534 static unsigned int allowed_mems_nr(struct hstate *h)
4535 {
4536         int node;
4537         unsigned int nr = 0;
4538         nodemask_t *mbind_nodemask;
4539         unsigned int *array = h->free_huge_pages_node;
4540         gfp_t gfp_mask = htlb_alloc_mask(h);
4541
4542         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4543         for_each_node_mask(node, cpuset_current_mems_allowed) {
4544                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4545                         nr += array[node];
4546         }
4547
4548         return nr;
4549 }
4550
4551 #ifdef CONFIG_SYSCTL
4552 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4553                                           void *buffer, size_t *length,
4554                                           loff_t *ppos, unsigned long *out)
4555 {
4556         struct ctl_table dup_table;
4557
4558         /*
4559          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4560          * can duplicate the @table and alter the duplicate of it.
4561          */
4562         dup_table = *table;
4563         dup_table.data = out;
4564
4565         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4566 }
4567
4568 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4569                          struct ctl_table *table, int write,
4570                          void *buffer, size_t *length, loff_t *ppos)
4571 {
4572         struct hstate *h = &default_hstate;
4573         unsigned long tmp = h->max_huge_pages;
4574         int ret;
4575
4576         if (!hugepages_supported())
4577                 return -EOPNOTSUPP;
4578
4579         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4580                                              &tmp);
4581         if (ret)
4582                 goto out;
4583
4584         if (write)
4585                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4586                                                   NUMA_NO_NODE, tmp, *length);
4587 out:
4588         return ret;
4589 }
4590
4591 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4592                           void *buffer, size_t *length, loff_t *ppos)
4593 {
4594
4595         return hugetlb_sysctl_handler_common(false, table, write,
4596                                                         buffer, length, ppos);
4597 }
4598
4599 #ifdef CONFIG_NUMA
4600 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4601                           void *buffer, size_t *length, loff_t *ppos)
4602 {
4603         return hugetlb_sysctl_handler_common(true, table, write,
4604                                                         buffer, length, ppos);
4605 }
4606 #endif /* CONFIG_NUMA */
4607
4608 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4609                 void *buffer, size_t *length, loff_t *ppos)
4610 {
4611         struct hstate *h = &default_hstate;
4612         unsigned long tmp;
4613         int ret;
4614
4615         if (!hugepages_supported())
4616                 return -EOPNOTSUPP;
4617
4618         tmp = h->nr_overcommit_huge_pages;
4619
4620         if (write && hstate_is_gigantic(h))
4621                 return -EINVAL;
4622
4623         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4624                                              &tmp);
4625         if (ret)
4626                 goto out;
4627
4628         if (write) {
4629                 spin_lock_irq(&hugetlb_lock);
4630                 h->nr_overcommit_huge_pages = tmp;
4631                 spin_unlock_irq(&hugetlb_lock);
4632         }
4633 out:
4634         return ret;
4635 }
4636
4637 #endif /* CONFIG_SYSCTL */
4638
4639 void hugetlb_report_meminfo(struct seq_file *m)
4640 {
4641         struct hstate *h;
4642         unsigned long total = 0;
4643
4644         if (!hugepages_supported())
4645                 return;
4646
4647         for_each_hstate(h) {
4648                 unsigned long count = h->nr_huge_pages;
4649
4650                 total += huge_page_size(h) * count;
4651
4652                 if (h == &default_hstate)
4653                         seq_printf(m,
4654                                    "HugePages_Total:   %5lu\n"
4655                                    "HugePages_Free:    %5lu\n"
4656                                    "HugePages_Rsvd:    %5lu\n"
4657                                    "HugePages_Surp:    %5lu\n"
4658                                    "Hugepagesize:   %8lu kB\n",
4659                                    count,
4660                                    h->free_huge_pages,
4661                                    h->resv_huge_pages,
4662                                    h->surplus_huge_pages,
4663                                    huge_page_size(h) / SZ_1K);
4664         }
4665
4666         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4667 }
4668
4669 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4670 {
4671         struct hstate *h = &default_hstate;
4672
4673         if (!hugepages_supported())
4674                 return 0;
4675
4676         return sysfs_emit_at(buf, len,
4677                              "Node %d HugePages_Total: %5u\n"
4678                              "Node %d HugePages_Free:  %5u\n"
4679                              "Node %d HugePages_Surp:  %5u\n",
4680                              nid, h->nr_huge_pages_node[nid],
4681                              nid, h->free_huge_pages_node[nid],
4682                              nid, h->surplus_huge_pages_node[nid]);
4683 }
4684
4685 void hugetlb_show_meminfo_node(int nid)
4686 {
4687         struct hstate *h;
4688
4689         if (!hugepages_supported())
4690                 return;
4691
4692         for_each_hstate(h)
4693                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4694                         nid,
4695                         h->nr_huge_pages_node[nid],
4696                         h->free_huge_pages_node[nid],
4697                         h->surplus_huge_pages_node[nid],
4698                         huge_page_size(h) / SZ_1K);
4699 }
4700
4701 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4702 {
4703         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4704                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4705 }
4706
4707 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4708 unsigned long hugetlb_total_pages(void)
4709 {
4710         struct hstate *h;
4711         unsigned long nr_total_pages = 0;
4712
4713         for_each_hstate(h)
4714                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4715         return nr_total_pages;
4716 }
4717
4718 static int hugetlb_acct_memory(struct hstate *h, long delta)
4719 {
4720         int ret = -ENOMEM;
4721
4722         if (!delta)
4723                 return 0;
4724
4725         spin_lock_irq(&hugetlb_lock);
4726         /*
4727          * When cpuset is configured, it breaks the strict hugetlb page
4728          * reservation as the accounting is done on a global variable. Such
4729          * reservation is completely rubbish in the presence of cpuset because
4730          * the reservation is not checked against page availability for the
4731          * current cpuset. Application can still potentially OOM'ed by kernel
4732          * with lack of free htlb page in cpuset that the task is in.
4733          * Attempt to enforce strict accounting with cpuset is almost
4734          * impossible (or too ugly) because cpuset is too fluid that
4735          * task or memory node can be dynamically moved between cpusets.
4736          *
4737          * The change of semantics for shared hugetlb mapping with cpuset is
4738          * undesirable. However, in order to preserve some of the semantics,
4739          * we fall back to check against current free page availability as
4740          * a best attempt and hopefully to minimize the impact of changing
4741          * semantics that cpuset has.
4742          *
4743          * Apart from cpuset, we also have memory policy mechanism that
4744          * also determines from which node the kernel will allocate memory
4745          * in a NUMA system. So similar to cpuset, we also should consider
4746          * the memory policy of the current task. Similar to the description
4747          * above.
4748          */
4749         if (delta > 0) {
4750                 if (gather_surplus_pages(h, delta) < 0)
4751                         goto out;
4752
4753                 if (delta > allowed_mems_nr(h)) {
4754                         return_unused_surplus_pages(h, delta);
4755                         goto out;
4756                 }
4757         }
4758
4759         ret = 0;
4760         if (delta < 0)
4761                 return_unused_surplus_pages(h, (unsigned long) -delta);
4762
4763 out:
4764         spin_unlock_irq(&hugetlb_lock);
4765         return ret;
4766 }
4767
4768 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4769 {
4770         struct resv_map *resv = vma_resv_map(vma);
4771
4772         /*
4773          * HPAGE_RESV_OWNER indicates a private mapping.
4774          * This new VMA should share its siblings reservation map if present.
4775          * The VMA will only ever have a valid reservation map pointer where
4776          * it is being copied for another still existing VMA.  As that VMA
4777          * has a reference to the reservation map it cannot disappear until
4778          * after this open call completes.  It is therefore safe to take a
4779          * new reference here without additional locking.
4780          */
4781         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4782                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4783                 kref_get(&resv->refs);
4784         }
4785
4786         /*
4787          * vma_lock structure for sharable mappings is vma specific.
4788          * Clear old pointer (if copied via vm_area_dup) and allocate
4789          * new structure.  Before clearing, make sure vma_lock is not
4790          * for this vma.
4791          */
4792         if (vma->vm_flags & VM_MAYSHARE) {
4793                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4794
4795                 if (vma_lock) {
4796                         if (vma_lock->vma != vma) {
4797                                 vma->vm_private_data = NULL;
4798                                 hugetlb_vma_lock_alloc(vma);
4799                         } else
4800                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4801                 } else
4802                         hugetlb_vma_lock_alloc(vma);
4803         }
4804 }
4805
4806 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4807 {
4808         struct hstate *h = hstate_vma(vma);
4809         struct resv_map *resv;
4810         struct hugepage_subpool *spool = subpool_vma(vma);
4811         unsigned long reserve, start, end;
4812         long gbl_reserve;
4813
4814         hugetlb_vma_lock_free(vma);
4815
4816         resv = vma_resv_map(vma);
4817         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4818                 return;
4819
4820         start = vma_hugecache_offset(h, vma, vma->vm_start);
4821         end = vma_hugecache_offset(h, vma, vma->vm_end);
4822
4823         reserve = (end - start) - region_count(resv, start, end);
4824         hugetlb_cgroup_uncharge_counter(resv, start, end);
4825         if (reserve) {
4826                 /*
4827                  * Decrement reserve counts.  The global reserve count may be
4828                  * adjusted if the subpool has a minimum size.
4829                  */
4830                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4831                 hugetlb_acct_memory(h, -gbl_reserve);
4832         }
4833
4834         kref_put(&resv->refs, resv_map_release);
4835 }
4836
4837 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4838 {
4839         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4840                 return -EINVAL;
4841
4842         /*
4843          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4844          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4845          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4846          */
4847         if (addr & ~PUD_MASK) {
4848                 /*
4849                  * hugetlb_vm_op_split is called right before we attempt to
4850                  * split the VMA. We will need to unshare PMDs in the old and
4851                  * new VMAs, so let's unshare before we split.
4852                  */
4853                 unsigned long floor = addr & PUD_MASK;
4854                 unsigned long ceil = floor + PUD_SIZE;
4855
4856                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4857                         hugetlb_unshare_pmds(vma, floor, ceil);
4858         }
4859
4860         return 0;
4861 }
4862
4863 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4864 {
4865         return huge_page_size(hstate_vma(vma));
4866 }
4867
4868 /*
4869  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4870  * handle_mm_fault() to try to instantiate regular-sized pages in the
4871  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4872  * this far.
4873  */
4874 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4875 {
4876         BUG();
4877         return 0;
4878 }
4879
4880 /*
4881  * When a new function is introduced to vm_operations_struct and added
4882  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4883  * This is because under System V memory model, mappings created via
4884  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4885  * their original vm_ops are overwritten with shm_vm_ops.
