mm, hugetlb: improve, cleanup resv_map parameters
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct resv_map *resv, long f, long t)
155 {
156         struct list_head *head = &resv->regions;
157         struct file_region *rg, *nrg, *trg;
158
159         /* Locate the region we are either in or before. */
160         list_for_each_entry(rg, head, link)
161                 if (f <= rg->to)
162                         break;
163
164         /* Round our left edge to the current segment if it encloses us. */
165         if (f > rg->from)
166                 f = rg->from;
167
168         /* Check for and consume any regions we now overlap with. */
169         nrg = rg;
170         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171                 if (&rg->link == head)
172                         break;
173                 if (rg->from > t)
174                         break;
175
176                 /* If this area reaches higher then extend our area to
177                  * include it completely.  If this is not the first area
178                  * which we intend to reuse, free it. */
179                 if (rg->to > t)
180                         t = rg->to;
181                 if (rg != nrg) {
182                         list_del(&rg->link);
183                         kfree(rg);
184                 }
185         }
186         nrg->from = f;
187         nrg->to = t;
188         return 0;
189 }
190
191 static long region_chg(struct resv_map *resv, long f, long t)
192 {
193         struct list_head *head = &resv->regions;
194         struct file_region *rg, *nrg;
195         long chg = 0;
196
197         /* Locate the region we are before or in. */
198         list_for_each_entry(rg, head, link)
199                 if (f <= rg->to)
200                         break;
201
202         /* If we are below the current region then a new region is required.
203          * Subtle, allocate a new region at the position but make it zero
204          * size such that we can guarantee to record the reservation. */
205         if (&rg->link == head || t < rg->from) {
206                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
207                 if (!nrg)
208                         return -ENOMEM;
209                 nrg->from = f;
210                 nrg->to   = f;
211                 INIT_LIST_HEAD(&nrg->link);
212                 list_add(&nrg->link, rg->link.prev);
213
214                 return t - f;
215         }
216
217         /* Round our left edge to the current segment if it encloses us. */
218         if (f > rg->from)
219                 f = rg->from;
220         chg = t - f;
221
222         /* Check for and consume any regions we now overlap with. */
223         list_for_each_entry(rg, rg->link.prev, link) {
224                 if (&rg->link == head)
225                         break;
226                 if (rg->from > t)
227                         return chg;
228
229                 /* We overlap with this area, if it extends further than
230                  * us then we must extend ourselves.  Account for its
231                  * existing reservation. */
232                 if (rg->to > t) {
233                         chg += rg->to - t;
234                         t = rg->to;
235                 }
236                 chg -= rg->to - rg->from;
237         }
238         return chg;
239 }
240
241 static long region_truncate(struct resv_map *resv, long end)
242 {
243         struct list_head *head = &resv->regions;
244         struct file_region *rg, *trg;
245         long chg = 0;
246
247         /* Locate the region we are either in or before. */
248         list_for_each_entry(rg, head, link)
249                 if (end <= rg->to)
250                         break;
251         if (&rg->link == head)
252                 return 0;
253
254         /* If we are in the middle of a region then adjust it. */
255         if (end > rg->from) {
256                 chg = rg->to - end;
257                 rg->to = end;
258                 rg = list_entry(rg->link.next, typeof(*rg), link);
259         }
260
261         /* Drop any remaining regions. */
262         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
263                 if (&rg->link == head)
264                         break;
265                 chg += rg->to - rg->from;
266                 list_del(&rg->link);
267                 kfree(rg);
268         }
269         return chg;
270 }
271
272 static long region_count(struct resv_map *resv, long f, long t)
273 {
274         struct list_head *head = &resv->regions;
275         struct file_region *rg;
276         long chg = 0;
277
278         /* Locate each segment we overlap with, and count that overlap. */
279         list_for_each_entry(rg, head, link) {
280                 long seg_from;
281                 long seg_to;
282
283                 if (rg->to <= f)
284                         continue;
285                 if (rg->from >= t)
286                         break;
287
288                 seg_from = max(rg->from, f);
289                 seg_to = min(rg->to, t);
290
291                 chg += seg_to - seg_from;
292         }
293
294         return chg;
295 }
296
297 /*
298  * Convert the address within this vma to the page offset within
299  * the mapping, in pagecache page units; huge pages here.
300  */
301 static pgoff_t vma_hugecache_offset(struct hstate *h,
302                         struct vm_area_struct *vma, unsigned long address)
303 {
304         return ((address - vma->vm_start) >> huge_page_shift(h)) +
305                         (vma->vm_pgoff >> huge_page_order(h));
306 }
307
308 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
309                                      unsigned long address)
310 {
311         return vma_hugecache_offset(hstate_vma(vma), vma, address);
312 }
313
314 /*
315  * Return the size of the pages allocated when backing a VMA. In the majority
316  * cases this will be same size as used by the page table entries.
317  */
318 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
319 {
320         struct hstate *hstate;
321
322         if (!is_vm_hugetlb_page(vma))
323                 return PAGE_SIZE;
324
325         hstate = hstate_vma(vma);
326
327         return 1UL << huge_page_shift(hstate);
328 }
329 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
330
331 /*
332  * Return the page size being used by the MMU to back a VMA. In the majority
333  * of cases, the page size used by the kernel matches the MMU size. On
334  * architectures where it differs, an architecture-specific version of this
335  * function is required.
336  */
337 #ifndef vma_mmu_pagesize
338 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
339 {
340         return vma_kernel_pagesize(vma);
341 }
342 #endif
343
344 /*
345  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
346  * bits of the reservation map pointer, which are always clear due to
347  * alignment.
348  */
349 #define HPAGE_RESV_OWNER    (1UL << 0)
350 #define HPAGE_RESV_UNMAPPED (1UL << 1)
351 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
352
353 /*
354  * These helpers are used to track how many pages are reserved for
355  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
356  * is guaranteed to have their future faults succeed.
357  *
358  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
359  * the reserve counters are updated with the hugetlb_lock held. It is safe
360  * to reset the VMA at fork() time as it is not in use yet and there is no
361  * chance of the global counters getting corrupted as a result of the values.
362  *
363  * The private mapping reservation is represented in a subtly different
364  * manner to a shared mapping.  A shared mapping has a region map associated
365  * with the underlying file, this region map represents the backing file
366  * pages which have ever had a reservation assigned which this persists even
367  * after the page is instantiated.  A private mapping has a region map
368  * associated with the original mmap which is attached to all VMAs which
369  * reference it, this region map represents those offsets which have consumed
370  * reservation ie. where pages have been instantiated.
371  */
372 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
373 {
374         return (unsigned long)vma->vm_private_data;
375 }
376
377 static void set_vma_private_data(struct vm_area_struct *vma,
378                                                         unsigned long value)
379 {
380         vma->vm_private_data = (void *)value;
381 }
382
383 struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(resv_map, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440         VM_BUG_ON(!is_vm_hugetlb_page(vma));
441         if (!(vma->vm_flags & VM_MAYSHARE))
442                 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448         if (vma->vm_flags & VM_NORESERVE) {
449                 /*
450                  * This address is already reserved by other process(chg == 0),
451                  * so, we should decrement reserved count. Without decrementing,
452                  * reserve count remains after releasing inode, because this
453                  * allocated page will go into page cache and is regarded as
454                  * coming from reserved pool in releasing step.  Currently, we
455                  * don't have any other solution to deal with this situation
456                  * properly, so add work-around here.
457                  */
458                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459                         return 1;
460                 else
461                         return 0;
462         }
463
464         /* Shared mappings always use reserves */
465         if (vma->vm_flags & VM_MAYSHARE)
466                 return 1;
467
468         /*
469          * Only the process that called mmap() has reserves for
470          * private mappings.
471          */
472         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473                 return 1;
474
475         return 0;
476 }
477
478 static void enqueue_huge_page(struct hstate *h, struct page *page)
479 {
480         int nid = page_to_nid(page);
481         list_move(&page->lru, &h->hugepage_freelists[nid]);
482         h->free_huge_pages++;
483         h->free_huge_pages_node[nid]++;
484 }
485
486 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
487 {
488         struct page *page;
489
490         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
491                 if (!is_migrate_isolate_page(page))
492                         break;
493         /*
494          * if 'non-isolated free hugepage' not found on the list,
495          * the allocation fails.
496          */
497         if (&h->hugepage_freelists[nid] == &page->lru)
498                 return NULL;
499         list_move(&page->lru, &h->hugepage_activelist);
500         set_page_refcounted(page);
501         h->free_huge_pages--;
502         h->free_huge_pages_node[nid]--;
503         return page;
504 }
505
506 /* Movability of hugepages depends on migration support. */
507 static inline gfp_t htlb_alloc_mask(struct hstate *h)
508 {
509         if (hugepages_treat_as_movable || hugepage_migration_support(h))
510                 return GFP_HIGHUSER_MOVABLE;
511         else
512                 return GFP_HIGHUSER;
513 }
514
515 static struct page *dequeue_huge_page_vma(struct hstate *h,
516                                 struct vm_area_struct *vma,
517                                 unsigned long address, int avoid_reserve,
518                                 long chg)
519 {
520         struct page *page = NULL;
521         struct mempolicy *mpol;
522         nodemask_t *nodemask;
523         struct zonelist *zonelist;
524         struct zone *zone;
525         struct zoneref *z;
526         unsigned int cpuset_mems_cookie;
527
528         /*
529          * A child process with MAP_PRIVATE mappings created by their parent
530          * have no page reserves. This check ensures that reservations are
531          * not "stolen". The child may still get SIGKILLed
532          */
533         if (!vma_has_reserves(vma, chg) &&
534                         h->free_huge_pages - h->resv_huge_pages == 0)
535                 goto err;
536
537         /* If reserves cannot be used, ensure enough pages are in the pool */
538         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
539                 goto err;
540
541 retry_cpuset:
542         cpuset_mems_cookie = read_mems_allowed_begin();
543         zonelist = huge_zonelist(vma, address,
544                                         htlb_alloc_mask(h), &mpol, &nodemask);
545
546         for_each_zone_zonelist_nodemask(zone, z, zonelist,
547                                                 MAX_NR_ZONES - 1, nodemask) {
548                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
549                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
550                         if (page) {
551                                 if (avoid_reserve)
552                                         break;
553                                 if (!vma_has_reserves(vma, chg))
554                                         break;
555
556                                 SetPagePrivate(page);
557                                 h->resv_huge_pages--;
558                                 break;
559                         }
560                 }
561         }
562
563         mpol_cond_put(mpol);
564         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
565                 goto retry_cpuset;
566         return page;
567
568 err:
569         return NULL;
570 }
571
572 static void update_and_free_page(struct hstate *h, struct page *page)
573 {
574         int i;
575
576         VM_BUG_ON(h->order >= MAX_ORDER);
577
578         h->nr_huge_pages--;
579         h->nr_huge_pages_node[page_to_nid(page)]--;
580         for (i = 0; i < pages_per_huge_page(h); i++) {
581                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
582                                 1 << PG_referenced | 1 << PG_dirty |
583                                 1 << PG_active | 1 << PG_reserved |
584                                 1 << PG_private | 1 << PG_writeback);
585         }
586         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
587         set_compound_page_dtor(page, NULL);
588         set_page_refcounted(page);
589         arch_release_hugepage(page);
590         __free_pages(page, huge_page_order(h));
591 }
592
593 struct hstate *size_to_hstate(unsigned long size)
594 {
595         struct hstate *h;
596
597         for_each_hstate(h) {
598                 if (huge_page_size(h) == size)
599                         return h;
600         }
601         return NULL;
602 }
603
604 static void free_huge_page(struct page *page)
605 {
606         /*
607          * Can't pass hstate in here because it is called from the
608          * compound page destructor.
