e35d99844612a5abc0fe3d8ab1ae4b973a7b47cb
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlb.h>
33
34 #include <linux/io.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
40 #include "internal.h"
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77         bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79         spin_unlock(&spool->lock);
80
81         /* If no pages are used, and no other handles to the subpool
82          * remain, give up any reservations mased on minimum size and
83          * free the subpool */
84         if (free) {
85                 if (spool->min_hpages != -1)
86                         hugetlb_acct_memory(spool->hstate,
87                                                 -spool->min_hpages);
88                 kfree(spool);
89         }
90 }
91
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93                                                 long min_hpages)
94 {
95         struct hugepage_subpool *spool;
96
97         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98         if (!spool)
99                 return NULL;
100
101         spin_lock_init(&spool->lock);
102         spool->count = 1;
103         spool->max_hpages = max_hpages;
104         spool->hstate = h;
105         spool->min_hpages = min_hpages;
106
107         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108                 kfree(spool);
109                 return NULL;
110         }
111         spool->rsv_hpages = min_hpages;
112
113         return spool;
114 }
115
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118         spin_lock(&spool->lock);
119         BUG_ON(!spool->count);
120         spool->count--;
121         unlock_or_release_subpool(spool);
122 }
123
124 /*
125  * Subpool accounting for allocating and reserving pages.
126  * Return -ENOMEM if there are not enough resources to satisfy the
127  * the request.  Otherwise, return the number of pages by which the
128  * global pools must be adjusted (upward).  The returned value may
129  * only be different than the passed value (delta) in the case where
130  * a subpool minimum size must be manitained.
131  */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133                                       long delta)
134 {
135         long ret = delta;
136
137         if (!spool)
138                 return ret;
139
140         spin_lock(&spool->lock);
141
142         if (spool->max_hpages != -1) {          /* maximum size accounting */
143                 if ((spool->used_hpages + delta) <= spool->max_hpages)
144                         spool->used_hpages += delta;
145                 else {
146                         ret = -ENOMEM;
147                         goto unlock_ret;
148                 }
149         }
150
151         /* minimum size accounting */
152         if (spool->min_hpages != -1 && spool->rsv_hpages) {
153                 if (delta > spool->rsv_hpages) {
154                         /*
155                          * Asking for more reserves than those already taken on
156                          * behalf of subpool.  Return difference.
157                          */
158                         ret = delta - spool->rsv_hpages;
159                         spool->rsv_hpages = 0;
160                 } else {
161                         ret = 0;        /* reserves already accounted for */
162                         spool->rsv_hpages -= delta;
163                 }
164         }
165
166 unlock_ret:
167         spin_unlock(&spool->lock);
168         return ret;
169 }
170
171 /*
172  * Subpool accounting for freeing and unreserving pages.
173  * Return the number of global page reservations that must be dropped.
174  * The return value may only be different than the passed value (delta)
175  * in the case where a subpool minimum size must be maintained.
176  */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178                                        long delta)
179 {
180         long ret = delta;
181
182         if (!spool)
183                 return delta;
184
185         spin_lock(&spool->lock);
186
187         if (spool->max_hpages != -1)            /* maximum size accounting */
188                 spool->used_hpages -= delta;
189
190          /* minimum size accounting */
191         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192                 if (spool->rsv_hpages + delta <= spool->min_hpages)
193                         ret = 0;
194                 else
195                         ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197                 spool->rsv_hpages += delta;
198                 if (spool->rsv_hpages > spool->min_hpages)
199                         spool->rsv_hpages = spool->min_hpages;
200         }
201
202         /*
203          * If hugetlbfs_put_super couldn't free spool due to an outstanding
204          * quota reference, free it now.
205          */
206         unlock_or_release_subpool(spool);
207
208         return ret;
209 }
210
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213         return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218         return subpool_inode(file_inode(vma->vm_file));
219 }
220
221 /*
222  * Region tracking -- allows tracking of reservations and instantiated pages
223  *                    across the pages in a mapping.
224  *
225  * The region data structures are embedded into a resv_map and protected
226  * by a resv_map's lock.  The set of regions within the resv_map represent
227  * reservations for huge pages, or huge pages that have already been
228  * instantiated within the map.  The from and to elements are huge page
229  * indicies into the associated mapping.  from indicates the starting index
230  * of the region.  to represents the first index past the end of  the region.
231  *
232  * For example, a file region structure with from == 0 and to == 4 represents
233  * four huge pages in a mapping.  It is important to note that the to element
234  * represents the first element past the end of the region. This is used in
235  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236  *
237  * Interval notation of the form [from, to) will be used to indicate that
238  * the endpoint from is inclusive and to is exclusive.
239  */
240 struct file_region {
241         struct list_head link;
242         long from;
243         long to;
244 };
245
246 /*
247  * Add the huge page range represented by [f, t) to the reserve
248  * map.  In the normal case, existing regions will be expanded
249  * to accommodate the specified range.  Sufficient regions should
250  * exist for expansion due to the previous call to region_chg
251  * with the same range.  However, it is possible that region_del
252  * could have been called after region_chg and modifed the map
253  * in such a way that no region exists to be expanded.  In this
254  * case, pull a region descriptor from the cache associated with
255  * the map and use that for the new range.
256  *
257  * Return the number of new huge pages added to the map.  This
258  * number is greater than or equal to zero.
259  */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262         struct list_head *head = &resv->regions;
263         struct file_region *rg, *nrg, *trg;
264         long add = 0;
265
266         spin_lock(&resv->lock);
267         /* Locate the region we are either in or before. */
268         list_for_each_entry(rg, head, link)
269                 if (f <= rg->to)
270                         break;
271
272         /*
273          * If no region exists which can be expanded to include the
274          * specified range, the list must have been modified by an
275          * interleving call to region_del().  Pull a region descriptor
276          * from the cache and use it for this range.
277          */
278         if (&rg->link == head || t < rg->from) {
279                 VM_BUG_ON(resv->region_cache_count <= 0);
280
281                 resv->region_cache_count--;
282                 nrg = list_first_entry(&resv->region_cache, struct file_region,
283                                         link);
284                 list_del(&nrg->link);
285
286                 nrg->from = f;
287                 nrg->to = t;
288                 list_add(&nrg->link, rg->link.prev);
289
290                 add += t - f;
291                 goto out_locked;
292         }
293
294         /* Round our left edge to the current segment if it encloses us. */
295         if (f > rg->from)
296                 f = rg->from;
297
298         /* Check for and consume any regions we now overlap with. */
299         nrg = rg;
300         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301                 if (&rg->link == head)
302                         break;
303                 if (rg->from > t)
304                         break;
305
306                 /* If this area reaches higher then extend our area to
307                  * include it completely.  If this is not the first area
308                  * which we intend to reuse, free it. */
309                 if (rg->to > t)
310                         t = rg->to;
311                 if (rg != nrg) {
312                         /* Decrement return value by the deleted range.
313                          * Another range will span this area so that by
314                          * end of routine add will be >= zero
315                          */
316                         add -= (rg->to - rg->from);
317                         list_del(&rg->link);
318                         kfree(rg);
319                 }
320         }
321
322         add += (nrg->from - f);         /* Added to beginning of region */
323         nrg->from = f;
324         add += t - nrg->to;             /* Added to end of region */
325         nrg->to = t;
326
327 out_locked:
328         resv->adds_in_progress--;
329         spin_unlock(&resv->lock);
330         VM_BUG_ON(add < 0);
331         return add;
332 }
333
334 /*
335  * Examine the existing reserve map and determine how many
336  * huge pages in the specified range [f, t) are NOT currently
337  * represented.  This routine is called before a subsequent
338  * call to region_add that will actually modify the reserve
339  * map to add the specified range [f, t).  region_chg does
340  * not change the number of huge pages represented by the
341  * map.  However, if the existing regions in the map can not
342  * be expanded to represent the new range, a new file_region
343  * structure is added to the map as a placeholder.  This is
344  * so that the subsequent region_add call will have all the
345  * regions it needs and will not fail.
346  *
347  * Upon entry, region_chg will also examine the cache of region descriptors
348  * associated with the map.  If there are not enough descriptors cached, one
349  * will be allocated for the in progress add operation.
350  *
351  * Returns the number of huge pages that need to be added to the existing
352  * reservation map for the range [f, t).  This number is greater or equal to
353  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
354  * is needed and can not be allocated.
355  */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358         struct list_head *head = &resv->regions;
359         struct file_region *rg, *nrg = NULL;
360         long chg = 0;
361
362 retry:
363         spin_lock(&resv->lock);
364 retry_locked:
365         resv->adds_in_progress++;
366
367         /*
368          * Check for sufficient descriptors in the cache to accommodate
369          * the number of in progress add operations.
370          */
371         if (resv->adds_in_progress > resv->region_cache_count) {
372                 struct file_region *trg;
373
374                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375                 /* Must drop lock to allocate a new descriptor. */
376                 resv->adds_in_progress--;
377                 spin_unlock(&resv->lock);
378
379                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380                 if (!trg) {
381                         kfree(nrg);
382                         return -ENOMEM;
383                 }
384
385                 spin_lock(&resv->lock);
386                 list_add(&trg->link, &resv->region_cache);
387                 resv->region_cache_count++;
388                 goto retry_locked;
389         }
390
391         /* Locate the region we are before or in. */
392         list_for_each_entry(rg, head, link)
393                 if (f <= rg->to)
394                         break;
395
396         /* If we are below the current region then a new region is required.
397          * Subtle, allocate a new region at the position but make it zero
398          * size such that we can guarantee to record the reservation. */
399         if (&rg->link == head || t < rg->from) {
400                 if (!nrg) {
401                         resv->adds_in_progress--;
402                         spin_unlock(&resv->lock);
403                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404                         if (!nrg)
405                                 return -ENOMEM;
406
407                         nrg->from = f;
408                         nrg->to   = f;
409                         INIT_LIST_HEAD(&nrg->link);
410                         goto retry;
411                 }
412
413                 list_add(&nrg->link, rg->link.prev);
414                 chg = t - f;
415                 goto out_nrg;
416         }
417
418         /* Round our left edge to the current segment if it encloses us. */
419         if (f > rg->from)
420                 f = rg->from;
421         chg = t - f;
422
423         /* Check for and consume any regions we now overlap with. */
424         list_for_each_entry(rg, rg->link.prev, link) {
425                 if (&rg->link == head)
426                         break;
427                 if (rg->from > t)
428                         goto out;
429
430                 /* We overlap with this area, if it extends further than
431                  * us then we must extend ourselves.  Account for its
432                  * existing reservation. */
433                 if (rg->to > t) {
434                         chg += rg->to - t;
435                         t = rg->to;
436                 }
437                 chg -= rg->to - rg->from;
438         }
439
440 out:
441         spin_unlock(&resv->lock);
442         /*  We already know we raced and no longer need the new region */
443         kfree(nrg);
444         return chg;
445 out_nrg:
446         spin_unlock(&resv->lock);
447         return chg;
448 }
449
450 /*
451  * Abort the in progress add operation.  The adds_in_progress field
452  * of the resv_map keeps track of the operations in progress between
453  * calls to region_chg and region_add.  Operations are sometimes
454  * aborted after the call to region_chg.  In such cases, region_abort
455  * is called to decrement the adds_in_progress counter.
456  *
457  * NOTE: The range arguments [f, t) are not needed or used in this
458  * routine.  They are kept to make reading the calling code easier as
459  * arguments will match the associated region_chg call.
460  */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463         spin_lock(&resv->lock);
464         VM_BUG_ON(!resv->region_cache_count);
465         resv->adds_in_progress--;
466         spin_unlock(&resv->lock);
467 }
468
469 /*
470  * Delete the specified range [f, t) from the reserve map.  If the
471  * t parameter is LONG_MAX, this indicates that ALL regions after f
472  * should be deleted.  Locate the regions which intersect [f, t)
473  * and either trim, delete or split the existing regions.
474  *
475  * Returns the number of huge pages deleted from the reserve map.
476  * In the normal case, the return value is zero or more.  In the
477  * case where a region must be split, a new region descriptor must
478  * be allocated.  If the allocation fails, -ENOMEM will be returned.
479  * NOTE: If the parameter t == LONG_MAX, then we will never split
480  * a region and possibly return -ENOMEM.  Callers specifying
481  * t == LONG_MAX do not need to check for -ENOMEM error.
482  */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485         struct list_head *head = &resv->regions;
486         struct file_region *rg, *trg;
487         struct file_region *nrg = NULL;
488         long del = 0;
489
490 retry:
491         spin_lock(&resv->lock);
492         list_for_each_entry_safe(rg, trg, head, link) {
493                 /*
494                  * Skip regions before the range to be deleted.  file_region
495                  * ranges are normally of the form [from, to).  However, there
496                  * may be a "placeholder" entry in the map which is of the form
497                  * (from, to) with from == to.  Check for placeholder entries
498                  * at the beginning of the range to be deleted.
499                  */
500                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501                         continue;
502
503                 if (rg->from >= t)
504                         break;
505
506                 if (f > rg->from && t < rg->to) { /* Must split region */
507                         /*
508                          * Check for an entry in the cache before dropping
509                          * lock and attempting allocation.
510                          */
511                         if (!nrg &&
512                             resv->region_cache_count > resv->adds_in_progress) {
513                                 nrg = list_first_entry(&resv->region_cache,
514                                                         struct file_region,
515                                                         link);
516                                 list_del(&nrg->link);
517                                 resv->region_cache_count--;
518                         }
519
520                         if (!nrg) {
521                                 spin_unlock(&resv->lock);
522                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523                                 if (!nrg)
524                                         return -ENOMEM;
525                                 goto retry;
526                         }
527
528                         del += t - f;
529
530                         /* New entry for end of split region */
531                         nrg->from = t;
532                         nrg->to = rg->to;
533                         INIT_LIST_HEAD(&nrg->link);
534
535                         /* Original entry is trimmed */
536                         rg->to = f;
537
538                         list_add(&nrg->link, &rg->link);
539                         nrg = NULL;
540                         break;
541                 }
542
543                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544                         del += rg->to - rg->from;
545                         list_del(&rg->link);
546                         kfree(rg);
547                         continue;
548                 }
549
550                 if (f <= rg->from) {    /* Trim beginning of region */
551                         del += t - rg->from;
552                         rg->from = t;
553                 } else {                /* Trim end of region */
554                         del += rg->to - f;
555                         rg->to = f;
556                 }
557         }
558
559         spin_unlock(&resv->lock);
560         kfree(nrg);
561         return del;
562 }
563
564 /*
565  * A rare out of memory error was encountered which prevented removal of
566  * the reserve map region for a page.  The huge page itself was free'ed
567  * and removed from the page cache.  This routine will adjust the subpool
568  * usage count, and the global reserve count if needed.  By incrementing
569  * these counts, the reserve map entry which could not be deleted will
570  * appear as a "reserved" entry instead of simply dangling with incorrect
571  * counts.
572  */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575         struct hugepage_subpool *spool = subpool_inode(inode);
576         long rsv_adjust;
577
578         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579         if (rsv_adjust) {
580                 struct hstate *h = hstate_inode(inode);
581
582                 hugetlb_acct_memory(h, 1);
583         }
584 }
585
586 /*
587  * Count and return the number of huge pages in the reserve map
588  * that intersect with the range [f, t).
589  */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592         struct list_head *head = &resv->regions;
593         struct file_region *rg;
594         long chg = 0;
595
596         spin_lock(&resv->lock);
597         /* Locate each segment we overlap with, and count that overlap. */
598         list_for_each_entry(rg, head, link) {
599                 long seg_from;
600                 long seg_to;
601
602                 if (rg->to <= f)
603                         continue;
604                 if (rg->from >= t)
605                         break;
606
607                 seg_from = max(rg->from, f);
608                 seg_to = min(rg->to, t);
609
610                 chg += seg_to - seg_from;
611         }
612         spin_unlock(&resv->lock);
613
614         return chg;
615 }
616
617 /*
618  * Convert the address within this vma to the page offset within
619  * the mapping, in pagecache page units; huge pages here.
620  */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622                         struct vm_area_struct *vma, unsigned long address)
623 {
624         return ((address - vma->vm_start) >> huge_page_shift(h)) +
625                         (vma->vm_pgoff >> huge_page_order(h));
626 }
627
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629                                      unsigned long address)
630 {
631         return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635 /*
636  * Return the size of the pages allocated when backing a VMA. In the majority
637  * cases this will be same size as used by the page table entries.
638  */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641         if (vma->vm_ops && vma->vm_ops->pagesize)
642                 return vma->vm_ops->pagesize(vma);
643         return PAGE_SIZE;
644 }
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646
647 /*
648  * Return the page size being used by the MMU to back a VMA. In the majority
649  * of cases, the page size used by the kernel matches the MMU size. On
650  * architectures where it differs, an architecture-specific 'strong'
651  * version of this symbol is required.
652  */
653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688         return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692                                                         unsigned long value)
693 {
694         vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702         if (!resv_map || !rg) {
703                 kfree(resv_map);
704                 kfree(rg);
705                 return NULL;
706         }
707
708         kref_init(&resv_map->refs);
709         spin_lock_init(&resv_map->lock);
710         INIT_LIST_HEAD(&resv_map->regions);
711
712         resv_map->adds_in_progress = 0;
713
714         INIT_LIST_HEAD(&resv_map->region_cache);
715         list_add(&rg->link, &resv_map->region_cache);
716         resv_map->region_cache_count = 1;
717
718         return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724         struct list_head *head = &resv_map->region_cache;
725         struct file_region *rg, *trg;
726
727         /* Clear out any active regions before we release the map. */
728         region_del(resv_map, 0, LONG_MAX);
729
730         /* ... and any entries left in the cache */
731         list_for_each_entry_safe(rg, trg, head, link) {
732                 list_del(&rg->link);
733                 kfree(rg);
734         }
735
736         VM_BUG_ON(resv_map->adds_in_progress);
737
738         kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743         return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749         if (vma->vm_flags & VM_MAYSHARE) {
750                 struct address_space *mapping = vma->vm_file->f_mapping;
751                 struct inode *inode = mapping->host;
752
753                 return inode_resv_map(inode);
754
755         } else {
756                 return (struct resv_map *)(get_vma_private_data(vma) &
757                                                         ~HPAGE_RESV_MASK);
758         }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, (get_vma_private_data(vma) &
767                                 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782         return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789         if (!(vma->vm_flags & VM_MAYSHARE))
790                 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796         if (vma->vm_flags & VM_NORESERVE) {
797                 /*
798                  * This address is already reserved by other process(chg == 0),
799                  * so, we should decrement reserved count. Without decrementing,
800                  * reserve count remains after releasing inode, because this
801                  * allocated page will go into page cache and is regarded as
802                  * coming from reserved pool in releasing step.  Currently, we
803                  * don't have any other solution to deal with this situation
804                  * properly, so add work-around here.