4886  */
4887 const struct vm_operations_struct hugetlb_vm_ops = {
4888         .fault = hugetlb_vm_op_fault,
4889         .open = hugetlb_vm_op_open,
4890         .close = hugetlb_vm_op_close,
4891         .may_split = hugetlb_vm_op_split,
4892         .pagesize = hugetlb_vm_op_pagesize,
4893 };
4894
4895 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4896                                 int writable)
4897 {
4898         pte_t entry;
4899         unsigned int shift = huge_page_shift(hstate_vma(vma));
4900
4901         if (writable) {
4902                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4903                                          vma->vm_page_prot)));
4904         } else {
4905                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4906                                            vma->vm_page_prot));
4907         }
4908         entry = pte_mkyoung(entry);
4909         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4910
4911         return entry;
4912 }
4913
4914 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4915                                    unsigned long address, pte_t *ptep)
4916 {
4917         pte_t entry;
4918
4919         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4920         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4921                 update_mmu_cache(vma, address, ptep);
4922 }
4923
4924 bool is_hugetlb_entry_migration(pte_t pte)
4925 {
4926         swp_entry_t swp;
4927
4928         if (huge_pte_none(pte) || pte_present(pte))
4929                 return false;
4930         swp = pte_to_swp_entry(pte);
4931         if (is_migration_entry(swp))
4932                 return true;
4933         else
4934                 return false;
4935 }
4936
4937 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4938 {
4939         swp_entry_t swp;
4940
4941         if (huge_pte_none(pte) || pte_present(pte))
4942                 return false;
4943         swp = pte_to_swp_entry(pte);
4944         if (is_hwpoison_entry(swp))
4945                 return true;
4946         else
4947                 return false;
4948 }
4949
4950 static void
4951 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4952                      struct folio *new_folio)
4953 {
4954         __folio_mark_uptodate(new_folio);
4955         hugepage_add_new_anon_rmap(new_folio, vma, addr);
4956         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, &new_folio->page, 1));
4957         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4958         folio_set_hugetlb_migratable(new_folio);
4959 }
4960
4961 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4962                             struct vm_area_struct *dst_vma,
4963                             struct vm_area_struct *src_vma)
4964 {
4965         pte_t *src_pte, *dst_pte, entry;
4966         struct page *ptepage;
4967         unsigned long addr;
4968         bool cow = is_cow_mapping(src_vma->vm_flags);
4969         struct hstate *h = hstate_vma(src_vma);
4970         unsigned long sz = huge_page_size(h);
4971         unsigned long npages = pages_per_huge_page(h);
4972         struct mmu_notifier_range range;
4973         unsigned long last_addr_mask;
4974         int ret = 0;
4975
4976         if (cow) {
4977                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4978                                         src_vma->vm_start,
4979                                         src_vma->vm_end);
4980                 mmu_notifier_invalidate_range_start(&range);
4981                 mmap_assert_write_locked(src);
4982                 raw_write_seqcount_begin(&src->write_protect_seq);
4983         } else {
4984                 /*
4985                  * For shared mappings the vma lock must be held before
4986                  * calling hugetlb_walk() in the src vma. Otherwise, the
4987                  * returned ptep could go away if part of a shared pmd and
4988                  * another thread calls huge_pmd_unshare.
4989                  */
4990                 hugetlb_vma_lock_read(src_vma);
4991         }
4992
4993         last_addr_mask = hugetlb_mask_last_page(h);
4994         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4995                 spinlock_t *src_ptl, *dst_ptl;
4996                 src_pte = hugetlb_walk(src_vma, addr, sz);
4997                 if (!src_pte) {
4998                         addr |= last_addr_mask;
4999                         continue;
5000                 }
5001                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5002                 if (!dst_pte) {
5003                         ret = -ENOMEM;
5004                         break;
5005                 }
5006
5007                 /*
5008                  * If the pagetables are shared don't copy or take references.
5009                  *
5010                  * dst_pte == src_pte is the common case of src/dest sharing.
5011                  * However, src could have 'unshared' and dst shares with
5012                  * another vma. So page_count of ptep page is checked instead
5013                  * to reliably determine whether pte is shared.
5014                  */
5015                 if (page_count(virt_to_page(dst_pte)) > 1) {
5016                         addr |= last_addr_mask;
5017                         continue;
5018                 }
5019
5020                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5021                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5022                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5023                 entry = huge_ptep_get(src_pte);
5024 again:
5025                 if (huge_pte_none(entry)) {
5026                         /*
5027                          * Skip if src entry none.
5028                          */
5029                         ;
5030                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5031                         bool uffd_wp = huge_pte_uffd_wp(entry);
5032
5033                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5034                                 entry = huge_pte_clear_uffd_wp(entry);
5035                         set_huge_pte_at(dst, addr, dst_pte, entry);
5036                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5037                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5038                         bool uffd_wp = huge_pte_uffd_wp(entry);
5039
5040                         if (!is_readable_migration_entry(swp_entry) && cow) {
5041                                 /*
5042                                  * COW mappings require pages in both
5043                                  * parent and child to be set to read.
5044                                  */
5045                                 swp_entry = make_readable_migration_entry(
5046                                                         swp_offset(swp_entry));
5047                                 entry = swp_entry_to_pte(swp_entry);
5048                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5049                                         entry = huge_pte_mkuffd_wp(entry);
5050                                 set_huge_pte_at(src, addr, src_pte, entry);
5051                         }
5052                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
5053                                 entry = huge_pte_clear_uffd_wp(entry);
5054                         set_huge_pte_at(dst, addr, dst_pte, entry);
5055                 } else if (unlikely(is_pte_marker(entry))) {
5056                         /* No swap on hugetlb */
5057                         WARN_ON_ONCE(
5058                             is_swapin_error_entry(pte_to_swp_entry(entry)));
5059                         /*
5060                          * We copy the pte marker only if the dst vma has
5061                          * uffd-wp enabled.
5062                          */
5063                         if (userfaultfd_wp(dst_vma))
5064                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5065                 } else {
5066                         entry = huge_ptep_get(src_pte);
5067                         ptepage = pte_page(entry);
5068                         get_page(ptepage);
5069
5070                         /*
5071                          * Failing to duplicate the anon rmap is a rare case
5072                          * where we see pinned hugetlb pages while they're
5073                          * prone to COW. We need to do the COW earlier during
5074                          * fork.
5075                          *
5076                          * When pre-allocating the page or copying data, we
5077                          * need to be without the pgtable locks since we could
5078                          * sleep during the process.
5079                          */
5080                         if (!PageAnon(ptepage)) {
5081                                 page_dup_file_rmap(ptepage, true);
5082                         } else if (page_try_dup_anon_rmap(ptepage, true,
5083                                                           src_vma)) {
5084                                 pte_t src_pte_old = entry;
5085                                 struct folio *new_folio;
5086
5087                                 spin_unlock(src_ptl);
5088                                 spin_unlock(dst_ptl);
5089                                 /* Do not use reserve as it's private owned */
5090                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5091                                 if (IS_ERR(new_folio)) {
5092                                         put_page(ptepage);
5093                                         ret = PTR_ERR(new_folio);
5094                                         break;
5095                                 }
5096                                 copy_user_huge_page(&new_folio->page, ptepage, addr, dst_vma,
5097                                                     npages);
5098                                 put_page(ptepage);
5099
5100                                 /* Install the new hugetlb folio if src pte stable */
5101                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5102                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5103                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5104                                 entry = huge_ptep_get(src_pte);
5105                                 if (!pte_same(src_pte_old, entry)) {
5106                                         restore_reserve_on_error(h, dst_vma, addr,
5107                                                                 new_folio);
5108                                         folio_put(new_folio);
5109                                         /* huge_ptep of dst_pte won't change as in child */
5110                                         goto again;
5111                                 }
5112                                 hugetlb_install_folio(dst_vma, dst_pte, addr, new_folio);
5113                                 spin_unlock(src_ptl);
5114                                 spin_unlock(dst_ptl);
5115                                 continue;
5116                         }
5117
5118                         if (cow) {
5119                                 /*
5120                                  * No need to notify as we are downgrading page
5121                                  * table protection not changing it to point
5122                                  * to a new page.
5123                                  *
5124                                  * See Documentation/mm/mmu_notifier.rst
5125                                  */
5126                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5127                                 entry = huge_pte_wrprotect(entry);
5128                         }
5129
5130                         set_huge_pte_at(dst, addr, dst_pte, entry);
5131                         hugetlb_count_add(npages, dst);
5132                 }
5133                 spin_unlock(src_ptl);
5134                 spin_unlock(dst_ptl);
5135         }
5136
5137         if (cow) {
5138                 raw_write_seqcount_end(&src->write_protect_seq);
5139                 mmu_notifier_invalidate_range_end(&range);
5140         } else {
5141                 hugetlb_vma_unlock_read(src_vma);
5142         }
5143
5144         return ret;
5145 }
5146
5147 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5148                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5149 {
5150         struct hstate *h = hstate_vma(vma);
5151         struct mm_struct *mm = vma->vm_mm;
5152         spinlock_t *src_ptl, *dst_ptl;
5153         pte_t pte;
5154
5155         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5156         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5157
5158         /*
5159          * We don't have to worry about the ordering of src and dst ptlocks
5160          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5161          */
5162         if (src_ptl != dst_ptl)
5163                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5164
5165         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5166         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5167
5168         if (src_ptl != dst_ptl)
5169                 spin_unlock(src_ptl);
5170         spin_unlock(dst_ptl);
5171 }
5172
5173 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5174                              struct vm_area_struct *new_vma,
5175                              unsigned long old_addr, unsigned long new_addr,
5176                              unsigned long len)
5177 {
5178         struct hstate *h = hstate_vma(vma);
5179         struct address_space *mapping = vma->vm_file->f_mapping;
5180         unsigned long sz = huge_page_size(h);
5181         struct mm_struct *mm = vma->vm_mm;
5182         unsigned long old_end = old_addr + len;
5183         unsigned long last_addr_mask;
5184         pte_t *src_pte, *dst_pte;
5185         struct mmu_notifier_range range;
5186         bool shared_pmd = false;
5187
5188         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5189                                 old_end);
5190         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5191         /*
5192          * In case of shared PMDs, we should cover the maximum possible
5193          * range.
5194          */
5195         flush_cache_range(vma, range.start, range.end);
5196
5197         mmu_notifier_invalidate_range_start(&range);
5198         last_addr_mask = hugetlb_mask_last_page(h);
5199         /* Prevent race with file truncation */
5200         hugetlb_vma_lock_write(vma);
5201         i_mmap_lock_write(mapping);
5202         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5203                 src_pte = hugetlb_walk(vma, old_addr, sz);
5204                 if (!src_pte) {
5205                         old_addr |= last_addr_mask;
5206                         new_addr |= last_addr_mask;
5207                         continue;
5208                 }
5209                 if (huge_pte_none(huge_ptep_get(src_pte)))
5210                         continue;
5211
5212                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5213                         shared_pmd = true;
5214                         old_addr |= last_addr_mask;
5215                         new_addr |= last_addr_mask;
5216                         continue;
5217                 }
5218
5219                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5220                 if (!dst_pte)
5221                         break;
5222
5223                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5224         }
5225
5226         if (shared_pmd)
5227                 flush_tlb_range(vma, range.start, range.end);
5228         else
5229                 flush_tlb_range(vma, old_end - len, old_end);
5230         mmu_notifier_invalidate_range_end(&range);
5231         i_mmap_unlock_write(mapping);
5232         hugetlb_vma_unlock_write(vma);
5233
5234         return len + old_addr - old_end;
5235 }
5236
5237 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5238                                    unsigned long start, unsigned long end,
5239                                    struct page *ref_page, zap_flags_t zap_flags)
5240 {
5241         struct mm_struct *mm = vma->vm_mm;
5242         unsigned long address;
5243         pte_t *ptep;
5244         pte_t pte;
5245         spinlock_t *ptl;
5246         struct page *page;
5247         struct hstate *h = hstate_vma(vma);
5248         unsigned long sz = huge_page_size(h);
5249         unsigned long last_addr_mask;
5250         bool force_flush = false;
5251
5252         WARN_ON(!is_vm_hugetlb_page(vma));
5253         BUG_ON(start & ~huge_page_mask(h));
5254         BUG_ON(end & ~huge_page_mask(h));
5255
5256         /*
5257          * This is a hugetlb vma, all the pte entries should point
5258          * to huge page.
5259          */
5260         tlb_change_page_size(tlb, sz);
5261         tlb_start_vma(tlb, vma);
5262
5263         last_addr_mask = hugetlb_mask_last_page(h);
5264         address = start;
5265         for (; address < end; address += sz) {
5266                 ptep = hugetlb_walk(vma, address, sz);
5267                 if (!ptep) {
5268                         address |= last_addr_mask;
5269                         continue;
5270                 }
5271
5272                 ptl = huge_pte_lock(h, mm, ptep);
5273                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5274                         spin_unlock(ptl);
5275                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5276                         force_flush = true;
5277                         address |= last_addr_mask;
5278                         continue;
5279                 }
5280
5281                 pte = huge_ptep_get(ptep);
5282                 if (huge_pte_none(pte)) {
5283                         spin_unlock(ptl);
5284                         continue;
5285                 }
5286
5287                 /*
5288                  * Migrating hugepage or HWPoisoned hugepage is already
5289                  * unmapped and its refcount is dropped, so just clear pte here.
5290                  */
5291                 if (unlikely(!pte_present(pte))) {
5292                         /*
5293                          * If the pte was wr-protected by uffd-wp in any of the
5294                          * swap forms, meanwhile the caller does not want to
5295                          * drop the uffd-wp bit in this zap, then replace the
5296                          * pte with a marker.