609          */
610         struct hstate *h = page_hstate(page);
611         int nid = page_to_nid(page);
612         struct hugepage_subpool *spool =
613                 (struct hugepage_subpool *)page_private(page);
614         bool restore_reserve;
615
616         set_page_private(page, 0);
617         page->mapping = NULL;
618         BUG_ON(page_count(page));
619         BUG_ON(page_mapcount(page));
620         restore_reserve = PagePrivate(page);
621         ClearPagePrivate(page);
622
623         spin_lock(&hugetlb_lock);
624         hugetlb_cgroup_uncharge_page(hstate_index(h),
625                                      pages_per_huge_page(h), page);
626         if (restore_reserve)
627                 h->resv_huge_pages++;
628
629         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
630                 /* remove the page from active list */
631                 list_del(&page->lru);
632                 update_and_free_page(h, page);
633                 h->surplus_huge_pages--;
634                 h->surplus_huge_pages_node[nid]--;
635         } else {
636                 arch_clear_hugepage_flags(page);
637                 enqueue_huge_page(h, page);
638         }
639         spin_unlock(&hugetlb_lock);
640         hugepage_subpool_put_pages(spool, 1);
641 }
642
643 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 {
645         INIT_LIST_HEAD(&page->lru);
646         set_compound_page_dtor(page, free_huge_page);
647         spin_lock(&hugetlb_lock);
648         set_hugetlb_cgroup(page, NULL);
649         h->nr_huge_pages++;
650         h->nr_huge_pages_node[nid]++;
651         spin_unlock(&hugetlb_lock);
652         put_page(page); /* free it into the hugepage allocator */
653 }
654
655 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
656 {
657         int i;
658         int nr_pages = 1 << order;
659         struct page *p = page + 1;
660
661         /* we rely on prep_new_huge_page to set the destructor */
662         set_compound_order(page, order);
663         __SetPageHead(page);
664         __ClearPageReserved(page);
665         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
666                 __SetPageTail(p);
667                 /*
668                  * For gigantic hugepages allocated through bootmem at
669                  * boot, it's safer to be consistent with the not-gigantic
670                  * hugepages and clear the PG_reserved bit from all tail pages
671                  * too.  Otherwse drivers using get_user_pages() to access tail
672                  * pages may get the reference counting wrong if they see
673                  * PG_reserved set on a tail page (despite the head page not
674                  * having PG_reserved set).  Enforcing this consistency between
675                  * head and tail pages allows drivers to optimize away a check
676                  * on the head page when they need know if put_page() is needed
677                  * after get_user_pages().
678                  */
679                 __ClearPageReserved(p);
680                 set_page_count(p, 0);
681                 p->first_page = page;
682         }
683 }
684
685 /*
686  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
687  * transparent huge pages.  See the PageTransHuge() documentation for more
688  * details.
689  */
690 int PageHuge(struct page *page)
691 {
692         if (!PageCompound(page))
693                 return 0;
694
695         page = compound_head(page);
696         return get_compound_page_dtor(page) == free_huge_page;
697 }
698 EXPORT_SYMBOL_GPL(PageHuge);
699
700 /*
701  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702  * normal or transparent huge pages.
703  */
704 int PageHeadHuge(struct page *page_head)
705 {
706         if (!PageHead(page_head))
707                 return 0;
708
709         return get_compound_page_dtor(page_head) == free_huge_page;
710 }
711
712 pgoff_t __basepage_index(struct page *page)
713 {
714         struct page *page_head = compound_head(page);
715         pgoff_t index = page_index(page_head);
716         unsigned long compound_idx;
717
718         if (!PageHuge(page_head))
719                 return page_index(page);
720
721         if (compound_order(page_head) >= MAX_ORDER)
722                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
723         else
724                 compound_idx = page - page_head;
725
726         return (index << compound_order(page_head)) + compound_idx;
727 }
728
729 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
730 {
731         struct page *page;
732
733         if (h->order >= MAX_ORDER)
734                 return NULL;
735
736         page = alloc_pages_exact_node(nid,
737                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
738                                                 __GFP_REPEAT|__GFP_NOWARN,
739                 huge_page_order(h));
740         if (page) {
741                 if (arch_prepare_hugepage(page)) {
742                         __free_pages(page, huge_page_order(h));
743                         return NULL;
744                 }
745                 prep_new_huge_page(h, page, nid);
746         }
747
748         return page;
749 }
750
751 /*
752  * common helper functions for hstate_next_node_to_{alloc|free}.
753  * We may have allocated or freed a huge page based on a different
754  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
755  * be outside of *nodes_allowed.  Ensure that we use an allowed
756  * node for alloc or free.
757  */
758 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
759 {
760         nid = next_node(nid, *nodes_allowed);
761         if (nid == MAX_NUMNODES)
762                 nid = first_node(*nodes_allowed);
763         VM_BUG_ON(nid >= MAX_NUMNODES);
764
765         return nid;
766 }
767
768 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
769 {
770         if (!node_isset(nid, *nodes_allowed))
771                 nid = next_node_allowed(nid, nodes_allowed);
772         return nid;
773 }
774
775 /*
776  * returns the previously saved node ["this node"] from which to
777  * allocate a persistent huge page for the pool and advance the
778  * next node from which to allocate, handling wrap at end of node
779  * mask.
780  */
781 static int hstate_next_node_to_alloc(struct hstate *h,
782                                         nodemask_t *nodes_allowed)
783 {
784         int nid;
785
786         VM_BUG_ON(!nodes_allowed);
787
788         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
789         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
790
791         return nid;
792 }
793
794 /*
795  * helper for free_pool_huge_page() - return the previously saved
796  * node ["this node"] from which to free a huge page.  Advance the
797  * next node id whether or not we find a free huge page to free so
798  * that the next attempt to free addresses the next node.
799  */
800 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
801 {
802         int nid;
803
804         VM_BUG_ON(!nodes_allowed);
805
806         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
807         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
808
809         return nid;
810 }
811
812 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
813         for (nr_nodes = nodes_weight(*mask);                            \
814                 nr_nodes > 0 &&                                         \
815                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
816                 nr_nodes--)
817
818 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
819         for (nr_nodes = nodes_weight(*mask);                            \
820                 nr_nodes > 0 &&                                         \
821                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
822                 nr_nodes--)
823
824 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
825 {
826         struct page *page;
827         int nr_nodes, node;
828         int ret = 0;
829
830         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
831                 page = alloc_fresh_huge_page_node(h, node);
832                 if (page) {
833                         ret = 1;
834                         break;
835                 }
836         }
837
838         if (ret)
839                 count_vm_event(HTLB_BUDDY_PGALLOC);
840         else
841                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
842
843         return ret;
844 }
845
846 /*
847  * Free huge page from pool from next node to free.
848  * Attempt to keep persistent huge pages more or less
849  * balanced over allowed nodes.
850  * Called with hugetlb_lock locked.
851  */
852 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
853                                                          bool acct_surplus)
854 {
855         int nr_nodes, node;
856         int ret = 0;
857
858         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
859                 /*
860                  * If we're returning unused surplus pages, only examine
861                  * nodes with surplus pages.
862                  */
863                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
864                     !list_empty(&h->hugepage_freelists[node])) {
865                         struct page *page =
866                                 list_entry(h->hugepage_freelists[node].next,
867                                           struct page, lru);
868                         list_del(&page->lru);
869                         h->free_huge_pages--;
870                         h->free_huge_pages_node[node]--;
871                         if (acct_surplus) {
872                                 h->surplus_huge_pages--;
873                                 h->surplus_huge_pages_node[node]--;
874                         }
875                         update_and_free_page(h, page);
876                         ret = 1;
877                         break;
878                 }
879         }
880
881         return ret;
882 }
883
884 /*
885  * Dissolve a given free hugepage into free buddy pages. This function does
886  * nothing for in-use (including surplus) hugepages.
887  */
888 static void dissolve_free_huge_page(struct page *page)
889 {
890         spin_lock(&hugetlb_lock);
891         if (PageHuge(page) && !page_count(page)) {
892                 struct hstate *h = page_hstate(page);
893                 int nid = page_to_nid(page);
894                 list_del(&page->lru);
895                 h->free_huge_pages--;
896                 h->free_huge_pages_node[nid]--;
897                 update_and_free_page(h, page);
898         }
899         spin_unlock(&hugetlb_lock);
900 }
901
902 /*
903  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
904  * make specified memory blocks removable from the system.
905  * Note that start_pfn should aligned with (minimum) hugepage size.
906  */
907 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
908 {
909         unsigned int order = 8 * sizeof(void *);
910         unsigned long pfn;
911         struct hstate *h;
912
913         /* Set scan step to minimum hugepage size */
914         for_each_hstate(h)
915                 if (order > huge_page_order(h))
916                         order = huge_page_order(h);
917         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
918         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
919                 dissolve_free_huge_page(pfn_to_page(pfn));
920 }
921
922 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
923 {
924         struct page *page;
925         unsigned int r_nid;
926
927         if (h->order >= MAX_ORDER)
928                 return NULL;
929
930         /*
931          * Assume we will successfully allocate the surplus page to
932          * prevent racing processes from causing the surplus to exceed
933          * overcommit
934          *
935          * This however introduces a different race, where a process B
936          * tries to grow the static hugepage pool while alloc_pages() is
937          * called by process A. B will only examine the per-node
938          * counters in determining if surplus huge pages can be
939          * converted to normal huge pages in adjust_pool_surplus(). A
940          * won't be able to increment the per-node counter, until the
941          * lock is dropped by B, but B doesn't drop hugetlb_lock until
942          * no more huge pages can be converted from surplus to normal
943          * state (and doesn't try to convert again). Thus, we have a
944          * case where a surplus huge page exists, the pool is grown, and
945          * the surplus huge page still exists after, even though it
946          * should just have been converted to a normal huge page. This
947          * does not leak memory, though, as the hugepage will be freed
948          * once it is out of use. It also does not allow the counters to
949          * go out of whack in adjust_pool_surplus() as we don't modify
950          * the node values until we've gotten the hugepage and only the
951          * per-node value is checked there.
952          */
953         spin_lock(&hugetlb_lock);
954         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
955                 spin_unlock(&hugetlb_lock);
956                 return NULL;
957         } else {
958                 h->nr_huge_pages++;
959                 h->surplus_huge_pages++;
960         }
961         spin_unlock(&hugetlb_lock);
962
963         if (nid == NUMA_NO_NODE)
964                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
965                                    __GFP_REPEAT|__GFP_NOWARN,
966                                    huge_page_order(h));
967         else
968                 page = alloc_pages_exact_node(nid,
969                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
970                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
971
972         if (page && arch_prepare_hugepage(page)) {
973                 __free_pages(page, huge_page_order(h));
974                 page = NULL;
975         }
976
977         spin_lock(&hugetlb_lock);
978         if (page) {
979                 INIT_LIST_HEAD(&page->lru);
980                 r_nid = page_to_nid(page);
981                 set_compound_page_dtor(page, free_huge_page);
982                 set_hugetlb_cgroup(page, NULL);
983                 /*
984                  * We incremented the global counters already
985                  */
986                 h->nr_huge_pages_node[r_nid]++;
987                 h->surplus_huge_pages_node[r_nid]++;
988                 __count_vm_event(HTLB_BUDDY_PGALLOC);
989         } else {
990                 h->nr_huge_pages--;
991                 h->surplus_huge_pages--;
992                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
993         }
994         spin_unlock(&hugetlb_lock);
995
996         return page;
997 }
998
999 /*
1000  * This allocation function is useful in the context where vma is irrelevant.
1001  * E.g. soft-offlining uses this function because it only cares physical
1002  * address of error page.
1003  */
1004 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1005 {
1006         struct page *page = NULL;
1007
1008         spin_lock(&hugetlb_lock);
1009         if (h->free_huge_pages - h->resv_huge_pages > 0)
1010                 page = dequeue_huge_page_node(h, nid);
1011         spin_unlock(&hugetlb_lock);
1012
1013         if (!page)
1014                 page = alloc_buddy_huge_page(h, nid);
1015
1016         return page;
1017 }
1018
1019 /*
1020  * Increase the hugetlb pool such that it can accommodate a reservation
1021  * of size 'delta'.
1022  */
1023 static int gather_surplus_pages(struct hstate *h, int delta)
1024 {
1025         struct list_head surplus_list;
1026         struct page *page, *tmp;
1027         int ret, i;
1028         int needed, allocated;
1029         bool alloc_ok = true;
1030
1031         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1032         if (needed <= 0) {
1033                 h->resv_huge_pages += delta;
1034                 return 0;
1035         }
1036
1037         allocated = 0;
1038         INIT_LIST_HEAD(&surplus_list);
1039
1040         ret = -ENOMEM;
1041 retry:
1042         spin_unlock(&hugetlb_lock);
1043         for (i = 0; i < needed; i++) {
1044                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1045                 if (!page) {
1046                         alloc_ok = false;
1047                         break;
1048                 }
1049                 list_add(&page->lru, &surplus_list);
1050         }
1051         allocated += i;
1052
1053         /*
1054          * After retaking hugetlb_lock, we need to recalculate 'needed'
1055          * because either resv_huge_pages or free_huge_pages may have changed.
1056          */
1057         spin_lock(&hugetlb_lock);
1058         needed = (h->resv_huge_pages + delta) -
1059                         (h->free_huge_pages + allocated);
1060         if (needed > 0) {
1061                 if (alloc_ok)
1062                         goto retry;
1063                 /*
1064                  * We were not able to allocate enough pages to
1065                  * satisfy the entire reservation so we free what
1066                  * we've allocated so far.
1067                  */
1068                 goto free;
1069         }
1070         /*
1071          * The surplus_list now contains _at_least_ the number of extra pages
1072          * needed to accommodate the reservation.  Add the appropriate number
1073          * of pages to the hugetlb pool and free the extras back to the buddy
1074          * allocator.  Commit the entire reservation here to prevent another
1075          * process from stealing the pages as they are added to the pool but
1076          * before they are reserved.
