mm/hugetlb: compute/return the number of regions added by region_add()
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  Existing regions will be expanded to accommodate the
244  * specified range.  We know only existing regions need to be
245  * expanded, because region_add is only called after region_chg
246  * with the same range.  If a new file_region structure must
247  * be allocated, it is done in region_chg.
248  *
249  * Return the number of new huge pages added to the map.  This
250  * number is greater than or equal to zero.
251  */
252 static long region_add(struct resv_map *resv, long f, long t)
253 {
254         struct list_head *head = &resv->regions;
255         struct file_region *rg, *nrg, *trg;
256         long add = 0;
257
258         spin_lock(&resv->lock);
259         /* Locate the region we are either in or before. */
260         list_for_each_entry(rg, head, link)
261                 if (f <= rg->to)
262                         break;
263
264         /* Round our left edge to the current segment if it encloses us. */
265         if (f > rg->from)
266                 f = rg->from;
267
268         /* Check for and consume any regions we now overlap with. */
269         nrg = rg;
270         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
271                 if (&rg->link == head)
272                         break;
273                 if (rg->from > t)
274                         break;
275
276                 /* If this area reaches higher then extend our area to
277                  * include it completely.  If this is not the first area
278                  * which we intend to reuse, free it. */
279                 if (rg->to > t)
280                         t = rg->to;
281                 if (rg != nrg) {
282                         /* Decrement return value by the deleted range.
283                          * Another range will span this area so that by
284                          * end of routine add will be >= zero
285                          */
286                         add -= (rg->to - rg->from);
287                         list_del(&rg->link);
288                         kfree(rg);
289                 }
290         }
291
292         add += (nrg->from - f);         /* Added to beginning of region */
293         nrg->from = f;
294         add += t - nrg->to;             /* Added to end of region */
295         nrg->to = t;
296
297         spin_unlock(&resv->lock);
298         VM_BUG_ON(add < 0);
299         return add;
300 }
301
302 /*
303  * Examine the existing reserve map and determine how many
304  * huge pages in the specified range [f, t) are NOT currently
305  * represented.  This routine is called before a subsequent
306  * call to region_add that will actually modify the reserve
307  * map to add the specified range [f, t).  region_chg does
308  * not change the number of huge pages represented by the
309  * map.  However, if the existing regions in the map can not
310  * be expanded to represent the new range, a new file_region
311  * structure is added to the map as a placeholder.  This is
312  * so that the subsequent region_add call will have all the
313  * regions it needs and will not fail.
314  *
315  * Returns the number of huge pages that need to be added
316  * to the existing reservation map for the range [f, t).
317  * This number is greater or equal to zero.  -ENOMEM is
318  * returned if a new file_region structure is needed and can
319  * not be allocated.
320  */
321 static long region_chg(struct resv_map *resv, long f, long t)
322 {
323         struct list_head *head = &resv->regions;
324         struct file_region *rg, *nrg = NULL;
325         long chg = 0;
326
327 retry:
328         spin_lock(&resv->lock);
329         /* Locate the region we are before or in. */
330         list_for_each_entry(rg, head, link)
331                 if (f <= rg->to)
332                         break;
333
334         /* If we are below the current region then a new region is required.
335          * Subtle, allocate a new region at the position but make it zero
336          * size such that we can guarantee to record the reservation. */
337         if (&rg->link == head || t < rg->from) {
338                 if (!nrg) {
339                         spin_unlock(&resv->lock);
340                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
341                         if (!nrg)
342                                 return -ENOMEM;
343
344                         nrg->from = f;
345                         nrg->to   = f;
346                         INIT_LIST_HEAD(&nrg->link);
347                         goto retry;
348                 }
349
350                 list_add(&nrg->link, rg->link.prev);
351                 chg = t - f;
352                 goto out_nrg;
353         }
354
355         /* Round our left edge to the current segment if it encloses us. */
356         if (f > rg->from)
357                 f = rg->from;
358         chg = t - f;
359
360         /* Check for and consume any regions we now overlap with. */
361         list_for_each_entry(rg, rg->link.prev, link) {
362                 if (&rg->link == head)
363                         break;
364                 if (rg->from > t)
365                         goto out;
366
367                 /* We overlap with this area, if it extends further than
368                  * us then we must extend ourselves.  Account for its
369                  * existing reservation. */
370                 if (rg->to > t) {
371                         chg += rg->to - t;
372                         t = rg->to;
373                 }
374                 chg -= rg->to - rg->from;
375         }
376
377 out:
378         spin_unlock(&resv->lock);
379         /*  We already know we raced and no longer need the new region */
380         kfree(nrg);
381         return chg;
382 out_nrg:
383         spin_unlock(&resv->lock);
384         return chg;
385 }
386
387 /*
388  * Truncate the reserve map at index 'end'.  Modify/truncate any
389  * region which contains end.  Delete any regions past end.
390  * Return the number of huge pages removed from the map.
391  */
392 static long region_truncate(struct resv_map *resv, long end)
393 {
394         struct list_head *head = &resv->regions;
395         struct file_region *rg, *trg;
396         long chg = 0;
397
398         spin_lock(&resv->lock);
399         /* Locate the region we are either in or before. */
400         list_for_each_entry(rg, head, link)
401                 if (end <= rg->to)
402                         break;
403         if (&rg->link == head)
404                 goto out;
405
406         /* If we are in the middle of a region then adjust it. */
407         if (end > rg->from) {
408                 chg = rg->to - end;
409                 rg->to = end;
410                 rg = list_entry(rg->link.next, typeof(*rg), link);
411         }
412
413         /* Drop any remaining regions. */
414         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
415                 if (&rg->link == head)
416                         break;
417                 chg += rg->to - rg->from;
418                 list_del(&rg->link);
419                 kfree(rg);
420         }
421
422 out:
423         spin_unlock(&resv->lock);
424         return chg;
425 }
426
427 /*
428  * Count and return the number of huge pages in the reserve map
429  * that intersect with the range [f, t).
430  */
431 static long region_count(struct resv_map *resv, long f, long t)
432 {
433         struct list_head *head = &resv->regions;
434         struct file_region *rg;
435         long chg = 0;
436
437         spin_lock(&resv->lock);
438         /* Locate each segment we overlap with, and count that overlap. */
439         list_for_each_entry(rg, head, link) {
440                 long seg_from;
441                 long seg_to;
442
443                 if (rg->to <= f)
444                         continue;
445                 if (rg->from >= t)
446                         break;
447
448                 seg_from = max(rg->from, f);
449                 seg_to = min(rg->to, t);
450
451                 chg += seg_to - seg_from;
452         }
453         spin_unlock(&resv->lock);
454
455         return chg;
456 }
457
458 /*
459  * Convert the address within this vma to the page offset within
460  * the mapping, in pagecache page units; huge pages here.
461  */
462 static pgoff_t vma_hugecache_offset(struct hstate *h,
463                         struct vm_area_struct *vma, unsigned long address)
464 {
465         return ((address - vma->vm_start) >> huge_page_shift(h)) +
466                         (vma->vm_pgoff >> huge_page_order(h));
467 }
468
469 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
470                                      unsigned long address)
471 {
472         return vma_hugecache_offset(hstate_vma(vma), vma, address);
473 }
474
475 /*
476  * Return the size of the pages allocated when backing a VMA. In the majority
477  * cases this will be same size as used by the page table entries.
478  */
479 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
480 {
481         struct hstate *hstate;
482
483         if (!is_vm_hugetlb_page(vma))
484                 return PAGE_SIZE;
485
486         hstate = hstate_vma(vma);
487
488         return 1UL << huge_page_shift(hstate);
489 }
490 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
491
492 /*
493  * Return the page size being used by the MMU to back a VMA. In the majority
494  * of cases, the page size used by the kernel matches the MMU size. On
495  * architectures where it differs, an architecture-specific version of this
496  * function is required.
497  */
498 #ifndef vma_mmu_pagesize
499 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
500 {
501         return vma_kernel_pagesize(vma);
502 }
503 #endif
504
505 /*
506  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
507  * bits of the reservation map pointer, which are always clear due to
508  * alignment.
509  */
510 #define HPAGE_RESV_OWNER    (1UL << 0)
511 #define HPAGE_RESV_UNMAPPED (1UL << 1)
512 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
513
514 /*
515  * These helpers are used to track how many pages are reserved for
516  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
517  * is guaranteed to have their future faults succeed.
518  *
519  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
520  * the reserve counters are updated with the hugetlb_lock held. It is safe
521  * to reset the VMA at fork() time as it is not in use yet and there is no
522  * chance of the global counters getting corrupted as a result of the values.
523  *
524  * The private mapping reservation is represented in a subtly different
525  * manner to a shared mapping.  A shared mapping has a region map associated
526  * with the underlying file, this region map represents the backing file
527  * pages which have ever had a reservation assigned which this persists even
528  * after the page is instantiated.  A private mapping has a region map
529  * associated with the original mmap which is attached to all VMAs which
530  * reference it, this region map represents those offsets which have consumed
531  * reservation ie. where pages have been instantiated.
532  */
533 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
534 {
535         return (unsigned long)vma->vm_private_data;
536 }
537
538 static void set_vma_private_data(struct vm_area_struct *vma,
539                                                         unsigned long value)
540 {
541         vma->vm_private_data = (void *)value;
542 }
543
544 struct resv_map *resv_map_alloc(void)
545 {
546         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
547         if (!resv_map)
548                 return NULL;
549
550         kref_init(&resv_map->refs);
551         spin_lock_init(&resv_map->lock);
552         INIT_LIST_HEAD(&resv_map->regions);
553
554         return resv_map;
555 }
556
557 void resv_map_release(struct kref *ref)
558 {
559         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
560
561         /* Clear out any active regions before we release the map. */
562         region_truncate(resv_map, 0);
563         kfree(resv_map);
564 }
565
566 static inline struct resv_map *inode_resv_map(struct inode *inode)
567 {
568         return inode->i_mapping->private_data;
569 }
570
571 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
572 {
573         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
574         if (vma->vm_flags & VM_MAYSHARE) {
575                 struct address_space *mapping = vma->vm_file->f_mapping;
576                 struct inode *inode = mapping->host;
577
578                 return inode_resv_map(inode);
579
580         } else {
581                 return (struct resv_map *)(get_vma_private_data(vma) &
582                                                         ~HPAGE_RESV_MASK);
583         }
584 }
585
586 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
587 {
588         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
589         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
590
591         set_vma_private_data(vma, (get_vma_private_data(vma) &
592                                 HPAGE_RESV_MASK) | (unsigned long)map);
593 }
594
595 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
596 {
597         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
598         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
599
600         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
601 }
602
603 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
604 {
605         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
606
607         return (get_vma_private_data(vma) & flag) != 0;
608 }
609
610 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
611 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
612 {
613         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
614         if (!(vma->vm_flags & VM_MAYSHARE))
615                 vma->vm_private_data = (void *)0;
616 }
617
618 /* Returns true if the VMA has associated reserve pages */
619 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
620 {
621         if (vma->vm_flags & VM_NORESERVE) {
622                 /*
623                  * This address is already reserved by other process(chg == 0),
624                  * so, we should decrement reserved count. Without decrementing,
625                  * reserve count remains after releasing inode, because this
626                  * allocated page will go into page cache and is regarded as
627                  * coming from reserved pool in releasing step.  Currently, we
628                  * don't have any other solution to deal with this situation
629                  * properly, so add work-around here.
630                  */
631                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
632                         return 1;
633                 else
634                         return 0;
635         }
636
637         /* Shared mappings always use reserves */
638         if (vma->vm_flags & VM_MAYSHARE)
639                 return 1;
640
641         /*
642          * Only the process that called mmap() has reserves for
643          * private mappings.
644          */
645         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
646                 return 1;
647
648         return 0;
649 }
650
651 static void enqueue_huge_page(struct hstate *h, struct page *page)
652 {
653         int nid = page_to_nid(page);
654         list_move(&page->lru, &h->hugepage_freelists[nid]);
655         h->free_huge_pages++;
656         h->free_huge_pages_node[nid]++;
657 }
658
659 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
660 {
661         struct page *page;
662
663         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
664                 if (!is_migrate_isolate_page(page))
665                         break;
666         /*
667          * if 'non-isolated free hugepage' not found on the list,
668          * the allocation fails.
669          */
670         if (&h->hugepage_freelists[nid] == &page->lru)
671                 return NULL;
672         list_move(&page->lru, &h->hugepage_activelist);
673         set_page_refcounted(page);
674         h->free_huge_pages--;
675         h->free_huge_pages_node[nid]--;
676         return page;
677 }
678
679 /* Movability of hugepages depends on migration support. */
680 static inline gfp_t htlb_alloc_mask(struct hstate *h)
681 {
682         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
683                 return GFP_HIGHUSER_MOVABLE;
684         else
685                 return GFP_HIGHUSER;
686 }
687
688 static struct page *dequeue_huge_page_vma(struct hstate *h,
689                                 struct vm_area_struct *vma,
690                                 unsigned long address, int avoid_reserve,
691                                 long chg)
692 {
693         struct page *page = NULL;
694         struct mempolicy *mpol;
695         nodemask_t *nodemask;
696         struct zonelist *zonelist;
697         struct zone *zone;
698         struct zoneref *z;
699         unsigned int cpuset_mems_cookie;
700
701         /*
702          * A child process with MAP_PRIVATE mappings created by their parent
703          * have no page reserves. This check ensures that reservations are
704          * not "stolen". The child may still get SIGKILLed
705          */
706         if (!vma_has_reserves(vma, chg) &&
707                         h->free_huge_pages - h->resv_huge_pages == 0)
708                 goto err;
709
710         /* If reserves cannot be used, ensure enough pages are in the pool */
711         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
712                 goto err;
713
714 retry_cpuset:
715         cpuset_mems_cookie = read_mems_allowed_begin();
716         zonelist = huge_zonelist(vma, address,
717                                         htlb_alloc_mask(h), &mpol, &nodemask);
718
719         for_each_zone_zonelist_nodemask(zone, z, zonelist,
720                                                 MAX_NR_ZONES - 1, nodemask) {
721                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
722                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
723                         if (page) {
724                                 if (avoid_reserve)
725                                         break;
726                                 if (!vma_has_reserves(vma, chg))
727                                         break;
728
729                                 SetPagePrivate(page);
730                                 h->resv_huge_pages--;
731                                 break;
732                         }
733                 }
734         }
735
736         mpol_cond_put(mpol);
737         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
738                 goto retry_cpuset;
739         return page;
740
741 err:
742         return NULL;
743 }
744
745 /*
746  * common helper functions for hstate_next_node_to_{alloc|free}.
