hugetlb: drop ref count earlier after page allocation
[linux-2.6-block.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61
62 __initdata LIST_HEAD(huge_boot_pages);
63
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85
86 static inline bool subpool_is_free(struct hugepage_subpool *spool)
87 {
88         if (spool->count)
89                 return false;
90         if (spool->max_hpages != -1)
91                 return spool->used_hpages == 0;
92         if (spool->min_hpages != -1)
93                 return spool->rsv_hpages == spool->min_hpages;
94
95         return true;
96 }
97
98 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99                                                 unsigned long irq_flags)
100 {
101         spin_unlock_irqrestore(&spool->lock, irq_flags);
102
103         /* If no pages are used, and no other handles to the subpool
104          * remain, give up any reservations based on minimum size and
105          * free the subpool */
106         if (subpool_is_free(spool)) {
107                 if (spool->min_hpages != -1)
108                         hugetlb_acct_memory(spool->hstate,
109                                                 -spool->min_hpages);
110                 kfree(spool);
111         }
112 }
113
114 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115                                                 long min_hpages)
116 {
117         struct hugepage_subpool *spool;
118
119         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
120         if (!spool)
121                 return NULL;
122
123         spin_lock_init(&spool->lock);
124         spool->count = 1;
125         spool->max_hpages = max_hpages;
126         spool->hstate = h;
127         spool->min_hpages = min_hpages;
128
129         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130                 kfree(spool);
131                 return NULL;
132         }
133         spool->rsv_hpages = min_hpages;
134
135         return spool;
136 }
137
138 void hugepage_put_subpool(struct hugepage_subpool *spool)
139 {
140         unsigned long flags;
141
142         spin_lock_irqsave(&spool->lock, flags);
143         BUG_ON(!spool->count);
144         spool->count--;
145         unlock_or_release_subpool(spool, flags);
146 }
147
148 /*
149  * Subpool accounting for allocating and reserving pages.
150  * Return -ENOMEM if there are not enough resources to satisfy the
151  * request.  Otherwise, return the number of pages by which the
152  * global pools must be adjusted (upward).  The returned value may
153  * only be different than the passed value (delta) in the case where
154  * a subpool minimum size must be maintained.
155  */
156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157                                       long delta)
158 {
159         long ret = delta;
160
161         if (!spool)
162                 return ret;
163
164         spin_lock_irq(&spool->lock);
165
166         if (spool->max_hpages != -1) {          /* maximum size accounting */
167                 if ((spool->used_hpages + delta) <= spool->max_hpages)
168                         spool->used_hpages += delta;
169                 else {
170                         ret = -ENOMEM;
171                         goto unlock_ret;
172                 }
173         }
174
175         /* minimum size accounting */
176         if (spool->min_hpages != -1 && spool->rsv_hpages) {
177                 if (delta > spool->rsv_hpages) {
178                         /*
179                          * Asking for more reserves than those already taken on
180                          * behalf of subpool.  Return difference.
181                          */
182                         ret = delta - spool->rsv_hpages;
183                         spool->rsv_hpages = 0;
184                 } else {
185                         ret = 0;        /* reserves already accounted for */
186                         spool->rsv_hpages -= delta;
187                 }
188         }
189
190 unlock_ret:
191         spin_unlock_irq(&spool->lock);
192         return ret;
193 }
194
195 /*
196  * Subpool accounting for freeing and unreserving pages.
197  * Return the number of global page reservations that must be dropped.
198  * The return value may only be different than the passed value (delta)
199  * in the case where a subpool minimum size must be maintained.
200  */
201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202                                        long delta)
203 {
204         long ret = delta;
205         unsigned long flags;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock_irqsave(&spool->lock, flags);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool, flags);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 /*
289                  * The caller will hold exactly one h_cg->css reference for the
290                  * whole contiguous reservation region. But this area might be
291                  * scattered when there are already some file_regions reside in
292                  * it. As a result, many file_regions may share only one css
293                  * reference. In order to ensure that one file_region must hold
294                  * exactly one h_cg->css reference, we should do css_get for
295                  * each file_region and leave the reference held by caller
296                  * untouched.
297                  */
298                 css_get(&h_cg->css);
299                 if (!resv->pages_per_hpage)
300                         resv->pages_per_hpage = pages_per_huge_page(h);
301                 /* pages_per_hpage should be the same for all entries in
302                  * a resv_map.
303                  */
304                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305         } else {
306                 nrg->reservation_counter = NULL;
307                 nrg->css = NULL;
308         }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         if (rg->css)
316                 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321                                    struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324         return rg && org &&
325                rg->reservation_counter == org->reservation_counter &&
326                rg->css == org->css;
327
328 #else
329         return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335         struct file_region *nrg = NULL, *prg = NULL;
336
337         prg = list_prev_entry(rg, link);
338         if (&prg->link != &resv->regions && prg->to == rg->from &&
339             has_same_uncharge_info(prg, rg)) {
340                 prg->to = rg->to;
341
342                 list_del(&rg->link);
343                 put_uncharge_info(rg);
344                 kfree(rg);
345
346                 rg = prg;
347         }
348
349         nrg = list_next_entry(rg, link);
350         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351             has_same_uncharge_info(nrg, rg)) {
352                 nrg->from = rg->from;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357         }
358 }
359
360 static inline long
361 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
363                      long *regions_needed)
364 {
365         struct file_region *nrg;
366
367         if (!regions_needed) {
368                 nrg = get_file_region_entry_from_cache(map, from, to);
369                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370                 list_add(&nrg->link, rg->link.prev);
371                 coalesce_file_region(map, nrg);
372         } else
373                 *regions_needed += 1;
374
375         return to - from;
376 }
377
378 /*
379  * Must be called with resv->lock held.
380  *
381  * Calling this with regions_needed != NULL will count the number of pages
382  * to be added but will not modify the linked list. And regions_needed will
383  * indicate the number of file_regions needed in the cache to carry out to add
384  * the regions for this range.
385  */
386 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
387                                      struct hugetlb_cgroup *h_cg,
388                                      struct hstate *h, long *regions_needed)
389 {
390         long add = 0;
391         struct list_head *head = &resv->regions;
392         long last_accounted_offset = f;
393         struct file_region *rg = NULL, *trg = NULL;
394
395         if (regions_needed)
396                 *regions_needed = 0;
397
398         /* In this loop, we essentially handle an entry for the range
399          * [last_accounted_offset, rg->from), at every iteration, with some
400          * bounds checking.
401          */
402         list_for_each_entry_safe(rg, trg, head, link) {
403                 /* Skip irrelevant regions that start before our range. */
404                 if (rg->from < f) {
405                         /* If this region ends after the last accounted offset,
406                          * then we need to update last_accounted_offset.
407                          */
408                         if (rg->to > last_accounted_offset)
409                                 last_accounted_offset = rg->to;
410                         continue;
411                 }
412
413                 /* When we find a region that starts beyond our range, we've
414                  * finished.
415                  */
416                 if (rg->from >= t)
417                         break;
418
419                 /* Add an entry for last_accounted_offset -> rg->from, and
420                  * update last_accounted_offset.
421                  */
422                 if (rg->from > last_accounted_offset)
423                         add += hugetlb_resv_map_add(resv, rg,
424                                                     last_accounted_offset,
425                                                     rg->from, h, h_cg,
426                                                     regions_needed);
427
428                 last_accounted_offset = rg->to;
429         }
430
431         /* Handle the case where our range extends beyond
432          * last_accounted_offset.
433          */
434         if (last_accounted_offset < t)
435                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436                                             t, h, h_cg, regions_needed);
437
438         VM_BUG_ON(add < 0);
439         return add;
440 }
441
442 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443  */
444 static int allocate_file_region_entries(struct resv_map *resv,
445                                         int regions_needed)
446         __must_hold(&resv->lock)
447 {
448         struct list_head allocated_regions;
449         int to_allocate = 0, i = 0;
450         struct file_region *trg = NULL, *rg = NULL;
451
452         VM_BUG_ON(regions_needed < 0);
453
454         INIT_LIST_HEAD(&allocated_regions);
455
456         /*
457          * Check for sufficient descriptors in the cache to accommodate
458          * the number of in progress add operations plus regions_needed.
459          *
460          * This is a while loop because when we drop the lock, some other call
461          * to region_add or region_del may have consumed some region_entries,
462          * so we keep looping here until we finally have enough entries for
463          * (adds_in_progress + regions_needed).
464          */
465         while (resv->region_cache_count <
466                (resv->adds_in_progress + regions_needed)) {
467                 to_allocate = resv->adds_in_progress + regions_needed -
468                               resv->region_cache_count;
469
470                 /* At this point, we should have enough entries in the cache
471                  * for all the existing adds_in_progress. We should only be
472                  * needing to allocate for regions_needed.
473                  */
474                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475
476                 spin_unlock(&resv->lock);
477                 for (i = 0; i < to_allocate; i++) {
478                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479                         if (!trg)
480                                 goto out_of_memory;
481                         list_add(&trg->link, &allocated_regions);
482                 }
483
484                 spin_lock(&resv->lock);
485
486                 list_splice(&allocated_regions, &resv->region_cache);
487                 resv->region_cache_count += to_allocate;
488         }
489
490         return 0;
491
492 out_of_memory:
493         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494                 list_del(&rg->link);
495                 kfree(rg);
496         }
497         return -ENOMEM;
498 }
499
500 /*
501  * Add the huge page range represented by [f, t) to the reserve
502  * map.  Regions will be taken from the cache to fill in this range.
503  * Sufficient regions should exist in the cache due to the previous
504  * call to region_chg with the same range, but in some cases the cache will not
505  * have sufficient entries due to races with other code doing region_add or
506  * region_del.  The extra needed entries will be allocated.
507  *
508  * regions_needed is the out value provided by a previous call to region_chg.
509  *
510  * Return the number of new huge pages added to the map.  This number is greater
511  * than or equal to zero.  If file_region entries needed to be allocated for
512  * this operation and we were not able to allocate, it returns -ENOMEM.
513  * region_add of regions of length 1 never allocate file_regions and cannot
514  * fail; region_chg will always allocate at least 1 entry and a region_add for
515  * 1 page will only require at most 1 entry.
516  */
517 static long region_add(struct resv_map *resv, long f, long t,
518                        long in_regions_needed, struct hstate *h,
519                        struct hugetlb_cgroup *h_cg)
520 {
521         long add = 0, actual_regions_needed = 0;
522
523         spin_lock(&resv->lock);
524 retry:
525
526         /* Count how many regions are actually needed to execute this add. */
527         add_reservation_in_range(resv, f, t, NULL, NULL,
528                                  &actual_regions_needed);
529
530         /*
531          * Check for sufficient descriptors in the cache to accommodate
532          * this add operation. Note that actual_regions_needed may be greater
533          * than in_regions_needed, as the resv_map may have been modified since
534          * the region_chg call. In this case, we need to make sure that we
535          * allocate extra entries, such that we have enough for all the
536          * existing adds_in_progress, plus the excess needed for this
537          * operation.
538          */
539         if (actual_regions_needed > in_regions_needed &&
540             resv->region_cache_count <
541                     resv->adds_in_progress +
542                             (actual_regions_needed - in_regions_needed)) {
543                 /* region_add operation of range 1 should never need to
544                  * allocate file_region entries.
545                  */
546                 VM_BUG_ON(t - f <= 1);
547
548                 if (allocate_file_region_entries(
549                             resv, actual_regions_needed - in_regions_needed)) {
550                         return -ENOMEM;
551                 }
552
553                 goto retry;
554         }
555
556         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
557
558         resv->adds_in_progress -= in_regions_needed;
559
560         spin_unlock(&resv->lock);
561         return add;
562 }
563
564 /*
565  * Examine the existing reserve map and determine how many
566  * huge pages in the specified range [f, t) are NOT currently
567  * represented.  This routine is called before a subsequent
568  * call to region_add that will actually modify the reserve
569  * map to add the specified range [f, t).  region_chg does
570  * not change the number of huge pages represented by the
571  * map.  A number of new file_region structures is added to the cache as a
572  * placeholder, for the subsequent region_add call to use. At least 1
573  * file_region structure is added.
574  *
575  * out_regions_needed is the number of regions added to the
576  * resv->adds_in_progress.  This value needs to be provided to a follow up call
577  * to region_add or region_abort for proper accounting.
578  *
579  * Returns the number of huge pages that need to be added to the existing
580  * reservation map for the range [f, t).  This number is greater or equal to
581  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
582  * is needed and can not be allocated.
583  */
584 static long region_chg(struct resv_map *resv, long f, long t,
585                        long *out_regions_needed)
586 {
587         long chg = 0;
588
589         spin_lock(&resv->lock);
590
591         /* Count how many hugepages in this range are NOT represented. */
592         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
593                                        out_regions_needed);
594
595         if (*out_regions_needed == 0)
596                 *out_regions_needed = 1;
597
598         if (allocate_file_region_entries(resv, *out_regions_needed))
599                 return -ENOMEM;
600
601         resv->adds_in_progress += *out_regions_needed;
602
603         spin_unlock(&resv->lock);
604         return chg;
605 }
606
607 /*
608  * Abort the in progress add operation.  The adds_in_progress field
609  * of the resv_map keeps track of the operations in progress between
610  * calls to region_chg and region_add.  Operations are sometimes
611  * aborted after the call to region_chg.  In such cases, region_abort
612  * is called to decrement the adds_in_progress counter. regions_needed
613  * is the value returned by the region_chg call, it is used to decrement
614  * the adds_in_progress counter.
615  *
616  * NOTE: The range arguments [f, t) are not needed or used in this
617  * routine.  They are kept to make reading the calling code easier as
618  * arguments will match the associated region_chg call.