1077          */
1078         needed += allocated;
1079         h->resv_huge_pages += delta;
1080         ret = 0;
1081
1082         /* Free the needed pages to the hugetlb pool */
1083         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1084                 if ((--needed) < 0)
1085                         break;
1086                 /*
1087                  * This page is now managed by the hugetlb allocator and has
1088                  * no users -- drop the buddy allocator's reference.
1089                  */
1090                 put_page_testzero(page);
1091                 VM_BUG_ON_PAGE(page_count(page), page);
1092                 enqueue_huge_page(h, page);
1093         }
1094 free:
1095         spin_unlock(&hugetlb_lock);
1096
1097         /* Free unnecessary surplus pages to the buddy allocator */
1098         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1099                 put_page(page);
1100         spin_lock(&hugetlb_lock);
1101
1102         return ret;
1103 }
1104
1105 /*
1106  * When releasing a hugetlb pool reservation, any surplus pages that were
1107  * allocated to satisfy the reservation must be explicitly freed if they were
1108  * never used.
1109  * Called with hugetlb_lock held.
1110  */
1111 static void return_unused_surplus_pages(struct hstate *h,
1112                                         unsigned long unused_resv_pages)
1113 {
1114         unsigned long nr_pages;
1115
1116         /* Uncommit the reservation */
1117         h->resv_huge_pages -= unused_resv_pages;
1118
1119         /* Cannot return gigantic pages currently */
1120         if (h->order >= MAX_ORDER)
1121                 return;
1122
1123         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1124
1125         /*
1126          * We want to release as many surplus pages as possible, spread
1127          * evenly across all nodes with memory. Iterate across these nodes
1128          * until we can no longer free unreserved surplus pages. This occurs
1129          * when the nodes with surplus pages have no free pages.
1130          * free_pool_huge_page() will balance the the freed pages across the
1131          * on-line nodes with memory and will handle the hstate accounting.
1132          */
1133         while (nr_pages--) {
1134                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1135                         break;
1136         }
1137 }
1138
1139 /*
1140  * Determine if the huge page at addr within the vma has an associated
1141  * reservation.  Where it does not we will need to logically increase
1142  * reservation and actually increase subpool usage before an allocation
1143  * can occur.  Where any new reservation would be required the
1144  * reservation change is prepared, but not committed.  Once the page
1145  * has been allocated from the subpool and instantiated the change should
1146  * be committed via vma_commit_reservation.  No action is required on
1147  * failure.
1148  */
1149 static long vma_needs_reservation(struct hstate *h,
1150                         struct vm_area_struct *vma, unsigned long addr)
1151 {
1152         struct address_space *mapping = vma->vm_file->f_mapping;
1153         struct inode *inode = mapping->host;
1154
1155         if (vma->vm_flags & VM_MAYSHARE) {
1156                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1157                 struct resv_map *resv = inode->i_mapping->private_data;
1158
1159                 return region_chg(resv, idx, idx + 1);
1160
1161         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1162                 return 1;
1163
1164         } else  {
1165                 long err;
1166                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167                 struct resv_map *resv = vma_resv_map(vma);
1168
1169                 err = region_chg(resv, idx, idx + 1);
1170                 if (err < 0)
1171                         return err;
1172                 return 0;
1173         }
1174 }
1175 static void vma_commit_reservation(struct hstate *h,
1176                         struct vm_area_struct *vma, unsigned long addr)
1177 {
1178         struct address_space *mapping = vma->vm_file->f_mapping;
1179         struct inode *inode = mapping->host;
1180
1181         if (vma->vm_flags & VM_MAYSHARE) {
1182                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1183                 struct resv_map *resv = inode->i_mapping->private_data;
1184
1185                 region_add(resv, idx, idx + 1);
1186
1187         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1188                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1189                 struct resv_map *resv = vma_resv_map(vma);
1190
1191                 /* Mark this page used in the map. */
1192                 region_add(resv, idx, idx + 1);
1193         }
1194 }
1195
1196 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1197                                     unsigned long addr, int avoid_reserve)
1198 {
1199         struct hugepage_subpool *spool = subpool_vma(vma);
1200         struct hstate *h = hstate_vma(vma);
1201         struct page *page;
1202         long chg;
1203         int ret, idx;
1204         struct hugetlb_cgroup *h_cg;
1205
1206         idx = hstate_index(h);
1207         /*
1208          * Processes that did not create the mapping will have no
1209          * reserves and will not have accounted against subpool
1210          * limit. Check that the subpool limit can be made before
1211          * satisfying the allocation MAP_NORESERVE mappings may also
1212          * need pages and subpool limit allocated allocated if no reserve
1213          * mapping overlaps.
1214          */
1215         chg = vma_needs_reservation(h, vma, addr);
1216         if (chg < 0)
1217                 return ERR_PTR(-ENOMEM);
1218         if (chg || avoid_reserve)
1219                 if (hugepage_subpool_get_pages(spool, 1))
1220                         return ERR_PTR(-ENOSPC);
1221
1222         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1223         if (ret) {
1224                 if (chg || avoid_reserve)
1225                         hugepage_subpool_put_pages(spool, 1);
1226                 return ERR_PTR(-ENOSPC);
1227         }
1228         spin_lock(&hugetlb_lock);
1229         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1230         if (!page) {
1231                 spin_unlock(&hugetlb_lock);
1232                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1233                 if (!page) {
1234                         hugetlb_cgroup_uncharge_cgroup(idx,
1235                                                        pages_per_huge_page(h),
1236                                                        h_cg);
1237                         if (chg || avoid_reserve)
1238                                 hugepage_subpool_put_pages(spool, 1);
1239                         return ERR_PTR(-ENOSPC);
1240                 }
1241                 spin_lock(&hugetlb_lock);
1242                 list_move(&page->lru, &h->hugepage_activelist);
1243                 /* Fall through */
1244         }
1245         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1246         spin_unlock(&hugetlb_lock);
1247
1248         set_page_private(page, (unsigned long)spool);
1249
1250         vma_commit_reservation(h, vma, addr);
1251         return page;
1252 }
1253
1254 /*
1255  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1256  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1257  * where no ERR_VALUE is expected to be returned.
1258  */
1259 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1260                                 unsigned long addr, int avoid_reserve)
1261 {
1262         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1263         if (IS_ERR(page))
1264                 page = NULL;
1265         return page;
1266 }
1267
1268 int __weak alloc_bootmem_huge_page(struct hstate *h)
1269 {
1270         struct huge_bootmem_page *m;
1271         int nr_nodes, node;
1272
1273         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1274                 void *addr;
1275
1276                 addr = memblock_virt_alloc_try_nid_nopanic(
1277                                 huge_page_size(h), huge_page_size(h),
1278                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1279                 if (addr) {
1280                         /*
1281                          * Use the beginning of the huge page to store the
1282                          * huge_bootmem_page struct (until gather_bootmem
1283                          * puts them into the mem_map).
1284                          */
1285                         m = addr;
1286                         goto found;
1287                 }
1288         }
1289         return 0;
1290
1291 found:
1292         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1293         /* Put them into a private list first because mem_map is not up yet */
1294         list_add(&m->list, &huge_boot_pages);
1295         m->hstate = h;
1296         return 1;
1297 }
1298
1299 static void prep_compound_huge_page(struct page *page, int order)
1300 {
1301         if (unlikely(order > (MAX_ORDER - 1)))
1302                 prep_compound_gigantic_page(page, order);
1303         else
1304                 prep_compound_page(page, order);
1305 }
1306
1307 /* Put bootmem huge pages into the standard lists after mem_map is up */
1308 static void __init gather_bootmem_prealloc(void)
1309 {
1310         struct huge_bootmem_page *m;
1311
1312         list_for_each_entry(m, &huge_boot_pages, list) {
1313                 struct hstate *h = m->hstate;
1314                 struct page *page;
1315
1316 #ifdef CONFIG_HIGHMEM
1317                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1318                 memblock_free_late(__pa(m),
1319                                    sizeof(struct huge_bootmem_page));
1320 #else
1321                 page = virt_to_page(m);
1322 #endif
1323                 WARN_ON(page_count(page) != 1);
1324                 prep_compound_huge_page(page, h->order);
1325                 WARN_ON(PageReserved(page));
1326                 prep_new_huge_page(h, page, page_to_nid(page));
1327                 /*
1328                  * If we had gigantic hugepages allocated at boot time, we need
1329                  * to restore the 'stolen' pages to totalram_pages in order to
1330                  * fix confusing memory reports from free(1) and another
1331                  * side-effects, like CommitLimit going negative.
1332                  */
1333                 if (h->order > (MAX_ORDER - 1))
1334                         adjust_managed_page_count(page, 1 << h->order);
1335         }
1336 }
1337
1338 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1339 {
1340         unsigned long i;
1341
1342         for (i = 0; i < h->max_huge_pages; ++i) {
1343                 if (h->order >= MAX_ORDER) {
1344                         if (!alloc_bootmem_huge_page(h))
1345                                 break;
1346                 } else if (!alloc_fresh_huge_page(h,
1347                                          &node_states[N_MEMORY]))
1348                         break;
1349         }
1350         h->max_huge_pages = i;
1351 }
1352
1353 static void __init hugetlb_init_hstates(void)
1354 {
1355         struct hstate *h;
1356
1357         for_each_hstate(h) {
1358                 /* oversize hugepages were init'ed in early boot */
1359                 if (h->order < MAX_ORDER)
1360                         hugetlb_hstate_alloc_pages(h);
1361         }
1362 }
1363
1364 static char * __init memfmt(char *buf, unsigned long n)
1365 {
1366         if (n >= (1UL << 30))
1367                 sprintf(buf, "%lu GB", n >> 30);
1368         else if (n >= (1UL << 20))
1369                 sprintf(buf, "%lu MB", n >> 20);
1370         else
1371                 sprintf(buf, "%lu KB", n >> 10);
1372         return buf;
1373 }
1374
1375 static void __init report_hugepages(void)
1376 {
1377         struct hstate *h;
1378
1379         for_each_hstate(h) {
1380                 char buf[32];
1381                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1382                         memfmt(buf, huge_page_size(h)),
1383                         h->free_huge_pages);
1384         }
1385 }
1386
1387 #ifdef CONFIG_HIGHMEM
1388 static void try_to_free_low(struct hstate *h, unsigned long count,
1389                                                 nodemask_t *nodes_allowed)
1390 {
1391         int i;
1392
1393         if (h->order >= MAX_ORDER)
1394                 return;
1395
1396         for_each_node_mask(i, *nodes_allowed) {
1397                 struct page *page, *next;
1398                 struct list_head *freel = &h->hugepage_freelists[i];
1399                 list_for_each_entry_safe(page, next, freel, lru) {
1400                         if (count >= h->nr_huge_pages)
1401                                 return;
1402                         if (PageHighMem(page))
1403                                 continue;
1404                         list_del(&page->lru);
1405                         update_and_free_page(h, page);
1406                         h->free_huge_pages--;
1407                         h->free_huge_pages_node[page_to_nid(page)]--;
1408                 }
1409         }
1410 }
1411 #else
1412 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1413                                                 nodemask_t *nodes_allowed)
1414 {
1415 }
1416 #endif
1417
1418 /*
1419  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1420  * balanced by operating on them in a round-robin fashion.
1421  * Returns 1 if an adjustment was made.
1422  */
1423 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1424                                 int delta)
1425 {
1426         int nr_nodes, node;
1427
1428         VM_BUG_ON(delta != -1 && delta != 1);
1429
1430         if (delta < 0) {
1431                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1432                         if (h->surplus_huge_pages_node[node])
1433                                 goto found;
1434                 }
1435         } else {
1436                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1437                         if (h->surplus_huge_pages_node[node] <
1438                                         h->nr_huge_pages_node[node])
1439                                 goto found;
1440                 }
1441         }
1442         return 0;
1443
1444 found:
1445         h->surplus_huge_pages += delta;
1446         h->surplus_huge_pages_node[node] += delta;
1447         return 1;
1448 }
1449
1450 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1451 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1452                                                 nodemask_t *nodes_allowed)
1453 {
1454         unsigned long min_count, ret;
1455
1456         if (h->order >= MAX_ORDER)
1457                 return h->max_huge_pages;
1458
1459         /*
1460          * Increase the pool size
1461          * First take pages out of surplus state.  Then make up the
1462          * remaining difference by allocating fresh huge pages.
1463          *
1464          * We might race with alloc_buddy_huge_page() here and be unable
1465          * to convert a surplus huge page to a normal huge page. That is
1466          * not critical, though, it just means the overall size of the
1467          * pool might be one hugepage larger than it needs to be, but
1468          * within all the constraints specified by the sysctls.
1469          */
1470         spin_lock(&hugetlb_lock);
1471         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1472                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1473                         break;
1474         }
1475
1476         while (count > persistent_huge_pages(h)) {
1477                 /*
1478                  * If this allocation races such that we no longer need the
1479                  * page, free_huge_page will handle it by freeing the page
1480                  * and reducing the surplus.