805                  */
806                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807                         return true;
808                 else
809                         return false;
810         }
811
812         /* Shared mappings always use reserves */
813         if (vma->vm_flags & VM_MAYSHARE) {
814                 /*
815                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816                  * be a region map for all pages.  The only situation where
817                  * there is no region map is if a hole was punched via
818                  * fallocate.  In this case, there really are no reverves to
819                  * use.  This situation is indicated if chg != 0.
820                  */
821                 if (chg)
822                         return false;
823                 else
824                         return true;
825         }
826
827         /*
828          * Only the process that called mmap() has reserves for
829          * private mappings.
830          */
831         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832                 /*
833                  * Like the shared case above, a hole punch or truncate
834                  * could have been performed on the private mapping.
835                  * Examine the value of chg to determine if reserves
836                  * actually exist or were previously consumed.
837                  * Very Subtle - The value of chg comes from a previous
838                  * call to vma_needs_reserves().  The reserve map for
839                  * private mappings has different (opposite) semantics
840                  * than that of shared mappings.  vma_needs_reserves()
841                  * has already taken this difference in semantics into
842                  * account.  Therefore, the meaning of chg is the same
843                  * as in the shared case above.  Code could easily be
844                  * combined, but keeping it separate draws attention to
845                  * subtle differences.
846                  */
847                 if (chg)
848                         return false;
849                 else
850                         return true;
851         }
852
853         return false;
854 }
855
856 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 {
858         int nid = page_to_nid(page);
859         list_move(&page->lru, &h->hugepage_freelists[nid]);
860         h->free_huge_pages++;
861         h->free_huge_pages_node[nid]++;
862 }
863
864 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 {
866         struct page *page;
867
868         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869                 if (!PageHWPoison(page))
870                         break;
871         /*
872          * if 'non-isolated free hugepage' not found on the list,
873          * the allocation fails.
874          */
875         if (&h->hugepage_freelists[nid] == &page->lru)
876                 return NULL;
877         list_move(&page->lru, &h->hugepage_activelist);
878         set_page_refcounted(page);
879         h->free_huge_pages--;
880         h->free_huge_pages_node[nid]--;
881         return page;
882 }
883
884 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885                 nodemask_t *nmask)
886 {
887         unsigned int cpuset_mems_cookie;
888         struct zonelist *zonelist;
889         struct zone *zone;
890         struct zoneref *z;
891         int node = -1;
892
893         zonelist = node_zonelist(nid, gfp_mask);
894
895 retry_cpuset:
896         cpuset_mems_cookie = read_mems_allowed_begin();
897         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898                 struct page *page;
899
900                 if (!cpuset_zone_allowed(zone, gfp_mask))
901                         continue;
902                 /*
903                  * no need to ask again on the same node. Pool is node rather than
904                  * zone aware
905                  */
906                 if (zone_to_nid(zone) == node)
907                         continue;
908                 node = zone_to_nid(zone);
909
910                 page = dequeue_huge_page_node_exact(h, node);
911                 if (page)
912                         return page;
913         }
914         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916
917         return NULL;
918 }
919
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 {
923         if (hugepage_migration_supported(h))
924                 return GFP_HIGHUSER_MOVABLE;
925         else
926                 return GFP_HIGHUSER;
927 }
928
929 static struct page *dequeue_huge_page_vma(struct hstate *h,
930                                 struct vm_area_struct *vma,
931                                 unsigned long address, int avoid_reserve,
932                                 long chg)
933 {
934         struct page *page;
935         struct mempolicy *mpol;
936         gfp_t gfp_mask;
937         nodemask_t *nodemask;
938         int nid;
939
940         /*
941          * A child process with MAP_PRIVATE mappings created by their parent
942          * have no page reserves. This check ensures that reservations are
943          * not "stolen". The child may still get SIGKILLed
944          */
945         if (!vma_has_reserves(vma, chg) &&
946                         h->free_huge_pages - h->resv_huge_pages == 0)
947                 goto err;
948
949         /* If reserves cannot be used, ensure enough pages are in the pool */
950         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951                 goto err;
952
953         gfp_mask = htlb_alloc_mask(h);
954         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957                 SetPagePrivate(page);
958                 h->resv_huge_pages--;
959         }
960
961         mpol_cond_put(mpol);
962         return page;
963
964 err:
965         return NULL;
966 }
967
968 /*
969  * common helper functions for hstate_next_node_to_{alloc|free}.
970  * We may have allocated or freed a huge page based on a different
971  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972  * be outside of *nodes_allowed.  Ensure that we use an allowed
973  * node for alloc or free.
974  */
975 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 {
977         nid = next_node_in(nid, *nodes_allowed);
978         VM_BUG_ON(nid >= MAX_NUMNODES);
979
980         return nid;
981 }
982
983 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 {
985         if (!node_isset(nid, *nodes_allowed))
986                 nid = next_node_allowed(nid, nodes_allowed);
987         return nid;
988 }
989
990 /*
991  * returns the previously saved node ["this node"] from which to
992  * allocate a persistent huge page for the pool and advance the
993  * next node from which to allocate, handling wrap at end of node
994  * mask.
995  */
996 static int hstate_next_node_to_alloc(struct hstate *h,
997                                         nodemask_t *nodes_allowed)
998 {
999         int nid;
1000
1001         VM_BUG_ON(!nodes_allowed);
1002
1003         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006         return nid;
1007 }
1008
1009 /*
1010  * helper for free_pool_huge_page() - return the previously saved
1011  * node ["this node"] from which to free a huge page.  Advance the
1012  * next node id whether or not we find a free huge page to free so
1013  * that the next attempt to free addresses the next node.
1014  */
1015 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 {
1017         int nid;
1018
1019         VM_BUG_ON(!nodes_allowed);
1020
1021         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024         return nid;
1025 }
1026
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1028         for (nr_nodes = nodes_weight(*mask);                            \
1029                 nr_nodes > 0 &&                                         \
1030                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1031                 nr_nodes--)
1032
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1034         for (nr_nodes = nodes_weight(*mask);                            \
1035                 nr_nodes > 0 &&                                         \
1036                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1037                 nr_nodes--)
1038
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page *page,
1041                                         unsigned int order)
1042 {
1043         int i;
1044         int nr_pages = 1 << order;
1045         struct page *p = page + 1;
1046
1047         atomic_set(compound_mapcount_ptr(page), 0);
1048         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049                 clear_compound_head(p);
1050                 set_page_refcounted(p);
1051         }
1052
1053         set_compound_order(page, 0);
1054         __ClearPageHead(page);
1055 }
1056
1057 static void free_gigantic_page(struct page *page, unsigned int order)
1058 {
1059         free_contig_range(page_to_pfn(page), 1 << order);
1060 }
1061
1062 static int __alloc_gigantic_page(unsigned long start_pfn,
1063                                 unsigned long nr_pages, gfp_t gfp_mask)
1064 {
1065         unsigned long end_pfn = start_pfn + nr_pages;
1066         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1067                                   gfp_mask);
1068 }
1069
1070 static bool pfn_range_valid_gigantic(struct zone *z,
1071                         unsigned long start_pfn, unsigned long nr_pages)
1072 {
1073         unsigned long i, end_pfn = start_pfn + nr_pages;
1074         struct page *page;
1075
1076         for (i = start_pfn; i < end_pfn; i++) {
1077                 if (!pfn_valid(i))
1078                         return false;
1079
1080                 page = pfn_to_page(i);
1081
1082                 if (page_zone(page) != z)
1083                         return false;
1084
1085                 if (PageReserved(page))
1086                         return false;
1087
1088                 if (page_count(page) > 0)
1089                         return false;
1090
1091                 if (PageHuge(page))
1092                         return false;
1093         }
1094
1095         return true;
1096 }
1097
1098 static bool zone_spans_last_pfn(const struct zone *zone,
1099                         unsigned long start_pfn, unsigned long nr_pages)
1100 {
1101         unsigned long last_pfn = start_pfn + nr_pages - 1;
1102         return zone_spans_pfn(zone, last_pfn);
1103 }
1104
1105 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1106                 int nid, nodemask_t *nodemask)
1107 {
1108         unsigned int order = huge_page_order(h);
1109         unsigned long nr_pages = 1 << order;
1110         unsigned long ret, pfn, flags;
1111         struct zonelist *zonelist;
1112         struct zone *zone;
1113         struct zoneref *z;
1114
1115         zonelist = node_zonelist(nid, gfp_mask);
1116         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1117                 spin_lock_irqsave(&zone->lock, flags);
1118
1119                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1120                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1121                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122                                 /*
1123                                  * We release the zone lock here because
1124                                  * alloc_contig_range() will also lock the zone
1125                                  * at some point. If there's an allocation
1126                                  * spinning on this lock, it may win the race
1127                                  * and cause alloc_contig_range() to fail...
1128                                  */
1129                                 spin_unlock_irqrestore(&zone->lock, flags);
1130                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1131                                 if (!ret)
1132                                         return pfn_to_page(pfn);
1133                                 spin_lock_irqsave(&zone->lock, flags);
1134                         }
1135                         pfn += nr_pages;
1136                 }
1137
1138                 spin_unlock_irqrestore(&zone->lock, flags);
1139         }
1140
1141         return NULL;
1142 }
1143
1144 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1145 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146
1147 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1148 static inline bool gigantic_page_supported(void) { return false; }
1149 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1150                 int nid, nodemask_t *nodemask) { return NULL; }
1151 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1152 static inline void destroy_compound_gigantic_page(struct page *page,
1153                                                 unsigned int order) { }
1154 #endif
1155
1156 static void update_and_free_page(struct hstate *h, struct page *page)
1157 {
1158         int i;
1159
1160         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1161                 return;
1162
1163         h->nr_huge_pages--;
1164         h->nr_huge_pages_node[page_to_nid(page)]--;
1165         for (i = 0; i < pages_per_huge_page(h); i++) {
1166                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1167                                 1 << PG_referenced | 1 << PG_dirty |
1168                                 1 << PG_active | 1 << PG_private |
1169                                 1 << PG_writeback);
1170         }
1171         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1172         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1173         set_page_refcounted(page);
1174         if (hstate_is_gigantic(h)) {
1175                 destroy_compound_gigantic_page(page, huge_page_order(h));
1176                 free_gigantic_page(page, huge_page_order(h));
1177         } else {
1178                 __free_pages(page, huge_page_order(h));
1179         }
1180 }
1181
1182 struct hstate *size_to_hstate(unsigned long size)
1183 {
1184         struct hstate *h;
1185
1186         for_each_hstate(h) {
1187                 if (huge_page_size(h) == size)
1188                         return h;
1189         }
1190         return NULL;
1191 }
1192
1193 /*
1194  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1195  * to hstate->hugepage_activelist.)
1196  *
1197  * This function can be called for tail pages, but never returns true for them.
1198  */
1199 bool page_huge_active(struct page *page)
1200 {
1201         VM_BUG_ON_PAGE(!PageHuge(page), page);
1202         return PageHead(page) && PagePrivate(&page[1]);
1203 }
1204
1205 /* never called for tail page */
1206 static void set_page_huge_active(struct page *page)
1207 {
1208         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1209         SetPagePrivate(&page[1]);
1210 }
1211
1212 static void clear_page_huge_active(struct page *page)
1213 {
1214         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215         ClearPagePrivate(&page[1]);
1216 }
1217
1218 /*
1219  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1220  * code
1221  */
1222 static inline bool PageHugeTemporary(struct page *page)
1223 {
1224         if (!PageHuge(page))
1225                 return false;
1226
1227         return (unsigned long)page[2].mapping == -1U;
1228 }
1229
1230 static inline void SetPageHugeTemporary(struct page *page)
1231 {
1232         page[2].mapping = (void *)-1U;
1233 }
1234
1235 static inline void ClearPageHugeTemporary(struct page *page)
1236 {
1237         page[2].mapping = NULL;
1238 }
1239
1240 void free_huge_page(struct page *page)
1241 {
1242         /*
1243          * Can't pass hstate in here because it is called from the
1244          * compound page destructor.
1245          */
1246         struct hstate *h = page_hstate(page);
1247         int nid = page_to_nid(page);
1248         struct hugepage_subpool *spool =
1249                 (struct hugepage_subpool *)page_private(page);
1250         bool restore_reserve;
1251
1252         set_page_private(page, 0);
1253         page->mapping = NULL;
1254         VM_BUG_ON_PAGE(page_count(page), page);
1255         VM_BUG_ON_PAGE(page_mapcount(page), page);
1256         restore_reserve = PagePrivate(page);
1257         ClearPagePrivate(page);
1258
1259         /*
1260          * A return code of zero implies that the subpool will be under its
1261          * minimum size if the reservation is not restored after page is free.
1262          * Therefore, force restore_reserve operation.
1263          */
1264         if (hugepage_subpool_put_pages(spool, 1) == 0)
1265                 restore_reserve = true;
1266
1267         spin_lock(&hugetlb_lock);
1268         clear_page_huge_active(page);
1269         hugetlb_cgroup_uncharge_page(hstate_index(h),
1270                                      pages_per_huge_page(h), page);
1271         if (restore_reserve)
1272                 h->resv_huge_pages++;
1273
1274         if (PageHugeTemporary(page)) {
1275                 list_del(&page->lru);
1276                 ClearPageHugeTemporary(page);
1277                 update_and_free_page(h, page);
1278         } else if (h->surplus_huge_pages_node[nid]) {
1279                 /* remove the page from active list */
1280                 list_del(&page->lru);
1281                 update_and_free_page(h, page);
1282                 h->surplus_huge_pages--;
1283                 h->surplus_huge_pages_node[nid]--;
1284         } else {
1285                 arch_clear_hugepage_flags(page);
1286                 enqueue_huge_page(h, page);
1287         }
1288         spin_unlock(&hugetlb_lock);
1289 }
1290
1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1292 {
1293         INIT_LIST_HEAD(&page->lru);
1294         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1295         spin_lock(&hugetlb_lock);
1296         set_hugetlb_cgroup(page, NULL);
1297         h->nr_huge_pages++;
1298         h->nr_huge_pages_node[nid]++;
1299         spin_unlock(&hugetlb_lock);
1300 }
1301
1302 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1303 {
1304         int i;
1305         int nr_pages = 1 << order;
1306         struct page *p = page + 1;
1307
1308         /* we rely on prep_new_huge_page to set the destructor */
1309         set_compound_order(page, order);
1310         __ClearPageReserved(page);
1311         __SetPageHead(page);
1312         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1313                 /*
1314                  * For gigantic hugepages allocated through bootmem at
1315                  * boot, it's safer to be consistent with the not-gigantic
1316                  * hugepages and clear the PG_reserved bit from all tail pages
1317                  * too.  Otherwse drivers using get_user_pages() to access tail
1318                  * pages may get the reference counting wrong if they see
1319                  * PG_reserved set on a tail page (despite the head page not
1320                  * having PG_reserved set).  Enforcing this consistency between
1321                  * head and tail pages allows drivers to optimize away a check
1322                  * on the head page when they need know if put_page() is needed
1323                  * after get_user_pages().
1324                  */
1325                 __ClearPageReserved(p);
1326                 set_page_count(p, 0);
1327                 set_compound_head(p, page);
1328         }
1329         atomic_set(compound_mapcount_ptr(page), -1);
1330 }
1331
1332 /*
1333  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1334  * transparent huge pages.  See the PageTransHuge() documentation for more
1335  * details.
1336  */
1337 int PageHuge(struct page *page)
1338 {
1339         if (!PageCompound(page))
1340                 return 0;
1341
1342         page = compound_head(page);
1343         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1344 }
1345 EXPORT_SYMBOL_GPL(PageHuge);
1346
1347 /*
1348  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1349  * normal or transparent huge pages.
1350  */
1351 int PageHeadHuge(struct page *page_head)
1352 {
1353         if (!PageHead(page_head))
1354                 return 0;
1355
1356         return get_compound_page_dtor(page_head) == free_huge_page;
1357 }
1358
1359 pgoff_t __basepage_index(struct page *page)
1360 {
1361         struct page *page_head = compound_head(page);
1362         pgoff_t index = page_index(page_head);
1363         unsigned long compound_idx;
1364
1365         if (!PageHuge(page_head))
1366                 return page_index(page);
1367
1368         if (compound_order(page_head) >= MAX_ORDER)
1369                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1370         else
1371                 compound_idx = page - page_head;
1372
1373         return (index << compound_order(page_head)) + compound_idx;
1374 }
1375
1376 static struct page *alloc_buddy_huge_page(struct hstate *h,
1377                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1378 {
1379         int order = huge_page_order(h);
1380         struct page *page;
1381
1382         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1383         if (nid == NUMA_NO_NODE)
1384                 nid = numa_mem_id();
1385         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1386         if (page)
1387                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1388         else
1389                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1390
1391         return page;
1392 }
1393
1394 /*
1395  * Common helper to allocate a fresh hugetlb page. All specific allocators
1396  * should use this function to get new hugetlb pages
1397  */
1398 static struct page *alloc_fresh_huge_page(struct hstate *h,
1399                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1400 {
1401         struct page *page;
1402
1403         if (hstate_is_gigantic(h))
1404                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1405         else
1406                 page = alloc_buddy_huge_page(h, gfp_mask,
1407                                 nid, nmask);
1408         if (!page)
1409                 return NULL;
1410
1411         if (hstate_is_gigantic(h))
1412                 prep_compound_gigantic_page(page, huge_page_order(h));
1413         prep_new_huge_page(h, page, page_to_nid(page));
1414
1415         return page;
1416 }
1417
1418 /*
1419  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1420  * manner.