747  * We may have allocated or freed a huge page based on a different
748  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
749  * be outside of *nodes_allowed.  Ensure that we use an allowed
750  * node for alloc or free.
751  */
752 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
753 {
754         nid = next_node(nid, *nodes_allowed);
755         if (nid == MAX_NUMNODES)
756                 nid = first_node(*nodes_allowed);
757         VM_BUG_ON(nid >= MAX_NUMNODES);
758
759         return nid;
760 }
761
762 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
763 {
764         if (!node_isset(nid, *nodes_allowed))
765                 nid = next_node_allowed(nid, nodes_allowed);
766         return nid;
767 }
768
769 /*
770  * returns the previously saved node ["this node"] from which to
771  * allocate a persistent huge page for the pool and advance the
772  * next node from which to allocate, handling wrap at end of node
773  * mask.
774  */
775 static int hstate_next_node_to_alloc(struct hstate *h,
776                                         nodemask_t *nodes_allowed)
777 {
778         int nid;
779
780         VM_BUG_ON(!nodes_allowed);
781
782         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
783         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
784
785         return nid;
786 }
787
788 /*
789  * helper for free_pool_huge_page() - return the previously saved
790  * node ["this node"] from which to free a huge page.  Advance the
791  * next node id whether or not we find a free huge page to free so
792  * that the next attempt to free addresses the next node.
793  */
794 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
795 {
796         int nid;
797
798         VM_BUG_ON(!nodes_allowed);
799
800         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
801         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
802
803         return nid;
804 }
805
806 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
807         for (nr_nodes = nodes_weight(*mask);                            \
808                 nr_nodes > 0 &&                                         \
809                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
810                 nr_nodes--)
811
812 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
813         for (nr_nodes = nodes_weight(*mask);                            \
814                 nr_nodes > 0 &&                                         \
815                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
816                 nr_nodes--)
817
818 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
819 static void destroy_compound_gigantic_page(struct page *page,
820                                         unsigned long order)
821 {
822         int i;
823         int nr_pages = 1 << order;
824         struct page *p = page + 1;
825
826         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
827                 __ClearPageTail(p);
828                 set_page_refcounted(p);
829                 p->first_page = NULL;
830         }
831
832         set_compound_order(page, 0);
833         __ClearPageHead(page);
834 }
835
836 static void free_gigantic_page(struct page *page, unsigned order)
837 {
838         free_contig_range(page_to_pfn(page), 1 << order);
839 }
840
841 static int __alloc_gigantic_page(unsigned long start_pfn,
842                                 unsigned long nr_pages)
843 {
844         unsigned long end_pfn = start_pfn + nr_pages;
845         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
846 }
847
848 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
849                                 unsigned long nr_pages)
850 {
851         unsigned long i, end_pfn = start_pfn + nr_pages;
852         struct page *page;
853
854         for (i = start_pfn; i < end_pfn; i++) {
855                 if (!pfn_valid(i))
856                         return false;
857
858                 page = pfn_to_page(i);
859
860                 if (PageReserved(page))
861                         return false;
862
863                 if (page_count(page) > 0)
864                         return false;
865
866                 if (PageHuge(page))
867                         return false;
868         }
869
870         return true;
871 }
872
873 static bool zone_spans_last_pfn(const struct zone *zone,
874                         unsigned long start_pfn, unsigned long nr_pages)
875 {
876         unsigned long last_pfn = start_pfn + nr_pages - 1;
877         return zone_spans_pfn(zone, last_pfn);
878 }
879
880 static struct page *alloc_gigantic_page(int nid, unsigned order)
881 {
882         unsigned long nr_pages = 1 << order;
883         unsigned long ret, pfn, flags;
884         struct zone *z;
885
886         z = NODE_DATA(nid)->node_zones;
887         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
888                 spin_lock_irqsave(&z->lock, flags);
889
890                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
891                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
892                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
893                                 /*
894                                  * We release the zone lock here because
895                                  * alloc_contig_range() will also lock the zone
896                                  * at some point. If there's an allocation
897                                  * spinning on this lock, it may win the race
898                                  * and cause alloc_contig_range() to fail...
899                                  */
900                                 spin_unlock_irqrestore(&z->lock, flags);
901                                 ret = __alloc_gigantic_page(pfn, nr_pages);
902                                 if (!ret)
903                                         return pfn_to_page(pfn);
904                                 spin_lock_irqsave(&z->lock, flags);
905                         }
906                         pfn += nr_pages;
907                 }
908
909                 spin_unlock_irqrestore(&z->lock, flags);
910         }
911
912         return NULL;
913 }
914
915 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
916 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
917
918 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
919 {
920         struct page *page;
921
922         page = alloc_gigantic_page(nid, huge_page_order(h));
923         if (page) {
924                 prep_compound_gigantic_page(page, huge_page_order(h));
925                 prep_new_huge_page(h, page, nid);
926         }
927
928         return page;
929 }
930
931 static int alloc_fresh_gigantic_page(struct hstate *h,
932                                 nodemask_t *nodes_allowed)
933 {
934         struct page *page = NULL;
935         int nr_nodes, node;
936
937         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
938                 page = alloc_fresh_gigantic_page_node(h, node);
939                 if (page)
940                         return 1;
941         }
942
943         return 0;
944 }
945
946 static inline bool gigantic_page_supported(void) { return true; }
947 #else
948 static inline bool gigantic_page_supported(void) { return false; }
949 static inline void free_gigantic_page(struct page *page, unsigned order) { }
950 static inline void destroy_compound_gigantic_page(struct page *page,
951                                                 unsigned long order) { }
952 static inline int alloc_fresh_gigantic_page(struct hstate *h,
953                                         nodemask_t *nodes_allowed) { return 0; }
954 #endif
955
956 static void update_and_free_page(struct hstate *h, struct page *page)
957 {
958         int i;
959
960         if (hstate_is_gigantic(h) && !gigantic_page_supported())
961                 return;
962
963         h->nr_huge_pages--;
964         h->nr_huge_pages_node[page_to_nid(page)]--;
965         for (i = 0; i < pages_per_huge_page(h); i++) {
966                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
967                                 1 << PG_referenced | 1 << PG_dirty |
968                                 1 << PG_active | 1 << PG_private |
969                                 1 << PG_writeback);
970         }
971         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
972         set_compound_page_dtor(page, NULL);
973         set_page_refcounted(page);
974         if (hstate_is_gigantic(h)) {
975                 destroy_compound_gigantic_page(page, huge_page_order(h));
976                 free_gigantic_page(page, huge_page_order(h));
977         } else {
978                 arch_release_hugepage(page);
979                 __free_pages(page, huge_page_order(h));
980         }
981 }
982
983 struct hstate *size_to_hstate(unsigned long size)
984 {
985         struct hstate *h;
986
987         for_each_hstate(h) {
988                 if (huge_page_size(h) == size)
989                         return h;
990         }
991         return NULL;
992 }
993
994 /*
995  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
996  * to hstate->hugepage_activelist.)
997  *
998  * This function can be called for tail pages, but never returns true for them.
999  */
1000 bool page_huge_active(struct page *page)
1001 {
1002         VM_BUG_ON_PAGE(!PageHuge(page), page);
1003         return PageHead(page) && PagePrivate(&page[1]);
1004 }
1005
1006 /* never called for tail page */
1007 static void set_page_huge_active(struct page *page)
1008 {
1009         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1010         SetPagePrivate(&page[1]);
1011 }
1012
1013 static void clear_page_huge_active(struct page *page)
1014 {
1015         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1016         ClearPagePrivate(&page[1]);
1017 }
1018
1019 void free_huge_page(struct page *page)
1020 {
1021         /*
1022          * Can't pass hstate in here because it is called from the
1023          * compound page destructor.
1024          */
1025         struct hstate *h = page_hstate(page);
1026         int nid = page_to_nid(page);
1027         struct hugepage_subpool *spool =
1028                 (struct hugepage_subpool *)page_private(page);
1029         bool restore_reserve;
1030
1031         set_page_private(page, 0);
1032         page->mapping = NULL;
1033         BUG_ON(page_count(page));
1034         BUG_ON(page_mapcount(page));
1035         restore_reserve = PagePrivate(page);
1036         ClearPagePrivate(page);
1037
1038         /*
1039          * A return code of zero implies that the subpool will be under its
1040          * minimum size if the reservation is not restored after page is free.
1041          * Therefore, force restore_reserve operation.
1042          */
1043         if (hugepage_subpool_put_pages(spool, 1) == 0)
1044                 restore_reserve = true;
1045
1046         spin_lock(&hugetlb_lock);
1047         clear_page_huge_active(page);
1048         hugetlb_cgroup_uncharge_page(hstate_index(h),
1049                                      pages_per_huge_page(h), page);
1050         if (restore_reserve)
1051                 h->resv_huge_pages++;
1052
1053         if (h->surplus_huge_pages_node[nid]) {
1054                 /* remove the page from active list */
1055                 list_del(&page->lru);
1056                 update_and_free_page(h, page);
1057                 h->surplus_huge_pages--;
1058                 h->surplus_huge_pages_node[nid]--;
1059         } else {
1060                 arch_clear_hugepage_flags(page);
1061                 enqueue_huge_page(h, page);
1062         }
1063         spin_unlock(&hugetlb_lock);
1064 }
1065
1066 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1067 {
1068         INIT_LIST_HEAD(&page->lru);
1069         set_compound_page_dtor(page, free_huge_page);
1070         spin_lock(&hugetlb_lock);
1071         set_hugetlb_cgroup(page, NULL);
1072         h->nr_huge_pages++;
1073         h->nr_huge_pages_node[nid]++;
1074         spin_unlock(&hugetlb_lock);
1075         put_page(page); /* free it into the hugepage allocator */
1076 }
1077
1078 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1079 {
1080         int i;
1081         int nr_pages = 1 << order;
1082         struct page *p = page + 1;
1083
1084         /* we rely on prep_new_huge_page to set the destructor */
1085         set_compound_order(page, order);
1086         __SetPageHead(page);
1087         __ClearPageReserved(page);
1088         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1089                 /*
1090                  * For gigantic hugepages allocated through bootmem at
1091                  * boot, it's safer to be consistent with the not-gigantic
1092                  * hugepages and clear the PG_reserved bit from all tail pages
1093                  * too.  Otherwse drivers using get_user_pages() to access tail
1094                  * pages may get the reference counting wrong if they see
1095                  * PG_reserved set on a tail page (despite the head page not
1096                  * having PG_reserved set).  Enforcing this consistency between
1097                  * head and tail pages allows drivers to optimize away a check
1098                  * on the head page when they need know if put_page() is needed
1099                  * after get_user_pages().
1100                  */
1101                 __ClearPageReserved(p);
1102                 set_page_count(p, 0);
1103                 p->first_page = page;
1104                 /* Make sure p->first_page is always valid for PageTail() */
1105                 smp_wmb();
1106                 __SetPageTail(p);
1107         }
1108 }
1109
1110 /*
1111  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1112  * transparent huge pages.  See the PageTransHuge() documentation for more
1113  * details.
1114  */
1115 int PageHuge(struct page *page)
1116 {
1117         if (!PageCompound(page))
1118                 return 0;
1119
1120         page = compound_head(page);
1121         return get_compound_page_dtor(page) == free_huge_page;
1122 }
1123 EXPORT_SYMBOL_GPL(PageHuge);
1124
1125 /*
1126  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1127  * normal or transparent huge pages.
1128  */
1129 int PageHeadHuge(struct page *page_head)
1130 {
1131         if (!PageHead(page_head))
1132                 return 0;
1133
1134         return get_compound_page_dtor(page_head) == free_huge_page;
1135 }
1136
1137 pgoff_t __basepage_index(struct page *page)
1138 {
1139         struct page *page_head = compound_head(page);
1140         pgoff_t index = page_index(page_head);
1141         unsigned long compound_idx;
1142
1143         if (!PageHuge(page_head))
1144                 return page_index(page);
1145
1146         if (compound_order(page_head) >= MAX_ORDER)
1147                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1148         else
1149                 compound_idx = page - page_head;
1150
1151         return (index << compound_order(page_head)) + compound_idx;
1152 }
1153
1154 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1155 {
1156         struct page *page;
1157
1158         page = alloc_pages_exact_node(nid,
1159                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1160                                                 __GFP_REPEAT|__GFP_NOWARN,
1161                 huge_page_order(h));
1162         if (page) {
1163                 if (arch_prepare_hugepage(page)) {
1164                         __free_pages(page, huge_page_order(h));
1165                         return NULL;
1166                 }
1167                 prep_new_huge_page(h, page, nid);
1168         }
1169
1170         return page;
1171 }
1172
1173 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1174 {
1175         struct page *page;
1176         int nr_nodes, node;
1177         int ret = 0;
1178
1179         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1180                 page = alloc_fresh_huge_page_node(h, node);
1181                 if (page) {
1182                         ret = 1;
1183                         break;
1184                 }
1185         }
1186
1187         if (ret)
1188                 count_vm_event(HTLB_BUDDY_PGALLOC);
1189         else
1190                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1191
1192         return ret;
1193 }
1194
1195 /*
1196  * Free huge page from pool from next node to free.
1197  * Attempt to keep persistent huge pages more or less
1198  * balanced over allowed nodes.
1199  * Called with hugetlb_lock locked.
1200  */
1201 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1202                                                          bool acct_surplus)
1203 {
1204         int nr_nodes, node;
1205         int ret = 0;
1206
1207         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1208                 /*
1209                  * If we're returning unused surplus pages, only examine
1210                  * nodes with surplus pages.
1211                  */
1212                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1213                     !list_empty(&h->hugepage_freelists[node])) {
1214                         struct page *page =
1215                                 list_entry(h->hugepage_freelists[node].next,
1216                                           struct page, lru);
1217                         list_del(&page->lru);
1218                         h->free_huge_pages--;
1219                         h->free_huge_pages_node[node]--;
1220                         if (acct_surplus) {
1221                                 h->surplus_huge_pages--;
1222                                 h->surplus_huge_pages_node[node]--;
1223                         }
1224                         update_and_free_page(h, page);
1225                         ret = 1;
1226                         break;
1227                 }
1228         }
1229
1230         return ret;
1231 }
1232
1233 /*
1234  * Dissolve a given free hugepage into free buddy pages. This function does
1235  * nothing for in-use (including surplus) hugepages.
1236  */
1237 static void dissolve_free_huge_page(struct page *page)
1238 {
1239         spin_lock(&hugetlb_lock);
1240         if (PageHuge(page) && !page_count(page)) {
1241                 struct hstate *h = page_hstate(page);
1242                 int nid = page_to_nid(page);
1243                 list_del(&page->lru);
1244                 h->free_huge_pages--;
1245                 h->free_huge_pages_node[nid]--;
1246                 update_and_free_page(h, page);
1247         }
1248         spin_unlock(&hugetlb_lock);
1249 }
1250
1251 /*
1252  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1253  * make specified memory blocks removable from the system.
