mm/hugetlb: Allow arch to override and call the weak function
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38
39 int hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45  * Minimum page order among possible hugepage sizes, set to a proper value
46  * at boot time.
47  */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60  * free_huge_pages, and surplus_huge_pages.
61  */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65  * Serializes faults on the same logical page.  This is used to
66  * prevent spurious OOMs when the hugepage pool is fully utilized.
67  */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76         bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78         spin_unlock(&spool->lock);
79
80         /* If no pages are used, and no other handles to the subpool
81          * remain, give up any reservations mased on minimum size and
82          * free the subpool */
83         if (free) {
84                 if (spool->min_hpages != -1)
85                         hugetlb_acct_memory(spool->hstate,
86                                                 -spool->min_hpages);
87                 kfree(spool);
88         }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92                                                 long min_hpages)
93 {
94         struct hugepage_subpool *spool;
95
96         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97         if (!spool)
98                 return NULL;
99
100         spin_lock_init(&spool->lock);
101         spool->count = 1;
102         spool->max_hpages = max_hpages;
103         spool->hstate = h;
104         spool->min_hpages = min_hpages;
105
106         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107                 kfree(spool);
108                 return NULL;
109         }
110         spool->rsv_hpages = min_hpages;
111
112         return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117         spin_lock(&spool->lock);
118         BUG_ON(!spool->count);
119         spool->count--;
120         unlock_or_release_subpool(spool);
121 }
122
123 /*
124  * Subpool accounting for allocating and reserving pages.
125  * Return -ENOMEM if there are not enough resources to satisfy the
126  * the request.  Otherwise, return the number of pages by which the
127  * global pools must be adjusted (upward).  The returned value may
128  * only be different than the passed value (delta) in the case where
129  * a subpool minimum size must be manitained.
130  */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132                                       long delta)
133 {
134         long ret = delta;
135
136         if (!spool)
137                 return ret;
138
139         spin_lock(&spool->lock);
140
141         if (spool->max_hpages != -1) {          /* maximum size accounting */
142                 if ((spool->used_hpages + delta) <= spool->max_hpages)
143                         spool->used_hpages += delta;
144                 else {
145                         ret = -ENOMEM;
146                         goto unlock_ret;
147                 }
148         }
149
150         /* minimum size accounting */
151         if (spool->min_hpages != -1 && spool->rsv_hpages) {
152                 if (delta > spool->rsv_hpages) {
153                         /*
154                          * Asking for more reserves than those already taken on
155                          * behalf of subpool.  Return difference.
156                          */
157                         ret = delta - spool->rsv_hpages;
158                         spool->rsv_hpages = 0;
159                 } else {
160                         ret = 0;        /* reserves already accounted for */
161                         spool->rsv_hpages -= delta;
162                 }
163         }
164
165 unlock_ret:
166         spin_unlock(&spool->lock);
167         return ret;
168 }
169
170 /*
171  * Subpool accounting for freeing and unreserving pages.
172  * Return the number of global page reservations that must be dropped.
173  * The return value may only be different than the passed value (delta)
174  * in the case where a subpool minimum size must be maintained.
175  */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177                                        long delta)
178 {
179         long ret = delta;
180
181         if (!spool)
182                 return delta;
183
184         spin_lock(&spool->lock);
185
186         if (spool->max_hpages != -1)            /* maximum size accounting */
187                 spool->used_hpages -= delta;
188
189          /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191                 if (spool->rsv_hpages + delta <= spool->min_hpages)
192                         ret = 0;
193                 else
194                         ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196                 spool->rsv_hpages += delta;
197                 if (spool->rsv_hpages > spool->min_hpages)
198                         spool->rsv_hpages = spool->min_hpages;
199         }
200
201         /*
202          * If hugetlbfs_put_super couldn't free spool due to an outstanding
203          * quota reference, free it now.
204          */
205         unlock_or_release_subpool(spool);
206
207         return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212         return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217         return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221  * Region tracking -- allows tracking of reservations and instantiated pages
222  *                    across the pages in a mapping.
223  *
224  * The region data structures are embedded into a resv_map and protected
225  * by a resv_map's lock.  The set of regions within the resv_map represent
226  * reservations for huge pages, or huge pages that have already been
227  * instantiated within the map.  The from and to elements are huge page
228  * indicies into the associated mapping.  from indicates the starting index
229  * of the region.  to represents the first index past the end of  the region.
230  *
231  * For example, a file region structure with from == 0 and to == 4 represents
232  * four huge pages in a mapping.  It is important to note that the to element
233  * represents the first element past the end of the region. This is used in
234  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235  *
236  * Interval notation of the form [from, to) will be used to indicate that
237  * the endpoint from is inclusive and to is exclusive.
238  */
239 struct file_region {
240         struct list_head link;
241         long from;
242         long to;
243 };
244
245 /*
246  * Add the huge page range represented by [f, t) to the reserve
247  * map.  In the normal case, existing regions will be expanded
248  * to accommodate the specified range.  Sufficient regions should
249  * exist for expansion due to the previous call to region_chg
250  * with the same range.  However, it is possible that region_del
251  * could have been called after region_chg and modifed the map
252  * in such a way that no region exists to be expanded.  In this
253  * case, pull a region descriptor from the cache associated with
254  * the map and use that for the new range.
255  *
256  * Return the number of new huge pages added to the map.  This
257  * number is greater than or equal to zero.
258  */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261         struct list_head *head = &resv->regions;
262         struct file_region *rg, *nrg, *trg;
263         long add = 0;
264
265         spin_lock(&resv->lock);
266         /* Locate the region we are either in or before. */
267         list_for_each_entry(rg, head, link)
268                 if (f <= rg->to)
269                         break;
270
271         /*
272          * If no region exists which can be expanded to include the
273          * specified range, the list must have been modified by an
274          * interleving call to region_del().  Pull a region descriptor
275          * from the cache and use it for this range.
276          */
277         if (&rg->link == head || t < rg->from) {
278                 VM_BUG_ON(resv->region_cache_count <= 0);
279
280                 resv->region_cache_count--;
281                 nrg = list_first_entry(&resv->region_cache, struct file_region,
282                                         link);
283                 list_del(&nrg->link);
284
285                 nrg->from = f;
286                 nrg->to = t;
287                 list_add(&nrg->link, rg->link.prev);
288
289                 add += t - f;
290                 goto out_locked;
291         }
292
293         /* Round our left edge to the current segment if it encloses us. */
294         if (f > rg->from)
295                 f = rg->from;
296
297         /* Check for and consume any regions we now overlap with. */
298         nrg = rg;
299         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300                 if (&rg->link == head)
301                         break;
302                 if (rg->from > t)
303                         break;
304
305                 /* If this area reaches higher then extend our area to
306                  * include it completely.  If this is not the first area
307                  * which we intend to reuse, free it. */
308                 if (rg->to > t)
309                         t = rg->to;
310                 if (rg != nrg) {
311                         /* Decrement return value by the deleted range.
312                          * Another range will span this area so that by
313                          * end of routine add will be >= zero
314                          */
315                         add -= (rg->to - rg->from);
316                         list_del(&rg->link);
317                         kfree(rg);
318                 }
319         }
320
321         add += (nrg->from - f);         /* Added to beginning of region */
322         nrg->from = f;
323         add += t - nrg->to;             /* Added to end of region */
324         nrg->to = t;
325
326 out_locked:
327         resv->adds_in_progress--;
328         spin_unlock(&resv->lock);
329         VM_BUG_ON(add < 0);
330         return add;
331 }
332
333 /*
334  * Examine the existing reserve map and determine how many
335  * huge pages in the specified range [f, t) are NOT currently
336  * represented.  This routine is called before a subsequent
337  * call to region_add that will actually modify the reserve
338  * map to add the specified range [f, t).  region_chg does
339  * not change the number of huge pages represented by the
340  * map.  However, if the existing regions in the map can not
341  * be expanded to represent the new range, a new file_region
342  * structure is added to the map as a placeholder.  This is
343  * so that the subsequent region_add call will have all the
344  * regions it needs and will not fail.
345  *
346  * Upon entry, region_chg will also examine the cache of region descriptors
347  * associated with the map.  If there are not enough descriptors cached, one
348  * will be allocated for the in progress add operation.
349  *
350  * Returns the number of huge pages that need to be added to the existing
351  * reservation map for the range [f, t).  This number is greater or equal to
352  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
353  * is needed and can not be allocated.
354  */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357         struct list_head *head = &resv->regions;
358         struct file_region *rg, *nrg = NULL;
359         long chg = 0;
360
361 retry:
362         spin_lock(&resv->lock);
363 retry_locked:
364         resv->adds_in_progress++;
365
366         /*
367          * Check for sufficient descriptors in the cache to accommodate
368          * the number of in progress add operations.
369          */
370         if (resv->adds_in_progress > resv->region_cache_count) {
371                 struct file_region *trg;
372
373                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374                 /* Must drop lock to allocate a new descriptor. */
375                 resv->adds_in_progress--;
376                 spin_unlock(&resv->lock);
377
378                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379                 if (!trg) {
380                         kfree(nrg);
381                         return -ENOMEM;
382                 }
383
384                 spin_lock(&resv->lock);
385                 list_add(&trg->link, &resv->region_cache);
386                 resv->region_cache_count++;
387                 goto retry_locked;
388         }
389
390         /* Locate the region we are before or in. */
391         list_for_each_entry(rg, head, link)
392                 if (f <= rg->to)
393                         break;
394
395         /* If we are below the current region then a new region is required.
396          * Subtle, allocate a new region at the position but make it zero
397          * size such that we can guarantee to record the reservation. */
398         if (&rg->link == head || t < rg->from) {
399                 if (!nrg) {
400                         resv->adds_in_progress--;
401                         spin_unlock(&resv->lock);
402                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403                         if (!nrg)
404                                 return -ENOMEM;
405
406                         nrg->from = f;
407                         nrg->to   = f;
408                         INIT_LIST_HEAD(&nrg->link);
409                         goto retry;
410                 }
411
412                 list_add(&nrg->link, rg->link.prev);
413                 chg = t - f;
414                 goto out_nrg;
415         }
416
417         /* Round our left edge to the current segment if it encloses us. */
418         if (f > rg->from)
419                 f = rg->from;
420         chg = t - f;
421
422         /* Check for and consume any regions we now overlap with. */
423         list_for_each_entry(rg, rg->link.prev, link) {
424                 if (&rg->link == head)
425                         break;
426                 if (rg->from > t)
427                         goto out;
428
429                 /* We overlap with this area, if it extends further than
430                  * us then we must extend ourselves.  Account for its
431                  * existing reservation. */
432                 if (rg->to > t) {
433                         chg += rg->to - t;
434                         t = rg->to;
435                 }
436                 chg -= rg->to - rg->from;
437         }
438
439 out:
440         spin_unlock(&resv->lock);
441         /*  We already know we raced and no longer need the new region */
442         kfree(nrg);
443         return chg;
444 out_nrg:
445         spin_unlock(&resv->lock);
446         return chg;
447 }
448
449 /*
450  * Abort the in progress add operation.  The adds_in_progress field
451  * of the resv_map keeps track of the operations in progress between
452  * calls to region_chg and region_add.  Operations are sometimes
453  * aborted after the call to region_chg.  In such cases, region_abort
454  * is called to decrement the adds_in_progress counter.
455  *
456  * NOTE: The range arguments [f, t) are not needed or used in this
457  * routine.  They are kept to make reading the calling code easier as
458  * arguments will match the associated region_chg call.
459  */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462         spin_lock(&resv->lock);
463         VM_BUG_ON(!resv->region_cache_count);
464         resv->adds_in_progress--;
465         spin_unlock(&resv->lock);
466 }
467
468 /*
469  * Delete the specified range [f, t) from the reserve map.  If the
470  * t parameter is LONG_MAX, this indicates that ALL regions after f
471  * should be deleted.  Locate the regions which intersect [f, t)
472  * and either trim, delete or split the existing regions.
473  *
474  * Returns the number of huge pages deleted from the reserve map.
475  * In the normal case, the return value is zero or more.  In the
476  * case where a region must be split, a new region descriptor must
477  * be allocated.  If the allocation fails, -ENOMEM will be returned.
478  * NOTE: If the parameter t == LONG_MAX, then we will never split
479  * a region and possibly return -ENOMEM.  Callers specifying
480  * t == LONG_MAX do not need to check for -ENOMEM error.
481  */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484         struct list_head *head = &resv->regions;
485         struct file_region *rg, *trg;
486         struct file_region *nrg = NULL;
487         long del = 0;
488
489 retry:
490         spin_lock(&resv->lock);
491         list_for_each_entry_safe(rg, trg, head, link) {
492                 /*
493                  * Skip regions before the range to be deleted.  file_region
494                  * ranges are normally of the form [from, to).  However, there
495                  * may be a "placeholder" entry in the map which is of the form
496                  * (from, to) with from == to.  Check for placeholder entries
497                  * at the beginning of the range to be deleted.
498                  */
499                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500                         continue;
501
502                 if (rg->from >= t)
503                         break;
504
505                 if (f > rg->from && t < rg->to) { /* Must split region */
506                         /*
507                          * Check for an entry in the cache before dropping
508                          * lock and attempting allocation.
509                          */
510                         if (!nrg &&
511                             resv->region_cache_count > resv->adds_in_progress) {
512                                 nrg = list_first_entry(&resv->region_cache,
513                                                         struct file_region,
514                                                         link);
515                                 list_del(&nrg->link);
516                                 resv->region_cache_count--;
517                         }
518
519                         if (!nrg) {
520                                 spin_unlock(&resv->lock);
521                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522                                 if (!nrg)
523                                         return -ENOMEM;
524                                 goto retry;
525                         }
526
527                         del += t - f;
528
529                         /* New entry for end of split region */
530                         nrg->from = t;
531                         nrg->to = rg->to;
532                         INIT_LIST_HEAD(&nrg->link);
533
534                         /* Original entry is trimmed */
535                         rg->to = f;
536
537                         list_add(&nrg->link, &rg->link);
538                         nrg = NULL;
539                         break;
540                 }
541
542                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543                         del += rg->to - rg->from;
544                         list_del(&rg->link);
545                         kfree(rg);
546                         continue;
547                 }
548
549                 if (f <= rg->from) {    /* Trim beginning of region */
550                         del += t - rg->from;
551                         rg->from = t;
552                 } else {                /* Trim end of region */
553                         del += rg->to - f;
554                         rg->to = f;
555                 }
556         }
557
558         spin_unlock(&resv->lock);
559         kfree(nrg);
560         return del;
561 }
562
563 /*
564  * A rare out of memory error was encountered which prevented removal of
565  * the reserve map region for a page.  The huge page itself was free'ed
566  * and removed from the page cache.  This routine will adjust the subpool
567  * usage count, and the global reserve count if needed.  By incrementing
568  * these counts, the reserve map entry which could not be deleted will
569  * appear as a "reserved" entry instead of simply dangling with incorrect
570  * counts.
571  */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574         struct hugepage_subpool *spool = subpool_inode(inode);
575         long rsv_adjust;
576
577         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578         if (rsv_adjust) {
579                 struct hstate *h = hstate_inode(inode);
580
581                 hugetlb_acct_memory(h, 1);
582         }
583 }
584
585 /*
586  * Count and return the number of huge pages in the reserve map
587  * that intersect with the range [f, t).
588  */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591         struct list_head *head = &resv->regions;
592         struct file_region *rg;
593         long chg = 0;
594
595         spin_lock(&resv->lock);
596         /* Locate each segment we overlap with, and count that overlap. */
597         list_for_each_entry(rg, head, link) {
598                 long seg_from;
599                 long seg_to;
600
601                 if (rg->to <= f)
602                         continue;
603                 if (rg->from >= t)
604                         break;
605
606                 seg_from = max(rg->from, f);
607                 seg_to = min(rg->to, t);
608
609                 chg += seg_to - seg_from;
610         }
611         spin_unlock(&resv->lock);
612
613         return chg;
614 }
615
616 /*
617  * Convert the address within this vma to the page offset within
618  * the mapping, in pagecache page units; huge pages here.
619  */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621                         struct vm_area_struct *vma, unsigned long address)
622 {
623         return ((address - vma->vm_start) >> huge_page_shift(h)) +
624                         (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628                                      unsigned long address)
629 {
630         return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635  * Return the size of the pages allocated when backing a VMA. In the majority
636  * cases this will be same size as used by the page table entries.
637  */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640         struct hstate *hstate;
641
642         if (!is_vm_hugetlb_page(vma))
643                 return PAGE_SIZE;
644
645         hstate = hstate_vma(vma);
646
647         return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650
651 /*
652  * Return the page size being used by the MMU to back a VMA. In the majority
653  * of cases, the page size used by the kernel matches the MMU size. On
654  * architectures where it differs, an architecture-specific version of this
655  * function is required.
656  */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660         return vma_kernel_pagesize(vma);
661 }
662 #endif
663
664 /*
665  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
666  * bits of the reservation map pointer, which are always clear due to
667  * alignment.
668  */
669 #define HPAGE_RESV_OWNER    (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672
673 /*
674  * These helpers are used to track how many pages are reserved for
675  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676  * is guaranteed to have their future faults succeed.
677  *
678  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679  * the reserve counters are updated with the hugetlb_lock held. It is safe
680  * to reset the VMA at fork() time as it is not in use yet and there is no
681  * chance of the global counters getting corrupted as a result of the values.