619  */
620 static void region_abort(struct resv_map *resv, long f, long t,
621                          long regions_needed)
622 {
623         spin_lock(&resv->lock);
624         VM_BUG_ON(!resv->region_cache_count);
625         resv->adds_in_progress -= regions_needed;
626         spin_unlock(&resv->lock);
627 }
628
629 /*
630  * Delete the specified range [f, t) from the reserve map.  If the
631  * t parameter is LONG_MAX, this indicates that ALL regions after f
632  * should be deleted.  Locate the regions which intersect [f, t)
633  * and either trim, delete or split the existing regions.
634  *
635  * Returns the number of huge pages deleted from the reserve map.
636  * In the normal case, the return value is zero or more.  In the
637  * case where a region must be split, a new region descriptor must
638  * be allocated.  If the allocation fails, -ENOMEM will be returned.
639  * NOTE: If the parameter t == LONG_MAX, then we will never split
640  * a region and possibly return -ENOMEM.  Callers specifying
641  * t == LONG_MAX do not need to check for -ENOMEM error.
642  */
643 static long region_del(struct resv_map *resv, long f, long t)
644 {
645         struct list_head *head = &resv->regions;
646         struct file_region *rg, *trg;
647         struct file_region *nrg = NULL;
648         long del = 0;
649
650 retry:
651         spin_lock(&resv->lock);
652         list_for_each_entry_safe(rg, trg, head, link) {
653                 /*
654                  * Skip regions before the range to be deleted.  file_region
655                  * ranges are normally of the form [from, to).  However, there
656                  * may be a "placeholder" entry in the map which is of the form
657                  * (from, to) with from == to.  Check for placeholder entries
658                  * at the beginning of the range to be deleted.
659                  */
660                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
661                         continue;
662
663                 if (rg->from >= t)
664                         break;
665
666                 if (f > rg->from && t < rg->to) { /* Must split region */
667                         /*
668                          * Check for an entry in the cache before dropping
669                          * lock and attempting allocation.
670                          */
671                         if (!nrg &&
672                             resv->region_cache_count > resv->adds_in_progress) {
673                                 nrg = list_first_entry(&resv->region_cache,
674                                                         struct file_region,
675                                                         link);
676                                 list_del(&nrg->link);
677                                 resv->region_cache_count--;
678                         }
679
680                         if (!nrg) {
681                                 spin_unlock(&resv->lock);
682                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683                                 if (!nrg)
684                                         return -ENOMEM;
685                                 goto retry;
686                         }
687
688                         del += t - f;
689                         hugetlb_cgroup_uncharge_file_region(
690                                 resv, rg, t - f, false);
691
692                         /* New entry for end of split region */
693                         nrg->from = t;
694                         nrg->to = rg->to;
695
696                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697
698                         INIT_LIST_HEAD(&nrg->link);
699
700                         /* Original entry is trimmed */
701                         rg->to = f;
702
703                         list_add(&nrg->link, &rg->link);
704                         nrg = NULL;
705                         break;
706                 }
707
708                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709                         del += rg->to - rg->from;
710                         hugetlb_cgroup_uncharge_file_region(resv, rg,
711                                                             rg->to - rg->from, true);
712                         list_del(&rg->link);
713                         kfree(rg);
714                         continue;
715                 }
716
717                 if (f <= rg->from) {    /* Trim beginning of region */
718                         hugetlb_cgroup_uncharge_file_region(resv, rg,
719                                                             t - rg->from, false);
720
721                         del += t - rg->from;
722                         rg->from = t;
723                 } else {                /* Trim end of region */
724                         hugetlb_cgroup_uncharge_file_region(resv, rg,
725                                                             rg->to - f, false);
726
727                         del += rg->to - f;
728                         rg->to = f;
729                 }
730         }
731
732         spin_unlock(&resv->lock);
733         kfree(nrg);
734         return del;
735 }
736
737 /*
738  * A rare out of memory error was encountered which prevented removal of
739  * the reserve map region for a page.  The huge page itself was free'ed
740  * and removed from the page cache.  This routine will adjust the subpool
741  * usage count, and the global reserve count if needed.  By incrementing
742  * these counts, the reserve map entry which could not be deleted will
743  * appear as a "reserved" entry instead of simply dangling with incorrect
744  * counts.
745  */
746 void hugetlb_fix_reserve_counts(struct inode *inode)
747 {
748         struct hugepage_subpool *spool = subpool_inode(inode);
749         long rsv_adjust;
750         bool reserved = false;
751
752         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753         if (rsv_adjust > 0) {
754                 struct hstate *h = hstate_inode(inode);
755
756                 if (!hugetlb_acct_memory(h, 1))
757                         reserved = true;
758         } else if (!rsv_adjust) {
759                 reserved = true;
760         }
761
762         if (!reserved)
763                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
764 }
765
766 /*
767  * Count and return the number of huge pages in the reserve map
768  * that intersect with the range [f, t).
769  */
770 static long region_count(struct resv_map *resv, long f, long t)
771 {
772         struct list_head *head = &resv->regions;
773         struct file_region *rg;
774         long chg = 0;
775
776         spin_lock(&resv->lock);
777         /* Locate each segment we overlap with, and count that overlap. */
778         list_for_each_entry(rg, head, link) {
779                 long seg_from;
780                 long seg_to;
781
782                 if (rg->to <= f)
783                         continue;
784                 if (rg->from >= t)
785                         break;
786
787                 seg_from = max(rg->from, f);
788                 seg_to = min(rg->to, t);
789
790                 chg += seg_to - seg_from;
791         }
792         spin_unlock(&resv->lock);
793
794         return chg;
795 }
796
797 /*
798  * Convert the address within this vma to the page offset within
799  * the mapping, in pagecache page units; huge pages here.
800  */
801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802                         struct vm_area_struct *vma, unsigned long address)
803 {
804         return ((address - vma->vm_start) >> huge_page_shift(h)) +
805                         (vma->vm_pgoff >> huge_page_order(h));
806 }
807
808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809                                      unsigned long address)
810 {
811         return vma_hugecache_offset(hstate_vma(vma), vma, address);
812 }
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
814
815 /*
816  * Return the size of the pages allocated when backing a VMA. In the majority
817  * cases this will be same size as used by the page table entries.
818  */
819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820 {
821         if (vma->vm_ops && vma->vm_ops->pagesize)
822                 return vma->vm_ops->pagesize(vma);
823         return PAGE_SIZE;
824 }
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
826
827 /*
828  * Return the page size being used by the MMU to back a VMA. In the majority
829  * of cases, the page size used by the kernel matches the MMU size. On
830  * architectures where it differs, an architecture-specific 'strong'
831  * version of this symbol is required.
832  */
833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
834 {
835         return vma_kernel_pagesize(vma);
836 }
837
838 /*
839  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
840  * bits of the reservation map pointer, which are always clear due to
841  * alignment.
842  */
843 #define HPAGE_RESV_OWNER    (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
846
847 /*
848  * These helpers are used to track how many pages are reserved for
849  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850  * is guaranteed to have their future faults succeed.
851  *
852  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853  * the reserve counters are updated with the hugetlb_lock held. It is safe
854  * to reset the VMA at fork() time as it is not in use yet and there is no
855  * chance of the global counters getting corrupted as a result of the values.
856  *
857  * The private mapping reservation is represented in a subtly different
858  * manner to a shared mapping.  A shared mapping has a region map associated
859  * with the underlying file, this region map represents the backing file
860  * pages which have ever had a reservation assigned which this persists even
861  * after the page is instantiated.  A private mapping has a region map
862  * associated with the original mmap which is attached to all VMAs which
863  * reference it, this region map represents those offsets which have consumed
864  * reservation ie. where pages have been instantiated.
865  */
866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867 {
868         return (unsigned long)vma->vm_private_data;
869 }
870
871 static void set_vma_private_data(struct vm_area_struct *vma,
872                                                         unsigned long value)
873 {
874         vma->vm_private_data = (void *)value;
875 }
876
877 static void
878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879                                           struct hugetlb_cgroup *h_cg,
880                                           struct hstate *h)
881 {
882 #ifdef CONFIG_CGROUP_HUGETLB
883         if (!h_cg || !h) {
884                 resv_map->reservation_counter = NULL;
885                 resv_map->pages_per_hpage = 0;
886                 resv_map->css = NULL;
887         } else {
888                 resv_map->reservation_counter =
889                         &h_cg->rsvd_hugepage[hstate_index(h)];
890                 resv_map->pages_per_hpage = pages_per_huge_page(h);
891                 resv_map->css = &h_cg->css;
892         }
893 #endif
894 }
895
896 struct resv_map *resv_map_alloc(void)
897 {
898         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900
901         if (!resv_map || !rg) {
902                 kfree(resv_map);
903                 kfree(rg);
904                 return NULL;
905         }
906
907         kref_init(&resv_map->refs);
908         spin_lock_init(&resv_map->lock);
909         INIT_LIST_HEAD(&resv_map->regions);
910
911         resv_map->adds_in_progress = 0;
912         /*
913          * Initialize these to 0. On shared mappings, 0's here indicate these
914          * fields don't do cgroup accounting. On private mappings, these will be
915          * re-initialized to the proper values, to indicate that hugetlb cgroup
916          * reservations are to be un-charged from here.
917          */
918         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
919
920         INIT_LIST_HEAD(&resv_map->region_cache);
921         list_add(&rg->link, &resv_map->region_cache);
922         resv_map->region_cache_count = 1;
923
924         return resv_map;
925 }
926
927 void resv_map_release(struct kref *ref)
928 {
929         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930         struct list_head *head = &resv_map->region_cache;
931         struct file_region *rg, *trg;
932
933         /* Clear out any active regions before we release the map. */
934         region_del(resv_map, 0, LONG_MAX);
935
936         /* ... and any entries left in the cache */
937         list_for_each_entry_safe(rg, trg, head, link) {
938                 list_del(&rg->link);
939                 kfree(rg);
940         }
941
942         VM_BUG_ON(resv_map->adds_in_progress);
943
944         kfree(resv_map);
945 }
946
947 static inline struct resv_map *inode_resv_map(struct inode *inode)
948 {
949         /*
950          * At inode evict time, i_mapping may not point to the original
951          * address space within the inode.  This original address space
952          * contains the pointer to the resv_map.  So, always use the
953          * address space embedded within the inode.
954          * The VERY common case is inode->mapping == &inode->i_data but,
955          * this may not be true for device special inodes.
956          */
957         return (struct resv_map *)(&inode->i_data)->private_data;
958 }
959
960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
961 {
962         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963         if (vma->vm_flags & VM_MAYSHARE) {
964                 struct address_space *mapping = vma->vm_file->f_mapping;
965                 struct inode *inode = mapping->host;
966
967                 return inode_resv_map(inode);
968
969         } else {
970                 return (struct resv_map *)(get_vma_private_data(vma) &
971                                                         ~HPAGE_RESV_MASK);
972         }
973 }
974
975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
976 {
977         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979
980         set_vma_private_data(vma, (get_vma_private_data(vma) &
981                                 HPAGE_RESV_MASK) | (unsigned long)map);
982 }
983
984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985 {
986         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988
989         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
990 }
991
992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993 {
994         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995
996         return (get_vma_private_data(vma) & flag) != 0;
997 }
998
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001 {
1002         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003         if (!(vma->vm_flags & VM_MAYSHARE))
1004                 vma->vm_private_data = (void *)0;
1005 }
1006
1007 /* Returns true if the VMA has associated reserve pages */
1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009 {
1010         if (vma->vm_flags & VM_NORESERVE) {
1011                 /*
1012                  * This address is already reserved by other process(chg == 0),
1013                  * so, we should decrement reserved count. Without decrementing,
1014                  * reserve count remains after releasing inode, because this
1015                  * allocated page will go into page cache and is regarded as
1016                  * coming from reserved pool in releasing step.  Currently, we
1017                  * don't have any other solution to deal with this situation
1018                  * properly, so add work-around here.
1019                  */
1020                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021                         return true;
1022                 else
1023                         return false;
1024         }
1025
1026         /* Shared mappings always use reserves */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 /*
1029                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030                  * be a region map for all pages.  The only situation where
1031                  * there is no region map is if a hole was punched via
1032                  * fallocate.  In this case, there really are no reserves to
1033                  * use.  This situation is indicated if chg != 0.
1034                  */
1035                 if (chg)
1036                         return false;
1037                 else
1038                         return true;
1039         }
1040
1041         /*
1042          * Only the process that called mmap() has reserves for
1043          * private mappings.
1044          */
1045         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046                 /*
1047                  * Like the shared case above, a hole punch or truncate
1048                  * could have been performed on the private mapping.
1049                  * Examine the value of chg to determine if reserves
1050                  * actually exist or were previously consumed.
1051                  * Very Subtle - The value of chg comes from a previous
1052                  * call to vma_needs_reserves().  The reserve map for
1053                  * private mappings has different (opposite) semantics
1054                  * than that of shared mappings.  vma_needs_reserves()
1055                  * has already taken this difference in semantics into
1056                  * account.  Therefore, the meaning of chg is the same
1057                  * as in the shared case above.  Code could easily be
1058                  * combined, but keeping it separate draws attention to
1059                  * subtle differences.