1254  * Note that start_pfn should aligned with (minimum) hugepage size.
1255  */
1256 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1257 {
1258         unsigned long pfn;
1259
1260         if (!hugepages_supported())
1261                 return;
1262
1263         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1264         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1265                 dissolve_free_huge_page(pfn_to_page(pfn));
1266 }
1267
1268 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1269 {
1270         struct page *page;
1271         unsigned int r_nid;
1272
1273         if (hstate_is_gigantic(h))
1274                 return NULL;
1275
1276         /*
1277          * Assume we will successfully allocate the surplus page to
1278          * prevent racing processes from causing the surplus to exceed
1279          * overcommit
1280          *
1281          * This however introduces a different race, where a process B
1282          * tries to grow the static hugepage pool while alloc_pages() is
1283          * called by process A. B will only examine the per-node
1284          * counters in determining if surplus huge pages can be
1285          * converted to normal huge pages in adjust_pool_surplus(). A
1286          * won't be able to increment the per-node counter, until the
1287          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1288          * no more huge pages can be converted from surplus to normal
1289          * state (and doesn't try to convert again). Thus, we have a
1290          * case where a surplus huge page exists, the pool is grown, and
1291          * the surplus huge page still exists after, even though it
1292          * should just have been converted to a normal huge page. This
1293          * does not leak memory, though, as the hugepage will be freed
1294          * once it is out of use. It also does not allow the counters to
1295          * go out of whack in adjust_pool_surplus() as we don't modify
1296          * the node values until we've gotten the hugepage and only the
1297          * per-node value is checked there.
1298          */
1299         spin_lock(&hugetlb_lock);
1300         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1301                 spin_unlock(&hugetlb_lock);
1302                 return NULL;
1303         } else {
1304                 h->nr_huge_pages++;
1305                 h->surplus_huge_pages++;
1306         }
1307         spin_unlock(&hugetlb_lock);
1308
1309         if (nid == NUMA_NO_NODE)
1310                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1311                                    __GFP_REPEAT|__GFP_NOWARN,
1312                                    huge_page_order(h));
1313         else
1314                 page = alloc_pages_exact_node(nid,
1315                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1316                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1317
1318         if (page && arch_prepare_hugepage(page)) {
1319                 __free_pages(page, huge_page_order(h));
1320                 page = NULL;
1321         }
1322
1323         spin_lock(&hugetlb_lock);
1324         if (page) {
1325                 INIT_LIST_HEAD(&page->lru);
1326                 r_nid = page_to_nid(page);
1327                 set_compound_page_dtor(page, free_huge_page);
1328                 set_hugetlb_cgroup(page, NULL);
1329                 /*
1330                  * We incremented the global counters already
1331                  */
1332                 h->nr_huge_pages_node[r_nid]++;
1333                 h->surplus_huge_pages_node[r_nid]++;
1334                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1335         } else {
1336                 h->nr_huge_pages--;
1337                 h->surplus_huge_pages--;
1338                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1339         }
1340         spin_unlock(&hugetlb_lock);
1341
1342         return page;
1343 }
1344
1345 /*
1346  * This allocation function is useful in the context where vma is irrelevant.
1347  * E.g. soft-offlining uses this function because it only cares physical
1348  * address of error page.
1349  */
1350 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1351 {
1352         struct page *page = NULL;
1353
1354         spin_lock(&hugetlb_lock);
1355         if (h->free_huge_pages - h->resv_huge_pages > 0)
1356                 page = dequeue_huge_page_node(h, nid);
1357         spin_unlock(&hugetlb_lock);
1358
1359         if (!page)
1360                 page = alloc_buddy_huge_page(h, nid);
1361
1362         return page;
1363 }
1364
1365 /*
1366  * Increase the hugetlb pool such that it can accommodate a reservation
1367  * of size 'delta'.
1368  */
1369 static int gather_surplus_pages(struct hstate *h, int delta)
1370 {
1371         struct list_head surplus_list;
1372         struct page *page, *tmp;
1373         int ret, i;
1374         int needed, allocated;
1375         bool alloc_ok = true;
1376
1377         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1378         if (needed <= 0) {
1379                 h->resv_huge_pages += delta;
1380                 return 0;
1381         }
1382
1383         allocated = 0;
1384         INIT_LIST_HEAD(&surplus_list);
1385
1386         ret = -ENOMEM;
1387 retry:
1388         spin_unlock(&hugetlb_lock);
1389         for (i = 0; i < needed; i++) {
1390                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1391                 if (!page) {
1392                         alloc_ok = false;
1393                         break;
1394                 }
1395                 list_add(&page->lru, &surplus_list);
1396         }
1397         allocated += i;
1398
1399         /*
1400          * After retaking hugetlb_lock, we need to recalculate 'needed'
1401          * because either resv_huge_pages or free_huge_pages may have changed.
1402          */
1403         spin_lock(&hugetlb_lock);
1404         needed = (h->resv_huge_pages + delta) -
1405                         (h->free_huge_pages + allocated);
1406         if (needed > 0) {
1407                 if (alloc_ok)
1408                         goto retry;
1409                 /*
1410                  * We were not able to allocate enough pages to
1411                  * satisfy the entire reservation so we free what
1412                  * we've allocated so far.
1413                  */
1414                 goto free;
1415         }
1416         /*
1417          * The surplus_list now contains _at_least_ the number of extra pages
1418          * needed to accommodate the reservation.  Add the appropriate number
1419          * of pages to the hugetlb pool and free the extras back to the buddy
1420          * allocator.  Commit the entire reservation here to prevent another
1421          * process from stealing the pages as they are added to the pool but
1422          * before they are reserved.
1423          */
1424         needed += allocated;
1425         h->resv_huge_pages += delta;
1426         ret = 0;
1427
1428         /* Free the needed pages to the hugetlb pool */
1429         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1430                 if ((--needed) < 0)
1431                         break;
1432                 /*
1433                  * This page is now managed by the hugetlb allocator and has
1434                  * no users -- drop the buddy allocator's reference.
1435                  */
1436                 put_page_testzero(page);
1437                 VM_BUG_ON_PAGE(page_count(page), page);
1438                 enqueue_huge_page(h, page);
1439         }
1440 free:
1441         spin_unlock(&hugetlb_lock);
1442
1443         /* Free unnecessary surplus pages to the buddy allocator */
1444         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1445                 put_page(page);
1446         spin_lock(&hugetlb_lock);
1447
1448         return ret;
1449 }
1450
1451 /*
1452  * When releasing a hugetlb pool reservation, any surplus pages that were
1453  * allocated to satisfy the reservation must be explicitly freed if they were
1454  * never used.
1455  * Called with hugetlb_lock held.
1456  */
1457 static void return_unused_surplus_pages(struct hstate *h,
1458                                         unsigned long unused_resv_pages)
1459 {
1460         unsigned long nr_pages;
1461
1462         /* Uncommit the reservation */
1463         h->resv_huge_pages -= unused_resv_pages;
1464
1465         /* Cannot return gigantic pages currently */
1466         if (hstate_is_gigantic(h))
1467                 return;
1468
1469         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1470
1471         /*
1472          * We want to release as many surplus pages as possible, spread
1473          * evenly across all nodes with memory. Iterate across these nodes
1474          * until we can no longer free unreserved surplus pages. This occurs
1475          * when the nodes with surplus pages have no free pages.
1476          * free_pool_huge_page() will balance the the freed pages across the
1477          * on-line nodes with memory and will handle the hstate accounting.
1478          */
1479         while (nr_pages--) {
1480                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1481                         break;
1482                 cond_resched_lock(&hugetlb_lock);
1483         }
1484 }
1485
1486 /*
1487  * vma_needs_reservation and vma_commit_reservation are used by the huge
1488  * page allocation routines to manage reservations.
1489  *
1490  * vma_needs_reservation is called to determine if the huge page at addr
1491  * within the vma has an associated reservation.  If a reservation is
1492  * needed, the value 1 is returned.  The caller is then responsible for
1493  * managing the global reservation and subpool usage counts.  After
1494  * the huge page has been allocated, vma_commit_reservation is called
1495  * to add the page to the reservation map.
1496  *
1497  * In the normal case, vma_commit_reservation returns the same value
1498  * as the preceding vma_needs_reservation call.  The only time this
1499  * is not the case is if a reserve map was changed between calls.  It
1500  * is the responsibility of the caller to notice the difference and
1501  * take appropriate action.
1502  */
1503 static long __vma_reservation_common(struct hstate *h,
1504                                 struct vm_area_struct *vma, unsigned long addr,
1505                                 bool commit)
1506 {
1507         struct resv_map *resv;
1508         pgoff_t idx;
1509         long ret;
1510
1511         resv = vma_resv_map(vma);
1512         if (!resv)
1513                 return 1;
1514
1515         idx = vma_hugecache_offset(h, vma, addr);
1516         if (commit)
1517                 ret = region_add(resv, idx, idx + 1);
1518         else
1519                 ret = region_chg(resv, idx, idx + 1);
1520
1521         if (vma->vm_flags & VM_MAYSHARE)
1522                 return ret;
1523         else
1524                 return ret < 0 ? ret : 0;
1525 }
1526
1527 static long vma_needs_reservation(struct hstate *h,
1528                         struct vm_area_struct *vma, unsigned long addr)
1529 {
1530         return __vma_reservation_common(h, vma, addr, false);
1531 }
1532
1533 static long vma_commit_reservation(struct hstate *h,
1534                         struct vm_area_struct *vma, unsigned long addr)
1535 {
1536         return __vma_reservation_common(h, vma, addr, true);
1537 }
1538
1539 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1540                                     unsigned long addr, int avoid_reserve)
1541 {
1542         struct hugepage_subpool *spool = subpool_vma(vma);
1543         struct hstate *h = hstate_vma(vma);
1544         struct page *page;
1545         long chg;
1546         int ret, idx;
1547         struct hugetlb_cgroup *h_cg;
1548
1549         idx = hstate_index(h);
1550         /*
1551          * Processes that did not create the mapping will have no
1552          * reserves and will not have accounted against subpool
1553          * limit. Check that the subpool limit can be made before
1554          * satisfying the allocation MAP_NORESERVE mappings may also
1555          * need pages and subpool limit allocated allocated if no reserve
1556          * mapping overlaps.
1557          */
1558         chg = vma_needs_reservation(h, vma, addr);
1559         if (chg < 0)
1560                 return ERR_PTR(-ENOMEM);
1561         if (chg || avoid_reserve)
1562                 if (hugepage_subpool_get_pages(spool, 1) < 0)
1563                         return ERR_PTR(-ENOSPC);
1564
1565         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1566         if (ret)
1567                 goto out_subpool_put;
1568
1569         spin_lock(&hugetlb_lock);
1570         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1571         if (!page) {
1572                 spin_unlock(&hugetlb_lock);
1573                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1574                 if (!page)
1575                         goto out_uncharge_cgroup;
1576
1577                 spin_lock(&hugetlb_lock);
1578                 list_move(&page->lru, &h->hugepage_activelist);
1579                 /* Fall through */
1580         }
1581         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1582         spin_unlock(&hugetlb_lock);
1583
1584         set_page_private(page, (unsigned long)spool);
1585
1586         vma_commit_reservation(h, vma, addr);
1587         return page;
1588
1589 out_uncharge_cgroup:
1590         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1591 out_subpool_put:
1592         if (chg || avoid_reserve)
1593                 hugepage_subpool_put_pages(spool, 1);
1594         return ERR_PTR(-ENOSPC);
1595 }
1596
1597 /*
1598  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1599  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1600  * where no ERR_VALUE is expected to be returned.
1601  */
1602 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1603                                 unsigned long addr, int avoid_reserve)
1604 {
1605         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1606         if (IS_ERR(page))
1607                 page = NULL;
1608         return page;
1609 }
1610
1611 int __weak alloc_bootmem_huge_page(struct hstate *h)
1612 {
1613         struct huge_bootmem_page *m;
1614         int nr_nodes, node;
1615
1616         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1617                 void *addr;
1618
1619                 addr = memblock_virt_alloc_try_nid_nopanic(
1620                                 huge_page_size(h), huge_page_size(h),
1621                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1622                 if (addr) {
1623                         /*
1624                          * Use the beginning of the huge page to store the
1625                          * huge_bootmem_page struct (until gather_bootmem
1626                          * puts them into the mem_map).
1627                          */
1628                         m = addr;
1629                         goto found;
1630                 }
1631         }
1632         return 0;
1633
1634 found:
1635         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1636         /* Put them into a private list first because mem_map is not up yet */
1637         list_add(&m->list, &huge_boot_pages);
1638         m->hstate = h;
1639         return 1;
1640 }
1641
1642 static void __init prep_compound_huge_page(struct page *page, int order)
1643 {
1644         if (unlikely(order > (MAX_ORDER - 1)))
1645                 prep_compound_gigantic_page(page, order);
1646         else
1647                 prep_compound_page(page, order);
1648 }
1649
1650 /* Put bootmem huge pages into the standard lists after mem_map is up */
1651 static void __init gather_bootmem_prealloc(void)
1652 {
1653         struct huge_bootmem_page *m;
1654
1655         list_for_each_entry(m, &huge_boot_pages, list) {
1656                 struct hstate *h = m->hstate;
1657                 struct page *page;
1658
1659 #ifdef CONFIG_HIGHMEM
1660                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1661                 memblock_free_late(__pa(m),
1662                                    sizeof(struct huge_bootmem_page));
1663 #else
1664                 page = virt_to_page(m);
1665 #endif
1666                 WARN_ON(page_count(page) != 1);
1667                 prep_compound_huge_page(page, h->order);
1668                 WARN_ON(PageReserved(page));
1669                 prep_new_huge_page(h, page, page_to_nid(page));
1670                 /*
1671                  * If we had gigantic hugepages allocated at boot time, we need
1672                  * to restore the 'stolen' pages to totalram_pages in order to
1673                  * fix confusing memory reports from free(1) and another
1674                  * side-effects, like CommitLimit going negative.