682  *
683  * The private mapping reservation is represented in a subtly different
684  * manner to a shared mapping.  A shared mapping has a region map associated
685  * with the underlying file, this region map represents the backing file
686  * pages which have ever had a reservation assigned which this persists even
687  * after the page is instantiated.  A private mapping has a region map
688  * associated with the original mmap which is attached to all VMAs which
689  * reference it, this region map represents those offsets which have consumed
690  * reservation ie. where pages have been instantiated.
691  */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694         return (unsigned long)vma->vm_private_data;
695 }
696
697 static void set_vma_private_data(struct vm_area_struct *vma,
698                                                         unsigned long value)
699 {
700         vma->vm_private_data = (void *)value;
701 }
702
703 struct resv_map *resv_map_alloc(void)
704 {
705         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708         if (!resv_map || !rg) {
709                 kfree(resv_map);
710                 kfree(rg);
711                 return NULL;
712         }
713
714         kref_init(&resv_map->refs);
715         spin_lock_init(&resv_map->lock);
716         INIT_LIST_HEAD(&resv_map->regions);
717
718         resv_map->adds_in_progress = 0;
719
720         INIT_LIST_HEAD(&resv_map->region_cache);
721         list_add(&rg->link, &resv_map->region_cache);
722         resv_map->region_cache_count = 1;
723
724         return resv_map;
725 }
726
727 void resv_map_release(struct kref *ref)
728 {
729         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730         struct list_head *head = &resv_map->region_cache;
731         struct file_region *rg, *trg;
732
733         /* Clear out any active regions before we release the map. */
734         region_del(resv_map, 0, LONG_MAX);
735
736         /* ... and any entries left in the cache */
737         list_for_each_entry_safe(rg, trg, head, link) {
738                 list_del(&rg->link);
739                 kfree(rg);
740         }
741
742         VM_BUG_ON(resv_map->adds_in_progress);
743
744         kfree(resv_map);
745 }
746
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749         return inode->i_mapping->private_data;
750 }
751
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755         if (vma->vm_flags & VM_MAYSHARE) {
756                 struct address_space *mapping = vma->vm_file->f_mapping;
757                 struct inode *inode = mapping->host;
758
759                 return inode_resv_map(inode);
760
761         } else {
762                 return (struct resv_map *)(get_vma_private_data(vma) &
763                                                         ~HPAGE_RESV_MASK);
764         }
765 }
766
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771
772         set_vma_private_data(vma, (get_vma_private_data(vma) &
773                                 HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780
781         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787
788         return (get_vma_private_data(vma) & flag) != 0;
789 }
790
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795         if (!(vma->vm_flags & VM_MAYSHARE))
796                 vma->vm_private_data = (void *)0;
797 }
798
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802         if (vma->vm_flags & VM_NORESERVE) {
803                 /*
804                  * This address is already reserved by other process(chg == 0),
805                  * so, we should decrement reserved count. Without decrementing,
806                  * reserve count remains after releasing inode, because this
807                  * allocated page will go into page cache and is regarded as
808                  * coming from reserved pool in releasing step.  Currently, we
809                  * don't have any other solution to deal with this situation
810                  * properly, so add work-around here.
811                  */
812                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813                         return true;
814                 else
815                         return false;
816         }
817
818         /* Shared mappings always use reserves */
819         if (vma->vm_flags & VM_MAYSHARE) {
820                 /*
821                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
822                  * be a region map for all pages.  The only situation where
823                  * there is no region map is if a hole was punched via
824                  * fallocate.  In this case, there really are no reverves to
825                  * use.  This situation is indicated if chg != 0.
826                  */
827                 if (chg)
828                         return false;
829                 else
830                         return true;
831         }
832
833         /*
834          * Only the process that called mmap() has reserves for
835          * private mappings.
836          */
837         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838                 /*
839                  * Like the shared case above, a hole punch or truncate
840                  * could have been performed on the private mapping.
841                  * Examine the value of chg to determine if reserves
842                  * actually exist or were previously consumed.
843                  * Very Subtle - The value of chg comes from a previous
844                  * call to vma_needs_reserves().  The reserve map for
845                  * private mappings has different (opposite) semantics
846                  * than that of shared mappings.  vma_needs_reserves()
847                  * has already taken this difference in semantics into
848                  * account.  Therefore, the meaning of chg is the same
849                  * as in the shared case above.  Code could easily be
850                  * combined, but keeping it separate draws attention to
851                  * subtle differences.
852                  */
853                 if (chg)
854                         return false;
855                 else
856                         return true;
857         }
858
859         return false;
860 }
861
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864         int nid = page_to_nid(page);
865         list_move(&page->lru, &h->hugepage_freelists[nid]);
866         h->free_huge_pages++;
867         h->free_huge_pages_node[nid]++;
868 }
869
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 {
872         struct page *page;
873
874         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875                 if (!PageHWPoison(page))
876                         break;
877         /*
878          * if 'non-isolated free hugepage' not found on the list,
879          * the allocation fails.
880          */
881         if (&h->hugepage_freelists[nid] == &page->lru)
882                 return NULL;
883         list_move(&page->lru, &h->hugepage_activelist);
884         set_page_refcounted(page);
885         h->free_huge_pages--;
886         h->free_huge_pages_node[nid]--;
887         return page;
888 }
889
890 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
891                 nodemask_t *nmask)
892 {
893         unsigned int cpuset_mems_cookie;
894         struct zonelist *zonelist;
895         struct zone *zone;
896         struct zoneref *z;
897         int node = -1;
898
899         zonelist = node_zonelist(nid, gfp_mask);
900
901 retry_cpuset:
902         cpuset_mems_cookie = read_mems_allowed_begin();
903         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
904                 struct page *page;
905
906                 if (!cpuset_zone_allowed(zone, gfp_mask))
907                         continue;
908                 /*
909                  * no need to ask again on the same node. Pool is node rather than
910                  * zone aware
911                  */
912                 if (zone_to_nid(zone) == node)
913                         continue;
914                 node = zone_to_nid(zone);
915
916                 page = dequeue_huge_page_node_exact(h, node);
917                 if (page)
918                         return page;
919         }
920         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
921                 goto retry_cpuset;
922
923         return NULL;
924 }
925
926 /* Movability of hugepages depends on migration support. */
927 static inline gfp_t htlb_alloc_mask(struct hstate *h)
928 {
929         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
930                 return GFP_HIGHUSER_MOVABLE;
931         else
932                 return GFP_HIGHUSER;
933 }
934
935 static struct page *dequeue_huge_page_vma(struct hstate *h,
936                                 struct vm_area_struct *vma,
937                                 unsigned long address, int avoid_reserve,
938                                 long chg)
939 {
940         struct page *page;
941         struct mempolicy *mpol;
942         gfp_t gfp_mask;
943         nodemask_t *nodemask;
944         int nid;
945
946         /*
947          * A child process with MAP_PRIVATE mappings created by their parent
948          * have no page reserves. This check ensures that reservations are
949          * not "stolen". The child may still get SIGKILLed
950          */
951         if (!vma_has_reserves(vma, chg) &&
952                         h->free_huge_pages - h->resv_huge_pages == 0)
953                 goto err;
954
955         /* If reserves cannot be used, ensure enough pages are in the pool */
956         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
957                 goto err;
958
959         gfp_mask = htlb_alloc_mask(h);
960         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
961         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
962         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
963                 SetPagePrivate(page);
964                 h->resv_huge_pages--;
965         }
966
967         mpol_cond_put(mpol);
968         return page;
969
970 err:
971         return NULL;
972 }
973
974 /*
975  * common helper functions for hstate_next_node_to_{alloc|free}.
976  * We may have allocated or freed a huge page based on a different
977  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978  * be outside of *nodes_allowed.  Ensure that we use an allowed
979  * node for alloc or free.
980  */
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 {
983         nid = next_node_in(nid, *nodes_allowed);
984         VM_BUG_ON(nid >= MAX_NUMNODES);
985
986         return nid;
987 }
988
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 {
991         if (!node_isset(nid, *nodes_allowed))
992                 nid = next_node_allowed(nid, nodes_allowed);
993         return nid;
994 }
995
996 /*
997  * returns the previously saved node ["this node"] from which to
998  * allocate a persistent huge page for the pool and advance the
999  * next node from which to allocate, handling wrap at end of node
1000  * mask.
1001  */
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003                                         nodemask_t *nodes_allowed)
1004 {
1005         int nid;
1006
1007         VM_BUG_ON(!nodes_allowed);
1008
1009         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012         return nid;
1013 }
1014
1015 /*
1016  * helper for free_pool_huge_page() - return the previously saved
1017  * node ["this node"] from which to free a huge page.  Advance the
1018  * next node id whether or not we find a free huge page to free so
1019  * that the next attempt to free addresses the next node.
1020  */
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022 {
1023         int nid;
1024
1025         VM_BUG_ON(!nodes_allowed);
1026
1027         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030         return nid;
1031 }
1032
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1034         for (nr_nodes = nodes_weight(*mask);                            \
1035                 nr_nodes > 0 &&                                         \
1036                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1037                 nr_nodes--)
1038
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1040         for (nr_nodes = nodes_weight(*mask);                            \
1041                 nr_nodes > 0 &&                                         \
1042                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1043                 nr_nodes--)
1044
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047                                         unsigned int order)
1048 {
1049         int i;
1050         int nr_pages = 1 << order;
1051         struct page *p = page + 1;
1052
1053         atomic_set(compound_mapcount_ptr(page), 0);
1054         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055                 clear_compound_head(p);
1056                 set_page_refcounted(p);
1057         }
1058
1059         set_compound_order(page, 0);
1060         __ClearPageHead(page);
1061 }
1062
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1064 {
1065         free_contig_range(page_to_pfn(page), 1 << order);
1066 }
1067
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069                                 unsigned long nr_pages)
1070 {
1071         unsigned long end_pfn = start_pfn + nr_pages;
1072         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073                                   GFP_KERNEL);
1074 }
1075
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077                         unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079         unsigned long i, end_pfn = start_pfn + nr_pages;
1080         struct page *page;
1081
1082         for (i = start_pfn; i < end_pfn; i++) {
1083                 if (!pfn_valid(i))
1084                         return false;
1085
1086                 page = pfn_to_page(i);
1087
1088                 if (page_zone(page) != z)
1089                         return false;
1090
1091                 if (PageReserved(page))
1092                         return false;
1093
1094                 if (page_count(page) > 0)
1095                         return false;
1096
1097                 if (PageHuge(page))
1098                         return false;
1099         }
1100
1101         return true;
1102 }
1103
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105                         unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107         unsigned long last_pfn = start_pfn + nr_pages - 1;
1108         return zone_spans_pfn(zone, last_pfn);
1109 }
1110
1111 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1112 {
1113         unsigned long nr_pages = 1 << order;
1114         unsigned long ret, pfn, flags;
1115         struct zone *z;
1116
1117         z = NODE_DATA(nid)->node_zones;
1118         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1119                 spin_lock_irqsave(&z->lock, flags);
1120
1121                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1122                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1123                         if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1124                                 /*
1125                                  * We release the zone lock here because
1126                                  * alloc_contig_range() will also lock the zone
1127                                  * at some point. If there's an allocation
1128                                  * spinning on this lock, it may win the race
1129                                  * and cause alloc_contig_range() to fail...
1130                                  */
1131                                 spin_unlock_irqrestore(&z->lock, flags);
1132                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1133                                 if (!ret)
1134                                         return pfn_to_page(pfn);
1135                                 spin_lock_irqsave(&z->lock, flags);
1136                         }
1137                         pfn += nr_pages;
1138                 }
1139
1140                 spin_unlock_irqrestore(&z->lock, flags);
1141         }
1142
1143         return NULL;
1144 }
1145
1146 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1147 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1148
1149 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1150 {
1151         struct page *page;
1152
1153         page = alloc_gigantic_page(nid, huge_page_order(h));
1154         if (page) {
1155                 prep_compound_gigantic_page(page, huge_page_order(h));
1156                 prep_new_huge_page(h, page, nid);
1157         }
1158
1159         return page;
1160 }
1161
1162 static int alloc_fresh_gigantic_page(struct hstate *h,
1163                                 nodemask_t *nodes_allowed)
1164 {
1165         struct page *page = NULL;
1166         int nr_nodes, node;
1167
1168         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1169                 page = alloc_fresh_gigantic_page_node(h, node);
1170                 if (page)
1171                         return 1;
1172         }
1173
1174         return 0;
1175 }
1176
1177 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1178 static inline bool gigantic_page_supported(void) { return false; }
1179 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1180 static inline void destroy_compound_gigantic_page(struct page *page,
1181                                                 unsigned int order) { }
1182 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1183                                         nodemask_t *nodes_allowed) { return 0; }
1184 #endif
1185
1186 static void update_and_free_page(struct hstate *h, struct page *page)
1187 {
1188         int i;
1189
1190         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1191                 return;
1192
1193         h->nr_huge_pages--;
1194         h->nr_huge_pages_node[page_to_nid(page)]--;
1195         for (i = 0; i < pages_per_huge_page(h); i++) {
1196                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1197                                 1 << PG_referenced | 1 << PG_dirty |
1198                                 1 << PG_active | 1 << PG_private |
1199                                 1 << PG_writeback);
1200         }
1201         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1202         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1203         set_page_refcounted(page);
1204         if (hstate_is_gigantic(h)) {
1205                 destroy_compound_gigantic_page(page, huge_page_order(h));
1206                 free_gigantic_page(page, huge_page_order(h));
1207         } else {
1208                 __free_pages(page, huge_page_order(h));
1209         }
1210 }
1211
1212 struct hstate *size_to_hstate(unsigned long size)
1213 {
1214         struct hstate *h;
1215
1216         for_each_hstate(h) {
1217                 if (huge_page_size(h) == size)
1218                         return h;
1219         }
1220         return NULL;
1221 }
1222
1223 /*
1224  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1225  * to hstate->hugepage_activelist.)
1226  *
1227  * This function can be called for tail pages, but never returns true for them.
1228  */
1229 bool page_huge_active(struct page *page)
1230 {
1231         VM_BUG_ON_PAGE(!PageHuge(page), page);
1232         return PageHead(page) && PagePrivate(&page[1]);
1233 }
1234
1235 /* never called for tail page */
1236 static void set_page_huge_active(struct page *page)
1237 {
1238         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1239         SetPagePrivate(&page[1]);
1240 }
1241
1242 static void clear_page_huge_active(struct page *page)
1243 {
1244         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245         ClearPagePrivate(&page[1]);
1246 }
1247
1248 void free_huge_page(struct page *page)
1249 {
1250         /*
1251          * Can't pass hstate in here because it is called from the
1252          * compound page destructor.
1253          */
1254         struct hstate *h = page_hstate(page);
1255         int nid = page_to_nid(page);
1256         struct hugepage_subpool *spool =
1257                 (struct hugepage_subpool *)page_private(page);
1258         bool restore_reserve;
1259
1260         set_page_private(page, 0);
1261         page->mapping = NULL;
1262         VM_BUG_ON_PAGE(page_count(page), page);
1263         VM_BUG_ON_PAGE(page_mapcount(page), page);
1264         restore_reserve = PagePrivate(page);
1265         ClearPagePrivate(page);
1266
1267         /*
1268          * A return code of zero implies that the subpool will be under its
1269          * minimum size if the reservation is not restored after page is free.
1270          * Therefore, force restore_reserve operation.
1271          */
1272         if (hugepage_subpool_put_pages(spool, 1) == 0)
1273                 restore_reserve = true;
1274
1275         spin_lock(&hugetlb_lock);
1276         clear_page_huge_active(page);
1277         hugetlb_cgroup_uncharge_page(hstate_index(h),
1278                                      pages_per_huge_page(h), page);
1279         if (restore_reserve)
1280                 h->resv_huge_pages++;
1281
1282         if (h->surplus_huge_pages_node[nid]) {
1283                 /* remove the page from active list */
1284                 list_del(&page->lru);
1285                 update_and_free_page(h, page);
1286                 h->surplus_huge_pages--;
1287                 h->surplus_huge_pages_node[nid]--;
1288         } else {
1289                 arch_clear_hugepage_flags(page);
1290                 enqueue_huge_page(h, page);
1291         }
1292         spin_unlock(&hugetlb_lock);
1293 }
1294
1295 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1296 {
1297         INIT_LIST_HEAD(&page->lru);
1298         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1299         spin_lock(&hugetlb_lock);
1300         set_hugetlb_cgroup(page, NULL);
1301         h->nr_huge_pages++;
1302         h->nr_huge_pages_node[nid]++;
1303         spin_unlock(&hugetlb_lock);
1304         put_page(page); /* free it into the hugepage allocator */
1305 }
1306
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309         int i;
1310         int nr_pages = 1 << order;
1311         struct page *p = page + 1;
1312
1313         /* we rely on prep_new_huge_page to set the destructor */
1314         set_compound_order(page, order);
1315         __ClearPageReserved(page);
1316         __SetPageHead(page);
1317         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318                 /*
1319                  * For gigantic hugepages allocated through bootmem at
1320                  * boot, it's safer to be consistent with the not-gigantic
1321                  * hugepages and clear the PG_reserved bit from all tail pages
1322                  * too.  Otherwse drivers using get_user_pages() to access tail
1323                  * pages may get the reference counting wrong if they see
1324                  * PG_reserved set on a tail page (despite the head page not
1325                  * having PG_reserved set).  Enforcing this consistency between
1326                  * head and tail pages allows drivers to optimize away a check
1327                  * on the head page when they need know if put_page() is needed
1328                  * after get_user_pages().