1060                  */
1061                 if (chg)
1062                         return false;
1063                 else
1064                         return true;
1065         }
1066
1067         return false;
1068 }
1069
1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1071 {
1072         int nid = page_to_nid(page);
1073
1074         lockdep_assert_held(&hugetlb_lock);
1075         VM_BUG_ON_PAGE(page_count(page), page);
1076
1077         list_move(&page->lru, &h->hugepage_freelists[nid]);
1078         h->free_huge_pages++;
1079         h->free_huge_pages_node[nid]++;
1080         SetHPageFreed(page);
1081 }
1082
1083 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1084 {
1085         struct page *page;
1086         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1087
1088         lockdep_assert_held(&hugetlb_lock);
1089         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1090                 if (pin && !is_pinnable_page(page))
1091                         continue;
1092
1093                 if (PageHWPoison(page))
1094                         continue;
1095
1096                 list_move(&page->lru, &h->hugepage_activelist);
1097                 set_page_refcounted(page);
1098                 ClearHPageFreed(page);
1099                 h->free_huge_pages--;
1100                 h->free_huge_pages_node[nid]--;
1101                 return page;
1102         }
1103
1104         return NULL;
1105 }
1106
1107 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1108                 nodemask_t *nmask)
1109 {
1110         unsigned int cpuset_mems_cookie;
1111         struct zonelist *zonelist;
1112         struct zone *zone;
1113         struct zoneref *z;
1114         int node = NUMA_NO_NODE;
1115
1116         zonelist = node_zonelist(nid, gfp_mask);
1117
1118 retry_cpuset:
1119         cpuset_mems_cookie = read_mems_allowed_begin();
1120         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1121                 struct page *page;
1122
1123                 if (!cpuset_zone_allowed(zone, gfp_mask))
1124                         continue;
1125                 /*
1126                  * no need to ask again on the same node. Pool is node rather than
1127                  * zone aware
1128                  */
1129                 if (zone_to_nid(zone) == node)
1130                         continue;
1131                 node = zone_to_nid(zone);
1132
1133                 page = dequeue_huge_page_node_exact(h, node);
1134                 if (page)
1135                         return page;
1136         }
1137         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1138                 goto retry_cpuset;
1139
1140         return NULL;
1141 }
1142
1143 static struct page *dequeue_huge_page_vma(struct hstate *h,
1144                                 struct vm_area_struct *vma,
1145                                 unsigned long address, int avoid_reserve,
1146                                 long chg)
1147 {
1148         struct page *page;
1149         struct mempolicy *mpol;
1150         gfp_t gfp_mask;
1151         nodemask_t *nodemask;
1152         int nid;
1153
1154         /*
1155          * A child process with MAP_PRIVATE mappings created by their parent
1156          * have no page reserves. This check ensures that reservations are
1157          * not "stolen". The child may still get SIGKILLed
1158          */
1159         if (!vma_has_reserves(vma, chg) &&
1160                         h->free_huge_pages - h->resv_huge_pages == 0)
1161                 goto err;
1162
1163         /* If reserves cannot be used, ensure enough pages are in the pool */
1164         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1165                 goto err;
1166
1167         gfp_mask = htlb_alloc_mask(h);
1168         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1169         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1170         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1171                 SetHPageRestoreReserve(page);
1172                 h->resv_huge_pages--;
1173         }
1174
1175         mpol_cond_put(mpol);
1176         return page;
1177
1178 err:
1179         return NULL;
1180 }
1181
1182 /*
1183  * common helper functions for hstate_next_node_to_{alloc|free}.
1184  * We may have allocated or freed a huge page based on a different
1185  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1186  * be outside of *nodes_allowed.  Ensure that we use an allowed
1187  * node for alloc or free.
1188  */
1189 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1190 {
1191         nid = next_node_in(nid, *nodes_allowed);
1192         VM_BUG_ON(nid >= MAX_NUMNODES);
1193
1194         return nid;
1195 }
1196
1197 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1198 {
1199         if (!node_isset(nid, *nodes_allowed))
1200                 nid = next_node_allowed(nid, nodes_allowed);
1201         return nid;
1202 }
1203
1204 /*
1205  * returns the previously saved node ["this node"] from which to
1206  * allocate a persistent huge page for the pool and advance the
1207  * next node from which to allocate, handling wrap at end of node
1208  * mask.
1209  */
1210 static int hstate_next_node_to_alloc(struct hstate *h,
1211                                         nodemask_t *nodes_allowed)
1212 {
1213         int nid;
1214
1215         VM_BUG_ON(!nodes_allowed);
1216
1217         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1218         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1219
1220         return nid;
1221 }
1222
1223 /*
1224  * helper for remove_pool_huge_page() - return the previously saved
1225  * node ["this node"] from which to free a huge page.  Advance the
1226  * next node id whether or not we find a free huge page to free so
1227  * that the next attempt to free addresses the next node.
1228  */
1229 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1230 {
1231         int nid;
1232
1233         VM_BUG_ON(!nodes_allowed);
1234
1235         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1236         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1237
1238         return nid;
1239 }
1240
1241 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1242         for (nr_nodes = nodes_weight(*mask);                            \
1243                 nr_nodes > 0 &&                                         \
1244                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1245                 nr_nodes--)
1246
1247 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1248         for (nr_nodes = nodes_weight(*mask);                            \
1249                 nr_nodes > 0 &&                                         \
1250                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1251                 nr_nodes--)
1252
1253 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1254 static void destroy_compound_gigantic_page(struct page *page,
1255                                         unsigned int order)
1256 {
1257         int i;
1258         int nr_pages = 1 << order;
1259         struct page *p = page + 1;
1260
1261         atomic_set(compound_mapcount_ptr(page), 0);
1262         atomic_set(compound_pincount_ptr(page), 0);
1263
1264         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265                 clear_compound_head(p);
1266                 set_page_refcounted(p);
1267         }
1268
1269         set_compound_order(page, 0);
1270         page[1].compound_nr = 0;
1271         __ClearPageHead(page);
1272 }
1273
1274 static void free_gigantic_page(struct page *page, unsigned int order)
1275 {
1276         /*
1277          * If the page isn't allocated using the cma allocator,
1278          * cma_release() returns false.
1279          */
1280 #ifdef CONFIG_CMA
1281         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1282                 return;
1283 #endif
1284
1285         free_contig_range(page_to_pfn(page), 1 << order);
1286 }
1287
1288 #ifdef CONFIG_CONTIG_ALLOC
1289 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1290                 int nid, nodemask_t *nodemask)
1291 {
1292         unsigned long nr_pages = pages_per_huge_page(h);
1293         if (nid == NUMA_NO_NODE)
1294                 nid = numa_mem_id();
1295
1296 #ifdef CONFIG_CMA
1297         {
1298                 struct page *page;
1299                 int node;
1300
1301                 if (hugetlb_cma[nid]) {
1302                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1303                                         huge_page_order(h), true);
1304                         if (page)
1305                                 return page;
1306                 }
1307
1308                 if (!(gfp_mask & __GFP_THISNODE)) {
1309                         for_each_node_mask(node, *nodemask) {
1310                                 if (node == nid || !hugetlb_cma[node])
1311                                         continue;
1312
1313                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1314                                                 huge_page_order(h), true);
1315                                 if (page)
1316                                         return page;
1317                         }
1318                 }
1319         }
1320 #endif
1321
1322         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1323 }
1324
1325 #else /* !CONFIG_CONTIG_ALLOC */
1326 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1327                                         int nid, nodemask_t *nodemask)
1328 {
1329         return NULL;
1330 }
1331 #endif /* CONFIG_CONTIG_ALLOC */
1332
1333 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1334 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1335                                         int nid, nodemask_t *nodemask)
1336 {
1337         return NULL;
1338 }
1339 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1340 static inline void destroy_compound_gigantic_page(struct page *page,
1341                                                 unsigned int order) { }
1342 #endif
1343
1344 /*
1345  * Remove hugetlb page from lists, and update dtor so that page appears
1346  * as just a compound page.  A reference is held on the page.
1347  *
1348  * Must be called with hugetlb lock held.
1349  */
1350 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1351                                                         bool adjust_surplus)
1352 {
1353         int nid = page_to_nid(page);
1354
1355         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1356         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1357
1358         lockdep_assert_held(&hugetlb_lock);
1359         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1360                 return;
1361
1362         list_del(&page->lru);
1363
1364         if (HPageFreed(page)) {
1365                 h->free_huge_pages--;
1366                 h->free_huge_pages_node[nid]--;
1367         }
1368         if (adjust_surplus) {
1369                 h->surplus_huge_pages--;
1370                 h->surplus_huge_pages_node[nid]--;
1371         }
1372
1373         set_page_refcounted(page);
1374         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1375
1376         h->nr_huge_pages--;
1377         h->nr_huge_pages_node[nid]--;
1378 }
1379
1380 static void add_hugetlb_page(struct hstate *h, struct page *page,
1381                              bool adjust_surplus)
1382 {
1383         int zeroed;
1384         int nid = page_to_nid(page);
1385
1386         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1387
1388         lockdep_assert_held(&hugetlb_lock);
1389
1390         INIT_LIST_HEAD(&page->lru);
1391         h->nr_huge_pages++;
1392         h->nr_huge_pages_node[nid]++;
1393
1394         if (adjust_surplus) {
1395                 h->surplus_huge_pages++;
1396                 h->surplus_huge_pages_node[nid]++;
1397         }
1398
1399         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1400         set_page_private(page, 0);
1401         SetHPageVmemmapOptimized(page);
1402
1403         /*
1404          * This page is about to be managed by the hugetlb allocator and
1405          * should have no users.  Drop our reference, and check for others
1406          * just in case.
1407          */
1408         zeroed = put_page_testzero(page);
1409         if (!zeroed)
1410                 /*
1411                  * It is VERY unlikely soneone else has taken a ref on
1412                  * the page.  In this case, we simply return as the
1413                  * hugetlb destructor (free_huge_page) will be called
1414                  * when this other ref is dropped.
1415                  */
1416                 return;
1417
1418         arch_clear_hugepage_flags(page);
1419         enqueue_huge_page(h, page);
1420 }
1421
1422 static void __update_and_free_page(struct hstate *h, struct page *page)
1423 {
1424         int i;
1425         struct page *subpage = page;
1426
1427         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1428                 return;
1429
1430         if (alloc_huge_page_vmemmap(h, page)) {
1431                 spin_lock_irq(&hugetlb_lock);
1432                 /*
1433                  * If we cannot allocate vmemmap pages, just refuse to free the
1434                  * page and put the page back on the hugetlb free list and treat
1435                  * as a surplus page.
1436                  */
1437                 add_hugetlb_page(h, page, true);
1438                 spin_unlock_irq(&hugetlb_lock);
1439                 return;
1440         }
1441
1442         for (i = 0; i < pages_per_huge_page(h);
1443              i++, subpage = mem_map_next(subpage, page, i)) {
1444                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1445                                 1 << PG_referenced | 1 << PG_dirty |
1446                                 1 << PG_active | 1 << PG_private |
1447                                 1 << PG_writeback);
1448         }
1449         if (hstate_is_gigantic(h)) {
1450                 destroy_compound_gigantic_page(page, huge_page_order(h));
1451                 free_gigantic_page(page, huge_page_order(h));
1452         } else {
1453                 __free_pages(page, huge_page_order(h));
1454         }
1455 }
1456
1457 /*
1458  * As update_and_free_page() can be called under any context, so we cannot
1459  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1460  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1461  * the vmemmap pages.
1462  *
1463  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1464  * freed and frees them one-by-one. As the page->mapping pointer is going
1465  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1466  * structure of a lockless linked list of huge pages to be freed.
1467  */
1468 static LLIST_HEAD(hpage_freelist);
1469
1470 static void free_hpage_workfn(struct work_struct *work)
1471 {
1472         struct llist_node *node;
1473
1474         node = llist_del_all(&hpage_freelist);
1475
1476         while (node) {
1477                 struct page *page;
1478                 struct hstate *h;
1479
1480                 page = container_of((struct address_space **)node,
1481                                      struct page, mapping);
1482                 node = node->next;
1483                 page->mapping = NULL;
1484                 /*
1485                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1486                  * is going to trigger because a previous call to
1487                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1488                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1489                  */
1490                 h = size_to_hstate(page_size(page));
1491
1492                 __update_and_free_page(h, page);
1493
1494                 cond_resched();
1495         }
1496 }
1497 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1498
1499 static inline void flush_free_hpage_work(struct hstate *h)
1500 {
1501         if (free_vmemmap_pages_per_hpage(h))
1502                 flush_work(&free_hpage_work);
1503 }
1504
1505 static void update_and_free_page(struct hstate *h, struct page *page,
1506                                  bool atomic)
1507 {
1508         if (!HPageVmemmapOptimized(page) || !atomic) {
1509                 __update_and_free_page(h, page);
1510                 return;
1511         }
1512
1513         /*
1514          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1515          *
1516          * Only call schedule_work() if hpage_freelist is previously
1517          * empty. Otherwise, schedule_work() had been called but the workfn
1518          * hasn't retrieved the list yet.
1519          */
1520         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1521                 schedule_work(&free_hpage_work);
1522 }
1523
1524 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1525 {
1526         struct page *page, *t_page;
1527
1528         list_for_each_entry_safe(page, t_page, list, lru) {
1529                 update_and_free_page(h, page, false);
1530                 cond_resched();
1531         }
1532 }
1533
1534 struct hstate *size_to_hstate(unsigned long size)
1535 {
1536         struct hstate *h;
1537
1538         for_each_hstate(h) {
1539                 if (huge_page_size(h) == size)
1540                         return h;
1541         }
1542         return NULL;
1543 }
1544
1545 void free_huge_page(struct page *page)
1546 {
1547         /*
1548          * Can't pass hstate in here because it is called from the
1549          * compound page destructor.
