dmaengine: idxd: handle invalid interrupt handle descriptors
[linux-block.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
54 static bool hugetlb_cma_page(struct page *page, unsigned int order)
55 {
56         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
57                                 1 << order);
58 }
59 #else
60 static bool hugetlb_cma_page(struct page *page, unsigned int order)
61 {
62         return false;
63 }
64 #endif
65 static unsigned long hugetlb_cma_size __initdata;
66
67 /*
68  * Minimum page order among possible hugepage sizes, set to a proper value
69  * at boot time.
70  */
71 static unsigned int minimum_order __read_mostly = UINT_MAX;
72
73 __initdata LIST_HEAD(huge_boot_pages);
74
75 /* for command line parsing */
76 static struct hstate * __initdata parsed_hstate;
77 static unsigned long __initdata default_hstate_max_huge_pages;
78 static bool __initdata parsed_valid_hugepagesz = true;
79 static bool __initdata parsed_default_hugepagesz;
80 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
81
82 /*
83  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
84  * free_huge_pages, and surplus_huge_pages.
85  */
86 DEFINE_SPINLOCK(hugetlb_lock);
87
88 /*
89  * Serializes faults on the same logical page.  This is used to
90  * prevent spurious OOMs when the hugepage pool is fully utilized.
91  */
92 static int num_fault_mutexes;
93 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
94
95 /* Forward declaration */
96 static int hugetlb_acct_memory(struct hstate *h, long delta);
97
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100         if (spool->count)
101                 return false;
102         if (spool->max_hpages != -1)
103                 return spool->used_hpages == 0;
104         if (spool->min_hpages != -1)
105                 return spool->rsv_hpages == spool->min_hpages;
106
107         return true;
108 }
109
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111                                                 unsigned long irq_flags)
112 {
113         spin_unlock_irqrestore(&spool->lock, irq_flags);
114
115         /* If no pages are used, and no other handles to the subpool
116          * remain, give up any reservations based on minimum size and
117          * free the subpool */
118         if (subpool_is_free(spool)) {
119                 if (spool->min_hpages != -1)
120                         hugetlb_acct_memory(spool->hstate,
121                                                 -spool->min_hpages);
122                 kfree(spool);
123         }
124 }
125
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127                                                 long min_hpages)
128 {
129         struct hugepage_subpool *spool;
130
131         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132         if (!spool)
133                 return NULL;
134
135         spin_lock_init(&spool->lock);
136         spool->count = 1;
137         spool->max_hpages = max_hpages;
138         spool->hstate = h;
139         spool->min_hpages = min_hpages;
140
141         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142                 kfree(spool);
143                 return NULL;
144         }
145         spool->rsv_hpages = min_hpages;
146
147         return spool;
148 }
149
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152         unsigned long flags;
153
154         spin_lock_irqsave(&spool->lock, flags);
155         BUG_ON(!spool->count);
156         spool->count--;
157         unlock_or_release_subpool(spool, flags);
158 }
159
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169                                       long delta)
170 {
171         long ret = delta;
172
173         if (!spool)
174                 return ret;
175
176         spin_lock_irq(&spool->lock);
177
178         if (spool->max_hpages != -1) {          /* maximum size accounting */
179                 if ((spool->used_hpages + delta) <= spool->max_hpages)
180                         spool->used_hpages += delta;
181                 else {
182                         ret = -ENOMEM;
183                         goto unlock_ret;
184                 }
185         }
186
187         /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->rsv_hpages) {
189                 if (delta > spool->rsv_hpages) {
190                         /*
191                          * Asking for more reserves than those already taken on
192                          * behalf of subpool.  Return difference.
193                          */
194                         ret = delta - spool->rsv_hpages;
195                         spool->rsv_hpages = 0;
196                 } else {
197                         ret = 0;        /* reserves already accounted for */
198                         spool->rsv_hpages -= delta;
199                 }
200         }
201
202 unlock_ret:
203         spin_unlock_irq(&spool->lock);
204         return ret;
205 }
206
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214                                        long delta)
215 {
216         long ret = delta;
217         unsigned long flags;
218
219         if (!spool)
220                 return delta;
221
222         spin_lock_irqsave(&spool->lock, flags);
223
224         if (spool->max_hpages != -1)            /* maximum size accounting */
225                 spool->used_hpages -= delta;
226
227          /* minimum size accounting */
228         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229                 if (spool->rsv_hpages + delta <= spool->min_hpages)
230                         ret = 0;
231                 else
232                         ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234                 spool->rsv_hpages += delta;
235                 if (spool->rsv_hpages > spool->min_hpages)
236                         spool->rsv_hpages = spool->min_hpages;
237         }
238
239         /*
240          * If hugetlbfs_put_super couldn't free spool due to an outstanding
241          * quota reference, free it now.
242          */
243         unlock_or_release_subpool(spool, flags);
244
245         return ret;
246 }
247
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250         return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255         return subpool_inode(file_inode(vma->vm_file));
256 }
257
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264         struct file_region *nrg = NULL;
265
266         VM_BUG_ON(resv->region_cache_count <= 0);
267
268         resv->region_cache_count--;
269         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270         list_del(&nrg->link);
271
272         nrg->from = from;
273         nrg->to = to;
274
275         return nrg;
276 }
277
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279                                               struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282         nrg->reservation_counter = rg->reservation_counter;
283         nrg->css = rg->css;
284         if (rg->css)
285                 css_get(rg->css);
286 #endif
287 }
288
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291                                                 struct hstate *h,
292                                                 struct resv_map *resv,
293                                                 struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296         if (h_cg) {
297                 nrg->reservation_counter =
298                         &h_cg->rsvd_hugepage[hstate_index(h)];
299                 nrg->css = &h_cg->css;
300                 /*
301                  * The caller will hold exactly one h_cg->css reference for the
302                  * whole contiguous reservation region. But this area might be
303                  * scattered when there are already some file_regions reside in
304                  * it. As a result, many file_regions may share only one css
305                  * reference. In order to ensure that one file_region must hold
306                  * exactly one h_cg->css reference, we should do css_get for
307                  * each file_region and leave the reference held by caller
308                  * untouched.
309                  */
310                 css_get(&h_cg->css);
311                 if (!resv->pages_per_hpage)
312                         resv->pages_per_hpage = pages_per_huge_page(h);
313                 /* pages_per_hpage should be the same for all entries in
314                  * a resv_map.
315                  */
316                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317         } else {
318                 nrg->reservation_counter = NULL;
319                 nrg->css = NULL;
320         }
321 #endif
322 }
323
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327         if (rg->css)
328                 css_put(rg->css);
329 #endif
330 }
331
332 static bool has_same_uncharge_info(struct file_region *rg,
333                                    struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336         return rg->reservation_counter == org->reservation_counter &&
337                rg->css == org->css;
338
339 #else
340         return true;
341 #endif
342 }
343
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346         struct file_region *nrg = NULL, *prg = NULL;
347
348         prg = list_prev_entry(rg, link);
349         if (&prg->link != &resv->regions && prg->to == rg->from &&
350             has_same_uncharge_info(prg, rg)) {
351                 prg->to = rg->to;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356
357                 rg = prg;
358         }
359
360         nrg = list_next_entry(rg, link);
361         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362             has_same_uncharge_info(nrg, rg)) {
363                 nrg->from = rg->from;
364
365                 list_del(&rg->link);
366                 put_uncharge_info(rg);
367                 kfree(rg);
368         }
369 }
370
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
373                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
374                      long *regions_needed)
375 {
376         struct file_region *nrg;
377
378         if (!regions_needed) {
379                 nrg = get_file_region_entry_from_cache(map, from, to);
380                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381                 list_add(&nrg->link, rg->link.prev);
382                 coalesce_file_region(map, nrg);
383         } else
384                 *regions_needed += 1;
385
386         return to - from;
387 }
388
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398                                      struct hugetlb_cgroup *h_cg,
399                                      struct hstate *h, long *regions_needed)
400 {
401         long add = 0;
402         struct list_head *head = &resv->regions;
403         long last_accounted_offset = f;
404         struct file_region *rg = NULL, *trg = NULL;
405
406         if (regions_needed)
407                 *regions_needed = 0;
408
409         /* In this loop, we essentially handle an entry for the range
410          * [last_accounted_offset, rg->from), at every iteration, with some
411          * bounds checking.
412          */
413         list_for_each_entry_safe(rg, trg, head, link) {
414                 /* Skip irrelevant regions that start before our range. */
415                 if (rg->from < f) {
416                         /* If this region ends after the last accounted offset,
417                          * then we need to update last_accounted_offset.
418                          */
419                         if (rg->to > last_accounted_offset)
420                                 last_accounted_offset = rg->to;
421                         continue;
422                 }
423
424                 /* When we find a region that starts beyond our range, we've
425                  * finished.
426                  */
427                 if (rg->from >= t)
428                         break;
429
430                 /* Add an entry for last_accounted_offset -> rg->from, and
431                  * update last_accounted_offset.
432                  */
433                 if (rg->from > last_accounted_offset)
434                         add += hugetlb_resv_map_add(resv, rg,
435                                                     last_accounted_offset,
436                                                     rg->from, h, h_cg,
437                                                     regions_needed);
438
439                 last_accounted_offset = rg->to;
440         }
441
442         /* Handle the case where our range extends beyond
443          * last_accounted_offset.
444          */
445         if (last_accounted_offset < t)
446                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
447                                             t, h, h_cg, regions_needed);
448
449         return add;
450 }
451
452 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
453  */
454 static int allocate_file_region_entries(struct resv_map *resv,
455                                         int regions_needed)
456         __must_hold(&resv->lock)
457 {
458         struct list_head allocated_regions;
459         int to_allocate = 0, i = 0;
460         struct file_region *trg = NULL, *rg = NULL;
461
462         VM_BUG_ON(regions_needed < 0);
463
464         INIT_LIST_HEAD(&allocated_regions);
465
466         /*
467          * Check for sufficient descriptors in the cache to accommodate
468          * the number of in progress add operations plus regions_needed.
469          *
470          * This is a while loop because when we drop the lock, some other call
471          * to region_add or region_del may have consumed some region_entries,
472          * so we keep looping here until we finally have enough entries for
473          * (adds_in_progress + regions_needed).
474          */
475         while (resv->region_cache_count <
476                (resv->adds_in_progress + regions_needed)) {
477                 to_allocate = resv->adds_in_progress + regions_needed -
478                               resv->region_cache_count;
479
480                 /* At this point, we should have enough entries in the cache
481                  * for all the existing adds_in_progress. We should only be
482                  * needing to allocate for regions_needed.
483                  */
484                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
485
486                 spin_unlock(&resv->lock);
487                 for (i = 0; i < to_allocate; i++) {
488                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
489                         if (!trg)
490                                 goto out_of_memory;
491                         list_add(&trg->link, &allocated_regions);
492                 }
493
494                 spin_lock(&resv->lock);
495
496                 list_splice(&allocated_regions, &resv->region_cache);
497                 resv->region_cache_count += to_allocate;
498         }
499
500         return 0;
501
502 out_of_memory:
503         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
504                 list_del(&rg->link);
505                 kfree(rg);
506         }
507         return -ENOMEM;
508 }
509
510 /*
511  * Add the huge page range represented by [f, t) to the reserve
512  * map.  Regions will be taken from the cache to fill in this range.
513  * Sufficient regions should exist in the cache due to the previous
514  * call to region_chg with the same range, but in some cases the cache will not
515  * have sufficient entries due to races with other code doing region_add or
516  * region_del.  The extra needed entries will be allocated.
517  *
518  * regions_needed is the out value provided by a previous call to region_chg.
519  *
520  * Return the number of new huge pages added to the map.  This number is greater
521  * than or equal to zero.  If file_region entries needed to be allocated for
522  * this operation and we were not able to allocate, it returns -ENOMEM.
523  * region_add of regions of length 1 never allocate file_regions and cannot
524  * fail; region_chg will always allocate at least 1 entry and a region_add for
525  * 1 page will only require at most 1 entry.
526  */
527 static long region_add(struct resv_map *resv, long f, long t,
528                        long in_regions_needed, struct hstate *h,
529                        struct hugetlb_cgroup *h_cg)
530 {
531         long add = 0, actual_regions_needed = 0;
532
533         spin_lock(&resv->lock);
534 retry:
535
536         /* Count how many regions are actually needed to execute this add. */
537         add_reservation_in_range(resv, f, t, NULL, NULL,
538                                  &actual_regions_needed);
539
540         /*
541          * Check for sufficient descriptors in the cache to accommodate
542          * this add operation. Note that actual_regions_needed may be greater
543          * than in_regions_needed, as the resv_map may have been modified since
544          * the region_chg call. In this case, we need to make sure that we
545          * allocate extra entries, such that we have enough for all the
546          * existing adds_in_progress, plus the excess needed for this
547          * operation.
548          */
549         if (actual_regions_needed > in_regions_needed &&
550             resv->region_cache_count <
551                     resv->adds_in_progress +
552                             (actual_regions_needed - in_regions_needed)) {
553                 /* region_add operation of range 1 should never need to
554                  * allocate file_region entries.
555                  */
556                 VM_BUG_ON(t - f <= 1);
557
558                 if (allocate_file_region_entries(
559                             resv, actual_regions_needed - in_regions_needed)) {
560                         return -ENOMEM;
561                 }
562
563                 goto retry;
564         }
565
566         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
567
568         resv->adds_in_progress -= in_regions_needed;
569
570         spin_unlock(&resv->lock);
571         return add;
572 }
573
574 /*
575  * Examine the existing reserve map and determine how many
576  * huge pages in the specified range [f, t) are NOT currently
577  * represented.  This routine is called before a subsequent
578  * call to region_add that will actually modify the reserve
579  * map to add the specified range [f, t).  region_chg does
580  * not change the number of huge pages represented by the
581  * map.  A number of new file_region structures is added to the cache as a
582  * placeholder, for the subsequent region_add call to use. At least 1
583  * file_region structure is added.
584  *
585  * out_regions_needed is the number of regions added to the
586  * resv->adds_in_progress.  This value needs to be provided to a follow up call
587  * to region_add or region_abort for proper accounting.
588  *
589  * Returns the number of huge pages that need to be added to the existing
590  * reservation map for the range [f, t).  This number is greater or equal to
591  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
592  * is needed and can not be allocated.
593  */
594 static long region_chg(struct resv_map *resv, long f, long t,
595                        long *out_regions_needed)
596 {
597         long chg = 0;
598
599         spin_lock(&resv->lock);
600
601         /* Count how many hugepages in this range are NOT represented. */
602         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
603                                        out_regions_needed);
604
605         if (*out_regions_needed == 0)
606                 *out_regions_needed = 1;
607
608         if (allocate_file_region_entries(resv, *out_regions_needed))
609                 return -ENOMEM;
610
611         resv->adds_in_progress += *out_regions_needed;
612
613         spin_unlock(&resv->lock);
614         return chg;
615 }
616
617 /*
618  * Abort the in progress add operation.  The adds_in_progress field
619  * of the resv_map keeps track of the operations in progress between
620  * calls to region_chg and region_add.  Operations are sometimes
621  * aborted after the call to region_chg.  In such cases, region_abort
622  * is called to decrement the adds_in_progress counter. regions_needed
623  * is the value returned by the region_chg call, it is used to decrement
624  * the adds_in_progress counter.
625  *
626  * NOTE: The range arguments [f, t) are not needed or used in this
627  * routine.  They are kept to make reading the calling code easier as
628  * arguments will match the associated region_chg call.
629  */
630 static void region_abort(struct resv_map *resv, long f, long t,
631                          long regions_needed)
632 {
633         spin_lock(&resv->lock);
634         VM_BUG_ON(!resv->region_cache_count);
635         resv->adds_in_progress -= regions_needed;
636         spin_unlock(&resv->lock);
637 }
638
639 /*
640  * Delete the specified range [f, t) from the reserve map.  If the
641  * t parameter is LONG_MAX, this indicates that ALL regions after f
642  * should be deleted.  Locate the regions which intersect [f, t)
643  * and either trim, delete or split the existing regions.
644  *
645  * Returns the number of huge pages deleted from the reserve map.
646  * In the normal case, the return value is zero or more.  In the
647  * case where a region must be split, a new region descriptor must
648  * be allocated.  If the allocation fails, -ENOMEM will be returned.
649  * NOTE: If the parameter t == LONG_MAX, then we will never split
650  * a region and possibly return -ENOMEM.  Callers specifying
651  * t == LONG_MAX do not need to check for -ENOMEM error.
652  */
653 static long region_del(struct resv_map *resv, long f, long t)
654 {
655         struct list_head *head = &resv->regions;
656         struct file_region *rg, *trg;
657         struct file_region *nrg = NULL;
658         long del = 0;
659
660 retry:
661         spin_lock(&resv->lock);
662         list_for_each_entry_safe(rg, trg, head, link) {
663                 /*
664                  * Skip regions before the range to be deleted.  file_region
665                  * ranges are normally of the form [from, to).  However, there
666                  * may be a "placeholder" entry in the map which is of the form
667                  * (from, to) with from == to.  Check for placeholder entries
668                  * at the beginning of the range to be deleted.
669                  */
670                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
671                         continue;
672
673                 if (rg->from >= t)
674                         break;
675
676                 if (f > rg->from && t < rg->to) { /* Must split region */
677                         /*
678                          * Check for an entry in the cache before dropping
679                          * lock and attempting allocation.
680                          */
681                         if (!nrg &&
682                             resv->region_cache_count > resv->adds_in_progress) {
683                                 nrg = list_first_entry(&resv->region_cache,
684                                                         struct file_region,
685                                                         link);
686                                 list_del(&nrg->link);
687                                 resv->region_cache_count--;
688                         }
689
690                         if (!nrg) {
691                                 spin_unlock(&resv->lock);
692                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
693                                 if (!nrg)
694                                         return -ENOMEM;
695                                 goto retry;
696                         }
697
698                         del += t - f;
699                         hugetlb_cgroup_uncharge_file_region(
700                                 resv, rg, t - f, false);
701
702                         /* New entry for end of split region */
703                         nrg->from = t;
704                         nrg->to = rg->to;
705
706                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
707
708                         INIT_LIST_HEAD(&nrg->link);
709
710                         /* Original entry is trimmed */
711                         rg->to = f;
712
713                         list_add(&nrg->link, &rg->link);
714                         nrg = NULL;
715                         break;
716                 }
717
718                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
719                         del += rg->to - rg->from;
720                         hugetlb_cgroup_uncharge_file_region(resv, rg,
721                                                             rg->to - rg->from, true);
722                         list_del(&rg->link);
723                         kfree(rg);
724                         continue;
725                 }
726
727                 if (f <= rg->from) {    /* Trim beginning of region */
728                         hugetlb_cgroup_uncharge_file_region(resv, rg,
729                                                             t - rg->from, false);
730
731                         del += t - rg->from;
732                         rg->from = t;
733                 } else {                /* Trim end of region */
734                         hugetlb_cgroup_uncharge_file_region(resv, rg,
735                                                             rg->to - f, false);
736
737                         del += rg->to - f;
738                         rg->to = f;
739                 }
740         }
741
742         spin_unlock(&resv->lock);
743         kfree(nrg);
744         return del;
745 }
746
747 /*
748  * A rare out of memory error was encountered which prevented removal of
749  * the reserve map region for a page.  The huge page itself was free'ed
750  * and removed from the page cache.  This routine will adjust the subpool
751  * usage count, and the global reserve count if needed.  By incrementing
752  * these counts, the reserve map entry which could not be deleted will
753  * appear as a "reserved" entry instead of simply dangling with incorrect
754  * counts.
755  */
756 void hugetlb_fix_reserve_counts(struct inode *inode)
757 {
758         struct hugepage_subpool *spool = subpool_inode(inode);
759         long rsv_adjust;
760         bool reserved = false;
761
762         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
763         if (rsv_adjust > 0) {
764                 struct hstate *h = hstate_inode(inode);
765
766                 if (!hugetlb_acct_memory(h, 1))
767                         reserved = true;
768         } else if (!rsv_adjust) {
769                 reserved = true;
770         }
771
772         if (!reserved)
773                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
774 }
775
776 /*
777  * Count and return the number of huge pages in the reserve map
778  * that intersect with the range [f, t).
779  */
780 static long region_count(struct resv_map *resv, long f, long t)
781 {
782         struct list_head *head = &resv->regions;
783         struct file_region *rg;
784         long chg = 0;
785
786         spin_lock(&resv->lock);
787         /* Locate each segment we overlap with, and count that overlap. */
788         list_for_each_entry(rg, head, link) {
789                 long seg_from;
790                 long seg_to;
791
792                 if (rg->to <= f)
793                         continue;
794                 if (rg->from >= t)
795                         break;
796
797                 seg_from = max(rg->from, f);
798                 seg_to = min(rg->to, t);
799
800                 chg += seg_to - seg_from;
801         }
802         spin_unlock(&resv->lock);
803
804         return chg;
805 }
806
807 /*
808  * Convert the address within this vma to the page offset within
809  * the mapping, in pagecache page units; huge pages here.
810  */
811 static pgoff_t vma_hugecache_offset(struct hstate *h,
812                         struct vm_area_struct *vma, unsigned long address)
813 {
814         return ((address - vma->vm_start) >> huge_page_shift(h)) +
815                         (vma->vm_pgoff >> huge_page_order(h));
816 }
817
818 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
819                                      unsigned long address)
820 {
821         return vma_hugecache_offset(hstate_vma(vma), vma, address);
822 }
823 EXPORT_SYMBOL_GPL(linear_hugepage_index);
824
825 /*
826  * Return the size of the pages allocated when backing a VMA. In the majority
827  * cases this will be same size as used by the page table entries.
828  */
829 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
830 {
831         if (vma->vm_ops && vma->vm_ops->pagesize)
832                 return vma->vm_ops->pagesize(vma);
833         return PAGE_SIZE;
834 }
835 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
836
837 /*
838  * Return the page size being used by the MMU to back a VMA. In the majority
839  * of cases, the page size used by the kernel matches the MMU size. On
840  * architectures where it differs, an architecture-specific 'strong'
841  * version of this symbol is required.
842  */
843 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
844 {
845         return vma_kernel_pagesize(vma);
846 }
847
848 /*
849  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
850  * bits of the reservation map pointer, which are always clear due to
851  * alignment.
852  */
853 #define HPAGE_RESV_OWNER    (1UL << 0)
854 #define HPAGE_RESV_UNMAPPED (1UL << 1)
855 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
856
857 /*
858  * These helpers are used to track how many pages are reserved for
859  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
860  * is guaranteed to have their future faults succeed.
861  *
862  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
863  * the reserve counters are updated with the hugetlb_lock held. It is safe
864  * to reset the VMA at fork() time as it is not in use yet and there is no
865  * chance of the global counters getting corrupted as a result of the values.
866  *
867  * The private mapping reservation is represented in a subtly different
868  * manner to a shared mapping.  A shared mapping has a region map associated
869  * with the underlying file, this region map represents the backing file
870  * pages which have ever had a reservation assigned which this persists even
871  * after the page is instantiated.  A private mapping has a region map
872  * associated with the original mmap which is attached to all VMAs which
873  * reference it, this region map represents those offsets which have consumed
874  * reservation ie. where pages have been instantiated.
875  */
876 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
877 {
878         return (unsigned long)vma->vm_private_data;
879 }
880
881 static void set_vma_private_data(struct vm_area_struct *vma,
882                                                         unsigned long value)
883 {
884         vma->vm_private_data = (void *)value;
885 }
886
887 static void
888 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
889                                           struct hugetlb_cgroup *h_cg,
890                                           struct hstate *h)
891 {
892 #ifdef CONFIG_CGROUP_HUGETLB
893         if (!h_cg || !h) {
894                 resv_map->reservation_counter = NULL;
895                 resv_map->pages_per_hpage = 0;
896                 resv_map->css = NULL;
897         } else {
898                 resv_map->reservation_counter =
899                         &h_cg->rsvd_hugepage[hstate_index(h)];
900                 resv_map->pages_per_hpage = pages_per_huge_page(h);
901                 resv_map->css = &h_cg->css;
902         }
903 #endif
904 }
905
906 struct resv_map *resv_map_alloc(void)
907 {
908         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
909         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
910
911         if (!resv_map || !rg) {
912                 kfree(resv_map);
913                 kfree(rg);
914                 return NULL;
915         }
916
917         kref_init(&resv_map->refs);
918         spin_lock_init(&resv_map->lock);
919         INIT_LIST_HEAD(&resv_map->regions);
920
921         resv_map->adds_in_progress = 0;
922         /*
923          * Initialize these to 0. On shared mappings, 0's here indicate these
924          * fields don't do cgroup accounting. On private mappings, these will be
925          * re-initialized to the proper values, to indicate that hugetlb cgroup
926          * reservations are to be un-charged from here.
927          */
928         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
929
930         INIT_LIST_HEAD(&resv_map->region_cache);
931         list_add(&rg->link, &resv_map->region_cache);
932         resv_map->region_cache_count = 1;
933
934         return resv_map;
935 }
936
937 void resv_map_release(struct kref *ref)
938 {
939         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
940         struct list_head *head = &resv_map->region_cache;
941         struct file_region *rg, *trg;
942
943         /* Clear out any active regions before we release the map. */
944         region_del(resv_map, 0, LONG_MAX);
945
946         /* ... and any entries left in the cache */
947         list_for_each_entry_safe(rg, trg, head, link) {
948                 list_del(&rg->link);
949                 kfree(rg);
950         }
951
952         VM_BUG_ON(resv_map->adds_in_progress);
953
954         kfree(resv_map);
955 }
956
957 static inline struct resv_map *inode_resv_map(struct inode *inode)
958 {
959         /*
960          * At inode evict time, i_mapping may not point to the original
961          * address space within the inode.  This original address space
962          * contains the pointer to the resv_map.  So, always use the
963          * address space embedded within the inode.
964          * The VERY common case is inode->mapping == &inode->i_data but,
965          * this may not be true for device special inodes.
966          */
967         return (struct resv_map *)(&inode->i_data)->private_data;
968 }
969
970 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
971 {
972         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973         if (vma->vm_flags & VM_MAYSHARE) {
974                 struct address_space *mapping = vma->vm_file->f_mapping;
975                 struct inode *inode = mapping->host;
976
977                 return inode_resv_map(inode);
978
979         } else {
980                 return (struct resv_map *)(get_vma_private_data(vma) &
981                                                         ~HPAGE_RESV_MASK);
982         }
983 }
984
985 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
986 {
987         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
988         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
989
990         set_vma_private_data(vma, (get_vma_private_data(vma) &
991                                 HPAGE_RESV_MASK) | (unsigned long)map);
992 }
993
994 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
995 {
996         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
997         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
998
999         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1000 }
1001
1002 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1003 {
1004         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005
1006         return (get_vma_private_data(vma) & flag) != 0;
1007 }
1008
1009 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1010 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1011 {
1012         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1013         if (!(vma->vm_flags & VM_MAYSHARE))
1014                 vma->vm_private_data = (void *)0;
1015 }
1016
1017 /*
1018  * Reset and decrement one ref on hugepage private reservation.