1329                  */
1330                 __ClearPageReserved(p);
1331                 set_page_count(p, 0);
1332                 set_compound_head(p, page);
1333         }
1334         atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336
1337 /*
1338  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339  * transparent huge pages.  See the PageTransHuge() documentation for more
1340  * details.
1341  */
1342 int PageHuge(struct page *page)
1343 {
1344         if (!PageCompound(page))
1345                 return 0;
1346
1347         page = compound_head(page);
1348         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351
1352 /*
1353  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354  * normal or transparent huge pages.
1355  */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358         if (!PageHead(page_head))
1359                 return 0;
1360
1361         return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366         struct page *page_head = compound_head(page);
1367         pgoff_t index = page_index(page_head);
1368         unsigned long compound_idx;
1369
1370         if (!PageHuge(page_head))
1371                 return page_index(page);
1372
1373         if (compound_order(page_head) >= MAX_ORDER)
1374                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375         else
1376                 compound_idx = page - page_head;
1377
1378         return (index << compound_order(page_head)) + compound_idx;
1379 }
1380
1381 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1382 {
1383         struct page *page;
1384
1385         page = __alloc_pages_node(nid,
1386                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1387                                                 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1388                 huge_page_order(h));
1389         if (page) {
1390                 prep_new_huge_page(h, page, nid);
1391         }
1392
1393         return page;
1394 }
1395
1396 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1397 {
1398         struct page *page;
1399         int nr_nodes, node;
1400         int ret = 0;
1401
1402         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1403                 page = alloc_fresh_huge_page_node(h, node);
1404                 if (page) {
1405                         ret = 1;
1406                         break;
1407                 }
1408         }
1409
1410         if (ret)
1411                 count_vm_event(HTLB_BUDDY_PGALLOC);
1412         else
1413                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1414
1415         return ret;
1416 }
1417
1418 /*
1419  * Free huge page from pool from next node to free.
1420  * Attempt to keep persistent huge pages more or less
1421  * balanced over allowed nodes.
1422  * Called with hugetlb_lock locked.
1423  */
1424 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1425                                                          bool acct_surplus)
1426 {
1427         int nr_nodes, node;
1428         int ret = 0;
1429
1430         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1431                 /*
1432                  * If we're returning unused surplus pages, only examine
1433                  * nodes with surplus pages.
1434                  */
1435                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1436                     !list_empty(&h->hugepage_freelists[node])) {
1437                         struct page *page =
1438                                 list_entry(h->hugepage_freelists[node].next,
1439                                           struct page, lru);
1440                         list_del(&page->lru);
1441                         h->free_huge_pages--;
1442                         h->free_huge_pages_node[node]--;
1443                         if (acct_surplus) {
1444                                 h->surplus_huge_pages--;
1445                                 h->surplus_huge_pages_node[node]--;
1446                         }
1447                         update_and_free_page(h, page);
1448                         ret = 1;
1449                         break;
1450                 }
1451         }
1452
1453         return ret;
1454 }
1455
1456 /*
1457  * Dissolve a given free hugepage into free buddy pages. This function does
1458  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1459  * number of free hugepages would be reduced below the number of reserved
1460  * hugepages.
1461  */
1462 int dissolve_free_huge_page(struct page *page)
1463 {
1464         int rc = 0;
1465
1466         spin_lock(&hugetlb_lock);
1467         if (PageHuge(page) && !page_count(page)) {
1468                 struct page *head = compound_head(page);
1469                 struct hstate *h = page_hstate(head);
1470                 int nid = page_to_nid(head);
1471                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1472                         rc = -EBUSY;
1473                         goto out;
1474                 }
1475                 /*
1476                  * Move PageHWPoison flag from head page to the raw error page,
1477                  * which makes any subpages rather than the error page reusable.
1478                  */
1479                 if (PageHWPoison(head) && page != head) {
1480                         SetPageHWPoison(page);
1481                         ClearPageHWPoison(head);
1482                 }
1483                 list_del(&head->lru);
1484                 h->free_huge_pages--;
1485                 h->free_huge_pages_node[nid]--;
1486                 h->max_huge_pages--;
1487                 update_and_free_page(h, head);
1488         }
1489 out:
1490         spin_unlock(&hugetlb_lock);
1491         return rc;
1492 }
1493
1494 /*
1495  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1496  * make specified memory blocks removable from the system.
1497  * Note that this will dissolve a free gigantic hugepage completely, if any
1498  * part of it lies within the given range.
1499  * Also note that if dissolve_free_huge_page() returns with an error, all
1500  * free hugepages that were dissolved before that error are lost.
1501  */
1502 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1503 {
1504         unsigned long pfn;
1505         struct page *page;
1506         int rc = 0;
1507
1508         if (!hugepages_supported())
1509                 return rc;
1510
1511         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1512                 page = pfn_to_page(pfn);
1513                 if (PageHuge(page) && !page_count(page)) {
1514                         rc = dissolve_free_huge_page(page);
1515                         if (rc)
1516                                 break;
1517                 }
1518         }
1519
1520         return rc;
1521 }
1522
1523 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1524                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1525 {
1526         int order = huge_page_order(h);
1527
1528         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1529         if (nid == NUMA_NO_NODE)
1530                 nid = numa_mem_id();
1531         return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1532 }
1533
1534 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1535                 int nid, nodemask_t *nmask)
1536 {
1537         struct page *page;
1538         unsigned int r_nid;
1539
1540         if (hstate_is_gigantic(h))
1541                 return NULL;
1542
1543         /*
1544          * Assume we will successfully allocate the surplus page to
1545          * prevent racing processes from causing the surplus to exceed
1546          * overcommit
1547          *
1548          * This however introduces a different race, where a process B
1549          * tries to grow the static hugepage pool while alloc_pages() is
1550          * called by process A. B will only examine the per-node
1551          * counters in determining if surplus huge pages can be
1552          * converted to normal huge pages in adjust_pool_surplus(). A
1553          * won't be able to increment the per-node counter, until the
1554          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1555          * no more huge pages can be converted from surplus to normal
1556          * state (and doesn't try to convert again). Thus, we have a
1557          * case where a surplus huge page exists, the pool is grown, and
1558          * the surplus huge page still exists after, even though it
1559          * should just have been converted to a normal huge page. This
1560          * does not leak memory, though, as the hugepage will be freed
1561          * once it is out of use. It also does not allow the counters to
1562          * go out of whack in adjust_pool_surplus() as we don't modify
1563          * the node values until we've gotten the hugepage and only the
1564          * per-node value is checked there.
1565          */
1566         spin_lock(&hugetlb_lock);
1567         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1568                 spin_unlock(&hugetlb_lock);
1569                 return NULL;
1570         } else {
1571                 h->nr_huge_pages++;
1572                 h->surplus_huge_pages++;
1573         }
1574         spin_unlock(&hugetlb_lock);
1575
1576         page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1577
1578         spin_lock(&hugetlb_lock);
1579         if (page) {
1580                 INIT_LIST_HEAD(&page->lru);
1581                 r_nid = page_to_nid(page);
1582                 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1583                 set_hugetlb_cgroup(page, NULL);
1584                 /*
1585                  * We incremented the global counters already
1586                  */
1587                 h->nr_huge_pages_node[r_nid]++;
1588                 h->surplus_huge_pages_node[r_nid]++;
1589                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1590         } else {
1591                 h->nr_huge_pages--;
1592                 h->surplus_huge_pages--;
1593                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1594         }
1595         spin_unlock(&hugetlb_lock);
1596
1597         return page;
1598 }
1599
1600 /*
1601  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1602  */
1603 static
1604 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1605                 struct vm_area_struct *vma, unsigned long addr)
1606 {
1607         struct page *page;
1608         struct mempolicy *mpol;
1609         gfp_t gfp_mask = htlb_alloc_mask(h);
1610         int nid;
1611         nodemask_t *nodemask;
1612
1613         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1614         page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1615         mpol_cond_put(mpol);
1616
1617         return page;
1618 }
1619
1620 /*
1621  * This allocation function is useful in the context where vma is irrelevant.
1622  * E.g. soft-offlining uses this function because it only cares physical
1623  * address of error page.
1624  */
1625 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1626 {
1627         gfp_t gfp_mask = htlb_alloc_mask(h);
1628         struct page *page = NULL;
1629
1630         if (nid != NUMA_NO_NODE)
1631                 gfp_mask |= __GFP_THISNODE;
1632
1633         spin_lock(&hugetlb_lock);
1634         if (h->free_huge_pages - h->resv_huge_pages > 0)
1635                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1636         spin_unlock(&hugetlb_lock);
1637
1638         if (!page)
1639                 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1640
1641         return page;
1642 }
1643
1644
1645 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1646                 nodemask_t *nmask)
1647 {
1648         gfp_t gfp_mask = htlb_alloc_mask(h);
1649
1650         spin_lock(&hugetlb_lock);
1651         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1652                 struct page *page;
1653
1654                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1655                 if (page) {
1656                         spin_unlock(&hugetlb_lock);
1657                         return page;
1658                 }
1659         }
1660         spin_unlock(&hugetlb_lock);
1661
1662         /* No reservations, try to overcommit */
1663
1664         return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1665 }
1666
1667 /*
1668  * Increase the hugetlb pool such that it can accommodate a reservation
1669  * of size 'delta'.
1670  */
1671 static int gather_surplus_pages(struct hstate *h, int delta)
1672 {
1673         struct list_head surplus_list;
1674         struct page *page, *tmp;
1675         int ret, i;
1676         int needed, allocated;
1677         bool alloc_ok = true;
1678
1679         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1680         if (needed <= 0) {
1681                 h->resv_huge_pages += delta;
1682                 return 0;
1683         }
1684
1685         allocated = 0;
1686         INIT_LIST_HEAD(&surplus_list);
1687
1688         ret = -ENOMEM;
1689 retry:
1690         spin_unlock(&hugetlb_lock);
1691         for (i = 0; i < needed; i++) {
1692                 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1693                                 NUMA_NO_NODE, NULL);
1694                 if (!page) {
1695                         alloc_ok = false;
1696                         break;
1697                 }
1698                 list_add(&page->lru, &surplus_list);
1699                 cond_resched();
1700         }
1701         allocated += i;
1702
1703         /*
1704          * After retaking hugetlb_lock, we need to recalculate 'needed'
1705          * because either resv_huge_pages or free_huge_pages may have changed.
1706          */
1707         spin_lock(&hugetlb_lock);
1708         needed = (h->resv_huge_pages + delta) -
1709                         (h->free_huge_pages + allocated);
1710         if (needed > 0) {
1711                 if (alloc_ok)
1712                         goto retry;
1713                 /*
1714                  * We were not able to allocate enough pages to
1715                  * satisfy the entire reservation so we free what
1716                  * we've allocated so far.
1717                  */
1718                 goto free;
1719         }
1720         /*
1721          * The surplus_list now contains _at_least_ the number of extra pages
1722          * needed to accommodate the reservation.  Add the appropriate number
1723          * of pages to the hugetlb pool and free the extras back to the buddy
1724          * allocator.  Commit the entire reservation here to prevent another
1725          * process from stealing the pages as they are added to the pool but
1726          * before they are reserved.
1727          */
1728         needed += allocated;
1729         h->resv_huge_pages += delta;
1730         ret = 0;
1731
1732         /* Free the needed pages to the hugetlb pool */
1733         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1734                 if ((--needed) < 0)
1735                         break;
1736                 /*
1737                  * This page is now managed by the hugetlb allocator and has
1738                  * no users -- drop the buddy allocator's reference.
1739                  */
1740                 put_page_testzero(page);
1741                 VM_BUG_ON_PAGE(page_count(page), page);
1742                 enqueue_huge_page(h, page);
1743         }
1744 free:
1745         spin_unlock(&hugetlb_lock);
1746
1747         /* Free unnecessary surplus pages to the buddy allocator */
1748         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1749                 put_page(page);
1750         spin_lock(&hugetlb_lock);
1751
1752         return ret;
1753 }
1754
1755 /*
1756  * This routine has two main purposes:
1757  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1758  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1759  *    to the associated reservation map.
1760  * 2) Free any unused surplus pages that may have been allocated to satisfy
1761  *    the reservation.  As many as unused_resv_pages may be freed.
1762  *
1763  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1764  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1765  * we must make sure nobody else can claim pages we are in the process of
1766  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1767  * number of huge pages we plan to free when dropping the lock.
1768  */
1769 static void return_unused_surplus_pages(struct hstate *h,
1770                                         unsigned long unused_resv_pages)
1771 {
1772         unsigned long nr_pages;
1773
1774         /* Cannot return gigantic pages currently */
1775         if (hstate_is_gigantic(h))
1776                 goto out;
1777
1778         /*
1779          * Part (or even all) of the reservation could have been backed
1780          * by pre-allocated pages. Only free surplus pages.
1781          */
1782         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1783
1784         /*
1785          * We want to release as many surplus pages as possible, spread
1786          * evenly across all nodes with memory. Iterate across these nodes
1787          * until we can no longer free unreserved surplus pages. This occurs
1788          * when the nodes with surplus pages have no free pages.
1789          * free_pool_huge_page() will balance the the freed pages across the
1790          * on-line nodes with memory and will handle the hstate accounting.
1791          *
1792          * Note that we decrement resv_huge_pages as we free the pages.  If
1793          * we drop the lock, resv_huge_pages will still be sufficiently large
1794          * to cover subsequent pages we may free.
1795          */
1796         while (nr_pages--) {
1797                 h->resv_huge_pages--;
1798                 unused_resv_pages--;
1799                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1800                         goto out;
1801                 cond_resched_lock(&hugetlb_lock);
1802         }
1803
1804 out:
1805         /* Fully uncommit the reservation */
1806         h->resv_huge_pages -= unused_resv_pages;
1807 }
1808
1809
1810 /*
1811  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1812  * are used by the huge page allocation routines to manage reservations.
1813  *
1814  * vma_needs_reservation is called to determine if the huge page at addr
1815  * within the vma has an associated reservation.  If a reservation is
1816  * needed, the value 1 is returned.  The caller is then responsible for
1817  * managing the global reservation and subpool usage counts.  After
1818  * the huge page has been allocated, vma_commit_reservation is called
1819  * to add the page to the reservation map.  If the page allocation fails,
1820  * the reservation must be ended instead of committed.  vma_end_reservation
1821  * is called in such cases.
1822  *
1823  * In the normal case, vma_commit_reservation returns the same value
1824  * as the preceding vma_needs_reservation call.  The only time this
1825  * is not the case is if a reserve map was changed between calls.  It
1826  * is the responsibility of the caller to notice the difference and
1827  * take appropriate action.
1828  *
1829  * vma_add_reservation is used in error paths where a reservation must
1830  * be restored when a newly allocated huge page must be freed.  It is
1831  * to be called after calling vma_needs_reservation to determine if a
1832  * reservation exists.
1833  */
1834 enum vma_resv_mode {
1835         VMA_NEEDS_RESV,
1836         VMA_COMMIT_RESV,
1837         VMA_END_RESV,
1838         VMA_ADD_RESV,
1839 };
1840 static long __vma_reservation_common(struct hstate *h,
1841                                 struct vm_area_struct *vma, unsigned long addr,
1842                                 enum vma_resv_mode mode)
1843 {
1844         struct resv_map *resv;
1845         pgoff_t idx;
1846         long ret;
1847
1848         resv = vma_resv_map(vma);
1849         if (!resv)
1850                 return 1;
1851
1852         idx = vma_hugecache_offset(h, vma, addr);
1853         switch (mode) {
1854         case VMA_NEEDS_RESV:
1855                 ret = region_chg(resv, idx, idx + 1);
1856                 break;
1857         case VMA_COMMIT_RESV:
1858                 ret = region_add(resv, idx, idx + 1);
1859                 break;
1860         case VMA_END_RESV:
1861                 region_abort(resv, idx, idx + 1);
1862                 ret = 0;
1863                 break;
1864         case VMA_ADD_RESV:
1865                 if (vma->vm_flags & VM_MAYSHARE)
1866                         ret = region_add(resv, idx, idx + 1);
1867                 else {
1868                         region_abort(resv, idx, idx + 1);
1869                         ret = region_del(resv, idx, idx + 1);
1870                 }
1871                 break;
1872         default:
1873                 BUG();
1874         }
1875
1876         if (vma->vm_flags & VM_MAYSHARE)
1877                 return ret;
1878         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1879                 /*
1880                  * In most cases, reserves always exist for private mappings.
1881                  * However, a file associated with mapping could have been
1882                  * hole punched or truncated after reserves were consumed.
1883                  * As subsequent fault on such a range will not use reserves.
1884                  * Subtle - The reserve map for private mappings has the
1885                  * opposite meaning than that of shared mappings.  If NO
1886                  * entry is in the reserve map, it means a reservation exists.
1887                  * If an entry exists in the reserve map, it means the
1888                  * reservation has already been consumed.  As a result, the
1889                  * return value of this routine is the opposite of the
1890                  * value returned from reserve map manipulation routines above.
1891                  */
1892                 if (ret)
1893                         return 0;
1894                 else
1895                         return 1;
1896         }
1897         else
1898                 return ret < 0 ? ret : 0;
1899 }
1900
1901 static long vma_needs_reservation(struct hstate *h,
1902                         struct vm_area_struct *vma, unsigned long addr)
1903 {
1904         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1905 }
1906
1907 static long vma_commit_reservation(struct hstate *h,
1908                         struct vm_area_struct *vma, unsigned long addr)
1909 {
1910         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1911 }
1912
1913 static void vma_end_reservation(struct hstate *h,
1914                         struct vm_area_struct *vma, unsigned long addr)
1915 {
1916         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1917 }
1918
1919 static long vma_add_reservation(struct hstate *h,
1920                         struct vm_area_struct *vma, unsigned long addr)
1921 {
1922         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1923 }
1924
1925 /*
1926  * This routine is called to restore a reservation on error paths.  In the
1927  * specific error paths, a huge page was allocated (via alloc_huge_page)
1928  * and is about to be freed.  If a reservation for the page existed,
1929  * alloc_huge_page would have consumed the reservation and set PagePrivate
1930  * in the newly allocated page.  When the page is freed via free_huge_page,
1931  * the global reservation count will be incremented if PagePrivate is set.
