hugetlb: check the return value of string conversion in sysctl handler
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  *      down_write(&mm->mmap_sem);
66  * or
67  *      down_read(&mm->mmap_sem);
68  *      mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71         struct list_head link;
72         long from;
73         long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78         struct file_region *rg, *nrg, *trg;
79
80         /* Locate the region we are either in or before. */
81         list_for_each_entry(rg, head, link)
82                 if (f <= rg->to)
83                         break;
84
85         /* Round our left edge to the current segment if it encloses us. */
86         if (f > rg->from)
87                 f = rg->from;
88
89         /* Check for and consume any regions we now overlap with. */
90         nrg = rg;
91         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92                 if (&rg->link == head)
93                         break;
94                 if (rg->from > t)
95                         break;
96
97                 /* If this area reaches higher then extend our area to
98                  * include it completely.  If this is not the first area
99                  * which we intend to reuse, free it. */
100                 if (rg->to > t)
101                         t = rg->to;
102                 if (rg != nrg) {
103                         list_del(&rg->link);
104                         kfree(rg);
105                 }
106         }
107         nrg->from = f;
108         nrg->to = t;
109         return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114         struct file_region *rg, *nrg;
115         long chg = 0;
116
117         /* Locate the region we are before or in. */
118         list_for_each_entry(rg, head, link)
119                 if (f <= rg->to)
120                         break;
121
122         /* If we are below the current region then a new region is required.
123          * Subtle, allocate a new region at the position but make it zero
124          * size such that we can guarantee to record the reservation. */
125         if (&rg->link == head || t < rg->from) {
126                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127                 if (!nrg)
128                         return -ENOMEM;
129                 nrg->from = f;
130                 nrg->to   = f;
131                 INIT_LIST_HEAD(&nrg->link);
132                 list_add(&nrg->link, rg->link.prev);
133
134                 return t - f;
135         }
136
137         /* Round our left edge to the current segment if it encloses us. */
138         if (f > rg->from)
139                 f = rg->from;
140         chg = t - f;
141
142         /* Check for and consume any regions we now overlap with. */
143         list_for_each_entry(rg, rg->link.prev, link) {
144                 if (&rg->link == head)
145                         break;
146                 if (rg->from > t)
147                         return chg;
148
149                 /* We overlap with this area, if it extends futher than
150                  * us then we must extend ourselves.  Account for its
151                  * existing reservation. */
152                 if (rg->to > t) {
153                         chg += rg->to - t;
154                         t = rg->to;
155                 }
156                 chg -= rg->to - rg->from;
157         }
158         return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163         struct file_region *rg, *trg;
164         long chg = 0;
165
166         /* Locate the region we are either in or before. */
167         list_for_each_entry(rg, head, link)
168                 if (end <= rg->to)
169                         break;
170         if (&rg->link == head)
171                 return 0;
172
173         /* If we are in the middle of a region then adjust it. */
174         if (end > rg->from) {
175                 chg = rg->to - end;
176                 rg->to = end;
177                 rg = list_entry(rg->link.next, typeof(*rg), link);
178         }
179
180         /* Drop any remaining regions. */
181         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182                 if (&rg->link == head)
183                         break;
184                 chg += rg->to - rg->from;
185                 list_del(&rg->link);
186                 kfree(rg);
187         }
188         return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg;
194         long chg = 0;
195
196         /* Locate each segment we overlap with, and count that overlap. */
197         list_for_each_entry(rg, head, link) {
198                 int seg_from;
199                 int seg_to;
200
201                 if (rg->to <= f)
202                         continue;
203                 if (rg->from >= t)
204                         break;
205
206                 seg_from = max(rg->from, f);
207                 seg_to = min(rg->to, t);
208
209                 chg += seg_to - seg_from;
210         }
211
212         return chg;
213 }
214
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220                         struct vm_area_struct *vma, unsigned long address)
221 {
222         return ((address - vma->vm_start) >> huge_page_shift(h)) +
223                         (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227                                      unsigned long address)
228 {
229         return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238         struct hstate *hstate;
239
240         if (!is_vm_hugetlb_page(vma))
241                 return PAGE_SIZE;
242
243         hstate = hstate_vma(vma);
244
245         return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258         return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292         return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296                                                         unsigned long value)
297 {
298         vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302         struct kref refs;
303         struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309         if (!resv_map)
310                 return NULL;
311
312         kref_init(&resv_map->refs);
313         INIT_LIST_HEAD(&resv_map->regions);
314
315         return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322         /* Clear out any active regions before we release the map. */
323         region_truncate(&resv_map->regions, 0);
324         kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329         VM_BUG_ON(!is_vm_hugetlb_page(vma));
330         if (!(vma->vm_flags & VM_MAYSHARE))
331                 return (struct resv_map *)(get_vma_private_data(vma) &
332                                                         ~HPAGE_RESV_MASK);
333         return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338         VM_BUG_ON(!is_vm_hugetlb_page(vma));
339         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341         set_vma_private_data(vma, (get_vma_private_data(vma) &
342                                 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347         VM_BUG_ON(!is_vm_hugetlb_page(vma));
348         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355         VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357         return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362                         struct vm_area_struct *vma)
363 {
364         if (vma->vm_flags & VM_NORESERVE)
365                 return;
366
367         if (vma->vm_flags & VM_MAYSHARE) {
368                 /* Shared mappings always use reserves */
369                 h->resv_huge_pages--;
370         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371                 /*
372                  * Only the process that called mmap() has reserves for
373                  * private mappings.
374                  */
375                 h->resv_huge_pages--;
376         }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382         VM_BUG_ON(!is_vm_hugetlb_page(vma));
383         if (!(vma->vm_flags & VM_MAYSHARE))
384                 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390         if (vma->vm_flags & VM_MAYSHARE)
391                 return 1;
392         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393                 return 1;
394         return 0;
395 }
396
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399         int i;
400         struct hstate *h = page_hstate(src);
401         struct page *dst_base = dst;
402         struct page *src_base = src;
403
404         for (i = 0; i < pages_per_huge_page(h); ) {
405                 cond_resched();
406                 copy_highpage(dst, src);
407
408                 i++;
409                 dst = mem_map_next(dst, dst_base, i);
410                 src = mem_map_next(src, src_base, i);
411         }
412 }
413
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416         int i;
417         struct hstate *h = page_hstate(src);
418
419         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420                 copy_gigantic_page(dst, src);
421                 return;
422         }
423
424         might_sleep();
425         for (i = 0; i < pages_per_huge_page(h); i++) {
426                 cond_resched();
427                 copy_highpage(dst + i, src + i);
428         }
429 }
430
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433         int nid = page_to_nid(page);
434         list_add(&page->lru, &h->hugepage_freelists[nid]);
435         h->free_huge_pages++;
436         h->free_huge_pages_node[nid]++;
437 }
438
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441         struct page *page;
442
443         if (list_empty(&h->hugepage_freelists[nid]))
444                 return NULL;
445         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446         list_del(&page->lru);
447         set_page_refcounted(page);
448         h->free_huge_pages--;
449         h->free_huge_pages_node[nid]--;
450         return page;
451 }
452
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454                                 struct vm_area_struct *vma,
455                                 unsigned long address, int avoid_reserve)
456 {
457         struct page *page = NULL;
458         struct mempolicy *mpol;
459         nodemask_t *nodemask;
460         struct zonelist *zonelist;
461         struct zone *zone;
462         struct zoneref *z;
463
464         get_mems_allowed();
465         zonelist = huge_zonelist(vma, address,
466                                         htlb_alloc_mask, &mpol, &nodemask);
467         /*
468          * A child process with MAP_PRIVATE mappings created by their parent
469          * have no page reserves. This check ensures that reservations are
470          * not "stolen". The child may still get SIGKILLed
471          */
472         if (!vma_has_reserves(vma) &&
473                         h->free_huge_pages - h->resv_huge_pages == 0)
474                 goto err;
475
476         /* If reserves cannot be used, ensure enough pages are in the pool */
477         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478                 goto err;;
479
480         for_each_zone_zonelist_nodemask(zone, z, zonelist,
481                                                 MAX_NR_ZONES - 1, nodemask) {
482                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
484                         if (page) {
485                                 if (!avoid_reserve)
486                                         decrement_hugepage_resv_vma(h, vma);
487                                 break;
488                         }
489                 }
490         }
491 err:
492         mpol_cond_put(mpol);
493         put_mems_allowed();
494         return page;
495 }
496
497 static void update_and_free_page(struct hstate *h, struct page *page)
498 {
499         int i;
500
501         VM_BUG_ON(h->order >= MAX_ORDER);
502
503         h->nr_huge_pages--;
504         h->nr_huge_pages_node[page_to_nid(page)]--;
505         for (i = 0; i < pages_per_huge_page(h); i++) {
506                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
507                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
508                                 1 << PG_private | 1<< PG_writeback);
509         }
510         set_compound_page_dtor(page, NULL);
511         set_page_refcounted(page);
512         arch_release_hugepage(page);
513         __free_pages(page, huge_page_order(h));
514 }
515
516 struct hstate *size_to_hstate(unsigned long size)
517 {
518         struct hstate *h;
519
520         for_each_hstate(h) {
521                 if (huge_page_size(h) == size)
522                         return h;
523         }
524         return NULL;
525 }
526
527 static void free_huge_page(struct page *page)
528 {
529         /*
530          * Can't pass hstate in here because it is called from the
531          * compound page destructor.