1019  * Called with mm->mmap_sem writer semaphore held.
1020  * This function should be only used by move_vma() and operate on
1021  * same sized vma. It should never come here with last ref on the
1022  * reservation.
1023  */
1024 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1025 {
1026         /*
1027          * Clear the old hugetlb private page reservation.
1028          * It has already been transferred to new_vma.
1029          *
1030          * During a mremap() operation of a hugetlb vma we call move_vma()
1031          * which copies vma into new_vma and unmaps vma. After the copy
1032          * operation both new_vma and vma share a reference to the resv_map
1033          * struct, and at that point vma is about to be unmapped. We don't
1034          * want to return the reservation to the pool at unmap of vma because
1035          * the reservation still lives on in new_vma, so simply decrement the
1036          * ref here and remove the resv_map reference from this vma.
1037          */
1038         struct resv_map *reservations = vma_resv_map(vma);
1039
1040         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
1041                 kref_put(&reservations->refs, resv_map_release);
1042
1043         reset_vma_resv_huge_pages(vma);
1044 }
1045
1046 /* Returns true if the VMA has associated reserve pages */
1047 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1048 {
1049         if (vma->vm_flags & VM_NORESERVE) {
1050                 /*
1051                  * This address is already reserved by other process(chg == 0),
1052                  * so, we should decrement reserved count. Without decrementing,
1053                  * reserve count remains after releasing inode, because this
1054                  * allocated page will go into page cache and is regarded as
1055                  * coming from reserved pool in releasing step.  Currently, we
1056                  * don't have any other solution to deal with this situation
1057                  * properly, so add work-around here.
1058                  */
1059                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1060                         return true;
1061                 else
1062                         return false;
1063         }
1064
1065         /* Shared mappings always use reserves */
1066         if (vma->vm_flags & VM_MAYSHARE) {
1067                 /*
1068                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1069                  * be a region map for all pages.  The only situation where
1070                  * there is no region map is if a hole was punched via
1071                  * fallocate.  In this case, there really are no reserves to
1072                  * use.  This situation is indicated if chg != 0.
1073                  */
1074                 if (chg)
1075                         return false;
1076                 else
1077                         return true;
1078         }
1079
1080         /*
1081          * Only the process that called mmap() has reserves for
1082          * private mappings.
1083          */
1084         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1085                 /*
1086                  * Like the shared case above, a hole punch or truncate
1087                  * could have been performed on the private mapping.
1088                  * Examine the value of chg to determine if reserves
1089                  * actually exist or were previously consumed.
1090                  * Very Subtle - The value of chg comes from a previous
1091                  * call to vma_needs_reserves().  The reserve map for
1092                  * private mappings has different (opposite) semantics
1093                  * than that of shared mappings.  vma_needs_reserves()
1094                  * has already taken this difference in semantics into
1095                  * account.  Therefore, the meaning of chg is the same
1096                  * as in the shared case above.  Code could easily be
1097                  * combined, but keeping it separate draws attention to
1098                  * subtle differences.
1099                  */
1100                 if (chg)
1101                         return false;
1102                 else
1103                         return true;
1104         }
1105
1106         return false;
1107 }
1108
1109 static void enqueue_huge_page(struct hstate *h, struct page *page)
1110 {
1111         int nid = page_to_nid(page);
1112
1113         lockdep_assert_held(&hugetlb_lock);
1114         VM_BUG_ON_PAGE(page_count(page), page);
1115
1116         list_move(&page->lru, &h->hugepage_freelists[nid]);
1117         h->free_huge_pages++;
1118         h->free_huge_pages_node[nid]++;
1119         SetHPageFreed(page);
1120 }
1121
1122 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1123 {
1124         struct page *page;
1125         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1126
1127         lockdep_assert_held(&hugetlb_lock);
1128         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1129                 if (pin && !is_pinnable_page(page))
1130                         continue;
1131
1132                 if (PageHWPoison(page))
1133                         continue;
1134
1135                 list_move(&page->lru, &h->hugepage_activelist);
1136                 set_page_refcounted(page);
1137                 ClearHPageFreed(page);
1138                 h->free_huge_pages--;
1139                 h->free_huge_pages_node[nid]--;
1140                 return page;
1141         }
1142
1143         return NULL;
1144 }
1145
1146 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1147                 nodemask_t *nmask)
1148 {
1149         unsigned int cpuset_mems_cookie;
1150         struct zonelist *zonelist;
1151         struct zone *zone;
1152         struct zoneref *z;
1153         int node = NUMA_NO_NODE;
1154
1155         zonelist = node_zonelist(nid, gfp_mask);
1156
1157 retry_cpuset:
1158         cpuset_mems_cookie = read_mems_allowed_begin();
1159         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1160                 struct page *page;
1161
1162                 if (!cpuset_zone_allowed(zone, gfp_mask))
1163                         continue;
1164                 /*
1165                  * no need to ask again on the same node. Pool is node rather than
1166                  * zone aware
1167                  */
1168                 if (zone_to_nid(zone) == node)
1169                         continue;
1170                 node = zone_to_nid(zone);
1171
1172                 page = dequeue_huge_page_node_exact(h, node);
1173                 if (page)
1174                         return page;
1175         }
1176         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1177                 goto retry_cpuset;
1178
1179         return NULL;
1180 }
1181
1182 static struct page *dequeue_huge_page_vma(struct hstate *h,
1183                                 struct vm_area_struct *vma,
1184                                 unsigned long address, int avoid_reserve,
1185                                 long chg)
1186 {
1187         struct page *page = NULL;
1188         struct mempolicy *mpol;
1189         gfp_t gfp_mask;
1190         nodemask_t *nodemask;
1191         int nid;
1192
1193         /*
1194          * A child process with MAP_PRIVATE mappings created by their parent
1195          * have no page reserves. This check ensures that reservations are
1196          * not "stolen". The child may still get SIGKILLed
1197          */
1198         if (!vma_has_reserves(vma, chg) &&
1199                         h->free_huge_pages - h->resv_huge_pages == 0)
1200                 goto err;
1201
1202         /* If reserves cannot be used, ensure enough pages are in the pool */
1203         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1204                 goto err;
1205
1206         gfp_mask = htlb_alloc_mask(h);
1207         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1208
1209         if (mpol_is_preferred_many(mpol)) {
1210                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1211
1212                 /* Fallback to all nodes if page==NULL */
1213                 nodemask = NULL;
1214         }
1215
1216         if (!page)
1217                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1218
1219         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1220                 SetHPageRestoreReserve(page);
1221                 h->resv_huge_pages--;
1222         }
1223
1224         mpol_cond_put(mpol);
1225         return page;
1226
1227 err:
1228         return NULL;
1229 }
1230
1231 /*
1232  * common helper functions for hstate_next_node_to_{alloc|free}.
1233  * We may have allocated or freed a huge page based on a different
1234  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1235  * be outside of *nodes_allowed.  Ensure that we use an allowed
1236  * node for alloc or free.
1237  */
1238 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1239 {
1240         nid = next_node_in(nid, *nodes_allowed);
1241         VM_BUG_ON(nid >= MAX_NUMNODES);
1242
1243         return nid;
1244 }
1245
1246 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1247 {
1248         if (!node_isset(nid, *nodes_allowed))
1249                 nid = next_node_allowed(nid, nodes_allowed);
1250         return nid;
1251 }
1252
1253 /*
1254  * returns the previously saved node ["this node"] from which to
1255  * allocate a persistent huge page for the pool and advance the
1256  * next node from which to allocate, handling wrap at end of node
1257  * mask.
1258  */
1259 static int hstate_next_node_to_alloc(struct hstate *h,
1260                                         nodemask_t *nodes_allowed)
1261 {
1262         int nid;
1263
1264         VM_BUG_ON(!nodes_allowed);
1265
1266         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1267         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1268
1269         return nid;
1270 }
1271
1272 /*
1273  * helper for remove_pool_huge_page() - return the previously saved
1274  * node ["this node"] from which to free a huge page.  Advance the
1275  * next node id whether or not we find a free huge page to free so
1276  * that the next attempt to free addresses the next node.
1277  */
1278 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1279 {
1280         int nid;
1281
1282         VM_BUG_ON(!nodes_allowed);
1283
1284         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1285         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1286
1287         return nid;
1288 }
1289
1290 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1291         for (nr_nodes = nodes_weight(*mask);                            \
1292                 nr_nodes > 0 &&                                         \
1293                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1294                 nr_nodes--)
1295
1296 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1297         for (nr_nodes = nodes_weight(*mask);                            \
1298                 nr_nodes > 0 &&                                         \
1299                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1300                 nr_nodes--)
1301
1302 /* used to demote non-gigantic_huge pages as well */
1303 static void __destroy_compound_gigantic_page(struct page *page,
1304                                         unsigned int order, bool demote)
1305 {
1306         int i;
1307         int nr_pages = 1 << order;
1308         struct page *p = page + 1;
1309
1310         atomic_set(compound_mapcount_ptr(page), 0);
1311         atomic_set(compound_pincount_ptr(page), 0);
1312
1313         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1314                 p->mapping = NULL;
1315                 clear_compound_head(p);
1316                 if (!demote)
1317                         set_page_refcounted(p);
1318         }
1319
1320         set_compound_order(page, 0);
1321         page[1].compound_nr = 0;
1322         __ClearPageHead(page);
1323 }
1324
1325 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1326                                         unsigned int order)
1327 {
1328         __destroy_compound_gigantic_page(page, order, true);
1329 }
1330
1331 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1332 static void destroy_compound_gigantic_page(struct page *page,
1333                                         unsigned int order)
1334 {
1335         __destroy_compound_gigantic_page(page, order, false);
1336 }
1337
1338 static void free_gigantic_page(struct page *page, unsigned int order)
1339 {
1340         /*
1341          * If the page isn't allocated using the cma allocator,
1342          * cma_release() returns false.
1343          */
1344 #ifdef CONFIG_CMA
1345         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1346                 return;
1347 #endif
1348
1349         free_contig_range(page_to_pfn(page), 1 << order);
1350 }
1351
1352 #ifdef CONFIG_CONTIG_ALLOC
1353 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1354                 int nid, nodemask_t *nodemask)
1355 {
1356         unsigned long nr_pages = pages_per_huge_page(h);
1357         if (nid == NUMA_NO_NODE)
1358                 nid = numa_mem_id();
1359
1360 #ifdef CONFIG_CMA
1361         {
1362                 struct page *page;
1363                 int node;
1364
1365                 if (hugetlb_cma[nid]) {
1366                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1367                                         huge_page_order(h), true);
1368                         if (page)
1369                                 return page;
1370                 }
1371
1372                 if (!(gfp_mask & __GFP_THISNODE)) {
1373                         for_each_node_mask(node, *nodemask) {
1374                                 if (node == nid || !hugetlb_cma[node])
1375                                         continue;
1376
1377                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1378                                                 huge_page_order(h), true);
1379                                 if (page)
1380                                         return page;
1381                         }
1382                 }
1383         }
1384 #endif
1385
1386         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1387 }
1388
1389 #else /* !CONFIG_CONTIG_ALLOC */
1390 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1391                                         int nid, nodemask_t *nodemask)
1392 {
1393         return NULL;
1394 }
1395 #endif /* CONFIG_CONTIG_ALLOC */
1396
1397 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1398 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1399                                         int nid, nodemask_t *nodemask)
1400 {
1401         return NULL;
1402 }
1403 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1404 static inline void destroy_compound_gigantic_page(struct page *page,
1405                                                 unsigned int order) { }
1406 #endif
1407
1408 /*
1409  * Remove hugetlb page from lists, and update dtor so that page appears
1410  * as just a compound page.
1411  *
1412  * A reference is held on the page, except in the case of demote.
1413  *
1414  * Must be called with hugetlb lock held.
1415  */
1416 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1417                                                         bool adjust_surplus,
1418                                                         bool demote)
1419 {
1420         int nid = page_to_nid(page);
1421
1422         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1423         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1424
1425         lockdep_assert_held(&hugetlb_lock);
1426         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1427                 return;
1428
1429         list_del(&page->lru);
1430
1431         if (HPageFreed(page)) {
1432                 h->free_huge_pages--;
1433                 h->free_huge_pages_node[nid]--;
1434         }
1435         if (adjust_surplus) {
1436                 h->surplus_huge_pages--;
1437                 h->surplus_huge_pages_node[nid]--;
1438         }
1439
1440         /*
1441          * Very subtle
1442          *
1443          * For non-gigantic pages set the destructor to the normal compound
1444          * page dtor.  This is needed in case someone takes an additional
1445          * temporary ref to the page, and freeing is delayed until they drop
1446          * their reference.
1447          *
1448          * For gigantic pages set the destructor to the null dtor.  This
1449          * destructor will never be called.  Before freeing the gigantic
1450          * page destroy_compound_gigantic_page will turn the compound page
1451          * into a simple group of pages.  After this the destructor does not
1452          * apply.
1453          *
1454          * This handles the case where more than one ref is held when and
1455          * after update_and_free_page is called.
1456          *
1457          * In the case of demote we do not ref count the page as it will soon
1458          * be turned into a page of smaller size.
1459          */
1460         if (!demote)
1461                 set_page_refcounted(page);
1462         if (hstate_is_gigantic(h))
1463                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1464         else
1465                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1466
1467         h->nr_huge_pages--;
1468         h->nr_huge_pages_node[nid]--;
1469 }
1470
1471 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1472                                                         bool adjust_surplus)
1473 {
1474         __remove_hugetlb_page(h, page, adjust_surplus, false);
1475 }
1476
1477 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1478                                                         bool adjust_surplus)
1479 {
1480         __remove_hugetlb_page(h, page, adjust_surplus, true);
1481 }
1482
1483 static void add_hugetlb_page(struct hstate *h, struct page *page,
1484                              bool adjust_surplus)
1485 {
1486         int zeroed;
1487         int nid = page_to_nid(page);
1488
1489         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1490
1491         lockdep_assert_held(&hugetlb_lock);
1492
1493         INIT_LIST_HEAD(&page->lru);
1494         h->nr_huge_pages++;
1495         h->nr_huge_pages_node[nid]++;
1496
1497         if (adjust_surplus) {
1498                 h->surplus_huge_pages++;
1499                 h->surplus_huge_pages_node[nid]++;
1500         }
1501
1502         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503         set_page_private(page, 0);
1504         SetHPageVmemmapOptimized(page);
1505
1506         /*
1507          * This page is about to be managed by the hugetlb allocator and
1508          * should have no users.  Drop our reference, and check for others
1509          * just in case.
1510          */
1511         zeroed = put_page_testzero(page);
1512         if (!zeroed)
1513                 /*
1514                  * It is VERY unlikely soneone else has taken a ref on
1515                  * the page.  In this case, we simply return as the
1516                  * hugetlb destructor (free_huge_page) will be called
1517                  * when this other ref is dropped.
1518                  */
1519                 return;
1520
1521         arch_clear_hugepage_flags(page);
1522         enqueue_huge_page(h, page);
1523 }
1524
1525 static void __update_and_free_page(struct hstate *h, struct page *page)
1526 {
1527         int i;
1528         struct page *subpage = page;
1529
1530         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1531                 return;
1532
1533         if (alloc_huge_page_vmemmap(h, page)) {
1534                 spin_lock_irq(&hugetlb_lock);
1535                 /*
1536                  * If we cannot allocate vmemmap pages, just refuse to free the
1537                  * page and put the page back on the hugetlb free list and treat
1538                  * as a surplus page.
1539                  */
1540                 add_hugetlb_page(h, page, true);
1541                 spin_unlock_irq(&hugetlb_lock);
1542                 return;
1543         }
1544
1545         for (i = 0; i < pages_per_huge_page(h);
1546              i++, subpage = mem_map_next(subpage, page, i)) {
1547                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1548                                 1 << PG_referenced | 1 << PG_dirty |
1549                                 1 << PG_active | 1 << PG_private |
1550                                 1 << PG_writeback);
1551         }
1552
1553         /*
1554          * Non-gigantic pages demoted from CMA allocated gigantic pages
1555          * need to be given back to CMA in free_gigantic_page.
1556          */
1557         if (hstate_is_gigantic(h) ||
1558             hugetlb_cma_page(page, huge_page_order(h))) {
1559                 destroy_compound_gigantic_page(page, huge_page_order(h));
1560                 free_gigantic_page(page, huge_page_order(h));
1561         } else {
1562                 __free_pages(page, huge_page_order(h));
1563         }
1564 }
1565
1566 /*
1567  * As update_and_free_page() can be called under any context, so we cannot
1568  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1569  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1570  * the vmemmap pages.
1571  *
1572  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1573  * freed and frees them one-by-one. As the page->mapping pointer is going
1574  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1575  * structure of a lockless linked list of huge pages to be freed.
1576  */
1577 static LLIST_HEAD(hpage_freelist);
1578
1579 static void free_hpage_workfn(struct work_struct *work)
1580 {
1581         struct llist_node *node;
1582
1583         node = llist_del_all(&hpage_freelist);
1584
1585         while (node) {
1586                 struct page *page;
1587                 struct hstate *h;
1588
1589                 page = container_of((struct address_space **)node,
1590                                      struct page, mapping);
1591                 node = node->next;
1592                 page->mapping = NULL;
1593                 /*
1594                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1595                  * is going to trigger because a previous call to
1596                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1597                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1598                  */
1599                 h = size_to_hstate(page_size(page));
1600
1601                 __update_and_free_page(h, page);
1602
1603                 cond_resched();
1604         }
1605 }
1606 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1607
1608 static inline void flush_free_hpage_work(struct hstate *h)
1609 {
1610         if (free_vmemmap_pages_per_hpage(h))
1611                 flush_work(&free_hpage_work);
1612 }
1613
1614 static void update_and_free_page(struct hstate *h, struct page *page,
1615                                  bool atomic)
1616 {
1617         if (!HPageVmemmapOptimized(page) || !atomic) {
1618                 __update_and_free_page(h, page);
1619                 return;
1620         }
1621
1622         /*
1623          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1624          *
1625          * Only call schedule_work() if hpage_freelist is previously
1626          * empty. Otherwise, schedule_work() had been called but the workfn
1627          * hasn't retrieved the list yet.
1628          */
1629         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1630                 schedule_work(&free_hpage_work);
1631 }
1632
1633 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1634 {
1635         struct page *page, *t_page;
1636
1637         list_for_each_entry_safe(page, t_page, list, lru) {
1638                 update_and_free_page(h, page, false);
1639                 cond_resched();
1640         }
1641 }
1642
1643 struct hstate *size_to_hstate(unsigned long size)
1644 {
1645         struct hstate *h;
1646
1647         for_each_hstate(h) {
1648                 if (huge_page_size(h) == size)
1649                         return h;
1650         }
1651         return NULL;
1652 }
1653
1654 void free_huge_page(struct page *page)
1655 {
1656         /*
1657          * Can't pass hstate in here because it is called from the
1658          * compound page destructor.
1659          */
1660         struct hstate *h = page_hstate(page);
1661         int nid = page_to_nid(page);
1662         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1663         bool restore_reserve;
1664         unsigned long flags;
1665
1666         VM_BUG_ON_PAGE(page_count(page), page);
1667         VM_BUG_ON_PAGE(page_mapcount(page), page);
1668
1669         hugetlb_set_page_subpool(page, NULL);
1670         page->mapping = NULL;
1671         restore_reserve = HPageRestoreReserve(page);
1672         ClearHPageRestoreReserve(page);
1673
1674         /*
1675          * If HPageRestoreReserve was set on page, page allocation consumed a
1676          * reservation.  If the page was associated with a subpool, there
1677          * would have been a page reserved in the subpool before allocation
1678          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1679          * reservation, do not call hugepage_subpool_put_pages() as this will
1680          * remove the reserved page from the subpool.
1681          */
1682         if (!restore_reserve) {
1683                 /*
1684                  * A return code of zero implies that the subpool will be
1685                  * under its minimum size if the reservation is not restored
1686                  * after page is free.  Therefore, force restore_reserve
1687                  * operation.
1688                  */
1689                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1690                         restore_reserve = true;
1691         }
1692
1693         spin_lock_irqsave(&hugetlb_lock, flags);
1694         ClearHPageMigratable(page);
1695         hugetlb_cgroup_uncharge_page(hstate_index(h),
1696                                      pages_per_huge_page(h), page);
1697         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1698                                           pages_per_huge_page(h), page);
1699         if (restore_reserve)
1700                 h->resv_huge_pages++;
1701
1702         if (HPageTemporary(page)) {
1703                 remove_hugetlb_page(h, page, false);
1704                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1705                 update_and_free_page(h, page, true);
1706         } else if (h->surplus_huge_pages_node[nid]) {
1707                 /* remove the page from active list */
1708                 remove_hugetlb_page(h, page, true);
1709                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1710                 update_and_free_page(h, page, true);
1711         } else {
1712                 arch_clear_hugepage_flags(page);
1713                 enqueue_huge_page(h, page);
1714                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1715         }
1716 }
1717
1718 /*
1719  * Must be called with the hugetlb lock held
1720  */
1721 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1722 {
1723         lockdep_assert_held(&hugetlb_lock);
1724         h->nr_huge_pages++;
1725         h->nr_huge_pages_node[nid]++;
1726 }
1727
1728 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1729 {
1730         free_huge_page_vmemmap(h, page);
1731         INIT_LIST_HEAD(&page->lru);
1732         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1733         hugetlb_set_page_subpool(page, NULL);
1734         set_hugetlb_cgroup(page, NULL);
1735         set_hugetlb_cgroup_rsvd(page, NULL);
1736 }
1737
1738 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1739 {
1740         __prep_new_huge_page(h, page);
1741         spin_lock_irq(&hugetlb_lock);
1742         __prep_account_new_huge_page(h, nid);
1743         spin_unlock_irq(&hugetlb_lock);
1744 }
1745
1746 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1747                                                                 bool demote)
1748 {
1749         int i, j;
1750         int nr_pages = 1 << order;
1751         struct page *p = page + 1;
1752
1753         /* we rely on prep_new_huge_page to set the destructor */
1754         set_compound_order(page, order);
1755         __ClearPageReserved(page);
1756         __SetPageHead(page);
1757         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1758                 /*
1759                  * For gigantic hugepages allocated through bootmem at
1760                  * boot, it's safer to be consistent with the not-gigantic
1761                  * hugepages and clear the PG_reserved bit from all tail pages
1762                  * too.  Otherwise drivers using get_user_pages() to access tail
1763                  * pages may get the reference counting wrong if they see
1764                  * PG_reserved set on a tail page (despite the head page not
1765                  * having PG_reserved set).  Enforcing this consistency between
1766                  * head and tail pages allows drivers to optimize away a check
1767                  * on the head page when they need know if put_page() is needed
1768                  * after get_user_pages().
1769                  */
1770                 __ClearPageReserved(p);
1771                 /*
1772                  * Subtle and very unlikely
1773                  *
1774                  * Gigantic 'page allocators' such as memblock or cma will
1775                  * return a set of pages with each page ref counted.  We need
1776                  * to turn this set of pages into a compound page with tail
1777                  * page ref counts set to zero.  Code such as speculative page
1778                  * cache adding could take a ref on a 'to be' tail page.
1779                  * We need to respect any increased ref count, and only set
1780                  * the ref count to zero if count is currently 1.  If count
1781                  * is not 1, we return an error.  An error return indicates
1782                  * the set of pages can not be converted to a gigantic page.
1783                  * The caller who allocated the pages should then discard the
1784                  * pages using the appropriate free interface.
1785                  *
1786                  * In the case of demote, the ref count will be zero.
1787                  */
1788                 if (!demote) {
1789                         if (!page_ref_freeze(p, 1)) {
1790                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1791                                 goto out_error;
1792                         }
1793                 } else {
1794                         VM_BUG_ON_PAGE(page_count(p), p);
1795                 }
1796                 set_compound_head(p, page);
1797         }
1798         atomic_set(compound_mapcount_ptr(page), -1);
1799         atomic_set(compound_pincount_ptr(page), 0);
1800         return true;
1801
1802 out_error:
1803         /* undo tail page modifications made above */
1804         p = page + 1;
1805         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1806                 clear_compound_head(p);
1807                 set_page_refcounted(p);
1808         }
1809         /* need to clear PG_reserved on remaining tail pages  */
1810         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1811                 __ClearPageReserved(p);
1812         set_compound_order(page, 0);
1813         page[1].compound_nr = 0;
1814         __ClearPageHead(page);
1815         return false;
1816 }
1817
1818 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1819 {
1820         return __prep_compound_gigantic_page(page, order, false);
1821 }
1822
1823 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1824                                                         unsigned int order)
1825 {
1826         return __prep_compound_gigantic_page(page, order, true);
1827 }
1828
1829 /*
1830  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1831  * transparent huge pages.  See the PageTransHuge() documentation for more
1832  * details.
1833  */
1834 int PageHuge(struct page *page)
1835 {
1836         if (!PageCompound(page))
1837                 return 0;
1838
1839         page = compound_head(page);
1840         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1841 }
1842 EXPORT_SYMBOL_GPL(PageHuge);
1843
1844 /*
1845  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1846  * normal or transparent huge pages.
1847  */
1848 int PageHeadHuge(struct page *page_head)
1849 {
1850         if (!PageHead(page_head))
1851                 return 0;
1852
1853         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1854 }
1855
1856 /*
1857  * Find and lock address space (mapping) in write mode.
1858  *
1859  * Upon entry, the page is locked which means that page_mapping() is
1860  * stable.  Due to locking order, we can only trylock_write.  If we can
1861  * not get the lock, simply return NULL to caller.
1862  */
1863 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1864 {
1865         struct address_space *mapping = page_mapping(hpage);
1866
1867         if (!mapping)
1868                 return mapping;
1869
1870         if (i_mmap_trylock_write(mapping))
1871                 return mapping;
1872
1873         return NULL;
1874 }
1875
1876 pgoff_t hugetlb_basepage_index(struct page *page)
1877 {
1878         struct page *page_head = compound_head(page);
1879         pgoff_t index = page_index(page_head);
1880         unsigned long compound_idx;
1881
1882         if (compound_order(page_head) >= MAX_ORDER)
1883                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1884         else
1885                 compound_idx = page - page_head;
1886
1887         return (index << compound_order(page_head)) + compound_idx;
1888 }
1889
1890 static struct page *alloc_buddy_huge_page(struct hstate *h,
1891                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1892                 nodemask_t *node_alloc_noretry)
1893 {
1894         int order = huge_page_order(h);
1895         struct page *page;
1896         bool alloc_try_hard = true;
1897
1898         /*
1899          * By default we always try hard to allocate the page with
1900          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1901          * a loop (to adjust global huge page counts) and previous allocation
1902          * failed, do not continue to try hard on the same node.  Use the
1903          * node_alloc_noretry bitmap to manage this state information.