5297                          */
5298                         if (pte_swp_uffd_wp_any(pte) &&
5299                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5300                                 set_huge_pte_at(mm, address, ptep,
5301                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5302                         else
5303                                 huge_pte_clear(mm, address, ptep, sz);
5304                         spin_unlock(ptl);
5305                         continue;
5306                 }
5307
5308                 page = pte_page(pte);
5309                 /*
5310                  * If a reference page is supplied, it is because a specific
5311                  * page is being unmapped, not a range. Ensure the page we
5312                  * are about to unmap is the actual page of interest.
5313                  */
5314                 if (ref_page) {
5315                         if (page != ref_page) {
5316                                 spin_unlock(ptl);
5317                                 continue;
5318                         }
5319                         /*
5320                          * Mark the VMA as having unmapped its page so that
5321                          * future faults in this VMA will fail rather than
5322                          * looking like data was lost
5323                          */
5324                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5325                 }
5326
5327                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5328                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5329                 if (huge_pte_dirty(pte))
5330                         set_page_dirty(page);
5331                 /* Leave a uffd-wp pte marker if needed */
5332                 if (huge_pte_uffd_wp(pte) &&
5333                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5334                         set_huge_pte_at(mm, address, ptep,
5335                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5336                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5337                 page_remove_rmap(page, vma, true);
5338
5339                 spin_unlock(ptl);
5340                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5341                 /*
5342                  * Bail out after unmapping reference page if supplied
5343                  */
5344                 if (ref_page)
5345                         break;
5346         }
5347         tlb_end_vma(tlb, vma);
5348
5349         /*
5350          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5351          * could defer the flush until now, since by holding i_mmap_rwsem we
5352          * guaranteed that the last refernece would not be dropped. But we must
5353          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5354          * dropped and the last reference to the shared PMDs page might be
5355          * dropped as well.
5356          *
5357          * In theory we could defer the freeing of the PMD pages as well, but
5358          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5359          * detect sharing, so we cannot defer the release of the page either.
5360          * Instead, do flush now.
5361          */
5362         if (force_flush)
5363                 tlb_flush_mmu_tlbonly(tlb);
5364 }
5365
5366 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5367                           struct vm_area_struct *vma, unsigned long start,
5368                           unsigned long end, struct page *ref_page,
5369                           zap_flags_t zap_flags)
5370 {
5371         hugetlb_vma_lock_write(vma);
5372         i_mmap_lock_write(vma->vm_file->f_mapping);
5373
5374         /* mmu notification performed in caller */
5375         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5376
5377         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5378                 /*
5379                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5380                  * When the vma_lock is freed, this makes the vma ineligible
5381                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5382                  * pmd sharing.  This is important as page tables for this
5383                  * unmapped range will be asynchrously deleted.  If the page
5384                  * tables are shared, there will be issues when accessed by
5385                  * someone else.
5386                  */
5387                 __hugetlb_vma_unlock_write_free(vma);
5388                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5389         } else {
5390                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5391                 hugetlb_vma_unlock_write(vma);
5392         }
5393 }
5394
5395 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5396                           unsigned long end, struct page *ref_page,
5397                           zap_flags_t zap_flags)
5398 {
5399         struct mmu_notifier_range range;
5400         struct mmu_gather tlb;
5401
5402         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5403                                 start, end);
5404         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5405         mmu_notifier_invalidate_range_start(&range);
5406         tlb_gather_mmu(&tlb, vma->vm_mm);
5407
5408         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5409
5410         mmu_notifier_invalidate_range_end(&range);
5411         tlb_finish_mmu(&tlb);
5412 }
5413
5414 /*
5415  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5416  * mapping it owns the reserve page for. The intention is to unmap the page
5417  * from other VMAs and let the children be SIGKILLed if they are faulting the
5418  * same region.
5419  */
5420 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5421                               struct page *page, unsigned long address)
5422 {
5423         struct hstate *h = hstate_vma(vma);
5424         struct vm_area_struct *iter_vma;
5425         struct address_space *mapping;
5426         pgoff_t pgoff;
5427
5428         /*
5429          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5430          * from page cache lookup which is in HPAGE_SIZE units.
5431          */
5432         address = address & huge_page_mask(h);
5433         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5434                         vma->vm_pgoff;
5435         mapping = vma->vm_file->f_mapping;
5436
5437         /*
5438          * Take the mapping lock for the duration of the table walk. As
5439          * this mapping should be shared between all the VMAs,
5440          * __unmap_hugepage_range() is called as the lock is already held
5441          */
5442         i_mmap_lock_write(mapping);
5443         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5444                 /* Do not unmap the current VMA */
5445                 if (iter_vma == vma)
5446                         continue;
5447
5448                 /*
5449                  * Shared VMAs have their own reserves and do not affect
5450                  * MAP_PRIVATE accounting but it is possible that a shared
5451                  * VMA is using the same page so check and skip such VMAs.
5452                  */
5453                 if (iter_vma->vm_flags & VM_MAYSHARE)
5454                         continue;
5455
5456                 /*
5457                  * Unmap the page from other VMAs without their own reserves.
5458                  * They get marked to be SIGKILLed if they fault in these
5459                  * areas. This is because a future no-page fault on this VMA
5460                  * could insert a zeroed page instead of the data existing
5461                  * from the time of fork. This would look like data corruption
5462                  */
5463                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5464                         unmap_hugepage_range(iter_vma, address,
5465                                              address + huge_page_size(h), page, 0);
5466         }
5467         i_mmap_unlock_write(mapping);
5468 }
5469
5470 /*
5471  * hugetlb_wp() should be called with page lock of the original hugepage held.
5472  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5473  * cannot race with other handlers or page migration.
5474  * Keep the pte_same checks anyway to make transition from the mutex easier.
5475  */
5476 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5477                        unsigned long address, pte_t *ptep, unsigned int flags,
5478                        struct folio *pagecache_folio, spinlock_t *ptl)
5479 {
5480         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5481         pte_t pte = huge_ptep_get(ptep);
5482         struct hstate *h = hstate_vma(vma);
5483         struct page *old_page;
5484         struct folio *new_folio;
5485         int outside_reserve = 0;
5486         vm_fault_t ret = 0;
5487         unsigned long haddr = address & huge_page_mask(h);
5488         struct mmu_notifier_range range;
5489
5490         /*
5491          * Never handle CoW for uffd-wp protected pages.  It should be only
5492          * handled when the uffd-wp protection is removed.
5493          *
5494          * Note that only the CoW optimization path (in hugetlb_no_page())
5495          * can trigger this, because hugetlb_fault() will always resolve
5496          * uffd-wp bit first.
5497          */
5498         if (!unshare && huge_pte_uffd_wp(pte))
5499                 return 0;
5500
5501         /*
5502          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5503          * PTE mapped R/O such as maybe_mkwrite() would do.
5504          */
5505         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5506                 return VM_FAULT_SIGSEGV;
5507
5508         /* Let's take out MAP_SHARED mappings first. */
5509         if (vma->vm_flags & VM_MAYSHARE) {
5510                 set_huge_ptep_writable(vma, haddr, ptep);
5511                 return 0;
5512         }
5513
5514         old_page = pte_page(pte);
5515
5516         delayacct_wpcopy_start();
5517
5518 retry_avoidcopy:
5519         /*
5520          * If no-one else is actually using this page, we're the exclusive
5521          * owner and can reuse this page.
5522          */
5523         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5524                 if (!PageAnonExclusive(old_page))
5525                         page_move_anon_rmap(old_page, vma);
5526                 if (likely(!unshare))
5527                         set_huge_ptep_writable(vma, haddr, ptep);
5528
5529                 delayacct_wpcopy_end();
5530                 return 0;
5531         }
5532         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5533                        old_page);
5534
5535         /*
5536          * If the process that created a MAP_PRIVATE mapping is about to
5537          * perform a COW due to a shared page count, attempt to satisfy
5538          * the allocation without using the existing reserves. The pagecache
5539          * page is used to determine if the reserve at this address was
5540          * consumed or not. If reserves were used, a partial faulted mapping
5541          * at the time of fork() could consume its reserves on COW instead
5542          * of the full address range.
5543          */
5544         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5545                         page_folio(old_page) != pagecache_folio)
5546                 outside_reserve = 1;
5547
5548         get_page(old_page);
5549
5550         /*
5551          * Drop page table lock as buddy allocator may be called. It will
5552          * be acquired again before returning to the caller, as expected.
5553          */
5554         spin_unlock(ptl);
5555         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5556
5557         if (IS_ERR(new_folio)) {
5558                 /*
5559                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5560                  * it is due to references held by a child and an insufficient
5561                  * huge page pool. To guarantee the original mappers
5562                  * reliability, unmap the page from child processes. The child
5563                  * may get SIGKILLed if it later faults.
5564                  */
5565                 if (outside_reserve) {
5566                         struct address_space *mapping = vma->vm_file->f_mapping;
5567                         pgoff_t idx;
5568                         u32 hash;
5569
5570                         put_page(old_page);
5571                         /*
5572                          * Drop hugetlb_fault_mutex and vma_lock before
5573                          * unmapping.  unmapping needs to hold vma_lock
5574                          * in write mode.  Dropping vma_lock in read mode
5575                          * here is OK as COW mappings do not interact with
5576                          * PMD sharing.
5577                          *
5578                          * Reacquire both after unmap operation.
5579                          */
5580                         idx = vma_hugecache_offset(h, vma, haddr);
5581                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5582                         hugetlb_vma_unlock_read(vma);
5583                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5584
5585                         unmap_ref_private(mm, vma, old_page, haddr);
5586
5587                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5588                         hugetlb_vma_lock_read(vma);
5589                         spin_lock(ptl);
5590                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5591                         if (likely(ptep &&
5592                                    pte_same(huge_ptep_get(ptep), pte)))
5593                                 goto retry_avoidcopy;
5594                         /*
5595                          * race occurs while re-acquiring page table
5596                          * lock, and our job is done.
5597                          */
5598                         delayacct_wpcopy_end();
5599                         return 0;
5600                 }
5601
5602                 ret = vmf_error(PTR_ERR(new_folio));
5603                 goto out_release_old;
5604         }
5605
5606         /*
5607          * When the original hugepage is shared one, it does not have
5608          * anon_vma prepared.
5609          */
5610         if (unlikely(anon_vma_prepare(vma))) {
5611                 ret = VM_FAULT_OOM;
5612                 goto out_release_all;
5613         }
5614
5615         copy_user_huge_page(&new_folio->page, old_page, address, vma,
5616                             pages_per_huge_page(h));
5617         __folio_mark_uptodate(new_folio);
5618
5619         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5620                                 haddr + huge_page_size(h));
5621         mmu_notifier_invalidate_range_start(&range);
5622
5623         /*
5624          * Retake the page table lock to check for racing updates
5625          * before the page tables are altered
5626          */
5627         spin_lock(ptl);
5628         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5629         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5630                 /* Break COW or unshare */
5631                 huge_ptep_clear_flush(vma, haddr, ptep);
5632                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5633                 page_remove_rmap(old_page, vma, true);
5634                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5635                 set_huge_pte_at(mm, haddr, ptep,
5636                                 make_huge_pte(vma, &new_folio->page, !unshare));
5637                 folio_set_hugetlb_migratable(new_folio);
5638                 /* Make the old page be freed below */
5639                 new_folio = page_folio(old_page);
5640         }
5641         spin_unlock(ptl);
5642         mmu_notifier_invalidate_range_end(&range);
5643 out_release_all:
5644         /*
5645          * No restore in case of successful pagetable update (Break COW or
5646          * unshare)
5647          */
5648         if (new_folio != page_folio(old_page))
5649                 restore_reserve_on_error(h, vma, haddr, new_folio);
5650         folio_put(new_folio);
5651 out_release_old:
5652         put_page(old_page);
5653
5654         spin_lock(ptl); /* Caller expects lock to be held */
5655
5656         delayacct_wpcopy_end();
5657         return ret;
5658 }
5659
5660 /*
5661  * Return whether there is a pagecache page to back given address within VMA.