532          */
533         struct hstate *h = page_hstate(page);
534         int nid = page_to_nid(page);
535         struct address_space *mapping;
536
537         mapping = (struct address_space *) page_private(page);
538         set_page_private(page, 0);
539         page->mapping = NULL;
540         BUG_ON(page_count(page));
541         BUG_ON(page_mapcount(page));
542         INIT_LIST_HEAD(&page->lru);
543
544         spin_lock(&hugetlb_lock);
545         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
546                 update_and_free_page(h, page);
547                 h->surplus_huge_pages--;
548                 h->surplus_huge_pages_node[nid]--;
549         } else {
550                 enqueue_huge_page(h, page);
551         }
552         spin_unlock(&hugetlb_lock);
553         if (mapping)
554                 hugetlb_put_quota(mapping, 1);
555 }
556
557 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
558 {
559         set_compound_page_dtor(page, free_huge_page);
560         spin_lock(&hugetlb_lock);
561         h->nr_huge_pages++;
562         h->nr_huge_pages_node[nid]++;
563         spin_unlock(&hugetlb_lock);
564         put_page(page); /* free it into the hugepage allocator */
565 }
566
567 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
568 {
569         int i;
570         int nr_pages = 1 << order;
571         struct page *p = page + 1;
572
573         /* we rely on prep_new_huge_page to set the destructor */
574         set_compound_order(page, order);
575         __SetPageHead(page);
576         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
577                 __SetPageTail(p);
578                 p->first_page = page;
579         }
580 }
581
582 int PageHuge(struct page *page)
583 {
584         compound_page_dtor *dtor;
585
586         if (!PageCompound(page))
587                 return 0;
588
589         page = compound_head(page);
590         dtor = get_compound_page_dtor(page);
591
592         return dtor == free_huge_page;
593 }
594
595 EXPORT_SYMBOL_GPL(PageHuge);
596
597 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
598 {
599         struct page *page;
600
601         if (h->order >= MAX_ORDER)
602                 return NULL;
603
604         page = alloc_pages_exact_node(nid,
605                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
606                                                 __GFP_REPEAT|__GFP_NOWARN,
607                 huge_page_order(h));
608         if (page) {
609                 if (arch_prepare_hugepage(page)) {
610                         __free_pages(page, huge_page_order(h));
611                         return NULL;
612                 }
613                 prep_new_huge_page(h, page, nid);
614         }
615
616         return page;
617 }
618
619 /*
620  * common helper functions for hstate_next_node_to_{alloc|free}.
621  * We may have allocated or freed a huge page based on a different
622  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623  * be outside of *nodes_allowed.  Ensure that we use an allowed
624  * node for alloc or free.
625  */
626 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
627 {
628         nid = next_node(nid, *nodes_allowed);
629         if (nid == MAX_NUMNODES)
630                 nid = first_node(*nodes_allowed);
631         VM_BUG_ON(nid >= MAX_NUMNODES);
632
633         return nid;
634 }
635
636 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
637 {
638         if (!node_isset(nid, *nodes_allowed))
639                 nid = next_node_allowed(nid, nodes_allowed);
640         return nid;
641 }
642
643 /*
644  * returns the previously saved node ["this node"] from which to
645  * allocate a persistent huge page for the pool and advance the
646  * next node from which to allocate, handling wrap at end of node
647  * mask.
648  */
649 static int hstate_next_node_to_alloc(struct hstate *h,
650                                         nodemask_t *nodes_allowed)
651 {
652         int nid;
653
654         VM_BUG_ON(!nodes_allowed);
655
656         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
657         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
658
659         return nid;
660 }
661
662 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
663 {
664         struct page *page;
665         int start_nid;
666         int next_nid;
667         int ret = 0;
668
669         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
670         next_nid = start_nid;
671
672         do {
673                 page = alloc_fresh_huge_page_node(h, next_nid);
674                 if (page) {
675                         ret = 1;
676                         break;
677                 }
678                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
679         } while (next_nid != start_nid);
680
681         if (ret)
682                 count_vm_event(HTLB_BUDDY_PGALLOC);
683         else
684                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
685
686         return ret;
687 }
688
689 /*
690  * helper for free_pool_huge_page() - return the previously saved
691  * node ["this node"] from which to free a huge page.  Advance the
692  * next node id whether or not we find a free huge page to free so
693  * that the next attempt to free addresses the next node.
694  */
695 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
696 {
697         int nid;
698
699         VM_BUG_ON(!nodes_allowed);
700
701         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
702         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
703
704         return nid;
705 }
706
707 /*
708  * Free huge page from pool from next node to free.
709  * Attempt to keep persistent huge pages more or less
710  * balanced over allowed nodes.
711  * Called with hugetlb_lock locked.
712  */
713 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
714                                                          bool acct_surplus)
715 {
716         int start_nid;
717         int next_nid;
718         int ret = 0;
719
720         start_nid = hstate_next_node_to_free(h, nodes_allowed);
721         next_nid = start_nid;
722
723         do {
724                 /*
725                  * If we're returning unused surplus pages, only examine
726                  * nodes with surplus pages.
727                  */
728                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
729                     !list_empty(&h->hugepage_freelists[next_nid])) {
730                         struct page *page =
731                                 list_entry(h->hugepage_freelists[next_nid].next,
732                                           struct page, lru);
733                         list_del(&page->lru);
734                         h->free_huge_pages--;
735                         h->free_huge_pages_node[next_nid]--;
736                         if (acct_surplus) {
737                                 h->surplus_huge_pages--;
738                                 h->surplus_huge_pages_node[next_nid]--;
739                         }
740                         update_and_free_page(h, page);
741                         ret = 1;
742                         break;
743                 }
744                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
745         } while (next_nid != start_nid);
746
747         return ret;
748 }
749
750 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
751 {
752         struct page *page;
753         unsigned int r_nid;
754
755         if (h->order >= MAX_ORDER)
756                 return NULL;
757
758         /*
759          * Assume we will successfully allocate the surplus page to
760          * prevent racing processes from causing the surplus to exceed
761          * overcommit
762          *
763          * This however introduces a different race, where a process B
764          * tries to grow the static hugepage pool while alloc_pages() is
765          * called by process A. B will only examine the per-node
766          * counters in determining if surplus huge pages can be
767          * converted to normal huge pages in adjust_pool_surplus(). A
768          * won't be able to increment the per-node counter, until the
769          * lock is dropped by B, but B doesn't drop hugetlb_lock until
770          * no more huge pages can be converted from surplus to normal
771          * state (and doesn't try to convert again). Thus, we have a
772          * case where a surplus huge page exists, the pool is grown, and
773          * the surplus huge page still exists after, even though it
774          * should just have been converted to a normal huge page. This
775          * does not leak memory, though, as the hugepage will be freed
776          * once it is out of use. It also does not allow the counters to
777          * go out of whack in adjust_pool_surplus() as we don't modify
778          * the node values until we've gotten the hugepage and only the
779          * per-node value is checked there.
780          */
781         spin_lock(&hugetlb_lock);
782         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
783                 spin_unlock(&hugetlb_lock);
784                 return NULL;
785         } else {
786                 h->nr_huge_pages++;
787                 h->surplus_huge_pages++;
788         }
789         spin_unlock(&hugetlb_lock);
790
791         if (nid == NUMA_NO_NODE)
792                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
793                                    __GFP_REPEAT|__GFP_NOWARN,
794                                    huge_page_order(h));
795         else
796                 page = alloc_pages_exact_node(nid,
797                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
798                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
799
800         if (page && arch_prepare_hugepage(page)) {
801                 __free_pages(page, huge_page_order(h));
802                 return NULL;
803         }
804
805         spin_lock(&hugetlb_lock);
806         if (page) {
807                 r_nid = page_to_nid(page);
808                 set_compound_page_dtor(page, free_huge_page);
809                 /*
810                  * We incremented the global counters already
811                  */
812                 h->nr_huge_pages_node[r_nid]++;
813                 h->surplus_huge_pages_node[r_nid]++;
814                 __count_vm_event(HTLB_BUDDY_PGALLOC);
815         } else {
816                 h->nr_huge_pages--;
817                 h->surplus_huge_pages--;
818                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
819         }
820         spin_unlock(&hugetlb_lock);
821
822         return page;
823 }
824
825 /*
826  * This allocation function is useful in the context where vma is irrelevant.
827  * E.g. soft-offlining uses this function because it only cares physical
828  * address of error page.
829  */
830 struct page *alloc_huge_page_node(struct hstate *h, int nid)
831 {
832         struct page *page;
833
834         spin_lock(&hugetlb_lock);
835         page = dequeue_huge_page_node(h, nid);
836         spin_unlock(&hugetlb_lock);
837
838         if (!page)
839                 page = alloc_buddy_huge_page(h, nid);
840
841         return page;
842 }
843
844 /*
845  * Increase the hugetlb pool such that it can accomodate a reservation
846  * of size 'delta'.
847  */
848 static int gather_surplus_pages(struct hstate *h, int delta)
849 {
850         struct list_head surplus_list;
851         struct page *page, *tmp;
852         int ret, i;
853         int needed, allocated;
854
855         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
856         if (needed <= 0) {
857                 h->resv_huge_pages += delta;
858                 return 0;
859         }
860
861         allocated = 0;
862         INIT_LIST_HEAD(&surplus_list);
863
864         ret = -ENOMEM;
865 retry:
866         spin_unlock(&hugetlb_lock);
867         for (i = 0; i < needed; i++) {
868                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
869                 if (!page)
870                         /*
871                          * We were not able to allocate enough pages to
872                          * satisfy the entire reservation so we free what
873                          * we've allocated so far.
874                          */
875                         goto free;
876
877                 list_add(&page->lru, &surplus_list);
878         }
879         allocated += needed;
880
881         /*
882          * After retaking hugetlb_lock, we need to recalculate 'needed'
883          * because either resv_huge_pages or free_huge_pages may have changed.
884          */
885         spin_lock(&hugetlb_lock);
886         needed = (h->resv_huge_pages + delta) -
887                         (h->free_huge_pages + allocated);
888         if (needed > 0)
889                 goto retry;
890
891         /*
892          * The surplus_list now contains _at_least_ the number of extra pages
893          * needed to accomodate the reservation.  Add the appropriate number
894          * of pages to the hugetlb pool and free the extras back to the buddy
895          * allocator.  Commit the entire reservation here to prevent another
896          * process from stealing the pages as they are added to the pool but
897          * before they are reserved.
898          */
899         needed += allocated;
900         h->resv_huge_pages += delta;
901         ret = 0;
902
903         spin_unlock(&hugetlb_lock);
904         /* Free the needed pages to the hugetlb pool */
905         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906                 if ((--needed) < 0)
907                         break;
908                 list_del(&page->lru);
909                 /*
910                  * This page is now managed by the hugetlb allocator and has
911                  * no users -- drop the buddy allocator's reference.
912                  */
913                 put_page_testzero(page);
914                 VM_BUG_ON(page_count(page));
915                 enqueue_huge_page(h, page);
916         }
917
918         /* Free unnecessary surplus pages to the buddy allocator */
919 free:
920         if (!list_empty(&surplus_list)) {
921                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922                         list_del(&page->lru);
923                         put_page(page);
924                 }
925         }
926         spin_lock(&hugetlb_lock);
927
928         return ret;
929 }
930
931 /*
932  * When releasing a hugetlb pool reservation, any surplus pages that were
933  * allocated to satisfy the reservation must be explicitly freed if they were
934  * never used.
935  * Called with hugetlb_lock held.