1550          */
1551         struct hstate *h = page_hstate(page);
1552         int nid = page_to_nid(page);
1553         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1554         bool restore_reserve;
1555         unsigned long flags;
1556
1557         VM_BUG_ON_PAGE(page_count(page), page);
1558         VM_BUG_ON_PAGE(page_mapcount(page), page);
1559
1560         hugetlb_set_page_subpool(page, NULL);
1561         page->mapping = NULL;
1562         restore_reserve = HPageRestoreReserve(page);
1563         ClearHPageRestoreReserve(page);
1564
1565         /*
1566          * If HPageRestoreReserve was set on page, page allocation consumed a
1567          * reservation.  If the page was associated with a subpool, there
1568          * would have been a page reserved in the subpool before allocation
1569          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1570          * reservation, do not call hugepage_subpool_put_pages() as this will
1571          * remove the reserved page from the subpool.
1572          */
1573         if (!restore_reserve) {
1574                 /*
1575                  * A return code of zero implies that the subpool will be
1576                  * under its minimum size if the reservation is not restored
1577                  * after page is free.  Therefore, force restore_reserve
1578                  * operation.
1579                  */
1580                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1581                         restore_reserve = true;
1582         }
1583
1584         spin_lock_irqsave(&hugetlb_lock, flags);
1585         ClearHPageMigratable(page);
1586         hugetlb_cgroup_uncharge_page(hstate_index(h),
1587                                      pages_per_huge_page(h), page);
1588         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1589                                           pages_per_huge_page(h), page);
1590         if (restore_reserve)
1591                 h->resv_huge_pages++;
1592
1593         if (HPageTemporary(page)) {
1594                 remove_hugetlb_page(h, page, false);
1595                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1596                 update_and_free_page(h, page, true);
1597         } else if (h->surplus_huge_pages_node[nid]) {
1598                 /* remove the page from active list */
1599                 remove_hugetlb_page(h, page, true);
1600                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1601                 update_and_free_page(h, page, true);
1602         } else {
1603                 arch_clear_hugepage_flags(page);
1604                 enqueue_huge_page(h, page);
1605                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1606         }
1607 }
1608
1609 /*
1610  * Must be called with the hugetlb lock held
1611  */
1612 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1613 {
1614         lockdep_assert_held(&hugetlb_lock);
1615         h->nr_huge_pages++;
1616         h->nr_huge_pages_node[nid]++;
1617 }
1618
1619 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1620 {
1621         free_huge_page_vmemmap(h, page);
1622         INIT_LIST_HEAD(&page->lru);
1623         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1624         hugetlb_set_page_subpool(page, NULL);
1625         set_hugetlb_cgroup(page, NULL);
1626         set_hugetlb_cgroup_rsvd(page, NULL);
1627 }
1628
1629 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1630 {
1631         __prep_new_huge_page(h, page);
1632         spin_lock_irq(&hugetlb_lock);
1633         __prep_account_new_huge_page(h, nid);
1634         spin_unlock_irq(&hugetlb_lock);
1635 }
1636
1637 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1638 {
1639         int i, j;
1640         int nr_pages = 1 << order;
1641         struct page *p = page + 1;
1642
1643         /* we rely on prep_new_huge_page to set the destructor */
1644         set_compound_order(page, order);
1645         __ClearPageReserved(page);
1646         __SetPageHead(page);
1647         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1648                 /*
1649                  * For gigantic hugepages allocated through bootmem at
1650                  * boot, it's safer to be consistent with the not-gigantic
1651                  * hugepages and clear the PG_reserved bit from all tail pages
1652                  * too.  Otherwise drivers using get_user_pages() to access tail
1653                  * pages may get the reference counting wrong if they see
1654                  * PG_reserved set on a tail page (despite the head page not
1655                  * having PG_reserved set).  Enforcing this consistency between
1656                  * head and tail pages allows drivers to optimize away a check
1657                  * on the head page when they need know if put_page() is needed
1658                  * after get_user_pages().
1659                  */
1660                 __ClearPageReserved(p);
1661                 /*
1662                  * Subtle and very unlikely
1663                  *
1664                  * Gigantic 'page allocators' such as memblock or cma will
1665                  * return a set of pages with each page ref counted.  We need
1666                  * to turn this set of pages into a compound page with tail
1667                  * page ref counts set to zero.  Code such as speculative page
1668                  * cache adding could take a ref on a 'to be' tail page.
1669                  * We need to respect any increased ref count, and only set
1670                  * the ref count to zero if count is currently 1.  If count
1671                  * is not 1, we return an error.  An error return indicates
1672                  * the set of pages can not be converted to a gigantic page.
1673                  * The caller who allocated the pages should then discard the
1674                  * pages using the appropriate free interface.
1675                  */
1676                 if (!page_ref_freeze(p, 1)) {
1677                         pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1678                         goto out_error;
1679                 }
1680                 set_page_count(p, 0);
1681                 set_compound_head(p, page);
1682         }
1683         atomic_set(compound_mapcount_ptr(page), -1);
1684         atomic_set(compound_pincount_ptr(page), 0);
1685         return true;
1686
1687 out_error:
1688         /* undo tail page modifications made above */
1689         p = page + 1;
1690         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1691                 clear_compound_head(p);
1692                 set_page_refcounted(p);
1693         }
1694         /* need to clear PG_reserved on remaining tail pages  */
1695         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1696                 __ClearPageReserved(p);
1697         set_compound_order(page, 0);
1698         page[1].compound_nr = 0;
1699         __ClearPageHead(page);
1700         return false;
1701 }
1702
1703 /*
1704  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1705  * transparent huge pages.  See the PageTransHuge() documentation for more
1706  * details.
1707  */
1708 int PageHuge(struct page *page)
1709 {
1710         if (!PageCompound(page))
1711                 return 0;
1712
1713         page = compound_head(page);
1714         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1715 }
1716 EXPORT_SYMBOL_GPL(PageHuge);
1717
1718 /*
1719  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1720  * normal or transparent huge pages.
1721  */
1722 int PageHeadHuge(struct page *page_head)
1723 {
1724         if (!PageHead(page_head))
1725                 return 0;
1726
1727         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1728 }
1729
1730 /*
1731  * Find and lock address space (mapping) in write mode.
1732  *
1733  * Upon entry, the page is locked which means that page_mapping() is
1734  * stable.  Due to locking order, we can only trylock_write.  If we can
1735  * not get the lock, simply return NULL to caller.
1736  */
1737 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1738 {
1739         struct address_space *mapping = page_mapping(hpage);
1740
1741         if (!mapping)
1742                 return mapping;
1743
1744         if (i_mmap_trylock_write(mapping))
1745                 return mapping;
1746
1747         return NULL;
1748 }
1749
1750 pgoff_t hugetlb_basepage_index(struct page *page)
1751 {
1752         struct page *page_head = compound_head(page);
1753         pgoff_t index = page_index(page_head);
1754         unsigned long compound_idx;
1755
1756         if (compound_order(page_head) >= MAX_ORDER)
1757                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1758         else
1759                 compound_idx = page - page_head;
1760
1761         return (index << compound_order(page_head)) + compound_idx;
1762 }
1763
1764 static struct page *alloc_buddy_huge_page(struct hstate *h,
1765                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1766                 nodemask_t *node_alloc_noretry)
1767 {
1768         int order = huge_page_order(h);
1769         struct page *page;
1770         bool alloc_try_hard = true;
1771
1772         /*
1773          * By default we always try hard to allocate the page with
1774          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1775          * a loop (to adjust global huge page counts) and previous allocation
1776          * failed, do not continue to try hard on the same node.  Use the
1777          * node_alloc_noretry bitmap to manage this state information.
1778          */
1779         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1780                 alloc_try_hard = false;
1781         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1782         if (alloc_try_hard)
1783                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1784         if (nid == NUMA_NO_NODE)
1785                 nid = numa_mem_id();
1786         page = __alloc_pages(gfp_mask, order, nid, nmask);
1787         if (page)
1788                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1789         else
1790                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1791
1792         /*
1793          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1794          * indicates an overall state change.  Clear bit so that we resume
1795          * normal 'try hard' allocations.
1796          */
1797         if (node_alloc_noretry && page && !alloc_try_hard)
1798                 node_clear(nid, *node_alloc_noretry);
1799
1800         /*
1801          * If we tried hard to get a page but failed, set bit so that
1802          * subsequent attempts will not try as hard until there is an
1803          * overall state change.
1804          */
1805         if (node_alloc_noretry && !page && alloc_try_hard)
1806                 node_set(nid, *node_alloc_noretry);
1807
1808         return page;
1809 }
1810
1811 /*
1812  * Common helper to allocate a fresh hugetlb page. All specific allocators
1813  * should use this function to get new hugetlb pages
1814  */
1815 static struct page *alloc_fresh_huge_page(struct hstate *h,
1816                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1817                 nodemask_t *node_alloc_noretry)
1818 {
1819         struct page *page;
1820         bool retry = false;
1821
1822 retry:
1823         if (hstate_is_gigantic(h))
1824                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1825         else
1826                 page = alloc_buddy_huge_page(h, gfp_mask,
1827                                 nid, nmask, node_alloc_noretry);
1828         if (!page)
1829                 return NULL;
1830
1831         if (hstate_is_gigantic(h)) {
1832                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1833                         /*
1834                          * Rare failure to convert pages to compound page.
1835                          * Free pages and try again - ONCE!
1836                          */
1837                         free_gigantic_page(page, huge_page_order(h));
1838                         if (!retry) {
1839                                 retry = true;
1840                                 goto retry;
1841                         }
1842                         return NULL;
1843                 }
1844         }
1845         prep_new_huge_page(h, page, page_to_nid(page));
1846
1847         return page;
1848 }
1849
1850 /*
1851  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1852  * manner.
1853  */
1854 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1855                                 nodemask_t *node_alloc_noretry)
1856 {
1857         struct page *page;
1858         int nr_nodes, node;
1859         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1860
1861         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1862                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1863                                                 node_alloc_noretry);
1864                 if (page)
1865                         break;
1866         }
1867
1868         if (!page)
1869                 return 0;
1870
1871         put_page(page); /* free it into the hugepage allocator */
1872
1873         return 1;
1874 }
1875
1876 /*
1877  * Remove huge page from pool from next node to free.  Attempt to keep
1878  * persistent huge pages more or less balanced over allowed nodes.
1879  * This routine only 'removes' the hugetlb page.  The caller must make
1880  * an additional call to free the page to low level allocators.
1881  * Called with hugetlb_lock locked.
1882  */
1883 static struct page *remove_pool_huge_page(struct hstate *h,
1884                                                 nodemask_t *nodes_allowed,
1885                                                  bool acct_surplus)
1886 {
1887         int nr_nodes, node;
1888         struct page *page = NULL;
1889
1890         lockdep_assert_held(&hugetlb_lock);
1891         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1892                 /*
1893                  * If we're returning unused surplus pages, only examine
1894                  * nodes with surplus pages.
1895                  */
1896                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1897                     !list_empty(&h->hugepage_freelists[node])) {
1898                         page = list_entry(h->hugepage_freelists[node].next,
1899                                           struct page, lru);
1900                         remove_hugetlb_page(h, page, acct_surplus);
1901                         break;
1902                 }
1903         }
1904
1905         return page;
1906 }
1907
1908 /*
1909  * Dissolve a given free hugepage into free buddy pages. This function does
1910  * nothing for in-use hugepages and non-hugepages.
1911  * This function returns values like below:
1912  *
1913  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1914  *           when the system is under memory pressure and the feature of
1915  *           freeing unused vmemmap pages associated with each hugetlb page
1916  *           is enabled.
1917  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1918  *           (allocated or reserved.)
1919  *       0:  successfully dissolved free hugepages or the page is not a
1920  *           hugepage (considered as already dissolved)
1921  */
1922 int dissolve_free_huge_page(struct page *page)
1923 {
1924         int rc = -EBUSY;
1925
1926 retry:
1927         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1928         if (!PageHuge(page))
1929                 return 0;
1930
1931         spin_lock_irq(&hugetlb_lock);
1932         if (!PageHuge(page)) {
1933                 rc = 0;
1934                 goto out;
1935         }
1936
1937         if (!page_count(page)) {
1938                 struct page *head = compound_head(page);
1939                 struct hstate *h = page_hstate(head);
1940                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1941                         goto out;
1942
1943                 /*
1944                  * We should make sure that the page is already on the free list
1945                  * when it is dissolved.
1946                  */
1947                 if (unlikely(!HPageFreed(head))) {
1948                         spin_unlock_irq(&hugetlb_lock);
1949                         cond_resched();
1950
1951                         /*
1952                          * Theoretically, we should return -EBUSY when we
1953                          * encounter this race. In fact, we have a chance
1954                          * to successfully dissolve the page if we do a
1955                          * retry. Because the race window is quite small.
1956                          * If we seize this opportunity, it is an optimization
1957                          * for increasing the success rate of dissolving page.
1958                          */
1959                         goto retry;
1960                 }
1961
1962                 remove_hugetlb_page(h, head, false);
1963                 h->max_huge_pages--;
1964                 spin_unlock_irq(&hugetlb_lock);
1965
1966                 /*
1967                  * Normally update_and_free_page will allocate required vmemmmap
1968                  * before freeing the page.  update_and_free_page will fail to
1969                  * free the page if it can not allocate required vmemmap.  We
1970                  * need to adjust max_huge_pages if the page is not freed.
1971                  * Attempt to allocate vmemmmap here so that we can take
1972                  * appropriate action on failure.
1973                  */
1974                 rc = alloc_huge_page_vmemmap(h, head);
1975                 if (!rc) {
1976                         /*
1977                          * Move PageHWPoison flag from head page to the raw
1978                          * error page, which makes any subpages rather than
1979                          * the error page reusable.