1421  */
1422 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1423 {
1424         struct page *page;
1425         int nr_nodes, node;
1426         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1427
1428         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1429                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1430                 if (page)
1431                         break;
1432         }
1433
1434         if (!page)
1435                 return 0;
1436
1437         put_page(page); /* free it into the hugepage allocator */
1438
1439         return 1;
1440 }
1441
1442 /*
1443  * Free huge page from pool from next node to free.
1444  * Attempt to keep persistent huge pages more or less
1445  * balanced over allowed nodes.
1446  * Called with hugetlb_lock locked.
1447  */
1448 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1449                                                          bool acct_surplus)
1450 {
1451         int nr_nodes, node;
1452         int ret = 0;
1453
1454         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1455                 /*
1456                  * If we're returning unused surplus pages, only examine
1457                  * nodes with surplus pages.
1458                  */
1459                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1460                     !list_empty(&h->hugepage_freelists[node])) {
1461                         struct page *page =
1462                                 list_entry(h->hugepage_freelists[node].next,
1463                                           struct page, lru);
1464                         list_del(&page->lru);
1465                         h->free_huge_pages--;
1466                         h->free_huge_pages_node[node]--;
1467                         if (acct_surplus) {
1468                                 h->surplus_huge_pages--;
1469                                 h->surplus_huge_pages_node[node]--;
1470                         }
1471                         update_and_free_page(h, page);
1472                         ret = 1;
1473                         break;
1474                 }
1475         }
1476
1477         return ret;
1478 }
1479
1480 /*
1481  * Dissolve a given free hugepage into free buddy pages. This function does
1482  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1483  * dissolution fails because a give page is not a free hugepage, or because
1484  * free hugepages are fully reserved.
1485  */
1486 int dissolve_free_huge_page(struct page *page)
1487 {
1488         int rc = -EBUSY;
1489
1490         spin_lock(&hugetlb_lock);
1491         if (PageHuge(page) && !page_count(page)) {
1492                 struct page *head = compound_head(page);
1493                 struct hstate *h = page_hstate(head);
1494                 int nid = page_to_nid(head);
1495                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1496                         goto out;
1497                 /*
1498                  * Move PageHWPoison flag from head page to the raw error page,
1499                  * which makes any subpages rather than the error page reusable.
1500                  */
1501                 if (PageHWPoison(head) && page != head) {
1502                         SetPageHWPoison(page);
1503                         ClearPageHWPoison(head);
1504                 }
1505                 list_del(&head->lru);
1506                 h->free_huge_pages--;
1507                 h->free_huge_pages_node[nid]--;
1508                 h->max_huge_pages--;
1509                 update_and_free_page(h, head);
1510                 rc = 0;
1511         }
1512 out:
1513         spin_unlock(&hugetlb_lock);
1514         return rc;
1515 }
1516
1517 /*
1518  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519  * make specified memory blocks removable from the system.
1520  * Note that this will dissolve a free gigantic hugepage completely, if any
1521  * part of it lies within the given range.
1522  * Also note that if dissolve_free_huge_page() returns with an error, all
1523  * free hugepages that were dissolved before that error are lost.
1524  */
1525 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1526 {
1527         unsigned long pfn;
1528         struct page *page;
1529         int rc = 0;
1530
1531         if (!hugepages_supported())
1532                 return rc;
1533
1534         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535                 page = pfn_to_page(pfn);
1536                 if (PageHuge(page) && !page_count(page)) {
1537                         rc = dissolve_free_huge_page(page);
1538                         if (rc)
1539                                 break;
1540                 }
1541         }
1542
1543         return rc;
1544 }
1545
1546 /*
1547  * Allocates a fresh surplus page from the page allocator.
1548  */
1549 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550                 int nid, nodemask_t *nmask)
1551 {
1552         struct page *page = NULL;
1553
1554         if (hstate_is_gigantic(h))
1555                 return NULL;
1556
1557         spin_lock(&hugetlb_lock);
1558         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559                 goto out_unlock;
1560         spin_unlock(&hugetlb_lock);
1561
1562         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1563         if (!page)
1564                 return NULL;
1565
1566         spin_lock(&hugetlb_lock);
1567         /*
1568          * We could have raced with the pool size change.
1569          * Double check that and simply deallocate the new page
1570          * if we would end up overcommiting the surpluses. Abuse
1571          * temporary page to workaround the nasty free_huge_page
1572          * codeflow
1573          */
1574         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575                 SetPageHugeTemporary(page);
1576                 put_page(page);
1577                 page = NULL;
1578         } else {
1579                 h->surplus_huge_pages++;
1580                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1581         }
1582
1583 out_unlock:
1584         spin_unlock(&hugetlb_lock);
1585
1586         return page;
1587 }
1588
1589 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590                 int nid, nodemask_t *nmask)
1591 {
1592         struct page *page;
1593
1594         if (hstate_is_gigantic(h))
1595                 return NULL;
1596
1597         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1598         if (!page)
1599                 return NULL;
1600
1601         /*
1602          * We do not account these pages as surplus because they are only
1603          * temporary and will be released properly on the last reference
1604          */
1605         SetPageHugeTemporary(page);
1606
1607         return page;
1608 }
1609
1610 /*
1611  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612  */
1613 static
1614 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615                 struct vm_area_struct *vma, unsigned long addr)
1616 {
1617         struct page *page;
1618         struct mempolicy *mpol;
1619         gfp_t gfp_mask = htlb_alloc_mask(h);
1620         int nid;
1621         nodemask_t *nodemask;
1622
1623         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625         mpol_cond_put(mpol);
1626
1627         return page;
1628 }
1629
1630 /* page migration callback function */
1631 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632 {
1633         gfp_t gfp_mask = htlb_alloc_mask(h);
1634         struct page *page = NULL;
1635
1636         if (nid != NUMA_NO_NODE)
1637                 gfp_mask |= __GFP_THISNODE;
1638
1639         spin_lock(&hugetlb_lock);
1640         if (h->free_huge_pages - h->resv_huge_pages > 0)
1641                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642         spin_unlock(&hugetlb_lock);
1643
1644         if (!page)
1645                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1646
1647         return page;
1648 }
1649
1650 /* page migration callback function */
1651 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652                 nodemask_t *nmask)
1653 {
1654         gfp_t gfp_mask = htlb_alloc_mask(h);
1655
1656         spin_lock(&hugetlb_lock);
1657         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1658                 struct page *page;
1659
1660                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661                 if (page) {
1662                         spin_unlock(&hugetlb_lock);
1663                         return page;
1664                 }
1665         }
1666         spin_unlock(&hugetlb_lock);
1667
1668         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1669 }
1670
1671 /* mempolicy aware migration callback */
1672 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673                 unsigned long address)
1674 {
1675         struct mempolicy *mpol;
1676         nodemask_t *nodemask;
1677         struct page *page;
1678         gfp_t gfp_mask;
1679         int node;
1680
1681         gfp_mask = htlb_alloc_mask(h);
1682         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683         page = alloc_huge_page_nodemask(h, node, nodemask);
1684         mpol_cond_put(mpol);
1685
1686         return page;
1687 }
1688
1689 /*
1690  * Increase the hugetlb pool such that it can accommodate a reservation
1691  * of size 'delta'.
1692  */
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1694 {
1695         struct list_head surplus_list;
1696         struct page *page, *tmp;
1697         int ret, i;
1698         int needed, allocated;
1699         bool alloc_ok = true;
1700
1701         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702         if (needed <= 0) {
1703                 h->resv_huge_pages += delta;
1704                 return 0;
1705         }
1706
1707         allocated = 0;
1708         INIT_LIST_HEAD(&surplus_list);
1709
1710         ret = -ENOMEM;
1711 retry:
1712         spin_unlock(&hugetlb_lock);
1713         for (i = 0; i < needed; i++) {
1714                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715                                 NUMA_NO_NODE, NULL);
1716                 if (!page) {
1717                         alloc_ok = false;
1718                         break;
1719                 }
1720                 list_add(&page->lru, &surplus_list);
1721                 cond_resched();
1722         }
1723         allocated += i;
1724
1725         /*
1726          * After retaking hugetlb_lock, we need to recalculate 'needed'
1727          * because either resv_huge_pages or free_huge_pages may have changed.
1728          */
1729         spin_lock(&hugetlb_lock);
1730         needed = (h->resv_huge_pages + delta) -
1731                         (h->free_huge_pages + allocated);
1732         if (needed > 0) {
1733                 if (alloc_ok)
1734                         goto retry;
1735                 /*
1736                  * We were not able to allocate enough pages to
1737                  * satisfy the entire reservation so we free what
1738                  * we've allocated so far.
1739                  */
1740                 goto free;
1741         }
1742         /*
1743          * The surplus_list now contains _at_least_ the number of extra pages
1744          * needed to accommodate the reservation.  Add the appropriate number
1745          * of pages to the hugetlb pool and free the extras back to the buddy
1746          * allocator.  Commit the entire reservation here to prevent another
1747          * process from stealing the pages as they are added to the pool but
1748          * before they are reserved.
1749          */
1750         needed += allocated;
1751         h->resv_huge_pages += delta;
1752         ret = 0;
1753
1754         /* Free the needed pages to the hugetlb pool */
1755         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756                 if ((--needed) < 0)
1757                         break;
1758                 /*
1759                  * This page is now managed by the hugetlb allocator and has
1760                  * no users -- drop the buddy allocator's reference.
1761                  */
1762                 put_page_testzero(page);
1763                 VM_BUG_ON_PAGE(page_count(page), page);
1764                 enqueue_huge_page(h, page);
1765         }
1766 free:
1767         spin_unlock(&hugetlb_lock);
1768
1769         /* Free unnecessary surplus pages to the buddy allocator */
1770         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771                 put_page(page);
1772         spin_lock(&hugetlb_lock);
1773
1774         return ret;
1775 }
1776
1777 /*
1778  * This routine has two main purposes:
1779  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1781  *    to the associated reservation map.
1782  * 2) Free any unused surplus pages that may have been allocated to satisfy
1783  *    the reservation.  As many as unused_resv_pages may be freed.
1784  *
1785  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1786  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1787  * we must make sure nobody else can claim pages we are in the process of
1788  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1789  * number of huge pages we plan to free when dropping the lock.
1790  */
1791 static void return_unused_surplus_pages(struct hstate *h,
1792                                         unsigned long unused_resv_pages)
1793 {
1794         unsigned long nr_pages;
1795
1796         /* Cannot return gigantic pages currently */
1797         if (hstate_is_gigantic(h))
1798                 goto out;
1799
1800         /*
1801          * Part (or even all) of the reservation could have been backed
1802          * by pre-allocated pages. Only free surplus pages.
1803          */
1804         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805
1806         /*
1807          * We want to release as many surplus pages as possible, spread
1808          * evenly across all nodes with memory. Iterate across these nodes
1809          * until we can no longer free unreserved surplus pages. This occurs
1810          * when the nodes with surplus pages have no free pages.
1811          * free_pool_huge_page() will balance the the freed pages across the
1812          * on-line nodes with memory and will handle the hstate accounting.
1813          *
1814          * Note that we decrement resv_huge_pages as we free the pages.  If
1815          * we drop the lock, resv_huge_pages will still be sufficiently large
1816          * to cover subsequent pages we may free.
1817          */
1818         while (nr_pages--) {
1819                 h->resv_huge_pages--;
1820                 unused_resv_pages--;
1821                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822                         goto out;
1823                 cond_resched_lock(&hugetlb_lock);
1824         }
1825
1826 out:
1827         /* Fully uncommit the reservation */
1828         h->resv_huge_pages -= unused_resv_pages;
1829 }
1830
1831
1832 /*
1833  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834  * are used by the huge page allocation routines to manage reservations.
1835  *
1836  * vma_needs_reservation is called to determine if the huge page at addr
1837  * within the vma has an associated reservation.  If a reservation is
1838  * needed, the value 1 is returned.  The caller is then responsible for
1839  * managing the global reservation and subpool usage counts.  After
1840  * the huge page has been allocated, vma_commit_reservation is called
1841  * to add the page to the reservation map.  If the page allocation fails,
1842  * the reservation must be ended instead of committed.  vma_end_reservation
1843  * is called in such cases.
1844  *
1845  * In the normal case, vma_commit_reservation returns the same value
1846  * as the preceding vma_needs_reservation call.  The only time this
1847  * is not the case is if a reserve map was changed between calls.  It
1848  * is the responsibility of the caller to notice the difference and
1849  * take appropriate action.
1850  *
1851  * vma_add_reservation is used in error paths where a reservation must
1852  * be restored when a newly allocated huge page must be freed.  It is
1853  * to be called after calling vma_needs_reservation to determine if a
1854  * reservation exists.
1855  */
1856 enum vma_resv_mode {
1857         VMA_NEEDS_RESV,
1858         VMA_COMMIT_RESV,
1859         VMA_END_RESV,
1860         VMA_ADD_RESV,
1861 };
1862 static long __vma_reservation_common(struct hstate *h,
1863                                 struct vm_area_struct *vma, unsigned long addr,
1864                                 enum vma_resv_mode mode)
1865 {
1866         struct resv_map *resv;
1867         pgoff_t idx;
1868         long ret;
1869
1870         resv = vma_resv_map(vma);
1871         if (!resv)
1872                 return 1;
1873
1874         idx = vma_hugecache_offset(h, vma, addr);
1875         switch (mode) {
1876         case VMA_NEEDS_RESV:
1877                 ret = region_chg(resv, idx, idx + 1);
1878                 break;
1879         case VMA_COMMIT_RESV:
1880                 ret = region_add(resv, idx, idx + 1);
1881                 break;
1882         case VMA_END_RESV:
1883                 region_abort(resv, idx, idx + 1);
1884                 ret = 0;
1885                 break;
1886         case VMA_ADD_RESV:
1887                 if (vma->vm_flags & VM_MAYSHARE)
1888                         ret = region_add(resv, idx, idx + 1);
1889                 else {
1890                         region_abort(resv, idx, idx + 1);
1891                         ret = region_del(resv, idx, idx + 1);
1892                 }
1893                 break;
1894         default:
1895                 BUG();
1896         }
1897
1898         if (vma->vm_flags & VM_MAYSHARE)
1899                 return ret;
1900         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901                 /*
1902                  * In most cases, reserves always exist for private mappings.
1903                  * However, a file associated with mapping could have been
1904                  * hole punched or truncated after reserves were consumed.
1905                  * As subsequent fault on such a range will not use reserves.
1906                  * Subtle - The reserve map for private mappings has the
1907                  * opposite meaning than that of shared mappings.  If NO
1908                  * entry is in the reserve map, it means a reservation exists.
1909                  * If an entry exists in the reserve map, it means the
1910                  * reservation has already been consumed.  As a result, the
1911                  * return value of this routine is the opposite of the
1912                  * value returned from reserve map manipulation routines above.
1913                  */
1914                 if (ret)
1915                         return 0;
1916                 else
1917                         return 1;
1918         }
1919         else
1920                 return ret < 0 ? ret : 0;
1921 }
1922
1923 static long vma_needs_reservation(struct hstate *h,
1924                         struct vm_area_struct *vma, unsigned long addr)
1925 {
1926         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927 }
1928
1929 static long vma_commit_reservation(struct hstate *h,
1930                         struct vm_area_struct *vma, unsigned long addr)
1931 {
1932         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933 }
1934
1935 static void vma_end_reservation(struct hstate *h,
1936                         struct vm_area_struct *vma, unsigned long addr)
1937 {
1938         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939 }
1940
1941 static long vma_add_reservation(struct hstate *h,
1942                         struct vm_area_struct *vma, unsigned long addr)
1943 {
1944         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945 }
1946
1947 /*
1948  * This routine is called to restore a reservation on error paths.  In the
1949  * specific error paths, a huge page was allocated (via alloc_huge_page)
1950  * and is about to be freed.  If a reservation for the page existed,
1951  * alloc_huge_page would have consumed the reservation and set PagePrivate
1952  * in the newly allocated page.  When the page is freed via free_huge_page,
1953  * the global reservation count will be incremented if PagePrivate is set.
1954  * However, free_huge_page can not adjust the reserve map.  Adjust the
1955  * reserve map here to be consistent with global reserve count adjustments
1956  * to be made by free_huge_page.
1957  */
1958 static void restore_reserve_on_error(struct hstate *h,
1959                         struct vm_area_struct *vma, unsigned long address,
1960                         struct page *page)
1961 {
1962         if (unlikely(PagePrivate(page))) {
1963                 long rc = vma_needs_reservation(h, vma, address);
1964
1965                 if (unlikely(rc < 0)) {
1966                         /*
1967                          * Rare out of memory condition in reserve map
1968                          * manipulation.  Clear PagePrivate so that
1969                          * global reserve count will not be incremented
1970                          * by free_huge_page.  This will make it appear
1971                          * as though the reservation for this page was
1972                          * consumed.  This may prevent the task from
1973                          * faulting in the page at a later time.  This
1974                          * is better than inconsistent global huge page
1975                          * accounting of reserve counts.
1976                          */
1977                         ClearPagePrivate(page);
1978                 } else if (rc) {
1979                         rc = vma_add_reservation(h, vma, address);
1980                         if (unlikely(rc < 0))
1981                                 /*
1982                                  * See above comment about rare out of
1983                                  * memory condition.
1984                                  */
1985                                 ClearPagePrivate(page);
1986                 } else
1987                         vma_end_reservation(h, vma, address);
1988         }
1989 }
1990
1991 struct page *alloc_huge_page(struct vm_area_struct *vma,
1992                                     unsigned long addr, int avoid_reserve)
1993 {
1994         struct hugepage_subpool *spool = subpool_vma(vma);
1995         struct hstate *h = hstate_vma(vma);
1996         struct page *page;
1997         long map_chg, map_commit;
1998         long gbl_chg;
1999         int ret, idx;
2000         struct hugetlb_cgroup *h_cg;
2001
2002         idx = hstate_index(h);
2003         /*
2004          * Examine the region/reserve map to determine if the process
2005          * has a reservation for the page to be allocated.  A return
2006          * code of zero indicates a reservation exists (no change).