936  */
937 static void return_unused_surplus_pages(struct hstate *h,
938                                         unsigned long unused_resv_pages)
939 {
940         unsigned long nr_pages;
941
942         /* Uncommit the reservation */
943         h->resv_huge_pages -= unused_resv_pages;
944
945         /* Cannot return gigantic pages currently */
946         if (h->order >= MAX_ORDER)
947                 return;
948
949         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
950
951         /*
952          * We want to release as many surplus pages as possible, spread
953          * evenly across all nodes with memory. Iterate across these nodes
954          * until we can no longer free unreserved surplus pages. This occurs
955          * when the nodes with surplus pages have no free pages.
956          * free_pool_huge_page() will balance the the freed pages across the
957          * on-line nodes with memory and will handle the hstate accounting.
958          */
959         while (nr_pages--) {
960                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
961                         break;
962         }
963 }
964
965 /*
966  * Determine if the huge page at addr within the vma has an associated
967  * reservation.  Where it does not we will need to logically increase
968  * reservation and actually increase quota before an allocation can occur.
969  * Where any new reservation would be required the reservation change is
970  * prepared, but not committed.  Once the page has been quota'd allocated
971  * an instantiated the change should be committed via vma_commit_reservation.
972  * No action is required on failure.
973  */
974 static long vma_needs_reservation(struct hstate *h,
975                         struct vm_area_struct *vma, unsigned long addr)
976 {
977         struct address_space *mapping = vma->vm_file->f_mapping;
978         struct inode *inode = mapping->host;
979
980         if (vma->vm_flags & VM_MAYSHARE) {
981                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982                 return region_chg(&inode->i_mapping->private_list,
983                                                         idx, idx + 1);
984
985         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
986                 return 1;
987
988         } else  {
989                 long err;
990                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991                 struct resv_map *reservations = vma_resv_map(vma);
992
993                 err = region_chg(&reservations->regions, idx, idx + 1);
994                 if (err < 0)
995                         return err;
996                 return 0;
997         }
998 }
999 static void vma_commit_reservation(struct hstate *h,
1000                         struct vm_area_struct *vma, unsigned long addr)
1001 {
1002         struct address_space *mapping = vma->vm_file->f_mapping;
1003         struct inode *inode = mapping->host;
1004
1005         if (vma->vm_flags & VM_MAYSHARE) {
1006                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1008
1009         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011                 struct resv_map *reservations = vma_resv_map(vma);
1012
1013                 /* Mark this page used in the map. */
1014                 region_add(&reservations->regions, idx, idx + 1);
1015         }
1016 }
1017
1018 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019                                     unsigned long addr, int avoid_reserve)
1020 {
1021         struct hstate *h = hstate_vma(vma);
1022         struct page *page;
1023         struct address_space *mapping = vma->vm_file->f_mapping;
1024         struct inode *inode = mapping->host;
1025         long chg;
1026
1027         /*
1028          * Processes that did not create the mapping will have no reserves and
1029          * will not have accounted against quota. Check that the quota can be
1030          * made before satisfying the allocation
1031          * MAP_NORESERVE mappings may also need pages and quota allocated
1032          * if no reserve mapping overlaps.
1033          */
1034         chg = vma_needs_reservation(h, vma, addr);
1035         if (chg < 0)
1036                 return ERR_PTR(chg);
1037         if (chg)
1038                 if (hugetlb_get_quota(inode->i_mapping, chg))
1039                         return ERR_PTR(-ENOSPC);
1040
1041         spin_lock(&hugetlb_lock);
1042         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1043         spin_unlock(&hugetlb_lock);
1044
1045         if (!page) {
1046                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1047                 if (!page) {
1048                         hugetlb_put_quota(inode->i_mapping, chg);
1049                         return ERR_PTR(-VM_FAULT_SIGBUS);
1050                 }
1051         }
1052
1053         set_page_private(page, (unsigned long) mapping);
1054
1055         vma_commit_reservation(h, vma, addr);
1056
1057         return page;
1058 }
1059
1060 int __weak alloc_bootmem_huge_page(struct hstate *h)
1061 {
1062         struct huge_bootmem_page *m;
1063         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1064
1065         while (nr_nodes) {
1066                 void *addr;
1067
1068                 addr = __alloc_bootmem_node_nopanic(
1069                                 NODE_DATA(hstate_next_node_to_alloc(h,
1070                                                 &node_states[N_HIGH_MEMORY])),
1071                                 huge_page_size(h), huge_page_size(h), 0);
1072
1073                 if (addr) {
1074                         /*
1075                          * Use the beginning of the huge page to store the
1076                          * huge_bootmem_page struct (until gather_bootmem
1077                          * puts them into the mem_map).
1078                          */
1079                         m = addr;
1080                         goto found;
1081                 }
1082                 nr_nodes--;
1083         }
1084         return 0;
1085
1086 found:
1087         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1088         /* Put them into a private list first because mem_map is not up yet */
1089         list_add(&m->list, &huge_boot_pages);
1090         m->hstate = h;
1091         return 1;
1092 }
1093
1094 static void prep_compound_huge_page(struct page *page, int order)
1095 {
1096         if (unlikely(order > (MAX_ORDER - 1)))
1097                 prep_compound_gigantic_page(page, order);
1098         else
1099                 prep_compound_page(page, order);
1100 }
1101
1102 /* Put bootmem huge pages into the standard lists after mem_map is up */
1103 static void __init gather_bootmem_prealloc(void)
1104 {
1105         struct huge_bootmem_page *m;
1106
1107         list_for_each_entry(m, &huge_boot_pages, list) {
1108                 struct page *page = virt_to_page(m);
1109                 struct hstate *h = m->hstate;
1110                 __ClearPageReserved(page);
1111                 WARN_ON(page_count(page) != 1);
1112                 prep_compound_huge_page(page, h->order);
1113                 prep_new_huge_page(h, page, page_to_nid(page));
1114         }
1115 }
1116
1117 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1118 {
1119         unsigned long i;
1120
1121         for (i = 0; i < h->max_huge_pages; ++i) {
1122                 if (h->order >= MAX_ORDER) {
1123                         if (!alloc_bootmem_huge_page(h))
1124                                 break;
1125                 } else if (!alloc_fresh_huge_page(h,
1126                                          &node_states[N_HIGH_MEMORY]))
1127                         break;
1128         }
1129         h->max_huge_pages = i;
1130 }
1131
1132 static void __init hugetlb_init_hstates(void)
1133 {
1134         struct hstate *h;
1135
1136         for_each_hstate(h) {
1137                 /* oversize hugepages were init'ed in early boot */
1138                 if (h->order < MAX_ORDER)
1139                         hugetlb_hstate_alloc_pages(h);
1140         }
1141 }
1142
1143 static char * __init memfmt(char *buf, unsigned long n)
1144 {
1145         if (n >= (1UL << 30))
1146                 sprintf(buf, "%lu GB", n >> 30);
1147         else if (n >= (1UL << 20))
1148                 sprintf(buf, "%lu MB", n >> 20);
1149         else
1150                 sprintf(buf, "%lu KB", n >> 10);
1151         return buf;
1152 }
1153
1154 static void __init report_hugepages(void)
1155 {
1156         struct hstate *h;
1157
1158         for_each_hstate(h) {
1159                 char buf[32];
1160                 printk(KERN_INFO "HugeTLB registered %s page size, "
1161                                  "pre-allocated %ld pages\n",
1162                         memfmt(buf, huge_page_size(h)),
1163                         h->free_huge_pages);
1164         }
1165 }
1166
1167 #ifdef CONFIG_HIGHMEM
1168 static void try_to_free_low(struct hstate *h, unsigned long count,
1169                                                 nodemask_t *nodes_allowed)
1170 {
1171         int i;
1172
1173         if (h->order >= MAX_ORDER)
1174                 return;
1175
1176         for_each_node_mask(i, *nodes_allowed) {
1177                 struct page *page, *next;
1178                 struct list_head *freel = &h->hugepage_freelists[i];
1179                 list_for_each_entry_safe(page, next, freel, lru) {
1180                         if (count >= h->nr_huge_pages)
1181                                 return;
1182                         if (PageHighMem(page))
1183                                 continue;
1184                         list_del(&page->lru);
1185                         update_and_free_page(h, page);
1186                         h->free_huge_pages--;
1187                         h->free_huge_pages_node[page_to_nid(page)]--;
1188                 }
1189         }
1190 }
1191 #else
1192 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1193                                                 nodemask_t *nodes_allowed)
1194 {
1195 }
1196 #endif
1197
1198 /*
1199  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1200  * balanced by operating on them in a round-robin fashion.
1201  * Returns 1 if an adjustment was made.
1202  */
1203 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1204                                 int delta)
1205 {
1206         int start_nid, next_nid;
1207         int ret = 0;
1208
1209         VM_BUG_ON(delta != -1 && delta != 1);
1210
1211         if (delta < 0)
1212                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1213         else
1214                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1215         next_nid = start_nid;
1216
1217         do {
1218                 int nid = next_nid;
1219                 if (delta < 0)  {
1220                         /*
1221                          * To shrink on this node, there must be a surplus page
1222                          */
1223                         if (!h->surplus_huge_pages_node[nid]) {
1224                                 next_nid = hstate_next_node_to_alloc(h,
1225                                                                 nodes_allowed);
1226                                 continue;
1227                         }
1228                 }
1229                 if (delta > 0) {
1230                         /*
1231                          * Surplus cannot exceed the total number of pages
1232                          */
1233                         if (h->surplus_huge_pages_node[nid] >=
1234                                                 h->nr_huge_pages_node[nid]) {
1235                                 next_nid = hstate_next_node_to_free(h,
1236                                                                 nodes_allowed);
1237                                 continue;
1238                         }
1239                 }
1240
1241                 h->surplus_huge_pages += delta;
1242                 h->surplus_huge_pages_node[nid] += delta;
1243                 ret = 1;
1244                 break;
1245         } while (next_nid != start_nid);
1246
1247         return ret;
1248 }
1249
1250 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1251 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1252                                                 nodemask_t *nodes_allowed)
1253 {
1254         unsigned long min_count, ret;
1255
1256         if (h->order >= MAX_ORDER)
1257                 return h->max_huge_pages;
1258
1259         /*
1260          * Increase the pool size
1261          * First take pages out of surplus state.  Then make up the
1262          * remaining difference by allocating fresh huge pages.