1980                          */
1981                         if (PageHWPoison(head) && page != head) {
1982                                 SetPageHWPoison(page);
1983                                 ClearPageHWPoison(head);
1984                         }
1985                         update_and_free_page(h, head, false);
1986                 } else {
1987                         spin_lock_irq(&hugetlb_lock);
1988                         add_hugetlb_page(h, head, false);
1989                         h->max_huge_pages++;
1990                         spin_unlock_irq(&hugetlb_lock);
1991                 }
1992
1993                 return rc;
1994         }
1995 out:
1996         spin_unlock_irq(&hugetlb_lock);
1997         return rc;
1998 }
1999
2000 /*
2001  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2002  * make specified memory blocks removable from the system.
2003  * Note that this will dissolve a free gigantic hugepage completely, if any
2004  * part of it lies within the given range.
2005  * Also note that if dissolve_free_huge_page() returns with an error, all
2006  * free hugepages that were dissolved before that error are lost.
2007  */
2008 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2009 {
2010         unsigned long pfn;
2011         struct page *page;
2012         int rc = 0;
2013
2014         if (!hugepages_supported())
2015                 return rc;
2016
2017         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2018                 page = pfn_to_page(pfn);
2019                 rc = dissolve_free_huge_page(page);
2020                 if (rc)
2021                         break;
2022         }
2023
2024         return rc;
2025 }
2026
2027 /*
2028  * Allocates a fresh surplus page from the page allocator.
2029  */
2030 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2031                 int nid, nodemask_t *nmask, bool zero_ref)
2032 {
2033         struct page *page = NULL;
2034         bool retry = false;
2035
2036         if (hstate_is_gigantic(h))
2037                 return NULL;
2038
2039         spin_lock_irq(&hugetlb_lock);
2040         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2041                 goto out_unlock;
2042         spin_unlock_irq(&hugetlb_lock);
2043
2044 retry:
2045         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2046         if (!page)
2047                 return NULL;
2048
2049         spin_lock_irq(&hugetlb_lock);
2050         /*
2051          * We could have raced with the pool size change.
2052          * Double check that and simply deallocate the new page
2053          * if we would end up overcommiting the surpluses. Abuse
2054          * temporary page to workaround the nasty free_huge_page
2055          * codeflow
2056          */
2057         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2058                 SetHPageTemporary(page);
2059                 spin_unlock_irq(&hugetlb_lock);
2060                 put_page(page);
2061                 return NULL;
2062         }
2063
2064         if (zero_ref) {
2065                 /*
2066                  * Caller requires a page with zero ref count.
2067                  * We will drop ref count here.  If someone else is holding
2068                  * a ref, the page will be freed when they drop it.  Abuse
2069                  * temporary page flag to accomplish this.
2070                  */
2071                 SetHPageTemporary(page);
2072                 if (!put_page_testzero(page)) {
2073                         /*
2074                          * Unexpected inflated ref count on freshly allocated
2075                          * huge.  Retry once.
2076                          */
2077                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2078                         spin_unlock_irq(&hugetlb_lock);
2079                         if (retry)
2080                                 return NULL;
2081
2082                         retry = true;
2083                         goto retry;
2084                 }
2085                 ClearHPageTemporary(page);
2086         }
2087
2088         h->surplus_huge_pages++;
2089         h->surplus_huge_pages_node[page_to_nid(page)]++;
2090
2091 out_unlock:
2092         spin_unlock_irq(&hugetlb_lock);
2093
2094         return page;
2095 }
2096
2097 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2098                                      int nid, nodemask_t *nmask)
2099 {
2100         struct page *page;
2101
2102         if (hstate_is_gigantic(h))
2103                 return NULL;
2104
2105         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2106         if (!page)
2107                 return NULL;
2108
2109         /*
2110          * We do not account these pages as surplus because they are only
2111          * temporary and will be released properly on the last reference
2112          */
2113         SetHPageTemporary(page);
2114
2115         return page;
2116 }
2117
2118 /*
2119  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2120  */
2121 static
2122 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2123                 struct vm_area_struct *vma, unsigned long addr)
2124 {
2125         struct page *page;
2126         struct mempolicy *mpol;
2127         gfp_t gfp_mask = htlb_alloc_mask(h);
2128         int nid;
2129         nodemask_t *nodemask;
2130
2131         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2132         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2133         mpol_cond_put(mpol);
2134
2135         return page;
2136 }
2137
2138 /* page migration callback function */
2139 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2140                 nodemask_t *nmask, gfp_t gfp_mask)
2141 {
2142         spin_lock_irq(&hugetlb_lock);
2143         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2144                 struct page *page;
2145
2146                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2147                 if (page) {
2148                         spin_unlock_irq(&hugetlb_lock);
2149                         return page;
2150                 }
2151         }
2152         spin_unlock_irq(&hugetlb_lock);
2153
2154         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2155 }
2156
2157 /* mempolicy aware migration callback */
2158 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2159                 unsigned long address)
2160 {
2161         struct mempolicy *mpol;
2162         nodemask_t *nodemask;
2163         struct page *page;
2164         gfp_t gfp_mask;
2165         int node;
2166
2167         gfp_mask = htlb_alloc_mask(h);
2168         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2169         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2170         mpol_cond_put(mpol);
2171
2172         return page;
2173 }
2174
2175 /*
2176  * Increase the hugetlb pool such that it can accommodate a reservation
2177  * of size 'delta'.
2178  */
2179 static int gather_surplus_pages(struct hstate *h, long delta)
2180         __must_hold(&hugetlb_lock)
2181 {
2182         struct list_head surplus_list;
2183         struct page *page, *tmp;
2184         int ret;
2185         long i;
2186         long needed, allocated;
2187         bool alloc_ok = true;
2188
2189         lockdep_assert_held(&hugetlb_lock);
2190         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2191         if (needed <= 0) {
2192                 h->resv_huge_pages += delta;
2193                 return 0;
2194         }
2195
2196         allocated = 0;
2197         INIT_LIST_HEAD(&surplus_list);
2198
2199         ret = -ENOMEM;
2200 retry:
2201         spin_unlock_irq(&hugetlb_lock);
2202         for (i = 0; i < needed; i++) {
2203                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2204                                 NUMA_NO_NODE, NULL, true);
2205                 if (!page) {
2206                         alloc_ok = false;
2207                         break;
2208                 }
2209                 list_add(&page->lru, &surplus_list);
2210                 cond_resched();
2211         }
2212         allocated += i;
2213
2214         /*
2215          * After retaking hugetlb_lock, we need to recalculate 'needed'
2216          * because either resv_huge_pages or free_huge_pages may have changed.
2217          */
2218         spin_lock_irq(&hugetlb_lock);
2219         needed = (h->resv_huge_pages + delta) -
2220                         (h->free_huge_pages + allocated);
2221         if (needed > 0) {
2222                 if (alloc_ok)
2223                         goto retry;
2224                 /*
2225                  * We were not able to allocate enough pages to
2226                  * satisfy the entire reservation so we free what
2227                  * we've allocated so far.
2228                  */
2229                 goto free;
2230         }
2231         /*
2232          * The surplus_list now contains _at_least_ the number of extra pages
2233          * needed to accommodate the reservation.  Add the appropriate number
2234          * of pages to the hugetlb pool and free the extras back to the buddy
2235          * allocator.  Commit the entire reservation here to prevent another
2236          * process from stealing the pages as they are added to the pool but
2237          * before they are reserved.
2238          */
2239         needed += allocated;
2240         h->resv_huge_pages += delta;
2241         ret = 0;
2242
2243         /* Free the needed pages to the hugetlb pool */
2244         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2245                 if ((--needed) < 0)
2246                         break;
2247                 /* Add the page to the hugetlb allocator */
2248                 enqueue_huge_page(h, page);
2249         }
2250 free:
2251         spin_unlock_irq(&hugetlb_lock);
2252
2253         /*
2254          * Free unnecessary surplus pages to the buddy allocator.
2255          * Pages have no ref count, call free_huge_page directly.
2256          */
2257         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2258                 free_huge_page(page);
2259         spin_lock_irq(&hugetlb_lock);
2260
2261         return ret;
2262 }
2263
2264 /*
2265  * This routine has two main purposes:
2266  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2267  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2268  *    to the associated reservation map.
2269  * 2) Free any unused surplus pages that may have been allocated to satisfy
2270  *    the reservation.  As many as unused_resv_pages may be freed.
2271  */
2272 static void return_unused_surplus_pages(struct hstate *h,
2273                                         unsigned long unused_resv_pages)
2274 {
2275         unsigned long nr_pages;
2276         struct page *page;
2277         LIST_HEAD(page_list);
2278
2279         lockdep_assert_held(&hugetlb_lock);
2280         /* Uncommit the reservation */
2281         h->resv_huge_pages -= unused_resv_pages;
2282
2283         /* Cannot return gigantic pages currently */
2284         if (hstate_is_gigantic(h))
2285                 goto out;
2286
2287         /*
2288          * Part (or even all) of the reservation could have been backed
2289          * by pre-allocated pages. Only free surplus pages.
2290          */
2291         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2292
2293         /*
2294          * We want to release as many surplus pages as possible, spread
2295          * evenly across all nodes with memory. Iterate across these nodes
2296          * until we can no longer free unreserved surplus pages. This occurs
2297          * when the nodes with surplus pages have no free pages.
2298          * remove_pool_huge_page() will balance the freed pages across the
2299          * on-line nodes with memory and will handle the hstate accounting.
2300          */
2301         while (nr_pages--) {
2302                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2303                 if (!page)
2304                         goto out;
2305
2306                 list_add(&page->lru, &page_list);
2307         }
2308
2309 out:
2310         spin_unlock_irq(&hugetlb_lock);
2311         update_and_free_pages_bulk(h, &page_list);
2312         spin_lock_irq(&hugetlb_lock);
2313 }
2314
2315
2316 /*
2317  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2318  * are used by the huge page allocation routines to manage reservations.
2319  *
2320  * vma_needs_reservation is called to determine if the huge page at addr
2321  * within the vma has an associated reservation.  If a reservation is
2322  * needed, the value 1 is returned.  The caller is then responsible for
2323  * managing the global reservation and subpool usage counts.  After
2324  * the huge page has been allocated, vma_commit_reservation is called
2325  * to add the page to the reservation map.  If the page allocation fails,
2326  * the reservation must be ended instead of committed.  vma_end_reservation
2327  * is called in such cases.
2328  *
2329  * In the normal case, vma_commit_reservation returns the same value
2330  * as the preceding vma_needs_reservation call.  The only time this
2331  * is not the case is if a reserve map was changed between calls.  It
2332  * is the responsibility of the caller to notice the difference and
2333  * take appropriate action.
2334  *
2335  * vma_add_reservation is used in error paths where a reservation must
2336  * be restored when a newly allocated huge page must be freed.  It is
2337  * to be called after calling vma_needs_reservation to determine if a
2338  * reservation exists.
2339  *
2340  * vma_del_reservation is used in error paths where an entry in the reserve
2341  * map was created during huge page allocation and must be removed.  It is to
2342  * be called after calling vma_needs_reservation to determine if a reservation
2343  * exists.
2344  */
2345 enum vma_resv_mode {
2346         VMA_NEEDS_RESV,
2347         VMA_COMMIT_RESV,
2348         VMA_END_RESV,
2349         VMA_ADD_RESV,
2350         VMA_DEL_RESV,
2351 };
2352 static long __vma_reservation_common(struct hstate *h,
2353                                 struct vm_area_struct *vma, unsigned long addr,
2354                                 enum vma_resv_mode mode)
2355 {
2356         struct resv_map *resv;
2357         pgoff_t idx;
2358         long ret;
2359         long dummy_out_regions_needed;
2360
2361         resv = vma_resv_map(vma);
2362         if (!resv)
2363                 return 1;
2364
2365         idx = vma_hugecache_offset(h, vma, addr);
2366         switch (mode) {
2367         case VMA_NEEDS_RESV:
2368                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2369                 /* We assume that vma_reservation_* routines always operate on
2370                  * 1 page, and that adding to resv map a 1 page entry can only
2371                  * ever require 1 region.
2372                  */
2373                 VM_BUG_ON(dummy_out_regions_needed != 1);
2374                 break;
2375         case VMA_COMMIT_RESV:
2376                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2377                 /* region_add calls of range 1 should never fail. */
2378                 VM_BUG_ON(ret < 0);
2379                 break;
2380         case VMA_END_RESV:
2381                 region_abort(resv, idx, idx + 1, 1);
2382                 ret = 0;
2383                 break;
2384         case VMA_ADD_RESV:
2385                 if (vma->vm_flags & VM_MAYSHARE) {
2386                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2387                         /* region_add calls of range 1 should never fail. */
2388                         VM_BUG_ON(ret < 0);
2389                 } else {
2390                         region_abort(resv, idx, idx + 1, 1);
2391                         ret = region_del(resv, idx, idx + 1);
2392                 }
2393                 break;
2394         case VMA_DEL_RESV:
2395                 if (vma->vm_flags & VM_MAYSHARE) {
2396                         region_abort(resv, idx, idx + 1, 1);
2397                         ret = region_del(resv, idx, idx + 1);
2398                 } else {
2399                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2400                         /* region_add calls of range 1 should never fail. */
2401                         VM_BUG_ON(ret < 0);
2402                 }
2403                 break;
2404         default:
2405                 BUG();
2406         }
2407
2408         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2409                 return ret;
2410         /*
2411          * We know private mapping must have HPAGE_RESV_OWNER set.
2412          *
2413          * In most cases, reserves always exist for private mappings.
2414          * However, a file associated with mapping could have been
2415          * hole punched or truncated after reserves were consumed.