1675                  */
1676                 if (hstate_is_gigantic(h))
1677                         adjust_managed_page_count(page, 1 << h->order);
1678         }
1679 }
1680
1681 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1682 {
1683         unsigned long i;
1684
1685         for (i = 0; i < h->max_huge_pages; ++i) {
1686                 if (hstate_is_gigantic(h)) {
1687                         if (!alloc_bootmem_huge_page(h))
1688                                 break;
1689                 } else if (!alloc_fresh_huge_page(h,
1690                                          &node_states[N_MEMORY]))
1691                         break;
1692         }
1693         h->max_huge_pages = i;
1694 }
1695
1696 static void __init hugetlb_init_hstates(void)
1697 {
1698         struct hstate *h;
1699
1700         for_each_hstate(h) {
1701                 if (minimum_order > huge_page_order(h))
1702                         minimum_order = huge_page_order(h);
1703
1704                 /* oversize hugepages were init'ed in early boot */
1705                 if (!hstate_is_gigantic(h))
1706                         hugetlb_hstate_alloc_pages(h);
1707         }
1708         VM_BUG_ON(minimum_order == UINT_MAX);
1709 }
1710
1711 static char * __init memfmt(char *buf, unsigned long n)
1712 {
1713         if (n >= (1UL << 30))
1714                 sprintf(buf, "%lu GB", n >> 30);
1715         else if (n >= (1UL << 20))
1716                 sprintf(buf, "%lu MB", n >> 20);
1717         else
1718                 sprintf(buf, "%lu KB", n >> 10);
1719         return buf;
1720 }
1721
1722 static void __init report_hugepages(void)
1723 {
1724         struct hstate *h;
1725
1726         for_each_hstate(h) {
1727                 char buf[32];
1728                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1729                         memfmt(buf, huge_page_size(h)),
1730                         h->free_huge_pages);
1731         }
1732 }
1733
1734 #ifdef CONFIG_HIGHMEM
1735 static void try_to_free_low(struct hstate *h, unsigned long count,
1736                                                 nodemask_t *nodes_allowed)
1737 {
1738         int i;
1739
1740         if (hstate_is_gigantic(h))
1741                 return;
1742
1743         for_each_node_mask(i, *nodes_allowed) {
1744                 struct page *page, *next;
1745                 struct list_head *freel = &h->hugepage_freelists[i];
1746                 list_for_each_entry_safe(page, next, freel, lru) {
1747                         if (count >= h->nr_huge_pages)
1748                                 return;
1749                         if (PageHighMem(page))
1750                                 continue;
1751                         list_del(&page->lru);
1752                         update_and_free_page(h, page);
1753                         h->free_huge_pages--;
1754                         h->free_huge_pages_node[page_to_nid(page)]--;
1755                 }
1756         }
1757 }
1758 #else
1759 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1760                                                 nodemask_t *nodes_allowed)
1761 {
1762 }
1763 #endif
1764
1765 /*
1766  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1767  * balanced by operating on them in a round-robin fashion.
1768  * Returns 1 if an adjustment was made.
1769  */
1770 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1771                                 int delta)
1772 {
1773         int nr_nodes, node;
1774
1775         VM_BUG_ON(delta != -1 && delta != 1);
1776
1777         if (delta < 0) {
1778                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1779                         if (h->surplus_huge_pages_node[node])
1780                                 goto found;
1781                 }
1782         } else {
1783                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1784                         if (h->surplus_huge_pages_node[node] <
1785                                         h->nr_huge_pages_node[node])
1786                                 goto found;
1787                 }
1788         }
1789         return 0;
1790
1791 found:
1792         h->surplus_huge_pages += delta;
1793         h->surplus_huge_pages_node[node] += delta;
1794         return 1;
1795 }
1796
1797 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1798 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1799                                                 nodemask_t *nodes_allowed)
1800 {
1801         unsigned long min_count, ret;
1802
1803         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1804                 return h->max_huge_pages;
1805
1806         /*
1807          * Increase the pool size
1808          * First take pages out of surplus state.  Then make up the
1809          * remaining difference by allocating fresh huge pages.
1810          *
1811          * We might race with alloc_buddy_huge_page() here and be unable
1812          * to convert a surplus huge page to a normal huge page. That is
1813          * not critical, though, it just means the overall size of the
1814          * pool might be one hugepage larger than it needs to be, but
1815          * within all the constraints specified by the sysctls.
1816          */
1817         spin_lock(&hugetlb_lock);
1818         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1819                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1820                         break;
1821         }
1822
1823         while (count > persistent_huge_pages(h)) {
1824                 /*
1825                  * If this allocation races such that we no longer need the
1826                  * page, free_huge_page will handle it by freeing the page
1827                  * and reducing the surplus.
1828                  */
1829                 spin_unlock(&hugetlb_lock);
1830                 if (hstate_is_gigantic(h))
1831                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1832                 else
1833                         ret = alloc_fresh_huge_page(h, nodes_allowed);
1834                 spin_lock(&hugetlb_lock);
1835                 if (!ret)
1836                         goto out;
1837
1838                 /* Bail for signals. Probably ctrl-c from user */
1839                 if (signal_pending(current))
1840                         goto out;
1841         }
1842
1843         /*
1844          * Decrease the pool size
1845          * First return free pages to the buddy allocator (being careful
1846          * to keep enough around to satisfy reservations).  Then place
1847          * pages into surplus state as needed so the pool will shrink
1848          * to the desired size as pages become free.
1849          *
1850          * By placing pages into the surplus state independent of the
1851          * overcommit value, we are allowing the surplus pool size to
1852          * exceed overcommit. There are few sane options here. Since
1853          * alloc_buddy_huge_page() is checking the global counter,
1854          * though, we'll note that we're not allowed to exceed surplus
1855          * and won't grow the pool anywhere else. Not until one of the
1856          * sysctls are changed, or the surplus pages go out of use.
1857          */
1858         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1859         min_count = max(count, min_count);
1860         try_to_free_low(h, min_count, nodes_allowed);
1861         while (min_count < persistent_huge_pages(h)) {
1862                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1863                         break;
1864                 cond_resched_lock(&hugetlb_lock);
1865         }
1866         while (count < persistent_huge_pages(h)) {
1867                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1868                         break;
1869         }
1870 out:
1871         ret = persistent_huge_pages(h);
1872         spin_unlock(&hugetlb_lock);
1873         return ret;
1874 }
1875
1876 #define HSTATE_ATTR_RO(_name) \
1877         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1878
1879 #define HSTATE_ATTR(_name) \
1880         static struct kobj_attribute _name##_attr = \
1881                 __ATTR(_name, 0644, _name##_show, _name##_store)
1882
1883 static struct kobject *hugepages_kobj;
1884 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1885
1886 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1887
1888 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1889 {
1890         int i;
1891
1892         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1893                 if (hstate_kobjs[i] == kobj) {
1894                         if (nidp)
1895                                 *nidp = NUMA_NO_NODE;
1896                         return &hstates[i];
1897                 }
1898
1899         return kobj_to_node_hstate(kobj, nidp);
1900 }
1901
1902 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1903                                         struct kobj_attribute *attr, char *buf)
1904 {
1905         struct hstate *h;
1906         unsigned long nr_huge_pages;
1907         int nid;
1908
1909         h = kobj_to_hstate(kobj, &nid);
1910         if (nid == NUMA_NO_NODE)
1911                 nr_huge_pages = h->nr_huge_pages;
1912         else
1913                 nr_huge_pages = h->nr_huge_pages_node[nid];
1914
1915         return sprintf(buf, "%lu\n", nr_huge_pages);
1916 }
1917
1918 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1919                                            struct hstate *h, int nid,
1920                                            unsigned long count, size_t len)
1921 {
1922         int err;
1923         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1924
1925         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1926                 err = -EINVAL;
1927                 goto out;
1928         }
1929
1930         if (nid == NUMA_NO_NODE) {
1931                 /*
1932                  * global hstate attribute
1933                  */
1934                 if (!(obey_mempolicy &&
1935                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1936                         NODEMASK_FREE(nodes_allowed);
1937                         nodes_allowed = &node_states[N_MEMORY];
1938                 }
1939         } else if (nodes_allowed) {
1940                 /*
1941                  * per node hstate attribute: adjust count to global,
1942                  * but restrict alloc/free to the specified node.
1943                  */
1944                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1945                 init_nodemask_of_node(nodes_allowed, nid);
1946         } else
1947                 nodes_allowed = &node_states[N_MEMORY];
1948
1949         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1950
1951         if (nodes_allowed != &node_states[N_MEMORY])
1952                 NODEMASK_FREE(nodes_allowed);
1953
1954         return len;
1955 out:
1956         NODEMASK_FREE(nodes_allowed);
1957         return err;
1958 }
1959
1960 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1961                                          struct kobject *kobj, const char *buf,
1962                                          size_t len)
1963 {
1964         struct hstate *h;
1965         unsigned long count;
1966         int nid;
1967         int err;
1968
1969         err = kstrtoul(buf, 10, &count);
1970         if (err)
1971                 return err;
1972
1973         h = kobj_to_hstate(kobj, &nid);
1974         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1975 }
1976
1977 static ssize_t nr_hugepages_show(struct kobject *kobj,
1978                                        struct kobj_attribute *attr, char *buf)
1979 {
1980         return nr_hugepages_show_common(kobj, attr, buf);
1981 }
1982
1983 static ssize_t nr_hugepages_store(struct kobject *kobj,
1984                struct kobj_attribute *attr, const char *buf, size_t len)
1985 {
1986         return nr_hugepages_store_common(false, kobj, buf, len);
1987 }
1988 HSTATE_ATTR(nr_hugepages);
1989
1990 #ifdef CONFIG_NUMA
1991
1992 /*
1993  * hstate attribute for optionally mempolicy-based constraint on persistent
1994  * huge page alloc/free.
1995  */
1996 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1997                                        struct kobj_attribute *attr, char *buf)
1998 {
1999         return nr_hugepages_show_common(kobj, attr, buf);
2000 }
2001
2002 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2003                struct kobj_attribute *attr, const char *buf, size_t len)
2004 {
2005         return nr_hugepages_store_common(true, kobj, buf, len);
2006 }
2007 HSTATE_ATTR(nr_hugepages_mempolicy);
2008 #endif
2009
2010
2011 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2012                                         struct kobj_attribute *attr, char *buf)
2013 {
2014         struct hstate *h = kobj_to_hstate(kobj, NULL);
2015         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2016 }
2017
2018 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2019                 struct kobj_attribute *attr, const char *buf, size_t count)
2020 {
2021         int err;
2022         unsigned long input;
2023         struct hstate *h = kobj_to_hstate(kobj, NULL);
2024
2025         if (hstate_is_gigantic(h))
2026                 return -EINVAL;
2027
2028         err = kstrtoul(buf, 10, &input);
2029         if (err)
2030                 return err;
2031
2032         spin_lock(&hugetlb_lock);
2033         h->nr_overcommit_huge_pages = input;
2034         spin_unlock(&hugetlb_lock);
2035
2036         return count;
2037 }
2038 HSTATE_ATTR(nr_overcommit_hugepages);
2039
2040 static ssize_t free_hugepages_show(struct kobject *kobj,
2041                                         struct kobj_attribute *attr, char *buf)
2042 {
2043         struct hstate *h;
2044         unsigned long free_huge_pages;
2045         int nid;
2046
2047         h = kobj_to_hstate(kobj, &nid);
2048         if (nid == NUMA_NO_NODE)
2049                 free_huge_pages = h->free_huge_pages;
2050         else
2051                 free_huge_pages = h->free_huge_pages_node[nid];
2052
2053         return sprintf(buf, "%lu\n", free_huge_pages);
2054 }
2055 HSTATE_ATTR_RO(free_hugepages);
2056
2057 static ssize_t resv_hugepages_show(struct kobject *kobj,
2058                                         struct kobj_attribute *attr, char *buf)
2059 {
2060         struct hstate *h = kobj_to_hstate(kobj, NULL);
2061         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2062 }
2063 HSTATE_ATTR_RO(resv_hugepages);
2064
2065 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2066                                         struct kobj_attribute *attr, char *buf)
2067 {
2068         struct hstate *h;
2069         unsigned long surplus_huge_pages;
2070         int nid;
2071
2072         h = kobj_to_hstate(kobj, &nid);
2073         if (nid == NUMA_NO_NODE)
2074                 surplus_huge_pages = h->surplus_huge_pages;
2075         else
2076                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2077
2078         return sprintf(buf, "%lu\n", surplus_huge_pages);
2079 }
2080 HSTATE_ATTR_RO(surplus_hugepages);
2081
2082 static struct attribute *hstate_attrs[] = {
2083         &nr_hugepages_attr.attr,
2084         &nr_overcommit_hugepages_attr.attr,
2085         &free_hugepages_attr.attr,
2086         &resv_hugepages_attr.attr,
2087         &surplus_hugepages_attr.attr,
2088 #ifdef CONFIG_NUMA
2089         &nr_hugepages_mempolicy_attr.attr,
2090 #endif
2091         NULL,
2092 };
2093
2094 static struct attribute_group hstate_attr_group = {
2095         .attrs = hstate_attrs,
2096 };
2097
2098 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2099                                     struct kobject **hstate_kobjs,
2100                                     struct attribute_group *hstate_attr_group)
2101 {
2102         int retval;
2103         int hi = hstate_index(h);
2104
2105         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2106         if (!hstate_kobjs[hi])
2107                 return -ENOMEM;
2108
2109         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2110         if (retval)
2111                 kobject_put(hstate_kobjs[hi]);
2112
2113         return retval;
2114 }
2115
2116 static void __init hugetlb_sysfs_init(void)
2117 {
2118         struct hstate *h;
2119         int err;
2120
2121         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2122         if (!hugepages_kobj)
2123                 return;
2124
2125         for_each_hstate(h) {
2126                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2127                                          hstate_kobjs, &hstate_attr_group);
2128                 if (err)
2129                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2130         }
2131 }
2132
2133 #ifdef CONFIG_NUMA
2134
2135 /*
2136  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2137  * with node devices in node_devices[] using a parallel array.  The array
2138  * index of a node device or _hstate == node id.
2139  * This is here to avoid any static dependency of the node device driver, in
2140  * the base kernel, on the hugetlb module.
2141  */
2142 struct node_hstate {
2143         struct kobject          *hugepages_kobj;
2144         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2145 };
2146 struct node_hstate node_hstates[MAX_NUMNODES];
2147
2148 /*
2149  * A subset of global hstate attributes for node devices
2150  */
2151 static struct attribute *per_node_hstate_attrs[] = {
2152         &nr_hugepages_attr.attr,
2153         &free_hugepages_attr.attr,
2154         &surplus_hugepages_attr.attr,
2155         NULL,
2156 };
2157
2158 static struct attribute_group per_node_hstate_attr_group = {
2159         .attrs = per_node_hstate_attrs,
2160 };
2161
2162 /*
2163  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2164  * Returns node id via non-NULL nidp.