5662  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5663  */
5664 static bool hugetlbfs_pagecache_present(struct hstate *h,
5665                         struct vm_area_struct *vma, unsigned long address)
5666 {
5667         struct address_space *mapping = vma->vm_file->f_mapping;
5668         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5669         bool present;
5670
5671         rcu_read_lock();
5672         present = page_cache_next_miss(mapping, idx, 1) != idx;
5673         rcu_read_unlock();
5674
5675         return present;
5676 }
5677
5678 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5679                            pgoff_t idx)
5680 {
5681         struct inode *inode = mapping->host;
5682         struct hstate *h = hstate_inode(inode);
5683         int err;
5684
5685         __folio_set_locked(folio);
5686         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5687
5688         if (unlikely(err)) {
5689                 __folio_clear_locked(folio);
5690                 return err;
5691         }
5692         folio_clear_hugetlb_restore_reserve(folio);
5693
5694         /*
5695          * mark folio dirty so that it will not be removed from cache/file
5696          * by non-hugetlbfs specific code paths.
5697          */
5698         folio_mark_dirty(folio);
5699
5700         spin_lock(&inode->i_lock);
5701         inode->i_blocks += blocks_per_huge_page(h);
5702         spin_unlock(&inode->i_lock);
5703         return 0;
5704 }
5705
5706 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5707                                                   struct address_space *mapping,
5708                                                   pgoff_t idx,
5709                                                   unsigned int flags,
5710                                                   unsigned long haddr,
5711                                                   unsigned long addr,
5712                                                   unsigned long reason)
5713 {
5714         u32 hash;
5715         struct vm_fault vmf = {
5716                 .vma = vma,
5717                 .address = haddr,
5718                 .real_address = addr,
5719                 .flags = flags,
5720
5721                 /*
5722                  * Hard to debug if it ends up being
5723                  * used by a callee that assumes
5724                  * something about the other
5725                  * uninitialized fields... same as in
5726                  * memory.c
5727                  */
5728         };
5729
5730         /*
5731          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5732          * userfault. Also mmap_lock could be dropped due to handling
5733          * userfault, any vma operation should be careful from here.
5734          */
5735         hugetlb_vma_unlock_read(vma);
5736         hash = hugetlb_fault_mutex_hash(mapping, idx);
5737         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5738         return handle_userfault(&vmf, reason);
5739 }
5740
5741 /*
5742  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5743  * false if pte changed or is changing.
5744  */
5745 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5746                                pte_t *ptep, pte_t old_pte)
5747 {
5748         spinlock_t *ptl;
5749         bool same;
5750
5751         ptl = huge_pte_lock(h, mm, ptep);
5752         same = pte_same(huge_ptep_get(ptep), old_pte);
5753         spin_unlock(ptl);
5754
5755         return same;
5756 }
5757
5758 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5759                         struct vm_area_struct *vma,
5760                         struct address_space *mapping, pgoff_t idx,
5761                         unsigned long address, pte_t *ptep,
5762                         pte_t old_pte, unsigned int flags)
5763 {
5764         struct hstate *h = hstate_vma(vma);
5765         vm_fault_t ret = VM_FAULT_SIGBUS;
5766         int anon_rmap = 0;
5767         unsigned long size;
5768         struct folio *folio;
5769         pte_t new_pte;
5770         spinlock_t *ptl;
5771         unsigned long haddr = address & huge_page_mask(h);
5772         bool new_folio, new_pagecache_folio = false;
5773         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5774
5775         /*
5776          * Currently, we are forced to kill the process in the event the
5777          * original mapper has unmapped pages from the child due to a failed
5778          * COW/unsharing. Warn that such a situation has occurred as it may not
5779          * be obvious.
5780          */
5781         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5782                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5783                            current->pid);
5784                 goto out;
5785         }
5786
5787         /*
5788          * Use page lock to guard against racing truncation
5789          * before we get page_table_lock.
5790          */
5791         new_folio = false;
5792         folio = filemap_lock_folio(mapping, idx);
5793         if (!folio) {
5794                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5795                 if (idx >= size)
5796                         goto out;
5797                 /* Check for page in userfault range */
5798                 if (userfaultfd_missing(vma)) {
5799                         /*
5800                          * Since hugetlb_no_page() was examining pte
5801                          * without pgtable lock, we need to re-test under
5802                          * lock because the pte may not be stable and could
5803                          * have changed from under us.  Try to detect
5804                          * either changed or during-changing ptes and retry
5805                          * properly when needed.
5806                          *
5807                          * Note that userfaultfd is actually fine with
5808                          * false positives (e.g. caused by pte changed),
5809                          * but not wrong logical events (e.g. caused by
5810                          * reading a pte during changing).  The latter can
5811                          * confuse the userspace, so the strictness is very
5812                          * much preferred.  E.g., MISSING event should
5813                          * never happen on the page after UFFDIO_COPY has
5814                          * correctly installed the page and returned.
5815                          */
5816                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5817                                 ret = 0;
5818                                 goto out;
5819                         }
5820
5821                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5822                                                         haddr, address,
5823                                                         VM_UFFD_MISSING);
5824                 }
5825
5826                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5827                 if (IS_ERR(folio)) {
5828                         /*
5829                          * Returning error will result in faulting task being
5830                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5831                          * tasks from racing to fault in the same page which
5832                          * could result in false unable to allocate errors.
5833                          * Page migration does not take the fault mutex, but
5834                          * does a clear then write of pte's under page table
5835                          * lock.  Page fault code could race with migration,
5836                          * notice the clear pte and try to allocate a page
5837                          * here.  Before returning error, get ptl and make
5838                          * sure there really is no pte entry.
5839                          */
5840                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5841                                 ret = vmf_error(PTR_ERR(folio));
5842                         else
5843                                 ret = 0;
5844                         goto out;
5845                 }
5846                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5847                 __folio_mark_uptodate(folio);
5848                 new_folio = true;
5849
5850                 if (vma->vm_flags & VM_MAYSHARE) {
5851                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5852                         if (err) {
5853                                 /*
5854                                  * err can't be -EEXIST which implies someone
5855                                  * else consumed the reservation since hugetlb
5856                                  * fault mutex is held when add a hugetlb page
5857                                  * to the page cache. So it's safe to call
5858                                  * restore_reserve_on_error() here.
5859                                  */
5860                                 restore_reserve_on_error(h, vma, haddr, folio);
5861                                 folio_put(folio);
5862                                 goto out;
5863                         }
5864                         new_pagecache_folio = true;
5865                 } else {
5866                         folio_lock(folio);
5867                         if (unlikely(anon_vma_prepare(vma))) {
5868                                 ret = VM_FAULT_OOM;
5869                                 goto backout_unlocked;
5870                         }
5871                         anon_rmap = 1;
5872                 }
5873         } else {
5874                 /*
5875                  * If memory error occurs between mmap() and fault, some process
5876                  * don't have hwpoisoned swap entry for errored virtual address.
5877                  * So we need to block hugepage fault by PG_hwpoison bit check.
5878                  */
5879                 if (unlikely(folio_test_hwpoison(folio))) {
5880                         ret = VM_FAULT_HWPOISON_LARGE |
5881                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5882                         goto backout_unlocked;
5883                 }
5884
5885                 /* Check for page in userfault range. */
5886                 if (userfaultfd_minor(vma)) {
5887                         folio_unlock(folio);
5888                         folio_put(folio);
5889                         /* See comment in userfaultfd_missing() block above */
5890                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5891                                 ret = 0;
5892                                 goto out;
5893                         }
5894                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5895                                                         haddr, address,
5896                                                         VM_UFFD_MINOR);
5897                 }
5898         }
5899
5900         /*
5901          * If we are going to COW a private mapping later, we examine the
5902          * pending reservations for this page now. This will ensure that
5903          * any allocations necessary to record that reservation occur outside
5904          * the spinlock.
5905          */
5906         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5907                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5908                         ret = VM_FAULT_OOM;
5909                         goto backout_unlocked;
5910                 }
5911                 /* Just decrements count, does not deallocate */
5912                 vma_end_reservation(h, vma, haddr);
5913         }
5914
5915         ptl = huge_pte_lock(h, mm, ptep);
5916         ret = 0;
5917         /* If pte changed from under us, retry */
5918         if (!pte_same(huge_ptep_get(ptep), old_pte))
5919                 goto backout;
5920
5921         if (anon_rmap)
5922                 hugepage_add_new_anon_rmap(folio, vma, haddr);
5923         else
5924                 page_dup_file_rmap(&folio->page, true);
5925         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5926                                 && (vma->vm_flags & VM_SHARED)));
5927         /*
5928          * If this pte was previously wr-protected, keep it wr-protected even
5929          * if populated.
5930          */
5931         if (unlikely(pte_marker_uffd_wp(old_pte)))
5932                 new_pte = huge_pte_mkuffd_wp(new_pte);
5933         set_huge_pte_at(mm, haddr, ptep, new_pte);
5934
5935         hugetlb_count_add(pages_per_huge_page(h), mm);
5936         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5937                 /* Optimization, do the COW without a second fault */
5938                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5939         }
5940
5941         spin_unlock(ptl);
5942
5943         /*
5944          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
5945          * found in the pagecache may not have hugetlb_migratable if they have
5946          * been isolated for migration.
5947          */
5948         if (new_folio)
5949                 folio_set_hugetlb_migratable(folio);
5950
5951         folio_unlock(folio);
5952 out:
5953         hugetlb_vma_unlock_read(vma);
5954         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5955         return ret;
5956
5957 backout:
5958         spin_unlock(ptl);
5959 backout_unlocked:
5960         if (new_folio && !new_pagecache_folio)
5961                 restore_reserve_on_error(h, vma, haddr, folio);
5962
5963         folio_unlock(folio);
5964         folio_put(folio);
5965         goto out;
5966 }
5967
5968 #ifdef CONFIG_SMP
5969 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5970 {
5971         unsigned long key[2];
5972         u32 hash;
5973
5974         key[0] = (unsigned long) mapping;
5975         key[1] = idx;
5976
5977         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5978
5979         return hash & (num_fault_mutexes - 1);
5980 }
5981 #else
5982 /*
5983  * For uniprocessor systems we always use a single mutex, so just
5984  * return 0 and avoid the hashing overhead.
5985  */
5986 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5987 {
5988         return 0;
5989 }
5990 #endif
5991
5992 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5993                         unsigned long address, unsigned int flags)
5994 {
5995         pte_t *ptep, entry;
5996         spinlock_t *ptl;
5997         vm_fault_t ret;
5998         u32 hash;
5999         pgoff_t idx;
6000         struct page *page = NULL;
6001         struct folio *pagecache_folio = NULL;
6002         struct hstate *h = hstate_vma(vma);
6003         struct address_space *mapping;
6004         int need_wait_lock = 0;
6005         unsigned long haddr = address & huge_page_mask(h);
6006
6007         /*
6008          * Serialize hugepage allocation and instantiation, so that we don't
6009          * get spurious allocation failures if two CPUs race to instantiate
6010          * the same page in the page cache.
6011          */
6012         mapping = vma->vm_file->f_mapping;
6013         idx = vma_hugecache_offset(h, vma, haddr);
6014         hash = hugetlb_fault_mutex_hash(mapping, idx);
6015         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6016
6017         /*
6018          * Acquire vma lock before calling huge_pte_alloc and hold
6019          * until finished with ptep.  This prevents huge_pmd_unshare from
6020          * being called elsewhere and making the ptep no longer valid.
6021          */
6022         hugetlb_vma_lock_read(vma);
6023         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6024         if (!ptep) {
6025                 hugetlb_vma_unlock_read(vma);
6026                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6027                 return VM_FAULT_OOM;
6028         }
6029
6030         entry = huge_ptep_get(ptep);
6031         /* PTE markers should be handled the same way as none pte */
6032         if (huge_pte_none_mostly(entry))
6033                 /*
6034                  * hugetlb_no_page will drop vma lock and hugetlb fault
6035                  * mutex internally, which make us return immediately.