2416          * As subsequent fault on such a range will not use reserves.
2417          * Subtle - The reserve map for private mappings has the
2418          * opposite meaning than that of shared mappings.  If NO
2419          * entry is in the reserve map, it means a reservation exists.
2420          * If an entry exists in the reserve map, it means the
2421          * reservation has already been consumed.  As a result, the
2422          * return value of this routine is the opposite of the
2423          * value returned from reserve map manipulation routines above.
2424          */
2425         if (ret > 0)
2426                 return 0;
2427         if (ret == 0)
2428                 return 1;
2429         return ret;
2430 }
2431
2432 static long vma_needs_reservation(struct hstate *h,
2433                         struct vm_area_struct *vma, unsigned long addr)
2434 {
2435         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2436 }
2437
2438 static long vma_commit_reservation(struct hstate *h,
2439                         struct vm_area_struct *vma, unsigned long addr)
2440 {
2441         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2442 }
2443
2444 static void vma_end_reservation(struct hstate *h,
2445                         struct vm_area_struct *vma, unsigned long addr)
2446 {
2447         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2448 }
2449
2450 static long vma_add_reservation(struct hstate *h,
2451                         struct vm_area_struct *vma, unsigned long addr)
2452 {
2453         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2454 }
2455
2456 static long vma_del_reservation(struct hstate *h,
2457                         struct vm_area_struct *vma, unsigned long addr)
2458 {
2459         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2460 }
2461
2462 /*
2463  * This routine is called to restore reservation information on error paths.
2464  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2465  * the hugetlb mutex should remain held when calling this routine.
2466  *
2467  * It handles two specific cases:
2468  * 1) A reservation was in place and the page consumed the reservation.
2469  *    HPageRestoreReserve is set in the page.
2470  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2471  *    not set.  However, alloc_huge_page always updates the reserve map.
2472  *
2473  * In case 1, free_huge_page later in the error path will increment the
2474  * global reserve count.  But, free_huge_page does not have enough context
2475  * to adjust the reservation map.  This case deals primarily with private
2476  * mappings.  Adjust the reserve map here to be consistent with global
2477  * reserve count adjustments to be made by free_huge_page.  Make sure the
2478  * reserve map indicates there is a reservation present.
2479  *
2480  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2481  */
2482 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2483                         unsigned long address, struct page *page)
2484 {
2485         long rc = vma_needs_reservation(h, vma, address);
2486
2487         if (HPageRestoreReserve(page)) {
2488                 if (unlikely(rc < 0))
2489                         /*
2490                          * Rare out of memory condition in reserve map
2491                          * manipulation.  Clear HPageRestoreReserve so that
2492                          * global reserve count will not be incremented
2493                          * by free_huge_page.  This will make it appear
2494                          * as though the reservation for this page was
2495                          * consumed.  This may prevent the task from
2496                          * faulting in the page at a later time.  This
2497                          * is better than inconsistent global huge page
2498                          * accounting of reserve counts.
2499                          */
2500                         ClearHPageRestoreReserve(page);
2501                 else if (rc)
2502                         (void)vma_add_reservation(h, vma, address);
2503                 else
2504                         vma_end_reservation(h, vma, address);
2505         } else {
2506                 if (!rc) {
2507                         /*
2508                          * This indicates there is an entry in the reserve map
2509                          * not added by alloc_huge_page.  We know it was added
2510                          * before the alloc_huge_page call, otherwise
2511                          * HPageRestoreReserve would be set on the page.
2512                          * Remove the entry so that a subsequent allocation
2513                          * does not consume a reservation.
2514                          */
2515                         rc = vma_del_reservation(h, vma, address);
2516                         if (rc < 0)
2517                                 /*
2518                                  * VERY rare out of memory condition.  Since
2519                                  * we can not delete the entry, set
2520                                  * HPageRestoreReserve so that the reserve
2521                                  * count will be incremented when the page
2522                                  * is freed.  This reserve will be consumed
2523                                  * on a subsequent allocation.
2524                                  */
2525                                 SetHPageRestoreReserve(page);
2526                 } else if (rc < 0) {
2527                         /*
2528                          * Rare out of memory condition from
2529                          * vma_needs_reservation call.  Memory allocation is
2530                          * only attempted if a new entry is needed.  Therefore,
2531                          * this implies there is not an entry in the
2532                          * reserve map.
2533                          *
2534                          * For shared mappings, no entry in the map indicates
2535                          * no reservation.  We are done.
2536                          */
2537                         if (!(vma->vm_flags & VM_MAYSHARE))
2538                                 /*
2539                                  * For private mappings, no entry indicates
2540                                  * a reservation is present.  Since we can
2541                                  * not add an entry, set SetHPageRestoreReserve
2542                                  * on the page so reserve count will be
2543                                  * incremented when freed.  This reserve will
2544                                  * be consumed on a subsequent allocation.
2545                                  */
2546                                 SetHPageRestoreReserve(page);
2547                 } else
2548                         /*
2549                          * No reservation present, do nothing
2550                          */
2551                          vma_end_reservation(h, vma, address);
2552         }
2553 }
2554
2555 /*
2556  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2557  * @h: struct hstate old page belongs to
2558  * @old_page: Old page to dissolve
2559  * @list: List to isolate the page in case we need to
2560  * Returns 0 on success, otherwise negated error.
2561  */
2562 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2563                                         struct list_head *list)
2564 {
2565         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2566         int nid = page_to_nid(old_page);
2567         bool alloc_retry = false;
2568         struct page *new_page;
2569         int ret = 0;
2570
2571         /*
2572          * Before dissolving the page, we need to allocate a new one for the
2573          * pool to remain stable.  Here, we allocate the page and 'prep' it
2574          * by doing everything but actually updating counters and adding to
2575          * the pool.  This simplifies and let us do most of the processing
2576          * under the lock.
2577          */
2578 alloc_retry:
2579         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2580         if (!new_page)
2581                 return -ENOMEM;
2582         /*
2583          * If all goes well, this page will be directly added to the free
2584          * list in the pool.  For this the ref count needs to be zero.
2585          * Attempt to drop now, and retry once if needed.  It is VERY
2586          * unlikely there is another ref on the page.
2587          *
2588          * If someone else has a reference to the page, it will be freed
2589          * when they drop their ref.  Abuse temporary page flag to accomplish
2590          * this.  Retry once if there is an inflated ref count.
2591          */
2592         SetHPageTemporary(new_page);
2593         if (!put_page_testzero(new_page)) {
2594                 if (alloc_retry)
2595                         return -EBUSY;
2596
2597                 alloc_retry = true;
2598                 goto alloc_retry;
2599         }
2600         ClearHPageTemporary(new_page);
2601
2602         __prep_new_huge_page(h, new_page);
2603
2604 retry:
2605         spin_lock_irq(&hugetlb_lock);
2606         if (!PageHuge(old_page)) {
2607                 /*
2608                  * Freed from under us. Drop new_page too.
2609                  */
2610                 goto free_new;
2611         } else if (page_count(old_page)) {
2612                 /*
2613                  * Someone has grabbed the page, try to isolate it here.
2614                  * Fail with -EBUSY if not possible.
2615                  */
2616                 spin_unlock_irq(&hugetlb_lock);
2617                 if (!isolate_huge_page(old_page, list))
2618                         ret = -EBUSY;
2619                 spin_lock_irq(&hugetlb_lock);
2620                 goto free_new;
2621         } else if (!HPageFreed(old_page)) {
2622                 /*
2623                  * Page's refcount is 0 but it has not been enqueued in the
2624                  * freelist yet. Race window is small, so we can succeed here if
2625                  * we retry.
2626                  */
2627                 spin_unlock_irq(&hugetlb_lock);
2628                 cond_resched();
2629                 goto retry;
2630         } else {
2631                 /*
2632                  * Ok, old_page is still a genuine free hugepage. Remove it from
2633                  * the freelist and decrease the counters. These will be
2634                  * incremented again when calling __prep_account_new_huge_page()
2635                  * and enqueue_huge_page() for new_page. The counters will remain
2636                  * stable since this happens under the lock.
2637                  */
2638                 remove_hugetlb_page(h, old_page, false);
2639
2640                 /*
2641                  * Ref count on new page is already zero as it was dropped
2642                  * earlier.  It can be directly added to the pool free list.
2643                  */
2644                 __prep_account_new_huge_page(h, nid);
2645                 enqueue_huge_page(h, new_page);
2646
2647                 /*
2648                  * Pages have been replaced, we can safely free the old one.
2649                  */
2650                 spin_unlock_irq(&hugetlb_lock);
2651                 update_and_free_page(h, old_page, false);
2652         }
2653
2654         return ret;
2655
2656 free_new:
2657         spin_unlock_irq(&hugetlb_lock);
2658         /* Page has a zero ref count, but needs a ref to be freed */
2659         set_page_refcounted(new_page);
2660         update_and_free_page(h, new_page, false);
2661
2662         return ret;
2663 }
2664
2665 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2666 {
2667         struct hstate *h;
2668         struct page *head;
2669         int ret = -EBUSY;
2670
2671         /*
2672          * The page might have been dissolved from under our feet, so make sure
2673          * to carefully check the state under the lock.
2674          * Return success when racing as if we dissolved the page ourselves.
2675          */
2676         spin_lock_irq(&hugetlb_lock);
2677         if (PageHuge(page)) {
2678                 head = compound_head(page);
2679                 h = page_hstate(head);
2680         } else {
2681                 spin_unlock_irq(&hugetlb_lock);
2682                 return 0;
2683         }
2684         spin_unlock_irq(&hugetlb_lock);
2685
2686         /*
2687          * Fence off gigantic pages as there is a cyclic dependency between
2688          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2689          * of bailing out right away without further retrying.
2690          */
2691         if (hstate_is_gigantic(h))
2692                 return -ENOMEM;
2693
2694         if (page_count(head) && isolate_huge_page(head, list))
2695                 ret = 0;
2696         else if (!page_count(head))
2697                 ret = alloc_and_dissolve_huge_page(h, head, list);
2698
2699         return ret;
2700 }
2701
2702 struct page *alloc_huge_page(struct vm_area_struct *vma,
2703                                     unsigned long addr, int avoid_reserve)
2704 {
2705         struct hugepage_subpool *spool = subpool_vma(vma);
2706         struct hstate *h = hstate_vma(vma);
2707         struct page *page;
2708         long map_chg, map_commit;
2709         long gbl_chg;
2710         int ret, idx;
2711         struct hugetlb_cgroup *h_cg;
2712         bool deferred_reserve;
2713
2714         idx = hstate_index(h);
2715         /*
2716          * Examine the region/reserve map to determine if the process
2717          * has a reservation for the page to be allocated.  A return
2718          * code of zero indicates a reservation exists (no change).
2719          */
2720         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2721         if (map_chg < 0)
2722                 return ERR_PTR(-ENOMEM);
2723
2724         /*
2725          * Processes that did not create the mapping will have no
2726          * reserves as indicated by the region/reserve map. Check
2727          * that the allocation will not exceed the subpool limit.
2728          * Allocations for MAP_NORESERVE mappings also need to be
2729          * checked against any subpool limit.
2730          */
2731         if (map_chg || avoid_reserve) {
2732                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2733                 if (gbl_chg < 0) {
2734                         vma_end_reservation(h, vma, addr);
2735                         return ERR_PTR(-ENOSPC);
2736                 }
2737
2738                 /*
2739                  * Even though there was no reservation in the region/reserve
2740                  * map, there could be reservations associated with the
2741                  * subpool that can be used.  This would be indicated if the
2742                  * return value of hugepage_subpool_get_pages() is zero.
2743                  * However, if avoid_reserve is specified we still avoid even
2744                  * the subpool reservations.
2745                  */
2746                 if (avoid_reserve)
2747                         gbl_chg = 1;
2748         }
2749
2750         /* If this allocation is not consuming a reservation, charge it now.
2751          */
2752         deferred_reserve = map_chg || avoid_reserve;
2753         if (deferred_reserve) {
2754                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2755                         idx, pages_per_huge_page(h), &h_cg);
2756                 if (ret)
2757                         goto out_subpool_put;
2758         }
2759
2760         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2761         if (ret)
2762                 goto out_uncharge_cgroup_reservation;
2763
2764         spin_lock_irq(&hugetlb_lock);
2765         /*
2766          * glb_chg is passed to indicate whether or not a page must be taken
2767          * from the global free pool (global change).  gbl_chg == 0 indicates
2768          * a reservation exists for the allocation.
2769          */
2770         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2771         if (!page) {
2772                 spin_unlock_irq(&hugetlb_lock);
2773                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2774                 if (!page)
2775                         goto out_uncharge_cgroup;
2776                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2777                         SetHPageRestoreReserve(page);
2778                         h->resv_huge_pages--;
2779                 }
2780                 spin_lock_irq(&hugetlb_lock);
2781                 list_add(&page->lru, &h->hugepage_activelist);
2782                 /* Fall through */
2783         }
2784         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2785         /* If allocation is not consuming a reservation, also store the
2786          * hugetlb_cgroup pointer on the page.
2787          */
2788         if (deferred_reserve) {
2789                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2790                                                   h_cg, page);
2791         }
2792
2793         spin_unlock_irq(&hugetlb_lock);
2794
2795         hugetlb_set_page_subpool(page, spool);
2796
2797         map_commit = vma_commit_reservation(h, vma, addr);
2798         if (unlikely(map_chg > map_commit)) {
2799                 /*
2800                  * The page was added to the reservation map between
2801                  * vma_needs_reservation and vma_commit_reservation.
2802                  * This indicates a race with hugetlb_reserve_pages.