2165  */
2166 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2167 {
2168         int nid;
2169
2170         for (nid = 0; nid < nr_node_ids; nid++) {
2171                 struct node_hstate *nhs = &node_hstates[nid];
2172                 int i;
2173                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2174                         if (nhs->hstate_kobjs[i] == kobj) {
2175                                 if (nidp)
2176                                         *nidp = nid;
2177                                 return &hstates[i];
2178                         }
2179         }
2180
2181         BUG();
2182         return NULL;
2183 }
2184
2185 /*
2186  * Unregister hstate attributes from a single node device.
2187  * No-op if no hstate attributes attached.
2188  */
2189 static void hugetlb_unregister_node(struct node *node)
2190 {
2191         struct hstate *h;
2192         struct node_hstate *nhs = &node_hstates[node->dev.id];
2193
2194         if (!nhs->hugepages_kobj)
2195                 return;         /* no hstate attributes */
2196
2197         for_each_hstate(h) {
2198                 int idx = hstate_index(h);
2199                 if (nhs->hstate_kobjs[idx]) {
2200                         kobject_put(nhs->hstate_kobjs[idx]);
2201                         nhs->hstate_kobjs[idx] = NULL;
2202                 }
2203         }
2204
2205         kobject_put(nhs->hugepages_kobj);
2206         nhs->hugepages_kobj = NULL;
2207 }
2208
2209 /*
2210  * hugetlb module exit:  unregister hstate attributes from node devices
2211  * that have them.
2212  */
2213 static void hugetlb_unregister_all_nodes(void)
2214 {
2215         int nid;
2216
2217         /*
2218          * disable node device registrations.
2219          */
2220         register_hugetlbfs_with_node(NULL, NULL);
2221
2222         /*
2223          * remove hstate attributes from any nodes that have them.
2224          */
2225         for (nid = 0; nid < nr_node_ids; nid++)
2226                 hugetlb_unregister_node(node_devices[nid]);
2227 }
2228
2229 /*
2230  * Register hstate attributes for a single node device.
2231  * No-op if attributes already registered.
2232  */
2233 static void hugetlb_register_node(struct node *node)
2234 {
2235         struct hstate *h;
2236         struct node_hstate *nhs = &node_hstates[node->dev.id];
2237         int err;
2238
2239         if (nhs->hugepages_kobj)
2240                 return;         /* already allocated */
2241
2242         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2243                                                         &node->dev.kobj);
2244         if (!nhs->hugepages_kobj)
2245                 return;
2246
2247         for_each_hstate(h) {
2248                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2249                                                 nhs->hstate_kobjs,
2250                                                 &per_node_hstate_attr_group);
2251                 if (err) {
2252                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2253                                 h->name, node->dev.id);
2254                         hugetlb_unregister_node(node);
2255                         break;
2256                 }
2257         }
2258 }
2259
2260 /*
2261  * hugetlb init time:  register hstate attributes for all registered node
2262  * devices of nodes that have memory.  All on-line nodes should have
2263  * registered their associated device by this time.
2264  */
2265 static void __init hugetlb_register_all_nodes(void)
2266 {
2267         int nid;
2268
2269         for_each_node_state(nid, N_MEMORY) {
2270                 struct node *node = node_devices[nid];
2271                 if (node->dev.id == nid)
2272                         hugetlb_register_node(node);
2273         }
2274
2275         /*
2276          * Let the node device driver know we're here so it can
2277          * [un]register hstate attributes on node hotplug.
2278          */
2279         register_hugetlbfs_with_node(hugetlb_register_node,
2280                                      hugetlb_unregister_node);
2281 }
2282 #else   /* !CONFIG_NUMA */
2283
2284 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2285 {
2286         BUG();
2287         if (nidp)
2288                 *nidp = -1;
2289         return NULL;
2290 }
2291
2292 static void hugetlb_unregister_all_nodes(void) { }
2293
2294 static void hugetlb_register_all_nodes(void) { }
2295
2296 #endif
2297
2298 static void __exit hugetlb_exit(void)
2299 {
2300         struct hstate *h;
2301
2302         hugetlb_unregister_all_nodes();
2303
2304         for_each_hstate(h) {
2305                 kobject_put(hstate_kobjs[hstate_index(h)]);
2306         }
2307
2308         kobject_put(hugepages_kobj);
2309         kfree(htlb_fault_mutex_table);
2310 }
2311 module_exit(hugetlb_exit);
2312
2313 static int __init hugetlb_init(void)
2314 {
2315         int i;
2316
2317         if (!hugepages_supported())
2318                 return 0;
2319
2320         if (!size_to_hstate(default_hstate_size)) {
2321                 default_hstate_size = HPAGE_SIZE;
2322                 if (!size_to_hstate(default_hstate_size))
2323                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2324         }
2325         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2326         if (default_hstate_max_huge_pages)
2327                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2328
2329         hugetlb_init_hstates();
2330         gather_bootmem_prealloc();
2331         report_hugepages();
2332
2333         hugetlb_sysfs_init();
2334         hugetlb_register_all_nodes();
2335         hugetlb_cgroup_file_init();
2336
2337 #ifdef CONFIG_SMP
2338         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2339 #else
2340         num_fault_mutexes = 1;
2341 #endif
2342         htlb_fault_mutex_table =
2343                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2344         BUG_ON(!htlb_fault_mutex_table);
2345
2346         for (i = 0; i < num_fault_mutexes; i++)
2347                 mutex_init(&htlb_fault_mutex_table[i]);
2348         return 0;
2349 }
2350 module_init(hugetlb_init);
2351
2352 /* Should be called on processing a hugepagesz=... option */
2353 void __init hugetlb_add_hstate(unsigned order)
2354 {
2355         struct hstate *h;
2356         unsigned long i;
2357
2358         if (size_to_hstate(PAGE_SIZE << order)) {
2359                 pr_warning("hugepagesz= specified twice, ignoring\n");
2360                 return;
2361         }
2362         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2363         BUG_ON(order == 0);
2364         h = &hstates[hugetlb_max_hstate++];
2365         h->order = order;
2366         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2367         h->nr_huge_pages = 0;
2368         h->free_huge_pages = 0;
2369         for (i = 0; i < MAX_NUMNODES; ++i)
2370                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2371         INIT_LIST_HEAD(&h->hugepage_activelist);
2372         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2373         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2374         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2375                                         huge_page_size(h)/1024);
2376
2377         parsed_hstate = h;
2378 }
2379
2380 static int __init hugetlb_nrpages_setup(char *s)
2381 {
2382         unsigned long *mhp;
2383         static unsigned long *last_mhp;
2384
2385         /*
2386          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2387          * so this hugepages= parameter goes to the "default hstate".
2388          */
2389         if (!hugetlb_max_hstate)
2390                 mhp = &default_hstate_max_huge_pages;
2391         else
2392                 mhp = &parsed_hstate->max_huge_pages;
2393
2394         if (mhp == last_mhp) {
2395                 pr_warning("hugepages= specified twice without "
2396                            "interleaving hugepagesz=, ignoring\n");
2397                 return 1;
2398         }
2399
2400         if (sscanf(s, "%lu", mhp) <= 0)
2401                 *mhp = 0;
2402
2403         /*
2404          * Global state is always initialized later in hugetlb_init.
2405          * But we need to allocate >= MAX_ORDER hstates here early to still
2406          * use the bootmem allocator.
2407          */
2408         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2409                 hugetlb_hstate_alloc_pages(parsed_hstate);
2410
2411         last_mhp = mhp;
2412
2413         return 1;
2414 }
2415 __setup("hugepages=", hugetlb_nrpages_setup);
2416
2417 static int __init hugetlb_default_setup(char *s)
2418 {
2419         default_hstate_size = memparse(s, &s);
2420         return 1;
2421 }
2422 __setup("default_hugepagesz=", hugetlb_default_setup);
2423
2424 static unsigned int cpuset_mems_nr(unsigned int *array)
2425 {
2426         int node;
2427         unsigned int nr = 0;
2428
2429         for_each_node_mask(node, cpuset_current_mems_allowed)
2430                 nr += array[node];
2431
2432         return nr;
2433 }
2434
2435 #ifdef CONFIG_SYSCTL
2436 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2437                          struct ctl_table *table, int write,
2438                          void __user *buffer, size_t *length, loff_t *ppos)
2439 {
2440         struct hstate *h = &default_hstate;
2441         unsigned long tmp = h->max_huge_pages;
2442         int ret;
2443
2444         if (!hugepages_supported())
2445                 return -ENOTSUPP;
2446
2447         table->data = &tmp;
2448         table->maxlen = sizeof(unsigned long);
2449         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2450         if (ret)
2451                 goto out;
2452
2453         if (write)
2454                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2455                                                   NUMA_NO_NODE, tmp, *length);
2456 out:
2457         return ret;
2458 }
2459
2460 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2461                           void __user *buffer, size_t *length, loff_t *ppos)
2462 {
2463
2464         return hugetlb_sysctl_handler_common(false, table, write,
2465                                                         buffer, length, ppos);
2466 }
2467
2468 #ifdef CONFIG_NUMA
2469 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2470                           void __user *buffer, size_t *length, loff_t *ppos)
2471 {
2472         return hugetlb_sysctl_handler_common(true, table, write,
2473                                                         buffer, length, ppos);
2474 }
2475 #endif /* CONFIG_NUMA */
2476
2477 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2478                         void __user *buffer,
2479                         size_t *length, loff_t *ppos)
2480 {
2481         struct hstate *h = &default_hstate;
2482         unsigned long tmp;
2483         int ret;
2484
2485         if (!hugepages_supported())
2486                 return -ENOTSUPP;
2487
2488         tmp = h->nr_overcommit_huge_pages;
2489
2490         if (write && hstate_is_gigantic(h))
2491                 return -EINVAL;
2492
2493         table->data = &tmp;
2494         table->maxlen = sizeof(unsigned long);
2495         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2496         if (ret)
2497                 goto out;
2498
2499         if (write) {
2500                 spin_lock(&hugetlb_lock);
2501                 h->nr_overcommit_huge_pages = tmp;
2502                 spin_unlock(&hugetlb_lock);
2503         }
2504 out:
2505         return ret;
2506 }
2507
2508 #endif /* CONFIG_SYSCTL */
2509
2510 void hugetlb_report_meminfo(struct seq_file *m)
2511 {
2512         struct hstate *h = &default_hstate;
2513         if (!hugepages_supported())
2514                 return;
2515         seq_printf(m,
2516                         "HugePages_Total:   %5lu\n"
2517                         "HugePages_Free:    %5lu\n"
2518                         "HugePages_Rsvd:    %5lu\n"
2519                         "HugePages_Surp:    %5lu\n"
2520                         "Hugepagesize:   %8lu kB\n",
2521                         h->nr_huge_pages,
2522                         h->free_huge_pages,
2523                         h->resv_huge_pages,
2524                         h->surplus_huge_pages,
2525                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2526 }
2527
2528 int hugetlb_report_node_meminfo(int nid, char *buf)
2529 {
2530         struct hstate *h = &default_hstate;
2531         if (!hugepages_supported())
2532                 return 0;
2533         return sprintf(buf,
2534                 "Node %d HugePages_Total: %5u\n"
2535                 "Node %d HugePages_Free:  %5u\n"
2536                 "Node %d HugePages_Surp:  %5u\n",
2537                 nid, h->nr_huge_pages_node[nid],
2538                 nid, h->free_huge_pages_node[nid],
2539                 nid, h->surplus_huge_pages_node[nid]);
2540 }
2541
2542 void hugetlb_show_meminfo(void)
2543 {
2544         struct hstate *h;
2545         int nid;
2546
2547         if (!hugepages_supported())
2548                 return;
2549
2550         for_each_node_state(nid, N_MEMORY)
2551                 for_each_hstate(h)
2552                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2553                                 nid,
2554                                 h->nr_huge_pages_node[nid],
2555                                 h->free_huge_pages_node[nid],
2556                                 h->surplus_huge_pages_node[nid],
2557                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2558 }
2559
2560 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2561 unsigned long hugetlb_total_pages(void)
2562 {
2563         struct hstate *h;
2564         unsigned long nr_total_pages = 0;
2565
2566         for_each_hstate(h)
2567                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2568         return nr_total_pages;
2569 }
2570
2571 static int hugetlb_acct_memory(struct hstate *h, long delta)
2572 {
2573         int ret = -ENOMEM;
2574
2575         spin_lock(&hugetlb_lock);
2576         /*
2577          * When cpuset is configured, it breaks the strict hugetlb page
2578          * reservation as the accounting is done on a global variable. Such
2579          * reservation is completely rubbish in the presence of cpuset because
2580          * the reservation is not checked against page availability for the
2581          * current cpuset. Application can still potentially OOM'ed by kernel
2582          * with lack of free htlb page in cpuset that the task is in.
2583          * Attempt to enforce strict accounting with cpuset is almost
2584          * impossible (or too ugly) because cpuset is too fluid that
2585          * task or memory node can be dynamically moved between cpusets.
2586          *
2587          * The change of semantics for shared hugetlb mapping with cpuset is
2588          * undesirable. However, in order to preserve some of the semantics,
2589          * we fall back to check against current free page availability as
2590          * a best attempt and hopefully to minimize the impact of changing
2591          * semantics that cpuset has.
2592          */
2593         if (delta > 0) {
2594                 if (gather_surplus_pages(h, delta) < 0)
2595                         goto out;
2596
2597                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2598                         return_unused_surplus_pages(h, delta);
2599                         goto out;
2600                 }
2601         }
2602
2603         ret = 0;
2604         if (delta < 0)
2605                 return_unused_surplus_pages(h, (unsigned long) -delta);
2606
2607 out:
2608         spin_unlock(&hugetlb_lock);
2609         return ret;
2610 }
2611
2612 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2613 {
2614         struct resv_map *resv = vma_resv_map(vma);
2615
2616         /*
2617          * This new VMA should share its siblings reservation map if present.
2618          * The VMA will only ever have a valid reservation map pointer where
2619          * it is being copied for another still existing VMA.  As that VMA
2620          * has a reference to the reservation map it cannot disappear until
2621          * after this open call completes.  It is therefore safe to take a
2622          * new reference here without additional locking.
2623          */
2624         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2625                 kref_get(&resv->refs);
2626 }
2627
2628 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2629 {
2630         struct hstate *h = hstate_vma(vma);
2631         struct resv_map *resv = vma_resv_map(vma);
2632         struct hugepage_subpool *spool = subpool_vma(vma);
2633         unsigned long reserve, start, end;
2634         long gbl_reserve;
2635
2636         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2637                 return;
2638
2639         start = vma_hugecache_offset(h, vma, vma->vm_start);
2640         end = vma_hugecache_offset(h, vma, vma->vm_end);
2641
2642         reserve = (end - start) - region_count(resv, start, end);
2643
2644         kref_put(&resv->refs, resv_map_release);
2645
2646         if (reserve) {
2647                 /*
2648                  * Decrement reserve counts.  The global reserve count may be
2649                  * adjusted if the subpool has a minimum size.