1932  * However, free_huge_page can not adjust the reserve map.  Adjust the
1933  * reserve map here to be consistent with global reserve count adjustments
1934  * to be made by free_huge_page.
1935  */
1936 static void restore_reserve_on_error(struct hstate *h,
1937                         struct vm_area_struct *vma, unsigned long address,
1938                         struct page *page)
1939 {
1940         if (unlikely(PagePrivate(page))) {
1941                 long rc = vma_needs_reservation(h, vma, address);
1942
1943                 if (unlikely(rc < 0)) {
1944                         /*
1945                          * Rare out of memory condition in reserve map
1946                          * manipulation.  Clear PagePrivate so that
1947                          * global reserve count will not be incremented
1948                          * by free_huge_page.  This will make it appear
1949                          * as though the reservation for this page was
1950                          * consumed.  This may prevent the task from
1951                          * faulting in the page at a later time.  This
1952                          * is better than inconsistent global huge page
1953                          * accounting of reserve counts.
1954                          */
1955                         ClearPagePrivate(page);
1956                 } else if (rc) {
1957                         rc = vma_add_reservation(h, vma, address);
1958                         if (unlikely(rc < 0))
1959                                 /*
1960                                  * See above comment about rare out of
1961                                  * memory condition.
1962                                  */
1963                                 ClearPagePrivate(page);
1964                 } else
1965                         vma_end_reservation(h, vma, address);
1966         }
1967 }
1968
1969 struct page *alloc_huge_page(struct vm_area_struct *vma,
1970                                     unsigned long addr, int avoid_reserve)
1971 {
1972         struct hugepage_subpool *spool = subpool_vma(vma);
1973         struct hstate *h = hstate_vma(vma);
1974         struct page *page;
1975         long map_chg, map_commit;
1976         long gbl_chg;
1977         int ret, idx;
1978         struct hugetlb_cgroup *h_cg;
1979
1980         idx = hstate_index(h);
1981         /*
1982          * Examine the region/reserve map to determine if the process
1983          * has a reservation for the page to be allocated.  A return
1984          * code of zero indicates a reservation exists (no change).
1985          */
1986         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1987         if (map_chg < 0)
1988                 return ERR_PTR(-ENOMEM);
1989
1990         /*
1991          * Processes that did not create the mapping will have no
1992          * reserves as indicated by the region/reserve map. Check
1993          * that the allocation will not exceed the subpool limit.
1994          * Allocations for MAP_NORESERVE mappings also need to be
1995          * checked against any subpool limit.
1996          */
1997         if (map_chg || avoid_reserve) {
1998                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1999                 if (gbl_chg < 0) {
2000                         vma_end_reservation(h, vma, addr);
2001                         return ERR_PTR(-ENOSPC);
2002                 }
2003
2004                 /*
2005                  * Even though there was no reservation in the region/reserve
2006                  * map, there could be reservations associated with the
2007                  * subpool that can be used.  This would be indicated if the
2008                  * return value of hugepage_subpool_get_pages() is zero.
2009                  * However, if avoid_reserve is specified we still avoid even
2010                  * the subpool reservations.
2011                  */
2012                 if (avoid_reserve)
2013                         gbl_chg = 1;
2014         }
2015
2016         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2017         if (ret)
2018                 goto out_subpool_put;
2019
2020         spin_lock(&hugetlb_lock);
2021         /*
2022          * glb_chg is passed to indicate whether or not a page must be taken
2023          * from the global free pool (global change).  gbl_chg == 0 indicates
2024          * a reservation exists for the allocation.
2025          */
2026         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2027         if (!page) {
2028                 spin_unlock(&hugetlb_lock);
2029                 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2030                 if (!page)
2031                         goto out_uncharge_cgroup;
2032                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2033                         SetPagePrivate(page);
2034                         h->resv_huge_pages--;
2035                 }
2036                 spin_lock(&hugetlb_lock);
2037                 list_move(&page->lru, &h->hugepage_activelist);
2038                 /* Fall through */
2039         }
2040         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2041         spin_unlock(&hugetlb_lock);
2042
2043         set_page_private(page, (unsigned long)spool);
2044
2045         map_commit = vma_commit_reservation(h, vma, addr);
2046         if (unlikely(map_chg > map_commit)) {
2047                 /*
2048                  * The page was added to the reservation map between
2049                  * vma_needs_reservation and vma_commit_reservation.
2050                  * This indicates a race with hugetlb_reserve_pages.
2051                  * Adjust for the subpool count incremented above AND
2052                  * in hugetlb_reserve_pages for the same page.  Also,
2053                  * the reservation count added in hugetlb_reserve_pages
2054                  * no longer applies.
2055                  */
2056                 long rsv_adjust;
2057
2058                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2059                 hugetlb_acct_memory(h, -rsv_adjust);
2060         }
2061         return page;
2062
2063 out_uncharge_cgroup:
2064         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2065 out_subpool_put:
2066         if (map_chg || avoid_reserve)
2067                 hugepage_subpool_put_pages(spool, 1);
2068         vma_end_reservation(h, vma, addr);
2069         return ERR_PTR(-ENOSPC);
2070 }
2071
2072 /*
2073  * alloc_huge_page()'s wrapper which simply returns the page if allocation
2074  * succeeds, otherwise NULL. This function is called from new_vma_page(),
2075  * where no ERR_VALUE is expected to be returned.
2076  */
2077 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2078                                 unsigned long addr, int avoid_reserve)
2079 {
2080         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2081         if (IS_ERR(page))
2082                 page = NULL;
2083         return page;
2084 }
2085
2086 int alloc_bootmem_huge_page(struct hstate *h)
2087         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2088 int __alloc_bootmem_huge_page(struct hstate *h)
2089 {
2090         struct huge_bootmem_page *m;
2091         int nr_nodes, node;
2092
2093         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2094                 void *addr;
2095
2096                 addr = memblock_virt_alloc_try_nid_nopanic(
2097                                 huge_page_size(h), huge_page_size(h),
2098                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2099                 if (addr) {
2100                         /*
2101                          * Use the beginning of the huge page to store the
2102                          * huge_bootmem_page struct (until gather_bootmem
2103                          * puts them into the mem_map).
2104                          */
2105                         m = addr;
2106                         goto found;
2107                 }
2108         }
2109         return 0;
2110
2111 found:
2112         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2113         /* Put them into a private list first because mem_map is not up yet */
2114         list_add(&m->list, &huge_boot_pages);
2115         m->hstate = h;
2116         return 1;
2117 }
2118
2119 static void __init prep_compound_huge_page(struct page *page,
2120                 unsigned int order)
2121 {
2122         if (unlikely(order > (MAX_ORDER - 1)))
2123                 prep_compound_gigantic_page(page, order);
2124         else
2125                 prep_compound_page(page, order);
2126 }
2127
2128 /* Put bootmem huge pages into the standard lists after mem_map is up */
2129 static void __init gather_bootmem_prealloc(void)
2130 {
2131         struct huge_bootmem_page *m;
2132
2133         list_for_each_entry(m, &huge_boot_pages, list) {
2134                 struct hstate *h = m->hstate;
2135                 struct page *page;
2136
2137 #ifdef CONFIG_HIGHMEM
2138                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2139                 memblock_free_late(__pa(m),
2140                                    sizeof(struct huge_bootmem_page));
2141 #else
2142                 page = virt_to_page(m);
2143 #endif
2144                 WARN_ON(page_count(page) != 1);
2145                 prep_compound_huge_page(page, h->order);
2146                 WARN_ON(PageReserved(page));
2147                 prep_new_huge_page(h, page, page_to_nid(page));
2148                 /*
2149                  * If we had gigantic hugepages allocated at boot time, we need
2150                  * to restore the 'stolen' pages to totalram_pages in order to
2151                  * fix confusing memory reports from free(1) and another
2152                  * side-effects, like CommitLimit going negative.
2153                  */
2154                 if (hstate_is_gigantic(h))
2155                         adjust_managed_page_count(page, 1 << h->order);
2156         }
2157 }
2158
2159 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2160 {
2161         unsigned long i;
2162
2163         for (i = 0; i < h->max_huge_pages; ++i) {
2164                 if (hstate_is_gigantic(h)) {
2165                         if (!alloc_bootmem_huge_page(h))
2166                                 break;
2167                 } else if (!alloc_fresh_huge_page(h,
2168                                          &node_states[N_MEMORY]))
2169                         break;
2170                 cond_resched();
2171         }
2172         if (i < h->max_huge_pages) {
2173                 char buf[32];
2174
2175                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2176                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2177                         h->max_huge_pages, buf, i);
2178                 h->max_huge_pages = i;
2179         }
2180 }
2181
2182 static void __init hugetlb_init_hstates(void)
2183 {
2184         struct hstate *h;
2185
2186         for_each_hstate(h) {
2187                 if (minimum_order > huge_page_order(h))
2188                         minimum_order = huge_page_order(h);
2189
2190                 /* oversize hugepages were init'ed in early boot */
2191                 if (!hstate_is_gigantic(h))
2192                         hugetlb_hstate_alloc_pages(h);
2193         }
2194         VM_BUG_ON(minimum_order == UINT_MAX);
2195 }
2196
2197 static void __init report_hugepages(void)
2198 {
2199         struct hstate *h;
2200
2201         for_each_hstate(h) {
2202                 char buf[32];
2203
2204                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2205                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2206                         buf, h->free_huge_pages);
2207         }
2208 }
2209
2210 #ifdef CONFIG_HIGHMEM
2211 static void try_to_free_low(struct hstate *h, unsigned long count,
2212                                                 nodemask_t *nodes_allowed)
2213 {
2214         int i;
2215
2216         if (hstate_is_gigantic(h))
2217                 return;
2218
2219         for_each_node_mask(i, *nodes_allowed) {
2220                 struct page *page, *next;
2221                 struct list_head *freel = &h->hugepage_freelists[i];
2222                 list_for_each_entry_safe(page, next, freel, lru) {
2223                         if (count >= h->nr_huge_pages)
2224                                 return;
2225                         if (PageHighMem(page))
2226                                 continue;
2227                         list_del(&page->lru);
2228                         update_and_free_page(h, page);
2229                         h->free_huge_pages--;
2230                         h->free_huge_pages_node[page_to_nid(page)]--;
2231                 }
2232         }
2233 }
2234 #else
2235 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2236                                                 nodemask_t *nodes_allowed)
2237 {
2238 }
2239 #endif
2240
2241 /*
2242  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2243  * balanced by operating on them in a round-robin fashion.
2244  * Returns 1 if an adjustment was made.
2245  */
2246 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2247                                 int delta)
2248 {
2249         int nr_nodes, node;
2250
2251         VM_BUG_ON(delta != -1 && delta != 1);
2252
2253         if (delta < 0) {
2254                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2255                         if (h->surplus_huge_pages_node[node])
2256                                 goto found;
2257                 }
2258         } else {
2259                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2260                         if (h->surplus_huge_pages_node[node] <
2261                                         h->nr_huge_pages_node[node])
2262                                 goto found;
2263                 }
2264         }
2265         return 0;
2266
2267 found:
2268         h->surplus_huge_pages += delta;
2269         h->surplus_huge_pages_node[node] += delta;
2270         return 1;
2271 }
2272
2273 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2274 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2275                                                 nodemask_t *nodes_allowed)
2276 {
2277         unsigned long min_count, ret;
2278
2279         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2280                 return h->max_huge_pages;
2281
2282         /*
2283          * Increase the pool size
2284          * First take pages out of surplus state.  Then make up the
2285          * remaining difference by allocating fresh huge pages.
2286          *
2287          * We might race with __alloc_buddy_huge_page() here and be unable
2288          * to convert a surplus huge page to a normal huge page. That is
2289          * not critical, though, it just means the overall size of the
2290          * pool might be one hugepage larger than it needs to be, but
2291          * within all the constraints specified by the sysctls.
2292          */
2293         spin_lock(&hugetlb_lock);
2294         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2295                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2296                         break;
2297         }
2298
2299         while (count > persistent_huge_pages(h)) {
2300                 /*
2301                  * If this allocation races such that we no longer need the
2302                  * page, free_huge_page will handle it by freeing the page
2303                  * and reducing the surplus.
2304                  */
2305                 spin_unlock(&hugetlb_lock);
2306
2307                 /* yield cpu to avoid soft lockup */
2308                 cond_resched();
2309
2310                 if (hstate_is_gigantic(h))
2311                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2312                 else
2313                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2314                 spin_lock(&hugetlb_lock);
2315                 if (!ret)
2316                         goto out;
2317
2318                 /* Bail for signals. Probably ctrl-c from user */
2319                 if (signal_pending(current))
2320                         goto out;
2321         }
2322
2323         /*
2324          * Decrease the pool size
2325          * First return free pages to the buddy allocator (being careful
2326          * to keep enough around to satisfy reservations).  Then place
2327          * pages into surplus state as needed so the pool will shrink
2328          * to the desired size as pages become free.
2329          *
2330          * By placing pages into the surplus state independent of the
2331          * overcommit value, we are allowing the surplus pool size to
2332          * exceed overcommit. There are few sane options here. Since
2333          * __alloc_buddy_huge_page() is checking the global counter,
2334          * though, we'll note that we're not allowed to exceed surplus
2335          * and won't grow the pool anywhere else. Not until one of the
2336          * sysctls are changed, or the surplus pages go out of use.
2337          */
2338         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2339         min_count = max(count, min_count);
2340         try_to_free_low(h, min_count, nodes_allowed);
2341         while (min_count < persistent_huge_pages(h)) {
2342                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2343                         break;
2344                 cond_resched_lock(&hugetlb_lock);
2345         }
2346         while (count < persistent_huge_pages(h)) {
2347                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2348                         break;
2349         }
2350 out:
2351         ret = persistent_huge_pages(h);
2352         spin_unlock(&hugetlb_lock);
2353         return ret;
2354 }
2355
2356 #define HSTATE_ATTR_RO(_name) \
2357         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2358
2359 #define HSTATE_ATTR(_name) \
2360         static struct kobj_attribute _name##_attr = \
2361                 __ATTR(_name, 0644, _name##_show, _name##_store)
2362
2363 static struct kobject *hugepages_kobj;
2364 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2365
2366 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2367
2368 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2369 {
2370         int i;
2371
2372         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2373                 if (hstate_kobjs[i] == kobj) {
2374                         if (nidp)
2375                                 *nidp = NUMA_NO_NODE;
2376                         return &hstates[i];
2377                 }
2378
2379         return kobj_to_node_hstate(kobj, nidp);
2380 }
2381
2382 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2383                                         struct kobj_attribute *attr, char *buf)
2384 {
2385         struct hstate *h;
2386         unsigned long nr_huge_pages;
2387         int nid;
2388
2389         h = kobj_to_hstate(kobj, &nid);
2390         if (nid == NUMA_NO_NODE)
2391                 nr_huge_pages = h->nr_huge_pages;
2392         else
2393                 nr_huge_pages = h->nr_huge_pages_node[nid];
2394
2395         return sprintf(buf, "%lu\n", nr_huge_pages);
2396 }
2397
2398 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2399                                            struct hstate *h, int nid,
2400                                            unsigned long count, size_t len)
2401 {
2402         int err;
2403         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2404
2405         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2406                 err = -EINVAL;
2407                 goto out;
2408         }
2409
2410         if (nid == NUMA_NO_NODE) {
2411                 /*
2412                  * global hstate attribute
2413                  */
2414                 if (!(obey_mempolicy &&
2415                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2416                         NODEMASK_FREE(nodes_allowed);
2417                         nodes_allowed = &node_states[N_MEMORY];
2418                 }
2419         } else if (nodes_allowed) {
2420                 /*
2421                  * per node hstate attribute: adjust count to global,
2422                  * but restrict alloc/free to the specified node.
2423                  */
2424                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2425                 init_nodemask_of_node(nodes_allowed, nid);
2426         } else
2427                 nodes_allowed = &node_states[N_MEMORY];
2428
2429         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2430
2431         if (nodes_allowed != &node_states[N_MEMORY])
2432                 NODEMASK_FREE(nodes_allowed);
2433
2434         return len;
2435 out:
2436         NODEMASK_FREE(nodes_allowed);
2437         return err;
2438 }
2439
2440 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2441                                          struct kobject *kobj, const char *buf,
2442                                          size_t len)
2443 {
2444         struct hstate *h;
2445         unsigned long count;
2446         int nid;
2447         int err;
2448
2449         err = kstrtoul(buf, 10, &count);
2450         if (err)
2451                 return err;
2452
2453         h = kobj_to_hstate(kobj, &nid);
2454         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2455 }
2456
2457 static ssize_t nr_hugepages_show(struct kobject *kobj,
2458                                        struct kobj_attribute *attr, char *buf)
2459 {
2460         return nr_hugepages_show_common(kobj, attr, buf);
2461 }
2462
2463 static ssize_t nr_hugepages_store(struct kobject *kobj,
2464                struct kobj_attribute *attr, const char *buf, size_t len)
2465 {
2466         return nr_hugepages_store_common(false, kobj, buf, len);
2467 }
2468 HSTATE_ATTR(nr_hugepages);
2469
2470 #ifdef CONFIG_NUMA
2471
2472 /*
2473  * hstate attribute for optionally mempolicy-based constraint on persistent
2474  * huge page alloc/free.