2803                  * Adjust for the subpool count incremented above AND
2804                  * in hugetlb_reserve_pages for the same page.  Also,
2805                  * the reservation count added in hugetlb_reserve_pages
2806                  * no longer applies.
2807                  */
2808                 long rsv_adjust;
2809
2810                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2811                 hugetlb_acct_memory(h, -rsv_adjust);
2812                 if (deferred_reserve)
2813                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2814                                         pages_per_huge_page(h), page);
2815         }
2816         return page;
2817
2818 out_uncharge_cgroup:
2819         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2820 out_uncharge_cgroup_reservation:
2821         if (deferred_reserve)
2822                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2823                                                     h_cg);
2824 out_subpool_put:
2825         if (map_chg || avoid_reserve)
2826                 hugepage_subpool_put_pages(spool, 1);
2827         vma_end_reservation(h, vma, addr);
2828         return ERR_PTR(-ENOSPC);
2829 }
2830
2831 int alloc_bootmem_huge_page(struct hstate *h)
2832         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2833 int __alloc_bootmem_huge_page(struct hstate *h)
2834 {
2835         struct huge_bootmem_page *m;
2836         int nr_nodes, node;
2837
2838         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2839                 void *addr;
2840
2841                 addr = memblock_alloc_try_nid_raw(
2842                                 huge_page_size(h), huge_page_size(h),
2843                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2844                 if (addr) {
2845                         /*
2846                          * Use the beginning of the huge page to store the
2847                          * huge_bootmem_page struct (until gather_bootmem
2848                          * puts them into the mem_map).
2849                          */
2850                         m = addr;
2851                         goto found;
2852                 }
2853         }
2854         return 0;
2855
2856 found:
2857         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2858         /* Put them into a private list first because mem_map is not up yet */
2859         INIT_LIST_HEAD(&m->list);
2860         list_add(&m->list, &huge_boot_pages);
2861         m->hstate = h;
2862         return 1;
2863 }
2864
2865 /*
2866  * Put bootmem huge pages into the standard lists after mem_map is up.
2867  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2868  */
2869 static void __init gather_bootmem_prealloc(void)
2870 {
2871         struct huge_bootmem_page *m;
2872
2873         list_for_each_entry(m, &huge_boot_pages, list) {
2874                 struct page *page = virt_to_page(m);
2875                 struct hstate *h = m->hstate;
2876
2877                 VM_BUG_ON(!hstate_is_gigantic(h));
2878                 WARN_ON(page_count(page) != 1);
2879                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2880                         WARN_ON(PageReserved(page));
2881                         prep_new_huge_page(h, page, page_to_nid(page));
2882                         put_page(page); /* add to the hugepage allocator */
2883                 } else {
2884                         /* VERY unlikely inflated ref count on a tail page */
2885                         free_gigantic_page(page, huge_page_order(h));
2886                 }
2887
2888                 /*
2889                  * We need to restore the 'stolen' pages to totalram_pages
2890                  * in order to fix confusing memory reports from free(1) and
2891                  * other side-effects, like CommitLimit going negative.
2892                  */
2893                 adjust_managed_page_count(page, pages_per_huge_page(h));
2894                 cond_resched();
2895         }
2896 }
2897
2898 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2899 {
2900         unsigned long i;
2901         nodemask_t *node_alloc_noretry;
2902
2903         if (!hstate_is_gigantic(h)) {
2904                 /*
2905                  * Bit mask controlling how hard we retry per-node allocations.
2906                  * Ignore errors as lower level routines can deal with
2907                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2908                  * time, we are likely in bigger trouble.
2909                  */
2910                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2911                                                 GFP_KERNEL);
2912         } else {
2913                 /* allocations done at boot time */
2914                 node_alloc_noretry = NULL;
2915         }
2916
2917         /* bit mask controlling how hard we retry per-node allocations */
2918         if (node_alloc_noretry)
2919                 nodes_clear(*node_alloc_noretry);
2920
2921         for (i = 0; i < h->max_huge_pages; ++i) {
2922                 if (hstate_is_gigantic(h)) {
2923                         if (hugetlb_cma_size) {
2924                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2925                                 goto free;
2926                         }
2927                         if (!alloc_bootmem_huge_page(h))
2928                                 break;
2929                 } else if (!alloc_pool_huge_page(h,
2930                                          &node_states[N_MEMORY],
2931                                          node_alloc_noretry))
2932                         break;
2933                 cond_resched();
2934         }
2935         if (i < h->max_huge_pages) {
2936                 char buf[32];
2937
2938                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2939                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2940                         h->max_huge_pages, buf, i);
2941                 h->max_huge_pages = i;
2942         }
2943 free:
2944         kfree(node_alloc_noretry);
2945 }
2946
2947 static void __init hugetlb_init_hstates(void)
2948 {
2949         struct hstate *h;
2950
2951         for_each_hstate(h) {
2952                 if (minimum_order > huge_page_order(h))
2953                         minimum_order = huge_page_order(h);
2954
2955                 /* oversize hugepages were init'ed in early boot */
2956                 if (!hstate_is_gigantic(h))
2957                         hugetlb_hstate_alloc_pages(h);
2958         }
2959         VM_BUG_ON(minimum_order == UINT_MAX);
2960 }
2961
2962 static void __init report_hugepages(void)
2963 {
2964         struct hstate *h;
2965
2966         for_each_hstate(h) {
2967                 char buf[32];
2968
2969                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2970                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2971                         buf, h->free_huge_pages);
2972         }
2973 }
2974
2975 #ifdef CONFIG_HIGHMEM
2976 static void try_to_free_low(struct hstate *h, unsigned long count,
2977                                                 nodemask_t *nodes_allowed)
2978 {
2979         int i;
2980         LIST_HEAD(page_list);
2981
2982         lockdep_assert_held(&hugetlb_lock);
2983         if (hstate_is_gigantic(h))
2984                 return;
2985
2986         /*
2987          * Collect pages to be freed on a list, and free after dropping lock
2988          */
2989         for_each_node_mask(i, *nodes_allowed) {
2990                 struct page *page, *next;
2991                 struct list_head *freel = &h->hugepage_freelists[i];
2992                 list_for_each_entry_safe(page, next, freel, lru) {
2993                         if (count >= h->nr_huge_pages)
2994                                 goto out;
2995                         if (PageHighMem(page))
2996                                 continue;
2997                         remove_hugetlb_page(h, page, false);
2998                         list_add(&page->lru, &page_list);
2999                 }
3000         }
3001
3002 out:
3003         spin_unlock_irq(&hugetlb_lock);
3004         update_and_free_pages_bulk(h, &page_list);
3005         spin_lock_irq(&hugetlb_lock);
3006 }
3007 #else
3008 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3009                                                 nodemask_t *nodes_allowed)
3010 {
3011 }
3012 #endif
3013
3014 /*
3015  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3016  * balanced by operating on them in a round-robin fashion.
3017  * Returns 1 if an adjustment was made.
3018  */
3019 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3020                                 int delta)
3021 {
3022         int nr_nodes, node;
3023
3024         lockdep_assert_held(&hugetlb_lock);
3025         VM_BUG_ON(delta != -1 && delta != 1);
3026
3027         if (delta < 0) {
3028                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3029                         if (h->surplus_huge_pages_node[node])
3030                                 goto found;
3031                 }
3032         } else {
3033                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3034                         if (h->surplus_huge_pages_node[node] <
3035                                         h->nr_huge_pages_node[node])
3036                                 goto found;
3037                 }
3038         }
3039         return 0;
3040
3041 found:
3042         h->surplus_huge_pages += delta;
3043         h->surplus_huge_pages_node[node] += delta;
3044         return 1;
3045 }
3046
3047 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3048 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3049                               nodemask_t *nodes_allowed)
3050 {
3051         unsigned long min_count, ret;
3052         struct page *page;
3053         LIST_HEAD(page_list);
3054         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3055
3056         /*
3057          * Bit mask controlling how hard we retry per-node allocations.
3058          * If we can not allocate the bit mask, do not attempt to allocate
3059          * the requested huge pages.
3060          */
3061         if (node_alloc_noretry)
3062                 nodes_clear(*node_alloc_noretry);
3063         else
3064                 return -ENOMEM;
3065
3066         /*
3067          * resize_lock mutex prevents concurrent adjustments to number of
3068          * pages in hstate via the proc/sysfs interfaces.
3069          */
3070         mutex_lock(&h->resize_lock);
3071         flush_free_hpage_work(h);
3072         spin_lock_irq(&hugetlb_lock);
3073
3074         /*
3075          * Check for a node specific request.
3076          * Changing node specific huge page count may require a corresponding
3077          * change to the global count.  In any case, the passed node mask
3078          * (nodes_allowed) will restrict alloc/free to the specified node.
3079          */
3080         if (nid != NUMA_NO_NODE) {
3081                 unsigned long old_count = count;
3082
3083                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3084                 /*
3085                  * User may have specified a large count value which caused the
3086                  * above calculation to overflow.  In this case, they wanted
3087                  * to allocate as many huge pages as possible.  Set count to
3088                  * largest possible value to align with their intention.
3089                  */
3090                 if (count < old_count)
3091                         count = ULONG_MAX;
3092         }
3093
3094         /*
3095          * Gigantic pages runtime allocation depend on the capability for large
3096          * page range allocation.
3097          * If the system does not provide this feature, return an error when
3098          * the user tries to allocate gigantic pages but let the user free the
3099          * boottime allocated gigantic pages.
3100          */
3101         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3102                 if (count > persistent_huge_pages(h)) {
3103                         spin_unlock_irq(&hugetlb_lock);
3104                         mutex_unlock(&h->resize_lock);
3105                         NODEMASK_FREE(node_alloc_noretry);
3106                         return -EINVAL;
3107                 }
3108                 /* Fall through to decrease pool */
3109         }
3110
3111         /*
3112          * Increase the pool size
3113          * First take pages out of surplus state.  Then make up the
3114          * remaining difference by allocating fresh huge pages.
3115          *
3116          * We might race with alloc_surplus_huge_page() here and be unable
3117          * to convert a surplus huge page to a normal huge page. That is
3118          * not critical, though, it just means the overall size of the
3119          * pool might be one hugepage larger than it needs to be, but
3120          * within all the constraints specified by the sysctls.
3121          */
3122         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3123                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3124                         break;
3125         }
3126
3127         while (count > persistent_huge_pages(h)) {
3128                 /*
3129                  * If this allocation races such that we no longer need the
3130                  * page, free_huge_page will handle it by freeing the page
3131                  * and reducing the surplus.
3132                  */
3133                 spin_unlock_irq(&hugetlb_lock);
3134
3135                 /* yield cpu to avoid soft lockup */
3136                 cond_resched();
3137
3138                 ret = alloc_pool_huge_page(h, nodes_allowed,
3139                                                 node_alloc_noretry);
3140                 spin_lock_irq(&hugetlb_lock);
3141                 if (!ret)
3142                         goto out;
3143
3144                 /* Bail for signals. Probably ctrl-c from user */
3145                 if (signal_pending(current))
3146                         goto out;
3147         }
3148
3149         /*
3150          * Decrease the pool size
3151          * First return free pages to the buddy allocator (being careful
3152          * to keep enough around to satisfy reservations).  Then place
3153          * pages into surplus state as needed so the pool will shrink
3154          * to the desired size as pages become free.
3155          *
3156          * By placing pages into the surplus state independent of the
3157          * overcommit value, we are allowing the surplus pool size to
3158          * exceed overcommit. There are few sane options here. Since
3159          * alloc_surplus_huge_page() is checking the global counter,
3160          * though, we'll note that we're not allowed to exceed surplus
3161          * and won't grow the pool anywhere else. Not until one of the
3162          * sysctls are changed, or the surplus pages go out of use.
3163          */
3164         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3165         min_count = max(count, min_count);
3166         try_to_free_low(h, min_count, nodes_allowed);
3167
3168         /*
3169          * Collect pages to be removed on list without dropping lock
3170          */
3171         while (min_count < persistent_huge_pages(h)) {
3172                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3173                 if (!page)
3174                         break;
3175
3176                 list_add(&page->lru, &page_list);
3177         }
3178         /* free the pages after dropping lock */
3179         spin_unlock_irq(&hugetlb_lock);
3180         update_and_free_pages_bulk(h, &page_list);
3181         flush_free_hpage_work(h);
3182         spin_lock_irq(&hugetlb_lock);
3183
3184         while (count < persistent_huge_pages(h)) {
3185                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3186                         break;
3187         }
3188 out:
3189         h->max_huge_pages = persistent_huge_pages(h);
3190         spin_unlock_irq(&hugetlb_lock);
3191         mutex_unlock(&h->resize_lock);
3192
3193         NODEMASK_FREE(node_alloc_noretry);
3194
3195         return 0;
3196 }
3197
3198 #define HSTATE_ATTR_RO(_name) \
3199         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3200
3201 #define HSTATE_ATTR(_name) \
3202         static struct kobj_attribute _name##_attr = \
3203                 __ATTR(_name, 0644, _name##_show, _name##_store)
3204
3205 static struct kobject *hugepages_kobj;
3206 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3207
3208 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3209
3210 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3211 {
3212         int i;
3213
3214         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3215                 if (hstate_kobjs[i] == kobj) {
3216                         if (nidp)
3217                                 *nidp = NUMA_NO_NODE;
3218                         return &hstates[i];
3219                 }
3220
3221         return kobj_to_node_hstate(kobj, nidp);
3222 }
3223
3224 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3225                                         struct kobj_attribute *attr, char *buf)
3226 {
3227         struct hstate *h;
3228         unsigned long nr_huge_pages;
3229         int nid;
3230
3231         h = kobj_to_hstate(kobj, &nid);
3232         if (nid == NUMA_NO_NODE)
3233                 nr_huge_pages = h->nr_huge_pages;
3234         else
3235                 nr_huge_pages = h->nr_huge_pages_node[nid];
3236
3237         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3238 }
3239
3240 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3241                                            struct hstate *h, int nid,
3242                                            unsigned long count, size_t len)
3243 {
3244         int err;
3245         nodemask_t nodes_allowed, *n_mask;
3246
3247         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3248                 return -EINVAL;
3249
3250         if (nid == NUMA_NO_NODE) {
3251                 /*
3252                  * global hstate attribute
3253                  */
3254                 if (!(obey_mempolicy &&
3255                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3256                         n_mask = &node_states[N_MEMORY];
3257                 else
3258                         n_mask = &nodes_allowed;
3259         } else {
3260                 /*
3261                  * Node specific request.  count adjustment happens in
3262                  * set_max_huge_pages() after acquiring hugetlb_lock.