1904          */
1905         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1906                 alloc_try_hard = false;
1907         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1908         if (alloc_try_hard)
1909                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1910         if (nid == NUMA_NO_NODE)
1911                 nid = numa_mem_id();
1912         page = __alloc_pages(gfp_mask, order, nid, nmask);
1913         if (page)
1914                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1915         else
1916                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1917
1918         /*
1919          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1920          * indicates an overall state change.  Clear bit so that we resume
1921          * normal 'try hard' allocations.
1922          */
1923         if (node_alloc_noretry && page && !alloc_try_hard)
1924                 node_clear(nid, *node_alloc_noretry);
1925
1926         /*
1927          * If we tried hard to get a page but failed, set bit so that
1928          * subsequent attempts will not try as hard until there is an
1929          * overall state change.
1930          */
1931         if (node_alloc_noretry && !page && alloc_try_hard)
1932                 node_set(nid, *node_alloc_noretry);
1933
1934         return page;
1935 }
1936
1937 /*
1938  * Common helper to allocate a fresh hugetlb page. All specific allocators
1939  * should use this function to get new hugetlb pages
1940  */
1941 static struct page *alloc_fresh_huge_page(struct hstate *h,
1942                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1943                 nodemask_t *node_alloc_noretry)
1944 {
1945         struct page *page;
1946         bool retry = false;
1947
1948 retry:
1949         if (hstate_is_gigantic(h))
1950                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1951         else
1952                 page = alloc_buddy_huge_page(h, gfp_mask,
1953                                 nid, nmask, node_alloc_noretry);
1954         if (!page)
1955                 return NULL;
1956
1957         if (hstate_is_gigantic(h)) {
1958                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1959                         /*
1960                          * Rare failure to convert pages to compound page.
1961                          * Free pages and try again - ONCE!
1962                          */
1963                         free_gigantic_page(page, huge_page_order(h));
1964                         if (!retry) {
1965                                 retry = true;
1966                                 goto retry;
1967                         }
1968                         return NULL;
1969                 }
1970         }
1971         prep_new_huge_page(h, page, page_to_nid(page));
1972
1973         return page;
1974 }
1975
1976 /*
1977  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1978  * manner.
1979  */
1980 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1981                                 nodemask_t *node_alloc_noretry)
1982 {
1983         struct page *page;
1984         int nr_nodes, node;
1985         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1986
1987         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1988                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1989                                                 node_alloc_noretry);
1990                 if (page)
1991                         break;
1992         }
1993
1994         if (!page)
1995                 return 0;
1996
1997         put_page(page); /* free it into the hugepage allocator */
1998
1999         return 1;
2000 }
2001
2002 /*
2003  * Remove huge page from pool from next node to free.  Attempt to keep
2004  * persistent huge pages more or less balanced over allowed nodes.
2005  * This routine only 'removes' the hugetlb page.  The caller must make
2006  * an additional call to free the page to low level allocators.
2007  * Called with hugetlb_lock locked.
2008  */
2009 static struct page *remove_pool_huge_page(struct hstate *h,
2010                                                 nodemask_t *nodes_allowed,
2011                                                  bool acct_surplus)
2012 {
2013         int nr_nodes, node;
2014         struct page *page = NULL;
2015
2016         lockdep_assert_held(&hugetlb_lock);
2017         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2018                 /*
2019                  * If we're returning unused surplus pages, only examine
2020                  * nodes with surplus pages.
2021                  */
2022                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2023                     !list_empty(&h->hugepage_freelists[node])) {
2024                         page = list_entry(h->hugepage_freelists[node].next,
2025                                           struct page, lru);
2026                         remove_hugetlb_page(h, page, acct_surplus);
2027                         break;
2028                 }
2029         }
2030
2031         return page;
2032 }
2033
2034 /*
2035  * Dissolve a given free hugepage into free buddy pages. This function does
2036  * nothing for in-use hugepages and non-hugepages.
2037  * This function returns values like below:
2038  *
2039  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2040  *           when the system is under memory pressure and the feature of
2041  *           freeing unused vmemmap pages associated with each hugetlb page
2042  *           is enabled.
2043  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2044  *           (allocated or reserved.)
2045  *       0:  successfully dissolved free hugepages or the page is not a
2046  *           hugepage (considered as already dissolved)
2047  */
2048 int dissolve_free_huge_page(struct page *page)
2049 {
2050         int rc = -EBUSY;
2051
2052 retry:
2053         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2054         if (!PageHuge(page))
2055                 return 0;
2056
2057         spin_lock_irq(&hugetlb_lock);
2058         if (!PageHuge(page)) {
2059                 rc = 0;
2060                 goto out;
2061         }
2062
2063         if (!page_count(page)) {
2064                 struct page *head = compound_head(page);
2065                 struct hstate *h = page_hstate(head);
2066                 if (h->free_huge_pages - h->resv_huge_pages == 0)
2067                         goto out;
2068
2069                 /*
2070                  * We should make sure that the page is already on the free list
2071                  * when it is dissolved.
2072                  */
2073                 if (unlikely(!HPageFreed(head))) {
2074                         spin_unlock_irq(&hugetlb_lock);
2075                         cond_resched();
2076
2077                         /*
2078                          * Theoretically, we should return -EBUSY when we
2079                          * encounter this race. In fact, we have a chance
2080                          * to successfully dissolve the page if we do a
2081                          * retry. Because the race window is quite small.
2082                          * If we seize this opportunity, it is an optimization
2083                          * for increasing the success rate of dissolving page.
2084                          */
2085                         goto retry;
2086                 }
2087
2088                 remove_hugetlb_page(h, head, false);
2089                 h->max_huge_pages--;
2090                 spin_unlock_irq(&hugetlb_lock);
2091
2092                 /*
2093                  * Normally update_and_free_page will allocate required vmemmmap
2094                  * before freeing the page.  update_and_free_page will fail to
2095                  * free the page if it can not allocate required vmemmap.  We
2096                  * need to adjust max_huge_pages if the page is not freed.
2097                  * Attempt to allocate vmemmmap here so that we can take
2098                  * appropriate action on failure.
2099                  */
2100                 rc = alloc_huge_page_vmemmap(h, head);
2101                 if (!rc) {
2102                         /*
2103                          * Move PageHWPoison flag from head page to the raw
2104                          * error page, which makes any subpages rather than
2105                          * the error page reusable.
2106                          */
2107                         if (PageHWPoison(head) && page != head) {
2108                                 SetPageHWPoison(page);
2109                                 ClearPageHWPoison(head);
2110                         }
2111                         update_and_free_page(h, head, false);
2112                 } else {
2113                         spin_lock_irq(&hugetlb_lock);
2114                         add_hugetlb_page(h, head, false);
2115                         h->max_huge_pages++;
2116                         spin_unlock_irq(&hugetlb_lock);
2117                 }
2118
2119                 return rc;
2120         }
2121 out:
2122         spin_unlock_irq(&hugetlb_lock);
2123         return rc;
2124 }
2125
2126 /*
2127  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2128  * make specified memory blocks removable from the system.
2129  * Note that this will dissolve a free gigantic hugepage completely, if any
2130  * part of it lies within the given range.
2131  * Also note that if dissolve_free_huge_page() returns with an error, all
2132  * free hugepages that were dissolved before that error are lost.
2133  */
2134 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2135 {
2136         unsigned long pfn;
2137         struct page *page;
2138         int rc = 0;
2139
2140         if (!hugepages_supported())
2141                 return rc;
2142
2143         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2144                 page = pfn_to_page(pfn);
2145                 rc = dissolve_free_huge_page(page);
2146                 if (rc)
2147                         break;
2148         }
2149
2150         return rc;
2151 }
2152
2153 /*
2154  * Allocates a fresh surplus page from the page allocator.
2155  */
2156 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2157                 int nid, nodemask_t *nmask, bool zero_ref)
2158 {
2159         struct page *page = NULL;
2160         bool retry = false;
2161
2162         if (hstate_is_gigantic(h))
2163                 return NULL;
2164
2165         spin_lock_irq(&hugetlb_lock);
2166         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2167                 goto out_unlock;
2168         spin_unlock_irq(&hugetlb_lock);
2169
2170 retry:
2171         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2172         if (!page)
2173                 return NULL;
2174
2175         spin_lock_irq(&hugetlb_lock);
2176         /*
2177          * We could have raced with the pool size change.
2178          * Double check that and simply deallocate the new page
2179          * if we would end up overcommiting the surpluses. Abuse
2180          * temporary page to workaround the nasty free_huge_page
2181          * codeflow
2182          */
2183         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2184                 SetHPageTemporary(page);
2185                 spin_unlock_irq(&hugetlb_lock);
2186                 put_page(page);
2187                 return NULL;
2188         }
2189
2190         if (zero_ref) {
2191                 /*
2192                  * Caller requires a page with zero ref count.
2193                  * We will drop ref count here.  If someone else is holding
2194                  * a ref, the page will be freed when they drop it.  Abuse
2195                  * temporary page flag to accomplish this.
2196                  */
2197                 SetHPageTemporary(page);
2198                 if (!put_page_testzero(page)) {
2199                         /*
2200                          * Unexpected inflated ref count on freshly allocated
2201                          * huge.  Retry once.
2202                          */
2203                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2204                         spin_unlock_irq(&hugetlb_lock);
2205                         if (retry)
2206                                 return NULL;
2207
2208                         retry = true;
2209                         goto retry;
2210                 }
2211                 ClearHPageTemporary(page);
2212         }
2213
2214         h->surplus_huge_pages++;
2215         h->surplus_huge_pages_node[page_to_nid(page)]++;
2216
2217 out_unlock:
2218         spin_unlock_irq(&hugetlb_lock);
2219
2220         return page;
2221 }
2222
2223 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2224                                      int nid, nodemask_t *nmask)
2225 {
2226         struct page *page;
2227
2228         if (hstate_is_gigantic(h))
2229                 return NULL;
2230
2231         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2232         if (!page)
2233                 return NULL;
2234
2235         /*
2236          * We do not account these pages as surplus because they are only
2237          * temporary and will be released properly on the last reference
2238          */
2239         SetHPageTemporary(page);
2240
2241         return page;
2242 }
2243
2244 /*
2245  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2246  */
2247 static
2248 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2249                 struct vm_area_struct *vma, unsigned long addr)
2250 {
2251         struct page *page = NULL;
2252         struct mempolicy *mpol;
2253         gfp_t gfp_mask = htlb_alloc_mask(h);
2254         int nid;
2255         nodemask_t *nodemask;
2256
2257         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2258         if (mpol_is_preferred_many(mpol)) {
2259                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2260
2261                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2262                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2263
2264                 /* Fallback to all nodes if page==NULL */
2265                 nodemask = NULL;
2266         }
2267
2268         if (!page)
2269                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2270         mpol_cond_put(mpol);
2271         return page;
2272 }
2273
2274 /* page migration callback function */
2275 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2276                 nodemask_t *nmask, gfp_t gfp_mask)
2277 {
2278         spin_lock_irq(&hugetlb_lock);
2279         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2280                 struct page *page;
2281
2282                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2283                 if (page) {
2284                         spin_unlock_irq(&hugetlb_lock);
2285                         return page;
2286                 }
2287         }
2288         spin_unlock_irq(&hugetlb_lock);
2289
2290         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2291 }
2292
2293 /* mempolicy aware migration callback */
2294 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2295                 unsigned long address)
2296 {
2297         struct mempolicy *mpol;
2298         nodemask_t *nodemask;
2299         struct page *page;
2300         gfp_t gfp_mask;
2301         int node;
2302
2303         gfp_mask = htlb_alloc_mask(h);
2304         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2305         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2306         mpol_cond_put(mpol);
2307
2308         return page;
2309 }
2310
2311 /*
2312  * Increase the hugetlb pool such that it can accommodate a reservation
2313  * of size 'delta'.
2314  */
2315 static int gather_surplus_pages(struct hstate *h, long delta)
2316         __must_hold(&hugetlb_lock)
2317 {
2318         struct list_head surplus_list;
2319         struct page *page, *tmp;
2320         int ret;
2321         long i;
2322         long needed, allocated;
2323         bool alloc_ok = true;
2324
2325         lockdep_assert_held(&hugetlb_lock);
2326         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2327         if (needed <= 0) {
2328                 h->resv_huge_pages += delta;
2329                 return 0;
2330         }
2331
2332         allocated = 0;
2333         INIT_LIST_HEAD(&surplus_list);
2334
2335         ret = -ENOMEM;
2336 retry:
2337         spin_unlock_irq(&hugetlb_lock);
2338         for (i = 0; i < needed; i++) {
2339                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2340                                 NUMA_NO_NODE, NULL, true);
2341                 if (!page) {
2342                         alloc_ok = false;
2343                         break;
2344                 }
2345                 list_add(&page->lru, &surplus_list);
2346                 cond_resched();
2347         }
2348         allocated += i;
2349
2350         /*
2351          * After retaking hugetlb_lock, we need to recalculate 'needed'
2352          * because either resv_huge_pages or free_huge_pages may have changed.
2353          */
2354         spin_lock_irq(&hugetlb_lock);
2355         needed = (h->resv_huge_pages + delta) -
2356                         (h->free_huge_pages + allocated);
2357         if (needed > 0) {
2358                 if (alloc_ok)
2359                         goto retry;
2360                 /*
2361                  * We were not able to allocate enough pages to
2362                  * satisfy the entire reservation so we free what
2363                  * we've allocated so far.
2364                  */
2365                 goto free;
2366         }
2367         /*
2368          * The surplus_list now contains _at_least_ the number of extra pages
2369          * needed to accommodate the reservation.  Add the appropriate number
2370          * of pages to the hugetlb pool and free the extras back to the buddy
2371          * allocator.  Commit the entire reservation here to prevent another
2372          * process from stealing the pages as they are added to the pool but
2373          * before they are reserved.
2374          */
2375         needed += allocated;
2376         h->resv_huge_pages += delta;
2377         ret = 0;
2378
2379         /* Free the needed pages to the hugetlb pool */
2380         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2381                 if ((--needed) < 0)
2382                         break;
2383                 /* Add the page to the hugetlb allocator */
2384                 enqueue_huge_page(h, page);
2385         }
2386 free:
2387         spin_unlock_irq(&hugetlb_lock);
2388
2389         /*
2390          * Free unnecessary surplus pages to the buddy allocator.
2391          * Pages have no ref count, call free_huge_page directly.
2392          */
2393         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2394                 free_huge_page(page);
2395         spin_lock_irq(&hugetlb_lock);
2396
2397         return ret;
2398 }
2399
2400 /*
2401  * This routine has two main purposes:
2402  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2403  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2404  *    to the associated reservation map.
2405  * 2) Free any unused surplus pages that may have been allocated to satisfy
2406  *    the reservation.  As many as unused_resv_pages may be freed.
2407  */
2408 static void return_unused_surplus_pages(struct hstate *h,
2409                                         unsigned long unused_resv_pages)
2410 {
2411         unsigned long nr_pages;
2412         struct page *page;
2413         LIST_HEAD(page_list);
2414
2415         lockdep_assert_held(&hugetlb_lock);
2416         /* Uncommit the reservation */
2417         h->resv_huge_pages -= unused_resv_pages;
2418
2419         /* Cannot return gigantic pages currently */
2420         if (hstate_is_gigantic(h))
2421                 goto out;
2422
2423         /*
2424          * Part (or even all) of the reservation could have been backed
2425          * by pre-allocated pages. Only free surplus pages.
2426          */
2427         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2428
2429         /*
2430          * We want to release as many surplus pages as possible, spread
2431          * evenly across all nodes with memory. Iterate across these nodes
2432          * until we can no longer free unreserved surplus pages. This occurs
2433          * when the nodes with surplus pages have no free pages.
2434          * remove_pool_huge_page() will balance the freed pages across the
2435          * on-line nodes with memory and will handle the hstate accounting.
2436          */
2437         while (nr_pages--) {
2438                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2439                 if (!page)
2440                         goto out;
2441
2442                 list_add(&page->lru, &page_list);
2443         }
2444
2445 out:
2446         spin_unlock_irq(&hugetlb_lock);
2447         update_and_free_pages_bulk(h, &page_list);
2448         spin_lock_irq(&hugetlb_lock);
2449 }
2450
2451
2452 /*
2453  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2454  * are used by the huge page allocation routines to manage reservations.
2455  *
2456  * vma_needs_reservation is called to determine if the huge page at addr
2457  * within the vma has an associated reservation.  If a reservation is
2458  * needed, the value 1 is returned.  The caller is then responsible for
2459  * managing the global reservation and subpool usage counts.  After
2460  * the huge page has been allocated, vma_commit_reservation is called
2461  * to add the page to the reservation map.  If the page allocation fails,
2462  * the reservation must be ended instead of committed.  vma_end_reservation
2463  * is called in such cases.
2464  *
2465  * In the normal case, vma_commit_reservation returns the same value
2466  * as the preceding vma_needs_reservation call.  The only time this
2467  * is not the case is if a reserve map was changed between calls.  It
2468  * is the responsibility of the caller to notice the difference and
2469  * take appropriate action.
2470  *
2471  * vma_add_reservation is used in error paths where a reservation must
2472  * be restored when a newly allocated huge page must be freed.  It is
2473  * to be called after calling vma_needs_reservation to determine if a
2474  * reservation exists.
2475  *
2476  * vma_del_reservation is used in error paths where an entry in the reserve
2477  * map was created during huge page allocation and must be removed.  It is to
2478  * be called after calling vma_needs_reservation to determine if a reservation
2479  * exists.
2480  */
2481 enum vma_resv_mode {
2482         VMA_NEEDS_RESV,
2483         VMA_COMMIT_RESV,
2484         VMA_END_RESV,
2485         VMA_ADD_RESV,
2486         VMA_DEL_RESV,
2487 };
2488 static long __vma_reservation_common(struct hstate *h,
2489                                 struct vm_area_struct *vma, unsigned long addr,
2490                                 enum vma_resv_mode mode)
2491 {
2492         struct resv_map *resv;
2493         pgoff_t idx;
2494         long ret;
2495         long dummy_out_regions_needed;
2496
2497         resv = vma_resv_map(vma);
2498         if (!resv)
2499                 return 1;
2500
2501         idx = vma_hugecache_offset(h, vma, addr);
2502         switch (mode) {
2503         case VMA_NEEDS_RESV:
2504                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2505                 /* We assume that vma_reservation_* routines always operate on
2506                  * 1 page, and that adding to resv map a 1 page entry can only
2507                  * ever require 1 region.
2508                  */
2509                 VM_BUG_ON(dummy_out_regions_needed != 1);
2510                 break;
2511         case VMA_COMMIT_RESV:
2512                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2513                 /* region_add calls of range 1 should never fail. */
2514                 VM_BUG_ON(ret < 0);
2515                 break;
2516         case VMA_END_RESV:
2517                 region_abort(resv, idx, idx + 1, 1);
2518                 ret = 0;
2519                 break;
2520         case VMA_ADD_RESV:
2521                 if (vma->vm_flags & VM_MAYSHARE) {
2522                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2523                         /* region_add calls of range 1 should never fail. */
2524                         VM_BUG_ON(ret < 0);
2525                 } else {
2526                         region_abort(resv, idx, idx + 1, 1);
2527                         ret = region_del(resv, idx, idx + 1);
2528                 }
2529                 break;
2530         case VMA_DEL_RESV:
2531                 if (vma->vm_flags & VM_MAYSHARE) {
2532                         region_abort(resv, idx, idx + 1, 1);
2533                         ret = region_del(resv, idx, idx + 1);
2534                 } else {
2535                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2536                         /* region_add calls of range 1 should never fail. */
2537                         VM_BUG_ON(ret < 0);
2538                 }
2539                 break;
2540         default:
2541                 BUG();
2542         }
2543
2544         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2545                 return ret;
2546         /*
2547          * We know private mapping must have HPAGE_RESV_OWNER set.
2548          *
2549          * In most cases, reserves always exist for private mappings.
2550          * However, a file associated with mapping could have been
2551          * hole punched or truncated after reserves were consumed.
2552          * As subsequent fault on such a range will not use reserves.
2553          * Subtle - The reserve map for private mappings has the
2554          * opposite meaning than that of shared mappings.  If NO
2555          * entry is in the reserve map, it means a reservation exists.
2556          * If an entry exists in the reserve map, it means the
2557          * reservation has already been consumed.  As a result, the
2558          * return value of this routine is the opposite of the
2559          * value returned from reserve map manipulation routines above.
2560          */
2561         if (ret > 0)
2562                 return 0;
2563         if (ret == 0)
2564                 return 1;
2565         return ret;
2566 }
2567
2568 static long vma_needs_reservation(struct hstate *h,
2569                         struct vm_area_struct *vma, unsigned long addr)
2570 {
2571         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2572 }
2573
2574 static long vma_commit_reservation(struct hstate *h,
2575                         struct vm_area_struct *vma, unsigned long addr)
2576 {
2577         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2578 }
2579
2580 static void vma_end_reservation(struct hstate *h,
2581                         struct vm_area_struct *vma, unsigned long addr)
2582 {
2583         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2584 }
2585
2586 static long vma_add_reservation(struct hstate *h,
2587                         struct vm_area_struct *vma, unsigned long addr)
2588 {
2589         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2590 }
2591
2592 static long vma_del_reservation(struct hstate *h,
2593                         struct vm_area_struct *vma, unsigned long addr)
2594 {
2595         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2596 }
2597
2598 /*
2599  * This routine is called to restore reservation information on error paths.
2600  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2601  * the hugetlb mutex should remain held when calling this routine.
2602  *
2603  * It handles two specific cases:
2604  * 1) A reservation was in place and the page consumed the reservation.
2605  *    HPageRestoreReserve is set in the page.
2606  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2607  *    not set.  However, alloc_huge_page always updates the reserve map.
2608  *
2609  * In case 1, free_huge_page later in the error path will increment the
2610  * global reserve count.  But, free_huge_page does not have enough context
2611  * to adjust the reservation map.  This case deals primarily with private
2612  * mappings.  Adjust the reserve map here to be consistent with global
2613  * reserve count adjustments to be made by free_huge_page.  Make sure the
2614  * reserve map indicates there is a reservation present.
2615  *
2616  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2617  */
2618 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2619                         unsigned long address, struct page *page)
2620 {
2621         long rc = vma_needs_reservation(h, vma, address);
2622
2623         if (HPageRestoreReserve(page)) {
2624                 if (unlikely(rc < 0))
2625                         /*
2626                          * Rare out of memory condition in reserve map
2627                          * manipulation.  Clear HPageRestoreReserve so that
2628                          * global reserve count will not be incremented
2629                          * by free_huge_page.  This will make it appear
2630                          * as though the reservation for this page was
2631                          * consumed.  This may prevent the task from
2632                          * faulting in the page at a later time.  This
2633                          * is better than inconsistent global huge page
2634                          * accounting of reserve counts.
2635                          */
2636                         ClearHPageRestoreReserve(page);
2637                 else if (rc)
2638                         (void)vma_add_reservation(h, vma, address);
2639                 else
2640                         vma_end_reservation(h, vma, address);
2641         } else {
2642                 if (!rc) {
2643                         /*
2644                          * This indicates there is an entry in the reserve map
2645                          * not added by alloc_huge_page.  We know it was added
2646                          * before the alloc_huge_page call, otherwise
2647                          * HPageRestoreReserve would be set on the page.
2648                          * Remove the entry so that a subsequent allocation
2649                          * does not consume a reservation.
2650                          */
2651                         rc = vma_del_reservation(h, vma, address);
2652                         if (rc < 0)
2653                                 /*
2654                                  * VERY rare out of memory condition.  Since
2655                                  * we can not delete the entry, set
2656                                  * HPageRestoreReserve so that the reserve
2657                                  * count will be incremented when the page
2658                                  * is freed.  This reserve will be consumed
2659                                  * on a subsequent allocation.
2660                                  */
2661                                 SetHPageRestoreReserve(page);
2662                 } else if (rc < 0) {
2663                         /*
2664                          * Rare out of memory condition from
2665                          * vma_needs_reservation call.  Memory allocation is
2666                          * only attempted if a new entry is needed.  Therefore,
2667                          * this implies there is not an entry in the
2668                          * reserve map.
2669                          *
2670                          * For shared mappings, no entry in the map indicates
2671                          * no reservation.  We are done.
2672                          */
2673                         if (!(vma->vm_flags & VM_MAYSHARE))
2674                                 /*
2675                                  * For private mappings, no entry indicates
2676                                  * a reservation is present.  Since we can
2677                                  * not add an entry, set SetHPageRestoreReserve
2678                                  * on the page so reserve count will be
2679                                  * incremented when freed.  This reserve will
2680                                  * be consumed on a subsequent allocation.
2681                                  */
2682                                 SetHPageRestoreReserve(page);
2683                 } else
2684                         /*
2685                          * No reservation present, do nothing
2686                          */
2687                          vma_end_reservation(h, vma, address);
2688         }
2689 }
2690
2691 /*
2692  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2693  * @h: struct hstate old page belongs to
2694  * @old_page: Old page to dissolve
2695  * @list: List to isolate the page in case we need to
2696  * Returns 0 on success, otherwise negated error.
2697  */
2698 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2699                                         struct list_head *list)
2700 {
2701         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2702         int nid = page_to_nid(old_page);
2703         bool alloc_retry = false;
2704         struct page *new_page;
2705         int ret = 0;
2706
2707         /*
2708          * Before dissolving the page, we need to allocate a new one for the
2709          * pool to remain stable.  Here, we allocate the page and 'prep' it
2710          * by doing everything but actually updating counters and adding to
2711          * the pool.  This simplifies and let us do most of the processing
2712          * under the lock.
2713          */
2714 alloc_retry:
2715         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2716         if (!new_page)
2717                 return -ENOMEM;
2718         /*
2719          * If all goes well, this page will be directly added to the free
2720          * list in the pool.  For this the ref count needs to be zero.
2721          * Attempt to drop now, and retry once if needed.  It is VERY
2722          * unlikely there is another ref on the page.