2007          */
2008         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009         if (map_chg < 0)
2010                 return ERR_PTR(-ENOMEM);
2011
2012         /*
2013          * Processes that did not create the mapping will have no
2014          * reserves as indicated by the region/reserve map. Check
2015          * that the allocation will not exceed the subpool limit.
2016          * Allocations for MAP_NORESERVE mappings also need to be
2017          * checked against any subpool limit.
2018          */
2019         if (map_chg || avoid_reserve) {
2020                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021                 if (gbl_chg < 0) {
2022                         vma_end_reservation(h, vma, addr);
2023                         return ERR_PTR(-ENOSPC);
2024                 }
2025
2026                 /*
2027                  * Even though there was no reservation in the region/reserve
2028                  * map, there could be reservations associated with the
2029                  * subpool that can be used.  This would be indicated if the
2030                  * return value of hugepage_subpool_get_pages() is zero.
2031                  * However, if avoid_reserve is specified we still avoid even
2032                  * the subpool reservations.
2033                  */
2034                 if (avoid_reserve)
2035                         gbl_chg = 1;
2036         }
2037
2038         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039         if (ret)
2040                 goto out_subpool_put;
2041
2042         spin_lock(&hugetlb_lock);
2043         /*
2044          * glb_chg is passed to indicate whether or not a page must be taken
2045          * from the global free pool (global change).  gbl_chg == 0 indicates
2046          * a reservation exists for the allocation.
2047          */
2048         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049         if (!page) {
2050                 spin_unlock(&hugetlb_lock);
2051                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052                 if (!page)
2053                         goto out_uncharge_cgroup;
2054                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055                         SetPagePrivate(page);
2056                         h->resv_huge_pages--;
2057                 }
2058                 spin_lock(&hugetlb_lock);
2059                 list_move(&page->lru, &h->hugepage_activelist);
2060                 /* Fall through */
2061         }
2062         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063         spin_unlock(&hugetlb_lock);
2064
2065         set_page_private(page, (unsigned long)spool);
2066
2067         map_commit = vma_commit_reservation(h, vma, addr);
2068         if (unlikely(map_chg > map_commit)) {
2069                 /*
2070                  * The page was added to the reservation map between
2071                  * vma_needs_reservation and vma_commit_reservation.
2072                  * This indicates a race with hugetlb_reserve_pages.
2073                  * Adjust for the subpool count incremented above AND
2074                  * in hugetlb_reserve_pages for the same page.  Also,
2075                  * the reservation count added in hugetlb_reserve_pages
2076                  * no longer applies.
2077                  */
2078                 long rsv_adjust;
2079
2080                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081                 hugetlb_acct_memory(h, -rsv_adjust);
2082         }
2083         return page;
2084
2085 out_uncharge_cgroup:
2086         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 out_subpool_put:
2088         if (map_chg || avoid_reserve)
2089                 hugepage_subpool_put_pages(spool, 1);
2090         vma_end_reservation(h, vma, addr);
2091         return ERR_PTR(-ENOSPC);
2092 }
2093
2094 int alloc_bootmem_huge_page(struct hstate *h)
2095         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096 int __alloc_bootmem_huge_page(struct hstate *h)
2097 {
2098         struct huge_bootmem_page *m;
2099         int nr_nodes, node;
2100
2101         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2102                 void *addr;
2103
2104                 addr = memblock_alloc_try_nid_raw(
2105                                 huge_page_size(h), huge_page_size(h),
2106                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2107                 if (addr) {
2108                         /*
2109                          * Use the beginning of the huge page to store the
2110                          * huge_bootmem_page struct (until gather_bootmem
2111                          * puts them into the mem_map).
2112                          */
2113                         m = addr;
2114                         goto found;
2115                 }
2116         }
2117         return 0;
2118
2119 found:
2120         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121         /* Put them into a private list first because mem_map is not up yet */
2122         INIT_LIST_HEAD(&m->list);
2123         list_add(&m->list, &huge_boot_pages);
2124         m->hstate = h;
2125         return 1;
2126 }
2127
2128 static void __init prep_compound_huge_page(struct page *page,
2129                 unsigned int order)
2130 {
2131         if (unlikely(order > (MAX_ORDER - 1)))
2132                 prep_compound_gigantic_page(page, order);
2133         else
2134                 prep_compound_page(page, order);
2135 }
2136
2137 /* Put bootmem huge pages into the standard lists after mem_map is up */
2138 static void __init gather_bootmem_prealloc(void)
2139 {
2140         struct huge_bootmem_page *m;
2141
2142         list_for_each_entry(m, &huge_boot_pages, list) {
2143                 struct page *page = virt_to_page(m);
2144                 struct hstate *h = m->hstate;
2145
2146                 WARN_ON(page_count(page) != 1);
2147                 prep_compound_huge_page(page, h->order);
2148                 WARN_ON(PageReserved(page));
2149                 prep_new_huge_page(h, page, page_to_nid(page));
2150                 put_page(page); /* free it into the hugepage allocator */
2151
2152                 /*
2153                  * If we had gigantic hugepages allocated at boot time, we need
2154                  * to restore the 'stolen' pages to totalram_pages in order to
2155                  * fix confusing memory reports from free(1) and another
2156                  * side-effects, like CommitLimit going negative.
2157                  */
2158                 if (hstate_is_gigantic(h))
2159                         adjust_managed_page_count(page, 1 << h->order);
2160                 cond_resched();
2161         }
2162 }
2163
2164 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2165 {
2166         unsigned long i;
2167
2168         for (i = 0; i < h->max_huge_pages; ++i) {
2169                 if (hstate_is_gigantic(h)) {
2170                         if (!alloc_bootmem_huge_page(h))
2171                                 break;
2172                 } else if (!alloc_pool_huge_page(h,
2173                                          &node_states[N_MEMORY]))
2174                         break;
2175                 cond_resched();
2176         }
2177         if (i < h->max_huge_pages) {
2178                 char buf[32];
2179
2180                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2181                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2182                         h->max_huge_pages, buf, i);
2183                 h->max_huge_pages = i;
2184         }
2185 }
2186
2187 static void __init hugetlb_init_hstates(void)
2188 {
2189         struct hstate *h;
2190
2191         for_each_hstate(h) {
2192                 if (minimum_order > huge_page_order(h))
2193                         minimum_order = huge_page_order(h);
2194
2195                 /* oversize hugepages were init'ed in early boot */
2196                 if (!hstate_is_gigantic(h))
2197                         hugetlb_hstate_alloc_pages(h);
2198         }
2199         VM_BUG_ON(minimum_order == UINT_MAX);
2200 }
2201
2202 static void __init report_hugepages(void)
2203 {
2204         struct hstate *h;
2205
2206         for_each_hstate(h) {
2207                 char buf[32];
2208
2209                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2210                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2211                         buf, h->free_huge_pages);
2212         }
2213 }
2214
2215 #ifdef CONFIG_HIGHMEM
2216 static void try_to_free_low(struct hstate *h, unsigned long count,
2217                                                 nodemask_t *nodes_allowed)
2218 {
2219         int i;
2220
2221         if (hstate_is_gigantic(h))
2222                 return;
2223
2224         for_each_node_mask(i, *nodes_allowed) {
2225                 struct page *page, *next;
2226                 struct list_head *freel = &h->hugepage_freelists[i];
2227                 list_for_each_entry_safe(page, next, freel, lru) {
2228                         if (count >= h->nr_huge_pages)
2229                                 return;
2230                         if (PageHighMem(page))
2231                                 continue;
2232                         list_del(&page->lru);
2233                         update_and_free_page(h, page);
2234                         h->free_huge_pages--;
2235                         h->free_huge_pages_node[page_to_nid(page)]--;
2236                 }
2237         }
2238 }
2239 #else
2240 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2241                                                 nodemask_t *nodes_allowed)
2242 {
2243 }
2244 #endif
2245
2246 /*
2247  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2248  * balanced by operating on them in a round-robin fashion.
2249  * Returns 1 if an adjustment was made.
2250  */
2251 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2252                                 int delta)
2253 {
2254         int nr_nodes, node;
2255
2256         VM_BUG_ON(delta != -1 && delta != 1);
2257
2258         if (delta < 0) {
2259                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2260                         if (h->surplus_huge_pages_node[node])
2261                                 goto found;
2262                 }
2263         } else {
2264                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2265                         if (h->surplus_huge_pages_node[node] <
2266                                         h->nr_huge_pages_node[node])
2267                                 goto found;
2268                 }
2269         }
2270         return 0;
2271
2272 found:
2273         h->surplus_huge_pages += delta;
2274         h->surplus_huge_pages_node[node] += delta;
2275         return 1;
2276 }
2277
2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2280                                                 nodemask_t *nodes_allowed)
2281 {
2282         unsigned long min_count, ret;
2283
2284         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2285                 return h->max_huge_pages;
2286
2287         /*
2288          * Increase the pool size
2289          * First take pages out of surplus state.  Then make up the
2290          * remaining difference by allocating fresh huge pages.
2291          *
2292          * We might race with alloc_surplus_huge_page() here and be unable
2293          * to convert a surplus huge page to a normal huge page. That is
2294          * not critical, though, it just means the overall size of the
2295          * pool might be one hugepage larger than it needs to be, but
2296          * within all the constraints specified by the sysctls.
2297          */
2298         spin_lock(&hugetlb_lock);
2299         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2300                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2301                         break;
2302         }
2303
2304         while (count > persistent_huge_pages(h)) {
2305                 /*
2306                  * If this allocation races such that we no longer need the
2307                  * page, free_huge_page will handle it by freeing the page
2308                  * and reducing the surplus.
2309                  */
2310                 spin_unlock(&hugetlb_lock);
2311
2312                 /* yield cpu to avoid soft lockup */
2313                 cond_resched();
2314
2315                 ret = alloc_pool_huge_page(h, nodes_allowed);
2316                 spin_lock(&hugetlb_lock);
2317                 if (!ret)
2318                         goto out;
2319
2320                 /* Bail for signals. Probably ctrl-c from user */
2321                 if (signal_pending(current))
2322                         goto out;
2323         }
2324
2325         /*
2326          * Decrease the pool size
2327          * First return free pages to the buddy allocator (being careful
2328          * to keep enough around to satisfy reservations).  Then place
2329          * pages into surplus state as needed so the pool will shrink
2330          * to the desired size as pages become free.
2331          *
2332          * By placing pages into the surplus state independent of the
2333          * overcommit value, we are allowing the surplus pool size to
2334          * exceed overcommit. There are few sane options here. Since
2335          * alloc_surplus_huge_page() is checking the global counter,
2336          * though, we'll note that we're not allowed to exceed surplus
2337          * and won't grow the pool anywhere else. Not until one of the
2338          * sysctls are changed, or the surplus pages go out of use.
2339          */
2340         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2341         min_count = max(count, min_count);
2342         try_to_free_low(h, min_count, nodes_allowed);
2343         while (min_count < persistent_huge_pages(h)) {
2344                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2345                         break;
2346                 cond_resched_lock(&hugetlb_lock);
2347         }
2348         while (count < persistent_huge_pages(h)) {
2349                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2350                         break;
2351         }
2352 out:
2353         ret = persistent_huge_pages(h);
2354         spin_unlock(&hugetlb_lock);
2355         return ret;
2356 }
2357
2358 #define HSTATE_ATTR_RO(_name) \
2359         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2360
2361 #define HSTATE_ATTR(_name) \
2362         static struct kobj_attribute _name##_attr = \
2363                 __ATTR(_name, 0644, _name##_show, _name##_store)
2364
2365 static struct kobject *hugepages_kobj;
2366 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2367
2368 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2369
2370 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2371 {
2372         int i;
2373
2374         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2375                 if (hstate_kobjs[i] == kobj) {
2376                         if (nidp)
2377                                 *nidp = NUMA_NO_NODE;
2378                         return &hstates[i];
2379                 }
2380
2381         return kobj_to_node_hstate(kobj, nidp);
2382 }
2383
2384 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2385                                         struct kobj_attribute *attr, char *buf)
2386 {
2387         struct hstate *h;
2388         unsigned long nr_huge_pages;
2389         int nid;
2390
2391         h = kobj_to_hstate(kobj, &nid);
2392         if (nid == NUMA_NO_NODE)
2393                 nr_huge_pages = h->nr_huge_pages;
2394         else
2395                 nr_huge_pages = h->nr_huge_pages_node[nid];
2396
2397         return sprintf(buf, "%lu\n", nr_huge_pages);
2398 }
2399
2400 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2401                                            struct hstate *h, int nid,
2402                                            unsigned long count, size_t len)
2403 {
2404         int err;
2405         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2406
2407         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2408                 err = -EINVAL;
2409                 goto out;
2410         }
2411
2412         if (nid == NUMA_NO_NODE) {
2413                 /*
2414                  * global hstate attribute
2415                  */
2416                 if (!(obey_mempolicy &&
2417                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2418                         NODEMASK_FREE(nodes_allowed);
2419                         nodes_allowed = &node_states[N_MEMORY];
2420                 }
2421         } else if (nodes_allowed) {
2422                 /*
2423                  * per node hstate attribute: adjust count to global,
2424                  * but restrict alloc/free to the specified node.
2425                  */
2426                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2427                 init_nodemask_of_node(nodes_allowed, nid);
2428         } else
2429                 nodes_allowed = &node_states[N_MEMORY];
2430
2431         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2432
2433         if (nodes_allowed != &node_states[N_MEMORY])
2434                 NODEMASK_FREE(nodes_allowed);
2435
2436         return len;
2437 out:
2438         NODEMASK_FREE(nodes_allowed);
2439         return err;
2440 }
2441
2442 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2443                                          struct kobject *kobj, const char *buf,
2444                                          size_t len)
2445 {
2446         struct hstate *h;
2447         unsigned long count;
2448         int nid;
2449         int err;
2450
2451         err = kstrtoul(buf, 10, &count);
2452         if (err)
2453                 return err;
2454
2455         h = kobj_to_hstate(kobj, &nid);
2456         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2457 }
2458
2459 static ssize_t nr_hugepages_show(struct kobject *kobj,
2460                                        struct kobj_attribute *attr, char *buf)
2461 {
2462         return nr_hugepages_show_common(kobj, attr, buf);
2463 }
2464
2465 static ssize_t nr_hugepages_store(struct kobject *kobj,
2466                struct kobj_attribute *attr, const char *buf, size_t len)
2467 {
2468         return nr_hugepages_store_common(false, kobj, buf, len);
2469 }
2470 HSTATE_ATTR(nr_hugepages);
2471
2472 #ifdef CONFIG_NUMA
2473
2474 /*
2475  * hstate attribute for optionally mempolicy-based constraint on persistent
2476  * huge page alloc/free.
2477  */
2478 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2479                                        struct kobj_attribute *attr, char *buf)
2480 {
2481         return nr_hugepages_show_common(kobj, attr, buf);
2482 }
2483
2484 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2485                struct kobj_attribute *attr, const char *buf, size_t len)
2486 {
2487         return nr_hugepages_store_common(true, kobj, buf, len);
2488 }
2489 HSTATE_ATTR(nr_hugepages_mempolicy);
2490 #endif
2491
2492
2493 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2494                                         struct kobj_attribute *attr, char *buf)
2495 {
2496         struct hstate *h = kobj_to_hstate(kobj, NULL);
2497         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2498 }
2499
2500 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2501                 struct kobj_attribute *attr, const char *buf, size_t count)
2502 {
2503         int err;
2504         unsigned long input;
2505         struct hstate *h = kobj_to_hstate(kobj, NULL);
2506
2507         if (hstate_is_gigantic(h))
2508                 return -EINVAL;
2509
2510         err = kstrtoul(buf, 10, &input);
2511         if (err)
2512                 return err;
2513
2514         spin_lock(&hugetlb_lock);
2515         h->nr_overcommit_huge_pages = input;
2516         spin_unlock(&hugetlb_lock);
2517
2518         return count;
2519 }
2520 HSTATE_ATTR(nr_overcommit_hugepages);
2521
2522 static ssize_t free_hugepages_show(struct kobject *kobj,
2523                                         struct kobj_attribute *attr, char *buf)
2524 {
2525         struct hstate *h;
2526         unsigned long free_huge_pages;
2527         int nid;
2528
2529         h = kobj_to_hstate(kobj, &nid);
2530         if (nid == NUMA_NO_NODE)
2531                 free_huge_pages = h->free_huge_pages;
2532         else
2533                 free_huge_pages = h->free_huge_pages_node[nid];
2534
2535         return sprintf(buf, "%lu\n", free_huge_pages);
2536 }
2537 HSTATE_ATTR_RO(free_hugepages);
2538
2539 static ssize_t resv_hugepages_show(struct kobject *kobj,
2540                                         struct kobj_attribute *attr, char *buf)
2541 {
2542         struct hstate *h = kobj_to_hstate(kobj, NULL);
2543         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2544 }
2545 HSTATE_ATTR_RO(resv_hugepages);
2546
2547 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2548                                         struct kobj_attribute *attr, char *buf)
2549 {
2550         struct hstate *h;
2551         unsigned long surplus_huge_pages;
2552         int nid;
2553
2554         h = kobj_to_hstate(kobj, &nid);
2555         if (nid == NUMA_NO_NODE)
2556                 surplus_huge_pages = h->surplus_huge_pages;
2557         else
2558                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2559
2560         return sprintf(buf, "%lu\n", surplus_huge_pages);
2561 }
2562 HSTATE_ATTR_RO(surplus_hugepages);
2563
2564 static struct attribute *hstate_attrs[] = {
2565         &nr_hugepages_attr.attr,
2566         &nr_overcommit_hugepages_attr.attr,
2567         &free_hugepages_attr.attr,
2568         &resv_hugepages_attr.attr,
2569         &surplus_hugepages_attr.attr,
2570 #ifdef CONFIG_NUMA
2571         &nr_hugepages_mempolicy_attr.attr,
2572 #endif
2573         NULL,
2574 };
2575
2576 static const struct attribute_group hstate_attr_group = {
2577         .attrs = hstate_attrs,
2578 };
2579
2580 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2581                                     struct kobject **hstate_kobjs,
2582                                     const struct attribute_group *hstate_attr_group)
2583 {
2584         int retval;
2585         int hi = hstate_index(h);
2586
2587         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2588         if (!hstate_kobjs[hi])
2589                 return -ENOMEM;
2590
2591         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2592         if (retval)
2593                 kobject_put(hstate_kobjs[hi]);
2594
2595         return retval;
2596 }
2597
2598 static void __init hugetlb_sysfs_init(void)
2599 {
2600         struct hstate *h;
2601         int err;
2602
2603         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2604         if (!hugepages_kobj)
2605                 return;
2606
2607         for_each_hstate(h) {
2608                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2609                                          hstate_kobjs, &hstate_attr_group);
2610                 if (err)
2611                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2612         }
2613 }
2614
2615 #ifdef CONFIG_NUMA
2616
2617 /*
2618  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2619  * with node devices in node_devices[] using a parallel array.  The array
2620  * index of a node device or _hstate == node id.