6036                  */
6037                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6038                                       entry, flags);
6039
6040         ret = 0;
6041
6042         /*
6043          * entry could be a migration/hwpoison entry at this point, so this
6044          * check prevents the kernel from going below assuming that we have
6045          * an active hugepage in pagecache. This goto expects the 2nd page
6046          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6047          * properly handle it.
6048          */
6049         if (!pte_present(entry)) {
6050                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6051                         /*
6052                          * Release the hugetlb fault lock now, but retain
6053                          * the vma lock, because it is needed to guard the
6054                          * huge_pte_lockptr() later in
6055                          * migration_entry_wait_huge(). The vma lock will
6056                          * be released there.
6057                          */
6058                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6059                         migration_entry_wait_huge(vma, ptep);
6060                         return 0;
6061                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6062                         ret = VM_FAULT_HWPOISON_LARGE |
6063                             VM_FAULT_SET_HINDEX(hstate_index(h));
6064                 goto out_mutex;
6065         }
6066
6067         /*
6068          * If we are going to COW/unshare the mapping later, we examine the
6069          * pending reservations for this page now. This will ensure that any
6070          * allocations necessary to record that reservation occur outside the
6071          * spinlock. Also lookup the pagecache page now as it is used to
6072          * determine if a reservation has been consumed.
6073          */
6074         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6075             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6076                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6077                         ret = VM_FAULT_OOM;
6078                         goto out_mutex;
6079                 }
6080                 /* Just decrements count, does not deallocate */
6081                 vma_end_reservation(h, vma, haddr);
6082
6083                 pagecache_folio = filemap_lock_folio(mapping, idx);
6084         }
6085
6086         ptl = huge_pte_lock(h, mm, ptep);
6087
6088         /* Check for a racing update before calling hugetlb_wp() */
6089         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6090                 goto out_ptl;
6091
6092         /* Handle userfault-wp first, before trying to lock more pages */
6093         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6094             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6095                 struct vm_fault vmf = {
6096                         .vma = vma,
6097                         .address = haddr,
6098                         .real_address = address,
6099                         .flags = flags,
6100                 };
6101
6102                 spin_unlock(ptl);
6103                 if (pagecache_folio) {
6104                         folio_unlock(pagecache_folio);
6105                         folio_put(pagecache_folio);
6106                 }
6107                 hugetlb_vma_unlock_read(vma);
6108                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6109                 return handle_userfault(&vmf, VM_UFFD_WP);
6110         }
6111
6112         /*
6113          * hugetlb_wp() requires page locks of pte_page(entry) and
6114          * pagecache_folio, so here we need take the former one
6115          * when page != pagecache_folio or !pagecache_folio.
6116          */
6117         page = pte_page(entry);
6118         if (page_folio(page) != pagecache_folio)
6119                 if (!trylock_page(page)) {
6120                         need_wait_lock = 1;
6121                         goto out_ptl;
6122                 }
6123
6124         get_page(page);
6125
6126         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6127                 if (!huge_pte_write(entry)) {
6128                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6129                                          pagecache_folio, ptl);
6130                         goto out_put_page;
6131                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6132                         entry = huge_pte_mkdirty(entry);
6133                 }
6134         }
6135         entry = pte_mkyoung(entry);
6136         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6137                                                 flags & FAULT_FLAG_WRITE))
6138                 update_mmu_cache(vma, haddr, ptep);
6139 out_put_page:
6140         if (page_folio(page) != pagecache_folio)
6141                 unlock_page(page);
6142         put_page(page);
6143 out_ptl:
6144         spin_unlock(ptl);
6145
6146         if (pagecache_folio) {
6147                 folio_unlock(pagecache_folio);
6148                 folio_put(pagecache_folio);
6149         }
6150 out_mutex:
6151         hugetlb_vma_unlock_read(vma);
6152         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6153         /*
6154          * Generally it's safe to hold refcount during waiting page lock. But
6155          * here we just wait to defer the next page fault to avoid busy loop and
6156          * the page is not used after unlocked before returning from the current
6157          * page fault. So we are safe from accessing freed page, even if we wait
6158          * here without taking refcount.
6159          */
6160         if (need_wait_lock)
6161                 wait_on_page_locked(page);
6162         return ret;
6163 }
6164
6165 #ifdef CONFIG_USERFAULTFD
6166 /*
6167  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
6168  * modifications for huge pages.
6169  */
6170 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6171                             pte_t *dst_pte,
6172                             struct vm_area_struct *dst_vma,
6173                             unsigned long dst_addr,
6174                             unsigned long src_addr,
6175                             enum mcopy_atomic_mode mode,
6176                             struct page **pagep,
6177                             bool wp_copy)
6178 {
6179         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6180         struct hstate *h = hstate_vma(dst_vma);
6181         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6182         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6183         unsigned long size;
6184         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6185         pte_t _dst_pte;
6186         spinlock_t *ptl;
6187         int ret = -ENOMEM;
6188         struct folio *folio;
6189         int writable;
6190         bool folio_in_pagecache = false;
6191
6192         if (is_continue) {
6193                 ret = -EFAULT;
6194                 folio = filemap_lock_folio(mapping, idx);
6195                 if (!folio)
6196                         goto out;
6197                 folio_in_pagecache = true;
6198         } else if (!*pagep) {
6199                 /* If a page already exists, then it's UFFDIO_COPY for
6200                  * a non-missing case. Return -EEXIST.
6201                  */
6202                 if (vm_shared &&
6203                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6204                         ret = -EEXIST;
6205                         goto out;
6206                 }
6207
6208                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6209                 if (IS_ERR(folio)) {
6210                         ret = -ENOMEM;
6211                         goto out;
6212                 }
6213
6214                 ret = copy_huge_page_from_user(&folio->page,
6215                                                 (const void __user *) src_addr,
6216                                                 pages_per_huge_page(h), false);
6217
6218                 /* fallback to copy_from_user outside mmap_lock */
6219                 if (unlikely(ret)) {
6220                         ret = -ENOENT;
6221                         /* Free the allocated folio which may have
6222                          * consumed a reservation.
6223                          */
6224                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6225                         folio_put(folio);
6226
6227                         /* Allocate a temporary folio to hold the copied
6228                          * contents.
6229                          */
6230                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6231                         if (!folio) {
6232                                 ret = -ENOMEM;
6233                                 goto out;
6234                         }
6235                         *pagep = &folio->page;
6236                         /* Set the outparam pagep and return to the caller to
6237                          * copy the contents outside the lock. Don't free the
6238                          * page.
6239                          */
6240                         goto out;
6241                 }
6242         } else {
6243                 if (vm_shared &&
6244                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6245                         put_page(*pagep);
6246                         ret = -EEXIST;
6247                         *pagep = NULL;
6248                         goto out;
6249                 }
6250
6251                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6252                 if (IS_ERR(folio)) {
6253                         put_page(*pagep);
6254                         ret = -ENOMEM;
6255                         *pagep = NULL;
6256                         goto out;
6257                 }
6258                 copy_user_huge_page(&folio->page, *pagep, dst_addr, dst_vma,
6259                                     pages_per_huge_page(h));
6260                 put_page(*pagep);
6261                 *pagep = NULL;
6262         }
6263
6264         /*
6265          * The memory barrier inside __folio_mark_uptodate makes sure that
6266          * preceding stores to the page contents become visible before
6267          * the set_pte_at() write.
6268          */
6269         __folio_mark_uptodate(folio);
6270
6271         /* Add shared, newly allocated pages to the page cache. */
6272         if (vm_shared && !is_continue) {
6273                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6274                 ret = -EFAULT;
6275                 if (idx >= size)
6276                         goto out_release_nounlock;
6277
6278                 /*
6279                  * Serialization between remove_inode_hugepages() and
6280                  * hugetlb_add_to_page_cache() below happens through the
6281                  * hugetlb_fault_mutex_table that here must be hold by
6282                  * the caller.
6283                  */
6284                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6285                 if (ret)
6286                         goto out_release_nounlock;
6287                 folio_in_pagecache = true;
6288         }
6289
6290         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6291
6292         ret = -EIO;
6293         if (folio_test_hwpoison(folio))
6294                 goto out_release_unlock;
6295
6296         /*
6297          * We allow to overwrite a pte marker: consider when both MISSING|WP
6298          * registered, we firstly wr-protect a none pte which has no page cache
6299          * page backing it, then access the page.
6300          */
6301         ret = -EEXIST;
6302         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6303                 goto out_release_unlock;
6304
6305         if (folio_in_pagecache)
6306                 page_dup_file_rmap(&folio->page, true);
6307         else
6308                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6309
6310         /*
6311          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6312          * with wp flag set, don't set pte write bit.
6313          */
6314         if (wp_copy || (is_continue && !vm_shared))
6315                 writable = 0;
6316         else
6317                 writable = dst_vma->vm_flags & VM_WRITE;
6318
6319         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6320         /*
6321          * Always mark UFFDIO_COPY page dirty; note that this may not be
6322          * extremely important for hugetlbfs for now since swapping is not
6323          * supported, but we should still be clear in that this page cannot be
6324          * thrown away at will, even if write bit not set.
6325          */
6326         _dst_pte = huge_pte_mkdirty(_dst_pte);
6327         _dst_pte = pte_mkyoung(_dst_pte);
6328
6329         if (wp_copy)
6330                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6331
6332         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6333
6334         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6335
6336         /* No need to invalidate - it was non-present before */
6337         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6338
6339         spin_unlock(ptl);
6340         if (!is_continue)
6341                 folio_set_hugetlb_migratable(folio);
6342         if (vm_shared || is_continue)
6343                 folio_unlock(folio);
6344         ret = 0;
6345 out:
6346         return ret;
6347 out_release_unlock:
6348         spin_unlock(ptl);
6349         if (vm_shared || is_continue)
6350                 folio_unlock(folio);
6351 out_release_nounlock:
6352         if (!folio_in_pagecache)
6353                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6354         folio_put(folio);
6355         goto out;
6356 }
6357 #endif /* CONFIG_USERFAULTFD */
6358
6359 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6360                                  int refs, struct page **pages,
6361                                  struct vm_area_struct **vmas)
6362 {
6363         int nr;
6364
6365         for (nr = 0; nr < refs; nr++) {
6366                 if (likely(pages))
6367                         pages[nr] = nth_page(page, nr);
6368                 if (vmas)
6369                         vmas[nr] = vma;
6370         }
6371 }
6372
6373 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6374                                                unsigned int flags, pte_t *pte,
6375                                                bool *unshare)
6376 {
6377         pte_t pteval = huge_ptep_get(pte);
6378
6379         *unshare = false;
6380         if (is_swap_pte(pteval))
6381                 return true;
6382         if (huge_pte_write(pteval))
6383                 return false;
6384         if (flags & FOLL_WRITE)
6385                 return true;
6386         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6387                 *unshare = true;
6388                 return true;
6389         }
6390         return false;
6391 }
6392
6393 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6394                                 unsigned long address, unsigned int flags)
6395 {
6396         struct hstate *h = hstate_vma(vma);
6397         struct mm_struct *mm = vma->vm_mm;
6398         unsigned long haddr = address & huge_page_mask(h);
6399         struct page *page = NULL;
6400         spinlock_t *ptl;
6401         pte_t *pte, entry;
6402
6403         /*
6404          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6405          * follow_hugetlb_page().
6406          */
6407         if (WARN_ON_ONCE(flags & FOLL_PIN))
6408                 return NULL;
6409
6410         hugetlb_vma_lock_read(vma);
6411         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6412         if (!pte)
6413                 goto out_unlock;
6414
6415         ptl = huge_pte_lock(h, mm, pte);
6416         entry = huge_ptep_get(pte);
6417         if (pte_present(entry)) {
6418                 page = pte_page(entry) +
6419                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6420                 /*
6421                  * Note that page may be a sub-page, and with vmemmap
6422                  * optimizations the page struct may be read only.
6423                  * try_grab_page() will increase the ref count on the
6424                  * head page, so this will be OK.
6425                  *
6426                  * try_grab_page() should always be able to get the page here,
6427                  * because we hold the ptl lock and have verified pte_present().