1481                  */
1482                 spin_unlock(&hugetlb_lock);
1483                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1484                 spin_lock(&hugetlb_lock);
1485                 if (!ret)
1486                         goto out;
1487
1488                 /* Bail for signals. Probably ctrl-c from user */
1489                 if (signal_pending(current))
1490                         goto out;
1491         }
1492
1493         /*
1494          * Decrease the pool size
1495          * First return free pages to the buddy allocator (being careful
1496          * to keep enough around to satisfy reservations).  Then place
1497          * pages into surplus state as needed so the pool will shrink
1498          * to the desired size as pages become free.
1499          *
1500          * By placing pages into the surplus state independent of the
1501          * overcommit value, we are allowing the surplus pool size to
1502          * exceed overcommit. There are few sane options here. Since
1503          * alloc_buddy_huge_page() is checking the global counter,
1504          * though, we'll note that we're not allowed to exceed surplus
1505          * and won't grow the pool anywhere else. Not until one of the
1506          * sysctls are changed, or the surplus pages go out of use.
1507          */
1508         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1509         min_count = max(count, min_count);
1510         try_to_free_low(h, min_count, nodes_allowed);
1511         while (min_count < persistent_huge_pages(h)) {
1512                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1513                         break;
1514         }
1515         while (count < persistent_huge_pages(h)) {
1516                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1517                         break;
1518         }
1519 out:
1520         ret = persistent_huge_pages(h);
1521         spin_unlock(&hugetlb_lock);
1522         return ret;
1523 }
1524
1525 #define HSTATE_ATTR_RO(_name) \
1526         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1527
1528 #define HSTATE_ATTR(_name) \
1529         static struct kobj_attribute _name##_attr = \
1530                 __ATTR(_name, 0644, _name##_show, _name##_store)
1531
1532 static struct kobject *hugepages_kobj;
1533 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1534
1535 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1536
1537 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1538 {
1539         int i;
1540
1541         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1542                 if (hstate_kobjs[i] == kobj) {
1543                         if (nidp)
1544                                 *nidp = NUMA_NO_NODE;
1545                         return &hstates[i];
1546                 }
1547
1548         return kobj_to_node_hstate(kobj, nidp);
1549 }
1550
1551 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1552                                         struct kobj_attribute *attr, char *buf)
1553 {
1554         struct hstate *h;
1555         unsigned long nr_huge_pages;
1556         int nid;
1557
1558         h = kobj_to_hstate(kobj, &nid);
1559         if (nid == NUMA_NO_NODE)
1560                 nr_huge_pages = h->nr_huge_pages;
1561         else
1562                 nr_huge_pages = h->nr_huge_pages_node[nid];
1563
1564         return sprintf(buf, "%lu\n", nr_huge_pages);
1565 }
1566
1567 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1568                         struct kobject *kobj, struct kobj_attribute *attr,
1569                         const char *buf, size_t len)
1570 {
1571         int err;
1572         int nid;
1573         unsigned long count;
1574         struct hstate *h;
1575         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1576
1577         err = kstrtoul(buf, 10, &count);
1578         if (err)
1579                 goto out;
1580
1581         h = kobj_to_hstate(kobj, &nid);
1582         if (h->order >= MAX_ORDER) {
1583                 err = -EINVAL;
1584                 goto out;
1585         }
1586
1587         if (nid == NUMA_NO_NODE) {
1588                 /*
1589                  * global hstate attribute
1590                  */
1591                 if (!(obey_mempolicy &&
1592                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1593                         NODEMASK_FREE(nodes_allowed);
1594                         nodes_allowed = &node_states[N_MEMORY];
1595                 }
1596         } else if (nodes_allowed) {
1597                 /*
1598                  * per node hstate attribute: adjust count to global,
1599                  * but restrict alloc/free to the specified node.
1600                  */
1601                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1602                 init_nodemask_of_node(nodes_allowed, nid);
1603         } else
1604                 nodes_allowed = &node_states[N_MEMORY];
1605
1606         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1607
1608         if (nodes_allowed != &node_states[N_MEMORY])
1609                 NODEMASK_FREE(nodes_allowed);
1610
1611         return len;
1612 out:
1613         NODEMASK_FREE(nodes_allowed);
1614         return err;
1615 }
1616
1617 static ssize_t nr_hugepages_show(struct kobject *kobj,
1618                                        struct kobj_attribute *attr, char *buf)
1619 {
1620         return nr_hugepages_show_common(kobj, attr, buf);
1621 }
1622
1623 static ssize_t nr_hugepages_store(struct kobject *kobj,
1624                struct kobj_attribute *attr, const char *buf, size_t len)
1625 {
1626         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1627 }
1628 HSTATE_ATTR(nr_hugepages);
1629
1630 #ifdef CONFIG_NUMA
1631
1632 /*
1633  * hstate attribute for optionally mempolicy-based constraint on persistent
1634  * huge page alloc/free.
1635  */
1636 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1637                                        struct kobj_attribute *attr, char *buf)
1638 {
1639         return nr_hugepages_show_common(kobj, attr, buf);
1640 }
1641
1642 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1643                struct kobj_attribute *attr, const char *buf, size_t len)
1644 {
1645         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1646 }
1647 HSTATE_ATTR(nr_hugepages_mempolicy);
1648 #endif
1649
1650
1651 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1652                                         struct kobj_attribute *attr, char *buf)
1653 {
1654         struct hstate *h = kobj_to_hstate(kobj, NULL);
1655         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1656 }
1657
1658 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1659                 struct kobj_attribute *attr, const char *buf, size_t count)
1660 {
1661         int err;
1662         unsigned long input;
1663         struct hstate *h = kobj_to_hstate(kobj, NULL);
1664
1665         if (h->order >= MAX_ORDER)
1666                 return -EINVAL;
1667
1668         err = kstrtoul(buf, 10, &input);
1669         if (err)
1670                 return err;
1671
1672         spin_lock(&hugetlb_lock);
1673         h->nr_overcommit_huge_pages = input;
1674         spin_unlock(&hugetlb_lock);
1675
1676         return count;
1677 }
1678 HSTATE_ATTR(nr_overcommit_hugepages);
1679
1680 static ssize_t free_hugepages_show(struct kobject *kobj,
1681                                         struct kobj_attribute *attr, char *buf)
1682 {
1683         struct hstate *h;
1684         unsigned long free_huge_pages;
1685         int nid;
1686
1687         h = kobj_to_hstate(kobj, &nid);
1688         if (nid == NUMA_NO_NODE)
1689                 free_huge_pages = h->free_huge_pages;
1690         else
1691                 free_huge_pages = h->free_huge_pages_node[nid];
1692
1693         return sprintf(buf, "%lu\n", free_huge_pages);
1694 }
1695 HSTATE_ATTR_RO(free_hugepages);
1696
1697 static ssize_t resv_hugepages_show(struct kobject *kobj,
1698                                         struct kobj_attribute *attr, char *buf)
1699 {
1700         struct hstate *h = kobj_to_hstate(kobj, NULL);
1701         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1702 }
1703 HSTATE_ATTR_RO(resv_hugepages);
1704
1705 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1706                                         struct kobj_attribute *attr, char *buf)
1707 {
1708         struct hstate *h;
1709         unsigned long surplus_huge_pages;
1710         int nid;
1711
1712         h = kobj_to_hstate(kobj, &nid);
1713         if (nid == NUMA_NO_NODE)
1714                 surplus_huge_pages = h->surplus_huge_pages;
1715         else
1716                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1717
1718         return sprintf(buf, "%lu\n", surplus_huge_pages);
1719 }
1720 HSTATE_ATTR_RO(surplus_hugepages);
1721
1722 static struct attribute *hstate_attrs[] = {
1723         &nr_hugepages_attr.attr,
1724         &nr_overcommit_hugepages_attr.attr,
1725         &free_hugepages_attr.attr,
1726         &resv_hugepages_attr.attr,
1727         &surplus_hugepages_attr.attr,
1728 #ifdef CONFIG_NUMA
1729         &nr_hugepages_mempolicy_attr.attr,
1730 #endif
1731         NULL,
1732 };
1733
1734 static struct attribute_group hstate_attr_group = {
1735         .attrs = hstate_attrs,
1736 };
1737
1738 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1739                                     struct kobject **hstate_kobjs,
1740                                     struct attribute_group *hstate_attr_group)
1741 {
1742         int retval;
1743         int hi = hstate_index(h);
1744
1745         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1746         if (!hstate_kobjs[hi])
1747                 return -ENOMEM;
1748
1749         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1750         if (retval)
1751                 kobject_put(hstate_kobjs[hi]);
1752
1753         return retval;
1754 }
1755
1756 static void __init hugetlb_sysfs_init(void)
1757 {
1758         struct hstate *h;
1759         int err;
1760
1761         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1762         if (!hugepages_kobj)
1763                 return;
1764
1765         for_each_hstate(h) {
1766                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1767                                          hstate_kobjs, &hstate_attr_group);
1768                 if (err)
1769                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1770         }
1771 }
1772
1773 #ifdef CONFIG_NUMA
1774
1775 /*
1776  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1777  * with node devices in node_devices[] using a parallel array.  The array
1778  * index of a node device or _hstate == node id.
1779  * This is here to avoid any static dependency of the node device driver, in
1780  * the base kernel, on the hugetlb module.
1781  */
1782 struct node_hstate {
1783         struct kobject          *hugepages_kobj;
1784         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1785 };
1786 struct node_hstate node_hstates[MAX_NUMNODES];
1787
1788 /*
1789  * A subset of global hstate attributes for node devices
1790  */
1791 static struct attribute *per_node_hstate_attrs[] = {
1792         &nr_hugepages_attr.attr,
1793         &free_hugepages_attr.attr,
1794         &surplus_hugepages_attr.attr,
1795         NULL,
1796 };
1797
1798 static struct attribute_group per_node_hstate_attr_group = {
1799         .attrs = per_node_hstate_attrs,
1800 };
1801
1802 /*
1803  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1804  * Returns node id via non-NULL nidp.
1805  */
1806 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1807 {
1808         int nid;
1809
1810         for (nid = 0; nid < nr_node_ids; nid++) {
1811                 struct node_hstate *nhs = &node_hstates[nid];
1812                 int i;
1813                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1814                         if (nhs->hstate_kobjs[i] == kobj) {
1815                                 if (nidp)
1816                                         *nidp = nid;
1817                                 return &hstates[i];
1818                         }
1819         }
1820
1821         BUG();
1822         return NULL;
1823 }
1824
1825 /*
1826  * Unregister hstate attributes from a single node device.
1827  * No-op if no hstate attributes attached.
1828  */
1829 static void hugetlb_unregister_node(struct node *node)
1830 {
1831         struct hstate *h;
1832         struct node_hstate *nhs = &node_hstates[node->dev.id];
1833
1834         if (!nhs->hugepages_kobj)
1835                 return;         /* no hstate attributes */
1836
1837         for_each_hstate(h) {
1838                 int idx = hstate_index(h);
1839                 if (nhs->hstate_kobjs[idx]) {
1840                         kobject_put(nhs->hstate_kobjs[idx]);
1841                         nhs->hstate_kobjs[idx] = NULL;
1842                 }
1843         }
1844
1845         kobject_put(nhs->hugepages_kobj);
1846         nhs->hugepages_kobj = NULL;
1847 }
1848
1849 /*
1850  * hugetlb module exit:  unregister hstate attributes from node devices
1851  * that have them.
1852  */
1853 static void hugetlb_unregister_all_nodes(void)
1854 {
1855         int nid;
1856
1857         /*
1858          * disable node device registrations.
1859          */
1860         register_hugetlbfs_with_node(NULL, NULL);
1861
1862         /*
1863          * remove hstate attributes from any nodes that have them.
1864          */
1865         for (nid = 0; nid < nr_node_ids; nid++)
1866                 hugetlb_unregister_node(node_devices[nid]);
1867 }
1868
1869 /*
1870  * Register hstate attributes for a single node device.
1871  * No-op if attributes already registered.
1872  */
1873 static void hugetlb_register_node(struct node *node)
1874 {
1875         struct hstate *h;
1876         struct node_hstate *nhs = &node_hstates[node->dev.id];
1877         int err;
1878
1879         if (nhs->hugepages_kobj)
1880                 return;         /* already allocated */
1881
1882         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1883                                                         &node->dev.kobj);
1884         if (!nhs->hugepages_kobj)
1885                 return;
1886
1887         for_each_hstate(h) {
1888                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1889                                                 nhs->hstate_kobjs,
1890                                                 &per_node_hstate_attr_group);
1891                 if (err) {
1892                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1893                                 h->name, node->dev.id);
1894                         hugetlb_unregister_node(node);
1895                         break;
1896                 }
1897         }
1898 }
1899
1900 /*
1901  * hugetlb init time:  register hstate attributes for all registered node
1902  * devices of nodes that have memory.  All on-line nodes should have
1903  * registered their associated device by this time.