2723          *
2724          * If someone else has a reference to the page, it will be freed
2725          * when they drop their ref.  Abuse temporary page flag to accomplish
2726          * this.  Retry once if there is an inflated ref count.
2727          */
2728         SetHPageTemporary(new_page);
2729         if (!put_page_testzero(new_page)) {
2730                 if (alloc_retry)
2731                         return -EBUSY;
2732
2733                 alloc_retry = true;
2734                 goto alloc_retry;
2735         }
2736         ClearHPageTemporary(new_page);
2737
2738         __prep_new_huge_page(h, new_page);
2739
2740 retry:
2741         spin_lock_irq(&hugetlb_lock);
2742         if (!PageHuge(old_page)) {
2743                 /*
2744                  * Freed from under us. Drop new_page too.
2745                  */
2746                 goto free_new;
2747         } else if (page_count(old_page)) {
2748                 /*
2749                  * Someone has grabbed the page, try to isolate it here.
2750                  * Fail with -EBUSY if not possible.
2751                  */
2752                 spin_unlock_irq(&hugetlb_lock);
2753                 if (!isolate_huge_page(old_page, list))
2754                         ret = -EBUSY;
2755                 spin_lock_irq(&hugetlb_lock);
2756                 goto free_new;
2757         } else if (!HPageFreed(old_page)) {
2758                 /*
2759                  * Page's refcount is 0 but it has not been enqueued in the
2760                  * freelist yet. Race window is small, so we can succeed here if
2761                  * we retry.
2762                  */
2763                 spin_unlock_irq(&hugetlb_lock);
2764                 cond_resched();
2765                 goto retry;
2766         } else {
2767                 /*
2768                  * Ok, old_page is still a genuine free hugepage. Remove it from
2769                  * the freelist and decrease the counters. These will be
2770                  * incremented again when calling __prep_account_new_huge_page()
2771                  * and enqueue_huge_page() for new_page. The counters will remain
2772                  * stable since this happens under the lock.
2773                  */
2774                 remove_hugetlb_page(h, old_page, false);
2775
2776                 /*
2777                  * Ref count on new page is already zero as it was dropped
2778                  * earlier.  It can be directly added to the pool free list.
2779                  */
2780                 __prep_account_new_huge_page(h, nid);
2781                 enqueue_huge_page(h, new_page);
2782
2783                 /*
2784                  * Pages have been replaced, we can safely free the old one.
2785                  */
2786                 spin_unlock_irq(&hugetlb_lock);
2787                 update_and_free_page(h, old_page, false);
2788         }
2789
2790         return ret;
2791
2792 free_new:
2793         spin_unlock_irq(&hugetlb_lock);
2794         /* Page has a zero ref count, but needs a ref to be freed */
2795         set_page_refcounted(new_page);
2796         update_and_free_page(h, new_page, false);
2797
2798         return ret;
2799 }
2800
2801 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2802 {
2803         struct hstate *h;
2804         struct page *head;
2805         int ret = -EBUSY;
2806
2807         /*
2808          * The page might have been dissolved from under our feet, so make sure
2809          * to carefully check the state under the lock.
2810          * Return success when racing as if we dissolved the page ourselves.
2811          */
2812         spin_lock_irq(&hugetlb_lock);
2813         if (PageHuge(page)) {
2814                 head = compound_head(page);
2815                 h = page_hstate(head);
2816         } else {
2817                 spin_unlock_irq(&hugetlb_lock);
2818                 return 0;
2819         }
2820         spin_unlock_irq(&hugetlb_lock);
2821
2822         /*
2823          * Fence off gigantic pages as there is a cyclic dependency between
2824          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2825          * of bailing out right away without further retrying.
2826          */
2827         if (hstate_is_gigantic(h))
2828                 return -ENOMEM;
2829
2830         if (page_count(head) && isolate_huge_page(head, list))
2831                 ret = 0;
2832         else if (!page_count(head))
2833                 ret = alloc_and_dissolve_huge_page(h, head, list);
2834
2835         return ret;
2836 }
2837
2838 struct page *alloc_huge_page(struct vm_area_struct *vma,
2839                                     unsigned long addr, int avoid_reserve)
2840 {
2841         struct hugepage_subpool *spool = subpool_vma(vma);
2842         struct hstate *h = hstate_vma(vma);
2843         struct page *page;
2844         long map_chg, map_commit;
2845         long gbl_chg;
2846         int ret, idx;
2847         struct hugetlb_cgroup *h_cg;
2848         bool deferred_reserve;
2849
2850         idx = hstate_index(h);
2851         /*
2852          * Examine the region/reserve map to determine if the process
2853          * has a reservation for the page to be allocated.  A return
2854          * code of zero indicates a reservation exists (no change).
2855          */
2856         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2857         if (map_chg < 0)
2858                 return ERR_PTR(-ENOMEM);
2859
2860         /*
2861          * Processes that did not create the mapping will have no
2862          * reserves as indicated by the region/reserve map. Check
2863          * that the allocation will not exceed the subpool limit.
2864          * Allocations for MAP_NORESERVE mappings also need to be
2865          * checked against any subpool limit.
2866          */
2867         if (map_chg || avoid_reserve) {
2868                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2869                 if (gbl_chg < 0) {
2870                         vma_end_reservation(h, vma, addr);
2871                         return ERR_PTR(-ENOSPC);
2872                 }
2873
2874                 /*
2875                  * Even though there was no reservation in the region/reserve
2876                  * map, there could be reservations associated with the
2877                  * subpool that can be used.  This would be indicated if the
2878                  * return value of hugepage_subpool_get_pages() is zero.
2879                  * However, if avoid_reserve is specified we still avoid even
2880                  * the subpool reservations.
2881                  */
2882                 if (avoid_reserve)
2883                         gbl_chg = 1;
2884         }
2885
2886         /* If this allocation is not consuming a reservation, charge it now.
2887          */
2888         deferred_reserve = map_chg || avoid_reserve;
2889         if (deferred_reserve) {
2890                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2891                         idx, pages_per_huge_page(h), &h_cg);
2892                 if (ret)
2893                         goto out_subpool_put;
2894         }
2895
2896         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2897         if (ret)
2898                 goto out_uncharge_cgroup_reservation;
2899
2900         spin_lock_irq(&hugetlb_lock);
2901         /*
2902          * glb_chg is passed to indicate whether or not a page must be taken
2903          * from the global free pool (global change).  gbl_chg == 0 indicates
2904          * a reservation exists for the allocation.
2905          */
2906         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2907         if (!page) {
2908                 spin_unlock_irq(&hugetlb_lock);
2909                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2910                 if (!page)
2911                         goto out_uncharge_cgroup;
2912                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2913                         SetHPageRestoreReserve(page);
2914                         h->resv_huge_pages--;
2915                 }
2916                 spin_lock_irq(&hugetlb_lock);
2917                 list_add(&page->lru, &h->hugepage_activelist);
2918                 /* Fall through */
2919         }
2920         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2921         /* If allocation is not consuming a reservation, also store the
2922          * hugetlb_cgroup pointer on the page.
2923          */
2924         if (deferred_reserve) {
2925                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2926                                                   h_cg, page);
2927         }
2928
2929         spin_unlock_irq(&hugetlb_lock);
2930
2931         hugetlb_set_page_subpool(page, spool);
2932
2933         map_commit = vma_commit_reservation(h, vma, addr);
2934         if (unlikely(map_chg > map_commit)) {
2935                 /*
2936                  * The page was added to the reservation map between
2937                  * vma_needs_reservation and vma_commit_reservation.
2938                  * This indicates a race with hugetlb_reserve_pages.
2939                  * Adjust for the subpool count incremented above AND
2940                  * in hugetlb_reserve_pages for the same page.  Also,
2941                  * the reservation count added in hugetlb_reserve_pages
2942                  * no longer applies.
2943                  */
2944                 long rsv_adjust;
2945
2946                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2947                 hugetlb_acct_memory(h, -rsv_adjust);
2948                 if (deferred_reserve)
2949                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2950                                         pages_per_huge_page(h), page);
2951         }
2952         return page;
2953
2954 out_uncharge_cgroup:
2955         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2956 out_uncharge_cgroup_reservation:
2957         if (deferred_reserve)
2958                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2959                                                     h_cg);
2960 out_subpool_put:
2961         if (map_chg || avoid_reserve)
2962                 hugepage_subpool_put_pages(spool, 1);
2963         vma_end_reservation(h, vma, addr);
2964         return ERR_PTR(-ENOSPC);
2965 }
2966
2967 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2968         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2969 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2970 {
2971         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2972         int nr_nodes, node;
2973
2974         if (nid >= nr_online_nodes)
2975                 return 0;
2976         /* do node specific alloc */
2977         if (nid != NUMA_NO_NODE) {
2978                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2979                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2980                 if (!m)
2981                         return 0;
2982                 goto found;
2983         }
2984         /* allocate from next node when distributing huge pages */
2985         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2986                 m = memblock_alloc_try_nid_raw(
2987                                 huge_page_size(h), huge_page_size(h),
2988                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2989                 /*
2990                  * Use the beginning of the huge page to store the
2991                  * huge_bootmem_page struct (until gather_bootmem
2992                  * puts them into the mem_map).
2993                  */
2994                 if (!m)
2995                         return 0;
2996                 goto found;
2997         }
2998
2999 found:
3000         /* Put them into a private list first because mem_map is not up yet */
3001         INIT_LIST_HEAD(&m->list);
3002         list_add(&m->list, &huge_boot_pages);
3003         m->hstate = h;
3004         return 1;
3005 }
3006
3007 /*
3008  * Put bootmem huge pages into the standard lists after mem_map is up.
3009  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3010  */
3011 static void __init gather_bootmem_prealloc(void)
3012 {
3013         struct huge_bootmem_page *m;
3014
3015         list_for_each_entry(m, &huge_boot_pages, list) {
3016                 struct page *page = virt_to_page(m);
3017                 struct hstate *h = m->hstate;
3018
3019                 VM_BUG_ON(!hstate_is_gigantic(h));
3020                 WARN_ON(page_count(page) != 1);
3021                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3022                         WARN_ON(PageReserved(page));
3023                         prep_new_huge_page(h, page, page_to_nid(page));
3024                         put_page(page); /* add to the hugepage allocator */
3025                 } else {
3026                         /* VERY unlikely inflated ref count on a tail page */
3027                         free_gigantic_page(page, huge_page_order(h));
3028                 }
3029
3030                 /*
3031                  * We need to restore the 'stolen' pages to totalram_pages
3032                  * in order to fix confusing memory reports from free(1) and
3033                  * other side-effects, like CommitLimit going negative.
3034                  */
3035                 adjust_managed_page_count(page, pages_per_huge_page(h));
3036                 cond_resched();
3037         }
3038 }
3039 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3040 {
3041         unsigned long i;
3042         char buf[32];
3043
3044         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3045                 if (hstate_is_gigantic(h)) {
3046                         if (!alloc_bootmem_huge_page(h, nid))
3047                                 break;
3048                 } else {
3049                         struct page *page;
3050                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3051
3052                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3053                                         &node_states[N_MEMORY], NULL);
3054                         if (!page)
3055                                 break;
3056                         put_page(page); /* free it into the hugepage allocator */
3057                 }
3058                 cond_resched();
3059         }
3060         if (i == h->max_huge_pages_node[nid])
3061                 return;
3062
3063         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3064         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3065                 h->max_huge_pages_node[nid], buf, nid, i);
3066         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3067         h->max_huge_pages_node[nid] = i;
3068 }
3069
3070 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3071 {
3072         unsigned long i;
3073         nodemask_t *node_alloc_noretry;
3074         bool node_specific_alloc = false;
3075
3076         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3077         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3078                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3079                 return;
3080         }
3081
3082         /* do node specific alloc */
3083         for (i = 0; i < nr_online_nodes; i++) {
3084                 if (h->max_huge_pages_node[i] > 0) {
3085                         hugetlb_hstate_alloc_pages_onenode(h, i);
3086                         node_specific_alloc = true;
3087                 }
3088         }
3089
3090         if (node_specific_alloc)
3091                 return;
3092
3093         /* below will do all node balanced alloc */
3094         if (!hstate_is_gigantic(h)) {
3095                 /*
3096                  * Bit mask controlling how hard we retry per-node allocations.
3097                  * Ignore errors as lower level routines can deal with
3098                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3099                  * time, we are likely in bigger trouble.
3100                  */
3101                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3102                                                 GFP_KERNEL);
3103         } else {
3104                 /* allocations done at boot time */
3105                 node_alloc_noretry = NULL;
3106         }
3107
3108         /* bit mask controlling how hard we retry per-node allocations */
3109         if (node_alloc_noretry)
3110                 nodes_clear(*node_alloc_noretry);
3111
3112         for (i = 0; i < h->max_huge_pages; ++i) {
3113                 if (hstate_is_gigantic(h)) {
3114                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3115                                 break;
3116                 } else if (!alloc_pool_huge_page(h,
3117                                          &node_states[N_MEMORY],
3118                                          node_alloc_noretry))
3119                         break;
3120                 cond_resched();
3121         }
3122         if (i < h->max_huge_pages) {
3123                 char buf[32];
3124
3125                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3126                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3127                         h->max_huge_pages, buf, i);
3128                 h->max_huge_pages = i;
3129         }
3130         kfree(node_alloc_noretry);
3131 }
3132
3133 static void __init hugetlb_init_hstates(void)
3134 {
3135         struct hstate *h, *h2;
3136
3137         for_each_hstate(h) {
3138                 if (minimum_order > huge_page_order(h))
3139                         minimum_order = huge_page_order(h);
3140
3141                 /* oversize hugepages were init'ed in early boot */
3142                 if (!hstate_is_gigantic(h))
3143                         hugetlb_hstate_alloc_pages(h);
3144
3145                 /*
3146                  * Set demote order for each hstate.  Note that
3147                  * h->demote_order is initially 0.
3148                  * - We can not demote gigantic pages if runtime freeing
3149                  *   is not supported, so skip this.
3150                  * - If CMA allocation is possible, we can not demote
3151                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3152                  */
3153                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3154                         continue;
3155                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3156                         continue;
3157                 for_each_hstate(h2) {
3158                         if (h2 == h)
3159                                 continue;
3160                         if (h2->order < h->order &&
3161                             h2->order > h->demote_order)
3162                                 h->demote_order = h2->order;
3163                 }
3164         }
3165         VM_BUG_ON(minimum_order == UINT_MAX);
3166 }
3167
3168 static void __init report_hugepages(void)
3169 {
3170         struct hstate *h;
3171
3172         for_each_hstate(h) {
3173                 char buf[32];
3174
3175                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3176                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3177                         buf, h->free_huge_pages);
3178         }
3179 }
3180
3181 #ifdef CONFIG_HIGHMEM
3182 static void try_to_free_low(struct hstate *h, unsigned long count,
3183                                                 nodemask_t *nodes_allowed)
3184 {
3185         int i;
3186         LIST_HEAD(page_list);
3187
3188         lockdep_assert_held(&hugetlb_lock);
3189         if (hstate_is_gigantic(h))
3190                 return;
3191
3192         /*
3193          * Collect pages to be freed on a list, and free after dropping lock
3194          */
3195         for_each_node_mask(i, *nodes_allowed) {
3196                 struct page *page, *next;
3197                 struct list_head *freel = &h->hugepage_freelists[i];
3198                 list_for_each_entry_safe(page, next, freel, lru) {
3199                         if (count >= h->nr_huge_pages)
3200                                 goto out;
3201                         if (PageHighMem(page))
3202                                 continue;
3203                         remove_hugetlb_page(h, page, false);
3204                         list_add(&page->lru, &page_list);
3205                 }
3206         }
3207
3208 out:
3209         spin_unlock_irq(&hugetlb_lock);
3210         update_and_free_pages_bulk(h, &page_list);
3211         spin_lock_irq(&hugetlb_lock);
3212 }
3213 #else
3214 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3215                                                 nodemask_t *nodes_allowed)
3216 {
3217 }
3218 #endif
3219
3220 /*
3221  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3222  * balanced by operating on them in a round-robin fashion.
3223  * Returns 1 if an adjustment was made.
3224  */
3225 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3226                                 int delta)
3227 {
3228         int nr_nodes, node;
3229
3230         lockdep_assert_held(&hugetlb_lock);
3231         VM_BUG_ON(delta != -1 && delta != 1);
3232
3233         if (delta < 0) {
3234                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3235                         if (h->surplus_huge_pages_node[node])
3236                                 goto found;
3237                 }
3238         } else {
3239                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3240                         if (h->surplus_huge_pages_node[node] <
3241                                         h->nr_huge_pages_node[node])
3242                                 goto found;
3243                 }
3244         }
3245         return 0;
3246
3247 found:
3248         h->surplus_huge_pages += delta;
3249         h->surplus_huge_pages_node[node] += delta;
3250         return 1;
3251 }
3252
3253 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3254 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3255                               nodemask_t *nodes_allowed)
3256 {
3257         unsigned long min_count, ret;
3258         struct page *page;
3259         LIST_HEAD(page_list);
3260         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3261
3262         /*
3263          * Bit mask controlling how hard we retry per-node allocations.
3264          * If we can not allocate the bit mask, do not attempt to allocate
3265          * the requested huge pages.
3266          */
3267         if (node_alloc_noretry)
3268                 nodes_clear(*node_alloc_noretry);
3269         else
3270                 return -ENOMEM;
3271
3272         /*
3273          * resize_lock mutex prevents concurrent adjustments to number of
3274          * pages in hstate via the proc/sysfs interfaces.
3275          */
3276         mutex_lock(&h->resize_lock);
3277         flush_free_hpage_work(h);
3278         spin_lock_irq(&hugetlb_lock);
3279
3280         /*
3281          * Check for a node specific request.
3282          * Changing node specific huge page count may require a corresponding
3283          * change to the global count.  In any case, the passed node mask
3284          * (nodes_allowed) will restrict alloc/free to the specified node.
3285          */
3286         if (nid != NUMA_NO_NODE) {
3287                 unsigned long old_count = count;
3288
3289                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3290                 /*
3291                  * User may have specified a large count value which caused the
3292                  * above calculation to overflow.  In this case, they wanted
3293                  * to allocate as many huge pages as possible.  Set count to
3294                  * largest possible value to align with their intention.
3295                  */
3296                 if (count < old_count)
3297                         count = ULONG_MAX;
3298         }
3299
3300         /*
3301          * Gigantic pages runtime allocation depend on the capability for large
3302          * page range allocation.
3303          * If the system does not provide this feature, return an error when
3304          * the user tries to allocate gigantic pages but let the user free the
3305          * boottime allocated gigantic pages.
3306          */
3307         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3308                 if (count > persistent_huge_pages(h)) {
3309                         spin_unlock_irq(&hugetlb_lock);
3310                         mutex_unlock(&h->resize_lock);
3311                         NODEMASK_FREE(node_alloc_noretry);
3312                         return -EINVAL;
3313                 }
3314                 /* Fall through to decrease pool */
3315         }
3316
3317         /*
3318          * Increase the pool size
3319          * First take pages out of surplus state.  Then make up the
3320          * remaining difference by allocating fresh huge pages.
3321          *
3322          * We might race with alloc_surplus_huge_page() here and be unable
3323          * to convert a surplus huge page to a normal huge page. That is
3324          * not critical, though, it just means the overall size of the
3325          * pool might be one hugepage larger than it needs to be, but
3326          * within all the constraints specified by the sysctls.
3327          */
3328         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3329                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3330                         break;
3331         }
3332
3333         while (count > persistent_huge_pages(h)) {
3334                 /*
3335                  * If this allocation races such that we no longer need the
3336                  * page, free_huge_page will handle it by freeing the page
3337                  * and reducing the surplus.
3338                  */
3339                 spin_unlock_irq(&hugetlb_lock);
3340
3341                 /* yield cpu to avoid soft lockup */
3342                 cond_resched();
3343
3344                 ret = alloc_pool_huge_page(h, nodes_allowed,
3345                                                 node_alloc_noretry);
3346                 spin_lock_irq(&hugetlb_lock);
3347                 if (!ret)
3348                         goto out;
3349
3350                 /* Bail for signals. Probably ctrl-c from user */
3351                 if (signal_pending(current))
3352                         goto out;
3353         }
3354
3355         /*
3356          * Decrease the pool size
3357          * First return free pages to the buddy allocator (being careful
3358          * to keep enough around to satisfy reservations).  Then place
3359          * pages into surplus state as needed so the pool will shrink
3360          * to the desired size as pages become free.
3361          *
3362          * By placing pages into the surplus state independent of the
3363          * overcommit value, we are allowing the surplus pool size to
3364          * exceed overcommit. There are few sane options here. Since
3365          * alloc_surplus_huge_page() is checking the global counter,
3366          * though, we'll note that we're not allowed to exceed surplus
3367          * and won't grow the pool anywhere else. Not until one of the
3368          * sysctls are changed, or the surplus pages go out of use.
3369          */
3370         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3371         min_count = max(count, min_count);
3372         try_to_free_low(h, min_count, nodes_allowed);
3373
3374         /*
3375          * Collect pages to be removed on list without dropping lock
3376          */
3377         while (min_count < persistent_huge_pages(h)) {
3378                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3379                 if (!page)
3380                         break;
3381
3382                 list_add(&page->lru, &page_list);
3383         }
3384         /* free the pages after dropping lock */
3385         spin_unlock_irq(&hugetlb_lock);
3386         update_and_free_pages_bulk(h, &page_list);
3387         flush_free_hpage_work(h);
3388         spin_lock_irq(&hugetlb_lock);
3389
3390         while (count < persistent_huge_pages(h)) {
3391                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3392                         break;
3393         }
3394 out:
3395         h->max_huge_pages = persistent_huge_pages(h);
3396         spin_unlock_irq(&hugetlb_lock);
3397         mutex_unlock(&h->resize_lock);
3398
3399         NODEMASK_FREE(node_alloc_noretry);
3400
3401         return 0;
3402 }
3403
3404 static int demote_free_huge_page(struct hstate *h, struct page *page)
3405 {
3406         int i, nid = page_to_nid(page);
3407         struct hstate *target_hstate;
3408         int rc = 0;
3409
3410         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3411
3412         remove_hugetlb_page_for_demote(h, page, false);
3413         spin_unlock_irq(&hugetlb_lock);
3414
3415         rc = alloc_huge_page_vmemmap(h, page);
3416         if (rc) {
3417                 /* Allocation of vmemmmap failed, we can not demote page */
3418                 spin_lock_irq(&hugetlb_lock);
3419                 set_page_refcounted(page);
3420                 add_hugetlb_page(h, page, false);
3421                 return rc;
3422         }
3423
3424         /*
3425          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3426          * sizes as it will not ref count pages.
3427          */
3428         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3429
3430         /*
3431          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3432          * Without the mutex, pages added to target hstate could be marked
3433          * as surplus.
3434          *
3435          * Note that we already hold h->resize_lock.  To prevent deadlock,
3436          * use the convention of always taking larger size hstate mutex first.
3437          */
3438         mutex_lock(&target_hstate->resize_lock);
3439         for (i = 0; i < pages_per_huge_page(h);
3440                                 i += pages_per_huge_page(target_hstate)) {
3441                 if (hstate_is_gigantic(target_hstate))
3442                         prep_compound_gigantic_page_for_demote(page + i,
3443                                                         target_hstate->order);
3444                 else
3445                         prep_compound_page(page + i, target_hstate->order);
3446                 set_page_private(page + i, 0);
3447                 set_page_refcounted(page + i);
3448                 prep_new_huge_page(target_hstate, page + i, nid);
3449                 put_page(page + i);
3450         }
3451         mutex_unlock(&target_hstate->resize_lock);
3452
3453         spin_lock_irq(&hugetlb_lock);
3454
3455         /*
3456          * Not absolutely necessary, but for consistency update max_huge_pages
3457          * based on pool changes for the demoted page.
3458          */
3459         h->max_huge_pages--;
3460         target_hstate->max_huge_pages += pages_per_huge_page(h);
3461
3462         return rc;
3463 }
3464
3465 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3466         __must_hold(&hugetlb_lock)
3467 {
3468         int nr_nodes, node;
3469         struct page *page;
3470         int rc = 0;
3471
3472         lockdep_assert_held(&hugetlb_lock);
3473
3474         /* We should never get here if no demote order */
3475         if (!h->demote_order) {
3476                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3477                 return -EINVAL;         /* internal error */
3478         }
3479
3480         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3481                 if (!list_empty(&h->hugepage_freelists[node])) {
3482                         page = list_entry(h->hugepage_freelists[node].next,
3483                                         struct page, lru);
3484                         rc = demote_free_huge_page(h, page);
3485                         break;
3486                 }
3487         }
3488
3489         return rc;
3490 }
3491
3492 #define HSTATE_ATTR_RO(_name) \
3493         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3494
3495 #define HSTATE_ATTR_WO(_name) \
3496         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3497
3498 #define HSTATE_ATTR(_name) \
3499         static struct kobj_attribute _name##_attr = \
3500                 __ATTR(_name, 0644, _name##_show, _name##_store)
3501
3502 static struct kobject *hugepages_kobj;
3503 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3504
3505 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3506
3507 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3508 {
3509         int i;
3510
3511         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3512                 if (hstate_kobjs[i] == kobj) {
3513                         if (nidp)
3514                                 *nidp = NUMA_NO_NODE;
3515                         return &hstates[i];
3516                 }
3517
3518         return kobj_to_node_hstate(kobj, nidp);
3519 }
3520
3521 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3522                                         struct kobj_attribute *attr, char *buf)
3523 {
3524         struct hstate *h;
3525         unsigned long nr_huge_pages;
3526         int nid;
3527
3528         h = kobj_to_hstate(kobj, &nid);
3529         if (nid == NUMA_NO_NODE)
3530                 nr_huge_pages = h->nr_huge_pages;
3531         else
3532                 nr_huge_pages = h->nr_huge_pages_node[nid];
3533
3534         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3535 }
3536
3537 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3538                                            struct hstate *h, int nid,
3539                                            unsigned long count, size_t len)
3540 {
3541         int err;
3542         nodemask_t nodes_allowed, *n_mask;
3543
3544         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3545                 return -EINVAL;
3546
3547         if (nid == NUMA_NO_NODE) {
3548                 /*
3549                  * global hstate attribute
3550                  */
3551                 if (!(obey_mempolicy &&
3552                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3553                         n_mask = &node_states[N_MEMORY];
3554                 else
3555                         n_mask = &nodes_allowed;
3556         } else {
3557                 /*
3558                  * Node specific request.  count adjustment happens in
3559                  * set_max_huge_pages() after acquiring hugetlb_lock.