2475  */
2476 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2477                                        struct kobj_attribute *attr, char *buf)
2478 {
2479         return nr_hugepages_show_common(kobj, attr, buf);
2480 }
2481
2482 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2483                struct kobj_attribute *attr, const char *buf, size_t len)
2484 {
2485         return nr_hugepages_store_common(true, kobj, buf, len);
2486 }
2487 HSTATE_ATTR(nr_hugepages_mempolicy);
2488 #endif
2489
2490
2491 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2492                                         struct kobj_attribute *attr, char *buf)
2493 {
2494         struct hstate *h = kobj_to_hstate(kobj, NULL);
2495         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2496 }
2497
2498 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2499                 struct kobj_attribute *attr, const char *buf, size_t count)
2500 {
2501         int err;
2502         unsigned long input;
2503         struct hstate *h = kobj_to_hstate(kobj, NULL);
2504
2505         if (hstate_is_gigantic(h))
2506                 return -EINVAL;
2507
2508         err = kstrtoul(buf, 10, &input);
2509         if (err)
2510                 return err;
2511
2512         spin_lock(&hugetlb_lock);
2513         h->nr_overcommit_huge_pages = input;
2514         spin_unlock(&hugetlb_lock);
2515
2516         return count;
2517 }
2518 HSTATE_ATTR(nr_overcommit_hugepages);
2519
2520 static ssize_t free_hugepages_show(struct kobject *kobj,
2521                                         struct kobj_attribute *attr, char *buf)
2522 {
2523         struct hstate *h;
2524         unsigned long free_huge_pages;
2525         int nid;
2526
2527         h = kobj_to_hstate(kobj, &nid);
2528         if (nid == NUMA_NO_NODE)
2529                 free_huge_pages = h->free_huge_pages;
2530         else
2531                 free_huge_pages = h->free_huge_pages_node[nid];
2532
2533         return sprintf(buf, "%lu\n", free_huge_pages);
2534 }
2535 HSTATE_ATTR_RO(free_hugepages);
2536
2537 static ssize_t resv_hugepages_show(struct kobject *kobj,
2538                                         struct kobj_attribute *attr, char *buf)
2539 {
2540         struct hstate *h = kobj_to_hstate(kobj, NULL);
2541         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2542 }
2543 HSTATE_ATTR_RO(resv_hugepages);
2544
2545 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2546                                         struct kobj_attribute *attr, char *buf)
2547 {
2548         struct hstate *h;
2549         unsigned long surplus_huge_pages;
2550         int nid;
2551
2552         h = kobj_to_hstate(kobj, &nid);
2553         if (nid == NUMA_NO_NODE)
2554                 surplus_huge_pages = h->surplus_huge_pages;
2555         else
2556                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2557
2558         return sprintf(buf, "%lu\n", surplus_huge_pages);
2559 }
2560 HSTATE_ATTR_RO(surplus_hugepages);
2561
2562 static struct attribute *hstate_attrs[] = {
2563         &nr_hugepages_attr.attr,
2564         &nr_overcommit_hugepages_attr.attr,
2565         &free_hugepages_attr.attr,
2566         &resv_hugepages_attr.attr,
2567         &surplus_hugepages_attr.attr,
2568 #ifdef CONFIG_NUMA
2569         &nr_hugepages_mempolicy_attr.attr,
2570 #endif
2571         NULL,
2572 };
2573
2574 static struct attribute_group hstate_attr_group = {
2575         .attrs = hstate_attrs,
2576 };
2577
2578 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2579                                     struct kobject **hstate_kobjs,
2580                                     struct attribute_group *hstate_attr_group)
2581 {
2582         int retval;
2583         int hi = hstate_index(h);
2584
2585         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2586         if (!hstate_kobjs[hi])
2587                 return -ENOMEM;
2588
2589         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2590         if (retval)
2591                 kobject_put(hstate_kobjs[hi]);
2592
2593         return retval;
2594 }
2595
2596 static void __init hugetlb_sysfs_init(void)
2597 {
2598         struct hstate *h;
2599         int err;
2600
2601         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2602         if (!hugepages_kobj)
2603                 return;
2604
2605         for_each_hstate(h) {
2606                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2607                                          hstate_kobjs, &hstate_attr_group);
2608                 if (err)
2609                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2610         }
2611 }
2612
2613 #ifdef CONFIG_NUMA
2614
2615 /*
2616  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2617  * with node devices in node_devices[] using a parallel array.  The array
2618  * index of a node device or _hstate == node id.
2619  * This is here to avoid any static dependency of the node device driver, in
2620  * the base kernel, on the hugetlb module.
2621  */
2622 struct node_hstate {
2623         struct kobject          *hugepages_kobj;
2624         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2625 };
2626 static struct node_hstate node_hstates[MAX_NUMNODES];
2627
2628 /*
2629  * A subset of global hstate attributes for node devices
2630  */
2631 static struct attribute *per_node_hstate_attrs[] = {
2632         &nr_hugepages_attr.attr,
2633         &free_hugepages_attr.attr,
2634         &surplus_hugepages_attr.attr,
2635         NULL,
2636 };
2637
2638 static struct attribute_group per_node_hstate_attr_group = {
2639         .attrs = per_node_hstate_attrs,
2640 };
2641
2642 /*
2643  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2644  * Returns node id via non-NULL nidp.
2645  */
2646 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2647 {
2648         int nid;
2649
2650         for (nid = 0; nid < nr_node_ids; nid++) {
2651                 struct node_hstate *nhs = &node_hstates[nid];
2652                 int i;
2653                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2654                         if (nhs->hstate_kobjs[i] == kobj) {
2655                                 if (nidp)
2656                                         *nidp = nid;
2657                                 return &hstates[i];
2658                         }
2659         }
2660
2661         BUG();
2662         return NULL;
2663 }
2664
2665 /*
2666  * Unregister hstate attributes from a single node device.
2667  * No-op if no hstate attributes attached.
2668  */
2669 static void hugetlb_unregister_node(struct node *node)
2670 {
2671         struct hstate *h;
2672         struct node_hstate *nhs = &node_hstates[node->dev.id];
2673
2674         if (!nhs->hugepages_kobj)
2675                 return;         /* no hstate attributes */
2676
2677         for_each_hstate(h) {
2678                 int idx = hstate_index(h);
2679                 if (nhs->hstate_kobjs[idx]) {
2680                         kobject_put(nhs->hstate_kobjs[idx]);
2681                         nhs->hstate_kobjs[idx] = NULL;
2682                 }
2683         }
2684
2685         kobject_put(nhs->hugepages_kobj);
2686         nhs->hugepages_kobj = NULL;
2687 }
2688
2689
2690 /*
2691  * Register hstate attributes for a single node device.
2692  * No-op if attributes already registered.
2693  */
2694 static void hugetlb_register_node(struct node *node)
2695 {
2696         struct hstate *h;
2697         struct node_hstate *nhs = &node_hstates[node->dev.id];
2698         int err;
2699
2700         if (nhs->hugepages_kobj)
2701                 return;         /* already allocated */
2702
2703         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2704                                                         &node->dev.kobj);
2705         if (!nhs->hugepages_kobj)
2706                 return;
2707
2708         for_each_hstate(h) {
2709                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2710                                                 nhs->hstate_kobjs,
2711                                                 &per_node_hstate_attr_group);
2712                 if (err) {
2713                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2714                                 h->name, node->dev.id);
2715                         hugetlb_unregister_node(node);
2716                         break;
2717                 }
2718         }
2719 }
2720
2721 /*
2722  * hugetlb init time:  register hstate attributes for all registered node
2723  * devices of nodes that have memory.  All on-line nodes should have
2724  * registered their associated device by this time.
2725  */
2726 static void __init hugetlb_register_all_nodes(void)
2727 {
2728         int nid;
2729
2730         for_each_node_state(nid, N_MEMORY) {
2731                 struct node *node = node_devices[nid];
2732                 if (node->dev.id == nid)
2733                         hugetlb_register_node(node);
2734         }
2735
2736         /*
2737          * Let the node device driver know we're here so it can
2738          * [un]register hstate attributes on node hotplug.
2739          */
2740         register_hugetlbfs_with_node(hugetlb_register_node,
2741                                      hugetlb_unregister_node);
2742 }
2743 #else   /* !CONFIG_NUMA */
2744
2745 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2746 {
2747         BUG();
2748         if (nidp)
2749                 *nidp = -1;
2750         return NULL;
2751 }
2752
2753 static void hugetlb_register_all_nodes(void) { }
2754
2755 #endif
2756
2757 static int __init hugetlb_init(void)
2758 {
2759         int i;
2760
2761         if (!hugepages_supported())
2762                 return 0;
2763
2764         if (!size_to_hstate(default_hstate_size)) {
2765                 if (default_hstate_size != 0) {
2766                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2767                                default_hstate_size, HPAGE_SIZE);
2768                 }
2769
2770                 default_hstate_size = HPAGE_SIZE;
2771                 if (!size_to_hstate(default_hstate_size))
2772                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2773         }
2774         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2775         if (default_hstate_max_huge_pages) {
2776                 if (!default_hstate.max_huge_pages)
2777                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2778         }
2779
2780         hugetlb_init_hstates();
2781         gather_bootmem_prealloc();
2782         report_hugepages();
2783
2784         hugetlb_sysfs_init();
2785         hugetlb_register_all_nodes();
2786         hugetlb_cgroup_file_init();
2787
2788 #ifdef CONFIG_SMP
2789         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2790 #else
2791         num_fault_mutexes = 1;
2792 #endif
2793         hugetlb_fault_mutex_table =
2794                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2795         BUG_ON(!hugetlb_fault_mutex_table);
2796
2797         for (i = 0; i < num_fault_mutexes; i++)
2798                 mutex_init(&hugetlb_fault_mutex_table[i]);
2799         return 0;
2800 }
2801 subsys_initcall(hugetlb_init);
2802
2803 /* Should be called on processing a hugepagesz=... option */
2804 void __init hugetlb_bad_size(void)
2805 {
2806         parsed_valid_hugepagesz = false;
2807 }
2808
2809 void __init hugetlb_add_hstate(unsigned int order)
2810 {
2811         struct hstate *h;
2812         unsigned long i;
2813
2814         if (size_to_hstate(PAGE_SIZE << order)) {
2815                 pr_warn("hugepagesz= specified twice, ignoring\n");
2816                 return;
2817         }
2818         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2819         BUG_ON(order == 0);
2820         h = &hstates[hugetlb_max_hstate++];
2821         h->order = order;
2822         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2823         h->nr_huge_pages = 0;
2824         h->free_huge_pages = 0;
2825         for (i = 0; i < MAX_NUMNODES; ++i)
2826                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2827         INIT_LIST_HEAD(&h->hugepage_activelist);
2828         h->next_nid_to_alloc = first_memory_node;
2829         h->next_nid_to_free = first_memory_node;
2830         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2831                                         huge_page_size(h)/1024);
2832
2833         parsed_hstate = h;
2834 }
2835
2836 static int __init hugetlb_nrpages_setup(char *s)
2837 {
2838         unsigned long *mhp;
2839         static unsigned long *last_mhp;
2840
2841         if (!parsed_valid_hugepagesz) {
2842                 pr_warn("hugepages = %s preceded by "
2843                         "an unsupported hugepagesz, ignoring\n", s);
2844                 parsed_valid_hugepagesz = true;
2845                 return 1;
2846         }
2847         /*
2848          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2849          * so this hugepages= parameter goes to the "default hstate".
2850          */
2851         else if (!hugetlb_max_hstate)
2852                 mhp = &default_hstate_max_huge_pages;
2853         else
2854                 mhp = &parsed_hstate->max_huge_pages;
2855
2856         if (mhp == last_mhp) {
2857                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2858                 return 1;
2859         }
2860
2861         if (sscanf(s, "%lu", mhp) <= 0)
2862                 *mhp = 0;
2863
2864         /*
2865          * Global state is always initialized later in hugetlb_init.
2866          * But we need to allocate >= MAX_ORDER hstates here early to still
2867          * use the bootmem allocator.
2868          */
2869         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2870                 hugetlb_hstate_alloc_pages(parsed_hstate);
2871
2872         last_mhp = mhp;
2873
2874         return 1;
2875 }
2876 __setup("hugepages=", hugetlb_nrpages_setup);
2877
2878 static int __init hugetlb_default_setup(char *s)
2879 {
2880         default_hstate_size = memparse(s, &s);
2881         return 1;
2882 }
2883 __setup("default_hugepagesz=", hugetlb_default_setup);
2884
2885 static unsigned int cpuset_mems_nr(unsigned int *array)
2886 {
2887         int node;
2888         unsigned int nr = 0;
2889
2890         for_each_node_mask(node, cpuset_current_mems_allowed)
2891                 nr += array[node];
2892
2893         return nr;
2894 }
2895
2896 #ifdef CONFIG_SYSCTL
2897 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2898                          struct ctl_table *table, int write,
2899                          void __user *buffer, size_t *length, loff_t *ppos)
2900 {
2901         struct hstate *h = &default_hstate;
2902         unsigned long tmp = h->max_huge_pages;
2903         int ret;
2904
2905         if (!hugepages_supported())
2906                 return -EOPNOTSUPP;
2907
2908         table->data = &tmp;
2909         table->maxlen = sizeof(unsigned long);
2910         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2911         if (ret)
2912                 goto out;
2913
2914         if (write)
2915                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2916                                                   NUMA_NO_NODE, tmp, *length);
2917 out:
2918         return ret;
2919 }
2920
2921 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2922                           void __user *buffer, size_t *length, loff_t *ppos)
2923 {
2924
2925         return hugetlb_sysctl_handler_common(false, table, write,
2926                                                         buffer, length, ppos);
2927 }
2928
2929 #ifdef CONFIG_NUMA
2930 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2931                           void __user *buffer, size_t *length, loff_t *ppos)
2932 {
2933         return hugetlb_sysctl_handler_common(true, table, write,
2934                                                         buffer, length, ppos);
2935 }
2936 #endif /* CONFIG_NUMA */
2937
2938 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2939                         void __user *buffer,
2940                         size_t *length, loff_t *ppos)
2941 {
2942         struct hstate *h = &default_hstate;
2943         unsigned long tmp;
2944         int ret;
2945
2946         if (!hugepages_supported())
2947                 return -EOPNOTSUPP;
2948
2949         tmp = h->nr_overcommit_huge_pages;
2950
2951         if (write && hstate_is_gigantic(h))
2952                 return -EINVAL;
2953
2954         table->data = &tmp;
2955         table->maxlen = sizeof(unsigned long);
2956         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2957         if (ret)
2958                 goto out;
2959
2960         if (write) {
2961                 spin_lock(&hugetlb_lock);
2962                 h->nr_overcommit_huge_pages = tmp;
2963                 spin_unlock(&hugetlb_lock);
2964         }
2965 out:
2966         return ret;
2967 }
2968
2969 #endif /* CONFIG_SYSCTL */
2970
2971 void hugetlb_report_meminfo(struct seq_file *m)
2972 {
2973         struct hstate *h = &default_hstate;
2974         if (!hugepages_supported())
2975                 return;
2976         seq_printf(m,
2977                         "HugePages_Total:   %5lu\n"
2978                         "HugePages_Free:    %5lu\n"
2979                         "HugePages_Rsvd:    %5lu\n"
2980                         "HugePages_Surp:    %5lu\n"
2981                         "Hugepagesize:   %8lu kB\n",
2982                         h->nr_huge_pages,
2983                         h->free_huge_pages,
2984                         h->resv_huge_pages,
2985                         h->surplus_huge_pages,
2986                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2987 }
2988
2989 int hugetlb_report_node_meminfo(int nid, char *buf)
2990 {
2991         struct hstate *h = &default_hstate;
2992         if (!hugepages_supported())
2993                 return 0;
2994         return sprintf(buf,
2995                 "Node %d HugePages_Total: %5u\n"
2996                 "Node %d HugePages_Free:  %5u\n"
2997                 "Node %d HugePages_Surp:  %5u\n",
2998                 nid, h->nr_huge_pages_node[nid],
2999                 nid, h->free_huge_pages_node[nid],
3000                 nid, h->surplus_huge_pages_node[nid]);
3001 }
3002
3003 void hugetlb_show_meminfo(void)
3004 {
3005         struct hstate *h;
3006         int nid;
3007
3008         if (!hugepages_supported())
3009                 return;
3010
3011         for_each_node_state(nid, N_MEMORY)
3012                 for_each_hstate(h)
3013                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3014                                 nid,
3015                                 h->nr_huge_pages_node[nid],
3016                                 h->free_huge_pages_node[nid],
3017                                 h->surplus_huge_pages_node[nid],
3018                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3019 }
3020
3021 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3022 {
3023         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3024                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3025 }
3026
3027 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3028 unsigned long hugetlb_total_pages(void)
3029 {
3030         struct hstate *h;
3031         unsigned long nr_total_pages = 0;
3032
3033         for_each_hstate(h)
3034                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3035         return nr_total_pages;
3036 }
3037
3038 static int hugetlb_acct_memory(struct hstate *h, long delta)
3039 {
3040         int ret = -ENOMEM;
3041
3042         spin_lock(&hugetlb_lock);
3043         /*
3044          * When cpuset is configured, it breaks the strict hugetlb page
3045          * reservation as the accounting is done on a global variable. Such
3046          * reservation is completely rubbish in the presence of cpuset because
3047          * the reservation is not checked against page availability for the
3048          * current cpuset. Application can still potentially OOM'ed by kernel
3049          * with lack of free htlb page in cpuset that the task is in.