6428                  */
6429                 if (try_grab_page(page, flags)) {
6430                         page = NULL;
6431                         goto out;
6432                 }
6433         }
6434 out:
6435         spin_unlock(ptl);
6436 out_unlock:
6437         hugetlb_vma_unlock_read(vma);
6438         return page;
6439 }
6440
6441 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6442                          struct page **pages, struct vm_area_struct **vmas,
6443                          unsigned long *position, unsigned long *nr_pages,
6444                          long i, unsigned int flags, int *locked)
6445 {
6446         unsigned long pfn_offset;
6447         unsigned long vaddr = *position;
6448         unsigned long remainder = *nr_pages;
6449         struct hstate *h = hstate_vma(vma);
6450         int err = -EFAULT, refs;
6451
6452         while (vaddr < vma->vm_end && remainder) {
6453                 pte_t *pte;
6454                 spinlock_t *ptl = NULL;
6455                 bool unshare = false;
6456                 int absent;
6457                 struct page *page;
6458
6459                 /*
6460                  * If we have a pending SIGKILL, don't keep faulting pages and
6461                  * potentially allocating memory.
6462                  */
6463                 if (fatal_signal_pending(current)) {
6464                         remainder = 0;
6465                         break;
6466                 }
6467
6468                 hugetlb_vma_lock_read(vma);
6469                 /*
6470                  * Some archs (sparc64, sh*) have multiple pte_ts to
6471                  * each hugepage.  We have to make sure we get the
6472                  * first, for the page indexing below to work.
6473                  *
6474                  * Note that page table lock is not held when pte is null.
6475                  */
6476                 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6477                                    huge_page_size(h));
6478                 if (pte)
6479                         ptl = huge_pte_lock(h, mm, pte);
6480                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6481
6482                 /*
6483                  * When coredumping, it suits get_dump_page if we just return
6484                  * an error where there's an empty slot with no huge pagecache
6485                  * to back it.  This way, we avoid allocating a hugepage, and
6486                  * the sparse dumpfile avoids allocating disk blocks, but its
6487                  * huge holes still show up with zeroes where they need to be.
6488                  */
6489                 if (absent && (flags & FOLL_DUMP) &&
6490                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6491                         if (pte)
6492                                 spin_unlock(ptl);
6493                         hugetlb_vma_unlock_read(vma);
6494                         remainder = 0;
6495                         break;
6496                 }
6497
6498                 /*
6499                  * We need call hugetlb_fault for both hugepages under migration
6500                  * (in which case hugetlb_fault waits for the migration,) and
6501                  * hwpoisoned hugepages (in which case we need to prevent the
6502                  * caller from accessing to them.) In order to do this, we use
6503                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6504                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6505                  * both cases, and because we can't follow correct pages
6506                  * directly from any kind of swap entries.
6507                  */
6508                 if (absent ||
6509                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6510                         vm_fault_t ret;
6511                         unsigned int fault_flags = 0;
6512
6513                         if (pte)
6514                                 spin_unlock(ptl);
6515                         hugetlb_vma_unlock_read(vma);
6516
6517                         if (flags & FOLL_WRITE)
6518                                 fault_flags |= FAULT_FLAG_WRITE;
6519                         else if (unshare)
6520                                 fault_flags |= FAULT_FLAG_UNSHARE;
6521                         if (locked) {
6522                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6523                                         FAULT_FLAG_KILLABLE;
6524                                 if (flags & FOLL_INTERRUPTIBLE)
6525                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6526                         }
6527                         if (flags & FOLL_NOWAIT)
6528                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6529                                         FAULT_FLAG_RETRY_NOWAIT;
6530                         if (flags & FOLL_TRIED) {
6531                                 /*
6532                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6533                                  * FAULT_FLAG_TRIED can co-exist
6534                                  */
6535                                 fault_flags |= FAULT_FLAG_TRIED;
6536                         }
6537                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6538                         if (ret & VM_FAULT_ERROR) {
6539                                 err = vm_fault_to_errno(ret, flags);
6540                                 remainder = 0;
6541                                 break;
6542                         }
6543                         if (ret & VM_FAULT_RETRY) {
6544                                 if (locked &&
6545                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6546                                         *locked = 0;
6547                                 *nr_pages = 0;
6548                                 /*
6549                                  * VM_FAULT_RETRY must not return an
6550                                  * error, it will return zero
6551                                  * instead.
6552                                  *
6553                                  * No need to update "position" as the
6554                                  * caller will not check it after
6555                                  * *nr_pages is set to 0.
6556                                  */
6557                                 return i;
6558                         }
6559                         continue;
6560                 }
6561
6562                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6563                 page = pte_page(huge_ptep_get(pte));
6564
6565                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6566                                !PageAnonExclusive(page), page);
6567
6568                 /*
6569                  * If subpage information not requested, update counters
6570                  * and skip the same_page loop below.
6571                  */
6572                 if (!pages && !vmas && !pfn_offset &&
6573                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6574                     (remainder >= pages_per_huge_page(h))) {
6575                         vaddr += huge_page_size(h);
6576                         remainder -= pages_per_huge_page(h);
6577                         i += pages_per_huge_page(h);
6578                         spin_unlock(ptl);
6579                         hugetlb_vma_unlock_read(vma);
6580                         continue;
6581                 }
6582
6583                 /* vaddr may not be aligned to PAGE_SIZE */
6584                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6585                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6586
6587                 if (pages || vmas)
6588                         record_subpages_vmas(nth_page(page, pfn_offset),
6589                                              vma, refs,
6590                                              likely(pages) ? pages + i : NULL,
6591                                              vmas ? vmas + i : NULL);
6592
6593                 if (pages) {
6594                         /*
6595                          * try_grab_folio() should always succeed here,
6596                          * because: a) we hold the ptl lock, and b) we've just
6597                          * checked that the huge page is present in the page
6598                          * tables. If the huge page is present, then the tail
6599                          * pages must also be present. The ptl prevents the
6600                          * head page and tail pages from being rearranged in
6601                          * any way. As this is hugetlb, the pages will never
6602                          * be p2pdma or not longterm pinable. So this page
6603                          * must be available at this point, unless the page
6604                          * refcount overflowed:
6605                          */
6606                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6607                                                          flags))) {
6608                                 spin_unlock(ptl);
6609                                 hugetlb_vma_unlock_read(vma);
6610                                 remainder = 0;
6611                                 err = -ENOMEM;
6612                                 break;
6613                         }
6614                 }
6615
6616                 vaddr += (refs << PAGE_SHIFT);
6617                 remainder -= refs;
6618                 i += refs;
6619
6620                 spin_unlock(ptl);
6621                 hugetlb_vma_unlock_read(vma);
6622         }
6623         *nr_pages = remainder;
6624         /*
6625          * setting position is actually required only if remainder is
6626          * not zero but it's faster not to add a "if (remainder)"
6627          * branch.
6628          */
6629         *position = vaddr;
6630
6631         return i ? i : err;
6632 }
6633
6634 long hugetlb_change_protection(struct vm_area_struct *vma,
6635                 unsigned long address, unsigned long end,
6636                 pgprot_t newprot, unsigned long cp_flags)
6637 {
6638         struct mm_struct *mm = vma->vm_mm;
6639         unsigned long start = address;
6640         pte_t *ptep;
6641         pte_t pte;
6642         struct hstate *h = hstate_vma(vma);
6643         long pages = 0, psize = huge_page_size(h);
6644         bool shared_pmd = false;
6645         struct mmu_notifier_range range;
6646         unsigned long last_addr_mask;
6647         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6648         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6649
6650         /*
6651          * In the case of shared PMDs, the area to flush could be beyond
6652          * start/end.  Set range.start/range.end to cover the maximum possible
6653          * range if PMD sharing is possible.
6654          */
6655         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6656                                 0, mm, start, end);
6657         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6658
6659         BUG_ON(address >= end);
6660         flush_cache_range(vma, range.start, range.end);
6661
6662         mmu_notifier_invalidate_range_start(&range);
6663         hugetlb_vma_lock_write(vma);
6664         i_mmap_lock_write(vma->vm_file->f_mapping);
6665         last_addr_mask = hugetlb_mask_last_page(h);
6666         for (; address < end; address += psize) {
6667                 spinlock_t *ptl;
6668                 ptep = hugetlb_walk(vma, address, psize);
6669                 if (!ptep) {
6670                         if (!uffd_wp) {
6671                                 address |= last_addr_mask;
6672                                 continue;
6673                         }
6674                         /*
6675                          * Userfaultfd wr-protect requires pgtable
6676                          * pre-allocations to install pte markers.
6677                          */
6678                         ptep = huge_pte_alloc(mm, vma, address, psize);
6679                         if (!ptep) {
6680                                 pages = -ENOMEM;
6681                                 break;
6682                         }
6683                 }
6684                 ptl = huge_pte_lock(h, mm, ptep);
6685                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6686                         /*
6687                          * When uffd-wp is enabled on the vma, unshare
6688                          * shouldn't happen at all.  Warn about it if it
6689                          * happened due to some reason.
6690                          */
6691                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6692                         pages++;
6693                         spin_unlock(ptl);
6694                         shared_pmd = true;
6695                         address |= last_addr_mask;
6696                         continue;
6697                 }
6698                 pte = huge_ptep_get(ptep);
6699                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6700                         /* Nothing to do. */
6701                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6702                         swp_entry_t entry = pte_to_swp_entry(pte);
6703                         struct page *page = pfn_swap_entry_to_page(entry);
6704                         pte_t newpte = pte;
6705
6706                         if (is_writable_migration_entry(entry)) {
6707                                 if (PageAnon(page))
6708                                         entry = make_readable_exclusive_migration_entry(
6709                                                                 swp_offset(entry));
6710                                 else
6711                                         entry = make_readable_migration_entry(
6712                                                                 swp_offset(entry));
6713                                 newpte = swp_entry_to_pte(entry);
6714                                 pages++;
6715                         }
6716
6717                         if (uffd_wp)
6718                                 newpte = pte_swp_mkuffd_wp(newpte);
6719                         else if (uffd_wp_resolve)
6720                                 newpte = pte_swp_clear_uffd_wp(newpte);
6721                         if (!pte_same(pte, newpte))
6722                                 set_huge_pte_at(mm, address, ptep, newpte);
6723                 } else if (unlikely(is_pte_marker(pte))) {
6724                         /* No other markers apply for now. */
6725                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6726                         if (uffd_wp_resolve)
6727                                 /* Safe to modify directly (non-present->none). */
6728                                 huge_pte_clear(mm, address, ptep, psize);
6729                 } else if (!huge_pte_none(pte)) {
6730                         pte_t old_pte;
6731                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6732
6733                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6734                         pte = huge_pte_modify(old_pte, newprot);
6735                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6736                         if (uffd_wp)
6737                                 pte = huge_pte_mkuffd_wp(pte);
6738                         else if (uffd_wp_resolve)
6739                                 pte = huge_pte_clear_uffd_wp(pte);
6740                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6741                         pages++;
6742                 } else {
6743                         /* None pte */
6744                         if (unlikely(uffd_wp))
6745                                 /* Safe to modify directly (none->non-present). */
6746                                 set_huge_pte_at(mm, address, ptep,
6747                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6748                 }
6749                 spin_unlock(ptl);
6750         }
6751         /*
6752          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6753          * may have cleared our pud entry and done put_page on the page table:
6754          * once we release i_mmap_rwsem, another task can do the final put_page
6755          * and that page table be reused and filled with junk.  If we actually
6756          * did unshare a page of pmds, flush the range corresponding to the pud.
6757          */
6758         if (shared_pmd)
6759                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6760         else
6761                 flush_hugetlb_tlb_range(vma, start, end);
6762         /*
6763          * No need to call mmu_notifier_invalidate_range() we are downgrading
6764          * page table protection not changing it to point to a new page.