3560                  */
3561                 init_nodemask_of_node(&nodes_allowed, nid);
3562                 n_mask = &nodes_allowed;
3563         }
3564
3565         err = set_max_huge_pages(h, count, nid, n_mask);
3566
3567         return err ? err : len;
3568 }
3569
3570 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3571                                          struct kobject *kobj, const char *buf,
3572                                          size_t len)
3573 {
3574         struct hstate *h;
3575         unsigned long count;
3576         int nid;
3577         int err;
3578
3579         err = kstrtoul(buf, 10, &count);
3580         if (err)
3581                 return err;
3582
3583         h = kobj_to_hstate(kobj, &nid);
3584         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3585 }
3586
3587 static ssize_t nr_hugepages_show(struct kobject *kobj,
3588                                        struct kobj_attribute *attr, char *buf)
3589 {
3590         return nr_hugepages_show_common(kobj, attr, buf);
3591 }
3592
3593 static ssize_t nr_hugepages_store(struct kobject *kobj,
3594                struct kobj_attribute *attr, const char *buf, size_t len)
3595 {
3596         return nr_hugepages_store_common(false, kobj, buf, len);
3597 }
3598 HSTATE_ATTR(nr_hugepages);
3599
3600 #ifdef CONFIG_NUMA
3601
3602 /*
3603  * hstate attribute for optionally mempolicy-based constraint on persistent
3604  * huge page alloc/free.
3605  */
3606 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3607                                            struct kobj_attribute *attr,
3608                                            char *buf)
3609 {
3610         return nr_hugepages_show_common(kobj, attr, buf);
3611 }
3612
3613 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3614                struct kobj_attribute *attr, const char *buf, size_t len)
3615 {
3616         return nr_hugepages_store_common(true, kobj, buf, len);
3617 }
3618 HSTATE_ATTR(nr_hugepages_mempolicy);
3619 #endif
3620
3621
3622 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3623                                         struct kobj_attribute *attr, char *buf)
3624 {
3625         struct hstate *h = kobj_to_hstate(kobj, NULL);
3626         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3627 }
3628
3629 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3630                 struct kobj_attribute *attr, const char *buf, size_t count)
3631 {
3632         int err;
3633         unsigned long input;
3634         struct hstate *h = kobj_to_hstate(kobj, NULL);
3635
3636         if (hstate_is_gigantic(h))
3637                 return -EINVAL;
3638
3639         err = kstrtoul(buf, 10, &input);
3640         if (err)
3641                 return err;
3642
3643         spin_lock_irq(&hugetlb_lock);
3644         h->nr_overcommit_huge_pages = input;
3645         spin_unlock_irq(&hugetlb_lock);
3646
3647         return count;
3648 }
3649 HSTATE_ATTR(nr_overcommit_hugepages);
3650
3651 static ssize_t free_hugepages_show(struct kobject *kobj,
3652                                         struct kobj_attribute *attr, char *buf)
3653 {
3654         struct hstate *h;
3655         unsigned long free_huge_pages;
3656         int nid;
3657
3658         h = kobj_to_hstate(kobj, &nid);
3659         if (nid == NUMA_NO_NODE)
3660                 free_huge_pages = h->free_huge_pages;
3661         else
3662                 free_huge_pages = h->free_huge_pages_node[nid];
3663
3664         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3665 }
3666 HSTATE_ATTR_RO(free_hugepages);
3667
3668 static ssize_t resv_hugepages_show(struct kobject *kobj,
3669                                         struct kobj_attribute *attr, char *buf)
3670 {
3671         struct hstate *h = kobj_to_hstate(kobj, NULL);
3672         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3673 }
3674 HSTATE_ATTR_RO(resv_hugepages);
3675
3676 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3677                                         struct kobj_attribute *attr, char *buf)
3678 {
3679         struct hstate *h;
3680         unsigned long surplus_huge_pages;
3681         int nid;
3682
3683         h = kobj_to_hstate(kobj, &nid);
3684         if (nid == NUMA_NO_NODE)
3685                 surplus_huge_pages = h->surplus_huge_pages;
3686         else
3687                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3688
3689         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3690 }
3691 HSTATE_ATTR_RO(surplus_hugepages);
3692
3693 static ssize_t demote_store(struct kobject *kobj,
3694                struct kobj_attribute *attr, const char *buf, size_t len)
3695 {
3696         unsigned long nr_demote;
3697         unsigned long nr_available;
3698         nodemask_t nodes_allowed, *n_mask;
3699         struct hstate *h;
3700         int err = 0;
3701         int nid;
3702
3703         err = kstrtoul(buf, 10, &nr_demote);
3704         if (err)
3705                 return err;
3706         h = kobj_to_hstate(kobj, &nid);
3707
3708         if (nid != NUMA_NO_NODE) {
3709                 init_nodemask_of_node(&nodes_allowed, nid);
3710                 n_mask = &nodes_allowed;
3711         } else {
3712                 n_mask = &node_states[N_MEMORY];
3713         }
3714
3715         /* Synchronize with other sysfs operations modifying huge pages */
3716         mutex_lock(&h->resize_lock);
3717         spin_lock_irq(&hugetlb_lock);
3718
3719         while (nr_demote) {
3720                 /*
3721                  * Check for available pages to demote each time thorough the
3722                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3723                  */
3724                 if (nid != NUMA_NO_NODE)
3725                         nr_available = h->free_huge_pages_node[nid];
3726                 else
3727                         nr_available = h->free_huge_pages;
3728                 nr_available -= h->resv_huge_pages;
3729                 if (!nr_available)
3730                         break;
3731
3732                 err = demote_pool_huge_page(h, n_mask);
3733                 if (err)
3734                         break;
3735
3736                 nr_demote--;
3737         }
3738
3739         spin_unlock_irq(&hugetlb_lock);
3740         mutex_unlock(&h->resize_lock);
3741
3742         if (err)
3743                 return err;
3744         return len;
3745 }
3746 HSTATE_ATTR_WO(demote);
3747
3748 static ssize_t demote_size_show(struct kobject *kobj,
3749                                         struct kobj_attribute *attr, char *buf)
3750 {
3751         int nid;
3752         struct hstate *h = kobj_to_hstate(kobj, &nid);
3753         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3754
3755         return sysfs_emit(buf, "%lukB\n", demote_size);
3756 }
3757
3758 static ssize_t demote_size_store(struct kobject *kobj,
3759                                         struct kobj_attribute *attr,
3760                                         const char *buf, size_t count)
3761 {
3762         struct hstate *h, *demote_hstate;
3763         unsigned long demote_size;
3764         unsigned int demote_order;
3765         int nid;
3766
3767         demote_size = (unsigned long)memparse(buf, NULL);
3768
3769         demote_hstate = size_to_hstate(demote_size);
3770         if (!demote_hstate)
3771                 return -EINVAL;
3772         demote_order = demote_hstate->order;
3773         if (demote_order < HUGETLB_PAGE_ORDER)
3774                 return -EINVAL;
3775
3776         /* demote order must be smaller than hstate order */
3777         h = kobj_to_hstate(kobj, &nid);
3778         if (demote_order >= h->order)
3779                 return -EINVAL;
3780
3781         /* resize_lock synchronizes access to demote size and writes */
3782         mutex_lock(&h->resize_lock);
3783         h->demote_order = demote_order;
3784         mutex_unlock(&h->resize_lock);
3785
3786         return count;
3787 }
3788 HSTATE_ATTR(demote_size);
3789
3790 static struct attribute *hstate_attrs[] = {
3791         &nr_hugepages_attr.attr,
3792         &nr_overcommit_hugepages_attr.attr,
3793         &free_hugepages_attr.attr,
3794         &resv_hugepages_attr.attr,
3795         &surplus_hugepages_attr.attr,
3796 #ifdef CONFIG_NUMA
3797         &nr_hugepages_mempolicy_attr.attr,
3798 #endif
3799         NULL,
3800 };
3801
3802 static const struct attribute_group hstate_attr_group = {
3803         .attrs = hstate_attrs,
3804 };
3805
3806 static struct attribute *hstate_demote_attrs[] = {
3807         &demote_size_attr.attr,
3808         &demote_attr.attr,
3809         NULL,
3810 };
3811
3812 static const struct attribute_group hstate_demote_attr_group = {
3813         .attrs = hstate_demote_attrs,
3814 };
3815
3816 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3817                                     struct kobject **hstate_kobjs,
3818                                     const struct attribute_group *hstate_attr_group)
3819 {
3820         int retval;
3821         int hi = hstate_index(h);
3822
3823         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3824         if (!hstate_kobjs[hi])
3825                 return -ENOMEM;
3826
3827         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3828         if (retval) {
3829                 kobject_put(hstate_kobjs[hi]);
3830                 hstate_kobjs[hi] = NULL;
3831         }
3832
3833         if (h->demote_order) {
3834                 if (sysfs_create_group(hstate_kobjs[hi],
3835                                         &hstate_demote_attr_group))
3836                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3837         }
3838
3839         return retval;
3840 }
3841
3842 static void __init hugetlb_sysfs_init(void)
3843 {
3844         struct hstate *h;
3845         int err;
3846
3847         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3848         if (!hugepages_kobj)
3849                 return;
3850
3851         for_each_hstate(h) {
3852                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3853                                          hstate_kobjs, &hstate_attr_group);
3854                 if (err)
3855                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3856         }
3857 }
3858
3859 #ifdef CONFIG_NUMA
3860
3861 /*
3862  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3863  * with node devices in node_devices[] using a parallel array.  The array
3864  * index of a node device or _hstate == node id.
3865  * This is here to avoid any static dependency of the node device driver, in
3866  * the base kernel, on the hugetlb module.
3867  */
3868 struct node_hstate {
3869         struct kobject          *hugepages_kobj;
3870         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3871 };
3872 static struct node_hstate node_hstates[MAX_NUMNODES];
3873
3874 /*
3875  * A subset of global hstate attributes for node devices
3876  */
3877 static struct attribute *per_node_hstate_attrs[] = {
3878         &nr_hugepages_attr.attr,
3879         &free_hugepages_attr.attr,
3880         &surplus_hugepages_attr.attr,
3881         NULL,
3882 };
3883
3884 static const struct attribute_group per_node_hstate_attr_group = {
3885         .attrs = per_node_hstate_attrs,
3886 };
3887
3888 /*
3889  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3890  * Returns node id via non-NULL nidp.
3891  */
3892 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3893 {
3894         int nid;
3895
3896         for (nid = 0; nid < nr_node_ids; nid++) {
3897                 struct node_hstate *nhs = &node_hstates[nid];
3898                 int i;
3899                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3900                         if (nhs->hstate_kobjs[i] == kobj) {
3901                                 if (nidp)
3902                                         *nidp = nid;
3903                                 return &hstates[i];
3904                         }
3905         }
3906
3907         BUG();
3908         return NULL;
3909 }
3910
3911 /*
3912  * Unregister hstate attributes from a single node device.
3913  * No-op if no hstate attributes attached.
3914  */
3915 static void hugetlb_unregister_node(struct node *node)
3916 {
3917         struct hstate *h;
3918         struct node_hstate *nhs = &node_hstates[node->dev.id];
3919
3920         if (!nhs->hugepages_kobj)
3921                 return;         /* no hstate attributes */
3922
3923         for_each_hstate(h) {
3924                 int idx = hstate_index(h);
3925                 if (nhs->hstate_kobjs[idx]) {
3926                         kobject_put(nhs->hstate_kobjs[idx]);
3927                         nhs->hstate_kobjs[idx] = NULL;
3928                 }
3929         }
3930
3931         kobject_put(nhs->hugepages_kobj);
3932         nhs->hugepages_kobj = NULL;
3933 }
3934
3935
3936 /*
3937  * Register hstate attributes for a single node device.
3938  * No-op if attributes already registered.
3939  */
3940 static void hugetlb_register_node(struct node *node)
3941 {
3942         struct hstate *h;
3943         struct node_hstate *nhs = &node_hstates[node->dev.id];
3944         int err;
3945
3946         if (nhs->hugepages_kobj)
3947                 return;         /* already allocated */
3948
3949         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3950                                                         &node->dev.kobj);
3951         if (!nhs->hugepages_kobj)
3952                 return;
3953
3954         for_each_hstate(h) {
3955                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3956                                                 nhs->hstate_kobjs,
3957                                                 &per_node_hstate_attr_group);
3958                 if (err) {
3959                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3960                                 h->name, node->dev.id);
3961                         hugetlb_unregister_node(node);
3962                         break;
3963                 }
3964         }
3965 }
3966
3967 /*
3968  * hugetlb init time:  register hstate attributes for all registered node
3969  * devices of nodes that have memory.  All on-line nodes should have
3970  * registered their associated device by this time.
3971  */
3972 static void __init hugetlb_register_all_nodes(void)
3973 {
3974         int nid;
3975
3976         for_each_node_state(nid, N_MEMORY) {
3977                 struct node *node = node_devices[nid];
3978                 if (node->dev.id == nid)
3979                         hugetlb_register_node(node);
3980         }
3981
3982         /*
3983          * Let the node device driver know we're here so it can
3984          * [un]register hstate attributes on node hotplug.
3985          */
3986         register_hugetlbfs_with_node(hugetlb_register_node,
3987                                      hugetlb_unregister_node);
3988 }
3989 #else   /* !CONFIG_NUMA */
3990
3991 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3992 {
3993         BUG();
3994         if (nidp)
3995                 *nidp = -1;
3996         return NULL;
3997 }
3998
3999 static void hugetlb_register_all_nodes(void) { }
4000
4001 #endif
4002
4003 static int __init hugetlb_init(void)
4004 {
4005         int i;
4006
4007         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4008                         __NR_HPAGEFLAGS);
4009
4010         if (!hugepages_supported()) {
4011                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4012                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4013                 return 0;
4014         }
4015
4016         /*
4017          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4018          * architectures depend on setup being done here.
4019          */
4020         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4021         if (!parsed_default_hugepagesz) {
4022                 /*
4023                  * If we did not parse a default huge page size, set
4024                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4025                  * number of huge pages for this default size was implicitly
4026                  * specified, set that here as well.
4027                  * Note that the implicit setting will overwrite an explicit
4028                  * setting.  A warning will be printed in this case.
4029                  */
4030                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4031                 if (default_hstate_max_huge_pages) {
4032                         if (default_hstate.max_huge_pages) {
4033                                 char buf[32];
4034
4035                                 string_get_size(huge_page_size(&default_hstate),
4036                                         1, STRING_UNITS_2, buf, 32);
4037                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4038                                         default_hstate.max_huge_pages, buf);
4039                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4040                                         default_hstate_max_huge_pages);
4041                         }
4042                         default_hstate.max_huge_pages =
4043                                 default_hstate_max_huge_pages;
4044
4045                         for (i = 0; i < nr_online_nodes; i++)
4046                                 default_hstate.max_huge_pages_node[i] =
4047                                         default_hugepages_in_node[i];
4048                 }
4049         }
4050
4051         hugetlb_cma_check();
4052         hugetlb_init_hstates();
4053         gather_bootmem_prealloc();
4054         report_hugepages();
4055
4056         hugetlb_sysfs_init();
4057         hugetlb_register_all_nodes();
4058         hugetlb_cgroup_file_init();
4059
4060 #ifdef CONFIG_SMP
4061         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4062 #else
4063         num_fault_mutexes = 1;
4064 #endif
4065         hugetlb_fault_mutex_table =
4066                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4067                               GFP_KERNEL);
4068         BUG_ON(!hugetlb_fault_mutex_table);
4069
4070         for (i = 0; i < num_fault_mutexes; i++)
4071                 mutex_init(&hugetlb_fault_mutex_table[i]);
4072         return 0;
4073 }
4074 subsys_initcall(hugetlb_init);
4075
4076 /* Overwritten by architectures with more huge page sizes */
4077 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4078 {
4079         return size == HPAGE_SIZE;
4080 }
4081
4082 void __init hugetlb_add_hstate(unsigned int order)
4083 {
4084         struct hstate *h;
4085         unsigned long i;
4086
4087         if (size_to_hstate(PAGE_SIZE << order)) {
4088                 return;
4089         }
4090         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4091         BUG_ON(order == 0);
4092         h = &hstates[hugetlb_max_hstate++];
4093         mutex_init(&h->resize_lock);
4094         h->order = order;
4095         h->mask = ~(huge_page_size(h) - 1);
4096         for (i = 0; i < MAX_NUMNODES; ++i)
4097                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4098         INIT_LIST_HEAD(&h->hugepage_activelist);
4099         h->next_nid_to_alloc = first_memory_node;
4100         h->next_nid_to_free = first_memory_node;
4101         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4102                                         huge_page_size(h)/1024);
4103         hugetlb_vmemmap_init(h);
4104
4105         parsed_hstate = h;
4106 }
4107
4108 bool __init __weak hugetlb_node_alloc_supported(void)
4109 {
4110         return true;
4111 }
4112 /*
4113  * hugepages command line processing
4114  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4115  * specification.  If not, ignore the hugepages value.  hugepages can also
4116  * be the first huge page command line  option in which case it implicitly
4117  * specifies the number of huge pages for the default size.
4118  */
4119 static int __init hugepages_setup(char *s)
4120 {
4121         unsigned long *mhp;
4122         static unsigned long *last_mhp;
4123         int node = NUMA_NO_NODE;
4124         int count;
4125         unsigned long tmp;
4126         char *p = s;
4127
4128         if (!parsed_valid_hugepagesz) {
4129                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4130                 parsed_valid_hugepagesz = true;
4131                 return 0;
4132         }
4133
4134         /*
4135          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4136          * yet, so this hugepages= parameter goes to the "default hstate".
4137          * Otherwise, it goes with the previously parsed hugepagesz or
4138          * default_hugepagesz.
4139          */
4140         else if (!hugetlb_max_hstate)
4141                 mhp = &default_hstate_max_huge_pages;
4142         else
4143                 mhp = &parsed_hstate->max_huge_pages;
4144
4145         if (mhp == last_mhp) {
4146                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4147                 return 0;
4148         }
4149
4150         while (*p) {
4151                 count = 0;
4152                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4153                         goto invalid;
4154                 /* Parameter is node format */
4155                 if (p[count] == ':') {
4156                         if (!hugetlb_node_alloc_supported()) {
4157                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4158                                 return 0;
4159                         }
4160                         node = tmp;
4161                         p += count + 1;
4162                         if (node < 0 || node >= nr_online_nodes)
4163                                 goto invalid;
4164                         /* Parse hugepages */
4165                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4166                                 goto invalid;
4167                         if (!hugetlb_max_hstate)
4168                                 default_hugepages_in_node[node] = tmp;
4169                         else
4170                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4171                         *mhp += tmp;
4172                         /* Go to parse next node*/
4173                         if (p[count] == ',')
4174                                 p += count + 1;
4175                         else
4176                                 break;
4177                 } else {
4178                         if (p != s)
4179                                 goto invalid;
4180                         *mhp = tmp;
4181                         break;
4182                 }
4183         }
4184
4185         /*
4186          * Global state is always initialized later in hugetlb_init.
4187          * But we need to allocate gigantic hstates here early to still
4188          * use the bootmem allocator.
4189          */
4190         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4191                 hugetlb_hstate_alloc_pages(parsed_hstate);
4192
4193         last_mhp = mhp;
4194
4195         return 1;
4196
4197 invalid:
4198         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4199         return 0;
4200 }
4201 __setup("hugepages=", hugepages_setup);
4202
4203 /*
4204  * hugepagesz command line processing
4205  * A specific huge page size can only be specified once with hugepagesz.
4206  * hugepagesz is followed by hugepages on the command line.  The global
4207  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4208  * hugepagesz argument was valid.
4209  */
4210 static int __init hugepagesz_setup(char *s)
4211 {
4212         unsigned long size;
4213         struct hstate *h;
4214
4215         parsed_valid_hugepagesz = false;
4216         size = (unsigned long)memparse(s, NULL);
4217
4218         if (!arch_hugetlb_valid_size(size)) {
4219                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4220                 return 0;
4221         }
4222
4223         h = size_to_hstate(size);
4224         if (h) {
4225                 /*
4226                  * hstate for this size already exists.  This is normally
4227                  * an error, but is allowed if the existing hstate is the
4228                  * default hstate.  More specifically, it is only allowed if
4229                  * the number of huge pages for the default hstate was not
4230                  * previously specified.
4231                  */
4232                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4233                     default_hstate.max_huge_pages) {
4234                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4235                         return 0;
4236                 }
4237
4238                 /*
4239                  * No need to call hugetlb_add_hstate() as hstate already
4240                  * exists.  But, do set parsed_hstate so that a following
4241                  * hugepages= parameter will be applied to this hstate.
4242                  */
4243                 parsed_hstate = h;
4244                 parsed_valid_hugepagesz = true;
4245                 return 1;
4246         }
4247
4248         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4249         parsed_valid_hugepagesz = true;
4250         return 1;
4251 }
4252 __setup("hugepagesz=", hugepagesz_setup);
4253
4254 /*
4255  * default_hugepagesz command line input
4256  * Only one instance of default_hugepagesz allowed on command line.
4257  */
4258 static int __init default_hugepagesz_setup(char *s)
4259 {
4260         unsigned long size;
4261         int i;
4262
4263         parsed_valid_hugepagesz = false;
4264         if (parsed_default_hugepagesz) {
4265                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4266                 return 0;
4267         }
4268
4269         size = (unsigned long)memparse(s, NULL);
4270
4271         if (!arch_hugetlb_valid_size(size)) {
4272                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4273                 return 0;
4274         }
4275
4276         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4277         parsed_valid_hugepagesz = true;
4278         parsed_default_hugepagesz = true;
4279         default_hstate_idx = hstate_index(size_to_hstate(size));
4280
4281         /*
4282          * The number of default huge pages (for this size) could have been
4283          * specified as the first hugetlb parameter: hugepages=X.  If so,
4284          * then default_hstate_max_huge_pages is set.  If the default huge
4285          * page size is gigantic (>= MAX_ORDER), then the pages must be
4286          * allocated here from bootmem allocator.
4287          */
4288         if (default_hstate_max_huge_pages) {
4289                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4290                 for (i = 0; i < nr_online_nodes; i++)
4291                         default_hstate.max_huge_pages_node[i] =
4292                                 default_hugepages_in_node[i];
4293                 if (hstate_is_gigantic(&default_hstate))
4294                         hugetlb_hstate_alloc_pages(&default_hstate);
4295                 default_hstate_max_huge_pages = 0;
4296         }
4297
4298         return 1;
4299 }
4300 __setup("default_hugepagesz=", default_hugepagesz_setup);
4301
4302 static unsigned int allowed_mems_nr(struct hstate *h)
4303 {
4304         int node;
4305         unsigned int nr = 0;
4306         nodemask_t *mpol_allowed;
4307         unsigned int *array = h->free_huge_pages_node;
4308         gfp_t gfp_mask = htlb_alloc_mask(h);
4309
4310         mpol_allowed = policy_nodemask_current(gfp_mask);
4311
4312         for_each_node_mask(node, cpuset_current_mems_allowed) {
4313                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4314                         nr += array[node];
4315         }
4316
4317         return nr;
4318 }
4319
4320 #ifdef CONFIG_SYSCTL
4321 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4322                                           void *buffer, size_t *length,
4323                                           loff_t *ppos, unsigned long *out)
4324 {
4325         struct ctl_table dup_table;
4326
4327         /*
4328          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4329          * can duplicate the @table and alter the duplicate of it.
4330          */
4331         dup_table = *table;
4332         dup_table.data = out;
4333
4334         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4335 }
4336
4337 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4338                          struct ctl_table *table, int write,
4339                          void *buffer, size_t *length, loff_t *ppos)
4340 {
4341         struct hstate *h = &default_hstate;
4342         unsigned long tmp = h->max_huge_pages;
4343         int ret;
4344
4345         if (!hugepages_supported())
4346                 return -EOPNOTSUPP;
4347
4348         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4349                                              &tmp);
4350         if (ret)
4351                 goto out;
4352
4353         if (write)
4354                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4355                                                   NUMA_NO_NODE, tmp, *length);
4356 out:
4357         return ret;
4358 }
4359
4360 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4361                           void *buffer, size_t *length, loff_t *ppos)
4362 {
4363
4364         return hugetlb_sysctl_handler_common(false, table, write,
4365                                                         buffer, length, ppos);
4366 }
4367
4368 #ifdef CONFIG_NUMA
4369 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4370                           void *buffer, size_t *length, loff_t *ppos)
4371 {
4372         return hugetlb_sysctl_handler_common(true, table, write,
4373                                                         buffer, length, ppos);
4374 }
4375 #endif /* CONFIG_NUMA */
4376
4377 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4378                 void *buffer, size_t *length, loff_t *ppos)
4379 {
4380         struct hstate *h = &default_hstate;
4381         unsigned long tmp;
4382         int ret;
4383
4384         if (!hugepages_supported())
4385                 return -EOPNOTSUPP;
4386
4387         tmp = h->nr_overcommit_huge_pages;
4388
4389         if (write && hstate_is_gigantic(h))
4390                 return -EINVAL;
4391
4392         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4393                                              &tmp);
4394         if (ret)
4395                 goto out;
4396
4397         if (write) {
4398                 spin_lock_irq(&hugetlb_lock);
4399                 h->nr_overcommit_huge_pages = tmp;
4400                 spin_unlock_irq(&hugetlb_lock);
4401         }
4402 out:
4403         return ret;
4404 }
4405
4406 #endif /* CONFIG_SYSCTL */
4407
4408 void hugetlb_report_meminfo(struct seq_file *m)
4409 {
4410         struct hstate *h;
4411         unsigned long total = 0;
4412
4413         if (!hugepages_supported())
4414                 return;
4415
4416         for_each_hstate(h) {
4417                 unsigned long count = h->nr_huge_pages;
4418
4419                 total += huge_page_size(h) * count;
4420
4421                 if (h == &default_hstate)
4422                         seq_printf(m,
4423                                    "HugePages_Total:   %5lu\n"
4424                                    "HugePages_Free:    %5lu\n"
4425                                    "HugePages_Rsvd:    %5lu\n"
4426                                    "HugePages_Surp:    %5lu\n"
4427                                    "Hugepagesize:   %8lu kB\n",
4428                                    count,
4429                                    h->free_huge_pages,
4430                                    h->resv_huge_pages,
4431                                    h->surplus_huge_pages,
4432                                    huge_page_size(h) / SZ_1K);
4433         }
4434
4435         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4436 }
4437
4438 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4439 {
4440         struct hstate *h = &default_hstate;
4441
4442         if (!hugepages_supported())
4443                 return 0;
4444
4445         return sysfs_emit_at(buf, len,
4446                              "Node %d HugePages_Total: %5u\n"
4447                              "Node %d HugePages_Free:  %5u\n"
4448                              "Node %d HugePages_Surp:  %5u\n",
4449                              nid, h->nr_huge_pages_node[nid],
4450                              nid, h->free_huge_pages_node[nid],
4451                              nid, h->surplus_huge_pages_node[nid]);
4452 }
4453
4454 void hugetlb_show_meminfo(void)
4455 {
4456         struct hstate *h;
4457         int nid;
4458
4459         if (!hugepages_supported())
4460                 return;
4461
4462         for_each_node_state(nid, N_MEMORY)
4463                 for_each_hstate(h)
4464                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4465                                 nid,
4466                                 h->nr_huge_pages_node[nid],
4467                                 h->free_huge_pages_node[nid],
4468                                 h->surplus_huge_pages_node[nid],
4469                                 huge_page_size(h) / SZ_1K);
4470 }
4471
4472 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4473 {
4474         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4475                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4476 }
4477
4478 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4479 unsigned long hugetlb_total_pages(void)
4480 {
4481         struct hstate *h;
4482         unsigned long nr_total_pages = 0;
4483
4484         for_each_hstate(h)
4485                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4486         return nr_total_pages;
4487 }
4488
4489 static int hugetlb_acct_memory(struct hstate *h, long delta)
4490 {
4491         int ret = -ENOMEM;
4492
4493         if (!delta)
4494                 return 0;
4495
4496         spin_lock_irq(&hugetlb_lock);
4497         /*
4498          * When cpuset is configured, it breaks the strict hugetlb page
4499          * reservation as the accounting is done on a global variable. Such
4500          * reservation is completely rubbish in the presence of cpuset because
4501          * the reservation is not checked against page availability for the
4502          * current cpuset. Application can still potentially OOM'ed by kernel
4503          * with lack of free htlb page in cpuset that the task is in.