1904  */
1905 static void hugetlb_register_all_nodes(void)
1906 {
1907         int nid;
1908
1909         for_each_node_state(nid, N_MEMORY) {
1910                 struct node *node = node_devices[nid];
1911                 if (node->dev.id == nid)
1912                         hugetlb_register_node(node);
1913         }
1914
1915         /*
1916          * Let the node device driver know we're here so it can
1917          * [un]register hstate attributes on node hotplug.
1918          */
1919         register_hugetlbfs_with_node(hugetlb_register_node,
1920                                      hugetlb_unregister_node);
1921 }
1922 #else   /* !CONFIG_NUMA */
1923
1924 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1925 {
1926         BUG();
1927         if (nidp)
1928                 *nidp = -1;
1929         return NULL;
1930 }
1931
1932 static void hugetlb_unregister_all_nodes(void) { }
1933
1934 static void hugetlb_register_all_nodes(void) { }
1935
1936 #endif
1937
1938 static void __exit hugetlb_exit(void)
1939 {
1940         struct hstate *h;
1941
1942         hugetlb_unregister_all_nodes();
1943
1944         for_each_hstate(h) {
1945                 kobject_put(hstate_kobjs[hstate_index(h)]);
1946         }
1947
1948         kobject_put(hugepages_kobj);
1949 }
1950 module_exit(hugetlb_exit);
1951
1952 static int __init hugetlb_init(void)
1953 {
1954         /* Some platform decide whether they support huge pages at boot
1955          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1956          * there is no such support
1957          */
1958         if (HPAGE_SHIFT == 0)
1959                 return 0;
1960
1961         if (!size_to_hstate(default_hstate_size)) {
1962                 default_hstate_size = HPAGE_SIZE;
1963                 if (!size_to_hstate(default_hstate_size))
1964                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1965         }
1966         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1967         if (default_hstate_max_huge_pages)
1968                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1969
1970         hugetlb_init_hstates();
1971         gather_bootmem_prealloc();
1972         report_hugepages();
1973
1974         hugetlb_sysfs_init();
1975         hugetlb_register_all_nodes();
1976         hugetlb_cgroup_file_init();
1977
1978         return 0;
1979 }
1980 module_init(hugetlb_init);
1981
1982 /* Should be called on processing a hugepagesz=... option */
1983 void __init hugetlb_add_hstate(unsigned order)
1984 {
1985         struct hstate *h;
1986         unsigned long i;
1987
1988         if (size_to_hstate(PAGE_SIZE << order)) {
1989                 pr_warning("hugepagesz= specified twice, ignoring\n");
1990                 return;
1991         }
1992         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1993         BUG_ON(order == 0);
1994         h = &hstates[hugetlb_max_hstate++];
1995         h->order = order;
1996         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1997         h->nr_huge_pages = 0;
1998         h->free_huge_pages = 0;
1999         for (i = 0; i < MAX_NUMNODES; ++i)
2000                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2001         INIT_LIST_HEAD(&h->hugepage_activelist);
2002         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2003         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2004         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2005                                         huge_page_size(h)/1024);
2006
2007         parsed_hstate = h;
2008 }
2009
2010 static int __init hugetlb_nrpages_setup(char *s)
2011 {
2012         unsigned long *mhp;
2013         static unsigned long *last_mhp;
2014
2015         /*
2016          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2017          * so this hugepages= parameter goes to the "default hstate".
2018          */
2019         if (!hugetlb_max_hstate)
2020                 mhp = &default_hstate_max_huge_pages;
2021         else
2022                 mhp = &parsed_hstate->max_huge_pages;
2023
2024         if (mhp == last_mhp) {
2025                 pr_warning("hugepages= specified twice without "
2026                            "interleaving hugepagesz=, ignoring\n");
2027                 return 1;
2028         }
2029
2030         if (sscanf(s, "%lu", mhp) <= 0)
2031                 *mhp = 0;
2032
2033         /*
2034          * Global state is always initialized later in hugetlb_init.
2035          * But we need to allocate >= MAX_ORDER hstates here early to still
2036          * use the bootmem allocator.
2037          */
2038         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2039                 hugetlb_hstate_alloc_pages(parsed_hstate);
2040
2041         last_mhp = mhp;
2042
2043         return 1;
2044 }
2045 __setup("hugepages=", hugetlb_nrpages_setup);
2046
2047 static int __init hugetlb_default_setup(char *s)
2048 {
2049         default_hstate_size = memparse(s, &s);
2050         return 1;
2051 }
2052 __setup("default_hugepagesz=", hugetlb_default_setup);
2053
2054 static unsigned int cpuset_mems_nr(unsigned int *array)
2055 {
2056         int node;
2057         unsigned int nr = 0;
2058
2059         for_each_node_mask(node, cpuset_current_mems_allowed)
2060                 nr += array[node];
2061
2062         return nr;
2063 }
2064
2065 #ifdef CONFIG_SYSCTL
2066 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2067                          struct ctl_table *table, int write,
2068                          void __user *buffer, size_t *length, loff_t *ppos)
2069 {
2070         struct hstate *h = &default_hstate;
2071         unsigned long tmp;
2072         int ret;
2073
2074         tmp = h->max_huge_pages;
2075
2076         if (write && h->order >= MAX_ORDER)
2077                 return -EINVAL;
2078
2079         table->data = &tmp;
2080         table->maxlen = sizeof(unsigned long);
2081         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2082         if (ret)
2083                 goto out;
2084
2085         if (write) {
2086                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2087                                                 GFP_KERNEL | __GFP_NORETRY);
2088                 if (!(obey_mempolicy &&
2089                                init_nodemask_of_mempolicy(nodes_allowed))) {
2090                         NODEMASK_FREE(nodes_allowed);
2091                         nodes_allowed = &node_states[N_MEMORY];
2092                 }
2093                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2094
2095                 if (nodes_allowed != &node_states[N_MEMORY])
2096                         NODEMASK_FREE(nodes_allowed);
2097         }
2098 out:
2099         return ret;
2100 }
2101
2102 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2103                           void __user *buffer, size_t *length, loff_t *ppos)
2104 {
2105
2106         return hugetlb_sysctl_handler_common(false, table, write,
2107                                                         buffer, length, ppos);
2108 }
2109
2110 #ifdef CONFIG_NUMA
2111 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2112                           void __user *buffer, size_t *length, loff_t *ppos)
2113 {
2114         return hugetlb_sysctl_handler_common(true, table, write,
2115                                                         buffer, length, ppos);
2116 }
2117 #endif /* CONFIG_NUMA */
2118
2119 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2120                         void __user *buffer,
2121                         size_t *length, loff_t *ppos)
2122 {
2123         struct hstate *h = &default_hstate;
2124         unsigned long tmp;
2125         int ret;
2126
2127         tmp = h->nr_overcommit_huge_pages;
2128
2129         if (write && h->order >= MAX_ORDER)
2130                 return -EINVAL;
2131
2132         table->data = &tmp;
2133         table->maxlen = sizeof(unsigned long);
2134         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2135         if (ret)
2136                 goto out;
2137
2138         if (write) {
2139                 spin_lock(&hugetlb_lock);
2140                 h->nr_overcommit_huge_pages = tmp;
2141                 spin_unlock(&hugetlb_lock);
2142         }
2143 out:
2144         return ret;
2145 }
2146
2147 #endif /* CONFIG_SYSCTL */
2148
2149 void hugetlb_report_meminfo(struct seq_file *m)
2150 {
2151         struct hstate *h = &default_hstate;
2152         seq_printf(m,
2153                         "HugePages_Total:   %5lu\n"
2154                         "HugePages_Free:    %5lu\n"
2155                         "HugePages_Rsvd:    %5lu\n"
2156                         "HugePages_Surp:    %5lu\n"
2157                         "Hugepagesize:   %8lu kB\n",
2158                         h->nr_huge_pages,
2159                         h->free_huge_pages,
2160                         h->resv_huge_pages,
2161                         h->surplus_huge_pages,
2162                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2163 }
2164
2165 int hugetlb_report_node_meminfo(int nid, char *buf)
2166 {
2167         struct hstate *h = &default_hstate;
2168         return sprintf(buf,
2169                 "Node %d HugePages_Total: %5u\n"
2170                 "Node %d HugePages_Free:  %5u\n"
2171                 "Node %d HugePages_Surp:  %5u\n",
2172                 nid, h->nr_huge_pages_node[nid],
2173                 nid, h->free_huge_pages_node[nid],
2174                 nid, h->surplus_huge_pages_node[nid]);
2175 }
2176
2177 void hugetlb_show_meminfo(void)
2178 {
2179         struct hstate *h;
2180         int nid;
2181
2182         for_each_node_state(nid, N_MEMORY)
2183                 for_each_hstate(h)
2184                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2185                                 nid,
2186                                 h->nr_huge_pages_node[nid],
2187                                 h->free_huge_pages_node[nid],
2188                                 h->surplus_huge_pages_node[nid],
2189                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2190 }
2191
2192 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2193 unsigned long hugetlb_total_pages(void)
2194 {
2195         struct hstate *h;
2196         unsigned long nr_total_pages = 0;
2197
2198         for_each_hstate(h)
2199                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2200         return nr_total_pages;
2201 }
2202
2203 static int hugetlb_acct_memory(struct hstate *h, long delta)
2204 {
2205         int ret = -ENOMEM;
2206
2207         spin_lock(&hugetlb_lock);
2208         /*
2209          * When cpuset is configured, it breaks the strict hugetlb page
2210          * reservation as the accounting is done on a global variable. Such
2211          * reservation is completely rubbish in the presence of cpuset because
2212          * the reservation is not checked against page availability for the
2213          * current cpuset. Application can still potentially OOM'ed by kernel
2214          * with lack of free htlb page in cpuset that the task is in.
2215          * Attempt to enforce strict accounting with cpuset is almost
2216          * impossible (or too ugly) because cpuset is too fluid that
2217          * task or memory node can be dynamically moved between cpusets.
2218          *
2219          * The change of semantics for shared hugetlb mapping with cpuset is
2220          * undesirable. However, in order to preserve some of the semantics,
2221          * we fall back to check against current free page availability as
2222          * a best attempt and hopefully to minimize the impact of changing
2223          * semantics that cpuset has.
2224          */
2225         if (delta > 0) {
2226                 if (gather_surplus_pages(h, delta) < 0)
2227                         goto out;
2228
2229                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2230                         return_unused_surplus_pages(h, delta);
2231                         goto out;
2232                 }
2233         }
2234
2235         ret = 0;
2236         if (delta < 0)
2237                 return_unused_surplus_pages(h, (unsigned long) -delta);
2238
2239 out:
2240         spin_unlock(&hugetlb_lock);
2241         return ret;
2242 }
2243
2244 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2245 {
2246         struct resv_map *resv = vma_resv_map(vma);
2247
2248         /*
2249          * This new VMA should share its siblings reservation map if present.
2250          * The VMA will only ever have a valid reservation map pointer where
2251          * it is being copied for another still existing VMA.  As that VMA
2252          * has a reference to the reservation map it cannot disappear until
2253          * after this open call completes.  It is therefore safe to take a
2254          * new reference here without additional locking.
2255          */
2256         if (resv)
2257                 kref_get(&resv->refs);
2258 }
2259
2260 static void resv_map_put(struct vm_area_struct *vma)
2261 {
2262         struct resv_map *resv = vma_resv_map(vma);
2263
2264         if (!resv)
2265                 return;
2266         kref_put(&resv->refs, resv_map_release);
2267 }
2268
2269 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2270 {
2271         struct hstate *h = hstate_vma(vma);
2272         struct resv_map *resv = vma_resv_map(vma);
2273         struct hugepage_subpool *spool = subpool_vma(vma);
2274         unsigned long reserve;
2275         unsigned long start;
2276         unsigned long end;
2277
2278         if (resv) {
2279                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2280                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2281
2282                 reserve = (end - start) -
2283                         region_count(resv, start, end);
2284
2285                 resv_map_put(vma);
2286
2287                 if (reserve) {
2288                         hugetlb_acct_memory(h, -reserve);
2289                         hugepage_subpool_put_pages(spool, reserve);
2290                 }
2291         }
2292 }
2293
2294 /*
2295  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2296  * handle_mm_fault() to try to instantiate regular-sized pages in the
2297  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2298  * this far.