6765          *
6766          * See Documentation/mm/mmu_notifier.rst
6767          */
6768         i_mmap_unlock_write(vma->vm_file->f_mapping);
6769         hugetlb_vma_unlock_write(vma);
6770         mmu_notifier_invalidate_range_end(&range);
6771
6772         return pages > 0 ? (pages << h->order) : pages;
6773 }
6774
6775 /* Return true if reservation was successful, false otherwise.  */
6776 bool hugetlb_reserve_pages(struct inode *inode,
6777                                         long from, long to,
6778                                         struct vm_area_struct *vma,
6779                                         vm_flags_t vm_flags)
6780 {
6781         long chg = -1, add = -1;
6782         struct hstate *h = hstate_inode(inode);
6783         struct hugepage_subpool *spool = subpool_inode(inode);
6784         struct resv_map *resv_map;
6785         struct hugetlb_cgroup *h_cg = NULL;
6786         long gbl_reserve, regions_needed = 0;
6787
6788         /* This should never happen */
6789         if (from > to) {
6790                 VM_WARN(1, "%s called with a negative range\n", __func__);
6791                 return false;
6792         }
6793
6794         /*
6795          * vma specific semaphore used for pmd sharing and fault/truncation
6796          * synchronization
6797          */
6798         hugetlb_vma_lock_alloc(vma);
6799
6800         /*
6801          * Only apply hugepage reservation if asked. At fault time, an
6802          * attempt will be made for VM_NORESERVE to allocate a page
6803          * without using reserves
6804          */
6805         if (vm_flags & VM_NORESERVE)
6806                 return true;
6807
6808         /*
6809          * Shared mappings base their reservation on the number of pages that
6810          * are already allocated on behalf of the file. Private mappings need
6811          * to reserve the full area even if read-only as mprotect() may be
6812          * called to make the mapping read-write. Assume !vma is a shm mapping
6813          */
6814         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6815                 /*
6816                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6817                  * called for inodes for which resv_maps were created (see
6818                  * hugetlbfs_get_inode).
6819                  */
6820                 resv_map = inode_resv_map(inode);
6821
6822                 chg = region_chg(resv_map, from, to, &regions_needed);
6823         } else {
6824                 /* Private mapping. */
6825                 resv_map = resv_map_alloc();
6826                 if (!resv_map)
6827                         goto out_err;
6828
6829                 chg = to - from;
6830
6831                 set_vma_resv_map(vma, resv_map);
6832                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6833         }
6834
6835         if (chg < 0)
6836                 goto out_err;
6837
6838         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6839                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6840                 goto out_err;
6841
6842         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6843                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6844                  * of the resv_map.
6845                  */
6846                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6847         }
6848
6849         /*
6850          * There must be enough pages in the subpool for the mapping. If
6851          * the subpool has a minimum size, there may be some global
6852          * reservations already in place (gbl_reserve).
6853          */
6854         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6855         if (gbl_reserve < 0)
6856                 goto out_uncharge_cgroup;
6857
6858         /*
6859          * Check enough hugepages are available for the reservation.
6860          * Hand the pages back to the subpool if there are not
6861          */
6862         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6863                 goto out_put_pages;
6864
6865         /*
6866          * Account for the reservations made. Shared mappings record regions
6867          * that have reservations as they are shared by multiple VMAs.
6868          * When the last VMA disappears, the region map says how much
6869          * the reservation was and the page cache tells how much of
6870          * the reservation was consumed. Private mappings are per-VMA and
6871          * only the consumed reservations are tracked. When the VMA
6872          * disappears, the original reservation is the VMA size and the
6873          * consumed reservations are stored in the map. Hence, nothing
6874          * else has to be done for private mappings here
6875          */
6876         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6877                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6878
6879                 if (unlikely(add < 0)) {
6880                         hugetlb_acct_memory(h, -gbl_reserve);
6881                         goto out_put_pages;
6882                 } else if (unlikely(chg > add)) {
6883                         /*
6884                          * pages in this range were added to the reserve
6885                          * map between region_chg and region_add.  This
6886                          * indicates a race with alloc_hugetlb_folio.  Adjust
6887                          * the subpool and reserve counts modified above
6888                          * based on the difference.
6889                          */
6890                         long rsv_adjust;
6891
6892                         /*
6893                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6894                          * reference to h_cg->css. See comment below for detail.
6895                          */
6896                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6897                                 hstate_index(h),
6898                                 (chg - add) * pages_per_huge_page(h), h_cg);
6899
6900                         rsv_adjust = hugepage_subpool_put_pages(spool,
6901                                                                 chg - add);
6902                         hugetlb_acct_memory(h, -rsv_adjust);
6903                 } else if (h_cg) {
6904                         /*
6905                          * The file_regions will hold their own reference to
6906                          * h_cg->css. So we should release the reference held
6907                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6908                          * done.
6909                          */
6910                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6911                 }
6912         }
6913         return true;
6914
6915 out_put_pages:
6916         /* put back original number of pages, chg */
6917         (void)hugepage_subpool_put_pages(spool, chg);
6918 out_uncharge_cgroup:
6919         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6920                                             chg * pages_per_huge_page(h), h_cg);
6921 out_err:
6922         hugetlb_vma_lock_free(vma);
6923         if (!vma || vma->vm_flags & VM_MAYSHARE)
6924                 /* Only call region_abort if the region_chg succeeded but the
6925                  * region_add failed or didn't run.
6926                  */
6927                 if (chg >= 0 && add < 0)
6928                         region_abort(resv_map, from, to, regions_needed);
6929         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6930                 kref_put(&resv_map->refs, resv_map_release);
6931         return false;
6932 }
6933
6934 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6935                                                                 long freed)
6936 {
6937         struct hstate *h = hstate_inode(inode);
6938         struct resv_map *resv_map = inode_resv_map(inode);
6939         long chg = 0;
6940         struct hugepage_subpool *spool = subpool_inode(inode);
6941         long gbl_reserve;
6942
6943         /*
6944          * Since this routine can be called in the evict inode path for all
6945          * hugetlbfs inodes, resv_map could be NULL.
6946          */
6947         if (resv_map) {
6948                 chg = region_del(resv_map, start, end);
6949                 /*
6950                  * region_del() can fail in the rare case where a region
6951                  * must be split and another region descriptor can not be
6952                  * allocated.  If end == LONG_MAX, it will not fail.
6953                  */
6954                 if (chg < 0)
6955                         return chg;
6956         }
6957
6958         spin_lock(&inode->i_lock);
6959         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6960         spin_unlock(&inode->i_lock);
6961
6962         /*
6963          * If the subpool has a minimum size, the number of global
6964          * reservations to be released may be adjusted.
6965          *
6966          * Note that !resv_map implies freed == 0. So (chg - freed)
6967          * won't go negative.
6968          */
6969         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6970         hugetlb_acct_memory(h, -gbl_reserve);
6971
6972         return 0;
6973 }
6974
6975 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6976 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6977                                 struct vm_area_struct *vma,
6978                                 unsigned long addr, pgoff_t idx)
6979 {
6980         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6981                                 svma->vm_start;
6982         unsigned long sbase = saddr & PUD_MASK;
6983         unsigned long s_end = sbase + PUD_SIZE;
6984
6985         /* Allow segments to share if only one is marked locked */
6986         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6987         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6988
6989         /*
6990          * match the virtual addresses, permission and the alignment of the
6991          * page table page.
6992          *
6993          * Also, vma_lock (vm_private_data) is required for sharing.
6994          */
6995         if (pmd_index(addr) != pmd_index(saddr) ||
6996             vm_flags != svm_flags ||
6997             !range_in_vma(svma, sbase, s_end) ||
6998             !svma->vm_private_data)
6999                 return 0;
7000
7001         return saddr;
7002 }
7003
7004 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7005 {
7006         unsigned long start = addr & PUD_MASK;
7007         unsigned long end = start + PUD_SIZE;
7008
7009 #ifdef CONFIG_USERFAULTFD
7010         if (uffd_disable_huge_pmd_share(vma))
7011                 return false;
7012 #endif
7013         /*
7014          * check on proper vm_flags and page table alignment
7015          */
7016         if (!(vma->vm_flags & VM_MAYSHARE))
7017                 return false;
7018         if (!vma->vm_private_data)      /* vma lock required for sharing */
7019                 return false;
7020         if (!range_in_vma(vma, start, end))
7021                 return false;
7022         return true;
7023 }
7024
7025 /*
7026  * Determine if start,end range within vma could be mapped by shared pmd.
7027  * If yes, adjust start and end to cover range associated with possible
7028  * shared pmd mappings.
7029  */
7030 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7031                                 unsigned long *start, unsigned long *end)
7032 {
7033         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7034                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7035
7036         /*
7037          * vma needs to span at least one aligned PUD size, and the range
7038          * must be at least partially within in.
7039          */
7040         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7041                 (*end <= v_start) || (*start >= v_end))
7042                 return;
7043
7044         /* Extend the range to be PUD aligned for a worst case scenario */
7045         if (*start > v_start)
7046                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7047
7048         if (*end < v_end)
7049                 *end = ALIGN(*end, PUD_SIZE);
7050 }
7051
7052 /*
7053  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7054  * and returns the corresponding pte. While this is not necessary for the
7055  * !shared pmd case because we can allocate the pmd later as well, it makes the
7056  * code much cleaner. pmd allocation is essential for the shared case because
7057  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7058  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7059  * bad pmd for sharing.
7060  */
7061 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7062                       unsigned long addr, pud_t *pud)
7063 {
7064         struct address_space *mapping = vma->vm_file->f_mapping;
7065         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7066                         vma->vm_pgoff;
7067         struct vm_area_struct *svma;
7068         unsigned long saddr;
7069         pte_t *spte = NULL;
7070         pte_t *pte;
7071         spinlock_t *ptl;
7072
7073         i_mmap_lock_read(mapping);
7074         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7075                 if (svma == vma)
7076                         continue;
7077
7078                 saddr = page_table_shareable(svma, vma, addr, idx);
7079                 if (saddr) {
7080                         spte = hugetlb_walk(svma, saddr,
7081                                             vma_mmu_pagesize(svma));
7082                         if (spte) {
7083                                 get_page(virt_to_page(spte));
7084                                 break;
7085                         }
7086                 }
7087         }
7088
7089         if (!spte)
7090                 goto out;
7091
7092         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7093         if (pud_none(*pud)) {
7094                 pud_populate(mm, pud,
7095                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7096                 mm_inc_nr_pmds(mm);
7097         } else {
7098                 put_page(virt_to_page(spte));
7099         }
7100         spin_unlock(ptl);
7101 out:
7102         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7103         i_mmap_unlock_read(mapping);
7104         return pte;
7105 }
7106
7107 /*
7108  * unmap huge page backed by shared pte.
7109  *
7110  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7111  * indicated by page_count > 1, unmap is achieved by clearing pud and
7112  * decrementing the ref count. If count == 1, the pte page is not shared.
7113  *
7114  * Called with page table lock held.
7115  *
7116  * returns: 1 successfully unmapped a shared pte page
7117  *          0 the underlying pte page is not shared, or it is the last user
7118  */
7119 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7120                                         unsigned long addr, pte_t *ptep)
7121 {
7122         pgd_t *pgd = pgd_offset(mm, addr);
7123         p4d_t *p4d = p4d_offset(pgd, addr);
7124         pud_t *pud = pud_offset(p4d, addr);
7125
7126         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7127         hugetlb_vma_assert_locked(vma);
7128         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7129         if (page_count(virt_to_page(ptep)) == 1)
7130                 return 0;
7131
7132         pud_clear(pud);
7133         put_page(virt_to_page(ptep));
7134         mm_dec_nr_pmds(mm);
7135         return 1;
7136 }
7137
7138 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7139
7140 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7141                       unsigned long addr, pud_t *pud)
7142 {
7143         return NULL;
7144 }
7145
7146 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7147                                 unsigned long addr, pte_t *ptep)
7148 {
7149         return 0;
7150 }
7151
7152 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7153                                 unsigned long *start, unsigned long *end)
7154 {
7155 }
7156
7157 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7158 {
7159         return false;
7160 }
7161 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7162
7163 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7164 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7165                         unsigned long addr, unsigned long sz)
7166 {
7167         pgd_t *pgd;
7168         p4d_t *p4d;
7169         pud_t *pud;
7170         pte_t *pte = NULL;
7171
7172         pgd = pgd_offset(mm, addr);
7173         p4d = p4d_alloc(mm, pgd, addr);
7174         if (!p4d)
7175                 return NULL;
7176         pud = pud_alloc(mm, p4d, addr);
7177         if (pud) {
7178                 if (sz == PUD_SIZE) {
7179                         pte = (pte_t *)pud;
7180                 } else {
7181                         BUG_ON(sz != PMD_SIZE);
7182                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7183                                 pte = huge_pmd_share(mm, vma, addr, pud);
7184                         else
7185                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7186                 }
7187         }
7188         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7189
7190         return pte;
7191 }
7192
7193 /*
7194  * huge_pte_offset() - Walk the page table to resolve the hugepage
7195  * entry at address @addr
7196  *
7197  * Return: Pointer to page table entry (PUD or PMD) for
7198  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7199  * size @sz doesn't match the hugepage size at this level of the page
7200  * table.