4504          * Attempt to enforce strict accounting with cpuset is almost
4505          * impossible (or too ugly) because cpuset is too fluid that
4506          * task or memory node can be dynamically moved between cpusets.
4507          *
4508          * The change of semantics for shared hugetlb mapping with cpuset is
4509          * undesirable. However, in order to preserve some of the semantics,
4510          * we fall back to check against current free page availability as
4511          * a best attempt and hopefully to minimize the impact of changing
4512          * semantics that cpuset has.
4513          *
4514          * Apart from cpuset, we also have memory policy mechanism that
4515          * also determines from which node the kernel will allocate memory
4516          * in a NUMA system. So similar to cpuset, we also should consider
4517          * the memory policy of the current task. Similar to the description
4518          * above.
4519          */
4520         if (delta > 0) {
4521                 if (gather_surplus_pages(h, delta) < 0)
4522                         goto out;
4523
4524                 if (delta > allowed_mems_nr(h)) {
4525                         return_unused_surplus_pages(h, delta);
4526                         goto out;
4527                 }
4528         }
4529
4530         ret = 0;
4531         if (delta < 0)
4532                 return_unused_surplus_pages(h, (unsigned long) -delta);
4533
4534 out:
4535         spin_unlock_irq(&hugetlb_lock);
4536         return ret;
4537 }
4538
4539 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4540 {
4541         struct resv_map *resv = vma_resv_map(vma);
4542
4543         /*
4544          * This new VMA should share its siblings reservation map if present.
4545          * The VMA will only ever have a valid reservation map pointer where
4546          * it is being copied for another still existing VMA.  As that VMA
4547          * has a reference to the reservation map it cannot disappear until
4548          * after this open call completes.  It is therefore safe to take a
4549          * new reference here without additional locking.
4550          */
4551         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4552                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4553                 kref_get(&resv->refs);
4554         }
4555 }
4556
4557 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4558 {
4559         struct hstate *h = hstate_vma(vma);
4560         struct resv_map *resv = vma_resv_map(vma);
4561         struct hugepage_subpool *spool = subpool_vma(vma);
4562         unsigned long reserve, start, end;
4563         long gbl_reserve;
4564
4565         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4566                 return;
4567
4568         start = vma_hugecache_offset(h, vma, vma->vm_start);
4569         end = vma_hugecache_offset(h, vma, vma->vm_end);
4570
4571         reserve = (end - start) - region_count(resv, start, end);
4572         hugetlb_cgroup_uncharge_counter(resv, start, end);
4573         if (reserve) {
4574                 /*
4575                  * Decrement reserve counts.  The global reserve count may be
4576                  * adjusted if the subpool has a minimum size.
4577                  */
4578                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4579                 hugetlb_acct_memory(h, -gbl_reserve);
4580         }
4581
4582         kref_put(&resv->refs, resv_map_release);
4583 }
4584
4585 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4586 {
4587         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4588                 return -EINVAL;
4589         return 0;
4590 }
4591
4592 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4593 {
4594         return huge_page_size(hstate_vma(vma));
4595 }
4596
4597 /*
4598  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4599  * handle_mm_fault() to try to instantiate regular-sized pages in the
4600  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4601  * this far.
4602  */
4603 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4604 {
4605         BUG();
4606         return 0;
4607 }
4608
4609 /*
4610  * When a new function is introduced to vm_operations_struct and added
4611  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4612  * This is because under System V memory model, mappings created via
4613  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4614  * their original vm_ops are overwritten with shm_vm_ops.
4615  */
4616 const struct vm_operations_struct hugetlb_vm_ops = {
4617         .fault = hugetlb_vm_op_fault,
4618         .open = hugetlb_vm_op_open,
4619         .close = hugetlb_vm_op_close,
4620         .may_split = hugetlb_vm_op_split,
4621         .pagesize = hugetlb_vm_op_pagesize,
4622 };
4623
4624 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4625                                 int writable)
4626 {
4627         pte_t entry;
4628         unsigned int shift = huge_page_shift(hstate_vma(vma));
4629
4630         if (writable) {
4631                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4632                                          vma->vm_page_prot)));
4633         } else {
4634                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4635                                            vma->vm_page_prot));
4636         }
4637         entry = pte_mkyoung(entry);
4638         entry = pte_mkhuge(entry);
4639         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4640
4641         return entry;
4642 }
4643
4644 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4645                                    unsigned long address, pte_t *ptep)
4646 {
4647         pte_t entry;
4648
4649         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4650         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4651                 update_mmu_cache(vma, address, ptep);
4652 }
4653
4654 bool is_hugetlb_entry_migration(pte_t pte)
4655 {
4656         swp_entry_t swp;
4657
4658         if (huge_pte_none(pte) || pte_present(pte))
4659                 return false;
4660         swp = pte_to_swp_entry(pte);
4661         if (is_migration_entry(swp))
4662                 return true;
4663         else
4664                 return false;
4665 }
4666
4667 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4668 {
4669         swp_entry_t swp;
4670
4671         if (huge_pte_none(pte) || pte_present(pte))
4672                 return false;
4673         swp = pte_to_swp_entry(pte);
4674         if (is_hwpoison_entry(swp))
4675                 return true;
4676         else
4677                 return false;
4678 }
4679
4680 static void
4681 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4682                      struct page *new_page)
4683 {
4684         __SetPageUptodate(new_page);
4685         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4686         hugepage_add_new_anon_rmap(new_page, vma, addr);
4687         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4688         ClearHPageRestoreReserve(new_page);
4689         SetHPageMigratable(new_page);
4690 }
4691
4692 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4693                             struct vm_area_struct *vma)
4694 {
4695         pte_t *src_pte, *dst_pte, entry, dst_entry;
4696         struct page *ptepage;
4697         unsigned long addr;
4698         bool cow = is_cow_mapping(vma->vm_flags);
4699         struct hstate *h = hstate_vma(vma);
4700         unsigned long sz = huge_page_size(h);
4701         unsigned long npages = pages_per_huge_page(h);
4702         struct address_space *mapping = vma->vm_file->f_mapping;
4703         struct mmu_notifier_range range;
4704         int ret = 0;
4705
4706         if (cow) {
4707                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4708                                         vma->vm_start,
4709                                         vma->vm_end);
4710                 mmu_notifier_invalidate_range_start(&range);
4711         } else {
4712                 /*
4713                  * For shared mappings i_mmap_rwsem must be held to call
4714                  * huge_pte_alloc, otherwise the returned ptep could go
4715                  * away if part of a shared pmd and another thread calls
4716                  * huge_pmd_unshare.
4717                  */
4718                 i_mmap_lock_read(mapping);
4719         }
4720
4721         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4722                 spinlock_t *src_ptl, *dst_ptl;
4723                 src_pte = huge_pte_offset(src, addr, sz);
4724                 if (!src_pte)
4725                         continue;
4726                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4727                 if (!dst_pte) {
4728                         ret = -ENOMEM;
4729                         break;
4730                 }
4731
4732                 /*
4733                  * If the pagetables are shared don't copy or take references.
4734                  * dst_pte == src_pte is the common case of src/dest sharing.
4735                  *
4736                  * However, src could have 'unshared' and dst shares with
4737                  * another vma.  If dst_pte !none, this implies sharing.
4738                  * Check here before taking page table lock, and once again
4739                  * after taking the lock below.
4740                  */
4741                 dst_entry = huge_ptep_get(dst_pte);
4742                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4743                         continue;
4744
4745                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4746                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4747                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4748                 entry = huge_ptep_get(src_pte);
4749                 dst_entry = huge_ptep_get(dst_pte);
4750 again:
4751                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4752                         /*
4753                          * Skip if src entry none.  Also, skip in the
4754                          * unlikely case dst entry !none as this implies
4755                          * sharing with another vma.
4756                          */
4757                         ;
4758                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4759                                     is_hugetlb_entry_hwpoisoned(entry))) {
4760                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4761
4762                         if (is_writable_migration_entry(swp_entry) && cow) {
4763                                 /*
4764                                  * COW mappings require pages in both
4765                                  * parent and child to be set to read.
4766                                  */
4767                                 swp_entry = make_readable_migration_entry(
4768                                                         swp_offset(swp_entry));
4769                                 entry = swp_entry_to_pte(swp_entry);
4770                                 set_huge_swap_pte_at(src, addr, src_pte,
4771                                                      entry, sz);
4772                         }
4773                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4774                 } else {
4775                         entry = huge_ptep_get(src_pte);
4776                         ptepage = pte_page(entry);
4777                         get_page(ptepage);
4778
4779                         /*
4780                          * This is a rare case where we see pinned hugetlb
4781                          * pages while they're prone to COW.  We need to do the
4782                          * COW earlier during fork.
4783                          *
4784                          * When pre-allocating the page or copying data, we
4785                          * need to be without the pgtable locks since we could
4786                          * sleep during the process.
4787                          */
4788                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4789                                 pte_t src_pte_old = entry;
4790                                 struct page *new;
4791
4792                                 spin_unlock(src_ptl);
4793                                 spin_unlock(dst_ptl);
4794                                 /* Do not use reserve as it's private owned */
4795                                 new = alloc_huge_page(vma, addr, 1);
4796                                 if (IS_ERR(new)) {
4797                                         put_page(ptepage);
4798                                         ret = PTR_ERR(new);
4799                                         break;
4800                                 }
4801                                 copy_user_huge_page(new, ptepage, addr, vma,
4802                                                     npages);
4803                                 put_page(ptepage);
4804
4805                                 /* Install the new huge page if src pte stable */
4806                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4807                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4808                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4809                                 entry = huge_ptep_get(src_pte);
4810                                 if (!pte_same(src_pte_old, entry)) {
4811                                         restore_reserve_on_error(h, vma, addr,
4812                                                                 new);
4813                                         put_page(new);
4814                                         /* dst_entry won't change as in child */
4815                                         goto again;
4816                                 }
4817                                 hugetlb_install_page(vma, dst_pte, addr, new);
4818                                 spin_unlock(src_ptl);
4819                                 spin_unlock(dst_ptl);
4820                                 continue;
4821                         }
4822
4823                         if (cow) {
4824                                 /*
4825                                  * No need to notify as we are downgrading page
4826                                  * table protection not changing it to point
4827                                  * to a new page.
4828                                  *
4829                                  * See Documentation/vm/mmu_notifier.rst
4830                                  */
4831                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4832                                 entry = huge_pte_wrprotect(entry);
4833                         }
4834
4835                         page_dup_rmap(ptepage, true);
4836                         set_huge_pte_at(dst, addr, dst_pte, entry);
4837                         hugetlb_count_add(npages, dst);
4838                 }
4839                 spin_unlock(src_ptl);
4840                 spin_unlock(dst_ptl);
4841         }
4842
4843         if (cow)
4844                 mmu_notifier_invalidate_range_end(&range);
4845         else
4846                 i_mmap_unlock_read(mapping);
4847
4848         return ret;
4849 }
4850
4851 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4852                           unsigned long new_addr, pte_t *src_pte)
4853 {
4854         struct hstate *h = hstate_vma(vma);
4855         struct mm_struct *mm = vma->vm_mm;
4856         pte_t *dst_pte, pte;
4857         spinlock_t *src_ptl, *dst_ptl;
4858
4859         dst_pte = huge_pte_offset(mm, new_addr, huge_page_size(h));
4860         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4861         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4862
4863         /*
4864          * We don't have to worry about the ordering of src and dst ptlocks
4865          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4866          */
4867         if (src_ptl != dst_ptl)
4868                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4869
4870         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4871         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4872
4873         if (src_ptl != dst_ptl)
4874                 spin_unlock(src_ptl);
4875         spin_unlock(dst_ptl);
4876 }
4877
4878 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4879                              struct vm_area_struct *new_vma,
4880                              unsigned long old_addr, unsigned long new_addr,
4881                              unsigned long len)
4882 {
4883         struct hstate *h = hstate_vma(vma);
4884         struct address_space *mapping = vma->vm_file->f_mapping;
4885         unsigned long sz = huge_page_size(h);
4886         struct mm_struct *mm = vma->vm_mm;
4887         unsigned long old_end = old_addr + len;
4888         unsigned long old_addr_copy;
4889         pte_t *src_pte, *dst_pte;
4890         struct mmu_notifier_range range;
4891
4892         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4893                                 old_end);
4894         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4895         mmu_notifier_invalidate_range_start(&range);
4896         /* Prevent race with file truncation */
4897         i_mmap_lock_write(mapping);
4898         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4899                 src_pte = huge_pte_offset(mm, old_addr, sz);
4900                 if (!src_pte)
4901                         continue;
4902                 if (huge_pte_none(huge_ptep_get(src_pte)))
4903                         continue;
4904
4905                 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4906                  * arg may be modified. Pass a copy instead to preserve the
4907                  * value in old_addr.
4908                  */
4909                 old_addr_copy = old_addr;
4910
4911                 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4912                         continue;
4913
4914                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4915                 if (!dst_pte)
4916                         break;
4917
4918                 move_huge_pte(vma, old_addr, new_addr, src_pte);
4919         }
4920         i_mmap_unlock_write(mapping);
4921         flush_tlb_range(vma, old_end - len, old_end);
4922         mmu_notifier_invalidate_range_end(&range);
4923
4924         return len + old_addr - old_end;
4925 }
4926
4927 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4928                                    unsigned long start, unsigned long end,
4929                                    struct page *ref_page)
4930 {
4931         struct mm_struct *mm = vma->vm_mm;
4932         unsigned long address;
4933         pte_t *ptep;
4934         pte_t pte;
4935         spinlock_t *ptl;
4936         struct page *page;
4937         struct hstate *h = hstate_vma(vma);
4938         unsigned long sz = huge_page_size(h);
4939         struct mmu_notifier_range range;
4940
4941         WARN_ON(!is_vm_hugetlb_page(vma));
4942         BUG_ON(start & ~huge_page_mask(h));
4943         BUG_ON(end & ~huge_page_mask(h));
4944
4945         /*
4946          * This is a hugetlb vma, all the pte entries should point
4947          * to huge page.
4948          */
4949         tlb_change_page_size(tlb, sz);
4950         tlb_start_vma(tlb, vma);
4951
4952         /*
4953          * If sharing possible, alert mmu notifiers of worst case.
4954          */
4955         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4956                                 end);
4957         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4958         mmu_notifier_invalidate_range_start(&range);
4959         address = start;
4960         for (; address < end; address += sz) {
4961                 ptep = huge_pte_offset(mm, address, sz);
4962                 if (!ptep)
4963                         continue;
4964
4965                 ptl = huge_pte_lock(h, mm, ptep);
4966                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4967                         spin_unlock(ptl);
4968                         /*
4969                          * We just unmapped a page of PMDs by clearing a PUD.
4970                          * The caller's TLB flush range should cover this area.
4971                          */
4972                         continue;
4973                 }
4974
4975                 pte = huge_ptep_get(ptep);
4976                 if (huge_pte_none(pte)) {
4977                         spin_unlock(ptl);
4978                         continue;
4979                 }
4980
4981                 /*
4982                  * Migrating hugepage or HWPoisoned hugepage is already
4983                  * unmapped and its refcount is dropped, so just clear pte here.
4984                  */
4985                 if (unlikely(!pte_present(pte))) {
4986                         huge_pte_clear(mm, address, ptep, sz);
4987                         spin_unlock(ptl);
4988                         continue;
4989                 }
4990
4991                 page = pte_page(pte);
4992                 /*
4993                  * If a reference page is supplied, it is because a specific
4994                  * page is being unmapped, not a range. Ensure the page we
4995                  * are about to unmap is the actual page of interest.
4996                  */
4997                 if (ref_page) {
4998                         if (page != ref_page) {
4999                                 spin_unlock(ptl);
5000                                 continue;
5001                         }
5002                         /*
5003                          * Mark the VMA as having unmapped its page so that
5004                          * future faults in this VMA will fail rather than
5005                          * looking like data was lost
5006                          */
5007                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5008                 }
5009
5010                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5011                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5012                 if (huge_pte_dirty(pte))
5013                         set_page_dirty(page);
5014
5015                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5016                 page_remove_rmap(page, true);
5017
5018                 spin_unlock(ptl);
5019                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5020                 /*
5021                  * Bail out after unmapping reference page if supplied
5022                  */
5023                 if (ref_page)
5024                         break;
5025         }
5026         mmu_notifier_invalidate_range_end(&range);
5027         tlb_end_vma(tlb, vma);
5028 }
5029
5030 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5031                           struct vm_area_struct *vma, unsigned long start,
5032                           unsigned long end, struct page *ref_page)
5033 {
5034         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
5035
5036         /*
5037          * Clear this flag so that x86's huge_pmd_share page_table_shareable
5038          * test will fail on a vma being torn down, and not grab a page table
5039          * on its way out.  We're lucky that the flag has such an appropriate
5040          * name, and can in fact be safely cleared here. We could clear it
5041          * before the __unmap_hugepage_range above, but all that's necessary
5042          * is to clear it before releasing the i_mmap_rwsem. This works
5043          * because in the context this is called, the VMA is about to be
5044          * destroyed and the i_mmap_rwsem is held.
5045          */
5046         vma->vm_flags &= ~VM_MAYSHARE;
5047 }
5048
5049 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5050                           unsigned long end, struct page *ref_page)
5051 {
5052         struct mmu_gather tlb;
5053
5054         tlb_gather_mmu(&tlb, vma->vm_mm);
5055         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5056         tlb_finish_mmu(&tlb);
5057 }
5058
5059 /*
5060  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5061  * mapping it owns the reserve page for. The intention is to unmap the page
5062  * from other VMAs and let the children be SIGKILLed if they are faulting the
5063  * same region.
5064  */
5065 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5066                               struct page *page, unsigned long address)
5067 {
5068         struct hstate *h = hstate_vma(vma);
5069         struct vm_area_struct *iter_vma;
5070         struct address_space *mapping;
5071         pgoff_t pgoff;
5072
5073         /*
5074          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5075          * from page cache lookup which is in HPAGE_SIZE units.
5076          */
5077         address = address & huge_page_mask(h);
5078         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5079                         vma->vm_pgoff;
5080         mapping = vma->vm_file->f_mapping;
5081
5082         /*
5083          * Take the mapping lock for the duration of the table walk. As
5084          * this mapping should be shared between all the VMAs,
5085          * __unmap_hugepage_range() is called as the lock is already held
5086          */
5087         i_mmap_lock_write(mapping);
5088         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5089                 /* Do not unmap the current VMA */
5090                 if (iter_vma == vma)
5091                         continue;
5092
5093                 /*
5094                  * Shared VMAs have their own reserves and do not affect
5095                  * MAP_PRIVATE accounting but it is possible that a shared
5096                  * VMA is using the same page so check and skip such VMAs.
5097                  */
5098                 if (iter_vma->vm_flags & VM_MAYSHARE)
5099                         continue;
5100
5101                 /*
5102                  * Unmap the page from other VMAs without their own reserves.
5103                  * They get marked to be SIGKILLed if they fault in these
5104                  * areas. This is because a future no-page fault on this VMA
5105                  * could insert a zeroed page instead of the data existing
5106                  * from the time of fork. This would look like data corruption
5107                  */
5108                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5109                         unmap_hugepage_range(iter_vma, address,
5110                                              address + huge_page_size(h), page);
5111         }
5112         i_mmap_unlock_write(mapping);
5113 }
5114
5115 /*
5116  * Hugetlb_cow() should be called with page lock of the original hugepage held.
5117  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5118  * cannot race with other handlers or page migration.
5119  * Keep the pte_same checks anyway to make transition from the mutex easier.
5120  */
5121 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5122                        unsigned long address, pte_t *ptep,
5123                        struct page *pagecache_page, spinlock_t *ptl)
5124 {
5125         pte_t pte;
5126         struct hstate *h = hstate_vma(vma);
5127         struct page *old_page, *new_page;
5128         int outside_reserve = 0;
5129         vm_fault_t ret = 0;
5130         unsigned long haddr = address & huge_page_mask(h);
5131         struct mmu_notifier_range range;
5132
5133         pte = huge_ptep_get(ptep);
5134         old_page = pte_page(pte);
5135
5136 retry_avoidcopy:
5137         /* If no-one else is actually using this page, avoid the copy
5138          * and just make the page writable */
5139         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5140                 page_move_anon_rmap(old_page, vma);
5141                 set_huge_ptep_writable(vma, haddr, ptep);
5142                 return 0;
5143         }
5144
5145         /*
5146          * If the process that created a MAP_PRIVATE mapping is about to
5147          * perform a COW due to a shared page count, attempt to satisfy
5148          * the allocation without using the existing reserves. The pagecache
5149          * page is used to determine if the reserve at this address was
5150          * consumed or not. If reserves were used, a partial faulted mapping
5151          * at the time of fork() could consume its reserves on COW instead
5152          * of the full address range.
5153          */
5154         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5155                         old_page != pagecache_page)
5156                 outside_reserve = 1;
5157
5158         get_page(old_page);
5159
5160         /*
5161          * Drop page table lock as buddy allocator may be called. It will
5162          * be acquired again before returning to the caller, as expected.
5163          */
5164         spin_unlock(ptl);
5165         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5166
5167         if (IS_ERR(new_page)) {
5168                 /*
5169                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5170                  * it is due to references held by a child and an insufficient
5171                  * huge page pool. To guarantee the original mappers
5172                  * reliability, unmap the page from child processes. The child
5173                  * may get SIGKILLed if it later faults.
5174                  */
5175                 if (outside_reserve) {
5176                         struct address_space *mapping = vma->vm_file->f_mapping;
5177                         pgoff_t idx;
5178                         u32 hash;
5179
5180                         put_page(old_page);
5181                         BUG_ON(huge_pte_none(pte));
5182                         /*
5183                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5184                          * unmapping.  unmapping needs to hold i_mmap_rwsem
5185                          * in write mode.  Dropping i_mmap_rwsem in read mode
5186                          * here is OK as COW mappings do not interact with
5187                          * PMD sharing.
5188                          *
5189                          * Reacquire both after unmap operation.
5190                          */
5191                         idx = vma_hugecache_offset(h, vma, haddr);
5192                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5193                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5194                         i_mmap_unlock_read(mapping);
5195
5196                         unmap_ref_private(mm, vma, old_page, haddr);
5197
5198                         i_mmap_lock_read(mapping);
5199                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5200                         spin_lock(ptl);
5201                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5202                         if (likely(ptep &&
5203                                    pte_same(huge_ptep_get(ptep), pte)))
5204                                 goto retry_avoidcopy;
5205                         /*
5206                          * race occurs while re-acquiring page table
5207                          * lock, and our job is done.
5208                          */
5209                         return 0;
5210                 }
5211
5212                 ret = vmf_error(PTR_ERR(new_page));
5213                 goto out_release_old;
5214         }
5215
5216         /*
5217          * When the original hugepage is shared one, it does not have
5218          * anon_vma prepared.
5219          */
5220         if (unlikely(anon_vma_prepare(vma))) {
5221                 ret = VM_FAULT_OOM;
5222                 goto out_release_all;
5223         }
5224
5225         copy_user_huge_page(new_page, old_page, address, vma,
5226                             pages_per_huge_page(h));
5227         __SetPageUptodate(new_page);
5228
5229         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5230                                 haddr + huge_page_size(h));
5231         mmu_notifier_invalidate_range_start(&range);
5232
5233         /*
5234          * Retake the page table lock to check for racing updates
5235          * before the page tables are altered
5236          */
5237         spin_lock(ptl);
5238         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5239         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5240                 ClearHPageRestoreReserve(new_page);
5241
5242                 /* Break COW */
5243                 huge_ptep_clear_flush(vma, haddr, ptep);
5244                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5245                 set_huge_pte_at(mm, haddr, ptep,
5246                                 make_huge_pte(vma, new_page, 1));
5247                 page_remove_rmap(old_page, true);
5248                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5249                 SetHPageMigratable(new_page);
5250                 /* Make the old page be freed below */
5251                 new_page = old_page;
5252         }
5253         spin_unlock(ptl);
5254         mmu_notifier_invalidate_range_end(&range);
5255 out_release_all:
5256         /* No restore in case of successful pagetable update (Break COW) */
5257         if (new_page != old_page)
5258                 restore_reserve_on_error(h, vma, haddr, new_page);
5259         put_page(new_page);
5260 out_release_old:
5261         put_page(old_page);
5262
5263         spin_lock(ptl); /* Caller expects lock to be held */
5264         return ret;
5265 }
5266
5267 /* Return the pagecache page at a given address within a VMA */
5268 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5269                         struct vm_area_struct *vma, unsigned long address)
5270 {
5271         struct address_space *mapping;
5272         pgoff_t idx;
5273
5274         mapping = vma->vm_file->f_mapping;
5275         idx = vma_hugecache_offset(h, vma, address);
5276
5277         return find_lock_page(mapping, idx);
5278 }
5279
5280 /*
5281  * Return whether there is a pagecache page to back given address within VMA.