1263          *
1264          * We might race with alloc_buddy_huge_page() here and be unable
1265          * to convert a surplus huge page to a normal huge page. That is
1266          * not critical, though, it just means the overall size of the
1267          * pool might be one hugepage larger than it needs to be, but
1268          * within all the constraints specified by the sysctls.
1269          */
1270         spin_lock(&hugetlb_lock);
1271         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1272                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1273                         break;
1274         }
1275
1276         while (count > persistent_huge_pages(h)) {
1277                 /*
1278                  * If this allocation races such that we no longer need the
1279                  * page, free_huge_page will handle it by freeing the page
1280                  * and reducing the surplus.
1281                  */
1282                 spin_unlock(&hugetlb_lock);
1283                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1284                 spin_lock(&hugetlb_lock);
1285                 if (!ret)
1286                         goto out;
1287
1288                 /* Bail for signals. Probably ctrl-c from user */
1289                 if (signal_pending(current))
1290                         goto out;
1291         }
1292
1293         /*
1294          * Decrease the pool size
1295          * First return free pages to the buddy allocator (being careful
1296          * to keep enough around to satisfy reservations).  Then place
1297          * pages into surplus state as needed so the pool will shrink
1298          * to the desired size as pages become free.
1299          *
1300          * By placing pages into the surplus state independent of the
1301          * overcommit value, we are allowing the surplus pool size to
1302          * exceed overcommit. There are few sane options here. Since
1303          * alloc_buddy_huge_page() is checking the global counter,
1304          * though, we'll note that we're not allowed to exceed surplus
1305          * and won't grow the pool anywhere else. Not until one of the
1306          * sysctls are changed, or the surplus pages go out of use.
1307          */
1308         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1309         min_count = max(count, min_count);
1310         try_to_free_low(h, min_count, nodes_allowed);
1311         while (min_count < persistent_huge_pages(h)) {
1312                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1313                         break;
1314         }
1315         while (count < persistent_huge_pages(h)) {
1316                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1317                         break;
1318         }
1319 out:
1320         ret = persistent_huge_pages(h);
1321         spin_unlock(&hugetlb_lock);
1322         return ret;
1323 }
1324
1325 #define HSTATE_ATTR_RO(_name) \
1326         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1327
1328 #define HSTATE_ATTR(_name) \
1329         static struct kobj_attribute _name##_attr = \
1330                 __ATTR(_name, 0644, _name##_show, _name##_store)
1331
1332 static struct kobject *hugepages_kobj;
1333 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1334
1335 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1336
1337 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1338 {
1339         int i;
1340
1341         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1342                 if (hstate_kobjs[i] == kobj) {
1343                         if (nidp)
1344                                 *nidp = NUMA_NO_NODE;
1345                         return &hstates[i];
1346                 }
1347
1348         return kobj_to_node_hstate(kobj, nidp);
1349 }
1350
1351 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1352                                         struct kobj_attribute *attr, char *buf)
1353 {
1354         struct hstate *h;
1355         unsigned long nr_huge_pages;
1356         int nid;
1357
1358         h = kobj_to_hstate(kobj, &nid);
1359         if (nid == NUMA_NO_NODE)
1360                 nr_huge_pages = h->nr_huge_pages;
1361         else
1362                 nr_huge_pages = h->nr_huge_pages_node[nid];
1363
1364         return sprintf(buf, "%lu\n", nr_huge_pages);
1365 }
1366 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1367                         struct kobject *kobj, struct kobj_attribute *attr,
1368                         const char *buf, size_t len)
1369 {
1370         int err;
1371         int nid;
1372         unsigned long count;
1373         struct hstate *h;
1374         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1375
1376         err = strict_strtoul(buf, 10, &count);
1377         if (err) {
1378                 NODEMASK_FREE(nodes_allowed);
1379                 return 0;
1380         }
1381
1382         h = kobj_to_hstate(kobj, &nid);
1383         if (nid == NUMA_NO_NODE) {
1384                 /*
1385                  * global hstate attribute
1386                  */
1387                 if (!(obey_mempolicy &&
1388                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1389                         NODEMASK_FREE(nodes_allowed);
1390                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1391                 }
1392         } else if (nodes_allowed) {
1393                 /*
1394                  * per node hstate attribute: adjust count to global,
1395                  * but restrict alloc/free to the specified node.
1396                  */
1397                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1398                 init_nodemask_of_node(nodes_allowed, nid);
1399         } else
1400                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1401
1402         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1403
1404         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1405                 NODEMASK_FREE(nodes_allowed);
1406
1407         return len;
1408 }
1409
1410 static ssize_t nr_hugepages_show(struct kobject *kobj,
1411                                        struct kobj_attribute *attr, char *buf)
1412 {
1413         return nr_hugepages_show_common(kobj, attr, buf);
1414 }
1415
1416 static ssize_t nr_hugepages_store(struct kobject *kobj,
1417                struct kobj_attribute *attr, const char *buf, size_t len)
1418 {
1419         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1420 }
1421 HSTATE_ATTR(nr_hugepages);
1422
1423 #ifdef CONFIG_NUMA
1424
1425 /*
1426  * hstate attribute for optionally mempolicy-based constraint on persistent
1427  * huge page alloc/free.
1428  */
1429 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1430                                        struct kobj_attribute *attr, char *buf)
1431 {
1432         return nr_hugepages_show_common(kobj, attr, buf);
1433 }
1434
1435 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1436                struct kobj_attribute *attr, const char *buf, size_t len)
1437 {
1438         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1439 }
1440 HSTATE_ATTR(nr_hugepages_mempolicy);
1441 #endif
1442
1443
1444 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1445                                         struct kobj_attribute *attr, char *buf)
1446 {
1447         struct hstate *h = kobj_to_hstate(kobj, NULL);
1448         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1449 }
1450 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1451                 struct kobj_attribute *attr, const char *buf, size_t count)
1452 {
1453         int err;
1454         unsigned long input;
1455         struct hstate *h = kobj_to_hstate(kobj, NULL);
1456
1457         err = strict_strtoul(buf, 10, &input);
1458         if (err)
1459                 return 0;
1460
1461         spin_lock(&hugetlb_lock);
1462         h->nr_overcommit_huge_pages = input;
1463         spin_unlock(&hugetlb_lock);
1464
1465         return count;
1466 }
1467 HSTATE_ATTR(nr_overcommit_hugepages);
1468
1469 static ssize_t free_hugepages_show(struct kobject *kobj,
1470                                         struct kobj_attribute *attr, char *buf)
1471 {
1472         struct hstate *h;
1473         unsigned long free_huge_pages;
1474         int nid;
1475
1476         h = kobj_to_hstate(kobj, &nid);
1477         if (nid == NUMA_NO_NODE)
1478                 free_huge_pages = h->free_huge_pages;
1479         else
1480                 free_huge_pages = h->free_huge_pages_node[nid];
1481
1482         return sprintf(buf, "%lu\n", free_huge_pages);
1483 }
1484 HSTATE_ATTR_RO(free_hugepages);
1485
1486 static ssize_t resv_hugepages_show(struct kobject *kobj,
1487                                         struct kobj_attribute *attr, char *buf)
1488 {
1489         struct hstate *h = kobj_to_hstate(kobj, NULL);
1490         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1491 }
1492 HSTATE_ATTR_RO(resv_hugepages);
1493
1494 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1495                                         struct kobj_attribute *attr, char *buf)
1496 {
1497         struct hstate *h;
1498         unsigned long surplus_huge_pages;
1499         int nid;
1500
1501         h = kobj_to_hstate(kobj, &nid);
1502         if (nid == NUMA_NO_NODE)
1503                 surplus_huge_pages = h->surplus_huge_pages;
1504         else
1505                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1506
1507         return sprintf(buf, "%lu\n", surplus_huge_pages);
1508 }
1509 HSTATE_ATTR_RO(surplus_hugepages);
1510
1511 static struct attribute *hstate_attrs[] = {
1512         &nr_hugepages_attr.attr,
1513         &nr_overcommit_hugepages_attr.attr,
1514         &free_hugepages_attr.attr,
1515         &resv_hugepages_attr.attr,
1516         &surplus_hugepages_attr.attr,
1517 #ifdef CONFIG_NUMA
1518         &nr_hugepages_mempolicy_attr.attr,
1519 #endif
1520         NULL,
1521 };
1522
1523 static struct attribute_group hstate_attr_group = {
1524         .attrs = hstate_attrs,
1525 };
1526
1527 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1528                                     struct kobject **hstate_kobjs,
1529                                     struct attribute_group *hstate_attr_group)
1530 {
1531         int retval;
1532         int hi = h - hstates;
1533
1534         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1535         if (!hstate_kobjs[hi])
1536                 return -ENOMEM;
1537
1538         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1539         if (retval)
1540                 kobject_put(hstate_kobjs[hi]);
1541
1542         return retval;
1543 }
1544
1545 static void __init hugetlb_sysfs_init(void)
1546 {
1547         struct hstate *h;
1548         int err;
1549
1550         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1551         if (!hugepages_kobj)
1552                 return;
1553
1554         for_each_hstate(h) {
1555                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1556                                          hstate_kobjs, &hstate_attr_group);
1557                 if (err)
1558                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1559                                                                 h->name);
1560         }
1561 }
1562
1563 #ifdef CONFIG_NUMA
1564
1565 /*
1566  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1567  * with node sysdevs in node_devices[] using a parallel array.  The array
1568  * index of a node sysdev or _hstate == node id.
1569  * This is here to avoid any static dependency of the node sysdev driver, in
1570  * the base kernel, on the hugetlb module.
1571  */
1572 struct node_hstate {
1573         struct kobject          *hugepages_kobj;
1574         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1575 };
1576 struct node_hstate node_hstates[MAX_NUMNODES];
1577
1578 /*
1579  * A subset of global hstate attributes for node sysdevs
1580  */
1581 static struct attribute *per_node_hstate_attrs[] = {
1582         &nr_hugepages_attr.attr,
1583         &free_hugepages_attr.attr,
1584         &surplus_hugepages_attr.attr,
1585         NULL,
1586 };
1587
1588 static struct attribute_group per_node_hstate_attr_group = {
1589         .attrs = per_node_hstate_attrs,
1590 };
1591
1592 /*
1593  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1594  * Returns node id via non-NULL nidp.
1595  */
1596 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1597 {
1598         int nid;
1599
1600         for (nid = 0; nid < nr_node_ids; nid++) {
1601                 struct node_hstate *nhs = &node_hstates[nid];
1602                 int i;
1603                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1604                         if (nhs->hstate_kobjs[i] == kobj) {
1605                                 if (nidp)
1606                                         *nidp = nid;
1607                                 return &hstates[i];
1608                         }
1609         }
1610
1611         BUG();
1612         return NULL;
1613 }
1614
1615 /*
1616  * Unregister hstate attributes from a single node sysdev.