3050          * Attempt to enforce strict accounting with cpuset is almost
3051          * impossible (or too ugly) because cpuset is too fluid that
3052          * task or memory node can be dynamically moved between cpusets.
3053          *
3054          * The change of semantics for shared hugetlb mapping with cpuset is
3055          * undesirable. However, in order to preserve some of the semantics,
3056          * we fall back to check against current free page availability as
3057          * a best attempt and hopefully to minimize the impact of changing
3058          * semantics that cpuset has.
3059          */
3060         if (delta > 0) {
3061                 if (gather_surplus_pages(h, delta) < 0)
3062                         goto out;
3063
3064                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3065                         return_unused_surplus_pages(h, delta);
3066                         goto out;
3067                 }
3068         }
3069
3070         ret = 0;
3071         if (delta < 0)
3072                 return_unused_surplus_pages(h, (unsigned long) -delta);
3073
3074 out:
3075         spin_unlock(&hugetlb_lock);
3076         return ret;
3077 }
3078
3079 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3080 {
3081         struct resv_map *resv = vma_resv_map(vma);
3082
3083         /*
3084          * This new VMA should share its siblings reservation map if present.
3085          * The VMA will only ever have a valid reservation map pointer where
3086          * it is being copied for another still existing VMA.  As that VMA
3087          * has a reference to the reservation map it cannot disappear until
3088          * after this open call completes.  It is therefore safe to take a
3089          * new reference here without additional locking.
3090          */
3091         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3092                 kref_get(&resv->refs);
3093 }
3094
3095 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3096 {
3097         struct hstate *h = hstate_vma(vma);
3098         struct resv_map *resv = vma_resv_map(vma);
3099         struct hugepage_subpool *spool = subpool_vma(vma);
3100         unsigned long reserve, start, end;
3101         long gbl_reserve;
3102
3103         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3104                 return;
3105
3106         start = vma_hugecache_offset(h, vma, vma->vm_start);
3107         end = vma_hugecache_offset(h, vma, vma->vm_end);
3108
3109         reserve = (end - start) - region_count(resv, start, end);
3110
3111         kref_put(&resv->refs, resv_map_release);
3112
3113         if (reserve) {
3114                 /*
3115                  * Decrement reserve counts.  The global reserve count may be
3116                  * adjusted if the subpool has a minimum size.
3117                  */
3118                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3119                 hugetlb_acct_memory(h, -gbl_reserve);
3120         }
3121 }
3122
3123 /*
3124  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3125  * handle_mm_fault() to try to instantiate regular-sized pages in the
3126  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3127  * this far.
3128  */
3129 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3130 {
3131         BUG();
3132         return 0;
3133 }
3134
3135 const struct vm_operations_struct hugetlb_vm_ops = {
3136         .fault = hugetlb_vm_op_fault,
3137         .open = hugetlb_vm_op_open,
3138         .close = hugetlb_vm_op_close,
3139 };
3140
3141 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3142                                 int writable)
3143 {
3144         pte_t entry;
3145
3146         if (writable) {
3147                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3148                                          vma->vm_page_prot)));
3149         } else {
3150                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3151                                            vma->vm_page_prot));
3152         }
3153         entry = pte_mkyoung(entry);
3154         entry = pte_mkhuge(entry);
3155         entry = arch_make_huge_pte(entry, vma, page, writable);
3156
3157         return entry;
3158 }
3159
3160 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3161                                    unsigned long address, pte_t *ptep)
3162 {
3163         pte_t entry;
3164
3165         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3166         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3167                 update_mmu_cache(vma, address, ptep);
3168 }
3169
3170 bool is_hugetlb_entry_migration(pte_t pte)
3171 {
3172         swp_entry_t swp;
3173
3174         if (huge_pte_none(pte) || pte_present(pte))
3175                 return false;
3176         swp = pte_to_swp_entry(pte);
3177         if (non_swap_entry(swp) && is_migration_entry(swp))
3178                 return true;
3179         else
3180                 return false;
3181 }
3182
3183 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3184 {
3185         swp_entry_t swp;
3186
3187         if (huge_pte_none(pte) || pte_present(pte))
3188                 return 0;
3189         swp = pte_to_swp_entry(pte);
3190         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3191                 return 1;
3192         else
3193                 return 0;
3194 }
3195
3196 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3197                             struct vm_area_struct *vma)
3198 {
3199         pte_t *src_pte, *dst_pte, entry;
3200         struct page *ptepage;
3201         unsigned long addr;
3202         int cow;
3203         struct hstate *h = hstate_vma(vma);
3204         unsigned long sz = huge_page_size(h);
3205         unsigned long mmun_start;       /* For mmu_notifiers */
3206         unsigned long mmun_end;         /* For mmu_notifiers */
3207         int ret = 0;
3208
3209         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3210
3211         mmun_start = vma->vm_start;
3212         mmun_end = vma->vm_end;
3213         if (cow)
3214                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3215
3216         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3217                 spinlock_t *src_ptl, *dst_ptl;
3218                 src_pte = huge_pte_offset(src, addr, sz);
3219                 if (!src_pte)
3220                         continue;
3221                 dst_pte = huge_pte_alloc(dst, addr, sz);
3222                 if (!dst_pte) {
3223                         ret = -ENOMEM;
3224                         break;
3225                 }
3226
3227                 /* If the pagetables are shared don't copy or take references */
3228                 if (dst_pte == src_pte)
3229                         continue;
3230
3231                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3232                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3233                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3234                 entry = huge_ptep_get(src_pte);
3235                 if (huge_pte_none(entry)) { /* skip none entry */
3236                         ;
3237                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3238                                     is_hugetlb_entry_hwpoisoned(entry))) {
3239                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3240
3241                         if (is_write_migration_entry(swp_entry) && cow) {
3242                                 /*
3243                                  * COW mappings require pages in both
3244                                  * parent and child to be set to read.
3245                                  */
3246                                 make_migration_entry_read(&swp_entry);
3247                                 entry = swp_entry_to_pte(swp_entry);
3248                                 set_huge_swap_pte_at(src, addr, src_pte,
3249                                                      entry, sz);
3250                         }
3251                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3252                 } else {
3253                         if (cow) {
3254                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3255                                 mmu_notifier_invalidate_range(src, mmun_start,
3256                                                                    mmun_end);
3257                         }
3258                         entry = huge_ptep_get(src_pte);
3259                         ptepage = pte_page(entry);
3260                         get_page(ptepage);
3261                         page_dup_rmap(ptepage, true);
3262                         set_huge_pte_at(dst, addr, dst_pte, entry);
3263                         hugetlb_count_add(pages_per_huge_page(h), dst);
3264                 }
3265                 spin_unlock(src_ptl);
3266                 spin_unlock(dst_ptl);
3267         }
3268
3269         if (cow)
3270                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3271
3272         return ret;
3273 }
3274
3275 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3276                             unsigned long start, unsigned long end,
3277                             struct page *ref_page)
3278 {
3279         struct mm_struct *mm = vma->vm_mm;
3280         unsigned long address;
3281         pte_t *ptep;
3282         pte_t pte;
3283         spinlock_t *ptl;
3284         struct page *page;
3285         struct hstate *h = hstate_vma(vma);
3286         unsigned long sz = huge_page_size(h);
3287         const unsigned long mmun_start = start; /* For mmu_notifiers */
3288         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3289
3290         WARN_ON(!is_vm_hugetlb_page(vma));
3291         BUG_ON(start & ~huge_page_mask(h));
3292         BUG_ON(end & ~huge_page_mask(h));
3293
3294         /*
3295          * This is a hugetlb vma, all the pte entries should point
3296          * to huge page.
3297          */
3298         tlb_remove_check_page_size_change(tlb, sz);
3299         tlb_start_vma(tlb, vma);
3300         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3301         address = start;
3302         for (; address < end; address += sz) {
3303                 ptep = huge_pte_offset(mm, address, sz);
3304                 if (!ptep)
3305                         continue;
3306
3307                 ptl = huge_pte_lock(h, mm, ptep);
3308                 if (huge_pmd_unshare(mm, &address, ptep)) {
3309                         spin_unlock(ptl);
3310                         continue;
3311                 }
3312
3313                 pte = huge_ptep_get(ptep);
3314                 if (huge_pte_none(pte)) {
3315                         spin_unlock(ptl);
3316                         continue;
3317                 }
3318
3319                 /*
3320                  * Migrating hugepage or HWPoisoned hugepage is already
3321                  * unmapped and its refcount is dropped, so just clear pte here.
3322                  */
3323                 if (unlikely(!pte_present(pte))) {
3324                         huge_pte_clear(mm, address, ptep, sz);
3325                         spin_unlock(ptl);
3326                         continue;
3327                 }
3328
3329                 page = pte_page(pte);
3330                 /*
3331                  * If a reference page is supplied, it is because a specific
3332                  * page is being unmapped, not a range. Ensure the page we
3333                  * are about to unmap is the actual page of interest.
3334                  */
3335                 if (ref_page) {
3336                         if (page != ref_page) {
3337                                 spin_unlock(ptl);
3338                                 continue;
3339                         }
3340                         /*
3341                          * Mark the VMA as having unmapped its page so that
3342                          * future faults in this VMA will fail rather than
3343                          * looking like data was lost
3344                          */
3345                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3346                 }
3347
3348                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3349                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3350                 if (huge_pte_dirty(pte))
3351                         set_page_dirty(page);
3352
3353                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3354                 page_remove_rmap(page, true);
3355
3356                 spin_unlock(ptl);
3357                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3358                 /*
3359                  * Bail out after unmapping reference page if supplied
3360                  */
3361                 if (ref_page)
3362                         break;
3363         }
3364         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3365         tlb_end_vma(tlb, vma);
3366 }
3367
3368 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3369                           struct vm_area_struct *vma, unsigned long start,
3370                           unsigned long end, struct page *ref_page)
3371 {
3372         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3373
3374         /*
3375          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3376          * test will fail on a vma being torn down, and not grab a page table
3377          * on its way out.  We're lucky that the flag has such an appropriate
3378          * name, and can in fact be safely cleared here. We could clear it
3379          * before the __unmap_hugepage_range above, but all that's necessary
3380          * is to clear it before releasing the i_mmap_rwsem. This works
3381          * because in the context this is called, the VMA is about to be
3382          * destroyed and the i_mmap_rwsem is held.
3383          */
3384         vma->vm_flags &= ~VM_MAYSHARE;
3385 }
3386
3387 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3388                           unsigned long end, struct page *ref_page)
3389 {
3390         struct mm_struct *mm;
3391         struct mmu_gather tlb;
3392
3393         mm = vma->vm_mm;
3394
3395         tlb_gather_mmu(&tlb, mm, start, end);
3396         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3397         tlb_finish_mmu(&tlb, start, end);
3398 }
3399
3400 /*
3401  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3402  * mappping it owns the reserve page for. The intention is to unmap the page
3403  * from other VMAs and let the children be SIGKILLed if they are faulting the
3404  * same region.
3405  */
3406 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3407                               struct page *page, unsigned long address)
3408 {
3409         struct hstate *h = hstate_vma(vma);
3410         struct vm_area_struct *iter_vma;
3411         struct address_space *mapping;
3412         pgoff_t pgoff;
3413
3414         /*
3415          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3416          * from page cache lookup which is in HPAGE_SIZE units.
3417          */
3418         address = address & huge_page_mask(h);
3419         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3420                         vma->vm_pgoff;
3421         mapping = vma->vm_file->f_mapping;
3422
3423         /*
3424          * Take the mapping lock for the duration of the table walk. As
3425          * this mapping should be shared between all the VMAs,
3426          * __unmap_hugepage_range() is called as the lock is already held
3427          */
3428         i_mmap_lock_write(mapping);
3429         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3430                 /* Do not unmap the current VMA */
3431                 if (iter_vma == vma)
3432                         continue;
3433
3434                 /*
3435                  * Shared VMAs have their own reserves and do not affect
3436                  * MAP_PRIVATE accounting but it is possible that a shared
3437                  * VMA is using the same page so check and skip such VMAs.
3438                  */
3439                 if (iter_vma->vm_flags & VM_MAYSHARE)
3440                         continue;
3441
3442                 /*
3443                  * Unmap the page from other VMAs without their own reserves.
3444                  * They get marked to be SIGKILLed if they fault in these
3445                  * areas. This is because a future no-page fault on this VMA
3446                  * could insert a zeroed page instead of the data existing
3447                  * from the time of fork. This would look like data corruption
3448                  */
3449                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3450                         unmap_hugepage_range(iter_vma, address,
3451                                              address + huge_page_size(h), page);
3452         }
3453         i_mmap_unlock_write(mapping);
3454 }
3455
3456 /*
3457  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3458  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3459  * cannot race with other handlers or page migration.
3460  * Keep the pte_same checks anyway to make transition from the mutex easier.
3461  */
3462 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3463                        unsigned long address, pte_t *ptep,
3464                        struct page *pagecache_page, spinlock_t *ptl)
3465 {
3466         pte_t pte;
3467         struct hstate *h = hstate_vma(vma);
3468         struct page *old_page, *new_page;
3469         int ret = 0, outside_reserve = 0;
3470         unsigned long mmun_start;       /* For mmu_notifiers */
3471         unsigned long mmun_end;         /* For mmu_notifiers */
3472
3473         pte = huge_ptep_get(ptep);
3474         old_page = pte_page(pte);
3475
3476 retry_avoidcopy:
3477         /* If no-one else is actually using this page, avoid the copy
3478          * and just make the page writable */
3479         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3480                 page_move_anon_rmap(old_page, vma);
3481                 set_huge_ptep_writable(vma, address, ptep);
3482                 return 0;
3483         }
3484
3485         /*
3486          * If the process that created a MAP_PRIVATE mapping is about to
3487          * perform a COW due to a shared page count, attempt to satisfy
3488          * the allocation without using the existing reserves. The pagecache
3489          * page is used to determine if the reserve at this address was
3490          * consumed or not. If reserves were used, a partial faulted mapping
3491          * at the time of fork() could consume its reserves on COW instead
3492          * of the full address range.
3493          */
3494         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3495                         old_page != pagecache_page)
3496                 outside_reserve = 1;
3497
3498         get_page(old_page);
3499
3500         /*
3501          * Drop page table lock as buddy allocator may be called. It will
3502          * be acquired again before returning to the caller, as expected.
3503          */
3504         spin_unlock(ptl);
3505         new_page = alloc_huge_page(vma, address, outside_reserve);
3506
3507         if (IS_ERR(new_page)) {
3508                 /*
3509                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3510                  * it is due to references held by a child and an insufficient
3511                  * huge page pool. To guarantee the original mappers
3512                  * reliability, unmap the page from child processes. The child
3513                  * may get SIGKILLed if it later faults.
3514                  */
3515                 if (outside_reserve) {
3516                         put_page(old_page);
3517                         BUG_ON(huge_pte_none(pte));
3518                         unmap_ref_private(mm, vma, old_page, address);
3519                         BUG_ON(huge_pte_none(pte));
3520                         spin_lock(ptl);
3521                         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3522                                                huge_page_size(h));
3523                         if (likely(ptep &&
3524                                    pte_same(huge_ptep_get(ptep), pte)))
3525                                 goto retry_avoidcopy;
3526                         /*
3527                          * race occurs while re-acquiring page table
3528                          * lock, and our job is done.
3529                          */
3530                         return 0;
3531                 }
3532
3533                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3534                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3535                 goto out_release_old;
3536         }
3537
3538         /*
3539          * When the original hugepage is shared one, it does not have
3540          * anon_vma prepared.
3541          */
3542         if (unlikely(anon_vma_prepare(vma))) {
3543                 ret = VM_FAULT_OOM;
3544                 goto out_release_all;
3545         }
3546
3547         copy_user_huge_page(new_page, old_page, address, vma,
3548                             pages_per_huge_page(h));
3549         __SetPageUptodate(new_page);
3550         set_page_huge_active(new_page);
3551
3552         mmun_start = address & huge_page_mask(h);
3553         mmun_end = mmun_start + huge_page_size(h);
3554         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3555
3556         /*
3557          * Retake the page table lock to check for racing updates
3558          * before the page tables are altered
3559          */
3560         spin_lock(ptl);
3561         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3562                                huge_page_size(h));
3563         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3564                 ClearPagePrivate(new_page);
3565
3566                 /* Break COW */
3567                 huge_ptep_clear_flush(vma, address, ptep);
3568                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3569                 set_huge_pte_at(mm, address, ptep,
3570                                 make_huge_pte(vma, new_page, 1));
3571                 page_remove_rmap(old_page, true);
3572                 hugepage_add_new_anon_rmap(new_page, vma, address);
3573                 /* Make the old page be freed below */
3574                 new_page = old_page;
3575         }
3576         spin_unlock(ptl);
3577         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3578 out_release_all:
3579         restore_reserve_on_error(h, vma, address, new_page);
3580         put_page(new_page);
3581 out_release_old:
3582         put_page(old_page);
3583
3584         spin_lock(ptl); /* Caller expects lock to be held */
3585         return ret;
3586 }
3587
3588 /* Return the pagecache page at a given address within a VMA */
3589 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3590                         struct vm_area_struct *vma, unsigned long address)
3591 {
3592         struct address_space *mapping;
3593         pgoff_t idx;
3594
3595         mapping = vma->vm_file->f_mapping;
3596         idx = vma_hugecache_offset(h, vma, address);
3597
3598         return find_lock_page(mapping, idx);
3599 }
3600
3601 /*
3602  * Return whether there is a pagecache page to back given address within VMA.