2299  */
2300 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 {
2302         BUG();
2303         return 0;
2304 }
2305
2306 const struct vm_operations_struct hugetlb_vm_ops = {
2307         .fault = hugetlb_vm_op_fault,
2308         .open = hugetlb_vm_op_open,
2309         .close = hugetlb_vm_op_close,
2310 };
2311
2312 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2313                                 int writable)
2314 {
2315         pte_t entry;
2316
2317         if (writable) {
2318                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2319                                          vma->vm_page_prot)));
2320         } else {
2321                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2322                                            vma->vm_page_prot));
2323         }
2324         entry = pte_mkyoung(entry);
2325         entry = pte_mkhuge(entry);
2326         entry = arch_make_huge_pte(entry, vma, page, writable);
2327
2328         return entry;
2329 }
2330
2331 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2332                                    unsigned long address, pte_t *ptep)
2333 {
2334         pte_t entry;
2335
2336         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2337         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2338                 update_mmu_cache(vma, address, ptep);
2339 }
2340
2341
2342 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2343                             struct vm_area_struct *vma)
2344 {
2345         pte_t *src_pte, *dst_pte, entry;
2346         struct page *ptepage;
2347         unsigned long addr;
2348         int cow;
2349         struct hstate *h = hstate_vma(vma);
2350         unsigned long sz = huge_page_size(h);
2351         unsigned long mmun_start;       /* For mmu_notifiers */
2352         unsigned long mmun_end;         /* For mmu_notifiers */
2353         int ret = 0;
2354
2355         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2356
2357         mmun_start = vma->vm_start;
2358         mmun_end = vma->vm_end;
2359         if (cow)
2360                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2361
2362         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2363                 spinlock_t *src_ptl, *dst_ptl;
2364                 src_pte = huge_pte_offset(src, addr);
2365                 if (!src_pte)
2366                         continue;
2367                 dst_pte = huge_pte_alloc(dst, addr, sz);
2368                 if (!dst_pte) {
2369                         ret = -ENOMEM;
2370                         break;
2371                 }
2372
2373                 /* If the pagetables are shared don't copy or take references */
2374                 if (dst_pte == src_pte)
2375                         continue;
2376
2377                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2378                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2379                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2380                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2381                         if (cow)
2382                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2383                         entry = huge_ptep_get(src_pte);
2384                         ptepage = pte_page(entry);
2385                         get_page(ptepage);
2386                         page_dup_rmap(ptepage);
2387                         set_huge_pte_at(dst, addr, dst_pte, entry);
2388                 }
2389                 spin_unlock(src_ptl);
2390                 spin_unlock(dst_ptl);
2391         }
2392
2393         if (cow)
2394                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2395
2396         return ret;
2397 }
2398
2399 static int is_hugetlb_entry_migration(pte_t pte)
2400 {
2401         swp_entry_t swp;
2402
2403         if (huge_pte_none(pte) || pte_present(pte))
2404                 return 0;
2405         swp = pte_to_swp_entry(pte);
2406         if (non_swap_entry(swp) && is_migration_entry(swp))
2407                 return 1;
2408         else
2409                 return 0;
2410 }
2411
2412 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2413 {
2414         swp_entry_t swp;
2415
2416         if (huge_pte_none(pte) || pte_present(pte))
2417                 return 0;
2418         swp = pte_to_swp_entry(pte);
2419         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2420                 return 1;
2421         else
2422                 return 0;
2423 }
2424
2425 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2426                             unsigned long start, unsigned long end,
2427                             struct page *ref_page)
2428 {
2429         int force_flush = 0;
2430         struct mm_struct *mm = vma->vm_mm;
2431         unsigned long address;
2432         pte_t *ptep;
2433         pte_t pte;
2434         spinlock_t *ptl;
2435         struct page *page;
2436         struct hstate *h = hstate_vma(vma);
2437         unsigned long sz = huge_page_size(h);
2438         const unsigned long mmun_start = start; /* For mmu_notifiers */
2439         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2440
2441         WARN_ON(!is_vm_hugetlb_page(vma));
2442         BUG_ON(start & ~huge_page_mask(h));
2443         BUG_ON(end & ~huge_page_mask(h));
2444
2445         tlb_start_vma(tlb, vma);
2446         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2447 again:
2448         for (address = start; address < end; address += sz) {
2449                 ptep = huge_pte_offset(mm, address);
2450                 if (!ptep)
2451                         continue;
2452
2453                 ptl = huge_pte_lock(h, mm, ptep);
2454                 if (huge_pmd_unshare(mm, &address, ptep))
2455                         goto unlock;
2456
2457                 pte = huge_ptep_get(ptep);
2458                 if (huge_pte_none(pte))
2459                         goto unlock;
2460
2461                 /*
2462                  * HWPoisoned hugepage is already unmapped and dropped reference
2463                  */
2464                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2465                         huge_pte_clear(mm, address, ptep);
2466                         goto unlock;
2467                 }
2468
2469                 page = pte_page(pte);
2470                 /*
2471                  * If a reference page is supplied, it is because a specific
2472                  * page is being unmapped, not a range. Ensure the page we
2473                  * are about to unmap is the actual page of interest.
2474                  */
2475                 if (ref_page) {
2476                         if (page != ref_page)
2477                                 goto unlock;
2478
2479                         /*
2480                          * Mark the VMA as having unmapped its page so that
2481                          * future faults in this VMA will fail rather than
2482                          * looking like data was lost
2483                          */
2484                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2485                 }
2486
2487                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2488                 tlb_remove_tlb_entry(tlb, ptep, address);
2489                 if (huge_pte_dirty(pte))
2490                         set_page_dirty(page);
2491
2492                 page_remove_rmap(page);
2493                 force_flush = !__tlb_remove_page(tlb, page);
2494                 if (force_flush) {
2495                         spin_unlock(ptl);
2496                         break;
2497                 }
2498                 /* Bail out after unmapping reference page if supplied */
2499                 if (ref_page) {
2500                         spin_unlock(ptl);
2501                         break;
2502                 }
2503 unlock:
2504                 spin_unlock(ptl);
2505         }
2506         /*
2507          * mmu_gather ran out of room to batch pages, we break out of
2508          * the PTE lock to avoid doing the potential expensive TLB invalidate
2509          * and page-free while holding it.
2510          */
2511         if (force_flush) {
2512                 force_flush = 0;
2513                 tlb_flush_mmu(tlb);
2514                 if (address < end && !ref_page)
2515                         goto again;
2516         }
2517         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2518         tlb_end_vma(tlb, vma);
2519 }
2520
2521 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2522                           struct vm_area_struct *vma, unsigned long start,
2523                           unsigned long end, struct page *ref_page)
2524 {
2525         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2526
2527         /*
2528          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2529          * test will fail on a vma being torn down, and not grab a page table
2530          * on its way out.  We're lucky that the flag has such an appropriate
2531          * name, and can in fact be safely cleared here. We could clear it
2532          * before the __unmap_hugepage_range above, but all that's necessary
2533          * is to clear it before releasing the i_mmap_mutex. This works
2534          * because in the context this is called, the VMA is about to be
2535          * destroyed and the i_mmap_mutex is held.
2536          */
2537         vma->vm_flags &= ~VM_MAYSHARE;
2538 }
2539
2540 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2541                           unsigned long end, struct page *ref_page)
2542 {
2543         struct mm_struct *mm;
2544         struct mmu_gather tlb;
2545
2546         mm = vma->vm_mm;
2547
2548         tlb_gather_mmu(&tlb, mm, start, end);
2549         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2550         tlb_finish_mmu(&tlb, start, end);
2551 }
2552
2553 /*
2554  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2555  * mappping it owns the reserve page for. The intention is to unmap the page
2556  * from other VMAs and let the children be SIGKILLed if they are faulting the
2557  * same region.
2558  */
2559 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2560                                 struct page *page, unsigned long address)
2561 {
2562         struct hstate *h = hstate_vma(vma);
2563         struct vm_area_struct *iter_vma;
2564         struct address_space *mapping;
2565         pgoff_t pgoff;
2566
2567         /*
2568          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2569          * from page cache lookup which is in HPAGE_SIZE units.
2570          */
2571         address = address & huge_page_mask(h);
2572         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2573                         vma->vm_pgoff;
2574         mapping = file_inode(vma->vm_file)->i_mapping;
2575
2576         /*
2577          * Take the mapping lock for the duration of the table walk. As
2578          * this mapping should be shared between all the VMAs,
2579          * __unmap_hugepage_range() is called as the lock is already held
2580          */
2581         mutex_lock(&mapping->i_mmap_mutex);
2582         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2583                 /* Do not unmap the current VMA */
2584                 if (iter_vma == vma)
2585                         continue;
2586
2587                 /*
2588                  * Unmap the page from other VMAs without their own reserves.
2589                  * They get marked to be SIGKILLed if they fault in these
2590                  * areas. This is because a future no-page fault on this VMA
2591                  * could insert a zeroed page instead of the data existing
2592                  * from the time of fork. This would look like data corruption
2593                  */
2594                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2595                         unmap_hugepage_range(iter_vma, address,
2596                                              address + huge_page_size(h), page);
2597         }
2598         mutex_unlock(&mapping->i_mmap_mutex);
2599
2600         return 1;
2601 }
2602
2603 /*
2604  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2605  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2606  * cannot race with other handlers or page migration.
2607  * Keep the pte_same checks anyway to make transition from the mutex easier.
2608  */
2609 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2610                         unsigned long address, pte_t *ptep, pte_t pte,
2611                         struct page *pagecache_page, spinlock_t *ptl)
2612 {
2613         struct hstate *h = hstate_vma(vma);
2614         struct page *old_page, *new_page;
2615         int outside_reserve = 0;
2616         unsigned long mmun_start;       /* For mmu_notifiers */
2617         unsigned long mmun_end;         /* For mmu_notifiers */
2618
2619         old_page = pte_page(pte);
2620
2621 retry_avoidcopy:
2622         /* If no-one else is actually using this page, avoid the copy
2623          * and just make the page writable */
2624         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2625                 page_move_anon_rmap(old_page, vma, address);
2626                 set_huge_ptep_writable(vma, address, ptep);
2627                 return 0;
2628         }
2629
2630         /*
2631          * If the process that created a MAP_PRIVATE mapping is about to
2632          * perform a COW due to a shared page count, attempt to satisfy
2633          * the allocation without using the existing reserves. The pagecache
2634          * page is used to determine if the reserve at this address was
2635          * consumed or not. If reserves were used, a partial faulted mapping
2636          * at the time of fork() could consume its reserves on COW instead
2637          * of the full address range.
2638          */
2639         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2640                         old_page != pagecache_page)
2641                 outside_reserve = 1;
2642
2643         page_cache_get(old_page);
2644
2645         /* Drop page table lock as buddy allocator may be called */
2646         spin_unlock(ptl);
2647         new_page = alloc_huge_page(vma, address, outside_reserve);
2648
2649         if (IS_ERR(new_page)) {
2650                 long err = PTR_ERR(new_page);
2651                 page_cache_release(old_page);
2652
2653                 /*
2654                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2655                  * it is due to references held by a child and an insufficient
2656                  * huge page pool. To guarantee the original mappers
2657                  * reliability, unmap the page from child processes. The child
2658                  * may get SIGKILLed if it later faults.
2659                  */
2660                 if (outside_reserve) {
2661                         BUG_ON(huge_pte_none(pte));
2662                         if (unmap_ref_private(mm, vma, old_page, address)) {
2663                                 BUG_ON(huge_pte_none(pte));
2664                                 spin_lock(ptl);
2665                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2666                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2667                                         goto retry_avoidcopy;
2668                                 /*
2669                                  * race occurs while re-acquiring page table
2670                                  * lock, and our job is done.
2671                                  */
2672                                 return 0;
2673                         }
2674                         WARN_ON_ONCE(1);
2675                 }
2676
2677                 /* Caller expects lock to be held */
2678                 spin_lock(ptl);
2679                 if (err == -ENOMEM)
2680                         return VM_FAULT_OOM;
2681                 else
2682                         return VM_FAULT_SIGBUS;
2683         }
2684
2685         /*
2686          * When the original hugepage is shared one, it does not have
2687          * anon_vma prepared.
2688          */
2689         if (unlikely(anon_vma_prepare(vma))) {
2690                 page_cache_release(new_page);
2691                 page_cache_release(old_page);
2692                 /* Caller expects lock to be held */
2693                 spin_lock(ptl);
2694                 return VM_FAULT_OOM;
2695         }
2696
2697         copy_user_huge_page(new_page, old_page, address, vma,
2698                             pages_per_huge_page(h));
2699         __SetPageUptodate(new_page);
2700
2701         mmun_start = address & huge_page_mask(h);
2702         mmun_end = mmun_start + huge_page_size(h);
2703         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2704         /*
2705          * Retake the page table lock to check for racing updates
2706          * before the page tables are altered
2707          */
2708         spin_lock(ptl);
2709         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2710         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2711                 ClearPagePrivate(new_page);
2712
2713                 /* Break COW */
2714                 huge_ptep_clear_flush(vma, address, ptep);
2715                 set_huge_pte_at(mm, address, ptep,
2716                                 make_huge_pte(vma, new_page, 1));
2717                 page_remove_rmap(old_page);
2718                 hugepage_add_new_anon_rmap(new_page, vma, address);
2719                 /* Make the old page be freed below */
2720                 new_page = old_page;
2721         }
2722         spin_unlock(ptl);
2723         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2724         page_cache_release(new_page);
2725         page_cache_release(old_page);
2726
2727         /* Caller expects lock to be held */
2728         spin_lock(ptl);
2729         return 0;
2730 }
2731
2732 /* Return the pagecache page at a given address within a VMA */
2733 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2734                         struct vm_area_struct *vma, unsigned long address)
2735 {
2736         struct address_space *mapping;
2737         pgoff_t idx;
2738
2739         mapping = vma->vm_file->f_mapping;
2740         idx = vma_hugecache_offset(h, vma, address);
2741
2742         return find_lock_page(mapping, idx);
2743 }
2744
2745 /*
2746  * Return whether there is a pagecache page to back given address within VMA.