2650                  */
2651                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2652                 hugetlb_acct_memory(h, -gbl_reserve);
2653         }
2654 }
2655
2656 /*
2657  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2658  * handle_mm_fault() to try to instantiate regular-sized pages in the
2659  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2660  * this far.
2661  */
2662 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2663 {
2664         BUG();
2665         return 0;
2666 }
2667
2668 const struct vm_operations_struct hugetlb_vm_ops = {
2669         .fault = hugetlb_vm_op_fault,
2670         .open = hugetlb_vm_op_open,
2671         .close = hugetlb_vm_op_close,
2672 };
2673
2674 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2675                                 int writable)
2676 {
2677         pte_t entry;
2678
2679         if (writable) {
2680                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2681                                          vma->vm_page_prot)));
2682         } else {
2683                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2684                                            vma->vm_page_prot));
2685         }
2686         entry = pte_mkyoung(entry);
2687         entry = pte_mkhuge(entry);
2688         entry = arch_make_huge_pte(entry, vma, page, writable);
2689
2690         return entry;
2691 }
2692
2693 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2694                                    unsigned long address, pte_t *ptep)
2695 {
2696         pte_t entry;
2697
2698         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2699         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2700                 update_mmu_cache(vma, address, ptep);
2701 }
2702
2703 static int is_hugetlb_entry_migration(pte_t pte)
2704 {
2705         swp_entry_t swp;
2706
2707         if (huge_pte_none(pte) || pte_present(pte))
2708                 return 0;
2709         swp = pte_to_swp_entry(pte);
2710         if (non_swap_entry(swp) && is_migration_entry(swp))
2711                 return 1;
2712         else
2713                 return 0;
2714 }
2715
2716 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2717 {
2718         swp_entry_t swp;
2719
2720         if (huge_pte_none(pte) || pte_present(pte))
2721                 return 0;
2722         swp = pte_to_swp_entry(pte);
2723         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2724                 return 1;
2725         else
2726                 return 0;
2727 }
2728
2729 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2730                             struct vm_area_struct *vma)
2731 {
2732         pte_t *src_pte, *dst_pte, entry;
2733         struct page *ptepage;
2734         unsigned long addr;
2735         int cow;
2736         struct hstate *h = hstate_vma(vma);
2737         unsigned long sz = huge_page_size(h);
2738         unsigned long mmun_start;       /* For mmu_notifiers */
2739         unsigned long mmun_end;         /* For mmu_notifiers */
2740         int ret = 0;
2741
2742         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2743
2744         mmun_start = vma->vm_start;
2745         mmun_end = vma->vm_end;
2746         if (cow)
2747                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2748
2749         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2750                 spinlock_t *src_ptl, *dst_ptl;
2751                 src_pte = huge_pte_offset(src, addr);
2752                 if (!src_pte)
2753                         continue;
2754                 dst_pte = huge_pte_alloc(dst, addr, sz);
2755                 if (!dst_pte) {
2756                         ret = -ENOMEM;
2757                         break;
2758                 }
2759
2760                 /* If the pagetables are shared don't copy or take references */
2761                 if (dst_pte == src_pte)
2762                         continue;
2763
2764                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2765                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2766                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2767                 entry = huge_ptep_get(src_pte);
2768                 if (huge_pte_none(entry)) { /* skip none entry */
2769                         ;
2770                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2771                                     is_hugetlb_entry_hwpoisoned(entry))) {
2772                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2773
2774                         if (is_write_migration_entry(swp_entry) && cow) {
2775                                 /*
2776                                  * COW mappings require pages in both
2777                                  * parent and child to be set to read.
2778                                  */
2779                                 make_migration_entry_read(&swp_entry);
2780                                 entry = swp_entry_to_pte(swp_entry);
2781                                 set_huge_pte_at(src, addr, src_pte, entry);
2782                         }
2783                         set_huge_pte_at(dst, addr, dst_pte, entry);
2784                 } else {
2785                         if (cow) {
2786                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2787                                 mmu_notifier_invalidate_range(src, mmun_start,
2788                                                                    mmun_end);
2789                         }
2790                         entry = huge_ptep_get(src_pte);
2791                         ptepage = pte_page(entry);
2792                         get_page(ptepage);
2793                         page_dup_rmap(ptepage);
2794                         set_huge_pte_at(dst, addr, dst_pte, entry);
2795                 }
2796                 spin_unlock(src_ptl);
2797                 spin_unlock(dst_ptl);
2798         }
2799
2800         if (cow)
2801                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2802
2803         return ret;
2804 }
2805
2806 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2807                             unsigned long start, unsigned long end,
2808                             struct page *ref_page)
2809 {
2810         int force_flush = 0;
2811         struct mm_struct *mm = vma->vm_mm;
2812         unsigned long address;
2813         pte_t *ptep;
2814         pte_t pte;
2815         spinlock_t *ptl;
2816         struct page *page;
2817         struct hstate *h = hstate_vma(vma);
2818         unsigned long sz = huge_page_size(h);
2819         const unsigned long mmun_start = start; /* For mmu_notifiers */
2820         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2821
2822         WARN_ON(!is_vm_hugetlb_page(vma));
2823         BUG_ON(start & ~huge_page_mask(h));
2824         BUG_ON(end & ~huge_page_mask(h));
2825
2826         tlb_start_vma(tlb, vma);
2827         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2828         address = start;
2829 again:
2830         for (; address < end; address += sz) {
2831                 ptep = huge_pte_offset(mm, address);
2832                 if (!ptep)
2833                         continue;
2834
2835                 ptl = huge_pte_lock(h, mm, ptep);
2836                 if (huge_pmd_unshare(mm, &address, ptep))
2837                         goto unlock;
2838
2839                 pte = huge_ptep_get(ptep);
2840                 if (huge_pte_none(pte))
2841                         goto unlock;
2842
2843                 /*
2844                  * Migrating hugepage or HWPoisoned hugepage is already
2845                  * unmapped and its refcount is dropped, so just clear pte here.
2846                  */
2847                 if (unlikely(!pte_present(pte))) {
2848                         huge_pte_clear(mm, address, ptep);
2849                         goto unlock;
2850                 }
2851
2852                 page = pte_page(pte);
2853                 /*
2854                  * If a reference page is supplied, it is because a specific
2855                  * page is being unmapped, not a range. Ensure the page we
2856                  * are about to unmap is the actual page of interest.
2857                  */
2858                 if (ref_page) {
2859                         if (page != ref_page)
2860                                 goto unlock;
2861
2862                         /*
2863                          * Mark the VMA as having unmapped its page so that
2864                          * future faults in this VMA will fail rather than
2865                          * looking like data was lost
2866                          */
2867                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2868                 }
2869
2870                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2871                 tlb_remove_tlb_entry(tlb, ptep, address);
2872                 if (huge_pte_dirty(pte))
2873                         set_page_dirty(page);
2874
2875                 page_remove_rmap(page);
2876                 force_flush = !__tlb_remove_page(tlb, page);
2877                 if (force_flush) {
2878                         address += sz;
2879                         spin_unlock(ptl);
2880                         break;
2881                 }
2882                 /* Bail out after unmapping reference page if supplied */
2883                 if (ref_page) {
2884                         spin_unlock(ptl);
2885                         break;
2886                 }
2887 unlock:
2888                 spin_unlock(ptl);
2889         }
2890         /*
2891          * mmu_gather ran out of room to batch pages, we break out of
2892          * the PTE lock to avoid doing the potential expensive TLB invalidate
2893          * and page-free while holding it.
2894          */
2895         if (force_flush) {
2896                 force_flush = 0;
2897                 tlb_flush_mmu(tlb);
2898                 if (address < end && !ref_page)
2899                         goto again;
2900         }
2901         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2902         tlb_end_vma(tlb, vma);
2903 }
2904
2905 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2906                           struct vm_area_struct *vma, unsigned long start,
2907                           unsigned long end, struct page *ref_page)
2908 {
2909         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2910
2911         /*
2912          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2913          * test will fail on a vma being torn down, and not grab a page table
2914          * on its way out.  We're lucky that the flag has such an appropriate
2915          * name, and can in fact be safely cleared here. We could clear it
2916          * before the __unmap_hugepage_range above, but all that's necessary
2917          * is to clear it before releasing the i_mmap_rwsem. This works
2918          * because in the context this is called, the VMA is about to be
2919          * destroyed and the i_mmap_rwsem is held.
2920          */
2921         vma->vm_flags &= ~VM_MAYSHARE;
2922 }
2923
2924 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2925                           unsigned long end, struct page *ref_page)
2926 {
2927         struct mm_struct *mm;
2928         struct mmu_gather tlb;
2929
2930         mm = vma->vm_mm;
2931
2932         tlb_gather_mmu(&tlb, mm, start, end);
2933         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2934         tlb_finish_mmu(&tlb, start, end);
2935 }
2936
2937 /*
2938  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2939  * mappping it owns the reserve page for. The intention is to unmap the page
2940  * from other VMAs and let the children be SIGKILLed if they are faulting the
2941  * same region.
2942  */
2943 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2944                               struct page *page, unsigned long address)
2945 {
2946         struct hstate *h = hstate_vma(vma);
2947         struct vm_area_struct *iter_vma;
2948         struct address_space *mapping;
2949         pgoff_t pgoff;
2950
2951         /*
2952          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2953          * from page cache lookup which is in HPAGE_SIZE units.
2954          */
2955         address = address & huge_page_mask(h);
2956         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2957                         vma->vm_pgoff;
2958         mapping = file_inode(vma->vm_file)->i_mapping;
2959
2960         /*
2961          * Take the mapping lock for the duration of the table walk. As
2962          * this mapping should be shared between all the VMAs,
2963          * __unmap_hugepage_range() is called as the lock is already held
2964          */
2965         i_mmap_lock_write(mapping);
2966         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2967                 /* Do not unmap the current VMA */
2968                 if (iter_vma == vma)
2969                         continue;
2970
2971                 /*
2972                  * Unmap the page from other VMAs without their own reserves.
2973                  * They get marked to be SIGKILLed if they fault in these
2974                  * areas. This is because a future no-page fault on this VMA
2975                  * could insert a zeroed page instead of the data existing
2976                  * from the time of fork. This would look like data corruption
2977                  */
2978                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2979                         unmap_hugepage_range(iter_vma, address,
2980                                              address + huge_page_size(h), page);
2981         }
2982         i_mmap_unlock_write(mapping);
2983 }
2984
2985 /*
2986  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2987  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2988  * cannot race with other handlers or page migration.
2989  * Keep the pte_same checks anyway to make transition from the mutex easier.
2990  */
2991 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2992                         unsigned long address, pte_t *ptep, pte_t pte,
2993                         struct page *pagecache_page, spinlock_t *ptl)
2994 {
2995         struct hstate *h = hstate_vma(vma);
2996         struct page *old_page, *new_page;
2997         int ret = 0, outside_reserve = 0;
2998         unsigned long mmun_start;       /* For mmu_notifiers */
2999         unsigned long mmun_end;         /* For mmu_notifiers */
3000
3001         old_page = pte_page(pte);
3002
3003 retry_avoidcopy:
3004         /* If no-one else is actually using this page, avoid the copy
3005          * and just make the page writable */
3006         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3007                 page_move_anon_rmap(old_page, vma, address);
3008                 set_huge_ptep_writable(vma, address, ptep);
3009                 return 0;
3010         }
3011
3012         /*
3013          * If the process that created a MAP_PRIVATE mapping is about to
3014          * perform a COW due to a shared page count, attempt to satisfy
3015          * the allocation without using the existing reserves. The pagecache
3016          * page is used to determine if the reserve at this address was
3017          * consumed or not. If reserves were used, a partial faulted mapping
3018          * at the time of fork() could consume its reserves on COW instead
3019          * of the full address range.
3020          */
3021         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3022                         old_page != pagecache_page)
3023                 outside_reserve = 1;
3024
3025         page_cache_get(old_page);
3026
3027         /*
3028          * Drop page table lock as buddy allocator may be called. It will
3029          * be acquired again before returning to the caller, as expected.
3030          */
3031         spin_unlock(ptl);
3032         new_page = alloc_huge_page(vma, address, outside_reserve);
3033
3034         if (IS_ERR(new_page)) {
3035                 /*
3036                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3037                  * it is due to references held by a child and an insufficient
3038                  * huge page pool. To guarantee the original mappers
3039                  * reliability, unmap the page from child processes. The child
3040                  * may get SIGKILLed if it later faults.
3041                  */
3042                 if (outside_reserve) {
3043                         page_cache_release(old_page);
3044                         BUG_ON(huge_pte_none(pte));
3045                         unmap_ref_private(mm, vma, old_page, address);
3046                         BUG_ON(huge_pte_none(pte));
3047                         spin_lock(ptl);
3048                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3049                         if (likely(ptep &&
3050                                    pte_same(huge_ptep_get(ptep), pte)))
3051                                 goto retry_avoidcopy;
3052                         /*
3053                          * race occurs while re-acquiring page table
3054                          * lock, and our job is done.
3055                          */
3056                         return 0;
3057                 }
3058
3059                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3060                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3061                 goto out_release_old;
3062         }
3063
3064         /*
3065          * When the original hugepage is shared one, it does not have
3066          * anon_vma prepared.
3067          */
3068         if (unlikely(anon_vma_prepare(vma))) {
3069                 ret = VM_FAULT_OOM;
3070                 goto out_release_all;
3071         }
3072
3073         copy_user_huge_page(new_page, old_page, address, vma,
3074                             pages_per_huge_page(h));
3075         __SetPageUptodate(new_page);
3076         set_page_huge_active(new_page);
3077
3078         mmun_start = address & huge_page_mask(h);
3079         mmun_end = mmun_start + huge_page_size(h);
3080         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3081
3082         /*
3083          * Retake the page table lock to check for racing updates
3084          * before the page tables are altered
3085          */
3086         spin_lock(ptl);
3087         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3088         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3089                 ClearPagePrivate(new_page);
3090
3091                 /* Break COW */
3092                 huge_ptep_clear_flush(vma, address, ptep);
3093                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3094                 set_huge_pte_at(mm, address, ptep,
3095                                 make_huge_pte(vma, new_page, 1));
3096                 page_remove_rmap(old_page);
3097                 hugepage_add_new_anon_rmap(new_page, vma, address);
3098                 /* Make the old page be freed below */
3099                 new_page = old_page;
3100         }
3101         spin_unlock(ptl);
3102         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3103 out_release_all:
3104         page_cache_release(new_page);
3105 out_release_old:
3106         page_cache_release(old_page);
3107
3108         spin_lock(ptl); /* Caller expects lock to be held */
3109         return ret;
3110 }
3111
3112 /* Return the pagecache page at a given address within a VMA */
3113 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3114                         struct vm_area_struct *vma, unsigned long address)
3115 {
3116         struct address_space *mapping;
3117         pgoff_t idx;
3118
3119         mapping = vma->vm_file->f_mapping;
3120         idx = vma_hugecache_offset(h, vma, address);
3121
3122         return find_lock_page(mapping, idx);
3123 }
3124
3125 /*
3126  * Return whether there is a pagecache page to back given address within VMA.