2621  * This is here to avoid any static dependency of the node device driver, in
2622  * the base kernel, on the hugetlb module.
2623  */
2624 struct node_hstate {
2625         struct kobject          *hugepages_kobj;
2626         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2627 };
2628 static struct node_hstate node_hstates[MAX_NUMNODES];
2629
2630 /*
2631  * A subset of global hstate attributes for node devices
2632  */
2633 static struct attribute *per_node_hstate_attrs[] = {
2634         &nr_hugepages_attr.attr,
2635         &free_hugepages_attr.attr,
2636         &surplus_hugepages_attr.attr,
2637         NULL,
2638 };
2639
2640 static const struct attribute_group per_node_hstate_attr_group = {
2641         .attrs = per_node_hstate_attrs,
2642 };
2643
2644 /*
2645  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2646  * Returns node id via non-NULL nidp.
2647  */
2648 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2649 {
2650         int nid;
2651
2652         for (nid = 0; nid < nr_node_ids; nid++) {
2653                 struct node_hstate *nhs = &node_hstates[nid];
2654                 int i;
2655                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2656                         if (nhs->hstate_kobjs[i] == kobj) {
2657                                 if (nidp)
2658                                         *nidp = nid;
2659                                 return &hstates[i];
2660                         }
2661         }
2662
2663         BUG();
2664         return NULL;
2665 }
2666
2667 /*
2668  * Unregister hstate attributes from a single node device.
2669  * No-op if no hstate attributes attached.
2670  */
2671 static void hugetlb_unregister_node(struct node *node)
2672 {
2673         struct hstate *h;
2674         struct node_hstate *nhs = &node_hstates[node->dev.id];
2675
2676         if (!nhs->hugepages_kobj)
2677                 return;         /* no hstate attributes */
2678
2679         for_each_hstate(h) {
2680                 int idx = hstate_index(h);
2681                 if (nhs->hstate_kobjs[idx]) {
2682                         kobject_put(nhs->hstate_kobjs[idx]);
2683                         nhs->hstate_kobjs[idx] = NULL;
2684                 }
2685         }
2686
2687         kobject_put(nhs->hugepages_kobj);
2688         nhs->hugepages_kobj = NULL;
2689 }
2690
2691
2692 /*
2693  * Register hstate attributes for a single node device.
2694  * No-op if attributes already registered.
2695  */
2696 static void hugetlb_register_node(struct node *node)
2697 {
2698         struct hstate *h;
2699         struct node_hstate *nhs = &node_hstates[node->dev.id];
2700         int err;
2701
2702         if (nhs->hugepages_kobj)
2703                 return;         /* already allocated */
2704
2705         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2706                                                         &node->dev.kobj);
2707         if (!nhs->hugepages_kobj)
2708                 return;
2709
2710         for_each_hstate(h) {
2711                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2712                                                 nhs->hstate_kobjs,
2713                                                 &per_node_hstate_attr_group);
2714                 if (err) {
2715                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2716                                 h->name, node->dev.id);
2717                         hugetlb_unregister_node(node);
2718                         break;
2719                 }
2720         }
2721 }
2722
2723 /*
2724  * hugetlb init time:  register hstate attributes for all registered node
2725  * devices of nodes that have memory.  All on-line nodes should have
2726  * registered their associated device by this time.
2727  */
2728 static void __init hugetlb_register_all_nodes(void)
2729 {
2730         int nid;
2731
2732         for_each_node_state(nid, N_MEMORY) {
2733                 struct node *node = node_devices[nid];
2734                 if (node->dev.id == nid)
2735                         hugetlb_register_node(node);
2736         }
2737
2738         /*
2739          * Let the node device driver know we're here so it can
2740          * [un]register hstate attributes on node hotplug.
2741          */
2742         register_hugetlbfs_with_node(hugetlb_register_node,
2743                                      hugetlb_unregister_node);
2744 }
2745 #else   /* !CONFIG_NUMA */
2746
2747 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2748 {
2749         BUG();
2750         if (nidp)
2751                 *nidp = -1;
2752         return NULL;
2753 }
2754
2755 static void hugetlb_register_all_nodes(void) { }
2756
2757 #endif
2758
2759 static int __init hugetlb_init(void)
2760 {
2761         int i;
2762
2763         if (!hugepages_supported())
2764                 return 0;
2765
2766         if (!size_to_hstate(default_hstate_size)) {
2767                 if (default_hstate_size != 0) {
2768                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2769                                default_hstate_size, HPAGE_SIZE);
2770                 }
2771
2772                 default_hstate_size = HPAGE_SIZE;
2773                 if (!size_to_hstate(default_hstate_size))
2774                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2775         }
2776         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2777         if (default_hstate_max_huge_pages) {
2778                 if (!default_hstate.max_huge_pages)
2779                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2780         }
2781
2782         hugetlb_init_hstates();
2783         gather_bootmem_prealloc();
2784         report_hugepages();
2785
2786         hugetlb_sysfs_init();
2787         hugetlb_register_all_nodes();
2788         hugetlb_cgroup_file_init();
2789
2790 #ifdef CONFIG_SMP
2791         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2792 #else
2793         num_fault_mutexes = 1;
2794 #endif
2795         hugetlb_fault_mutex_table =
2796                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2797                               GFP_KERNEL);
2798         BUG_ON(!hugetlb_fault_mutex_table);
2799
2800         for (i = 0; i < num_fault_mutexes; i++)
2801                 mutex_init(&hugetlb_fault_mutex_table[i]);
2802         return 0;
2803 }
2804 subsys_initcall(hugetlb_init);
2805
2806 /* Should be called on processing a hugepagesz=... option */
2807 void __init hugetlb_bad_size(void)
2808 {
2809         parsed_valid_hugepagesz = false;
2810 }
2811
2812 void __init hugetlb_add_hstate(unsigned int order)
2813 {
2814         struct hstate *h;
2815         unsigned long i;
2816
2817         if (size_to_hstate(PAGE_SIZE << order)) {
2818                 pr_warn("hugepagesz= specified twice, ignoring\n");
2819                 return;
2820         }
2821         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2822         BUG_ON(order == 0);
2823         h = &hstates[hugetlb_max_hstate++];
2824         h->order = order;
2825         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2826         h->nr_huge_pages = 0;
2827         h->free_huge_pages = 0;
2828         for (i = 0; i < MAX_NUMNODES; ++i)
2829                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2830         INIT_LIST_HEAD(&h->hugepage_activelist);
2831         h->next_nid_to_alloc = first_memory_node;
2832         h->next_nid_to_free = first_memory_node;
2833         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2834                                         huge_page_size(h)/1024);
2835
2836         parsed_hstate = h;
2837 }
2838
2839 static int __init hugetlb_nrpages_setup(char *s)
2840 {
2841         unsigned long *mhp;
2842         static unsigned long *last_mhp;
2843
2844         if (!parsed_valid_hugepagesz) {
2845                 pr_warn("hugepages = %s preceded by "
2846                         "an unsupported hugepagesz, ignoring\n", s);
2847                 parsed_valid_hugepagesz = true;
2848                 return 1;
2849         }
2850         /*
2851          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2852          * so this hugepages= parameter goes to the "default hstate".
2853          */
2854         else if (!hugetlb_max_hstate)
2855                 mhp = &default_hstate_max_huge_pages;
2856         else
2857                 mhp = &parsed_hstate->max_huge_pages;
2858
2859         if (mhp == last_mhp) {
2860                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2861                 return 1;
2862         }
2863
2864         if (sscanf(s, "%lu", mhp) <= 0)
2865                 *mhp = 0;
2866
2867         /*
2868          * Global state is always initialized later in hugetlb_init.
2869          * But we need to allocate >= MAX_ORDER hstates here early to still
2870          * use the bootmem allocator.
2871          */
2872         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2873                 hugetlb_hstate_alloc_pages(parsed_hstate);
2874
2875         last_mhp = mhp;
2876
2877         return 1;
2878 }
2879 __setup("hugepages=", hugetlb_nrpages_setup);
2880
2881 static int __init hugetlb_default_setup(char *s)
2882 {
2883         default_hstate_size = memparse(s, &s);
2884         return 1;
2885 }
2886 __setup("default_hugepagesz=", hugetlb_default_setup);
2887
2888 static unsigned int cpuset_mems_nr(unsigned int *array)
2889 {
2890         int node;
2891         unsigned int nr = 0;
2892
2893         for_each_node_mask(node, cpuset_current_mems_allowed)
2894                 nr += array[node];
2895
2896         return nr;
2897 }
2898
2899 #ifdef CONFIG_SYSCTL
2900 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2901                          struct ctl_table *table, int write,
2902                          void __user *buffer, size_t *length, loff_t *ppos)
2903 {
2904         struct hstate *h = &default_hstate;
2905         unsigned long tmp = h->max_huge_pages;
2906         int ret;
2907
2908         if (!hugepages_supported())
2909                 return -EOPNOTSUPP;
2910
2911         table->data = &tmp;
2912         table->maxlen = sizeof(unsigned long);
2913         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2914         if (ret)
2915                 goto out;
2916
2917         if (write)
2918                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2919                                                   NUMA_NO_NODE, tmp, *length);
2920 out:
2921         return ret;
2922 }
2923
2924 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2925                           void __user *buffer, size_t *length, loff_t *ppos)
2926 {
2927
2928         return hugetlb_sysctl_handler_common(false, table, write,
2929                                                         buffer, length, ppos);
2930 }
2931
2932 #ifdef CONFIG_NUMA
2933 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2934                           void __user *buffer, size_t *length, loff_t *ppos)
2935 {
2936         return hugetlb_sysctl_handler_common(true, table, write,
2937                                                         buffer, length, ppos);
2938 }
2939 #endif /* CONFIG_NUMA */
2940
2941 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2942                         void __user *buffer,
2943                         size_t *length, loff_t *ppos)
2944 {
2945         struct hstate *h = &default_hstate;
2946         unsigned long tmp;
2947         int ret;
2948
2949         if (!hugepages_supported())
2950                 return -EOPNOTSUPP;
2951
2952         tmp = h->nr_overcommit_huge_pages;
2953
2954         if (write && hstate_is_gigantic(h))
2955                 return -EINVAL;
2956
2957         table->data = &tmp;
2958         table->maxlen = sizeof(unsigned long);
2959         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2960         if (ret)
2961                 goto out;
2962
2963         if (write) {
2964                 spin_lock(&hugetlb_lock);
2965                 h->nr_overcommit_huge_pages = tmp;
2966                 spin_unlock(&hugetlb_lock);
2967         }
2968 out:
2969         return ret;
2970 }
2971
2972 #endif /* CONFIG_SYSCTL */
2973
2974 void hugetlb_report_meminfo(struct seq_file *m)
2975 {
2976         struct hstate *h;
2977         unsigned long total = 0;
2978
2979         if (!hugepages_supported())
2980                 return;
2981
2982         for_each_hstate(h) {
2983                 unsigned long count = h->nr_huge_pages;
2984
2985                 total += (PAGE_SIZE << huge_page_order(h)) * count;
2986
2987                 if (h == &default_hstate)
2988                         seq_printf(m,
2989                                    "HugePages_Total:   %5lu\n"
2990                                    "HugePages_Free:    %5lu\n"
2991                                    "HugePages_Rsvd:    %5lu\n"
2992                                    "HugePages_Surp:    %5lu\n"
2993                                    "Hugepagesize:   %8lu kB\n",
2994                                    count,
2995                                    h->free_huge_pages,
2996                                    h->resv_huge_pages,
2997                                    h->surplus_huge_pages,
2998                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
2999         }
3000
3001         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3002 }
3003
3004 int hugetlb_report_node_meminfo(int nid, char *buf)
3005 {
3006         struct hstate *h = &default_hstate;
3007         if (!hugepages_supported())
3008                 return 0;
3009         return sprintf(buf,
3010                 "Node %d HugePages_Total: %5u\n"
3011                 "Node %d HugePages_Free:  %5u\n"
3012                 "Node %d HugePages_Surp:  %5u\n",
3013                 nid, h->nr_huge_pages_node[nid],
3014                 nid, h->free_huge_pages_node[nid],
3015                 nid, h->surplus_huge_pages_node[nid]);
3016 }
3017
3018 void hugetlb_show_meminfo(void)
3019 {
3020         struct hstate *h;
3021         int nid;
3022
3023         if (!hugepages_supported())
3024                 return;
3025
3026         for_each_node_state(nid, N_MEMORY)
3027                 for_each_hstate(h)
3028                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3029                                 nid,
3030                                 h->nr_huge_pages_node[nid],
3031                                 h->free_huge_pages_node[nid],
3032                                 h->surplus_huge_pages_node[nid],
3033                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3034 }
3035
3036 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3037 {
3038         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3039                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3040 }
3041
3042 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3043 unsigned long hugetlb_total_pages(void)
3044 {
3045         struct hstate *h;
3046         unsigned long nr_total_pages = 0;
3047
3048         for_each_hstate(h)
3049                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3050         return nr_total_pages;
3051 }
3052
3053 static int hugetlb_acct_memory(struct hstate *h, long delta)
3054 {
3055         int ret = -ENOMEM;
3056
3057         spin_lock(&hugetlb_lock);
3058         /*
3059          * When cpuset is configured, it breaks the strict hugetlb page
3060          * reservation as the accounting is done on a global variable. Such
3061          * reservation is completely rubbish in the presence of cpuset because
3062          * the reservation is not checked against page availability for the
3063          * current cpuset. Application can still potentially OOM'ed by kernel
3064          * with lack of free htlb page in cpuset that the task is in.
3065          * Attempt to enforce strict accounting with cpuset is almost
3066          * impossible (or too ugly) because cpuset is too fluid that
3067          * task or memory node can be dynamically moved between cpusets.
3068          *
3069          * The change of semantics for shared hugetlb mapping with cpuset is
3070          * undesirable. However, in order to preserve some of the semantics,
3071          * we fall back to check against current free page availability as
3072          * a best attempt and hopefully to minimize the impact of changing
3073          * semantics that cpuset has.
3074          */
3075         if (delta > 0) {
3076                 if (gather_surplus_pages(h, delta) < 0)
3077                         goto out;
3078
3079                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3080                         return_unused_surplus_pages(h, delta);
3081                         goto out;
3082                 }
3083         }
3084
3085         ret = 0;
3086         if (delta < 0)
3087                 return_unused_surplus_pages(h, (unsigned long) -delta);
3088
3089 out:
3090         spin_unlock(&hugetlb_lock);
3091         return ret;
3092 }
3093
3094 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3095 {
3096         struct resv_map *resv = vma_resv_map(vma);
3097
3098         /*
3099          * This new VMA should share its siblings reservation map if present.
3100          * The VMA will only ever have a valid reservation map pointer where
3101          * it is being copied for another still existing VMA.  As that VMA
3102          * has a reference to the reservation map it cannot disappear until
3103          * after this open call completes.  It is therefore safe to take a
3104          * new reference here without additional locking.
3105          */
3106         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3107                 kref_get(&resv->refs);
3108 }
3109
3110 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3111 {
3112         struct hstate *h = hstate_vma(vma);
3113         struct resv_map *resv = vma_resv_map(vma);
3114         struct hugepage_subpool *spool = subpool_vma(vma);
3115         unsigned long reserve, start, end;
3116         long gbl_reserve;
3117
3118         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3119                 return;
3120
3121         start = vma_hugecache_offset(h, vma, vma->vm_start);
3122         end = vma_hugecache_offset(h, vma, vma->vm_end);
3123
3124         reserve = (end - start) - region_count(resv, start, end);
3125
3126         kref_put(&resv->refs, resv_map_release);
3127
3128         if (reserve) {
3129                 /*
3130                  * Decrement reserve counts.  The global reserve count may be
3131                  * adjusted if the subpool has a minimum size.
3132                  */
3133                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3134                 hugetlb_acct_memory(h, -gbl_reserve);
3135         }
3136 }
3137
3138 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3139 {
3140         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3141                 return -EINVAL;
3142         return 0;
3143 }
3144
3145 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3146 {
3147         struct hstate *hstate = hstate_vma(vma);
3148
3149         return 1UL << huge_page_shift(hstate);
3150 }
3151
3152 /*
3153  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3154  * handle_mm_fault() to try to instantiate regular-sized pages in the
3155  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3156  * this far.
3157  */
3158 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3159 {
3160         BUG();
3161         return 0;
3162 }
3163
3164 /*
3165  * When a new function is introduced to vm_operations_struct and added
3166  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3167  * This is because under System V memory model, mappings created via
3168  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3169  * their original vm_ops are overwritten with shm_vm_ops.