2747  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2748  */
2749 static bool hugetlbfs_pagecache_present(struct hstate *h,
2750                         struct vm_area_struct *vma, unsigned long address)
2751 {
2752         struct address_space *mapping;
2753         pgoff_t idx;
2754         struct page *page;
2755
2756         mapping = vma->vm_file->f_mapping;
2757         idx = vma_hugecache_offset(h, vma, address);
2758
2759         page = find_get_page(mapping, idx);
2760         if (page)
2761                 put_page(page);
2762         return page != NULL;
2763 }
2764
2765 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2766                         unsigned long address, pte_t *ptep, unsigned int flags)
2767 {
2768         struct hstate *h = hstate_vma(vma);
2769         int ret = VM_FAULT_SIGBUS;
2770         int anon_rmap = 0;
2771         pgoff_t idx;
2772         unsigned long size;
2773         struct page *page;
2774         struct address_space *mapping;
2775         pte_t new_pte;
2776         spinlock_t *ptl;
2777
2778         /*
2779          * Currently, we are forced to kill the process in the event the
2780          * original mapper has unmapped pages from the child due to a failed
2781          * COW. Warn that such a situation has occurred as it may not be obvious
2782          */
2783         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2784                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2785                            current->pid);
2786                 return ret;
2787         }
2788
2789         mapping = vma->vm_file->f_mapping;
2790         idx = vma_hugecache_offset(h, vma, address);
2791
2792         /*
2793          * Use page lock to guard against racing truncation
2794          * before we get page_table_lock.
2795          */
2796 retry:
2797         page = find_lock_page(mapping, idx);
2798         if (!page) {
2799                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2800                 if (idx >= size)
2801                         goto out;
2802                 page = alloc_huge_page(vma, address, 0);
2803                 if (IS_ERR(page)) {
2804                         ret = PTR_ERR(page);
2805                         if (ret == -ENOMEM)
2806                                 ret = VM_FAULT_OOM;
2807                         else
2808                                 ret = VM_FAULT_SIGBUS;
2809                         goto out;
2810                 }
2811                 clear_huge_page(page, address, pages_per_huge_page(h));
2812                 __SetPageUptodate(page);
2813
2814                 if (vma->vm_flags & VM_MAYSHARE) {
2815                         int err;
2816                         struct inode *inode = mapping->host;
2817
2818                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2819                         if (err) {
2820                                 put_page(page);
2821                                 if (err == -EEXIST)
2822                                         goto retry;
2823                                 goto out;
2824                         }
2825                         ClearPagePrivate(page);
2826
2827                         spin_lock(&inode->i_lock);
2828                         inode->i_blocks += blocks_per_huge_page(h);
2829                         spin_unlock(&inode->i_lock);
2830                 } else {
2831                         lock_page(page);
2832                         if (unlikely(anon_vma_prepare(vma))) {
2833                                 ret = VM_FAULT_OOM;
2834                                 goto backout_unlocked;
2835                         }
2836                         anon_rmap = 1;
2837                 }
2838         } else {
2839                 /*
2840                  * If memory error occurs between mmap() and fault, some process
2841                  * don't have hwpoisoned swap entry for errored virtual address.
2842                  * So we need to block hugepage fault by PG_hwpoison bit check.
2843                  */
2844                 if (unlikely(PageHWPoison(page))) {
2845                         ret = VM_FAULT_HWPOISON |
2846                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2847                         goto backout_unlocked;
2848                 }
2849         }
2850
2851         /*
2852          * If we are going to COW a private mapping later, we examine the
2853          * pending reservations for this page now. This will ensure that
2854          * any allocations necessary to record that reservation occur outside
2855          * the spinlock.
2856          */
2857         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2858                 if (vma_needs_reservation(h, vma, address) < 0) {
2859                         ret = VM_FAULT_OOM;
2860                         goto backout_unlocked;
2861                 }
2862
2863         ptl = huge_pte_lockptr(h, mm, ptep);
2864         spin_lock(ptl);
2865         size = i_size_read(mapping->host) >> huge_page_shift(h);
2866         if (idx >= size)
2867                 goto backout;
2868
2869         ret = 0;
2870         if (!huge_pte_none(huge_ptep_get(ptep)))
2871                 goto backout;
2872
2873         if (anon_rmap) {
2874                 ClearPagePrivate(page);
2875                 hugepage_add_new_anon_rmap(page, vma, address);
2876         }
2877         else
2878                 page_dup_rmap(page);
2879         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2880                                 && (vma->vm_flags & VM_SHARED)));
2881         set_huge_pte_at(mm, address, ptep, new_pte);
2882
2883         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2884                 /* Optimization, do the COW without a second fault */
2885                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2886         }
2887
2888         spin_unlock(ptl);
2889         unlock_page(page);
2890 out:
2891         return ret;
2892
2893 backout:
2894         spin_unlock(ptl);
2895 backout_unlocked:
2896         unlock_page(page);
2897         put_page(page);
2898         goto out;
2899 }
2900
2901 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2902                         unsigned long address, unsigned int flags)
2903 {
2904         pte_t *ptep;
2905         pte_t entry;
2906         spinlock_t *ptl;
2907         int ret;
2908         struct page *page = NULL;
2909         struct page *pagecache_page = NULL;
2910         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2911         struct hstate *h = hstate_vma(vma);
2912
2913         address &= huge_page_mask(h);
2914
2915         ptep = huge_pte_offset(mm, address);
2916         if (ptep) {
2917                 entry = huge_ptep_get(ptep);
2918                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2919                         migration_entry_wait_huge(vma, mm, ptep);
2920                         return 0;
2921                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2922                         return VM_FAULT_HWPOISON_LARGE |
2923                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2924         }
2925
2926         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2927         if (!ptep)
2928                 return VM_FAULT_OOM;
2929
2930         /*
2931          * Serialize hugepage allocation and instantiation, so that we don't
2932          * get spurious allocation failures if two CPUs race to instantiate
2933          * the same page in the page cache.
2934          */
2935         mutex_lock(&hugetlb_instantiation_mutex);
2936         entry = huge_ptep_get(ptep);
2937         if (huge_pte_none(entry)) {
2938                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2939                 goto out_mutex;
2940         }
2941
2942         ret = 0;
2943
2944         /*
2945          * If we are going to COW the mapping later, we examine the pending
2946          * reservations for this page now. This will ensure that any
2947          * allocations necessary to record that reservation occur outside the
2948          * spinlock. For private mappings, we also lookup the pagecache
2949          * page now as it is used to determine if a reservation has been
2950          * consumed.
2951          */
2952         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2953                 if (vma_needs_reservation(h, vma, address) < 0) {
2954                         ret = VM_FAULT_OOM;
2955                         goto out_mutex;
2956                 }
2957
2958                 if (!(vma->vm_flags & VM_MAYSHARE))
2959                         pagecache_page = hugetlbfs_pagecache_page(h,
2960                                                                 vma, address);
2961         }
2962
2963         /*
2964          * hugetlb_cow() requires page locks of pte_page(entry) and
2965          * pagecache_page, so here we need take the former one
2966          * when page != pagecache_page or !pagecache_page.
2967          * Note that locking order is always pagecache_page -> page,
2968          * so no worry about deadlock.
2969          */
2970         page = pte_page(entry);
2971         get_page(page);
2972         if (page != pagecache_page)
2973                 lock_page(page);
2974
2975         ptl = huge_pte_lockptr(h, mm, ptep);
2976         spin_lock(ptl);
2977         /* Check for a racing update before calling hugetlb_cow */
2978         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2979                 goto out_ptl;
2980
2981
2982         if (flags & FAULT_FLAG_WRITE) {
2983                 if (!huge_pte_write(entry)) {
2984                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2985                                         pagecache_page, ptl);
2986                         goto out_ptl;
2987                 }
2988                 entry = huge_pte_mkdirty(entry);
2989         }
2990         entry = pte_mkyoung(entry);
2991         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2992                                                 flags & FAULT_FLAG_WRITE))
2993                 update_mmu_cache(vma, address, ptep);
2994
2995 out_ptl:
2996         spin_unlock(ptl);
2997
2998         if (pagecache_page) {
2999                 unlock_page(pagecache_page);
3000                 put_page(pagecache_page);
3001         }
3002         if (page != pagecache_page)
3003                 unlock_page(page);
3004         put_page(page);
3005
3006 out_mutex:
3007         mutex_unlock(&hugetlb_instantiation_mutex);
3008
3009         return ret;
3010 }
3011
3012 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3013                          struct page **pages, struct vm_area_struct **vmas,
3014                          unsigned long *position, unsigned long *nr_pages,
3015                          long i, unsigned int flags)
3016 {
3017         unsigned long pfn_offset;
3018         unsigned long vaddr = *position;
3019         unsigned long remainder = *nr_pages;
3020         struct hstate *h = hstate_vma(vma);
3021
3022         while (vaddr < vma->vm_end && remainder) {
3023                 pte_t *pte;
3024                 spinlock_t *ptl = NULL;
3025                 int absent;
3026                 struct page *page;
3027
3028                 /*
3029                  * Some archs (sparc64, sh*) have multiple pte_ts to
3030                  * each hugepage.  We have to make sure we get the
3031                  * first, for the page indexing below to work.
3032                  *
3033                  * Note that page table lock is not held when pte is null.
3034                  */
3035                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3036                 if (pte)
3037                         ptl = huge_pte_lock(h, mm, pte);
3038                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3039
3040                 /*
3041                  * When coredumping, it suits get_dump_page if we just return
3042                  * an error where there's an empty slot with no huge pagecache
3043                  * to back it.  This way, we avoid allocating a hugepage, and
3044                  * the sparse dumpfile avoids allocating disk blocks, but its
3045                  * huge holes still show up with zeroes where they need to be.
3046                  */
3047                 if (absent && (flags & FOLL_DUMP) &&
3048                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3049                         if (pte)
3050                                 spin_unlock(ptl);
3051                         remainder = 0;
3052                         break;
3053                 }
3054
3055                 /*
3056                  * We need call hugetlb_fault for both hugepages under migration
3057                  * (in which case hugetlb_fault waits for the migration,) and
3058                  * hwpoisoned hugepages (in which case we need to prevent the
3059                  * caller from accessing to them.) In order to do this, we use
3060                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3061                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3062                  * both cases, and because we can't follow correct pages
3063                  * directly from any kind of swap entries.
3064                  */
3065                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3066                     ((flags & FOLL_WRITE) &&
3067                       !huge_pte_write(huge_ptep_get(pte)))) {
3068                         int ret;
3069
3070                         if (pte)
3071                                 spin_unlock(ptl);
3072                         ret = hugetlb_fault(mm, vma, vaddr,
3073                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3074                         if (!(ret & VM_FAULT_ERROR))
3075                                 continue;
3076
3077                         remainder = 0;
3078                         break;
3079                 }
3080
3081                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3082                 page = pte_page(huge_ptep_get(pte));
3083 same_page:
3084                 if (pages) {
3085                         pages[i] = mem_map_offset(page, pfn_offset);
3086                         get_page_foll(pages[i]);
3087                 }
3088
3089                 if (vmas)
3090                         vmas[i] = vma;
3091
3092                 vaddr += PAGE_SIZE;
3093                 ++pfn_offset;
3094                 --remainder;
3095                 ++i;
3096                 if (vaddr < vma->vm_end && remainder &&
3097                                 pfn_offset < pages_per_huge_page(h)) {
3098                         /*
3099                          * We use pfn_offset to avoid touching the pageframes
3100                          * of this compound page.
3101                          */
3102                         goto same_page;
3103                 }
3104                 spin_unlock(ptl);
3105         }
3106         *nr_pages = remainder;
3107         *position = vaddr;
3108
3109         return i ? i : -EFAULT;
3110 }
3111
3112 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3113                 unsigned long address, unsigned long end, pgprot_t newprot)
3114 {
3115         struct mm_struct *mm = vma->vm_mm;
3116         unsigned long start = address;
3117         pte_t *ptep;
3118         pte_t pte;
3119         struct hstate *h = hstate_vma(vma);
3120         unsigned long pages = 0;
3121
3122         BUG_ON(address >= end);
3123         flush_cache_range(vma, address, end);
3124
3125         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3126         for (; address < end; address += huge_page_size(h)) {
3127                 spinlock_t *ptl;
3128                 ptep = huge_pte_offset(mm, address);
3129                 if (!ptep)
3130                         continue;
3131                 ptl = huge_pte_lock(h, mm, ptep);
3132                 if (huge_pmd_unshare(mm, &address, ptep)) {
3133                         pages++;
3134                         spin_unlock(ptl);
3135                         continue;
3136                 }
3137                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3138                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3139                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3140                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3141                         set_huge_pte_at(mm, address, ptep, pte);
3142                         pages++;
3143                 }
3144                 spin_unlock(ptl);
3145         }
3146         /*
3147          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3148          * may have cleared our pud entry and done put_page on the page table:
3149          * once we release i_mmap_mutex, another task can do the final put_page
3150          * and that page table be reused and filled with junk.