1617  * No-op if no hstate attributes attached.
1618  */
1619 void hugetlb_unregister_node(struct node *node)
1620 {
1621         struct hstate *h;
1622         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1623
1624         if (!nhs->hugepages_kobj)
1625                 return;         /* no hstate attributes */
1626
1627         for_each_hstate(h)
1628                 if (nhs->hstate_kobjs[h - hstates]) {
1629                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1630                         nhs->hstate_kobjs[h - hstates] = NULL;
1631                 }
1632
1633         kobject_put(nhs->hugepages_kobj);
1634         nhs->hugepages_kobj = NULL;
1635 }
1636
1637 /*
1638  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1639  * that have them.
1640  */
1641 static void hugetlb_unregister_all_nodes(void)
1642 {
1643         int nid;
1644
1645         /*
1646          * disable node sysdev registrations.
1647          */
1648         register_hugetlbfs_with_node(NULL, NULL);
1649
1650         /*
1651          * remove hstate attributes from any nodes that have them.
1652          */
1653         for (nid = 0; nid < nr_node_ids; nid++)
1654                 hugetlb_unregister_node(&node_devices[nid]);
1655 }
1656
1657 /*
1658  * Register hstate attributes for a single node sysdev.
1659  * No-op if attributes already registered.
1660  */
1661 void hugetlb_register_node(struct node *node)
1662 {
1663         struct hstate *h;
1664         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1665         int err;
1666
1667         if (nhs->hugepages_kobj)
1668                 return;         /* already allocated */
1669
1670         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1671                                                         &node->sysdev.kobj);
1672         if (!nhs->hugepages_kobj)
1673                 return;
1674
1675         for_each_hstate(h) {
1676                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1677                                                 nhs->hstate_kobjs,
1678                                                 &per_node_hstate_attr_group);
1679                 if (err) {
1680                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1681                                         " for node %d\n",
1682                                                 h->name, node->sysdev.id);
1683                         hugetlb_unregister_node(node);
1684                         break;
1685                 }
1686         }
1687 }
1688
1689 /*
1690  * hugetlb init time:  register hstate attributes for all registered node
1691  * sysdevs of nodes that have memory.  All on-line nodes should have
1692  * registered their associated sysdev by this time.
1693  */
1694 static void hugetlb_register_all_nodes(void)
1695 {
1696         int nid;
1697
1698         for_each_node_state(nid, N_HIGH_MEMORY) {
1699                 struct node *node = &node_devices[nid];
1700                 if (node->sysdev.id == nid)
1701                         hugetlb_register_node(node);
1702         }
1703
1704         /*
1705          * Let the node sysdev driver know we're here so it can
1706          * [un]register hstate attributes on node hotplug.
1707          */
1708         register_hugetlbfs_with_node(hugetlb_register_node,
1709                                      hugetlb_unregister_node);
1710 }
1711 #else   /* !CONFIG_NUMA */
1712
1713 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1714 {
1715         BUG();
1716         if (nidp)
1717                 *nidp = -1;
1718         return NULL;
1719 }
1720
1721 static void hugetlb_unregister_all_nodes(void) { }
1722
1723 static void hugetlb_register_all_nodes(void) { }
1724
1725 #endif
1726
1727 static void __exit hugetlb_exit(void)
1728 {
1729         struct hstate *h;
1730
1731         hugetlb_unregister_all_nodes();
1732
1733         for_each_hstate(h) {
1734                 kobject_put(hstate_kobjs[h - hstates]);
1735         }
1736
1737         kobject_put(hugepages_kobj);
1738 }
1739 module_exit(hugetlb_exit);
1740
1741 static int __init hugetlb_init(void)
1742 {
1743         /* Some platform decide whether they support huge pages at boot
1744          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1745          * there is no such support
1746          */
1747         if (HPAGE_SHIFT == 0)
1748                 return 0;
1749
1750         if (!size_to_hstate(default_hstate_size)) {
1751                 default_hstate_size = HPAGE_SIZE;
1752                 if (!size_to_hstate(default_hstate_size))
1753                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1754         }
1755         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1756         if (default_hstate_max_huge_pages)
1757                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1758
1759         hugetlb_init_hstates();
1760
1761         gather_bootmem_prealloc();
1762
1763         report_hugepages();
1764
1765         hugetlb_sysfs_init();
1766
1767         hugetlb_register_all_nodes();
1768
1769         return 0;
1770 }
1771 module_init(hugetlb_init);
1772
1773 /* Should be called on processing a hugepagesz=... option */
1774 void __init hugetlb_add_hstate(unsigned order)
1775 {
1776         struct hstate *h;
1777         unsigned long i;
1778
1779         if (size_to_hstate(PAGE_SIZE << order)) {
1780                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1781                 return;
1782         }
1783         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1784         BUG_ON(order == 0);
1785         h = &hstates[max_hstate++];
1786         h->order = order;
1787         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1788         h->nr_huge_pages = 0;
1789         h->free_huge_pages = 0;
1790         for (i = 0; i < MAX_NUMNODES; ++i)
1791                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1792         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1793         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1794         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1795                                         huge_page_size(h)/1024);
1796
1797         parsed_hstate = h;
1798 }
1799
1800 static int __init hugetlb_nrpages_setup(char *s)
1801 {
1802         unsigned long *mhp;
1803         static unsigned long *last_mhp;
1804
1805         /*
1806          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1807          * so this hugepages= parameter goes to the "default hstate".
1808          */
1809         if (!max_hstate)
1810                 mhp = &default_hstate_max_huge_pages;
1811         else
1812                 mhp = &parsed_hstate->max_huge_pages;
1813
1814         if (mhp == last_mhp) {
1815                 printk(KERN_WARNING "hugepages= specified twice without "
1816                         "interleaving hugepagesz=, ignoring\n");
1817                 return 1;
1818         }
1819
1820         if (sscanf(s, "%lu", mhp) <= 0)
1821                 *mhp = 0;
1822
1823         /*
1824          * Global state is always initialized later in hugetlb_init.
1825          * But we need to allocate >= MAX_ORDER hstates here early to still
1826          * use the bootmem allocator.
1827          */
1828         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1829                 hugetlb_hstate_alloc_pages(parsed_hstate);
1830
1831         last_mhp = mhp;
1832
1833         return 1;
1834 }
1835 __setup("hugepages=", hugetlb_nrpages_setup);
1836
1837 static int __init hugetlb_default_setup(char *s)
1838 {
1839         default_hstate_size = memparse(s, &s);
1840         return 1;
1841 }
1842 __setup("default_hugepagesz=", hugetlb_default_setup);
1843
1844 static unsigned int cpuset_mems_nr(unsigned int *array)
1845 {
1846         int node;
1847         unsigned int nr = 0;
1848
1849         for_each_node_mask(node, cpuset_current_mems_allowed)
1850                 nr += array[node];
1851
1852         return nr;
1853 }
1854
1855 #ifdef CONFIG_SYSCTL
1856 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1857                          struct ctl_table *table, int write,
1858                          void __user *buffer, size_t *length, loff_t *ppos)
1859 {
1860         struct hstate *h = &default_hstate;
1861         unsigned long tmp;
1862         int ret;
1863
1864         if (!write)
1865                 tmp = h->max_huge_pages;
1866
1867         table->data = &tmp;
1868         table->maxlen = sizeof(unsigned long);
1869         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1870         if (ret)
1871                 goto out;
1872
1873         if (write) {
1874                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1875                                                 GFP_KERNEL | __GFP_NORETRY);
1876                 if (!(obey_mempolicy &&
1877                                init_nodemask_of_mempolicy(nodes_allowed))) {
1878                         NODEMASK_FREE(nodes_allowed);
1879                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1880                 }
1881                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1882
1883                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1884                         NODEMASK_FREE(nodes_allowed);
1885         }
1886 out:
1887         return ret;
1888 }
1889
1890 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1891                           void __user *buffer, size_t *length, loff_t *ppos)
1892 {
1893
1894         return hugetlb_sysctl_handler_common(false, table, write,
1895                                                         buffer, length, ppos);
1896 }
1897
1898 #ifdef CONFIG_NUMA
1899 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1900                           void __user *buffer, size_t *length, loff_t *ppos)
1901 {
1902         return hugetlb_sysctl_handler_common(true, table, write,
1903                                                         buffer, length, ppos);
1904 }
1905 #endif /* CONFIG_NUMA */
1906
1907 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1908                         void __user *buffer,
1909                         size_t *length, loff_t *ppos)
1910 {
1911         proc_dointvec(table, write, buffer, length, ppos);
1912         if (hugepages_treat_as_movable)
1913                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1914         else
1915                 htlb_alloc_mask = GFP_HIGHUSER;
1916         return 0;
1917 }
1918
1919 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1920                         void __user *buffer,
1921                         size_t *length, loff_t *ppos)
1922 {
1923         struct hstate *h = &default_hstate;
1924         unsigned long tmp;
1925         int ret;
1926
1927         if (!write)
1928                 tmp = h->nr_overcommit_huge_pages;
1929
1930         table->data = &tmp;
1931         table->maxlen = sizeof(unsigned long);
1932         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1933         if (ret)
1934                 goto out;
1935
1936         if (write) {
1937                 spin_lock(&hugetlb_lock);
1938                 h->nr_overcommit_huge_pages = tmp;
1939                 spin_unlock(&hugetlb_lock);
1940         }
1941 out:
1942         return ret;
1943 }
1944
1945 #endif /* CONFIG_SYSCTL */
1946
1947 void hugetlb_report_meminfo(struct seq_file *m)
1948 {
1949         struct hstate *h = &default_hstate;
1950         seq_printf(m,
1951                         "HugePages_Total:   %5lu\n"
1952                         "HugePages_Free:    %5lu\n"
1953                         "HugePages_Rsvd:    %5lu\n"
1954                         "HugePages_Surp:    %5lu\n"
1955                         "Hugepagesize:   %8lu kB\n",
1956                         h->nr_huge_pages,
1957                         h->free_huge_pages,
1958                         h->resv_huge_pages,
1959                         h->surplus_huge_pages,
1960                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1961 }
1962
1963 int hugetlb_report_node_meminfo(int nid, char *buf)
1964 {
1965         struct hstate *h = &default_hstate;
1966         return sprintf(buf,
1967                 "Node %d HugePages_Total: %5u\n"
1968                 "Node %d HugePages_Free:  %5u\n"
1969                 "Node %d HugePages_Surp:  %5u\n",
1970                 nid, h->nr_huge_pages_node[nid],
1971                 nid, h->free_huge_pages_node[nid],
1972                 nid, h->surplus_huge_pages_node[nid]);
1973 }
1974
1975 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1976 unsigned long hugetlb_total_pages(void)
1977 {
1978         struct hstate *h = &default_hstate;
1979         return h->nr_huge_pages * pages_per_huge_page(h);
1980 }
1981
1982 static int hugetlb_acct_memory(struct hstate *h, long delta)
1983 {
1984         int ret = -ENOMEM;
1985
1986         spin_lock(&hugetlb_lock);
1987         /*
1988          * When cpuset is configured, it breaks the strict hugetlb page
1989          * reservation as the accounting is done on a global variable. Such
1990          * reservation is completely rubbish in the presence of cpuset because
1991          * the reservation is not checked against page availability for the
1992          * current cpuset. Application can still potentially OOM'ed by kernel
1993          * with lack of free htlb page in cpuset that the task is in.