3170  */
3171 const struct vm_operations_struct hugetlb_vm_ops = {
3172         .fault = hugetlb_vm_op_fault,
3173         .open = hugetlb_vm_op_open,
3174         .close = hugetlb_vm_op_close,
3175         .split = hugetlb_vm_op_split,
3176         .pagesize = hugetlb_vm_op_pagesize,
3177 };
3178
3179 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3180                                 int writable)
3181 {
3182         pte_t entry;
3183
3184         if (writable) {
3185                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3186                                          vma->vm_page_prot)));
3187         } else {
3188                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3189                                            vma->vm_page_prot));
3190         }
3191         entry = pte_mkyoung(entry);
3192         entry = pte_mkhuge(entry);
3193         entry = arch_make_huge_pte(entry, vma, page, writable);
3194
3195         return entry;
3196 }
3197
3198 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3199                                    unsigned long address, pte_t *ptep)
3200 {
3201         pte_t entry;
3202
3203         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3204         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3205                 update_mmu_cache(vma, address, ptep);
3206 }
3207
3208 bool is_hugetlb_entry_migration(pte_t pte)
3209 {
3210         swp_entry_t swp;
3211
3212         if (huge_pte_none(pte) || pte_present(pte))
3213                 return false;
3214         swp = pte_to_swp_entry(pte);
3215         if (non_swap_entry(swp) && is_migration_entry(swp))
3216                 return true;
3217         else
3218                 return false;
3219 }
3220
3221 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3222 {
3223         swp_entry_t swp;
3224
3225         if (huge_pte_none(pte) || pte_present(pte))
3226                 return 0;
3227         swp = pte_to_swp_entry(pte);
3228         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3229                 return 1;
3230         else
3231                 return 0;
3232 }
3233
3234 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3235                             struct vm_area_struct *vma)
3236 {
3237         pte_t *src_pte, *dst_pte, entry;
3238         struct page *ptepage;
3239         unsigned long addr;
3240         int cow;
3241         struct hstate *h = hstate_vma(vma);
3242         unsigned long sz = huge_page_size(h);
3243         unsigned long mmun_start;       /* For mmu_notifiers */
3244         unsigned long mmun_end;         /* For mmu_notifiers */
3245         int ret = 0;
3246
3247         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3248
3249         mmun_start = vma->vm_start;
3250         mmun_end = vma->vm_end;
3251         if (cow)
3252                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3253
3254         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3255                 spinlock_t *src_ptl, *dst_ptl;
3256                 src_pte = huge_pte_offset(src, addr, sz);
3257                 if (!src_pte)
3258                         continue;
3259                 dst_pte = huge_pte_alloc(dst, addr, sz);
3260                 if (!dst_pte) {
3261                         ret = -ENOMEM;
3262                         break;
3263                 }
3264
3265                 /* If the pagetables are shared don't copy or take references */
3266                 if (dst_pte == src_pte)
3267                         continue;
3268
3269                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3270                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3271                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3272                 entry = huge_ptep_get(src_pte);
3273                 if (huge_pte_none(entry)) { /* skip none entry */
3274                         ;
3275                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3276                                     is_hugetlb_entry_hwpoisoned(entry))) {
3277                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3278
3279                         if (is_write_migration_entry(swp_entry) && cow) {
3280                                 /*
3281                                  * COW mappings require pages in both
3282                                  * parent and child to be set to read.
3283                                  */
3284                                 make_migration_entry_read(&swp_entry);
3285                                 entry = swp_entry_to_pte(swp_entry);
3286                                 set_huge_swap_pte_at(src, addr, src_pte,
3287                                                      entry, sz);
3288                         }
3289                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3290                 } else {
3291                         if (cow) {
3292                                 /*
3293                                  * No need to notify as we are downgrading page
3294                                  * table protection not changing it to point
3295                                  * to a new page.
3296                                  *
3297                                  * See Documentation/vm/mmu_notifier.rst
3298                                  */
3299                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3300                         }
3301                         entry = huge_ptep_get(src_pte);
3302                         ptepage = pte_page(entry);
3303                         get_page(ptepage);
3304                         page_dup_rmap(ptepage, true);
3305                         set_huge_pte_at(dst, addr, dst_pte, entry);
3306                         hugetlb_count_add(pages_per_huge_page(h), dst);
3307                 }
3308                 spin_unlock(src_ptl);
3309                 spin_unlock(dst_ptl);
3310         }
3311
3312         if (cow)
3313                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3314
3315         return ret;
3316 }
3317
3318 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3319                             unsigned long start, unsigned long end,
3320                             struct page *ref_page)
3321 {
3322         struct mm_struct *mm = vma->vm_mm;
3323         unsigned long address;
3324         pte_t *ptep;
3325         pte_t pte;
3326         spinlock_t *ptl;
3327         struct page *page;
3328         struct hstate *h = hstate_vma(vma);
3329         unsigned long sz = huge_page_size(h);
3330         unsigned long mmun_start = start;       /* For mmu_notifiers */
3331         unsigned long mmun_end   = end;         /* For mmu_notifiers */
3332
3333         WARN_ON(!is_vm_hugetlb_page(vma));
3334         BUG_ON(start & ~huge_page_mask(h));
3335         BUG_ON(end & ~huge_page_mask(h));
3336
3337         /*
3338          * This is a hugetlb vma, all the pte entries should point
3339          * to huge page.
3340          */
3341         tlb_remove_check_page_size_change(tlb, sz);
3342         tlb_start_vma(tlb, vma);
3343
3344         /*
3345          * If sharing possible, alert mmu notifiers of worst case.
3346          */
3347         adjust_range_if_pmd_sharing_possible(vma, &mmun_start, &mmun_end);
3348         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3349         address = start;
3350         for (; address < end; address += sz) {
3351                 ptep = huge_pte_offset(mm, address, sz);
3352                 if (!ptep)
3353                         continue;
3354
3355                 ptl = huge_pte_lock(h, mm, ptep);
3356                 if (huge_pmd_unshare(mm, &address, ptep)) {
3357                         spin_unlock(ptl);
3358                         /*
3359                          * We just unmapped a page of PMDs by clearing a PUD.
3360                          * The caller's TLB flush range should cover this area.
3361                          */
3362                         continue;
3363                 }
3364
3365                 pte = huge_ptep_get(ptep);
3366                 if (huge_pte_none(pte)) {
3367                         spin_unlock(ptl);
3368                         continue;
3369                 }
3370
3371                 /*
3372                  * Migrating hugepage or HWPoisoned hugepage is already
3373                  * unmapped and its refcount is dropped, so just clear pte here.
3374                  */
3375                 if (unlikely(!pte_present(pte))) {
3376                         huge_pte_clear(mm, address, ptep, sz);
3377                         spin_unlock(ptl);
3378                         continue;
3379                 }
3380
3381                 page = pte_page(pte);
3382                 /*
3383                  * If a reference page is supplied, it is because a specific
3384                  * page is being unmapped, not a range. Ensure the page we
3385                  * are about to unmap is the actual page of interest.
3386                  */
3387                 if (ref_page) {
3388                         if (page != ref_page) {
3389                                 spin_unlock(ptl);
3390                                 continue;
3391                         }
3392                         /*
3393                          * Mark the VMA as having unmapped its page so that
3394                          * future faults in this VMA will fail rather than
3395                          * looking like data was lost
3396                          */
3397                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3398                 }
3399
3400                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3401                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3402                 if (huge_pte_dirty(pte))
3403                         set_page_dirty(page);
3404
3405                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3406                 page_remove_rmap(page, true);
3407
3408                 spin_unlock(ptl);
3409                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3410                 /*
3411                  * Bail out after unmapping reference page if supplied
3412                  */
3413                 if (ref_page)
3414                         break;
3415         }
3416         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3417         tlb_end_vma(tlb, vma);
3418 }
3419
3420 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3421                           struct vm_area_struct *vma, unsigned long start,
3422                           unsigned long end, struct page *ref_page)
3423 {
3424         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3425
3426         /*
3427          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3428          * test will fail on a vma being torn down, and not grab a page table
3429          * on its way out.  We're lucky that the flag has such an appropriate
3430          * name, and can in fact be safely cleared here. We could clear it
3431          * before the __unmap_hugepage_range above, but all that's necessary
3432          * is to clear it before releasing the i_mmap_rwsem. This works
3433          * because in the context this is called, the VMA is about to be
3434          * destroyed and the i_mmap_rwsem is held.
3435          */
3436         vma->vm_flags &= ~VM_MAYSHARE;
3437 }
3438
3439 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3440                           unsigned long end, struct page *ref_page)
3441 {
3442         struct mm_struct *mm;
3443         struct mmu_gather tlb;
3444         unsigned long tlb_start = start;
3445         unsigned long tlb_end = end;
3446
3447         /*
3448          * If shared PMDs were possibly used within this vma range, adjust
3449          * start/end for worst case tlb flushing.
3450          * Note that we can not be sure if PMDs are shared until we try to
3451          * unmap pages.  However, we want to make sure TLB flushing covers
3452          * the largest possible range.
3453          */
3454         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3455
3456         mm = vma->vm_mm;
3457
3458         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3459         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3460         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3461 }
3462
3463 /*
3464  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3465  * mappping it owns the reserve page for. The intention is to unmap the page
3466  * from other VMAs and let the children be SIGKILLed if they are faulting the
3467  * same region.
3468  */
3469 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3470                               struct page *page, unsigned long address)
3471 {
3472         struct hstate *h = hstate_vma(vma);
3473         struct vm_area_struct *iter_vma;
3474         struct address_space *mapping;
3475         pgoff_t pgoff;
3476
3477         /*
3478          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3479          * from page cache lookup which is in HPAGE_SIZE units.
3480          */
3481         address = address & huge_page_mask(h);
3482         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3483                         vma->vm_pgoff;
3484         mapping = vma->vm_file->f_mapping;
3485
3486         /*
3487          * Take the mapping lock for the duration of the table walk. As
3488          * this mapping should be shared between all the VMAs,
3489          * __unmap_hugepage_range() is called as the lock is already held
3490          */
3491         i_mmap_lock_write(mapping);
3492         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3493                 /* Do not unmap the current VMA */
3494                 if (iter_vma == vma)
3495                         continue;
3496
3497                 /*
3498                  * Shared VMAs have their own reserves and do not affect
3499                  * MAP_PRIVATE accounting but it is possible that a shared
3500                  * VMA is using the same page so check and skip such VMAs.
3501                  */
3502                 if (iter_vma->vm_flags & VM_MAYSHARE)
3503                         continue;
3504
3505                 /*
3506                  * Unmap the page from other VMAs without their own reserves.
3507                  * They get marked to be SIGKILLed if they fault in these
3508                  * areas. This is because a future no-page fault on this VMA
3509                  * could insert a zeroed page instead of the data existing
3510                  * from the time of fork. This would look like data corruption
3511                  */
3512                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3513                         unmap_hugepage_range(iter_vma, address,
3514                                              address + huge_page_size(h), page);
3515         }
3516         i_mmap_unlock_write(mapping);
3517 }
3518
3519 /*
3520  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3521  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3522  * cannot race with other handlers or page migration.
3523  * Keep the pte_same checks anyway to make transition from the mutex easier.
3524  */
3525 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3526                        unsigned long address, pte_t *ptep,
3527                        struct page *pagecache_page, spinlock_t *ptl)
3528 {
3529         pte_t pte;
3530         struct hstate *h = hstate_vma(vma);
3531         struct page *old_page, *new_page;
3532         int outside_reserve = 0;
3533         vm_fault_t ret = 0;
3534         unsigned long mmun_start;       /* For mmu_notifiers */
3535         unsigned long mmun_end;         /* For mmu_notifiers */
3536         unsigned long haddr = address & huge_page_mask(h);
3537
3538         pte = huge_ptep_get(ptep);
3539         old_page = pte_page(pte);
3540
3541 retry_avoidcopy:
3542         /* If no-one else is actually using this page, avoid the copy
3543          * and just make the page writable */
3544         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3545                 page_move_anon_rmap(old_page, vma);
3546                 set_huge_ptep_writable(vma, haddr, ptep);
3547                 return 0;
3548         }
3549
3550         /*
3551          * If the process that created a MAP_PRIVATE mapping is about to
3552          * perform a COW due to a shared page count, attempt to satisfy
3553          * the allocation without using the existing reserves. The pagecache
3554          * page is used to determine if the reserve at this address was
3555          * consumed or not. If reserves were used, a partial faulted mapping
3556          * at the time of fork() could consume its reserves on COW instead
3557          * of the full address range.
3558          */
3559         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3560                         old_page != pagecache_page)
3561                 outside_reserve = 1;
3562
3563         get_page(old_page);
3564
3565         /*
3566          * Drop page table lock as buddy allocator may be called. It will
3567          * be acquired again before returning to the caller, as expected.
3568          */
3569         spin_unlock(ptl);
3570         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3571
3572         if (IS_ERR(new_page)) {
3573                 /*
3574                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3575                  * it is due to references held by a child and an insufficient
3576                  * huge page pool. To guarantee the original mappers
3577                  * reliability, unmap the page from child processes. The child
3578                  * may get SIGKILLed if it later faults.
3579                  */
3580                 if (outside_reserve) {
3581                         put_page(old_page);
3582                         BUG_ON(huge_pte_none(pte));
3583                         unmap_ref_private(mm, vma, old_page, haddr);
3584                         BUG_ON(huge_pte_none(pte));
3585                         spin_lock(ptl);
3586                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3587                         if (likely(ptep &&
3588                                    pte_same(huge_ptep_get(ptep), pte)))
3589                                 goto retry_avoidcopy;
3590                         /*
3591                          * race occurs while re-acquiring page table
3592                          * lock, and our job is done.
3593                          */
3594                         return 0;
3595                 }
3596
3597                 ret = vmf_error(PTR_ERR(new_page));
3598                 goto out_release_old;
3599         }
3600
3601         /*
3602          * When the original hugepage is shared one, it does not have
3603          * anon_vma prepared.
3604          */
3605         if (unlikely(anon_vma_prepare(vma))) {
3606                 ret = VM_FAULT_OOM;
3607                 goto out_release_all;
3608         }
3609
3610         copy_user_huge_page(new_page, old_page, address, vma,
3611                             pages_per_huge_page(h));
3612         __SetPageUptodate(new_page);
3613         set_page_huge_active(new_page);
3614
3615         mmun_start = haddr;
3616         mmun_end = mmun_start + huge_page_size(h);
3617         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3618
3619         /*
3620          * Retake the page table lock to check for racing updates
3621          * before the page tables are altered
3622          */
3623         spin_lock(ptl);
3624         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3625         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3626                 ClearPagePrivate(new_page);
3627
3628                 /* Break COW */
3629                 huge_ptep_clear_flush(vma, haddr, ptep);
3630                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3631                 set_huge_pte_at(mm, haddr, ptep,
3632                                 make_huge_pte(vma, new_page, 1));
3633                 page_remove_rmap(old_page, true);
3634                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3635                 /* Make the old page be freed below */
3636                 new_page = old_page;
3637         }
3638         spin_unlock(ptl);
3639         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3640 out_release_all:
3641         restore_reserve_on_error(h, vma, haddr, new_page);
3642         put_page(new_page);
3643 out_release_old:
3644         put_page(old_page);
3645
3646         spin_lock(ptl); /* Caller expects lock to be held */
3647         return ret;
3648 }
3649
3650 /* Return the pagecache page at a given address within a VMA */
3651 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3652                         struct vm_area_struct *vma, unsigned long address)
3653 {
3654         struct address_space *mapping;
3655         pgoff_t idx;
3656
3657         mapping = vma->vm_file->f_mapping;
3658         idx = vma_hugecache_offset(h, vma, address);
3659
3660         return find_lock_page(mapping, idx);
3661 }
3662
3663 /*
3664  * Return whether there is a pagecache page to back given address within VMA.
3665  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3666  */
3667 static bool hugetlbfs_pagecache_present(struct hstate *h,
3668                         struct vm_area_struct *vma, unsigned long address)
3669 {
3670         struct address_space *mapping;
3671         pgoff_t idx;
3672         struct page *page;
3673
3674         mapping = vma->vm_file->f_mapping;
3675         idx = vma_hugecache_offset(h, vma, address);
3676
3677         page = find_get_page(mapping, idx);
3678         if (page)
3679                 put_page(page);
3680         return page != NULL;
3681 }
3682
3683 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3684                            pgoff_t idx)
3685 {
3686         struct inode *inode = mapping->host;
3687         struct hstate *h = hstate_inode(inode);
3688         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3689
3690         if (err)
3691                 return err;
3692         ClearPagePrivate(page);
3693
3694         /*
3695          * set page dirty so that it will not be removed from cache/file
3696          * by non-hugetlbfs specific code paths.
3697          */
3698         set_page_dirty(page);
3699
3700         spin_lock(&inode->i_lock);
3701         inode->i_blocks += blocks_per_huge_page(h);
3702         spin_unlock(&inode->i_lock);
3703         return 0;
3704 }
3705
3706 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3707                         struct vm_area_struct *vma,
3708                         struct address_space *mapping, pgoff_t idx,
3709                         unsigned long address, pte_t *ptep, unsigned int flags)
3710 {
3711         struct hstate *h = hstate_vma(vma);
3712         vm_fault_t ret = VM_FAULT_SIGBUS;
3713         int anon_rmap = 0;
3714         unsigned long size;
3715         struct page *page;
3716         pte_t new_pte;
3717         spinlock_t *ptl;
3718         unsigned long haddr = address & huge_page_mask(h);
3719
3720         /*
3721          * Currently, we are forced to kill the process in the event the
3722          * original mapper has unmapped pages from the child due to a failed
3723          * COW. Warn that such a situation has occurred as it may not be obvious
3724          */
3725         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3726                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3727                            current->pid);
3728                 return ret;
3729         }
3730
3731         /*
3732          * Use page lock to guard against racing truncation
3733          * before we get page_table_lock.
3734          */
3735 retry:
3736         page = find_lock_page(mapping, idx);
3737         if (!page) {
3738                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3739                 if (idx >= size)
3740                         goto out;
3741
3742                 /*
3743                  * Check for page in userfault range
3744                  */
3745                 if (userfaultfd_missing(vma)) {
3746                         u32 hash;
3747                         struct vm_fault vmf = {
3748                                 .vma = vma,
3749                                 .address = haddr,
3750                                 .flags = flags,
3751                                 /*
3752                                  * Hard to debug if it ends up being
3753                                  * used by a callee that assumes
3754                                  * something about the other
3755                                  * uninitialized fields... same as in
3756                                  * memory.c
3757                                  */
3758                         };
3759
3760                         /*
3761                          * hugetlb_fault_mutex must be dropped before
3762                          * handling userfault.  Reacquire after handling
3763                          * fault to make calling code simpler.