3603  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3604  */
3605 static bool hugetlbfs_pagecache_present(struct hstate *h,
3606                         struct vm_area_struct *vma, unsigned long address)
3607 {
3608         struct address_space *mapping;
3609         pgoff_t idx;
3610         struct page *page;
3611
3612         mapping = vma->vm_file->f_mapping;
3613         idx = vma_hugecache_offset(h, vma, address);
3614
3615         page = find_get_page(mapping, idx);
3616         if (page)
3617                 put_page(page);
3618         return page != NULL;
3619 }
3620
3621 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3622                            pgoff_t idx)
3623 {
3624         struct inode *inode = mapping->host;
3625         struct hstate *h = hstate_inode(inode);
3626         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3627
3628         if (err)
3629                 return err;
3630         ClearPagePrivate(page);
3631
3632         spin_lock(&inode->i_lock);
3633         inode->i_blocks += blocks_per_huge_page(h);
3634         spin_unlock(&inode->i_lock);
3635         return 0;
3636 }
3637
3638 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3639                            struct address_space *mapping, pgoff_t idx,
3640                            unsigned long address, pte_t *ptep, unsigned int flags)
3641 {
3642         struct hstate *h = hstate_vma(vma);
3643         int ret = VM_FAULT_SIGBUS;
3644         int anon_rmap = 0;
3645         unsigned long size;
3646         struct page *page;
3647         pte_t new_pte;
3648         spinlock_t *ptl;
3649
3650         /*
3651          * Currently, we are forced to kill the process in the event the
3652          * original mapper has unmapped pages from the child due to a failed
3653          * COW. Warn that such a situation has occurred as it may not be obvious
3654          */
3655         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3656                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3657                            current->pid);
3658                 return ret;
3659         }
3660
3661         /*
3662          * Use page lock to guard against racing truncation
3663          * before we get page_table_lock.
3664          */
3665 retry:
3666         page = find_lock_page(mapping, idx);
3667         if (!page) {
3668                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3669                 if (idx >= size)
3670                         goto out;
3671
3672                 /*
3673                  * Check for page in userfault range
3674                  */
3675                 if (userfaultfd_missing(vma)) {
3676                         u32 hash;
3677                         struct vm_fault vmf = {
3678                                 .vma = vma,
3679                                 .address = address,
3680                                 .flags = flags,
3681                                 /*
3682                                  * Hard to debug if it ends up being
3683                                  * used by a callee that assumes
3684                                  * something about the other
3685                                  * uninitialized fields... same as in
3686                                  * memory.c
3687                                  */
3688                         };
3689
3690                         /*
3691                          * hugetlb_fault_mutex must be dropped before
3692                          * handling userfault.  Reacquire after handling
3693                          * fault to make calling code simpler.
3694                          */
3695                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3696                                                         idx, address);
3697                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3698                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3699                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3700                         goto out;
3701                 }
3702
3703                 page = alloc_huge_page(vma, address, 0);
3704                 if (IS_ERR(page)) {
3705                         ret = PTR_ERR(page);
3706                         if (ret == -ENOMEM)
3707                                 ret = VM_FAULT_OOM;
3708                         else
3709                                 ret = VM_FAULT_SIGBUS;
3710                         goto out;
3711                 }
3712                 clear_huge_page(page, address, pages_per_huge_page(h));
3713                 __SetPageUptodate(page);
3714                 set_page_huge_active(page);
3715
3716                 if (vma->vm_flags & VM_MAYSHARE) {
3717                         int err = huge_add_to_page_cache(page, mapping, idx);
3718                         if (err) {
3719                                 put_page(page);
3720                                 if (err == -EEXIST)
3721                                         goto retry;
3722                                 goto out;
3723                         }
3724                 } else {
3725                         lock_page(page);
3726                         if (unlikely(anon_vma_prepare(vma))) {
3727                                 ret = VM_FAULT_OOM;
3728                                 goto backout_unlocked;
3729                         }
3730                         anon_rmap = 1;
3731                 }
3732         } else {
3733                 /*
3734                  * If memory error occurs between mmap() and fault, some process
3735                  * don't have hwpoisoned swap entry for errored virtual address.
3736                  * So we need to block hugepage fault by PG_hwpoison bit check.
3737                  */
3738                 if (unlikely(PageHWPoison(page))) {
3739                         ret = VM_FAULT_HWPOISON |
3740                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3741                         goto backout_unlocked;
3742                 }
3743         }
3744
3745         /*
3746          * If we are going to COW a private mapping later, we examine the
3747          * pending reservations for this page now. This will ensure that
3748          * any allocations necessary to record that reservation occur outside
3749          * the spinlock.
3750          */
3751         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3752                 if (vma_needs_reservation(h, vma, address) < 0) {
3753                         ret = VM_FAULT_OOM;
3754                         goto backout_unlocked;
3755                 }
3756                 /* Just decrements count, does not deallocate */
3757                 vma_end_reservation(h, vma, address);
3758         }
3759
3760         ptl = huge_pte_lock(h, mm, ptep);
3761         size = i_size_read(mapping->host) >> huge_page_shift(h);
3762         if (idx >= size)
3763                 goto backout;
3764
3765         ret = 0;
3766         if (!huge_pte_none(huge_ptep_get(ptep)))
3767                 goto backout;
3768
3769         if (anon_rmap) {
3770                 ClearPagePrivate(page);
3771                 hugepage_add_new_anon_rmap(page, vma, address);
3772         } else
3773                 page_dup_rmap(page, true);
3774         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3775                                 && (vma->vm_flags & VM_SHARED)));
3776         set_huge_pte_at(mm, address, ptep, new_pte);
3777
3778         hugetlb_count_add(pages_per_huge_page(h), mm);
3779         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3780                 /* Optimization, do the COW without a second fault */
3781                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3782         }
3783
3784         spin_unlock(ptl);
3785         unlock_page(page);
3786 out:
3787         return ret;
3788
3789 backout:
3790         spin_unlock(ptl);
3791 backout_unlocked:
3792         unlock_page(page);
3793         restore_reserve_on_error(h, vma, address, page);
3794         put_page(page);
3795         goto out;
3796 }
3797
3798 #ifdef CONFIG_SMP
3799 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3800                             struct vm_area_struct *vma,
3801                             struct address_space *mapping,
3802                             pgoff_t idx, unsigned long address)
3803 {
3804         unsigned long key[2];
3805         u32 hash;
3806
3807         if (vma->vm_flags & VM_SHARED) {
3808                 key[0] = (unsigned long) mapping;
3809                 key[1] = idx;
3810         } else {
3811                 key[0] = (unsigned long) mm;
3812                 key[1] = address >> huge_page_shift(h);
3813         }
3814
3815         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3816
3817         return hash & (num_fault_mutexes - 1);
3818 }
3819 #else
3820 /*
3821  * For uniprocesor systems we always use a single mutex, so just
3822  * return 0 and avoid the hashing overhead.
3823  */
3824 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3825                             struct vm_area_struct *vma,
3826                             struct address_space *mapping,
3827                             pgoff_t idx, unsigned long address)
3828 {
3829         return 0;
3830 }
3831 #endif
3832
3833 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3834                         unsigned long address, unsigned int flags)
3835 {
3836         pte_t *ptep, entry;
3837         spinlock_t *ptl;
3838         int ret;
3839         u32 hash;
3840         pgoff_t idx;
3841         struct page *page = NULL;
3842         struct page *pagecache_page = NULL;
3843         struct hstate *h = hstate_vma(vma);
3844         struct address_space *mapping;
3845         int need_wait_lock = 0;
3846
3847         address &= huge_page_mask(h);
3848
3849         ptep = huge_pte_offset(mm, address, huge_page_size(h));
3850         if (ptep) {
3851                 entry = huge_ptep_get(ptep);
3852                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3853                         migration_entry_wait_huge(vma, mm, ptep);
3854                         return 0;
3855                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3856                         return VM_FAULT_HWPOISON_LARGE |
3857                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3858         } else {
3859                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3860                 if (!ptep)
3861                         return VM_FAULT_OOM;
3862         }
3863
3864         mapping = vma->vm_file->f_mapping;
3865         idx = vma_hugecache_offset(h, vma, address);
3866
3867         /*
3868          * Serialize hugepage allocation and instantiation, so that we don't
3869          * get spurious allocation failures if two CPUs race to instantiate
3870          * the same page in the page cache.
3871          */
3872         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3873         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3874
3875         entry = huge_ptep_get(ptep);
3876         if (huge_pte_none(entry)) {
3877                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3878                 goto out_mutex;
3879         }
3880
3881         ret = 0;
3882
3883         /*
3884          * entry could be a migration/hwpoison entry at this point, so this
3885          * check prevents the kernel from going below assuming that we have
3886          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3887          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3888          * handle it.
3889          */
3890         if (!pte_present(entry))
3891                 goto out_mutex;
3892
3893         /*
3894          * If we are going to COW the mapping later, we examine the pending
3895          * reservations for this page now. This will ensure that any
3896          * allocations necessary to record that reservation occur outside the
3897          * spinlock. For private mappings, we also lookup the pagecache
3898          * page now as it is used to determine if a reservation has been
3899          * consumed.
3900          */
3901         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3902                 if (vma_needs_reservation(h, vma, address) < 0) {
3903                         ret = VM_FAULT_OOM;
3904                         goto out_mutex;
3905                 }
3906                 /* Just decrements count, does not deallocate */
3907                 vma_end_reservation(h, vma, address);
3908
3909                 if (!(vma->vm_flags & VM_MAYSHARE))
3910                         pagecache_page = hugetlbfs_pagecache_page(h,
3911                                                                 vma, address);
3912         }
3913
3914         ptl = huge_pte_lock(h, mm, ptep);
3915
3916         /* Check for a racing update before calling hugetlb_cow */
3917         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3918                 goto out_ptl;
3919
3920         /*
3921          * hugetlb_cow() requires page locks of pte_page(entry) and
3922          * pagecache_page, so here we need take the former one
3923          * when page != pagecache_page or !pagecache_page.
3924          */
3925         page = pte_page(entry);
3926         if (page != pagecache_page)
3927                 if (!trylock_page(page)) {
3928                         need_wait_lock = 1;
3929                         goto out_ptl;
3930                 }
3931
3932         get_page(page);
3933
3934         if (flags & FAULT_FLAG_WRITE) {
3935                 if (!huge_pte_write(entry)) {
3936                         ret = hugetlb_cow(mm, vma, address, ptep,
3937                                           pagecache_page, ptl);
3938                         goto out_put_page;
3939                 }
3940                 entry = huge_pte_mkdirty(entry);
3941         }
3942         entry = pte_mkyoung(entry);
3943         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3944                                                 flags & FAULT_FLAG_WRITE))
3945                 update_mmu_cache(vma, address, ptep);
3946 out_put_page:
3947         if (page != pagecache_page)
3948                 unlock_page(page);
3949         put_page(page);
3950 out_ptl:
3951         spin_unlock(ptl);
3952
3953         if (pagecache_page) {
3954                 unlock_page(pagecache_page);
3955                 put_page(pagecache_page);
3956         }
3957 out_mutex:
3958         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3959         /*
3960          * Generally it's safe to hold refcount during waiting page lock. But
3961          * here we just wait to defer the next page fault to avoid busy loop and
3962          * the page is not used after unlocked before returning from the current
3963          * page fault. So we are safe from accessing freed page, even if we wait
3964          * here without taking refcount.
3965          */
3966         if (need_wait_lock)
3967                 wait_on_page_locked(page);
3968         return ret;
3969 }
3970
3971 /*
3972  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
3973  * modifications for huge pages.
3974  */
3975 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3976                             pte_t *dst_pte,
3977                             struct vm_area_struct *dst_vma,
3978                             unsigned long dst_addr,
3979                             unsigned long src_addr,
3980                             struct page **pagep)
3981 {
3982         int vm_shared = dst_vma->vm_flags & VM_SHARED;
3983         struct hstate *h = hstate_vma(dst_vma);
3984         pte_t _dst_pte;
3985         spinlock_t *ptl;
3986         int ret;
3987         struct page *page;
3988
3989         if (!*pagep) {
3990                 ret = -ENOMEM;
3991                 page = alloc_huge_page(dst_vma, dst_addr, 0);
3992                 if (IS_ERR(page))
3993                         goto out;
3994
3995                 ret = copy_huge_page_from_user(page,
3996                                                 (const void __user *) src_addr,
3997                                                 pages_per_huge_page(h), false);
3998
3999                 /* fallback to copy_from_user outside mmap_sem */
4000                 if (unlikely(ret)) {
4001                         ret = -EFAULT;
4002                         *pagep = page;
4003                         /* don't free the page */
4004                         goto out;
4005                 }
4006         } else {
4007                 page = *pagep;
4008                 *pagep = NULL;
4009         }
4010
4011         /*
4012          * The memory barrier inside __SetPageUptodate makes sure that
4013          * preceding stores to the page contents become visible before
4014          * the set_pte_at() write.
4015          */
4016         __SetPageUptodate(page);
4017         set_page_huge_active(page);
4018
4019         /*
4020          * If shared, add to page cache
4021          */
4022         if (vm_shared) {
4023                 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4024                 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4025
4026                 ret = huge_add_to_page_cache(page, mapping, idx);
4027                 if (ret)
4028                         goto out_release_nounlock;
4029         }
4030
4031         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4032         spin_lock(ptl);
4033
4034         ret = -EEXIST;
4035         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4036                 goto out_release_unlock;
4037
4038         if (vm_shared) {
4039                 page_dup_rmap(page, true);
4040         } else {
4041                 ClearPagePrivate(page);
4042                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4043         }
4044
4045         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4046         if (dst_vma->vm_flags & VM_WRITE)
4047                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4048         _dst_pte = pte_mkyoung(_dst_pte);
4049
4050         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4051
4052         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4053                                         dst_vma->vm_flags & VM_WRITE);
4054         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4055
4056         /* No need to invalidate - it was non-present before */
4057         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4058
4059         spin_unlock(ptl);
4060         if (vm_shared)
4061                 unlock_page(page);
4062         ret = 0;
4063 out:
4064         return ret;
4065 out_release_unlock:
4066         spin_unlock(ptl);
4067 out_release_nounlock:
4068         if (vm_shared)
4069                 unlock_page(page);
4070         put_page(page);
4071         goto out;
4072 }
4073
4074 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4075                          struct page **pages, struct vm_area_struct **vmas,
4076                          unsigned long *position, unsigned long *nr_pages,
4077                          long i, unsigned int flags, int *nonblocking)
4078 {
4079         unsigned long pfn_offset;
4080         unsigned long vaddr = *position;
4081         unsigned long remainder = *nr_pages;
4082         struct hstate *h = hstate_vma(vma);
4083
4084         while (vaddr < vma->vm_end && remainder) {
4085                 pte_t *pte;
4086                 spinlock_t *ptl = NULL;
4087                 int absent;
4088                 struct page *page;
4089
4090                 /*
4091                  * If we have a pending SIGKILL, don't keep faulting pages and
4092                  * potentially allocating memory.
4093                  */
4094                 if (unlikely(fatal_signal_pending(current))) {
4095                         remainder = 0;
4096                         break;
4097                 }
4098
4099                 /*
4100                  * Some archs (sparc64, sh*) have multiple pte_ts to
4101                  * each hugepage.  We have to make sure we get the
4102                  * first, for the page indexing below to work.
4103                  *
4104                  * Note that page table lock is not held when pte is null.
4105                  */
4106                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4107                                       huge_page_size(h));
4108                 if (pte)
4109                         ptl = huge_pte_lock(h, mm, pte);
4110                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4111
4112                 /*
4113                  * When coredumping, it suits get_dump_page if we just return
4114                  * an error where there's an empty slot with no huge pagecache
4115                  * to back it.  This way, we avoid allocating a hugepage, and
4116                  * the sparse dumpfile avoids allocating disk blocks, but its
4117                  * huge holes still show up with zeroes where they need to be.
4118                  */
4119                 if (absent && (flags & FOLL_DUMP) &&
4120                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4121                         if (pte)
4122                                 spin_unlock(ptl);
4123                         remainder = 0;
4124                         break;
4125                 }
4126
4127                 /*
4128                  * We need call hugetlb_fault for both hugepages under migration
4129                  * (in which case hugetlb_fault waits for the migration,) and
4130                  * hwpoisoned hugepages (in which case we need to prevent the
4131                  * caller from accessing to them.) In order to do this, we use
4132                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4133                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4134                  * both cases, and because we can't follow correct pages
4135                  * directly from any kind of swap entries.
4136                  */
4137                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4138                     ((flags & FOLL_WRITE) &&
4139                       !huge_pte_write(huge_ptep_get(pte)))) {
4140                         int ret;
4141                         unsigned int fault_flags = 0;
4142
4143                         if (pte)
4144                                 spin_unlock(ptl);
4145                         if (flags & FOLL_WRITE)
4146                                 fault_flags |= FAULT_FLAG_WRITE;
4147                         if (nonblocking)
4148                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4149                         if (flags & FOLL_NOWAIT)
4150                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4151                                         FAULT_FLAG_RETRY_NOWAIT;
4152                         if (flags & FOLL_TRIED) {
4153                                 VM_WARN_ON_ONCE(fault_flags &
4154                                                 FAULT_FLAG_ALLOW_RETRY);
4155                                 fault_flags |= FAULT_FLAG_TRIED;
4156                         }
4157                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4158                         if (ret & VM_FAULT_ERROR) {
4159                                 int err = vm_fault_to_errno(ret, flags);
4160
4161                                 if (err)
4162                                         return err;
4163
4164                                 remainder = 0;
4165                                 break;
4166                         }
4167                         if (ret & VM_FAULT_RETRY) {
4168                                 if (nonblocking)
4169                                         *nonblocking = 0;
4170                                 *nr_pages = 0;
4171                                 /*
4172                                  * VM_FAULT_RETRY must not return an
4173                                  * error, it will return zero
4174                                  * instead.