7201  */
7202 pte_t *huge_pte_offset(struct mm_struct *mm,
7203                        unsigned long addr, unsigned long sz)
7204 {
7205         pgd_t *pgd;
7206         p4d_t *p4d;
7207         pud_t *pud;
7208         pmd_t *pmd;
7209
7210         pgd = pgd_offset(mm, addr);
7211         if (!pgd_present(*pgd))
7212                 return NULL;
7213         p4d = p4d_offset(pgd, addr);
7214         if (!p4d_present(*p4d))
7215                 return NULL;
7216
7217         pud = pud_offset(p4d, addr);
7218         if (sz == PUD_SIZE)
7219                 /* must be pud huge, non-present or none */
7220                 return (pte_t *)pud;
7221         if (!pud_present(*pud))
7222                 return NULL;
7223         /* must have a valid entry and size to go further */
7224
7225         pmd = pmd_offset(pud, addr);
7226         /* must be pmd huge, non-present or none */
7227         return (pte_t *)pmd;
7228 }
7229
7230 /*
7231  * Return a mask that can be used to update an address to the last huge
7232  * page in a page table page mapping size.  Used to skip non-present
7233  * page table entries when linearly scanning address ranges.  Architectures
7234  * with unique huge page to page table relationships can define their own
7235  * version of this routine.
7236  */
7237 unsigned long hugetlb_mask_last_page(struct hstate *h)
7238 {
7239         unsigned long hp_size = huge_page_size(h);
7240
7241         if (hp_size == PUD_SIZE)
7242                 return P4D_SIZE - PUD_SIZE;
7243         else if (hp_size == PMD_SIZE)
7244                 return PUD_SIZE - PMD_SIZE;
7245         else
7246                 return 0UL;
7247 }
7248
7249 #else
7250
7251 /* See description above.  Architectures can provide their own version. */
7252 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7253 {
7254 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7255         if (huge_page_size(h) == PMD_SIZE)
7256                 return PUD_SIZE - PMD_SIZE;
7257 #endif
7258         return 0UL;
7259 }
7260
7261 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7262
7263 /*
7264  * These functions are overwritable if your architecture needs its own
7265  * behavior.
7266  */
7267 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7268 {
7269         bool ret = true;
7270
7271         spin_lock_irq(&hugetlb_lock);
7272         if (!folio_test_hugetlb(folio) ||
7273             !folio_test_hugetlb_migratable(folio) ||
7274             !folio_try_get(folio)) {
7275                 ret = false;
7276                 goto unlock;
7277         }
7278         folio_clear_hugetlb_migratable(folio);
7279         list_move_tail(&folio->lru, list);
7280 unlock:
7281         spin_unlock_irq(&hugetlb_lock);
7282         return ret;
7283 }
7284
7285 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7286 {
7287         int ret = 0;
7288
7289         *hugetlb = false;
7290         spin_lock_irq(&hugetlb_lock);
7291         if (folio_test_hugetlb(folio)) {
7292                 *hugetlb = true;
7293                 if (folio_test_hugetlb_freed(folio))
7294                         ret = 0;
7295                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7296                         ret = folio_try_get(folio);
7297                 else
7298                         ret = -EBUSY;
7299         }
7300         spin_unlock_irq(&hugetlb_lock);
7301         return ret;
7302 }
7303
7304 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7305                                 bool *migratable_cleared)
7306 {
7307         int ret;
7308
7309         spin_lock_irq(&hugetlb_lock);
7310         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7311         spin_unlock_irq(&hugetlb_lock);
7312         return ret;
7313 }
7314
7315 void folio_putback_active_hugetlb(struct folio *folio)
7316 {
7317         spin_lock_irq(&hugetlb_lock);
7318         folio_set_hugetlb_migratable(folio);
7319         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7320         spin_unlock_irq(&hugetlb_lock);
7321         folio_put(folio);
7322 }
7323
7324 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7325 {
7326         struct hstate *h = folio_hstate(old_folio);
7327
7328         hugetlb_cgroup_migrate(old_folio, new_folio);
7329         set_page_owner_migrate_reason(&new_folio->page, reason);
7330
7331         /*
7332          * transfer temporary state of the new hugetlb folio. This is
7333          * reverse to other transitions because the newpage is going to
7334          * be final while the old one will be freed so it takes over
7335          * the temporary status.
7336          *
7337          * Also note that we have to transfer the per-node surplus state
7338          * here as well otherwise the global surplus count will not match
7339          * the per-node's.
7340          */
7341         if (folio_test_hugetlb_temporary(new_folio)) {
7342                 int old_nid = folio_nid(old_folio);
7343                 int new_nid = folio_nid(new_folio);
7344
7345                 folio_set_hugetlb_temporary(old_folio);
7346                 folio_clear_hugetlb_temporary(new_folio);
7347
7348
7349                 /*
7350                  * There is no need to transfer the per-node surplus state
7351                  * when we do not cross the node.
7352                  */
7353                 if (new_nid == old_nid)
7354                         return;
7355                 spin_lock_irq(&hugetlb_lock);
7356                 if (h->surplus_huge_pages_node[old_nid]) {
7357                         h->surplus_huge_pages_node[old_nid]--;
7358                         h->surplus_huge_pages_node[new_nid]++;
7359                 }
7360                 spin_unlock_irq(&hugetlb_lock);
7361         }
7362 }
7363
7364 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7365                                    unsigned long start,
7366                                    unsigned long end)
7367 {
7368         struct hstate *h = hstate_vma(vma);
7369         unsigned long sz = huge_page_size(h);
7370         struct mm_struct *mm = vma->vm_mm;
7371         struct mmu_notifier_range range;
7372         unsigned long address;
7373         spinlock_t *ptl;
7374         pte_t *ptep;
7375
7376         if (!(vma->vm_flags & VM_MAYSHARE))
7377                 return;
7378
7379         if (start >= end)
7380                 return;
7381
7382         flush_cache_range(vma, start, end);
7383         /*
7384          * No need to call adjust_range_if_pmd_sharing_possible(), because
7385          * we have already done the PUD_SIZE alignment.
7386          */
7387         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7388                                 start, end);
7389         mmu_notifier_invalidate_range_start(&range);
7390         hugetlb_vma_lock_write(vma);
7391         i_mmap_lock_write(vma->vm_file->f_mapping);
7392         for (address = start; address < end; address += PUD_SIZE) {
7393                 ptep = hugetlb_walk(vma, address, sz);
7394                 if (!ptep)
7395                         continue;
7396                 ptl = huge_pte_lock(h, mm, ptep);
7397                 huge_pmd_unshare(mm, vma, address, ptep);
7398                 spin_unlock(ptl);
7399         }
7400         flush_hugetlb_tlb_range(vma, start, end);
7401         i_mmap_unlock_write(vma->vm_file->f_mapping);
7402         hugetlb_vma_unlock_write(vma);
7403         /*
7404          * No need to call mmu_notifier_invalidate_range(), see
7405          * Documentation/mm/mmu_notifier.rst.
7406          */
7407         mmu_notifier_invalidate_range_end(&range);
7408 }
7409
7410 /*
7411  * This function will unconditionally remove all the shared pmd pgtable entries
7412  * within the specific vma for a hugetlbfs memory range.
7413  */
7414 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7415 {
7416         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7417                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7418 }
7419
7420 #ifdef CONFIG_CMA
7421 static bool cma_reserve_called __initdata;
7422
7423 static int __init cmdline_parse_hugetlb_cma(char *p)
7424 {
7425         int nid, count = 0;
7426         unsigned long tmp;
7427         char *s = p;
7428
7429         while (*s) {
7430                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7431                         break;
7432
7433                 if (s[count] == ':') {
7434                         if (tmp >= MAX_NUMNODES)
7435                                 break;
7436                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7437
7438                         s += count + 1;
7439                         tmp = memparse(s, &s);
7440                         hugetlb_cma_size_in_node[nid] = tmp;
7441                         hugetlb_cma_size += tmp;
7442
7443                         /*
7444                          * Skip the separator if have one, otherwise
7445                          * break the parsing.
7446                          */
7447                         if (*s == ',')
7448                                 s++;
7449                         else
7450                                 break;
7451                 } else {
7452                         hugetlb_cma_size = memparse(p, &p);
7453                         break;
7454                 }
7455         }
7456
7457         return 0;
7458 }
7459
7460 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7461
7462 void __init hugetlb_cma_reserve(int order)
7463 {
7464         unsigned long size, reserved, per_node;
7465         bool node_specific_cma_alloc = false;
7466         int nid;
7467
7468         cma_reserve_called = true;
7469
7470         if (!hugetlb_cma_size)
7471                 return;
7472
7473         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7474                 if (hugetlb_cma_size_in_node[nid] == 0)
7475                         continue;
7476
7477                 if (!node_online(nid)) {
7478                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7479                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7480                         hugetlb_cma_size_in_node[nid] = 0;
7481                         continue;
7482                 }
7483
7484                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7485                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7486                                 nid, (PAGE_SIZE << order) / SZ_1M);
7487                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7488                         hugetlb_cma_size_in_node[nid] = 0;
7489                 } else {
7490                         node_specific_cma_alloc = true;
7491                 }
7492         }
7493
7494         /* Validate the CMA size again in case some invalid nodes specified. */
7495         if (!hugetlb_cma_size)
7496                 return;
7497
7498         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7499                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7500                         (PAGE_SIZE << order) / SZ_1M);
7501                 hugetlb_cma_size = 0;
7502                 return;
7503         }
7504
7505         if (!node_specific_cma_alloc) {
7506                 /*
7507                  * If 3 GB area is requested on a machine with 4 numa nodes,
7508                  * let's allocate 1 GB on first three nodes and ignore the last one.
7509                  */
7510                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7511                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7512                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7513         }
7514
7515         reserved = 0;
7516         for_each_online_node(nid) {
7517                 int res;
7518                 char name[CMA_MAX_NAME];
7519
7520                 if (node_specific_cma_alloc) {
7521                         if (hugetlb_cma_size_in_node[nid] == 0)
7522                                 continue;
7523
7524                         size = hugetlb_cma_size_in_node[nid];
7525                 } else {
7526                         size = min(per_node, hugetlb_cma_size - reserved);
7527                 }
7528
7529                 size = round_up(size, PAGE_SIZE << order);
7530
7531                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7532                 /*
7533                  * Note that 'order per bit' is based on smallest size that
7534                  * may be returned to CMA allocator in the case of
7535                  * huge page demotion.
7536                  */
7537                 res = cma_declare_contiguous_nid(0, size, 0,
7538                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7539                                                  0, false, name,
7540                                                  &hugetlb_cma[nid], nid);
7541                 if (res) {
7542                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7543                                 res, nid);
7544                         continue;
7545                 }
7546
7547                 reserved += size;
7548                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7549                         size / SZ_1M, nid);
7550
7551                 if (reserved >= hugetlb_cma_size)
7552                         break;
7553         }
7554
7555         if (!reserved)
7556                 /*
7557                  * hugetlb_cma_size is used to determine if allocations from
7558                  * cma are possible.  Set to zero if no cma regions are set up.
7559                  */
7560                 hugetlb_cma_size = 0;
7561 }
7562
7563 static void __init hugetlb_cma_check(void)
7564 {
7565         if (!hugetlb_cma_size || cma_reserve_called)
7566                 return;
7567
7568         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7569 }
7570
7571 #endif /* CONFIG_CMA */