3764                          */
3765                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3766                                                         idx, haddr);
3767                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3768                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3769                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3770                         goto out;
3771                 }
3772
3773                 page = alloc_huge_page(vma, haddr, 0);
3774                 if (IS_ERR(page)) {
3775                         ret = vmf_error(PTR_ERR(page));
3776                         goto out;
3777                 }
3778                 clear_huge_page(page, address, pages_per_huge_page(h));
3779                 __SetPageUptodate(page);
3780                 set_page_huge_active(page);
3781
3782                 if (vma->vm_flags & VM_MAYSHARE) {
3783                         int err = huge_add_to_page_cache(page, mapping, idx);
3784                         if (err) {
3785                                 put_page(page);
3786                                 if (err == -EEXIST)
3787                                         goto retry;
3788                                 goto out;
3789                         }
3790                 } else {
3791                         lock_page(page);
3792                         if (unlikely(anon_vma_prepare(vma))) {
3793                                 ret = VM_FAULT_OOM;
3794                                 goto backout_unlocked;
3795                         }
3796                         anon_rmap = 1;
3797                 }
3798         } else {
3799                 /*
3800                  * If memory error occurs between mmap() and fault, some process
3801                  * don't have hwpoisoned swap entry for errored virtual address.
3802                  * So we need to block hugepage fault by PG_hwpoison bit check.
3803                  */
3804                 if (unlikely(PageHWPoison(page))) {
3805                         ret = VM_FAULT_HWPOISON |
3806                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3807                         goto backout_unlocked;
3808                 }
3809         }
3810
3811         /*
3812          * If we are going to COW a private mapping later, we examine the
3813          * pending reservations for this page now. This will ensure that
3814          * any allocations necessary to record that reservation occur outside
3815          * the spinlock.
3816          */
3817         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3818                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3819                         ret = VM_FAULT_OOM;
3820                         goto backout_unlocked;
3821                 }
3822                 /* Just decrements count, does not deallocate */
3823                 vma_end_reservation(h, vma, haddr);
3824         }
3825
3826         ptl = huge_pte_lock(h, mm, ptep);
3827         size = i_size_read(mapping->host) >> huge_page_shift(h);
3828         if (idx >= size)
3829                 goto backout;
3830
3831         ret = 0;
3832         if (!huge_pte_none(huge_ptep_get(ptep)))
3833                 goto backout;
3834
3835         if (anon_rmap) {
3836                 ClearPagePrivate(page);
3837                 hugepage_add_new_anon_rmap(page, vma, haddr);
3838         } else
3839                 page_dup_rmap(page, true);
3840         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3841                                 && (vma->vm_flags & VM_SHARED)));
3842         set_huge_pte_at(mm, haddr, ptep, new_pte);
3843
3844         hugetlb_count_add(pages_per_huge_page(h), mm);
3845         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3846                 /* Optimization, do the COW without a second fault */
3847                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3848         }
3849
3850         spin_unlock(ptl);
3851         unlock_page(page);
3852 out:
3853         return ret;
3854
3855 backout:
3856         spin_unlock(ptl);
3857 backout_unlocked:
3858         unlock_page(page);
3859         restore_reserve_on_error(h, vma, haddr, page);
3860         put_page(page);
3861         goto out;
3862 }
3863
3864 #ifdef CONFIG_SMP
3865 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3866                             struct vm_area_struct *vma,
3867                             struct address_space *mapping,
3868                             pgoff_t idx, unsigned long address)
3869 {
3870         unsigned long key[2];
3871         u32 hash;
3872
3873         if (vma->vm_flags & VM_SHARED) {
3874                 key[0] = (unsigned long) mapping;
3875                 key[1] = idx;
3876         } else {
3877                 key[0] = (unsigned long) mm;
3878                 key[1] = address >> huge_page_shift(h);
3879         }
3880
3881         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3882
3883         return hash & (num_fault_mutexes - 1);
3884 }
3885 #else
3886 /*
3887  * For uniprocesor systems we always use a single mutex, so just
3888  * return 0 and avoid the hashing overhead.
3889  */
3890 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3891                             struct vm_area_struct *vma,
3892                             struct address_space *mapping,
3893                             pgoff_t idx, unsigned long address)
3894 {
3895         return 0;
3896 }
3897 #endif
3898
3899 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3900                         unsigned long address, unsigned int flags)
3901 {
3902         pte_t *ptep, entry;
3903         spinlock_t *ptl;
3904         vm_fault_t ret;
3905         u32 hash;
3906         pgoff_t idx;
3907         struct page *page = NULL;
3908         struct page *pagecache_page = NULL;
3909         struct hstate *h = hstate_vma(vma);
3910         struct address_space *mapping;
3911         int need_wait_lock = 0;
3912         unsigned long haddr = address & huge_page_mask(h);
3913
3914         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3915         if (ptep) {
3916                 entry = huge_ptep_get(ptep);
3917                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3918                         migration_entry_wait_huge(vma, mm, ptep);
3919                         return 0;
3920                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3921                         return VM_FAULT_HWPOISON_LARGE |
3922                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3923         } else {
3924                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3925                 if (!ptep)
3926                         return VM_FAULT_OOM;
3927         }
3928
3929         mapping = vma->vm_file->f_mapping;
3930         idx = vma_hugecache_offset(h, vma, haddr);
3931
3932         /*
3933          * Serialize hugepage allocation and instantiation, so that we don't
3934          * get spurious allocation failures if two CPUs race to instantiate
3935          * the same page in the page cache.
3936          */
3937         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3938         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3939
3940         entry = huge_ptep_get(ptep);
3941         if (huge_pte_none(entry)) {
3942                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3943                 goto out_mutex;
3944         }
3945
3946         ret = 0;
3947
3948         /*
3949          * entry could be a migration/hwpoison entry at this point, so this
3950          * check prevents the kernel from going below assuming that we have
3951          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3952          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3953          * handle it.
3954          */
3955         if (!pte_present(entry))
3956                 goto out_mutex;
3957
3958         /*
3959          * If we are going to COW the mapping later, we examine the pending
3960          * reservations for this page now. This will ensure that any
3961          * allocations necessary to record that reservation occur outside the
3962          * spinlock. For private mappings, we also lookup the pagecache
3963          * page now as it is used to determine if a reservation has been
3964          * consumed.
3965          */
3966         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3967                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3968                         ret = VM_FAULT_OOM;
3969                         goto out_mutex;
3970                 }
3971                 /* Just decrements count, does not deallocate */
3972                 vma_end_reservation(h, vma, haddr);
3973
3974                 if (!(vma->vm_flags & VM_MAYSHARE))
3975                         pagecache_page = hugetlbfs_pagecache_page(h,
3976                                                                 vma, haddr);
3977         }
3978
3979         ptl = huge_pte_lock(h, mm, ptep);
3980
3981         /* Check for a racing update before calling hugetlb_cow */
3982         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3983                 goto out_ptl;
3984
3985         /*
3986          * hugetlb_cow() requires page locks of pte_page(entry) and
3987          * pagecache_page, so here we need take the former one
3988          * when page != pagecache_page or !pagecache_page.
3989          */
3990         page = pte_page(entry);
3991         if (page != pagecache_page)
3992                 if (!trylock_page(page)) {
3993                         need_wait_lock = 1;
3994                         goto out_ptl;
3995                 }
3996
3997         get_page(page);
3998
3999         if (flags & FAULT_FLAG_WRITE) {
4000                 if (!huge_pte_write(entry)) {
4001                         ret = hugetlb_cow(mm, vma, address, ptep,
4002                                           pagecache_page, ptl);
4003                         goto out_put_page;
4004                 }
4005                 entry = huge_pte_mkdirty(entry);
4006         }
4007         entry = pte_mkyoung(entry);
4008         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4009                                                 flags & FAULT_FLAG_WRITE))
4010                 update_mmu_cache(vma, haddr, ptep);
4011 out_put_page:
4012         if (page != pagecache_page)
4013                 unlock_page(page);
4014         put_page(page);
4015 out_ptl:
4016         spin_unlock(ptl);
4017
4018         if (pagecache_page) {
4019                 unlock_page(pagecache_page);
4020                 put_page(pagecache_page);
4021         }
4022 out_mutex:
4023         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4024         /*
4025          * Generally it's safe to hold refcount during waiting page lock. But
4026          * here we just wait to defer the next page fault to avoid busy loop and
4027          * the page is not used after unlocked before returning from the current
4028          * page fault. So we are safe from accessing freed page, even if we wait
4029          * here without taking refcount.
4030          */
4031         if (need_wait_lock)
4032                 wait_on_page_locked(page);
4033         return ret;
4034 }
4035
4036 /*
4037  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4038  * modifications for huge pages.
4039  */
4040 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4041                             pte_t *dst_pte,
4042                             struct vm_area_struct *dst_vma,
4043                             unsigned long dst_addr,
4044                             unsigned long src_addr,
4045                             struct page **pagep)
4046 {
4047         struct address_space *mapping;
4048         pgoff_t idx;
4049         unsigned long size;
4050         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4051         struct hstate *h = hstate_vma(dst_vma);
4052         pte_t _dst_pte;
4053         spinlock_t *ptl;
4054         int ret;
4055         struct page *page;
4056
4057         if (!*pagep) {
4058                 ret = -ENOMEM;
4059                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4060                 if (IS_ERR(page))
4061                         goto out;
4062
4063                 ret = copy_huge_page_from_user(page,
4064                                                 (const void __user *) src_addr,
4065                                                 pages_per_huge_page(h), false);
4066
4067                 /* fallback to copy_from_user outside mmap_sem */
4068                 if (unlikely(ret)) {
4069                         ret = -EFAULT;
4070                         *pagep = page;
4071                         /* don't free the page */
4072                         goto out;
4073                 }
4074         } else {
4075                 page = *pagep;
4076                 *pagep = NULL;
4077         }
4078
4079         /*
4080          * The memory barrier inside __SetPageUptodate makes sure that
4081          * preceding stores to the page contents become visible before
4082          * the set_pte_at() write.
4083          */
4084         __SetPageUptodate(page);
4085         set_page_huge_active(page);
4086
4087         mapping = dst_vma->vm_file->f_mapping;
4088         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4089
4090         /*
4091          * If shared, add to page cache
4092          */
4093         if (vm_shared) {
4094                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4095                 ret = -EFAULT;
4096                 if (idx >= size)
4097                         goto out_release_nounlock;
4098
4099                 /*
4100                  * Serialization between remove_inode_hugepages() and
4101                  * huge_add_to_page_cache() below happens through the
4102                  * hugetlb_fault_mutex_table that here must be hold by
4103                  * the caller.
4104                  */
4105                 ret = huge_add_to_page_cache(page, mapping, idx);
4106                 if (ret)
4107                         goto out_release_nounlock;
4108         }
4109
4110         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4111         spin_lock(ptl);
4112
4113         /*
4114          * Recheck the i_size after holding PT lock to make sure not
4115          * to leave any page mapped (as page_mapped()) beyond the end
4116          * of the i_size (remove_inode_hugepages() is strict about
4117          * enforcing that). If we bail out here, we'll also leave a
4118          * page in the radix tree in the vm_shared case beyond the end
4119          * of the i_size, but remove_inode_hugepages() will take care
4120          * of it as soon as we drop the hugetlb_fault_mutex_table.
4121          */
4122         size = i_size_read(mapping->host) >> huge_page_shift(h);
4123         ret = -EFAULT;
4124         if (idx >= size)
4125                 goto out_release_unlock;
4126
4127         ret = -EEXIST;
4128         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4129                 goto out_release_unlock;
4130
4131         if (vm_shared) {
4132                 page_dup_rmap(page, true);
4133         } else {
4134                 ClearPagePrivate(page);
4135                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4136         }
4137
4138         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4139         if (dst_vma->vm_flags & VM_WRITE)
4140                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4141         _dst_pte = pte_mkyoung(_dst_pte);
4142
4143         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4144
4145         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4146                                         dst_vma->vm_flags & VM_WRITE);
4147         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4148
4149         /* No need to invalidate - it was non-present before */
4150         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4151
4152         spin_unlock(ptl);
4153         if (vm_shared)
4154                 unlock_page(page);
4155         ret = 0;
4156 out:
4157         return ret;
4158 out_release_unlock:
4159         spin_unlock(ptl);
4160         if (vm_shared)
4161                 unlock_page(page);
4162 out_release_nounlock:
4163         put_page(page);
4164         goto out;
4165 }
4166
4167 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4168                          struct page **pages, struct vm_area_struct **vmas,
4169                          unsigned long *position, unsigned long *nr_pages,
4170                          long i, unsigned int flags, int *nonblocking)
4171 {
4172         unsigned long pfn_offset;
4173         unsigned long vaddr = *position;
4174         unsigned long remainder = *nr_pages;
4175         struct hstate *h = hstate_vma(vma);
4176         int err = -EFAULT;
4177
4178         while (vaddr < vma->vm_end && remainder) {
4179                 pte_t *pte;
4180                 spinlock_t *ptl = NULL;
4181                 int absent;
4182                 struct page *page;
4183
4184                 /*
4185                  * If we have a pending SIGKILL, don't keep faulting pages and
4186                  * potentially allocating memory.
4187                  */
4188                 if (unlikely(fatal_signal_pending(current))) {
4189                         remainder = 0;
4190                         break;
4191                 }
4192
4193                 /*
4194                  * Some archs (sparc64, sh*) have multiple pte_ts to
4195                  * each hugepage.  We have to make sure we get the
4196                  * first, for the page indexing below to work.
4197                  *
4198                  * Note that page table lock is not held when pte is null.
4199                  */
4200                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4201                                       huge_page_size(h));
4202                 if (pte)
4203                         ptl = huge_pte_lock(h, mm, pte);
4204                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4205
4206                 /*
4207                  * When coredumping, it suits get_dump_page if we just return
4208                  * an error where there's an empty slot with no huge pagecache
4209                  * to back it.  This way, we avoid allocating a hugepage, and
4210                  * the sparse dumpfile avoids allocating disk blocks, but its
4211                  * huge holes still show up with zeroes where they need to be.
4212                  */
4213                 if (absent && (flags & FOLL_DUMP) &&
4214                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4215                         if (pte)
4216                                 spin_unlock(ptl);
4217                         remainder = 0;
4218                         break;
4219                 }
4220
4221                 /*
4222                  * We need call hugetlb_fault for both hugepages under migration
4223                  * (in which case hugetlb_fault waits for the migration,) and
4224                  * hwpoisoned hugepages (in which case we need to prevent the
4225                  * caller from accessing to them.) In order to do this, we use
4226                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4227                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4228                  * both cases, and because we can't follow correct pages
4229                  * directly from any kind of swap entries.
4230                  */
4231                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4232                     ((flags & FOLL_WRITE) &&
4233                       !huge_pte_write(huge_ptep_get(pte)))) {
4234                         vm_fault_t ret;
4235                         unsigned int fault_flags = 0;
4236
4237                         if (pte)
4238                                 spin_unlock(ptl);
4239                         if (flags & FOLL_WRITE)
4240                                 fault_flags |= FAULT_FLAG_WRITE;
4241                         if (nonblocking)
4242                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4243                         if (flags & FOLL_NOWAIT)
4244                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4245                                         FAULT_FLAG_RETRY_NOWAIT;
4246                         if (flags & FOLL_TRIED) {
4247                                 VM_WARN_ON_ONCE(fault_flags &
4248                                                 FAULT_FLAG_ALLOW_RETRY);
4249                                 fault_flags |= FAULT_FLAG_TRIED;
4250                         }
4251                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4252                         if (ret & VM_FAULT_ERROR) {
4253                                 err = vm_fault_to_errno(ret, flags);
4254                                 remainder = 0;
4255                                 break;
4256                         }
4257                         if (ret & VM_FAULT_RETRY) {
4258                                 if (nonblocking)
4259                                         *nonblocking = 0;
4260                                 *nr_pages = 0;
4261                                 /*
4262                                  * VM_FAULT_RETRY must not return an
4263                                  * error, it will return zero
4264                                  * instead.
4265                                  *
4266                                  * No need to update "position" as the
4267                                  * caller will not check it after
4268                                  * *nr_pages is set to 0.
4269                                  */
4270                                 return i;
4271                         }
4272                         continue;
4273                 }
4274
4275                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4276                 page = pte_page(huge_ptep_get(pte));
4277 same_page:
4278                 if (pages) {
4279                         pages[i] = mem_map_offset(page, pfn_offset);
4280                         get_page(pages[i]);
4281                 }
4282
4283                 if (vmas)
4284                         vmas[i] = vma;
4285
4286                 vaddr += PAGE_SIZE;
4287                 ++pfn_offset;
4288                 --remainder;
4289                 ++i;
4290                 if (vaddr < vma->vm_end && remainder &&
4291                                 pfn_offset < pages_per_huge_page(h)) {
4292                         /*
4293                          * We use pfn_offset to avoid touching the pageframes
4294                          * of this compound page.
4295                          */
4296                         goto same_page;
4297                 }
4298                 spin_unlock(ptl);
4299         }
4300         *nr_pages = remainder;
4301         /*
4302          * setting position is actually required only if remainder is
4303          * not zero but it's faster not to add a "if (remainder)"
4304          * branch.
4305          */
4306         *position = vaddr;
4307
4308         return i ? i : err;
4309 }
4310
4311 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4312 /*
4313  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4314  * implement this.
4315  */
4316 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4317 #endif
4318
4319 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4320                 unsigned long address, unsigned long end, pgprot_t newprot)
4321 {
4322         struct mm_struct *mm = vma->vm_mm;
4323         unsigned long start = address;
4324         pte_t *ptep;
4325         pte_t pte;
4326         struct hstate *h = hstate_vma(vma);
4327         unsigned long pages = 0;
4328         unsigned long f_start = start;
4329         unsigned long f_end = end;
4330         bool shared_pmd = false;
4331
4332         /*
4333          * In the case of shared PMDs, the area to flush could be beyond
4334          * start/end.  Set f_start/f_end to cover the maximum possible
4335          * range if PMD sharing is possible.