5282  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5283  */
5284 static bool hugetlbfs_pagecache_present(struct hstate *h,
5285                         struct vm_area_struct *vma, unsigned long address)
5286 {
5287         struct address_space *mapping;
5288         pgoff_t idx;
5289         struct page *page;
5290
5291         mapping = vma->vm_file->f_mapping;
5292         idx = vma_hugecache_offset(h, vma, address);
5293
5294         page = find_get_page(mapping, idx);
5295         if (page)
5296                 put_page(page);
5297         return page != NULL;
5298 }
5299
5300 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5301                            pgoff_t idx)
5302 {
5303         struct inode *inode = mapping->host;
5304         struct hstate *h = hstate_inode(inode);
5305         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5306
5307         if (err)
5308                 return err;
5309         ClearHPageRestoreReserve(page);
5310
5311         /*
5312          * set page dirty so that it will not be removed from cache/file
5313          * by non-hugetlbfs specific code paths.
5314          */
5315         set_page_dirty(page);
5316
5317         spin_lock(&inode->i_lock);
5318         inode->i_blocks += blocks_per_huge_page(h);
5319         spin_unlock(&inode->i_lock);
5320         return 0;
5321 }
5322
5323 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5324                                                   struct address_space *mapping,
5325                                                   pgoff_t idx,
5326                                                   unsigned int flags,
5327                                                   unsigned long haddr,
5328                                                   unsigned long reason)
5329 {
5330         vm_fault_t ret;
5331         u32 hash;
5332         struct vm_fault vmf = {
5333                 .vma = vma,
5334                 .address = haddr,
5335                 .flags = flags,
5336
5337                 /*
5338                  * Hard to debug if it ends up being
5339                  * used by a callee that assumes
5340                  * something about the other
5341                  * uninitialized fields... same as in
5342                  * memory.c
5343                  */
5344         };
5345
5346         /*
5347          * hugetlb_fault_mutex and i_mmap_rwsem must be
5348          * dropped before handling userfault.  Reacquire
5349          * after handling fault to make calling code simpler.
5350          */
5351         hash = hugetlb_fault_mutex_hash(mapping, idx);
5352         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5353         i_mmap_unlock_read(mapping);
5354         ret = handle_userfault(&vmf, reason);
5355         i_mmap_lock_read(mapping);
5356         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5357
5358         return ret;
5359 }
5360
5361 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5362                         struct vm_area_struct *vma,
5363                         struct address_space *mapping, pgoff_t idx,
5364                         unsigned long address, pte_t *ptep, unsigned int flags)
5365 {
5366         struct hstate *h = hstate_vma(vma);
5367         vm_fault_t ret = VM_FAULT_SIGBUS;
5368         int anon_rmap = 0;
5369         unsigned long size;
5370         struct page *page;
5371         pte_t new_pte;
5372         spinlock_t *ptl;
5373         unsigned long haddr = address & huge_page_mask(h);
5374         bool new_page, new_pagecache_page = false;
5375
5376         /*
5377          * Currently, we are forced to kill the process in the event the
5378          * original mapper has unmapped pages from the child due to a failed
5379          * COW. Warn that such a situation has occurred as it may not be obvious
5380          */
5381         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5382                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5383                            current->pid);
5384                 return ret;
5385         }
5386
5387         /*
5388          * We can not race with truncation due to holding i_mmap_rwsem.
5389          * i_size is modified when holding i_mmap_rwsem, so check here
5390          * once for faults beyond end of file.
5391          */
5392         size = i_size_read(mapping->host) >> huge_page_shift(h);
5393         if (idx >= size)
5394                 goto out;
5395
5396 retry:
5397         new_page = false;
5398         page = find_lock_page(mapping, idx);
5399         if (!page) {
5400                 /* Check for page in userfault range */
5401                 if (userfaultfd_missing(vma)) {
5402                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5403                                                        flags, haddr,
5404                                                        VM_UFFD_MISSING);
5405                         goto out;
5406                 }
5407
5408                 page = alloc_huge_page(vma, haddr, 0);
5409                 if (IS_ERR(page)) {
5410                         /*
5411                          * Returning error will result in faulting task being
5412                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5413                          * tasks from racing to fault in the same page which
5414                          * could result in false unable to allocate errors.
5415                          * Page migration does not take the fault mutex, but
5416                          * does a clear then write of pte's under page table
5417                          * lock.  Page fault code could race with migration,
5418                          * notice the clear pte and try to allocate a page
5419                          * here.  Before returning error, get ptl and make
5420                          * sure there really is no pte entry.
5421                          */
5422                         ptl = huge_pte_lock(h, mm, ptep);
5423                         ret = 0;
5424                         if (huge_pte_none(huge_ptep_get(ptep)))
5425                                 ret = vmf_error(PTR_ERR(page));
5426                         spin_unlock(ptl);
5427                         goto out;
5428                 }
5429                 clear_huge_page(page, address, pages_per_huge_page(h));
5430                 __SetPageUptodate(page);
5431                 new_page = true;
5432
5433                 if (vma->vm_flags & VM_MAYSHARE) {
5434                         int err = huge_add_to_page_cache(page, mapping, idx);
5435                         if (err) {
5436                                 put_page(page);
5437                                 if (err == -EEXIST)
5438                                         goto retry;
5439                                 goto out;
5440                         }
5441                         new_pagecache_page = true;
5442                 } else {
5443                         lock_page(page);
5444                         if (unlikely(anon_vma_prepare(vma))) {
5445                                 ret = VM_FAULT_OOM;
5446                                 goto backout_unlocked;
5447                         }
5448                         anon_rmap = 1;
5449                 }
5450         } else {
5451                 /*
5452                  * If memory error occurs between mmap() and fault, some process
5453                  * don't have hwpoisoned swap entry for errored virtual address.
5454                  * So we need to block hugepage fault by PG_hwpoison bit check.
5455                  */
5456                 if (unlikely(PageHWPoison(page))) {
5457                         ret = VM_FAULT_HWPOISON_LARGE |
5458                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5459                         goto backout_unlocked;
5460                 }
5461
5462                 /* Check for page in userfault range. */
5463                 if (userfaultfd_minor(vma)) {
5464                         unlock_page(page);
5465                         put_page(page);
5466                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5467                                                        flags, haddr,
5468                                                        VM_UFFD_MINOR);
5469                         goto out;
5470                 }
5471         }
5472
5473         /*
5474          * If we are going to COW a private mapping later, we examine the
5475          * pending reservations for this page now. This will ensure that
5476          * any allocations necessary to record that reservation occur outside
5477          * the spinlock.
5478          */
5479         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5480                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5481                         ret = VM_FAULT_OOM;
5482                         goto backout_unlocked;
5483                 }
5484                 /* Just decrements count, does not deallocate */
5485                 vma_end_reservation(h, vma, haddr);
5486         }
5487
5488         ptl = huge_pte_lock(h, mm, ptep);
5489         ret = 0;
5490         if (!huge_pte_none(huge_ptep_get(ptep)))
5491                 goto backout;
5492
5493         if (anon_rmap) {
5494                 ClearHPageRestoreReserve(page);
5495                 hugepage_add_new_anon_rmap(page, vma, haddr);
5496         } else
5497                 page_dup_rmap(page, true);
5498         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5499                                 && (vma->vm_flags & VM_SHARED)));
5500         set_huge_pte_at(mm, haddr, ptep, new_pte);
5501
5502         hugetlb_count_add(pages_per_huge_page(h), mm);
5503         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5504                 /* Optimization, do the COW without a second fault */
5505                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5506         }
5507
5508         spin_unlock(ptl);
5509
5510         /*
5511          * Only set HPageMigratable in newly allocated pages.  Existing pages
5512          * found in the pagecache may not have HPageMigratableset if they have
5513          * been isolated for migration.
5514          */
5515         if (new_page)
5516                 SetHPageMigratable(page);
5517
5518         unlock_page(page);
5519 out:
5520         return ret;
5521
5522 backout:
5523         spin_unlock(ptl);
5524 backout_unlocked:
5525         unlock_page(page);
5526         /* restore reserve for newly allocated pages not in page cache */
5527         if (new_page && !new_pagecache_page)
5528                 restore_reserve_on_error(h, vma, haddr, page);
5529         put_page(page);
5530         goto out;
5531 }
5532
5533 #ifdef CONFIG_SMP
5534 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5535 {
5536         unsigned long key[2];
5537         u32 hash;
5538
5539         key[0] = (unsigned long) mapping;
5540         key[1] = idx;
5541
5542         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5543
5544         return hash & (num_fault_mutexes - 1);
5545 }
5546 #else
5547 /*
5548  * For uniprocessor systems we always use a single mutex, so just
5549  * return 0 and avoid the hashing overhead.
5550  */
5551 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5552 {
5553         return 0;
5554 }
5555 #endif
5556
5557 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5558                         unsigned long address, unsigned int flags)
5559 {
5560         pte_t *ptep, entry;
5561         spinlock_t *ptl;
5562         vm_fault_t ret;
5563         u32 hash;
5564         pgoff_t idx;
5565         struct page *page = NULL;
5566         struct page *pagecache_page = NULL;
5567         struct hstate *h = hstate_vma(vma);
5568         struct address_space *mapping;
5569         int need_wait_lock = 0;
5570         unsigned long haddr = address & huge_page_mask(h);
5571
5572         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5573         if (ptep) {
5574                 /*
5575                  * Since we hold no locks, ptep could be stale.  That is
5576                  * OK as we are only making decisions based on content and
5577                  * not actually modifying content here.
5578                  */
5579                 entry = huge_ptep_get(ptep);
5580                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5581                         migration_entry_wait_huge(vma, mm, ptep);
5582                         return 0;
5583                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5584                         return VM_FAULT_HWPOISON_LARGE |
5585                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5586         }
5587
5588         /*
5589          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5590          * until finished with ptep.  This serves two purposes:
5591          * 1) It prevents huge_pmd_unshare from being called elsewhere
5592          *    and making the ptep no longer valid.
5593          * 2) It synchronizes us with i_size modifications during truncation.
5594          *
5595          * ptep could have already be assigned via huge_pte_offset.  That
5596          * is OK, as huge_pte_alloc will return the same value unless
5597          * something has changed.
5598          */
5599         mapping = vma->vm_file->f_mapping;
5600         i_mmap_lock_read(mapping);
5601         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5602         if (!ptep) {
5603                 i_mmap_unlock_read(mapping);
5604                 return VM_FAULT_OOM;
5605         }
5606
5607         /*
5608          * Serialize hugepage allocation and instantiation, so that we don't
5609          * get spurious allocation failures if two CPUs race to instantiate
5610          * the same page in the page cache.
5611          */
5612         idx = vma_hugecache_offset(h, vma, haddr);
5613         hash = hugetlb_fault_mutex_hash(mapping, idx);
5614         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5615
5616         entry = huge_ptep_get(ptep);
5617         if (huge_pte_none(entry)) {
5618                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5619                 goto out_mutex;
5620         }
5621
5622         ret = 0;
5623
5624         /*
5625          * entry could be a migration/hwpoison entry at this point, so this
5626          * check prevents the kernel from going below assuming that we have
5627          * an active hugepage in pagecache. This goto expects the 2nd page
5628          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5629          * properly handle it.
5630          */
5631         if (!pte_present(entry))
5632                 goto out_mutex;
5633
5634         /*
5635          * If we are going to COW the mapping later, we examine the pending
5636          * reservations for this page now. This will ensure that any
5637          * allocations necessary to record that reservation occur outside the
5638          * spinlock. For private mappings, we also lookup the pagecache
5639          * page now as it is used to determine if a reservation has been
5640          * consumed.
5641          */
5642         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5643                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5644                         ret = VM_FAULT_OOM;
5645                         goto out_mutex;
5646                 }
5647                 /* Just decrements count, does not deallocate */
5648                 vma_end_reservation(h, vma, haddr);
5649
5650                 if (!(vma->vm_flags & VM_MAYSHARE))
5651                         pagecache_page = hugetlbfs_pagecache_page(h,
5652                                                                 vma, haddr);
5653         }
5654
5655         ptl = huge_pte_lock(h, mm, ptep);
5656
5657         /* Check for a racing update before calling hugetlb_cow */
5658         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5659                 goto out_ptl;
5660
5661         /*
5662          * hugetlb_cow() requires page locks of pte_page(entry) and
5663          * pagecache_page, so here we need take the former one
5664          * when page != pagecache_page or !pagecache_page.
5665          */
5666         page = pte_page(entry);
5667         if (page != pagecache_page)
5668                 if (!trylock_page(page)) {
5669                         need_wait_lock = 1;
5670                         goto out_ptl;
5671                 }
5672
5673         get_page(page);
5674
5675         if (flags & FAULT_FLAG_WRITE) {
5676                 if (!huge_pte_write(entry)) {
5677                         ret = hugetlb_cow(mm, vma, address, ptep,
5678                                           pagecache_page, ptl);
5679                         goto out_put_page;
5680                 }
5681                 entry = huge_pte_mkdirty(entry);
5682         }
5683         entry = pte_mkyoung(entry);
5684         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5685                                                 flags & FAULT_FLAG_WRITE))
5686                 update_mmu_cache(vma, haddr, ptep);
5687 out_put_page:
5688         if (page != pagecache_page)
5689                 unlock_page(page);
5690         put_page(page);
5691 out_ptl:
5692         spin_unlock(ptl);
5693
5694         if (pagecache_page) {
5695                 unlock_page(pagecache_page);
5696                 put_page(pagecache_page);
5697         }
5698 out_mutex:
5699         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5700         i_mmap_unlock_read(mapping);
5701         /*
5702          * Generally it's safe to hold refcount during waiting page lock. But
5703          * here we just wait to defer the next page fault to avoid busy loop and
5704          * the page is not used after unlocked before returning from the current
5705          * page fault. So we are safe from accessing freed page, even if we wait
5706          * here without taking refcount.
5707          */
5708         if (need_wait_lock)
5709                 wait_on_page_locked(page);
5710         return ret;
5711 }
5712
5713 #ifdef CONFIG_USERFAULTFD
5714 /*
5715  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5716  * modifications for huge pages.
5717  */
5718 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5719                             pte_t *dst_pte,
5720                             struct vm_area_struct *dst_vma,
5721                             unsigned long dst_addr,
5722                             unsigned long src_addr,
5723                             enum mcopy_atomic_mode mode,
5724                             struct page **pagep)
5725 {
5726         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5727         struct hstate *h = hstate_vma(dst_vma);
5728         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5729         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5730         unsigned long size;
5731         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5732         pte_t _dst_pte;
5733         spinlock_t *ptl;
5734         int ret = -ENOMEM;
5735         struct page *page;
5736         int writable;
5737         bool new_pagecache_page = false;
5738
5739         if (is_continue) {
5740                 ret = -EFAULT;
5741                 page = find_lock_page(mapping, idx);
5742                 if (!page)
5743                         goto out;
5744         } else if (!*pagep) {
5745                 /* If a page already exists, then it's UFFDIO_COPY for
5746                  * a non-missing case. Return -EEXIST.
5747                  */
5748                 if (vm_shared &&
5749                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5750                         ret = -EEXIST;
5751                         goto out;
5752                 }
5753
5754                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5755                 if (IS_ERR(page)) {
5756                         ret = -ENOMEM;
5757                         goto out;
5758                 }
5759
5760                 ret = copy_huge_page_from_user(page,
5761                                                 (const void __user *) src_addr,
5762                                                 pages_per_huge_page(h), false);
5763
5764                 /* fallback to copy_from_user outside mmap_lock */
5765                 if (unlikely(ret)) {
5766                         ret = -ENOENT;
5767                         /* Free the allocated page which may have
5768                          * consumed a reservation.
5769                          */
5770                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5771                         put_page(page);
5772
5773                         /* Allocate a temporary page to hold the copied
5774                          * contents.
5775                          */
5776                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5777                         if (!page) {
5778                                 ret = -ENOMEM;
5779                                 goto out;
5780                         }
5781                         *pagep = page;
5782                         /* Set the outparam pagep and return to the caller to
5783                          * copy the contents outside the lock. Don't free the
5784                          * page.
5785                          */
5786                         goto out;
5787                 }
5788         } else {
5789                 if (vm_shared &&
5790                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5791                         put_page(*pagep);
5792                         ret = -EEXIST;
5793                         *pagep = NULL;
5794                         goto out;
5795                 }
5796
5797                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5798                 if (IS_ERR(page)) {
5799                         ret = -ENOMEM;
5800                         *pagep = NULL;
5801                         goto out;
5802                 }
5803                 folio_copy(page_folio(page), page_folio(*pagep));
5804                 put_page(*pagep);
5805                 *pagep = NULL;
5806         }
5807
5808         /*
5809          * The memory barrier inside __SetPageUptodate makes sure that
5810          * preceding stores to the page contents become visible before
5811          * the set_pte_at() write.
5812          */
5813         __SetPageUptodate(page);
5814
5815         /* Add shared, newly allocated pages to the page cache. */
5816         if (vm_shared && !is_continue) {
5817                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5818                 ret = -EFAULT;
5819                 if (idx >= size)
5820                         goto out_release_nounlock;
5821
5822                 /*
5823                  * Serialization between remove_inode_hugepages() and
5824                  * huge_add_to_page_cache() below happens through the
5825                  * hugetlb_fault_mutex_table that here must be hold by
5826                  * the caller.
5827                  */
5828                 ret = huge_add_to_page_cache(page, mapping, idx);
5829                 if (ret)
5830                         goto out_release_nounlock;
5831                 new_pagecache_page = true;
5832         }
5833
5834         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5835         spin_lock(ptl);
5836
5837         /*
5838          * Recheck the i_size after holding PT lock to make sure not
5839          * to leave any page mapped (as page_mapped()) beyond the end
5840          * of the i_size (remove_inode_hugepages() is strict about
5841          * enforcing that). If we bail out here, we'll also leave a
5842          * page in the radix tree in the vm_shared case beyond the end
5843          * of the i_size, but remove_inode_hugepages() will take care
5844          * of it as soon as we drop the hugetlb_fault_mutex_table.
5845          */
5846         size = i_size_read(mapping->host) >> huge_page_shift(h);
5847         ret = -EFAULT;
5848         if (idx >= size)
5849                 goto out_release_unlock;
5850
5851         ret = -EEXIST;
5852         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5853                 goto out_release_unlock;
5854
5855         if (vm_shared) {
5856                 page_dup_rmap(page, true);
5857         } else {
5858                 ClearHPageRestoreReserve(page);
5859                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5860         }
5861
5862         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5863         if (is_continue && !vm_shared)
5864                 writable = 0;
5865         else
5866                 writable = dst_vma->vm_flags & VM_WRITE;
5867
5868         _dst_pte = make_huge_pte(dst_vma, page, writable);
5869         if (writable)
5870                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5871         _dst_pte = pte_mkyoung(_dst_pte);
5872
5873         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5874
5875         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5876                                         dst_vma->vm_flags & VM_WRITE);
5877         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5878
5879         /* No need to invalidate - it was non-present before */
5880         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5881
5882         spin_unlock(ptl);
5883         if (!is_continue)
5884                 SetHPageMigratable(page);
5885         if (vm_shared || is_continue)
5886                 unlock_page(page);
5887         ret = 0;
5888 out:
5889         return ret;
5890 out_release_unlock:
5891         spin_unlock(ptl);
5892         if (vm_shared || is_continue)
5893                 unlock_page(page);
5894 out_release_nounlock:
5895         if (!new_pagecache_page)
5896                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5897         put_page(page);
5898         goto out;
5899 }
5900 #endif /* CONFIG_USERFAULTFD */
5901
5902 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5903                                  int refs, struct page **pages,
5904                                  struct vm_area_struct **vmas)
5905 {
5906         int nr;
5907
5908         for (nr = 0; nr < refs; nr++) {
5909                 if (likely(pages))
5910                         pages[nr] = mem_map_offset(page, nr);
5911                 if (vmas)
5912                         vmas[nr] = vma;
5913         }
5914 }
5915
5916 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5917                          struct page **pages, struct vm_area_struct **vmas,
5918                          unsigned long *position, unsigned long *nr_pages,
5919                          long i, unsigned int flags, int *locked)
5920 {
5921         unsigned long pfn_offset;
5922         unsigned long vaddr = *position;
5923         unsigned long remainder = *nr_pages;
5924         struct hstate *h = hstate_vma(vma);
5925         int err = -EFAULT, refs;
5926
5927         while (vaddr < vma->vm_end && remainder) {
5928                 pte_t *pte;
5929                 spinlock_t *ptl = NULL;
5930                 int absent;
5931                 struct page *page;
5932
5933                 /*
5934                  * If we have a pending SIGKILL, don't keep faulting pages and
5935                  * potentially allocating memory.
5936                  */
5937                 if (fatal_signal_pending(current)) {
5938                         remainder = 0;
5939                         break;
5940                 }
5941
5942                 /*
5943                  * Some archs (sparc64, sh*) have multiple pte_ts to
5944                  * each hugepage.  We have to make sure we get the
5945                  * first, for the page indexing below to work.
5946                  *
5947                  * Note that page table lock is not held when pte is null.
5948                  */
5949                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5950                                       huge_page_size(h));
5951                 if (pte)
5952                         ptl = huge_pte_lock(h, mm, pte);
5953                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5954
5955                 /*
5956                  * When coredumping, it suits get_dump_page if we just return
5957                  * an error where there's an empty slot with no huge pagecache
5958                  * to back it.  This way, we avoid allocating a hugepage, and
5959                  * the sparse dumpfile avoids allocating disk blocks, but its
5960                  * huge holes still show up with zeroes where they need to be.
5961                  */
5962                 if (absent && (flags & FOLL_DUMP) &&
5963                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5964                         if (pte)
5965                                 spin_unlock(ptl);
5966                         remainder = 0;
5967                         break;
5968                 }
5969
5970                 /*
5971                  * We need call hugetlb_fault for both hugepages under migration
5972                  * (in which case hugetlb_fault waits for the migration,) and
5973                  * hwpoisoned hugepages (in which case we need to prevent the
5974                  * caller from accessing to them.) In order to do this, we use
5975                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5976                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5977                  * both cases, and because we can't follow correct pages
5978                  * directly from any kind of swap entries.
5979                  */
5980                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5981                     ((flags & FOLL_WRITE) &&
5982                       !huge_pte_write(huge_ptep_get(pte)))) {
5983                         vm_fault_t ret;
5984                         unsigned int fault_flags = 0;
5985
5986                         if (pte)
5987                                 spin_unlock(ptl);
5988                         if (flags & FOLL_WRITE)
5989                                 fault_flags |= FAULT_FLAG_WRITE;
5990                         if (locked)
5991                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5992                                         FAULT_FLAG_KILLABLE;
5993                         if (flags & FOLL_NOWAIT)
5994                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5995                                         FAULT_FLAG_RETRY_NOWAIT;
5996                         if (flags & FOLL_TRIED) {
5997                                 /*
5998                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5999                                  * FAULT_FLAG_TRIED can co-exist
6000                                  */
6001                                 fault_flags |= FAULT_FLAG_TRIED;
6002                         }
6003                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6004                         if (ret & VM_FAULT_ERROR) {
6005                                 err = vm_fault_to_errno(ret, flags);
6006                                 remainder = 0;
6007                                 break;
6008                         }
6009                         if (ret & VM_FAULT_RETRY) {
6010                                 if (locked &&
6011                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6012                                         *locked = 0;
6013                                 *nr_pages = 0;
6014                                 /*
6015                                  * VM_FAULT_RETRY must not return an
6016                                  * error, it will return zero
6017                                  * instead.
6018                                  *
6019                                  * No need to update "position" as the
6020                                  * caller will not check it after
6021                                  * *nr_pages is set to 0.
6022                                  */
6023                                 return i;
6024                         }
6025                         continue;
6026                 }
6027
6028                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6029                 page = pte_page(huge_ptep_get(pte));
6030
6031                 /*
6032                  * If subpage information not requested, update counters
6033                  * and skip the same_page loop below.
6034                  */
6035                 if (!pages && !vmas && !pfn_offset &&
6036                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6037                     (remainder >= pages_per_huge_page(h))) {
6038                         vaddr += huge_page_size(h);
6039                         remainder -= pages_per_huge_page(h);
6040                         i += pages_per_huge_page(h);
6041                         spin_unlock(ptl);
6042                         continue;
6043                 }
6044
6045                 /* vaddr may not be aligned to PAGE_SIZE */
6046                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6047                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6048
6049                 if (pages || vmas)
6050                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
6051                                              vma, refs,
6052                                              likely(pages) ? pages + i : NULL,
6053                                              vmas ? vmas + i : NULL);
6054
6055                 if (pages) {
6056                         /*
6057                          * try_grab_compound_head() should always succeed here,
6058                          * because: a) we hold the ptl lock, and b) we've just
6059                          * checked that the huge page is present in the page
6060                          * tables. If the huge page is present, then the tail
6061                          * pages must also be present. The ptl prevents the
6062                          * head page and tail pages from being rearranged in
6063                          * any way. So this page must be available at this
6064                          * point, unless the page refcount overflowed:
6065                          */
6066                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
6067                                                                  refs,
6068                                                                  flags))) {
6069                                 spin_unlock(ptl);
6070                                 remainder = 0;
6071                                 err = -ENOMEM;
6072                                 break;
6073                         }
6074                 }
6075
6076                 vaddr += (refs << PAGE_SHIFT);
6077                 remainder -= refs;
6078                 i += refs;
6079
6080                 spin_unlock(ptl);
6081         }
6082         *nr_pages = remainder;
6083         /*
6084          * setting position is actually required only if remainder is
6085          * not zero but it's faster not to add a "if (remainder)"
6086          * branch.
6087          */
6088         *position = vaddr;
6089
6090         return i ? i : err;
6091 }
6092
6093 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6094                 unsigned long address, unsigned long end, pgprot_t newprot)
6095 {
6096         struct mm_struct *mm = vma->vm_mm;
6097         unsigned long start = address;
6098         pte_t *ptep;
6099         pte_t pte;
6100         struct hstate *h = hstate_vma(vma);
6101         unsigned long pages = 0;
6102         bool shared_pmd = false;
6103         struct mmu_notifier_range range;
6104
6105         /*
6106          * In the case of shared PMDs, the area to flush could be beyond
6107          * start/end.  Set range.start/range.end to cover the maximum possible
6108          * range if PMD sharing is possible.