3127  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3128  */
3129 static bool hugetlbfs_pagecache_present(struct hstate *h,
3130                         struct vm_area_struct *vma, unsigned long address)
3131 {
3132         struct address_space *mapping;
3133         pgoff_t idx;
3134         struct page *page;
3135
3136         mapping = vma->vm_file->f_mapping;
3137         idx = vma_hugecache_offset(h, vma, address);
3138
3139         page = find_get_page(mapping, idx);
3140         if (page)
3141                 put_page(page);
3142         return page != NULL;
3143 }
3144
3145 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3146                            struct address_space *mapping, pgoff_t idx,
3147                            unsigned long address, pte_t *ptep, unsigned int flags)
3148 {
3149         struct hstate *h = hstate_vma(vma);
3150         int ret = VM_FAULT_SIGBUS;
3151         int anon_rmap = 0;
3152         unsigned long size;
3153         struct page *page;
3154         pte_t new_pte;
3155         spinlock_t *ptl;
3156
3157         /*
3158          * Currently, we are forced to kill the process in the event the
3159          * original mapper has unmapped pages from the child due to a failed
3160          * COW. Warn that such a situation has occurred as it may not be obvious
3161          */
3162         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3163                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3164                            current->pid);
3165                 return ret;
3166         }
3167
3168         /*
3169          * Use page lock to guard against racing truncation
3170          * before we get page_table_lock.
3171          */
3172 retry:
3173         page = find_lock_page(mapping, idx);
3174         if (!page) {
3175                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3176                 if (idx >= size)
3177                         goto out;
3178                 page = alloc_huge_page(vma, address, 0);
3179                 if (IS_ERR(page)) {
3180                         ret = PTR_ERR(page);
3181                         if (ret == -ENOMEM)
3182                                 ret = VM_FAULT_OOM;
3183                         else
3184                                 ret = VM_FAULT_SIGBUS;
3185                         goto out;
3186                 }
3187                 clear_huge_page(page, address, pages_per_huge_page(h));
3188                 __SetPageUptodate(page);
3189                 set_page_huge_active(page);
3190
3191                 if (vma->vm_flags & VM_MAYSHARE) {
3192                         int err;
3193                         struct inode *inode = mapping->host;
3194
3195                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3196                         if (err) {
3197                                 put_page(page);
3198                                 if (err == -EEXIST)
3199                                         goto retry;
3200                                 goto out;
3201                         }
3202                         ClearPagePrivate(page);
3203
3204                         spin_lock(&inode->i_lock);
3205                         inode->i_blocks += blocks_per_huge_page(h);
3206                         spin_unlock(&inode->i_lock);
3207                 } else {
3208                         lock_page(page);
3209                         if (unlikely(anon_vma_prepare(vma))) {
3210                                 ret = VM_FAULT_OOM;
3211                                 goto backout_unlocked;
3212                         }
3213                         anon_rmap = 1;
3214                 }
3215         } else {
3216                 /*
3217                  * If memory error occurs between mmap() and fault, some process
3218                  * don't have hwpoisoned swap entry for errored virtual address.
3219                  * So we need to block hugepage fault by PG_hwpoison bit check.
3220                  */
3221                 if (unlikely(PageHWPoison(page))) {
3222                         ret = VM_FAULT_HWPOISON |
3223                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3224                         goto backout_unlocked;
3225                 }
3226         }
3227
3228         /*
3229          * If we are going to COW a private mapping later, we examine the
3230          * pending reservations for this page now. This will ensure that
3231          * any allocations necessary to record that reservation occur outside
3232          * the spinlock.
3233          */
3234         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3235                 if (vma_needs_reservation(h, vma, address) < 0) {
3236                         ret = VM_FAULT_OOM;
3237                         goto backout_unlocked;
3238                 }
3239
3240         ptl = huge_pte_lockptr(h, mm, ptep);
3241         spin_lock(ptl);
3242         size = i_size_read(mapping->host) >> huge_page_shift(h);
3243         if (idx >= size)
3244                 goto backout;
3245
3246         ret = 0;
3247         if (!huge_pte_none(huge_ptep_get(ptep)))
3248                 goto backout;
3249
3250         if (anon_rmap) {
3251                 ClearPagePrivate(page);
3252                 hugepage_add_new_anon_rmap(page, vma, address);
3253         } else
3254                 page_dup_rmap(page);
3255         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3256                                 && (vma->vm_flags & VM_SHARED)));
3257         set_huge_pte_at(mm, address, ptep, new_pte);
3258
3259         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3260                 /* Optimization, do the COW without a second fault */
3261                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3262         }
3263
3264         spin_unlock(ptl);
3265         unlock_page(page);
3266 out:
3267         return ret;
3268
3269 backout:
3270         spin_unlock(ptl);
3271 backout_unlocked:
3272         unlock_page(page);
3273         put_page(page);
3274         goto out;
3275 }
3276
3277 #ifdef CONFIG_SMP
3278 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3279                             struct vm_area_struct *vma,
3280                             struct address_space *mapping,
3281                             pgoff_t idx, unsigned long address)
3282 {
3283         unsigned long key[2];
3284         u32 hash;
3285
3286         if (vma->vm_flags & VM_SHARED) {
3287                 key[0] = (unsigned long) mapping;
3288                 key[1] = idx;
3289         } else {
3290                 key[0] = (unsigned long) mm;
3291                 key[1] = address >> huge_page_shift(h);
3292         }
3293
3294         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3295
3296         return hash & (num_fault_mutexes - 1);
3297 }
3298 #else
3299 /*
3300  * For uniprocesor systems we always use a single mutex, so just
3301  * return 0 and avoid the hashing overhead.
3302  */
3303 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3304                             struct vm_area_struct *vma,
3305                             struct address_space *mapping,
3306                             pgoff_t idx, unsigned long address)
3307 {
3308         return 0;
3309 }
3310 #endif
3311
3312 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3313                         unsigned long address, unsigned int flags)
3314 {
3315         pte_t *ptep, entry;
3316         spinlock_t *ptl;
3317         int ret;
3318         u32 hash;
3319         pgoff_t idx;
3320         struct page *page = NULL;
3321         struct page *pagecache_page = NULL;
3322         struct hstate *h = hstate_vma(vma);
3323         struct address_space *mapping;
3324         int need_wait_lock = 0;
3325
3326         address &= huge_page_mask(h);
3327
3328         ptep = huge_pte_offset(mm, address);
3329         if (ptep) {
3330                 entry = huge_ptep_get(ptep);
3331                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3332                         migration_entry_wait_huge(vma, mm, ptep);
3333                         return 0;
3334                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3335                         return VM_FAULT_HWPOISON_LARGE |
3336                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3337         }
3338
3339         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3340         if (!ptep)
3341                 return VM_FAULT_OOM;
3342
3343         mapping = vma->vm_file->f_mapping;
3344         idx = vma_hugecache_offset(h, vma, address);
3345
3346         /*
3347          * Serialize hugepage allocation and instantiation, so that we don't
3348          * get spurious allocation failures if two CPUs race to instantiate
3349          * the same page in the page cache.
3350          */
3351         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3352         mutex_lock(&htlb_fault_mutex_table[hash]);
3353
3354         entry = huge_ptep_get(ptep);
3355         if (huge_pte_none(entry)) {
3356                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3357                 goto out_mutex;
3358         }
3359
3360         ret = 0;
3361
3362         /*
3363          * entry could be a migration/hwpoison entry at this point, so this
3364          * check prevents the kernel from going below assuming that we have
3365          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3366          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3367          * handle it.
3368          */
3369         if (!pte_present(entry))
3370                 goto out_mutex;
3371
3372         /*
3373          * If we are going to COW the mapping later, we examine the pending
3374          * reservations for this page now. This will ensure that any
3375          * allocations necessary to record that reservation occur outside the
3376          * spinlock. For private mappings, we also lookup the pagecache
3377          * page now as it is used to determine if a reservation has been
3378          * consumed.
3379          */
3380         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3381                 if (vma_needs_reservation(h, vma, address) < 0) {
3382                         ret = VM_FAULT_OOM;
3383                         goto out_mutex;
3384                 }
3385
3386                 if (!(vma->vm_flags & VM_MAYSHARE))
3387                         pagecache_page = hugetlbfs_pagecache_page(h,
3388                                                                 vma, address);
3389         }
3390
3391         ptl = huge_pte_lock(h, mm, ptep);
3392
3393         /* Check for a racing update before calling hugetlb_cow */
3394         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3395                 goto out_ptl;
3396
3397         /*
3398          * hugetlb_cow() requires page locks of pte_page(entry) and
3399          * pagecache_page, so here we need take the former one
3400          * when page != pagecache_page or !pagecache_page.
3401          */
3402         page = pte_page(entry);
3403         if (page != pagecache_page)
3404                 if (!trylock_page(page)) {
3405                         need_wait_lock = 1;
3406                         goto out_ptl;
3407                 }
3408
3409         get_page(page);
3410
3411         if (flags & FAULT_FLAG_WRITE) {
3412                 if (!huge_pte_write(entry)) {
3413                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3414                                         pagecache_page, ptl);
3415                         goto out_put_page;
3416                 }
3417                 entry = huge_pte_mkdirty(entry);
3418         }
3419         entry = pte_mkyoung(entry);
3420         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3421                                                 flags & FAULT_FLAG_WRITE))
3422                 update_mmu_cache(vma, address, ptep);
3423 out_put_page:
3424         if (page != pagecache_page)
3425                 unlock_page(page);
3426         put_page(page);
3427 out_ptl:
3428         spin_unlock(ptl);
3429
3430         if (pagecache_page) {
3431                 unlock_page(pagecache_page);
3432                 put_page(pagecache_page);
3433         }
3434 out_mutex:
3435         mutex_unlock(&htlb_fault_mutex_table[hash]);
3436         /*
3437          * Generally it's safe to hold refcount during waiting page lock. But
3438          * here we just wait to defer the next page fault to avoid busy loop and
3439          * the page is not used after unlocked before returning from the current
3440          * page fault. So we are safe from accessing freed page, even if we wait
3441          * here without taking refcount.
3442          */
3443         if (need_wait_lock)
3444                 wait_on_page_locked(page);
3445         return ret;
3446 }
3447
3448 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3449                          struct page **pages, struct vm_area_struct **vmas,
3450                          unsigned long *position, unsigned long *nr_pages,
3451                          long i, unsigned int flags)
3452 {
3453         unsigned long pfn_offset;
3454         unsigned long vaddr = *position;
3455         unsigned long remainder = *nr_pages;
3456         struct hstate *h = hstate_vma(vma);
3457
3458         while (vaddr < vma->vm_end && remainder) {
3459                 pte_t *pte;
3460                 spinlock_t *ptl = NULL;
3461                 int absent;
3462                 struct page *page;
3463
3464                 /*
3465                  * If we have a pending SIGKILL, don't keep faulting pages and
3466                  * potentially allocating memory.
3467                  */
3468                 if (unlikely(fatal_signal_pending(current))) {
3469                         remainder = 0;
3470                         break;
3471                 }
3472
3473                 /*
3474                  * Some archs (sparc64, sh*) have multiple pte_ts to
3475                  * each hugepage.  We have to make sure we get the
3476                  * first, for the page indexing below to work.
3477                  *
3478                  * Note that page table lock is not held when pte is null.
3479                  */
3480                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3481                 if (pte)
3482                         ptl = huge_pte_lock(h, mm, pte);
3483                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3484
3485                 /*
3486                  * When coredumping, it suits get_dump_page if we just return
3487                  * an error where there's an empty slot with no huge pagecache
3488                  * to back it.  This way, we avoid allocating a hugepage, and
3489                  * the sparse dumpfile avoids allocating disk blocks, but its
3490                  * huge holes still show up with zeroes where they need to be.
3491                  */
3492                 if (absent && (flags & FOLL_DUMP) &&
3493                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3494                         if (pte)
3495                                 spin_unlock(ptl);
3496                         remainder = 0;
3497                         break;
3498                 }
3499
3500                 /*
3501                  * We need call hugetlb_fault for both hugepages under migration
3502                  * (in which case hugetlb_fault waits for the migration,) and
3503                  * hwpoisoned hugepages (in which case we need to prevent the
3504                  * caller from accessing to them.) In order to do this, we use
3505                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3506                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3507                  * both cases, and because we can't follow correct pages
3508                  * directly from any kind of swap entries.
3509                  */
3510                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3511                     ((flags & FOLL_WRITE) &&
3512                       !huge_pte_write(huge_ptep_get(pte)))) {
3513                         int ret;
3514
3515                         if (pte)
3516                                 spin_unlock(ptl);
3517                         ret = hugetlb_fault(mm, vma, vaddr,
3518                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3519                         if (!(ret & VM_FAULT_ERROR))
3520                                 continue;
3521
3522                         remainder = 0;
3523                         break;
3524                 }
3525
3526                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3527                 page = pte_page(huge_ptep_get(pte));
3528 same_page:
3529                 if (pages) {
3530                         pages[i] = mem_map_offset(page, pfn_offset);
3531                         get_page_foll(pages[i]);
3532                 }
3533
3534                 if (vmas)
3535                         vmas[i] = vma;
3536
3537                 vaddr += PAGE_SIZE;
3538                 ++pfn_offset;
3539                 --remainder;
3540                 ++i;
3541                 if (vaddr < vma->vm_end && remainder &&
3542                                 pfn_offset < pages_per_huge_page(h)) {
3543                         /*
3544                          * We use pfn_offset to avoid touching the pageframes
3545                          * of this compound page.