4175                                  *
4176                                  * No need to update "position" as the
4177                                  * caller will not check it after
4178                                  * *nr_pages is set to 0.
4179                                  */
4180                                 return i;
4181                         }
4182                         continue;
4183                 }
4184
4185                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4186                 page = pte_page(huge_ptep_get(pte));
4187 same_page:
4188                 if (pages) {
4189                         pages[i] = mem_map_offset(page, pfn_offset);
4190                         get_page(pages[i]);
4191                 }
4192
4193                 if (vmas)
4194                         vmas[i] = vma;
4195
4196                 vaddr += PAGE_SIZE;
4197                 ++pfn_offset;
4198                 --remainder;
4199                 ++i;
4200                 if (vaddr < vma->vm_end && remainder &&
4201                                 pfn_offset < pages_per_huge_page(h)) {
4202                         /*
4203                          * We use pfn_offset to avoid touching the pageframes
4204                          * of this compound page.
4205                          */
4206                         goto same_page;
4207                 }
4208                 spin_unlock(ptl);
4209         }
4210         *nr_pages = remainder;
4211         /*
4212          * setting position is actually required only if remainder is
4213          * not zero but it's faster not to add a "if (remainder)"
4214          * branch.
4215          */
4216         *position = vaddr;
4217
4218         return i ? i : -EFAULT;
4219 }
4220
4221 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4222 /*
4223  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4224  * implement this.
4225  */
4226 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4227 #endif
4228
4229 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4230                 unsigned long address, unsigned long end, pgprot_t newprot)
4231 {
4232         struct mm_struct *mm = vma->vm_mm;
4233         unsigned long start = address;
4234         pte_t *ptep;
4235         pte_t pte;
4236         struct hstate *h = hstate_vma(vma);
4237         unsigned long pages = 0;
4238
4239         BUG_ON(address >= end);
4240         flush_cache_range(vma, address, end);
4241
4242         mmu_notifier_invalidate_range_start(mm, start, end);
4243         i_mmap_lock_write(vma->vm_file->f_mapping);
4244         for (; address < end; address += huge_page_size(h)) {
4245                 spinlock_t *ptl;
4246                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4247                 if (!ptep)
4248                         continue;
4249                 ptl = huge_pte_lock(h, mm, ptep);
4250                 if (huge_pmd_unshare(mm, &address, ptep)) {
4251                         pages++;
4252                         spin_unlock(ptl);
4253                         continue;
4254                 }
4255                 pte = huge_ptep_get(ptep);
4256                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4257                         spin_unlock(ptl);
4258                         continue;
4259                 }
4260                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4261                         swp_entry_t entry = pte_to_swp_entry(pte);
4262
4263                         if (is_write_migration_entry(entry)) {
4264                                 pte_t newpte;
4265
4266                                 make_migration_entry_read(&entry);
4267                                 newpte = swp_entry_to_pte(entry);
4268                                 set_huge_swap_pte_at(mm, address, ptep,
4269                                                      newpte, huge_page_size(h));
4270                                 pages++;
4271                         }
4272                         spin_unlock(ptl);
4273                         continue;
4274                 }
4275                 if (!huge_pte_none(pte)) {
4276                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4277                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4278                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4279                         set_huge_pte_at(mm, address, ptep, pte);
4280                         pages++;
4281                 }
4282                 spin_unlock(ptl);
4283         }
4284         /*
4285          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4286          * may have cleared our pud entry and done put_page on the page table:
4287          * once we release i_mmap_rwsem, another task can do the final put_page
4288          * and that page table be reused and filled with junk.
4289          */
4290         flush_hugetlb_tlb_range(vma, start, end);
4291         mmu_notifier_invalidate_range(mm, start, end);
4292         i_mmap_unlock_write(vma->vm_file->f_mapping);
4293         mmu_notifier_invalidate_range_end(mm, start, end);
4294
4295         return pages << h->order;
4296 }
4297
4298 int hugetlb_reserve_pages(struct inode *inode,
4299                                         long from, long to,
4300                                         struct vm_area_struct *vma,
4301                                         vm_flags_t vm_flags)
4302 {
4303         long ret, chg;
4304         struct hstate *h = hstate_inode(inode);
4305         struct hugepage_subpool *spool = subpool_inode(inode);
4306         struct resv_map *resv_map;
4307         long gbl_reserve;
4308
4309         /*
4310          * Only apply hugepage reservation if asked. At fault time, an
4311          * attempt will be made for VM_NORESERVE to allocate a page
4312          * without using reserves
4313          */
4314         if (vm_flags & VM_NORESERVE)
4315                 return 0;
4316
4317         /*
4318          * Shared mappings base their reservation on the number of pages that
4319          * are already allocated on behalf of the file. Private mappings need
4320          * to reserve the full area even if read-only as mprotect() may be
4321          * called to make the mapping read-write. Assume !vma is a shm mapping
4322          */
4323         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4324                 resv_map = inode_resv_map(inode);
4325
4326                 chg = region_chg(resv_map, from, to);
4327
4328         } else {
4329                 resv_map = resv_map_alloc();
4330                 if (!resv_map)
4331                         return -ENOMEM;
4332
4333                 chg = to - from;
4334
4335                 set_vma_resv_map(vma, resv_map);
4336                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4337         }
4338
4339         if (chg < 0) {
4340                 ret = chg;
4341                 goto out_err;
4342         }
4343
4344         /*
4345          * There must be enough pages in the subpool for the mapping. If
4346          * the subpool has a minimum size, there may be some global
4347          * reservations already in place (gbl_reserve).
4348          */
4349         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4350         if (gbl_reserve < 0) {
4351                 ret = -ENOSPC;
4352                 goto out_err;
4353         }
4354
4355         /*
4356          * Check enough hugepages are available for the reservation.
4357          * Hand the pages back to the subpool if there are not
4358          */
4359         ret = hugetlb_acct_memory(h, gbl_reserve);
4360         if (ret < 0) {
4361                 /* put back original number of pages, chg */
4362                 (void)hugepage_subpool_put_pages(spool, chg);
4363                 goto out_err;
4364         }
4365
4366         /*
4367          * Account for the reservations made. Shared mappings record regions
4368          * that have reservations as they are shared by multiple VMAs.
4369          * When the last VMA disappears, the region map says how much
4370          * the reservation was and the page cache tells how much of
4371          * the reservation was consumed. Private mappings are per-VMA and
4372          * only the consumed reservations are tracked. When the VMA
4373          * disappears, the original reservation is the VMA size and the
4374          * consumed reservations are stored in the map. Hence, nothing
4375          * else has to be done for private mappings here
4376          */
4377         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4378                 long add = region_add(resv_map, from, to);
4379
4380                 if (unlikely(chg > add)) {
4381                         /*
4382                          * pages in this range were added to the reserve
4383                          * map between region_chg and region_add.  This
4384                          * indicates a race with alloc_huge_page.  Adjust
4385                          * the subpool and reserve counts modified above
4386                          * based on the difference.
4387                          */
4388                         long rsv_adjust;
4389
4390                         rsv_adjust = hugepage_subpool_put_pages(spool,
4391                                                                 chg - add);
4392                         hugetlb_acct_memory(h, -rsv_adjust);
4393                 }
4394         }
4395         return 0;
4396 out_err:
4397         if (!vma || vma->vm_flags & VM_MAYSHARE)
4398                 /* Don't call region_abort if region_chg failed */
4399                 if (chg >= 0)
4400                         region_abort(resv_map, from, to);
4401         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4402                 kref_put(&resv_map->refs, resv_map_release);
4403         return ret;
4404 }
4405
4406 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4407                                                                 long freed)
4408 {
4409         struct hstate *h = hstate_inode(inode);
4410         struct resv_map *resv_map = inode_resv_map(inode);
4411         long chg = 0;
4412         struct hugepage_subpool *spool = subpool_inode(inode);
4413         long gbl_reserve;
4414
4415         if (resv_map) {
4416                 chg = region_del(resv_map, start, end);
4417                 /*
4418                  * region_del() can fail in the rare case where a region
4419                  * must be split and another region descriptor can not be
4420                  * allocated.  If end == LONG_MAX, it will not fail.
4421                  */
4422                 if (chg < 0)
4423                         return chg;
4424         }
4425
4426         spin_lock(&inode->i_lock);
4427         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4428         spin_unlock(&inode->i_lock);
4429
4430         /*
4431          * If the subpool has a minimum size, the number of global
4432          * reservations to be released may be adjusted.
4433          */
4434         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4435         hugetlb_acct_memory(h, -gbl_reserve);
4436
4437         return 0;
4438 }
4439
4440 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4441 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4442                                 struct vm_area_struct *vma,
4443                                 unsigned long addr, pgoff_t idx)
4444 {
4445         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4446                                 svma->vm_start;
4447         unsigned long sbase = saddr & PUD_MASK;
4448         unsigned long s_end = sbase + PUD_SIZE;
4449
4450         /* Allow segments to share if only one is marked locked */
4451         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4452         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4453
4454         /*
4455          * match the virtual addresses, permission and the alignment of the
4456          * page table page.
4457          */
4458         if (pmd_index(addr) != pmd_index(saddr) ||
4459             vm_flags != svm_flags ||
4460             sbase < svma->vm_start || svma->vm_end < s_end)
4461                 return 0;
4462
4463         return saddr;
4464 }
4465
4466 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4467 {
4468         unsigned long base = addr & PUD_MASK;
4469         unsigned long end = base + PUD_SIZE;
4470
4471         /*
4472          * check on proper vm_flags and page table alignment
4473          */
4474         if (vma->vm_flags & VM_MAYSHARE &&
4475             vma->vm_start <= base && end <= vma->vm_end)
4476                 return true;
4477         return false;
4478 }
4479
4480 /*
4481  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4482  * and returns the corresponding pte. While this is not necessary for the
4483  * !shared pmd case because we can allocate the pmd later as well, it makes the
4484  * code much cleaner. pmd allocation is essential for the shared case because
4485  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4486  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4487  * bad pmd for sharing.
4488  */
4489 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4490 {
4491         struct vm_area_struct *vma = find_vma(mm, addr);
4492         struct address_space *mapping = vma->vm_file->f_mapping;
4493         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4494                         vma->vm_pgoff;
4495         struct vm_area_struct *svma;
4496         unsigned long saddr;
4497         pte_t *spte = NULL;
4498         pte_t *pte;
4499         spinlock_t *ptl;
4500
4501         if (!vma_shareable(vma, addr))
4502                 return (pte_t *)pmd_alloc(mm, pud, addr);
4503
4504         i_mmap_lock_write(mapping);
4505         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4506                 if (svma == vma)
4507                         continue;
4508
4509                 saddr = page_table_shareable(svma, vma, addr, idx);
4510                 if (saddr) {
4511                         spte = huge_pte_offset(svma->vm_mm, saddr,
4512                                                vma_mmu_pagesize(svma));
4513                         if (spte) {
4514                                 get_page(virt_to_page(spte));
4515                                 break;
4516                         }
4517                 }
4518         }
4519
4520         if (!spte)
4521                 goto out;
4522
4523         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4524         if (pud_none(*pud)) {
4525                 pud_populate(mm, pud,
4526                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4527                 mm_inc_nr_pmds(mm);
4528         } else {
4529                 put_page(virt_to_page(spte));
4530         }
4531         spin_unlock(ptl);
4532 out:
4533         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4534         i_mmap_unlock_write(mapping);
4535         return pte;
4536 }
4537
4538 /*
4539  * unmap huge page backed by shared pte.
4540  *
4541  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4542  * indicated by page_count > 1, unmap is achieved by clearing pud and
4543  * decrementing the ref count. If count == 1, the pte page is not shared.
4544  *
4545  * called with page table lock held.
4546  *
4547  * returns: 1 successfully unmapped a shared pte page
4548  *          0 the underlying pte page is not shared, or it is the last user
4549  */
4550 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4551 {
4552         pgd_t *pgd = pgd_offset(mm, *addr);
4553         p4d_t *p4d = p4d_offset(pgd, *addr);
4554         pud_t *pud = pud_offset(p4d, *addr);
4555
4556         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4557         if (page_count(virt_to_page(ptep)) == 1)
4558                 return 0;
4559
4560         pud_clear(pud);
4561         put_page(virt_to_page(ptep));
4562         mm_dec_nr_pmds(mm);
4563         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4564         return 1;
4565 }
4566 #define want_pmd_share()        (1)
4567 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4568 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4569 {
4570         return NULL;
4571 }
4572
4573 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4574 {
4575         return 0;
4576 }
4577 #define want_pmd_share()        (0)
4578 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4579
4580 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4581 pte_t *huge_pte_alloc(struct mm_struct *mm,
4582                         unsigned long addr, unsigned long sz)
4583 {
4584         pgd_t *pgd;
4585         p4d_t *p4d;
4586         pud_t *pud;
4587         pte_t *pte = NULL;
4588
4589         pgd = pgd_offset(mm, addr);
4590         p4d = p4d_offset(pgd, addr);
4591         pud = pud_alloc(mm, p4d, addr);
4592         if (pud) {
4593                 if (sz == PUD_SIZE) {
4594                         pte = (pte_t *)pud;
4595                 } else {
4596                         BUG_ON(sz != PMD_SIZE);
4597                         if (want_pmd_share() && pud_none(*pud))
4598                                 pte = huge_pmd_share(mm, addr, pud);
4599                         else
4600                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4601                 }
4602         }
4603         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4604
4605         return pte;
4606 }
4607
4608 pte_t *huge_pte_offset(struct mm_struct *mm,
4609                        unsigned long addr, unsigned long sz)
4610 {
4611         pgd_t *pgd;
4612         p4d_t *p4d;
4613         pud_t *pud;
4614         pmd_t *pmd;
4615
4616         pgd = pgd_offset(mm, addr);
4617         if (!pgd_present(*pgd))
4618                 return NULL;
4619         p4d = p4d_offset(pgd, addr);
4620         if (!p4d_present(*p4d))
4621                 return NULL;
4622         pud = pud_offset(p4d, addr);
4623         if (!pud_present(*pud))
4624                 return NULL;
4625         if (pud_huge(*pud))
4626                 return (pte_t *)pud;
4627         pmd = pmd_offset(pud, addr);
4628         return (pte_t *) pmd;
4629 }
4630
4631 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4632
4633 /*
4634  * These functions are overwritable if your architecture needs its own
4635  * behavior.
4636  */
4637 struct page * __weak
4638 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4639                               int write)
4640 {
4641         return ERR_PTR(-EINVAL);
4642 }
4643
4644 struct page * __weak
4645 follow_huge_pd(struct vm_area_struct *vma,
4646                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4647 {
4648         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4649         return NULL;
4650 }
4651
4652 struct page * __weak
4653 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4654                 pmd_t *pmd, int flags)
4655 {
4656         struct page *page = NULL;
4657         spinlock_t *ptl;
4658         pte_t pte;
4659 retry:
4660         ptl = pmd_lockptr(mm, pmd);
4661         spin_lock(ptl);
4662         /*
4663          * make sure that the address range covered by this pmd is not
4664          * unmapped from other threads.
4665          */
4666         if (!pmd_huge(*pmd))
4667                 goto out;
4668         pte = huge_ptep_get((pte_t *)pmd);
4669         if (pte_present(pte)) {
4670                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4671                 if (flags & FOLL_GET)
4672                         get_page(page);
4673         } else {
4674                 if (is_hugetlb_entry_migration(pte)) {
4675                         spin_unlock(ptl);
4676                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4677                         goto retry;
4678                 }
4679                 /*
4680                  * hwpoisoned entry is treated as no_page_table in
4681                  * follow_page_mask().
4682                  */
4683         }
4684 out:
4685         spin_unlock(ptl);
4686         return page;
4687 }
4688
4689 struct page * __weak
4690 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4691                 pud_t *pud, int flags)
4692 {
4693         if (flags & FOLL_GET)
4694                 return NULL;
4695
4696         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4697 }
4698
4699 struct page * __weak
4700 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4701 {
4702         if (flags & FOLL_GET)
4703                 return NULL;
4704
4705         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4706 }
4707
4708 bool isolate_huge_page(struct page *page, struct list_head *list)
4709 {
4710         bool ret = true;
4711
4712         VM_BUG_ON_PAGE(!PageHead(page), page);
4713         spin_lock(&hugetlb_lock);
4714         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4715                 ret = false;
4716                 goto unlock;
4717         }
4718         clear_page_huge_active(page);
4719         list_move_tail(&page->lru, list);
4720 unlock:
4721         spin_unlock(&hugetlb_lock);
4722         return ret;
4723 }
4724
4725 void putback_active_hugepage(struct page *page)
4726 {
4727         VM_BUG_ON_PAGE(!PageHead(page), page);
4728         spin_lock(&hugetlb_lock);
4729         set_page_huge_active(page);
4730         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4731         spin_unlock(&hugetlb_lock);
4732         put_page(page);
4733 }