4336          */
4337         adjust_range_if_pmd_sharing_possible(vma, &f_start, &f_end);
4338
4339         BUG_ON(address >= end);
4340         flush_cache_range(vma, f_start, f_end);
4341
4342         mmu_notifier_invalidate_range_start(mm, f_start, f_end);
4343         i_mmap_lock_write(vma->vm_file->f_mapping);
4344         for (; address < end; address += huge_page_size(h)) {
4345                 spinlock_t *ptl;
4346                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4347                 if (!ptep)
4348                         continue;
4349                 ptl = huge_pte_lock(h, mm, ptep);
4350                 if (huge_pmd_unshare(mm, &address, ptep)) {
4351                         pages++;
4352                         spin_unlock(ptl);
4353                         shared_pmd = true;
4354                         continue;
4355                 }
4356                 pte = huge_ptep_get(ptep);
4357                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4358                         spin_unlock(ptl);
4359                         continue;
4360                 }
4361                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4362                         swp_entry_t entry = pte_to_swp_entry(pte);
4363
4364                         if (is_write_migration_entry(entry)) {
4365                                 pte_t newpte;
4366
4367                                 make_migration_entry_read(&entry);
4368                                 newpte = swp_entry_to_pte(entry);
4369                                 set_huge_swap_pte_at(mm, address, ptep,
4370                                                      newpte, huge_page_size(h));
4371                                 pages++;
4372                         }
4373                         spin_unlock(ptl);
4374                         continue;
4375                 }
4376                 if (!huge_pte_none(pte)) {
4377                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4378                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4379                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4380                         set_huge_pte_at(mm, address, ptep, pte);
4381                         pages++;
4382                 }
4383                 spin_unlock(ptl);
4384         }
4385         /*
4386          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4387          * may have cleared our pud entry and done put_page on the page table:
4388          * once we release i_mmap_rwsem, another task can do the final put_page
4389          * and that page table be reused and filled with junk.  If we actually
4390          * did unshare a page of pmds, flush the range corresponding to the pud.
4391          */
4392         if (shared_pmd)
4393                 flush_hugetlb_tlb_range(vma, f_start, f_end);
4394         else
4395                 flush_hugetlb_tlb_range(vma, start, end);
4396         /*
4397          * No need to call mmu_notifier_invalidate_range() we are downgrading
4398          * page table protection not changing it to point to a new page.
4399          *
4400          * See Documentation/vm/mmu_notifier.rst
4401          */
4402         i_mmap_unlock_write(vma->vm_file->f_mapping);
4403         mmu_notifier_invalidate_range_end(mm, f_start, f_end);
4404
4405         return pages << h->order;
4406 }
4407
4408 int hugetlb_reserve_pages(struct inode *inode,
4409                                         long from, long to,
4410                                         struct vm_area_struct *vma,
4411                                         vm_flags_t vm_flags)
4412 {
4413         long ret, chg;
4414         struct hstate *h = hstate_inode(inode);
4415         struct hugepage_subpool *spool = subpool_inode(inode);
4416         struct resv_map *resv_map;
4417         long gbl_reserve;
4418
4419         /* This should never happen */
4420         if (from > to) {
4421                 VM_WARN(1, "%s called with a negative range\n", __func__);
4422                 return -EINVAL;
4423         }
4424
4425         /*
4426          * Only apply hugepage reservation if asked. At fault time, an
4427          * attempt will be made for VM_NORESERVE to allocate a page
4428          * without using reserves
4429          */
4430         if (vm_flags & VM_NORESERVE)
4431                 return 0;
4432
4433         /*
4434          * Shared mappings base their reservation on the number of pages that
4435          * are already allocated on behalf of the file. Private mappings need
4436          * to reserve the full area even if read-only as mprotect() may be
4437          * called to make the mapping read-write. Assume !vma is a shm mapping
4438          */
4439         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4440                 resv_map = inode_resv_map(inode);
4441
4442                 chg = region_chg(resv_map, from, to);
4443
4444         } else {
4445                 resv_map = resv_map_alloc();
4446                 if (!resv_map)
4447                         return -ENOMEM;
4448
4449                 chg = to - from;
4450
4451                 set_vma_resv_map(vma, resv_map);
4452                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4453         }
4454
4455         if (chg < 0) {
4456                 ret = chg;
4457                 goto out_err;
4458         }
4459
4460         /*
4461          * There must be enough pages in the subpool for the mapping. If
4462          * the subpool has a minimum size, there may be some global
4463          * reservations already in place (gbl_reserve).
4464          */
4465         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4466         if (gbl_reserve < 0) {
4467                 ret = -ENOSPC;
4468                 goto out_err;
4469         }
4470
4471         /*
4472          * Check enough hugepages are available for the reservation.
4473          * Hand the pages back to the subpool if there are not
4474          */
4475         ret = hugetlb_acct_memory(h, gbl_reserve);
4476         if (ret < 0) {
4477                 /* put back original number of pages, chg */
4478                 (void)hugepage_subpool_put_pages(spool, chg);
4479                 goto out_err;
4480         }
4481
4482         /*
4483          * Account for the reservations made. Shared mappings record regions
4484          * that have reservations as they are shared by multiple VMAs.
4485          * When the last VMA disappears, the region map says how much
4486          * the reservation was and the page cache tells how much of
4487          * the reservation was consumed. Private mappings are per-VMA and
4488          * only the consumed reservations are tracked. When the VMA
4489          * disappears, the original reservation is the VMA size and the
4490          * consumed reservations are stored in the map. Hence, nothing
4491          * else has to be done for private mappings here
4492          */
4493         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4494                 long add = region_add(resv_map, from, to);
4495
4496                 if (unlikely(chg > add)) {
4497                         /*
4498                          * pages in this range were added to the reserve
4499                          * map between region_chg and region_add.  This
4500                          * indicates a race with alloc_huge_page.  Adjust
4501                          * the subpool and reserve counts modified above
4502                          * based on the difference.
4503                          */
4504                         long rsv_adjust;
4505
4506                         rsv_adjust = hugepage_subpool_put_pages(spool,
4507                                                                 chg - add);
4508                         hugetlb_acct_memory(h, -rsv_adjust);
4509                 }
4510         }
4511         return 0;
4512 out_err:
4513         if (!vma || vma->vm_flags & VM_MAYSHARE)
4514                 /* Don't call region_abort if region_chg failed */
4515                 if (chg >= 0)
4516                         region_abort(resv_map, from, to);
4517         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4518                 kref_put(&resv_map->refs, resv_map_release);
4519         return ret;
4520 }
4521
4522 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4523                                                                 long freed)
4524 {
4525         struct hstate *h = hstate_inode(inode);
4526         struct resv_map *resv_map = inode_resv_map(inode);
4527         long chg = 0;
4528         struct hugepage_subpool *spool = subpool_inode(inode);
4529         long gbl_reserve;
4530
4531         if (resv_map) {
4532                 chg = region_del(resv_map, start, end);
4533                 /*
4534                  * region_del() can fail in the rare case where a region
4535                  * must be split and another region descriptor can not be
4536                  * allocated.  If end == LONG_MAX, it will not fail.
4537                  */
4538                 if (chg < 0)
4539                         return chg;
4540         }
4541
4542         spin_lock(&inode->i_lock);
4543         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4544         spin_unlock(&inode->i_lock);
4545
4546         /*
4547          * If the subpool has a minimum size, the number of global
4548          * reservations to be released may be adjusted.
4549          */
4550         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4551         hugetlb_acct_memory(h, -gbl_reserve);
4552
4553         return 0;
4554 }
4555
4556 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4557 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4558                                 struct vm_area_struct *vma,
4559                                 unsigned long addr, pgoff_t idx)
4560 {
4561         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4562                                 svma->vm_start;
4563         unsigned long sbase = saddr & PUD_MASK;
4564         unsigned long s_end = sbase + PUD_SIZE;
4565
4566         /* Allow segments to share if only one is marked locked */
4567         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4568         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4569
4570         /*
4571          * match the virtual addresses, permission and the alignment of the
4572          * page table page.
4573          */
4574         if (pmd_index(addr) != pmd_index(saddr) ||
4575             vm_flags != svm_flags ||
4576             sbase < svma->vm_start || svma->vm_end < s_end)
4577                 return 0;
4578
4579         return saddr;
4580 }
4581
4582 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4583 {
4584         unsigned long base = addr & PUD_MASK;
4585         unsigned long end = base + PUD_SIZE;
4586
4587         /*
4588          * check on proper vm_flags and page table alignment
4589          */
4590         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4591                 return true;
4592         return false;
4593 }
4594
4595 /*
4596  * Determine if start,end range within vma could be mapped by shared pmd.
4597  * If yes, adjust start and end to cover range associated with possible
4598  * shared pmd mappings.
4599  */
4600 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4601                                 unsigned long *start, unsigned long *end)
4602 {
4603         unsigned long check_addr = *start;
4604
4605         if (!(vma->vm_flags & VM_MAYSHARE))
4606                 return;
4607
4608         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4609                 unsigned long a_start = check_addr & PUD_MASK;
4610                 unsigned long a_end = a_start + PUD_SIZE;
4611
4612                 /*
4613                  * If sharing is possible, adjust start/end if necessary.
4614                  */
4615                 if (range_in_vma(vma, a_start, a_end)) {
4616                         if (a_start < *start)
4617                                 *start = a_start;
4618                         if (a_end > *end)
4619                                 *end = a_end;
4620                 }
4621         }
4622 }
4623
4624 /*
4625  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4626  * and returns the corresponding pte. While this is not necessary for the
4627  * !shared pmd case because we can allocate the pmd later as well, it makes the
4628  * code much cleaner. pmd allocation is essential for the shared case because
4629  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4630  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4631  * bad pmd for sharing.
4632  */
4633 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4634 {
4635         struct vm_area_struct *vma = find_vma(mm, addr);
4636         struct address_space *mapping = vma->vm_file->f_mapping;
4637         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4638                         vma->vm_pgoff;
4639         struct vm_area_struct *svma;
4640         unsigned long saddr;
4641         pte_t *spte = NULL;
4642         pte_t *pte;
4643         spinlock_t *ptl;
4644
4645         if (!vma_shareable(vma, addr))
4646                 return (pte_t *)pmd_alloc(mm, pud, addr);
4647
4648         i_mmap_lock_write(mapping);
4649         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4650                 if (svma == vma)
4651                         continue;
4652
4653                 saddr = page_table_shareable(svma, vma, addr, idx);
4654                 if (saddr) {
4655                         spte = huge_pte_offset(svma->vm_mm, saddr,
4656                                                vma_mmu_pagesize(svma));
4657                         if (spte) {
4658                                 get_page(virt_to_page(spte));
4659                                 break;
4660                         }
4661                 }
4662         }
4663
4664         if (!spte)
4665                 goto out;
4666
4667         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4668         if (pud_none(*pud)) {
4669                 pud_populate(mm, pud,
4670                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4671                 mm_inc_nr_pmds(mm);
4672         } else {
4673                 put_page(virt_to_page(spte));
4674         }
4675         spin_unlock(ptl);
4676 out:
4677         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4678         i_mmap_unlock_write(mapping);
4679         return pte;
4680 }
4681
4682 /*
4683  * unmap huge page backed by shared pte.
4684  *
4685  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4686  * indicated by page_count > 1, unmap is achieved by clearing pud and
4687  * decrementing the ref count. If count == 1, the pte page is not shared.
4688  *
4689  * called with page table lock held.
4690  *
4691  * returns: 1 successfully unmapped a shared pte page
4692  *          0 the underlying pte page is not shared, or it is the last user
4693  */
4694 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4695 {
4696         pgd_t *pgd = pgd_offset(mm, *addr);
4697         p4d_t *p4d = p4d_offset(pgd, *addr);
4698         pud_t *pud = pud_offset(p4d, *addr);
4699
4700         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4701         if (page_count(virt_to_page(ptep)) == 1)
4702                 return 0;
4703
4704         pud_clear(pud);
4705         put_page(virt_to_page(ptep));
4706         mm_dec_nr_pmds(mm);
4707         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4708         return 1;
4709 }
4710 #define want_pmd_share()        (1)
4711 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4712 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4713 {
4714         return NULL;
4715 }
4716
4717 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4718 {
4719         return 0;
4720 }
4721
4722 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4723                                 unsigned long *start, unsigned long *end)
4724 {
4725 }
4726 #define want_pmd_share()        (0)
4727 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4728
4729 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4730 pte_t *huge_pte_alloc(struct mm_struct *mm,
4731                         unsigned long addr, unsigned long sz)
4732 {
4733         pgd_t *pgd;
4734         p4d_t *p4d;
4735         pud_t *pud;
4736         pte_t *pte = NULL;
4737
4738         pgd = pgd_offset(mm, addr);
4739         p4d = p4d_alloc(mm, pgd, addr);
4740         if (!p4d)
4741                 return NULL;
4742         pud = pud_alloc(mm, p4d, addr);
4743         if (pud) {
4744                 if (sz == PUD_SIZE) {
4745                         pte = (pte_t *)pud;
4746                 } else {
4747                         BUG_ON(sz != PMD_SIZE);
4748                         if (want_pmd_share() && pud_none(*pud))
4749                                 pte = huge_pmd_share(mm, addr, pud);
4750                         else
4751                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4752                 }
4753         }
4754         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4755
4756         return pte;
4757 }
4758
4759 /*
4760  * huge_pte_offset() - Walk the page table to resolve the hugepage
4761  * entry at address @addr
4762  *
4763  * Return: Pointer to page table or swap entry (PUD or PMD) for
4764  * address @addr, or NULL if a p*d_none() entry is encountered and the
4765  * size @sz doesn't match the hugepage size at this level of the page
4766  * table.
4767  */
4768 pte_t *huge_pte_offset(struct mm_struct *mm,
4769                        unsigned long addr, unsigned long sz)
4770 {
4771         pgd_t *pgd;
4772         p4d_t *p4d;
4773         pud_t *pud;
4774         pmd_t *pmd;
4775
4776         pgd = pgd_offset(mm, addr);
4777         if (!pgd_present(*pgd))
4778                 return NULL;
4779         p4d = p4d_offset(pgd, addr);
4780         if (!p4d_present(*p4d))
4781                 return NULL;
4782
4783         pud = pud_offset(p4d, addr);
4784         if (sz != PUD_SIZE && pud_none(*pud))
4785                 return NULL;
4786         /* hugepage or swap? */
4787         if (pud_huge(*pud) || !pud_present(*pud))
4788                 return (pte_t *)pud;
4789
4790         pmd = pmd_offset(pud, addr);
4791         if (sz != PMD_SIZE && pmd_none(*pmd))
4792                 return NULL;
4793         /* hugepage or swap? */
4794         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4795                 return (pte_t *)pmd;
4796
4797         return NULL;
4798 }
4799
4800 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4801
4802 /*
4803  * These functions are overwritable if your architecture needs its own
4804  * behavior.
4805  */
4806 struct page * __weak
4807 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4808                               int write)
4809 {
4810         return ERR_PTR(-EINVAL);
4811 }
4812
4813 struct page * __weak
4814 follow_huge_pd(struct vm_area_struct *vma,
4815                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4816 {
4817         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4818         return NULL;
4819 }
4820
4821 struct page * __weak
4822 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4823                 pmd_t *pmd, int flags)
4824 {
4825         struct page *page = NULL;
4826         spinlock_t *ptl;
4827         pte_t pte;
4828 retry:
4829         ptl = pmd_lockptr(mm, pmd);
4830         spin_lock(ptl);
4831         /*
4832          * make sure that the address range covered by this pmd is not
4833          * unmapped from other threads.
4834          */
4835         if (!pmd_huge(*pmd))
4836                 goto out;
4837         pte = huge_ptep_get((pte_t *)pmd);
4838         if (pte_present(pte)) {
4839                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4840                 if (flags & FOLL_GET)
4841                         get_page(page);
4842         } else {
4843                 if (is_hugetlb_entry_migration(pte)) {
4844                         spin_unlock(ptl);
4845                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4846                         goto retry;
4847                 }
4848                 /*
4849                  * hwpoisoned entry is treated as no_page_table in
4850                  * follow_page_mask().
4851                  */
4852         }
4853 out:
4854         spin_unlock(ptl);
4855         return page;
4856 }
4857
4858 struct page * __weak
4859 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4860                 pud_t *pud, int flags)
4861 {
4862         if (flags & FOLL_GET)
4863                 return NULL;
4864
4865         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4866 }
4867
4868 struct page * __weak
4869 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4870 {
4871         if (flags & FOLL_GET)
4872                 return NULL;
4873
4874         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4875 }
4876
4877 bool isolate_huge_page(struct page *page, struct list_head *list)
4878 {
4879         bool ret = true;
4880
4881         VM_BUG_ON_PAGE(!PageHead(page), page);
4882         spin_lock(&hugetlb_lock);
4883         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4884                 ret = false;
4885                 goto unlock;
4886         }
4887         clear_page_huge_active(page);
4888         list_move_tail(&page->lru, list);
4889 unlock:
4890         spin_unlock(&hugetlb_lock);
4891         return ret;
4892 }
4893
4894 void putback_active_hugepage(struct page *page)
4895 {
4896         VM_BUG_ON_PAGE(!PageHead(page), page);
4897         spin_lock(&hugetlb_lock);
4898         set_page_huge_active(page);
4899         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4900         spin_unlock(&hugetlb_lock);
4901         put_page(page);
4902 }
4903
4904 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4905 {
4906         struct hstate *h = page_hstate(oldpage);
4907
4908         hugetlb_cgroup_migrate(oldpage, newpage);
4909         set_page_owner_migrate_reason(newpage, reason);
4910
4911         /*
4912          * transfer temporary state of the new huge page. This is
4913          * reverse to other transitions because the newpage is going to
4914          * be final while the old one will be freed so it takes over
4915          * the temporary status.
4916          *
4917          * Also note that we have to transfer the per-node surplus state
4918          * here as well otherwise the global surplus count will not match
4919          * the per-node's.
4920          */
4921         if (PageHugeTemporary(newpage)) {
4922                 int old_nid = page_to_nid(oldpage);
4923                 int new_nid = page_to_nid(newpage);
4924
4925                 SetPageHugeTemporary(oldpage);
4926                 ClearPageHugeTemporary(newpage);
4927
4928                 spin_lock(&hugetlb_lock);
4929                 if (h->surplus_huge_pages_node[old_nid]) {
4930                         h->surplus_huge_pages_node[old_nid]--;
4931                         h->surplus_huge_pages_node[new_nid]++;
4932                 }
4933                 spin_unlock(&hugetlb_lock);
4934         }
4935 }