3546                          */
3547                         goto same_page;
3548                 }
3549                 spin_unlock(ptl);
3550         }
3551         *nr_pages = remainder;
3552         *position = vaddr;
3553
3554         return i ? i : -EFAULT;
3555 }
3556
3557 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3558                 unsigned long address, unsigned long end, pgprot_t newprot)
3559 {
3560         struct mm_struct *mm = vma->vm_mm;
3561         unsigned long start = address;
3562         pte_t *ptep;
3563         pte_t pte;
3564         struct hstate *h = hstate_vma(vma);
3565         unsigned long pages = 0;
3566
3567         BUG_ON(address >= end);
3568         flush_cache_range(vma, address, end);
3569
3570         mmu_notifier_invalidate_range_start(mm, start, end);
3571         i_mmap_lock_write(vma->vm_file->f_mapping);
3572         for (; address < end; address += huge_page_size(h)) {
3573                 spinlock_t *ptl;
3574                 ptep = huge_pte_offset(mm, address);
3575                 if (!ptep)
3576                         continue;
3577                 ptl = huge_pte_lock(h, mm, ptep);
3578                 if (huge_pmd_unshare(mm, &address, ptep)) {
3579                         pages++;
3580                         spin_unlock(ptl);
3581                         continue;
3582                 }
3583                 pte = huge_ptep_get(ptep);
3584                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3585                         spin_unlock(ptl);
3586                         continue;
3587                 }
3588                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3589                         swp_entry_t entry = pte_to_swp_entry(pte);
3590
3591                         if (is_write_migration_entry(entry)) {
3592                                 pte_t newpte;
3593
3594                                 make_migration_entry_read(&entry);
3595                                 newpte = swp_entry_to_pte(entry);
3596                                 set_huge_pte_at(mm, address, ptep, newpte);
3597                                 pages++;
3598                         }
3599                         spin_unlock(ptl);
3600                         continue;
3601                 }
3602                 if (!huge_pte_none(pte)) {
3603                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3604                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3605                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3606                         set_huge_pte_at(mm, address, ptep, pte);
3607                         pages++;
3608                 }
3609                 spin_unlock(ptl);
3610         }
3611         /*
3612          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3613          * may have cleared our pud entry and done put_page on the page table:
3614          * once we release i_mmap_rwsem, another task can do the final put_page
3615          * and that page table be reused and filled with junk.
3616          */
3617         flush_tlb_range(vma, start, end);
3618         mmu_notifier_invalidate_range(mm, start, end);
3619         i_mmap_unlock_write(vma->vm_file->f_mapping);
3620         mmu_notifier_invalidate_range_end(mm, start, end);
3621
3622         return pages << h->order;
3623 }
3624
3625 int hugetlb_reserve_pages(struct inode *inode,
3626                                         long from, long to,
3627                                         struct vm_area_struct *vma,
3628                                         vm_flags_t vm_flags)
3629 {
3630         long ret, chg;
3631         struct hstate *h = hstate_inode(inode);
3632         struct hugepage_subpool *spool = subpool_inode(inode);
3633         struct resv_map *resv_map;
3634         long gbl_reserve;
3635
3636         /*
3637          * Only apply hugepage reservation if asked. At fault time, an
3638          * attempt will be made for VM_NORESERVE to allocate a page
3639          * without using reserves
3640          */
3641         if (vm_flags & VM_NORESERVE)
3642                 return 0;
3643
3644         /*
3645          * Shared mappings base their reservation on the number of pages that
3646          * are already allocated on behalf of the file. Private mappings need
3647          * to reserve the full area even if read-only as mprotect() may be
3648          * called to make the mapping read-write. Assume !vma is a shm mapping
3649          */
3650         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3651                 resv_map = inode_resv_map(inode);
3652
3653                 chg = region_chg(resv_map, from, to);
3654
3655         } else {
3656                 resv_map = resv_map_alloc();
3657                 if (!resv_map)
3658                         return -ENOMEM;
3659
3660                 chg = to - from;
3661
3662                 set_vma_resv_map(vma, resv_map);
3663                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3664         }
3665
3666         if (chg < 0) {
3667                 ret = chg;
3668                 goto out_err;
3669         }
3670
3671         /*
3672          * There must be enough pages in the subpool for the mapping. If
3673          * the subpool has a minimum size, there may be some global
3674          * reservations already in place (gbl_reserve).
3675          */
3676         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3677         if (gbl_reserve < 0) {
3678                 ret = -ENOSPC;
3679                 goto out_err;
3680         }
3681
3682         /*
3683          * Check enough hugepages are available for the reservation.
3684          * Hand the pages back to the subpool if there are not
3685          */
3686         ret = hugetlb_acct_memory(h, gbl_reserve);
3687         if (ret < 0) {
3688                 /* put back original number of pages, chg */
3689                 (void)hugepage_subpool_put_pages(spool, chg);
3690                 goto out_err;
3691         }
3692
3693         /*
3694          * Account for the reservations made. Shared mappings record regions
3695          * that have reservations as they are shared by multiple VMAs.
3696          * When the last VMA disappears, the region map says how much
3697          * the reservation was and the page cache tells how much of
3698          * the reservation was consumed. Private mappings are per-VMA and
3699          * only the consumed reservations are tracked. When the VMA
3700          * disappears, the original reservation is the VMA size and the
3701          * consumed reservations are stored in the map. Hence, nothing
3702          * else has to be done for private mappings here
3703          */
3704         if (!vma || vma->vm_flags & VM_MAYSHARE)
3705                 region_add(resv_map, from, to);
3706         return 0;
3707 out_err:
3708         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3709                 kref_put(&resv_map->refs, resv_map_release);
3710         return ret;
3711 }
3712
3713 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3714 {
3715         struct hstate *h = hstate_inode(inode);
3716         struct resv_map *resv_map = inode_resv_map(inode);
3717         long chg = 0;
3718         struct hugepage_subpool *spool = subpool_inode(inode);
3719         long gbl_reserve;
3720
3721         if (resv_map)
3722                 chg = region_truncate(resv_map, offset);
3723         spin_lock(&inode->i_lock);
3724         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3725         spin_unlock(&inode->i_lock);
3726
3727         /*
3728          * If the subpool has a minimum size, the number of global
3729          * reservations to be released may be adjusted.
3730          */
3731         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3732         hugetlb_acct_memory(h, -gbl_reserve);
3733 }
3734
3735 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3736 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3737                                 struct vm_area_struct *vma,
3738                                 unsigned long addr, pgoff_t idx)
3739 {
3740         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3741                                 svma->vm_start;
3742         unsigned long sbase = saddr & PUD_MASK;
3743         unsigned long s_end = sbase + PUD_SIZE;
3744
3745         /* Allow segments to share if only one is marked locked */
3746         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3747         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3748
3749         /*
3750          * match the virtual addresses, permission and the alignment of the
3751          * page table page.
3752          */
3753         if (pmd_index(addr) != pmd_index(saddr) ||
3754             vm_flags != svm_flags ||
3755             sbase < svma->vm_start || svma->vm_end < s_end)
3756                 return 0;
3757
3758         return saddr;
3759 }
3760
3761 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3762 {
3763         unsigned long base = addr & PUD_MASK;
3764         unsigned long end = base + PUD_SIZE;
3765
3766         /*
3767          * check on proper vm_flags and page table alignment
3768          */
3769         if (vma->vm_flags & VM_MAYSHARE &&
3770             vma->vm_start <= base && end <= vma->vm_end)
3771                 return 1;
3772         return 0;
3773 }
3774
3775 /*
3776  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3777  * and returns the corresponding pte. While this is not necessary for the
3778  * !shared pmd case because we can allocate the pmd later as well, it makes the
3779  * code much cleaner. pmd allocation is essential for the shared case because
3780  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3781  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3782  * bad pmd for sharing.
3783  */
3784 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3785 {
3786         struct vm_area_struct *vma = find_vma(mm, addr);
3787         struct address_space *mapping = vma->vm_file->f_mapping;
3788         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3789                         vma->vm_pgoff;
3790         struct vm_area_struct *svma;
3791         unsigned long saddr;
3792         pte_t *spte = NULL;
3793         pte_t *pte;
3794         spinlock_t *ptl;
3795
3796         if (!vma_shareable(vma, addr))
3797                 return (pte_t *)pmd_alloc(mm, pud, addr);
3798
3799         i_mmap_lock_write(mapping);
3800         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3801                 if (svma == vma)
3802                         continue;
3803
3804                 saddr = page_table_shareable(svma, vma, addr, idx);
3805                 if (saddr) {
3806                         spte = huge_pte_offset(svma->vm_mm, saddr);
3807                         if (spte) {
3808                                 mm_inc_nr_pmds(mm);
3809                                 get_page(virt_to_page(spte));
3810                                 break;
3811                         }
3812                 }
3813         }
3814
3815         if (!spte)
3816                 goto out;
3817
3818         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3819         spin_lock(ptl);
3820         if (pud_none(*pud)) {
3821                 pud_populate(mm, pud,
3822                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3823         } else {
3824                 put_page(virt_to_page(spte));
3825                 mm_inc_nr_pmds(mm);
3826         }
3827         spin_unlock(ptl);
3828 out:
3829         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3830         i_mmap_unlock_write(mapping);
3831         return pte;
3832 }
3833
3834 /*
3835  * unmap huge page backed by shared pte.
3836  *
3837  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3838  * indicated by page_count > 1, unmap is achieved by clearing pud and
3839  * decrementing the ref count. If count == 1, the pte page is not shared.
3840  *
3841  * called with page table lock held.
3842  *
3843  * returns: 1 successfully unmapped a shared pte page
3844  *          0 the underlying pte page is not shared, or it is the last user
3845  */
3846 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3847 {
3848         pgd_t *pgd = pgd_offset(mm, *addr);
3849         pud_t *pud = pud_offset(pgd, *addr);
3850
3851         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3852         if (page_count(virt_to_page(ptep)) == 1)
3853                 return 0;
3854
3855         pud_clear(pud);
3856         put_page(virt_to_page(ptep));
3857         mm_dec_nr_pmds(mm);
3858         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3859         return 1;
3860 }
3861 #define want_pmd_share()        (1)
3862 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3863 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3864 {
3865         return NULL;
3866 }
3867
3868 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3869 {
3870         return 0;
3871 }
3872 #define want_pmd_share()        (0)
3873 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3874
3875 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3876 pte_t *huge_pte_alloc(struct mm_struct *mm,
3877                         unsigned long addr, unsigned long sz)
3878 {
3879         pgd_t *pgd;
3880         pud_t *pud;
3881         pte_t *pte = NULL;
3882
3883         pgd = pgd_offset(mm, addr);
3884         pud = pud_alloc(mm, pgd, addr);
3885         if (pud) {
3886                 if (sz == PUD_SIZE) {
3887                         pte = (pte_t *)pud;
3888                 } else {
3889                         BUG_ON(sz != PMD_SIZE);
3890                         if (want_pmd_share() && pud_none(*pud))
3891                                 pte = huge_pmd_share(mm, addr, pud);
3892                         else
3893                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3894                 }
3895         }
3896         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3897
3898         return pte;
3899 }
3900
3901 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3902 {
3903         pgd_t *pgd;
3904         pud_t *pud;
3905         pmd_t *pmd = NULL;
3906
3907         pgd = pgd_offset(mm, addr);
3908         if (pgd_present(*pgd)) {
3909                 pud = pud_offset(pgd, addr);
3910                 if (pud_present(*pud)) {
3911                         if (pud_huge(*pud))
3912                                 return (pte_t *)pud;
3913                         pmd = pmd_offset(pud, addr);
3914                 }
3915         }
3916         return (pte_t *) pmd;
3917 }
3918
3919 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3920
3921 /*
3922  * These functions are overwritable if your architecture needs its own
3923  * behavior.
3924  */
3925 struct page * __weak
3926 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3927                               int write)
3928 {
3929         return ERR_PTR(-EINVAL);
3930 }
3931
3932 struct page * __weak
3933 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3934                 pmd_t *pmd, int flags)
3935 {
3936         struct page *page = NULL;
3937         spinlock_t *ptl;
3938 retry:
3939         ptl = pmd_lockptr(mm, pmd);
3940         spin_lock(ptl);
3941         /*
3942          * make sure that the address range covered by this pmd is not
3943          * unmapped from other threads.
3944          */
3945         if (!pmd_huge(*pmd))
3946                 goto out;
3947         if (pmd_present(*pmd)) {
3948                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3949                 if (flags & FOLL_GET)
3950                         get_page(page);
3951         } else {
3952                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3953                         spin_unlock(ptl);
3954                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3955                         goto retry;
3956                 }
3957                 /*
3958                  * hwpoisoned entry is treated as no_page_table in
3959                  * follow_page_mask().
3960                  */
3961         }
3962 out:
3963         spin_unlock(ptl);
3964         return page;
3965 }
3966
3967 struct page * __weak
3968 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3969                 pud_t *pud, int flags)
3970 {
3971         if (flags & FOLL_GET)
3972                 return NULL;
3973
3974         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3975 }
3976
3977 #ifdef CONFIG_MEMORY_FAILURE
3978
3979 /*
3980  * This function is called from memory failure code.
3981  * Assume the caller holds page lock of the head page.
3982  */
3983 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3984 {
3985         struct hstate *h = page_hstate(hpage);
3986         int nid = page_to_nid(hpage);
3987         int ret = -EBUSY;
3988
3989         spin_lock(&hugetlb_lock);
3990         /*
3991          * Just checking !page_huge_active is not enough, because that could be
3992          * an isolated/hwpoisoned hugepage (which have >0 refcount).
3993          */
3994         if (!page_huge_active(hpage) && !page_count(hpage)) {
3995                 /*
3996                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3997                  * but dangling hpage->lru can trigger list-debug warnings
3998                  * (this happens when we call unpoison_memory() on it),
3999                  * so let it point to itself with list_del_init().
4000                  */
4001                 list_del_init(&hpage->lru);
4002                 set_page_refcounted(hpage);
4003                 h->free_huge_pages--;
4004                 h->free_huge_pages_node[nid]--;
4005                 ret = 0;
4006         }
4007         spin_unlock(&hugetlb_lock);
4008         return ret;
4009 }
4010 #endif
4011
4012 bool isolate_huge_page(struct page *page, struct list_head *list)
4013 {
4014         bool ret = true;
4015
4016         VM_BUG_ON_PAGE(!PageHead(page), page);
4017         spin_lock(&hugetlb_lock);
4018         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4019                 ret = false;
4020                 goto unlock;
4021         }
4022         clear_page_huge_active(page);
4023         list_move_tail(&page->lru, list);
4024 unlock:
4025         spin_unlock(&hugetlb_lock);
4026         return ret;
4027 }
4028
4029 void putback_active_hugepage(struct page *page)
4030 {
4031         VM_BUG_ON_PAGE(!PageHead(page), page);
4032         spin_lock(&hugetlb_lock);
4033         set_page_huge_active(page);
4034         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4035         spin_unlock(&hugetlb_lock);
4036         put_page(page);
4037 }