1994          * Attempt to enforce strict accounting with cpuset is almost
1995          * impossible (or too ugly) because cpuset is too fluid that
1996          * task or memory node can be dynamically moved between cpusets.
1997          *
1998          * The change of semantics for shared hugetlb mapping with cpuset is
1999          * undesirable. However, in order to preserve some of the semantics,
2000          * we fall back to check against current free page availability as
2001          * a best attempt and hopefully to minimize the impact of changing
2002          * semantics that cpuset has.
2003          */
2004         if (delta > 0) {
2005                 if (gather_surplus_pages(h, delta) < 0)
2006                         goto out;
2007
2008                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2009                         return_unused_surplus_pages(h, delta);
2010                         goto out;
2011                 }
2012         }
2013
2014         ret = 0;
2015         if (delta < 0)
2016                 return_unused_surplus_pages(h, (unsigned long) -delta);
2017
2018 out:
2019         spin_unlock(&hugetlb_lock);
2020         return ret;
2021 }
2022
2023 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2024 {
2025         struct resv_map *reservations = vma_resv_map(vma);
2026
2027         /*
2028          * This new VMA should share its siblings reservation map if present.
2029          * The VMA will only ever have a valid reservation map pointer where
2030          * it is being copied for another still existing VMA.  As that VMA
2031          * has a reference to the reservation map it cannot dissappear until
2032          * after this open call completes.  It is therefore safe to take a
2033          * new reference here without additional locking.
2034          */
2035         if (reservations)
2036                 kref_get(&reservations->refs);
2037 }
2038
2039 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2040 {
2041         struct hstate *h = hstate_vma(vma);
2042         struct resv_map *reservations = vma_resv_map(vma);
2043         unsigned long reserve;
2044         unsigned long start;
2045         unsigned long end;
2046
2047         if (reservations) {
2048                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2049                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2050
2051                 reserve = (end - start) -
2052                         region_count(&reservations->regions, start, end);
2053
2054                 kref_put(&reservations->refs, resv_map_release);
2055
2056                 if (reserve) {
2057                         hugetlb_acct_memory(h, -reserve);
2058                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2059                 }
2060         }
2061 }
2062
2063 /*
2064  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2065  * handle_mm_fault() to try to instantiate regular-sized pages in the
2066  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2067  * this far.
2068  */
2069 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2070 {
2071         BUG();
2072         return 0;
2073 }
2074
2075 const struct vm_operations_struct hugetlb_vm_ops = {
2076         .fault = hugetlb_vm_op_fault,
2077         .open = hugetlb_vm_op_open,
2078         .close = hugetlb_vm_op_close,
2079 };
2080
2081 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2082                                 int writable)
2083 {
2084         pte_t entry;
2085
2086         if (writable) {
2087                 entry =
2088                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2089         } else {
2090                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2091         }
2092         entry = pte_mkyoung(entry);
2093         entry = pte_mkhuge(entry);
2094
2095         return entry;
2096 }
2097
2098 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2099                                    unsigned long address, pte_t *ptep)
2100 {
2101         pte_t entry;
2102
2103         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2104         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2105                 update_mmu_cache(vma, address, ptep);
2106         }
2107 }
2108
2109
2110 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2111                             struct vm_area_struct *vma)
2112 {
2113         pte_t *src_pte, *dst_pte, entry;
2114         struct page *ptepage;
2115         unsigned long addr;
2116         int cow;
2117         struct hstate *h = hstate_vma(vma);
2118         unsigned long sz = huge_page_size(h);
2119
2120         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2121
2122         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2123                 src_pte = huge_pte_offset(src, addr);
2124                 if (!src_pte)
2125                         continue;
2126                 dst_pte = huge_pte_alloc(dst, addr, sz);
2127                 if (!dst_pte)
2128                         goto nomem;
2129
2130                 /* If the pagetables are shared don't copy or take references */
2131                 if (dst_pte == src_pte)
2132                         continue;
2133
2134                 spin_lock(&dst->page_table_lock);
2135                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2136                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2137                         if (cow)
2138                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2139                         entry = huge_ptep_get(src_pte);
2140                         ptepage = pte_page(entry);
2141                         get_page(ptepage);
2142                         page_dup_rmap(ptepage);
2143                         set_huge_pte_at(dst, addr, dst_pte, entry);
2144                 }
2145                 spin_unlock(&src->page_table_lock);
2146                 spin_unlock(&dst->page_table_lock);
2147         }
2148         return 0;
2149
2150 nomem:
2151         return -ENOMEM;
2152 }
2153
2154 static int is_hugetlb_entry_migration(pte_t pte)
2155 {
2156         swp_entry_t swp;
2157
2158         if (huge_pte_none(pte) || pte_present(pte))
2159                 return 0;
2160         swp = pte_to_swp_entry(pte);
2161         if (non_swap_entry(swp) && is_migration_entry(swp)) {
2162                 return 1;
2163         } else
2164                 return 0;
2165 }
2166
2167 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2168 {
2169         swp_entry_t swp;
2170
2171         if (huge_pte_none(pte) || pte_present(pte))
2172                 return 0;
2173         swp = pte_to_swp_entry(pte);
2174         if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2175                 return 1;
2176         } else
2177                 return 0;
2178 }
2179
2180 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2181                             unsigned long end, struct page *ref_page)
2182 {
2183         struct mm_struct *mm = vma->vm_mm;
2184         unsigned long address;
2185         pte_t *ptep;
2186         pte_t pte;
2187         struct page *page;
2188         struct page *tmp;
2189         struct hstate *h = hstate_vma(vma);
2190         unsigned long sz = huge_page_size(h);
2191
2192         /*
2193          * A page gathering list, protected by per file i_mmap_lock. The
2194          * lock is used to avoid list corruption from multiple unmapping
2195          * of the same page since we are using page->lru.
2196          */
2197         LIST_HEAD(page_list);
2198
2199         WARN_ON(!is_vm_hugetlb_page(vma));
2200         BUG_ON(start & ~huge_page_mask(h));
2201         BUG_ON(end & ~huge_page_mask(h));
2202
2203         mmu_notifier_invalidate_range_start(mm, start, end);
2204         spin_lock(&mm->page_table_lock);
2205         for (address = start; address < end; address += sz) {
2206                 ptep = huge_pte_offset(mm, address);
2207                 if (!ptep)
2208                         continue;
2209
2210                 if (huge_pmd_unshare(mm, &address, ptep))
2211                         continue;
2212
2213                 /*
2214                  * If a reference page is supplied, it is because a specific
2215                  * page is being unmapped, not a range. Ensure the page we
2216                  * are about to unmap is the actual page of interest.
2217                  */
2218                 if (ref_page) {
2219                         pte = huge_ptep_get(ptep);
2220                         if (huge_pte_none(pte))
2221                                 continue;
2222                         page = pte_page(pte);
2223                         if (page != ref_page)
2224                                 continue;
2225
2226                         /*
2227                          * Mark the VMA as having unmapped its page so that
2228                          * future faults in this VMA will fail rather than
2229                          * looking like data was lost
2230                          */
2231                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2232                 }
2233
2234                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2235                 if (huge_pte_none(pte))
2236                         continue;
2237
2238                 /*
2239                  * HWPoisoned hugepage is already unmapped and dropped reference
2240                  */
2241                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2242                         continue;
2243
2244                 page = pte_page(pte);
2245                 if (pte_dirty(pte))
2246                         set_page_dirty(page);
2247                 list_add(&page->lru, &page_list);
2248         }
2249         spin_unlock(&mm->page_table_lock);
2250         flush_tlb_range(vma, start, end);
2251         mmu_notifier_invalidate_range_end(mm, start, end);
2252         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2253                 page_remove_rmap(page);
2254                 list_del(&page->lru);
2255                 put_page(page);
2256         }
2257 }
2258
2259 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2260                           unsigned long end, struct page *ref_page)
2261 {
2262         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2263         __unmap_hugepage_range(vma, start, end, ref_page);
2264         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2265 }
2266
2267 /*
2268  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2269  * mappping it owns the reserve page for. The intention is to unmap the page
2270  * from other VMAs and let the children be SIGKILLed if they are faulting the
2271  * same region.
2272  */
2273 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2274                                 struct page *page, unsigned long address)
2275 {
2276         struct hstate *h = hstate_vma(vma);
2277         struct vm_area_struct *iter_vma;
2278         struct address_space *mapping;
2279         struct prio_tree_iter iter;
2280         pgoff_t pgoff;
2281
2282         /*
2283          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2284          * from page cache lookup which is in HPAGE_SIZE units.
2285          */
2286         address = address & huge_page_mask(h);
2287         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2288                 + (vma->vm_pgoff >> PAGE_SHIFT);
2289         mapping = (struct address_space *)page_private(page);
2290
2291         /*
2292          * Take the mapping lock for the duration of the table walk. As
2293          * this mapping should be shared between all the VMAs,
2294          * __unmap_hugepage_range() is called as the lock is already held
2295          */
2296         spin_lock(&mapping->i_mmap_lock);
2297         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2298                 /* Do not unmap the current VMA */
2299                 if (iter_vma == vma)
2300                         continue;
2301
2302                 /*
2303                  * Unmap the page from other VMAs without their own reserves.