6109          */
6110         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6111                                 0, vma, mm, start, end);
6112         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6113
6114         BUG_ON(address >= end);
6115         flush_cache_range(vma, range.start, range.end);
6116
6117         mmu_notifier_invalidate_range_start(&range);
6118         i_mmap_lock_write(vma->vm_file->f_mapping);
6119         for (; address < end; address += huge_page_size(h)) {
6120                 spinlock_t *ptl;
6121                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
6122                 if (!ptep)
6123                         continue;
6124                 ptl = huge_pte_lock(h, mm, ptep);
6125                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6126                         pages++;
6127                         spin_unlock(ptl);
6128                         shared_pmd = true;
6129                         continue;
6130                 }
6131                 pte = huge_ptep_get(ptep);
6132                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6133                         spin_unlock(ptl);
6134                         continue;
6135                 }
6136                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6137                         swp_entry_t entry = pte_to_swp_entry(pte);
6138
6139                         if (is_writable_migration_entry(entry)) {
6140                                 pte_t newpte;
6141
6142                                 entry = make_readable_migration_entry(
6143                                                         swp_offset(entry));
6144                                 newpte = swp_entry_to_pte(entry);
6145                                 set_huge_swap_pte_at(mm, address, ptep,
6146                                                      newpte, huge_page_size(h));
6147                                 pages++;
6148                         }
6149                         spin_unlock(ptl);
6150                         continue;
6151                 }
6152                 if (!huge_pte_none(pte)) {
6153                         pte_t old_pte;
6154                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6155
6156                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6157                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
6158                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6159                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6160                         pages++;
6161                 }
6162                 spin_unlock(ptl);
6163         }
6164         /*
6165          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6166          * may have cleared our pud entry and done put_page on the page table:
6167          * once we release i_mmap_rwsem, another task can do the final put_page
6168          * and that page table be reused and filled with junk.  If we actually
6169          * did unshare a page of pmds, flush the range corresponding to the pud.
6170          */
6171         if (shared_pmd)
6172                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6173         else
6174                 flush_hugetlb_tlb_range(vma, start, end);
6175         /*
6176          * No need to call mmu_notifier_invalidate_range() we are downgrading
6177          * page table protection not changing it to point to a new page.
6178          *
6179          * See Documentation/vm/mmu_notifier.rst
6180          */
6181         i_mmap_unlock_write(vma->vm_file->f_mapping);
6182         mmu_notifier_invalidate_range_end(&range);
6183
6184         return pages << h->order;
6185 }
6186
6187 /* Return true if reservation was successful, false otherwise.  */
6188 bool hugetlb_reserve_pages(struct inode *inode,
6189                                         long from, long to,
6190                                         struct vm_area_struct *vma,
6191                                         vm_flags_t vm_flags)
6192 {
6193         long chg, add = -1;
6194         struct hstate *h = hstate_inode(inode);
6195         struct hugepage_subpool *spool = subpool_inode(inode);
6196         struct resv_map *resv_map;
6197         struct hugetlb_cgroup *h_cg = NULL;
6198         long gbl_reserve, regions_needed = 0;
6199
6200         /* This should never happen */
6201         if (from > to) {
6202                 VM_WARN(1, "%s called with a negative range\n", __func__);
6203                 return false;
6204         }
6205
6206         /*
6207          * Only apply hugepage reservation if asked. At fault time, an
6208          * attempt will be made for VM_NORESERVE to allocate a page
6209          * without using reserves
6210          */
6211         if (vm_flags & VM_NORESERVE)
6212                 return true;
6213
6214         /*
6215          * Shared mappings base their reservation on the number of pages that
6216          * are already allocated on behalf of the file. Private mappings need
6217          * to reserve the full area even if read-only as mprotect() may be
6218          * called to make the mapping read-write. Assume !vma is a shm mapping
6219          */
6220         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6221                 /*
6222                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6223                  * called for inodes for which resv_maps were created (see
6224                  * hugetlbfs_get_inode).
6225                  */
6226                 resv_map = inode_resv_map(inode);
6227
6228                 chg = region_chg(resv_map, from, to, &regions_needed);
6229
6230         } else {
6231                 /* Private mapping. */
6232                 resv_map = resv_map_alloc();
6233                 if (!resv_map)
6234                         return false;
6235
6236                 chg = to - from;
6237
6238                 set_vma_resv_map(vma, resv_map);
6239                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6240         }
6241
6242         if (chg < 0)
6243                 goto out_err;
6244
6245         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6246                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6247                 goto out_err;
6248
6249         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6250                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6251                  * of the resv_map.
6252                  */
6253                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6254         }
6255
6256         /*
6257          * There must be enough pages in the subpool for the mapping. If
6258          * the subpool has a minimum size, there may be some global
6259          * reservations already in place (gbl_reserve).
6260          */
6261         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6262         if (gbl_reserve < 0)
6263                 goto out_uncharge_cgroup;
6264
6265         /*
6266          * Check enough hugepages are available for the reservation.
6267          * Hand the pages back to the subpool if there are not
6268          */
6269         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6270                 goto out_put_pages;
6271
6272         /*
6273          * Account for the reservations made. Shared mappings record regions
6274          * that have reservations as they are shared by multiple VMAs.
6275          * When the last VMA disappears, the region map says how much
6276          * the reservation was and the page cache tells how much of
6277          * the reservation was consumed. Private mappings are per-VMA and
6278          * only the consumed reservations are tracked. When the VMA
6279          * disappears, the original reservation is the VMA size and the
6280          * consumed reservations are stored in the map. Hence, nothing
6281          * else has to be done for private mappings here
6282          */
6283         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6284                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6285
6286                 if (unlikely(add < 0)) {
6287                         hugetlb_acct_memory(h, -gbl_reserve);
6288                         goto out_put_pages;
6289                 } else if (unlikely(chg > add)) {
6290                         /*
6291                          * pages in this range were added to the reserve
6292                          * map between region_chg and region_add.  This
6293                          * indicates a race with alloc_huge_page.  Adjust
6294                          * the subpool and reserve counts modified above
6295                          * based on the difference.
6296                          */
6297                         long rsv_adjust;
6298
6299                         /*
6300                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6301                          * reference to h_cg->css. See comment below for detail.
6302                          */
6303                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6304                                 hstate_index(h),
6305                                 (chg - add) * pages_per_huge_page(h), h_cg);
6306
6307                         rsv_adjust = hugepage_subpool_put_pages(spool,
6308                                                                 chg - add);
6309                         hugetlb_acct_memory(h, -rsv_adjust);
6310                 } else if (h_cg) {
6311                         /*
6312                          * The file_regions will hold their own reference to
6313                          * h_cg->css. So we should release the reference held
6314                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6315                          * done.
6316                          */
6317                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6318                 }
6319         }
6320         return true;
6321
6322 out_put_pages:
6323         /* put back original number of pages, chg */
6324         (void)hugepage_subpool_put_pages(spool, chg);
6325 out_uncharge_cgroup:
6326         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6327                                             chg * pages_per_huge_page(h), h_cg);
6328 out_err:
6329         if (!vma || vma->vm_flags & VM_MAYSHARE)
6330                 /* Only call region_abort if the region_chg succeeded but the
6331                  * region_add failed or didn't run.
6332                  */
6333                 if (chg >= 0 && add < 0)
6334                         region_abort(resv_map, from, to, regions_needed);
6335         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6336                 kref_put(&resv_map->refs, resv_map_release);
6337         return false;
6338 }
6339
6340 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6341                                                                 long freed)
6342 {
6343         struct hstate *h = hstate_inode(inode);
6344         struct resv_map *resv_map = inode_resv_map(inode);
6345         long chg = 0;
6346         struct hugepage_subpool *spool = subpool_inode(inode);
6347         long gbl_reserve;
6348
6349         /*
6350          * Since this routine can be called in the evict inode path for all
6351          * hugetlbfs inodes, resv_map could be NULL.
6352          */
6353         if (resv_map) {
6354                 chg = region_del(resv_map, start, end);
6355                 /*
6356                  * region_del() can fail in the rare case where a region
6357                  * must be split and another region descriptor can not be
6358                  * allocated.  If end == LONG_MAX, it will not fail.
6359                  */
6360                 if (chg < 0)
6361                         return chg;
6362         }
6363
6364         spin_lock(&inode->i_lock);
6365         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6366         spin_unlock(&inode->i_lock);
6367
6368         /*
6369          * If the subpool has a minimum size, the number of global
6370          * reservations to be released may be adjusted.
6371          *
6372          * Note that !resv_map implies freed == 0. So (chg - freed)
6373          * won't go negative.
6374          */
6375         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6376         hugetlb_acct_memory(h, -gbl_reserve);
6377
6378         return 0;
6379 }
6380
6381 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6382 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6383                                 struct vm_area_struct *vma,
6384                                 unsigned long addr, pgoff_t idx)
6385 {
6386         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6387                                 svma->vm_start;
6388         unsigned long sbase = saddr & PUD_MASK;
6389         unsigned long s_end = sbase + PUD_SIZE;
6390
6391         /* Allow segments to share if only one is marked locked */
6392         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6393         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6394
6395         /*
6396          * match the virtual addresses, permission and the alignment of the
6397          * page table page.
6398          */
6399         if (pmd_index(addr) != pmd_index(saddr) ||
6400             vm_flags != svm_flags ||
6401             !range_in_vma(svma, sbase, s_end))
6402                 return 0;
6403
6404         return saddr;
6405 }
6406
6407 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6408 {
6409         unsigned long base = addr & PUD_MASK;
6410         unsigned long end = base + PUD_SIZE;
6411
6412         /*
6413          * check on proper vm_flags and page table alignment
6414          */
6415         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6416                 return true;
6417         return false;
6418 }
6419
6420 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6421 {
6422 #ifdef CONFIG_USERFAULTFD
6423         if (uffd_disable_huge_pmd_share(vma))
6424                 return false;
6425 #endif
6426         return vma_shareable(vma, addr);
6427 }
6428
6429 /*
6430  * Determine if start,end range within vma could be mapped by shared pmd.
6431  * If yes, adjust start and end to cover range associated with possible
6432  * shared pmd mappings.
6433  */
6434 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6435                                 unsigned long *start, unsigned long *end)
6436 {
6437         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6438                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6439
6440         /*
6441          * vma needs to span at least one aligned PUD size, and the range
6442          * must be at least partially within in.
6443          */
6444         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6445                 (*end <= v_start) || (*start >= v_end))
6446                 return;
6447
6448         /* Extend the range to be PUD aligned for a worst case scenario */
6449         if (*start > v_start)
6450                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6451
6452         if (*end < v_end)
6453                 *end = ALIGN(*end, PUD_SIZE);
6454 }
6455
6456 /*
6457  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6458  * and returns the corresponding pte. While this is not necessary for the
6459  * !shared pmd case because we can allocate the pmd later as well, it makes the
6460  * code much cleaner.
6461  *
6462  * This routine must be called with i_mmap_rwsem held in at least read mode if
6463  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6464  * table entries associated with the address space.  This is important as we
6465  * are setting up sharing based on existing page table entries (mappings).
6466  */
6467 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6468                       unsigned long addr, pud_t *pud)
6469 {
6470         struct address_space *mapping = vma->vm_file->f_mapping;
6471         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6472                         vma->vm_pgoff;
6473         struct vm_area_struct *svma;
6474         unsigned long saddr;
6475         pte_t *spte = NULL;
6476         pte_t *pte;
6477         spinlock_t *ptl;
6478
6479         i_mmap_assert_locked(mapping);
6480         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6481                 if (svma == vma)
6482                         continue;
6483
6484                 saddr = page_table_shareable(svma, vma, addr, idx);
6485                 if (saddr) {
6486                         spte = huge_pte_offset(svma->vm_mm, saddr,
6487                                                vma_mmu_pagesize(svma));
6488                         if (spte) {
6489                                 get_page(virt_to_page(spte));
6490                                 break;
6491                         }
6492                 }
6493         }
6494
6495         if (!spte)
6496                 goto out;
6497
6498         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6499         if (pud_none(*pud)) {
6500                 pud_populate(mm, pud,
6501                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6502                 mm_inc_nr_pmds(mm);
6503         } else {
6504                 put_page(virt_to_page(spte));
6505         }
6506         spin_unlock(ptl);
6507 out:
6508         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6509         return pte;
6510 }
6511
6512 /*
6513  * unmap huge page backed by shared pte.
6514  *
6515  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6516  * indicated by page_count > 1, unmap is achieved by clearing pud and
6517  * decrementing the ref count. If count == 1, the pte page is not shared.
6518  *
6519  * Called with page table lock held and i_mmap_rwsem held in write mode.
6520  *
6521  * returns: 1 successfully unmapped a shared pte page
6522  *          0 the underlying pte page is not shared, or it is the last user
6523  */
6524 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6525                                         unsigned long *addr, pte_t *ptep)
6526 {
6527         pgd_t *pgd = pgd_offset(mm, *addr);
6528         p4d_t *p4d = p4d_offset(pgd, *addr);
6529         pud_t *pud = pud_offset(p4d, *addr);
6530
6531         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6532         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6533         if (page_count(virt_to_page(ptep)) == 1)
6534                 return 0;
6535
6536         pud_clear(pud);
6537         put_page(virt_to_page(ptep));
6538         mm_dec_nr_pmds(mm);
6539         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6540         return 1;
6541 }
6542
6543 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6544 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6545                       unsigned long addr, pud_t *pud)
6546 {
6547         return NULL;
6548 }
6549
6550 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6551                                 unsigned long *addr, pte_t *ptep)
6552 {
6553         return 0;
6554 }
6555
6556 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6557                                 unsigned long *start, unsigned long *end)
6558 {
6559 }
6560
6561 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6562 {
6563         return false;
6564 }
6565 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6566
6567 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6568 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6569                         unsigned long addr, unsigned long sz)
6570 {
6571         pgd_t *pgd;
6572         p4d_t *p4d;
6573         pud_t *pud;
6574         pte_t *pte = NULL;
6575
6576         pgd = pgd_offset(mm, addr);
6577         p4d = p4d_alloc(mm, pgd, addr);
6578         if (!p4d)
6579                 return NULL;
6580         pud = pud_alloc(mm, p4d, addr);
6581         if (pud) {
6582                 if (sz == PUD_SIZE) {
6583                         pte = (pte_t *)pud;
6584                 } else {
6585                         BUG_ON(sz != PMD_SIZE);
6586                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6587                                 pte = huge_pmd_share(mm, vma, addr, pud);
6588                         else
6589                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6590                 }
6591         }
6592         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6593
6594         return pte;
6595 }
6596
6597 /*
6598  * huge_pte_offset() - Walk the page table to resolve the hugepage
6599  * entry at address @addr
6600  *
6601  * Return: Pointer to page table entry (PUD or PMD) for
6602  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6603  * size @sz doesn't match the hugepage size at this level of the page
6604  * table.
6605  */
6606 pte_t *huge_pte_offset(struct mm_struct *mm,
6607                        unsigned long addr, unsigned long sz)
6608 {
6609         pgd_t *pgd;
6610         p4d_t *p4d;
6611         pud_t *pud;
6612         pmd_t *pmd;
6613
6614         pgd = pgd_offset(mm, addr);
6615         if (!pgd_present(*pgd))
6616                 return NULL;
6617         p4d = p4d_offset(pgd, addr);
6618         if (!p4d_present(*p4d))
6619                 return NULL;
6620
6621         pud = pud_offset(p4d, addr);
6622         if (sz == PUD_SIZE)
6623                 /* must be pud huge, non-present or none */
6624                 return (pte_t *)pud;
6625         if (!pud_present(*pud))
6626                 return NULL;
6627         /* must have a valid entry and size to go further */
6628
6629         pmd = pmd_offset(pud, addr);
6630         /* must be pmd huge, non-present or none */
6631         return (pte_t *)pmd;
6632 }
6633
6634 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6635
6636 /*
6637  * These functions are overwritable if your architecture needs its own
6638  * behavior.
6639  */
6640 struct page * __weak
6641 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6642                               int write)
6643 {
6644         return ERR_PTR(-EINVAL);
6645 }
6646
6647 struct page * __weak
6648 follow_huge_pd(struct vm_area_struct *vma,
6649                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6650 {
6651         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6652         return NULL;
6653 }
6654
6655 struct page * __weak
6656 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6657                 pmd_t *pmd, int flags)
6658 {
6659         struct page *page = NULL;
6660         spinlock_t *ptl;
6661         pte_t pte;
6662
6663         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6664         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6665                          (FOLL_PIN | FOLL_GET)))
6666                 return NULL;
6667
6668 retry:
6669         ptl = pmd_lockptr(mm, pmd);
6670         spin_lock(ptl);
6671         /*
6672          * make sure that the address range covered by this pmd is not
6673          * unmapped from other threads.
6674          */
6675         if (!pmd_huge(*pmd))
6676                 goto out;
6677         pte = huge_ptep_get((pte_t *)pmd);
6678         if (pte_present(pte)) {
6679                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6680                 /*
6681                  * try_grab_page() should always succeed here, because: a) we
6682                  * hold the pmd (ptl) lock, and b) we've just checked that the
6683                  * huge pmd (head) page is present in the page tables. The ptl
6684                  * prevents the head page and tail pages from being rearranged
6685                  * in any way. So this page must be available at this point,
6686                  * unless the page refcount overflowed:
6687                  */
6688                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6689                         page = NULL;
6690                         goto out;
6691                 }
6692         } else {
6693                 if (is_hugetlb_entry_migration(pte)) {
6694                         spin_unlock(ptl);
6695                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6696                         goto retry;
6697                 }
6698                 /*
6699                  * hwpoisoned entry is treated as no_page_table in
6700                  * follow_page_mask().
6701                  */
6702         }
6703 out:
6704         spin_unlock(ptl);
6705         return page;
6706 }
6707
6708 struct page * __weak
6709 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6710                 pud_t *pud, int flags)
6711 {
6712         if (flags & (FOLL_GET | FOLL_PIN))
6713                 return NULL;
6714
6715         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6716 }
6717
6718 struct page * __weak
6719 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6720 {
6721         if (flags & (FOLL_GET | FOLL_PIN))
6722                 return NULL;
6723
6724         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6725 }
6726
6727 bool isolate_huge_page(struct page *page, struct list_head *list)
6728 {
6729         bool ret = true;
6730
6731         spin_lock_irq(&hugetlb_lock);
6732         if (!PageHeadHuge(page) ||
6733             !HPageMigratable(page) ||
6734             !get_page_unless_zero(page)) {
6735                 ret = false;
6736                 goto unlock;
6737         }
6738         ClearHPageMigratable(page);
6739         list_move_tail(&page->lru, list);
6740 unlock:
6741         spin_unlock_irq(&hugetlb_lock);
6742         return ret;
6743 }
6744
6745 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6746 {
6747         int ret = 0;
6748
6749         *hugetlb = false;
6750         spin_lock_irq(&hugetlb_lock);
6751         if (PageHeadHuge(page)) {
6752                 *hugetlb = true;
6753                 if (HPageFreed(page) || HPageMigratable(page))
6754                         ret = get_page_unless_zero(page);
6755                 else
6756                         ret = -EBUSY;
6757         }
6758         spin_unlock_irq(&hugetlb_lock);
6759         return ret;
6760 }
6761
6762 void putback_active_hugepage(struct page *page)
6763 {
6764         spin_lock_irq(&hugetlb_lock);
6765         SetHPageMigratable(page);
6766         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6767         spin_unlock_irq(&hugetlb_lock);
6768         put_page(page);
6769 }
6770
6771 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6772 {
6773         struct hstate *h = page_hstate(oldpage);
6774
6775         hugetlb_cgroup_migrate(oldpage, newpage);
6776         set_page_owner_migrate_reason(newpage, reason);
6777
6778         /*
6779          * transfer temporary state of the new huge page. This is
6780          * reverse to other transitions because the newpage is going to
6781          * be final while the old one will be freed so it takes over
6782          * the temporary status.
6783          *
6784          * Also note that we have to transfer the per-node surplus state
6785          * here as well otherwise the global surplus count will not match
6786          * the per-node's.
6787          */
6788         if (HPageTemporary(newpage)) {
6789                 int old_nid = page_to_nid(oldpage);
6790                 int new_nid = page_to_nid(newpage);
6791
6792                 SetHPageTemporary(oldpage);
6793                 ClearHPageTemporary(newpage);
6794
6795                 /*
6796                  * There is no need to transfer the per-node surplus state
6797                  * when we do not cross the node.
6798                  */
6799                 if (new_nid == old_nid)
6800                         return;
6801                 spin_lock_irq(&hugetlb_lock);
6802                 if (h->surplus_huge_pages_node[old_nid]) {
6803                         h->surplus_huge_pages_node[old_nid]--;
6804                         h->surplus_huge_pages_node[new_nid]++;
6805                 }
6806                 spin_unlock_irq(&hugetlb_lock);
6807         }
6808 }
6809
6810 /*
6811  * This function will unconditionally remove all the shared pmd pgtable entries
6812  * within the specific vma for a hugetlbfs memory range.
6813  */
6814 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6815 {
6816         struct hstate *h = hstate_vma(vma);
6817         unsigned long sz = huge_page_size(h);
6818         struct mm_struct *mm = vma->vm_mm;
6819         struct mmu_notifier_range range;
6820         unsigned long address, start, end;
6821         spinlock_t *ptl;
6822         pte_t *ptep;
6823
6824         if (!(vma->vm_flags & VM_MAYSHARE))
6825                 return;
6826
6827         start = ALIGN(vma->vm_start, PUD_SIZE);
6828         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6829
6830         if (start >= end)
6831                 return;
6832
6833         /*
6834          * No need to call adjust_range_if_pmd_sharing_possible(), because
6835          * we have already done the PUD_SIZE alignment.
6836          */
6837         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6838                                 start, end);
6839         mmu_notifier_invalidate_range_start(&range);
6840         i_mmap_lock_write(vma->vm_file->f_mapping);
6841         for (address = start; address < end; address += PUD_SIZE) {
6842                 unsigned long tmp = address;
6843
6844                 ptep = huge_pte_offset(mm, address, sz);
6845                 if (!ptep)
6846                         continue;
6847                 ptl = huge_pte_lock(h, mm, ptep);
6848                 /* We don't want 'address' to be changed */
6849                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6850                 spin_unlock(ptl);
6851         }
6852         flush_hugetlb_tlb_range(vma, start, end);
6853         i_mmap_unlock_write(vma->vm_file->f_mapping);
6854         /*
6855          * No need to call mmu_notifier_invalidate_range(), see
6856          * Documentation/vm/mmu_notifier.rst.
6857          */
6858         mmu_notifier_invalidate_range_end(&range);
6859 }
6860
6861 #ifdef CONFIG_CMA
6862 static bool cma_reserve_called __initdata;
6863
6864 static int __init cmdline_parse_hugetlb_cma(char *p)
6865 {
6866         int nid, count = 0;
6867         unsigned long tmp;
6868         char *s = p;
6869
6870         while (*s) {
6871                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6872                         break;
6873
6874                 if (s[count] == ':') {
6875                         nid = tmp;
6876                         if (nid < 0 || nid >= MAX_NUMNODES)
6877                                 break;
6878
6879                         s += count + 1;
6880                         tmp = memparse(s, &s);
6881                         hugetlb_cma_size_in_node[nid] = tmp;
6882                         hugetlb_cma_size += tmp;
6883
6884                         /*
6885                          * Skip the separator if have one, otherwise
6886                          * break the parsing.
6887                          */
6888                         if (*s == ',')
6889                                 s++;
6890                         else
6891                                 break;
6892                 } else {
6893                         hugetlb_cma_size = memparse(p, &p);
6894                         break;
6895                 }
6896         }
6897
6898         return 0;
6899 }
6900
6901 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6902
6903 void __init hugetlb_cma_reserve(int order)
6904 {
6905         unsigned long size, reserved, per_node;
6906         bool node_specific_cma_alloc = false;
6907         int nid;
6908
6909         cma_reserve_called = true;
6910
6911         if (!hugetlb_cma_size)
6912                 return;
6913
6914         for (nid = 0; nid < MAX_NUMNODES; nid++) {
6915                 if (hugetlb_cma_size_in_node[nid] == 0)
6916                         continue;
6917
6918                 if (!node_state(nid, N_ONLINE)) {
6919                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6920                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6921                         hugetlb_cma_size_in_node[nid] = 0;
6922                         continue;
6923                 }
6924
6925                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6926                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6927                                 nid, (PAGE_SIZE << order) / SZ_1M);
6928                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6929                         hugetlb_cma_size_in_node[nid] = 0;
6930                 } else {
6931                         node_specific_cma_alloc = true;
6932                 }
6933         }
6934
6935         /* Validate the CMA size again in case some invalid nodes specified. */
6936         if (!hugetlb_cma_size)
6937                 return;
6938
6939         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6940                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6941                         (PAGE_SIZE << order) / SZ_1M);
6942                 hugetlb_cma_size = 0;
6943                 return;
6944         }
6945
6946         if (!node_specific_cma_alloc) {
6947                 /*
6948                  * If 3 GB area is requested on a machine with 4 numa nodes,
6949                  * let's allocate 1 GB on first three nodes and ignore the last one.
6950                  */
6951                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6952                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6953                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6954         }
6955
6956         reserved = 0;
6957         for_each_node_state(nid, N_ONLINE) {
6958                 int res;
6959                 char name[CMA_MAX_NAME];
6960
6961                 if (node_specific_cma_alloc) {
6962                         if (hugetlb_cma_size_in_node[nid] == 0)
6963                                 continue;
6964
6965                         size = hugetlb_cma_size_in_node[nid];
6966                 } else {
6967                         size = min(per_node, hugetlb_cma_size - reserved);
6968                 }
6969
6970                 size = round_up(size, PAGE_SIZE << order);
6971
6972                 snprintf(name, sizeof(name), "hugetlb%d", nid);
6973                 /*
6974                  * Note that 'order per bit' is based on smallest size that
6975                  * may be returned to CMA allocator in the case of
6976                  * huge page demotion.
6977                  */
6978                 res = cma_declare_contiguous_nid(0, size, 0,
6979                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
6980                                                  0, false, name,
6981                                                  &hugetlb_cma[nid], nid);
6982                 if (res) {
6983                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6984                                 res, nid);
6985                         continue;
6986                 }
6987
6988                 reserved += size;
6989                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6990                         size / SZ_1M, nid);
6991
6992                 if (reserved >= hugetlb_cma_size)
6993                         break;
6994         }
6995
6996         if (!reserved)
6997                 /*
6998                  * hugetlb_cma_size is used to determine if allocations from
6999                  * cma are possible.  Set to zero if no cma regions are set up.
7000                  */
7001                 hugetlb_cma_size = 0;
7002 }
7003
7004 void __init hugetlb_cma_check(void)
7005 {
7006         if (!hugetlb_cma_size || cma_reserve_called)
7007                 return;
7008
7009         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7010 }
7011
7012 #endif /* CONFIG_CMA */