3151          */
3152         flush_tlb_range(vma, start, end);
3153         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3154
3155         return pages << h->order;
3156 }
3157
3158 int hugetlb_reserve_pages(struct inode *inode,
3159                                         long from, long to,
3160                                         struct vm_area_struct *vma,
3161                                         vm_flags_t vm_flags)
3162 {
3163         long ret, chg;
3164         struct hstate *h = hstate_inode(inode);
3165         struct hugepage_subpool *spool = subpool_inode(inode);
3166         struct resv_map *resv_map;
3167
3168         /*
3169          * Only apply hugepage reservation if asked. At fault time, an
3170          * attempt will be made for VM_NORESERVE to allocate a page
3171          * without using reserves
3172          */
3173         if (vm_flags & VM_NORESERVE)
3174                 return 0;
3175
3176         /*
3177          * Shared mappings base their reservation on the number of pages that
3178          * are already allocated on behalf of the file. Private mappings need
3179          * to reserve the full area even if read-only as mprotect() may be
3180          * called to make the mapping read-write. Assume !vma is a shm mapping
3181          */
3182         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3183                 resv_map = inode->i_mapping->private_data;
3184
3185                 chg = region_chg(resv_map, from, to);
3186
3187         } else {
3188                 resv_map = resv_map_alloc();
3189                 if (!resv_map)
3190                         return -ENOMEM;
3191
3192                 chg = to - from;
3193
3194                 set_vma_resv_map(vma, resv_map);
3195                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3196         }
3197
3198         if (chg < 0) {
3199                 ret = chg;
3200                 goto out_err;
3201         }
3202
3203         /* There must be enough pages in the subpool for the mapping */
3204         if (hugepage_subpool_get_pages(spool, chg)) {
3205                 ret = -ENOSPC;
3206                 goto out_err;
3207         }
3208
3209         /*
3210          * Check enough hugepages are available for the reservation.
3211          * Hand the pages back to the subpool if there are not
3212          */
3213         ret = hugetlb_acct_memory(h, chg);
3214         if (ret < 0) {
3215                 hugepage_subpool_put_pages(spool, chg);
3216                 goto out_err;
3217         }
3218
3219         /*
3220          * Account for the reservations made. Shared mappings record regions
3221          * that have reservations as they are shared by multiple VMAs.
3222          * When the last VMA disappears, the region map says how much
3223          * the reservation was and the page cache tells how much of
3224          * the reservation was consumed. Private mappings are per-VMA and
3225          * only the consumed reservations are tracked. When the VMA
3226          * disappears, the original reservation is the VMA size and the
3227          * consumed reservations are stored in the map. Hence, nothing
3228          * else has to be done for private mappings here
3229          */
3230         if (!vma || vma->vm_flags & VM_MAYSHARE)
3231                 region_add(resv_map, from, to);
3232         return 0;
3233 out_err:
3234         if (vma)
3235                 resv_map_put(vma);
3236         return ret;
3237 }
3238
3239 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3240 {
3241         struct hstate *h = hstate_inode(inode);
3242         struct resv_map *resv_map = inode->i_mapping->private_data;
3243         long chg = 0;
3244         struct hugepage_subpool *spool = subpool_inode(inode);
3245
3246         if (resv_map)
3247                 chg = region_truncate(resv_map, offset);
3248         spin_lock(&inode->i_lock);
3249         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3250         spin_unlock(&inode->i_lock);
3251
3252         hugepage_subpool_put_pages(spool, (chg - freed));
3253         hugetlb_acct_memory(h, -(chg - freed));
3254 }
3255
3256 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3257 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3258                                 struct vm_area_struct *vma,
3259                                 unsigned long addr, pgoff_t idx)
3260 {
3261         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3262                                 svma->vm_start;
3263         unsigned long sbase = saddr & PUD_MASK;
3264         unsigned long s_end = sbase + PUD_SIZE;
3265
3266         /* Allow segments to share if only one is marked locked */
3267         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3268         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3269
3270         /*
3271          * match the virtual addresses, permission and the alignment of the
3272          * page table page.
3273          */
3274         if (pmd_index(addr) != pmd_index(saddr) ||
3275             vm_flags != svm_flags ||
3276             sbase < svma->vm_start || svma->vm_end < s_end)
3277                 return 0;
3278
3279         return saddr;
3280 }
3281
3282 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3283 {
3284         unsigned long base = addr & PUD_MASK;
3285         unsigned long end = base + PUD_SIZE;
3286
3287         /*
3288          * check on proper vm_flags and page table alignment
3289          */
3290         if (vma->vm_flags & VM_MAYSHARE &&
3291             vma->vm_start <= base && end <= vma->vm_end)
3292                 return 1;
3293         return 0;
3294 }
3295
3296 /*
3297  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3298  * and returns the corresponding pte. While this is not necessary for the
3299  * !shared pmd case because we can allocate the pmd later as well, it makes the
3300  * code much cleaner. pmd allocation is essential for the shared case because
3301  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3302  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3303  * bad pmd for sharing.
3304  */
3305 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3306 {
3307         struct vm_area_struct *vma = find_vma(mm, addr);
3308         struct address_space *mapping = vma->vm_file->f_mapping;
3309         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3310                         vma->vm_pgoff;
3311         struct vm_area_struct *svma;
3312         unsigned long saddr;
3313         pte_t *spte = NULL;
3314         pte_t *pte;
3315         spinlock_t *ptl;
3316
3317         if (!vma_shareable(vma, addr))
3318                 return (pte_t *)pmd_alloc(mm, pud, addr);
3319
3320         mutex_lock(&mapping->i_mmap_mutex);
3321         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3322                 if (svma == vma)
3323                         continue;
3324
3325                 saddr = page_table_shareable(svma, vma, addr, idx);
3326                 if (saddr) {
3327                         spte = huge_pte_offset(svma->vm_mm, saddr);
3328                         if (spte) {
3329                                 get_page(virt_to_page(spte));
3330                                 break;
3331                         }
3332                 }
3333         }
3334
3335         if (!spte)
3336                 goto out;
3337
3338         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3339         spin_lock(ptl);
3340         if (pud_none(*pud))
3341                 pud_populate(mm, pud,
3342                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3343         else
3344                 put_page(virt_to_page(spte));
3345         spin_unlock(ptl);
3346 out:
3347         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3348         mutex_unlock(&mapping->i_mmap_mutex);
3349         return pte;
3350 }
3351
3352 /*
3353  * unmap huge page backed by shared pte.
3354  *
3355  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3356  * indicated by page_count > 1, unmap is achieved by clearing pud and
3357  * decrementing the ref count. If count == 1, the pte page is not shared.
3358  *
3359  * called with page table lock held.
3360  *
3361  * returns: 1 successfully unmapped a shared pte page
3362  *          0 the underlying pte page is not shared, or it is the last user
3363  */
3364 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3365 {
3366         pgd_t *pgd = pgd_offset(mm, *addr);
3367         pud_t *pud = pud_offset(pgd, *addr);
3368
3369         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3370         if (page_count(virt_to_page(ptep)) == 1)
3371                 return 0;
3372
3373         pud_clear(pud);
3374         put_page(virt_to_page(ptep));
3375         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3376         return 1;
3377 }
3378 #define want_pmd_share()        (1)
3379 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3380 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3381 {
3382         return NULL;
3383 }
3384 #define want_pmd_share()        (0)
3385 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3386
3387 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3388 pte_t *huge_pte_alloc(struct mm_struct *mm,
3389                         unsigned long addr, unsigned long sz)
3390 {
3391         pgd_t *pgd;
3392         pud_t *pud;
3393         pte_t *pte = NULL;
3394
3395         pgd = pgd_offset(mm, addr);
3396         pud = pud_alloc(mm, pgd, addr);
3397         if (pud) {
3398                 if (sz == PUD_SIZE) {
3399                         pte = (pte_t *)pud;
3400                 } else {
3401                         BUG_ON(sz != PMD_SIZE);
3402                         if (want_pmd_share() && pud_none(*pud))
3403                                 pte = huge_pmd_share(mm, addr, pud);
3404                         else
3405                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3406                 }
3407         }
3408         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3409
3410         return pte;
3411 }
3412
3413 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3414 {
3415         pgd_t *pgd;
3416         pud_t *pud;
3417         pmd_t *pmd = NULL;
3418
3419         pgd = pgd_offset(mm, addr);
3420         if (pgd_present(*pgd)) {
3421                 pud = pud_offset(pgd, addr);
3422                 if (pud_present(*pud)) {
3423                         if (pud_huge(*pud))
3424                                 return (pte_t *)pud;
3425                         pmd = pmd_offset(pud, addr);
3426                 }
3427         }
3428         return (pte_t *) pmd;
3429 }
3430
3431 struct page *
3432 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3433                 pmd_t *pmd, int write)
3434 {
3435         struct page *page;
3436
3437         page = pte_page(*(pte_t *)pmd);
3438         if (page)
3439                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3440         return page;
3441 }
3442
3443 struct page *
3444 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3445                 pud_t *pud, int write)
3446 {
3447         struct page *page;
3448
3449         page = pte_page(*(pte_t *)pud);
3450         if (page)
3451                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3452         return page;
3453 }
3454
3455 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3456
3457 /* Can be overriden by architectures */
3458 __attribute__((weak)) struct page *
3459 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3460                pud_t *pud, int write)
3461 {
3462         BUG();
3463         return NULL;
3464 }
3465
3466 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3467
3468 #ifdef CONFIG_MEMORY_FAILURE
3469
3470 /* Should be called in hugetlb_lock */
3471 static int is_hugepage_on_freelist(struct page *hpage)
3472 {
3473         struct page *page;
3474         struct page *tmp;
3475         struct hstate *h = page_hstate(hpage);
3476         int nid = page_to_nid(hpage);
3477
3478         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3479                 if (page == hpage)
3480                         return 1;
3481         return 0;
3482 }
3483
3484 /*
3485  * This function is called from memory failure code.
3486  * Assume the caller holds page lock of the head page.
3487  */
3488 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3489 {
3490         struct hstate *h = page_hstate(hpage);
3491         int nid = page_to_nid(hpage);
3492         int ret = -EBUSY;
3493
3494         spin_lock(&hugetlb_lock);
3495         if (is_hugepage_on_freelist(hpage)) {
3496                 /*
3497                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3498                  * but dangling hpage->lru can trigger list-debug warnings
3499                  * (this happens when we call unpoison_memory() on it),
3500                  * so let it point to itself with list_del_init().
3501                  */
3502                 list_del_init(&hpage->lru);
3503                 set_page_refcounted(hpage);
3504                 h->free_huge_pages--;
3505                 h->free_huge_pages_node[nid]--;
3506                 ret = 0;
3507         }
3508         spin_unlock(&hugetlb_lock);
3509         return ret;
3510 }
3511 #endif
3512
3513 bool isolate_huge_page(struct page *page, struct list_head *list)
3514 {
3515         VM_BUG_ON_PAGE(!PageHead(page), page);
3516         if (!get_page_unless_zero(page))
3517                 return false;
3518         spin_lock(&hugetlb_lock);
3519         list_move_tail(&page->lru, list);
3520         spin_unlock(&hugetlb_lock);
3521         return true;
3522 }
3523
3524 void putback_active_hugepage(struct page *page)
3525 {
3526         VM_BUG_ON_PAGE(!PageHead(page), page);
3527         spin_lock(&hugetlb_lock);
3528         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3529         spin_unlock(&hugetlb_lock);
3530         put_page(page);
3531 }
3532
3533 bool is_hugepage_active(struct page *page)
3534 {
3535         VM_BUG_ON_PAGE(!PageHuge(page), page);
3536         /*
3537          * This function can be called for a tail page because the caller,
3538          * scan_movable_pages, scans through a given pfn-range which typically
3539          * covers one memory block. In systems using gigantic hugepage (1GB
3540          * for x86_64,) a hugepage is larger than a memory block, and we don't
3541          * support migrating such large hugepages for now, so return false
3542          * when called for tail pages.
3543          */
3544         if (PageTail(page))
3545                 return false;
3546         /*
3547          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3548          * so we should return false for them.
3549          */
3550         if (unlikely(PageHWPoison(page)))
3551                 return false;
3552         return page_count(page) > 0;
3553 }