2304                  * They get marked to be SIGKILLed if they fault in these
2305                  * areas. This is because a future no-page fault on this VMA
2306                  * could insert a zeroed page instead of the data existing
2307                  * from the time of fork. This would look like data corruption
2308                  */
2309                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2310                         __unmap_hugepage_range(iter_vma,
2311                                 address, address + huge_page_size(h),
2312                                 page);
2313         }
2314         spin_unlock(&mapping->i_mmap_lock);
2315
2316         return 1;
2317 }
2318
2319 /*
2320  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2321  */
2322 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2323                         unsigned long address, pte_t *ptep, pte_t pte,
2324                         struct page *pagecache_page)
2325 {
2326         struct hstate *h = hstate_vma(vma);
2327         struct page *old_page, *new_page;
2328         int avoidcopy;
2329         int outside_reserve = 0;
2330
2331         old_page = pte_page(pte);
2332
2333 retry_avoidcopy:
2334         /* If no-one else is actually using this page, avoid the copy
2335          * and just make the page writable */
2336         avoidcopy = (page_mapcount(old_page) == 1);
2337         if (avoidcopy) {
2338                 if (PageAnon(old_page))
2339                         page_move_anon_rmap(old_page, vma, address);
2340                 set_huge_ptep_writable(vma, address, ptep);
2341                 return 0;
2342         }
2343
2344         /*
2345          * If the process that created a MAP_PRIVATE mapping is about to
2346          * perform a COW due to a shared page count, attempt to satisfy
2347          * the allocation without using the existing reserves. The pagecache
2348          * page is used to determine if the reserve at this address was
2349          * consumed or not. If reserves were used, a partial faulted mapping
2350          * at the time of fork() could consume its reserves on COW instead
2351          * of the full address range.
2352          */
2353         if (!(vma->vm_flags & VM_MAYSHARE) &&
2354                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2355                         old_page != pagecache_page)
2356                 outside_reserve = 1;
2357
2358         page_cache_get(old_page);
2359
2360         /* Drop page_table_lock as buddy allocator may be called */
2361         spin_unlock(&mm->page_table_lock);
2362         new_page = alloc_huge_page(vma, address, outside_reserve);
2363
2364         if (IS_ERR(new_page)) {
2365                 page_cache_release(old_page);
2366
2367                 /*
2368                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2369                  * it is due to references held by a child and an insufficient
2370                  * huge page pool. To guarantee the original mappers
2371                  * reliability, unmap the page from child processes. The child
2372                  * may get SIGKILLed if it later faults.
2373                  */
2374                 if (outside_reserve) {
2375                         BUG_ON(huge_pte_none(pte));
2376                         if (unmap_ref_private(mm, vma, old_page, address)) {
2377                                 BUG_ON(page_count(old_page) != 1);
2378                                 BUG_ON(huge_pte_none(pte));
2379                                 spin_lock(&mm->page_table_lock);
2380                                 goto retry_avoidcopy;
2381                         }
2382                         WARN_ON_ONCE(1);
2383                 }
2384
2385                 /* Caller expects lock to be held */
2386                 spin_lock(&mm->page_table_lock);
2387                 return -PTR_ERR(new_page);
2388         }
2389
2390         /*
2391          * When the original hugepage is shared one, it does not have
2392          * anon_vma prepared.
2393          */
2394         if (unlikely(anon_vma_prepare(vma))) {
2395                 /* Caller expects lock to be held */
2396                 spin_lock(&mm->page_table_lock);
2397                 return VM_FAULT_OOM;
2398         }
2399
2400         copy_user_huge_page(new_page, old_page, address, vma,
2401                             pages_per_huge_page(h));
2402         __SetPageUptodate(new_page);
2403
2404         /*
2405          * Retake the page_table_lock to check for racing updates
2406          * before the page tables are altered
2407          */
2408         spin_lock(&mm->page_table_lock);
2409         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2410         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2411                 /* Break COW */
2412                 mmu_notifier_invalidate_range_start(mm,
2413                         address & huge_page_mask(h),
2414                         (address & huge_page_mask(h)) + huge_page_size(h));
2415                 huge_ptep_clear_flush(vma, address, ptep);
2416                 set_huge_pte_at(mm, address, ptep,
2417                                 make_huge_pte(vma, new_page, 1));
2418                 page_remove_rmap(old_page);
2419                 hugepage_add_new_anon_rmap(new_page, vma, address);
2420                 /* Make the old page be freed below */
2421                 new_page = old_page;
2422                 mmu_notifier_invalidate_range_end(mm,
2423                         address & huge_page_mask(h),
2424                         (address & huge_page_mask(h)) + huge_page_size(h));
2425         }
2426         page_cache_release(new_page);
2427         page_cache_release(old_page);
2428         return 0;
2429 }
2430
2431 /* Return the pagecache page at a given address within a VMA */
2432 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2433                         struct vm_area_struct *vma, unsigned long address)
2434 {
2435         struct address_space *mapping;
2436         pgoff_t idx;
2437
2438         mapping = vma->vm_file->f_mapping;
2439         idx = vma_hugecache_offset(h, vma, address);
2440
2441         return find_lock_page(mapping, idx);
2442 }
2443
2444 /*
2445  * Return whether there is a pagecache page to back given address within VMA.
2446  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2447  */
2448 static bool hugetlbfs_pagecache_present(struct hstate *h,
2449                         struct vm_area_struct *vma, unsigned long address)
2450 {
2451         struct address_space *mapping;
2452         pgoff_t idx;
2453         struct page *page;
2454
2455         mapping = vma->vm_file->f_mapping;
2456         idx = vma_hugecache_offset(h, vma, address);
2457
2458         page = find_get_page(mapping, idx);
2459         if (page)
2460                 put_page(page);
2461         return page != NULL;
2462 }
2463
2464 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2465                         unsigned long address, pte_t *ptep, unsigned int flags)
2466 {
2467         struct hstate *h = hstate_vma(vma);
2468         int ret = VM_FAULT_SIGBUS;
2469         pgoff_t idx;
2470         unsigned long size;
2471         struct page *page;
2472         struct address_space *mapping;
2473         pte_t new_pte;
2474
2475         /*
2476          * Currently, we are forced to kill the process in the event the
2477          * original mapper has unmapped pages from the child due to a failed
2478          * COW. Warn that such a situation has occured as it may not be obvious
2479          */
2480         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2481                 printk(KERN_WARNING
2482                         "PID %d killed due to inadequate hugepage pool\n",
2483                         current->pid);
2484                 return ret;
2485         }
2486
2487         mapping = vma->vm_file->f_mapping;
2488         idx = vma_hugecache_offset(h, vma, address);
2489
2490         /*
2491          * Use page lock to guard against racing truncation
2492          * before we get page_table_lock.
2493          */
2494 retry:
2495         page = find_lock_page(mapping, idx);
2496         if (!page) {
2497                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2498                 if (idx >= size)
2499                         goto out;
2500                 page = alloc_huge_page(vma, address, 0);
2501                 if (IS_ERR(page)) {
2502                         ret = -PTR_ERR(page);
2503                         goto out;
2504                 }
2505                 clear_huge_page(page, address, pages_per_huge_page(h));
2506                 __SetPageUptodate(page);
2507
2508                 if (vma->vm_flags & VM_MAYSHARE) {
2509                         int err;
2510                         struct inode *inode = mapping->host;
2511
2512                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2513                         if (err) {
2514                                 put_page(page);
2515                                 if (err == -EEXIST)
2516                                         goto retry;
2517                                 goto out;
2518                         }
2519
2520                         spin_lock(&inode->i_lock);
2521                         inode->i_blocks += blocks_per_huge_page(h);
2522                         spin_unlock(&inode->i_lock);
2523                         page_dup_rmap(page);
2524                 } else {
2525                         lock_page(page);
2526                         if (unlikely(anon_vma_prepare(vma))) {
2527                                 ret = VM_FAULT_OOM;
2528                                 goto backout_unlocked;
2529                         }
2530                         hugepage_add_new_anon_rmap(page, vma, address);
2531                 }
2532         } else {
2533                 /*
2534                  * If memory error occurs between mmap() and fault, some process
2535                  * don't have hwpoisoned swap entry for errored virtual address.
2536                  * So we need to block hugepage fault by PG_hwpoison bit check.
2537                  */
2538                 if (unlikely(PageHWPoison(page))) {
2539                         ret = VM_FAULT_HWPOISON | 
2540                               VM_FAULT_SET_HINDEX(h - hstates);
2541                         goto backout_unlocked;
2542                 }
2543                 page_dup_rmap(page);
2544         }
2545
2546         /*
2547          * If we are going to COW a private mapping later, we examine the
2548          * pending reservations for this page now. This will ensure that
2549          * any allocations necessary to record that reservation occur outside
2550          * the spinlock.
2551          */
2552         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2553                 if (vma_needs_reservation(h, vma, address) < 0) {
2554                         ret = VM_FAULT_OOM;
2555                         goto backout_unlocked;
2556                 }
2557
2558         spin_lock(&mm->page_table_lock);
2559         size = i_size_read(mapping->host) >> huge_page_shift(h);
2560         if (idx >= size)
2561                 goto backout;
2562
2563         ret = 0;
2564         if (!huge_pte_none(huge_ptep_get(ptep)))
2565                 goto backout;
2566
2567         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2568                                 && (vma->vm_flags & VM_SHARED)));
2569         set_huge_pte_at(mm, address, ptep, new_pte);
2570
2571         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2572                 /* Optimization, do the COW without a second fault */
2573                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2574         }
2575
2576         spin_unlock(&mm->page_table_lock);
2577         unlock_page(page);
2578 out:
2579         return ret;
2580
2581 backout:
2582         spin_unlock(&mm->page_table_lock);
2583 backout_unlocked:
2584         unlock_page(page);
2585         put_page(page);
2586         goto out;
2587 }
2588
2589 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2590                         unsigned long address, unsigned int flags)
2591 {
2592         pte_t *ptep;
2593         pte_t entry;
2594         int ret;
2595         struct page *page = NULL;
2596         struct page *pagecache_page = NULL;
2597         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2598         struct hstate *h = hstate_vma(vma);
2599
2600         ptep = huge_pte_offset(mm, address);
2601         if (ptep) {
2602                 entry = huge_ptep_get(ptep);
2603                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2604                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2605                         return 0;
2606                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2607                         return VM_FAULT_HWPOISON_LARGE | 
2608                                VM_FAULT_SET_HINDEX(h - hstates);
2609         }
2610
2611         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2612         if (!ptep)
2613                 return VM_FAULT_OOM;
2614
2615         /*
2616          * Serialize hugepage allocation and instantiation, so that we don't
2617          * get spurious allocation failures if two CPUs race to instantiate
2618          * the same page in the page cache.
2619          */
2620         mutex_lock(&hugetlb_instantiation_mutex);
2621         entry = huge_ptep_get(ptep);
2622         if (huge_pte_none(entry)) {
2623                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2624                 goto out_mutex;
2625         }
2626
2627         ret = 0;
2628
2629         /*
2630          * If we are going to COW the mapping later, we examine the pending
2631          * reservations for this page now. This will ensure that any
2632          * allocations necessary to record that reservation occur outside the
2633          * spinlock. For private mappings, we also lookup the pagecache
2634          * page now as it is used to determine if a reservation has been
2635          * consumed.
2636          */
2637         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2638                 if (vma_needs_reservation(h, vma, address) < 0) {
2639                         ret = VM_FAULT_OOM;
2640                         goto out_mutex;
2641                 }
2642
2643                 if (!(vma->vm_flags & VM_MAYSHARE))
2644                         pagecache_page = hugetlbfs_pagecache_page(h,
2645                                                                 vma, address);
2646         }
2647
2648         /*
2649          * hugetlb_cow() requires page locks of pte_page(entry) and
2650          * pagecache_page, so here we need take the former one
2651          * when page != pagecache_page or !pagecache_page.
2652          * Note that locking order is always pagecache_page -> page,
2653          * so no worry about deadlock.
2654          */
2655         page = pte_page(entry);
2656         if (page != pagecache_page)
2657                 lock_page(page);
2658
2659         spin_lock(&mm->page_table_lock);
2660         /* Check for a racing update before calling hugetlb_cow */
2661         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2662                 goto out_page_table_lock;
2663
2664
2665         if (flags & FAULT_FLAG_WRITE) {
2666                 if (!pte_write(entry)) {
2667                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2668                                                         pagecache_page);
2669                         goto out_page_table_lock;
2670                 }
2671                 entry = pte_mkdirty(entry);
2672         }
2673         entry = pte_mkyoung(entry);
2674         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2675                                                 flags & FAULT_FLAG_WRITE))
2676                 update_mmu_cache(vma, address, ptep);
2677
2678 out_page_table_lock:
2679         spin_unlock(&mm->page_table_lock);
2680
2681         if (pagecache_page) {
2682                 unlock_page(pagecache_page);
2683                 put_page(pagecache_page);
2684         }
2685         if (page != pagecache_page)
2686                 unlock_page(page);
2687
2688 out_mutex:
2689         mutex_unlock(&hugetlb_instantiation_mutex);
2690
2691         return ret;
2692 }
2693
2694 /* Can be overriden by architectures */
2695 __attribute__((weak)) struct page *
2696 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2697                pud_t *pud, int write)
2698 {
2699         BUG();
2700         return NULL;
2701 }
2702
2703 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2704                         struct page **pages, struct vm_area_struct **vmas,
2705                         unsigned long *position, int *length, int i,
2706                         unsigned int flags)
2707 {
2708         unsigned long pfn_offset;
2709         unsigned long vaddr = *position;
2710         int remainder = *length;
2711         struct hstate *h = hstate_vma(vma);
2712
2713         spin_lock(&mm->page_table_lock);
2714         while (vaddr < vma->vm_end && remainder) {
2715                 pte_t *pte;
2716                 int absent;
2717                 struct page *page;
2718
2719                 /*
2720                  * Some archs (sparc64, sh*) have multiple pte_ts to
2721                  * each hugepage.  We have to make sure we get the
2722                  * first, for the page indexing below to work.
2723                  */
2724                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2725                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2726
2727                 /*
2728                  * When coredumping, it suits get_dump_page if we just return
2729                  * an error where there's an empty slot with no huge pagecache
2730                  * to back it.  This way, we avoid allocating a hugepage, and
2731                  * the sparse dumpfile avoids allocating disk blocks, but its
2732                  * huge holes still show up with zeroes where they need to be.
2733                  */
2734                 if (absent && (flags & FOLL_DUMP) &&
2735                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2736                         remainder = 0;
2737                         break;
2738                 }
2739
2740                 if (absent ||
2741                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2742                         int ret;
2743
2744                         spin_unlock(&mm->page_table_lock);
2745                         ret = hugetlb_fault(mm, vma, vaddr,
2746                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2747                         spin_lock(&mm->page_table_lock);
2748                         if (!(ret & VM_FAULT_ERROR))
2749                                 continue;
2750
2751                         remainder = 0;
2752                         break;
2753                 }
2754
2755                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2756                 page = pte_page(huge_ptep_get(pte));
2757 same_page:
2758                 if (pages) {
2759                         pages[i] = mem_map_offset(page, pfn_offset);
2760                         get_page(pages[i]);
2761                 }
2762
2763                 if (vmas)
2764                         vmas[i] = vma;
2765
2766                 vaddr += PAGE_SIZE;
2767                 ++pfn_offset;
2768                 --remainder;
2769                 ++i;
2770                 if (vaddr < vma->vm_end && remainder &&
2771                                 pfn_offset < pages_per_huge_page(h)) {
2772                         /*
2773                          * We use pfn_offset to avoid touching the pageframes
2774                          * of this compound page.
2775                          */
2776                         goto same_page;
2777                 }
2778         }
2779         spin_unlock(&mm->page_table_lock);
2780         *length = remainder;
2781         *position = vaddr;
2782
2783         return i ? i : -EFAULT;
2784 }
2785
2786 void hugetlb_change_protection(struct vm_area_struct *vma,
2787                 unsigned long address, unsigned long end, pgprot_t newprot)
2788 {
2789         struct mm_struct *mm = vma->vm_mm;
2790         unsigned long start = address;
2791         pte_t *ptep;
2792         pte_t pte;
2793         struct hstate *h = hstate_vma(vma);
2794
2795         BUG_ON(address >= end);
2796         flush_cache_range(vma, address, end);
2797
2798         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2799         spin_lock(&mm->page_table_lock);
2800         for (; address < end; address += huge_page_size(h)) {
2801                 ptep = huge_pte_offset(mm, address);
2802                 if (!ptep)
2803                         continue;
2804                 if (huge_pmd_unshare(mm, &address, ptep))
2805                         continue;
2806                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2807                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2808                         pte = pte_mkhuge(pte_modify(pte, newprot));
2809                         set_huge_pte_at(mm, address, ptep, pte);
2810                 }
2811         }
2812         spin_unlock(&mm->page_table_lock);
2813         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2814
2815         flush_tlb_range(vma, start, end);
2816 }
2817
2818 int hugetlb_reserve_pages(struct inode *inode,
2819                                         long from, long to,
2820                                         struct vm_area_struct *vma,
2821                                         int acctflag)
2822 {
2823         long ret, chg;
2824         struct hstate *h = hstate_inode(inode);
2825
2826         /*
2827          * Only apply hugepage reservation if asked. At fault time, an
2828          * attempt will be made for VM_NORESERVE to allocate a page
2829          * and filesystem quota without using reserves
2830          */
2831         if (acctflag & VM_NORESERVE)
2832                 return 0;
2833
2834         /*
2835          * Shared mappings base their reservation on the number of pages that
2836          * are already allocated on behalf of the file. Private mappings need
2837          * to reserve the full area even if read-only as mprotect() may be
2838          * called to make the mapping read-write. Assume !vma is a shm mapping
2839          */
2840         if (!vma || vma->vm_flags & VM_MAYSHARE)
2841                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2842         else {
2843                 struct resv_map *resv_map = resv_map_alloc();
2844                 if (!resv_map)
2845                         return -ENOMEM;
2846
2847                 chg = to - from;
2848
2849                 set_vma_resv_map(vma, resv_map);
2850                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2851         }
2852
2853         if (chg < 0)
2854                 return chg;
2855
2856         /* There must be enough filesystem quota for the mapping */
2857         if (hugetlb_get_quota(inode->i_mapping, chg))
2858                 return -ENOSPC;
2859
2860         /*
2861          * Check enough hugepages are available for the reservation.
2862          * Hand back the quota if there are not
2863          */
2864         ret = hugetlb_acct_memory(h, chg);
2865         if (ret < 0) {
2866                 hugetlb_put_quota(inode->i_mapping, chg);
2867                 return ret;
2868         }
2869
2870         /*
2871          * Account for the reservations made. Shared mappings record regions
2872          * that have reservations as they are shared by multiple VMAs.
2873          * When the last VMA disappears, the region map says how much
2874          * the reservation was and the page cache tells how much of
2875          * the reservation was consumed. Private mappings are per-VMA and
2876          * only the consumed reservations are tracked. When the VMA
2877          * disappears, the original reservation is the VMA size and the
2878          * consumed reservations are stored in the map. Hence, nothing
2879          * else has to be done for private mappings here
2880          */
2881         if (!vma || vma->vm_flags & VM_MAYSHARE)
2882                 region_add(&inode->i_mapping->private_list, from, to);
2883         return 0;
2884 }
2885
2886 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2887 {
2888         struct hstate *h = hstate_inode(inode);
2889         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2890
2891         spin_lock(&inode->i_lock);
2892         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2893         spin_unlock(&inode->i_lock);
2894
2895         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2896         hugetlb_acct_memory(h, -(chg - freed));
2897 }
2898
2899 #ifdef CONFIG_MEMORY_FAILURE
2900
2901 /* Should be called in hugetlb_lock */
2902 static int is_hugepage_on_freelist(struct page *hpage)
2903 {
2904         struct page *page;
2905         struct page *tmp;
2906         struct hstate *h = page_hstate(hpage);
2907         int nid = page_to_nid(hpage);
2908
2909         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2910                 if (page == hpage)
2911                         return 1;
2912         return 0;
2913 }
2914
2915 /*
2916  * This function is called from memory failure code.
2917  * Assume the caller holds page lock of the head page.
2918  */
2919 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2920 {
2921         struct hstate *h = page_hstate(hpage);
2922         int nid = page_to_nid(hpage);
2923         int ret = -EBUSY;
2924
2925         spin_lock(&hugetlb_lock);
2926         if (is_hugepage_on_freelist(hpage)) {
2927                 list_del(&hpage->lru);
2928                 set_page_refcounted(hpage);
2929                 h->free_huge_pages--;
2930                 h->free_huge_pages_node[nid]--;
2931                 ret = 0;
2932         }
2933         spin_unlock(&hugetlb_lock);
2934         return ret;
2935 }
2936 #endif