3263                  */
3264                 init_nodemask_of_node(&nodes_allowed, nid);
3265                 n_mask = &nodes_allowed;
3266         }
3267
3268         err = set_max_huge_pages(h, count, nid, n_mask);
3269
3270         return err ? err : len;
3271 }
3272
3273 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3274                                          struct kobject *kobj, const char *buf,
3275                                          size_t len)
3276 {
3277         struct hstate *h;
3278         unsigned long count;
3279         int nid;
3280         int err;
3281
3282         err = kstrtoul(buf, 10, &count);
3283         if (err)
3284                 return err;
3285
3286         h = kobj_to_hstate(kobj, &nid);
3287         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3288 }
3289
3290 static ssize_t nr_hugepages_show(struct kobject *kobj,
3291                                        struct kobj_attribute *attr, char *buf)
3292 {
3293         return nr_hugepages_show_common(kobj, attr, buf);
3294 }
3295
3296 static ssize_t nr_hugepages_store(struct kobject *kobj,
3297                struct kobj_attribute *attr, const char *buf, size_t len)
3298 {
3299         return nr_hugepages_store_common(false, kobj, buf, len);
3300 }
3301 HSTATE_ATTR(nr_hugepages);
3302
3303 #ifdef CONFIG_NUMA
3304
3305 /*
3306  * hstate attribute for optionally mempolicy-based constraint on persistent
3307  * huge page alloc/free.
3308  */
3309 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3310                                            struct kobj_attribute *attr,
3311                                            char *buf)
3312 {
3313         return nr_hugepages_show_common(kobj, attr, buf);
3314 }
3315
3316 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3317                struct kobj_attribute *attr, const char *buf, size_t len)
3318 {
3319         return nr_hugepages_store_common(true, kobj, buf, len);
3320 }
3321 HSTATE_ATTR(nr_hugepages_mempolicy);
3322 #endif
3323
3324
3325 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3326                                         struct kobj_attribute *attr, char *buf)
3327 {
3328         struct hstate *h = kobj_to_hstate(kobj, NULL);
3329         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3330 }
3331
3332 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3333                 struct kobj_attribute *attr, const char *buf, size_t count)
3334 {
3335         int err;
3336         unsigned long input;
3337         struct hstate *h = kobj_to_hstate(kobj, NULL);
3338
3339         if (hstate_is_gigantic(h))
3340                 return -EINVAL;
3341
3342         err = kstrtoul(buf, 10, &input);
3343         if (err)
3344                 return err;
3345
3346         spin_lock_irq(&hugetlb_lock);
3347         h->nr_overcommit_huge_pages = input;
3348         spin_unlock_irq(&hugetlb_lock);
3349
3350         return count;
3351 }
3352 HSTATE_ATTR(nr_overcommit_hugepages);
3353
3354 static ssize_t free_hugepages_show(struct kobject *kobj,
3355                                         struct kobj_attribute *attr, char *buf)
3356 {
3357         struct hstate *h;
3358         unsigned long free_huge_pages;
3359         int nid;
3360
3361         h = kobj_to_hstate(kobj, &nid);
3362         if (nid == NUMA_NO_NODE)
3363                 free_huge_pages = h->free_huge_pages;
3364         else
3365                 free_huge_pages = h->free_huge_pages_node[nid];
3366
3367         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3368 }
3369 HSTATE_ATTR_RO(free_hugepages);
3370
3371 static ssize_t resv_hugepages_show(struct kobject *kobj,
3372                                         struct kobj_attribute *attr, char *buf)
3373 {
3374         struct hstate *h = kobj_to_hstate(kobj, NULL);
3375         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3376 }
3377 HSTATE_ATTR_RO(resv_hugepages);
3378
3379 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3380                                         struct kobj_attribute *attr, char *buf)
3381 {
3382         struct hstate *h;
3383         unsigned long surplus_huge_pages;
3384         int nid;
3385
3386         h = kobj_to_hstate(kobj, &nid);
3387         if (nid == NUMA_NO_NODE)
3388                 surplus_huge_pages = h->surplus_huge_pages;
3389         else
3390                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3391
3392         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3393 }
3394 HSTATE_ATTR_RO(surplus_hugepages);
3395
3396 static struct attribute *hstate_attrs[] = {
3397         &nr_hugepages_attr.attr,
3398         &nr_overcommit_hugepages_attr.attr,
3399         &free_hugepages_attr.attr,
3400         &resv_hugepages_attr.attr,
3401         &surplus_hugepages_attr.attr,
3402 #ifdef CONFIG_NUMA
3403         &nr_hugepages_mempolicy_attr.attr,
3404 #endif
3405         NULL,
3406 };
3407
3408 static const struct attribute_group hstate_attr_group = {
3409         .attrs = hstate_attrs,
3410 };
3411
3412 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3413                                     struct kobject **hstate_kobjs,
3414                                     const struct attribute_group *hstate_attr_group)
3415 {
3416         int retval;
3417         int hi = hstate_index(h);
3418
3419         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3420         if (!hstate_kobjs[hi])
3421                 return -ENOMEM;
3422
3423         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3424         if (retval) {
3425                 kobject_put(hstate_kobjs[hi]);
3426                 hstate_kobjs[hi] = NULL;
3427         }
3428
3429         return retval;
3430 }
3431
3432 static void __init hugetlb_sysfs_init(void)
3433 {
3434         struct hstate *h;
3435         int err;
3436
3437         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3438         if (!hugepages_kobj)
3439                 return;
3440
3441         for_each_hstate(h) {
3442                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3443                                          hstate_kobjs, &hstate_attr_group);
3444                 if (err)
3445                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3446         }
3447 }
3448
3449 #ifdef CONFIG_NUMA
3450
3451 /*
3452  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3453  * with node devices in node_devices[] using a parallel array.  The array
3454  * index of a node device or _hstate == node id.
3455  * This is here to avoid any static dependency of the node device driver, in
3456  * the base kernel, on the hugetlb module.
3457  */
3458 struct node_hstate {
3459         struct kobject          *hugepages_kobj;
3460         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3461 };
3462 static struct node_hstate node_hstates[MAX_NUMNODES];
3463
3464 /*
3465  * A subset of global hstate attributes for node devices
3466  */
3467 static struct attribute *per_node_hstate_attrs[] = {
3468         &nr_hugepages_attr.attr,
3469         &free_hugepages_attr.attr,
3470         &surplus_hugepages_attr.attr,
3471         NULL,
3472 };
3473
3474 static const struct attribute_group per_node_hstate_attr_group = {
3475         .attrs = per_node_hstate_attrs,
3476 };
3477
3478 /*
3479  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3480  * Returns node id via non-NULL nidp.
3481  */
3482 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3483 {
3484         int nid;
3485
3486         for (nid = 0; nid < nr_node_ids; nid++) {
3487                 struct node_hstate *nhs = &node_hstates[nid];
3488                 int i;
3489                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3490                         if (nhs->hstate_kobjs[i] == kobj) {
3491                                 if (nidp)
3492                                         *nidp = nid;
3493                                 return &hstates[i];
3494                         }
3495         }
3496
3497         BUG();
3498         return NULL;
3499 }
3500
3501 /*
3502  * Unregister hstate attributes from a single node device.
3503  * No-op if no hstate attributes attached.
3504  */
3505 static void hugetlb_unregister_node(struct node *node)
3506 {
3507         struct hstate *h;
3508         struct node_hstate *nhs = &node_hstates[node->dev.id];
3509
3510         if (!nhs->hugepages_kobj)
3511                 return;         /* no hstate attributes */
3512
3513         for_each_hstate(h) {
3514                 int idx = hstate_index(h);
3515                 if (nhs->hstate_kobjs[idx]) {
3516                         kobject_put(nhs->hstate_kobjs[idx]);
3517                         nhs->hstate_kobjs[idx] = NULL;
3518                 }
3519         }
3520
3521         kobject_put(nhs->hugepages_kobj);
3522         nhs->hugepages_kobj = NULL;
3523 }
3524
3525
3526 /*
3527  * Register hstate attributes for a single node device.
3528  * No-op if attributes already registered.
3529  */
3530 static void hugetlb_register_node(struct node *node)
3531 {
3532         struct hstate *h;
3533         struct node_hstate *nhs = &node_hstates[node->dev.id];
3534         int err;
3535
3536         if (nhs->hugepages_kobj)
3537                 return;         /* already allocated */
3538
3539         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3540                                                         &node->dev.kobj);
3541         if (!nhs->hugepages_kobj)
3542                 return;
3543
3544         for_each_hstate(h) {
3545                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3546                                                 nhs->hstate_kobjs,
3547                                                 &per_node_hstate_attr_group);
3548                 if (err) {
3549                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3550                                 h->name, node->dev.id);
3551                         hugetlb_unregister_node(node);
3552                         break;
3553                 }
3554         }
3555 }
3556
3557 /*
3558  * hugetlb init time:  register hstate attributes for all registered node
3559  * devices of nodes that have memory.  All on-line nodes should have
3560  * registered their associated device by this time.
3561  */
3562 static void __init hugetlb_register_all_nodes(void)
3563 {
3564         int nid;
3565
3566         for_each_node_state(nid, N_MEMORY) {
3567                 struct node *node = node_devices[nid];
3568                 if (node->dev.id == nid)
3569                         hugetlb_register_node(node);
3570         }
3571
3572         /*
3573          * Let the node device driver know we're here so it can
3574          * [un]register hstate attributes on node hotplug.
3575          */
3576         register_hugetlbfs_with_node(hugetlb_register_node,
3577                                      hugetlb_unregister_node);
3578 }
3579 #else   /* !CONFIG_NUMA */
3580
3581 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3582 {
3583         BUG();
3584         if (nidp)
3585                 *nidp = -1;
3586         return NULL;
3587 }
3588
3589 static void hugetlb_register_all_nodes(void) { }
3590
3591 #endif
3592
3593 static int __init hugetlb_init(void)
3594 {
3595         int i;
3596
3597         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3598                         __NR_HPAGEFLAGS);
3599
3600         if (!hugepages_supported()) {
3601                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3602                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3603                 return 0;
3604         }
3605
3606         /*
3607          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3608          * architectures depend on setup being done here.
3609          */
3610         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3611         if (!parsed_default_hugepagesz) {
3612                 /*
3613                  * If we did not parse a default huge page size, set
3614                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3615                  * number of huge pages for this default size was implicitly
3616                  * specified, set that here as well.
3617                  * Note that the implicit setting will overwrite an explicit
3618                  * setting.  A warning will be printed in this case.
3619                  */
3620                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3621                 if (default_hstate_max_huge_pages) {
3622                         if (default_hstate.max_huge_pages) {
3623                                 char buf[32];
3624
3625                                 string_get_size(huge_page_size(&default_hstate),
3626                                         1, STRING_UNITS_2, buf, 32);
3627                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3628                                         default_hstate.max_huge_pages, buf);
3629                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3630                                         default_hstate_max_huge_pages);
3631                         }
3632                         default_hstate.max_huge_pages =
3633                                 default_hstate_max_huge_pages;
3634                 }
3635         }
3636
3637         hugetlb_cma_check();
3638         hugetlb_init_hstates();
3639         gather_bootmem_prealloc();
3640         report_hugepages();
3641
3642         hugetlb_sysfs_init();
3643         hugetlb_register_all_nodes();
3644         hugetlb_cgroup_file_init();
3645
3646 #ifdef CONFIG_SMP
3647         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3648 #else
3649         num_fault_mutexes = 1;
3650 #endif
3651         hugetlb_fault_mutex_table =
3652                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3653                               GFP_KERNEL);
3654         BUG_ON(!hugetlb_fault_mutex_table);
3655
3656         for (i = 0; i < num_fault_mutexes; i++)
3657                 mutex_init(&hugetlb_fault_mutex_table[i]);
3658         return 0;
3659 }
3660 subsys_initcall(hugetlb_init);
3661
3662 /* Overwritten by architectures with more huge page sizes */
3663 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3664 {
3665         return size == HPAGE_SIZE;
3666 }
3667
3668 void __init hugetlb_add_hstate(unsigned int order)
3669 {
3670         struct hstate *h;
3671         unsigned long i;
3672
3673         if (size_to_hstate(PAGE_SIZE << order)) {
3674                 return;
3675         }
3676         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3677         BUG_ON(order == 0);
3678         h = &hstates[hugetlb_max_hstate++];
3679         mutex_init(&h->resize_lock);
3680         h->order = order;
3681         h->mask = ~(huge_page_size(h) - 1);
3682         for (i = 0; i < MAX_NUMNODES; ++i)
3683                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3684         INIT_LIST_HEAD(&h->hugepage_activelist);
3685         h->next_nid_to_alloc = first_memory_node;
3686         h->next_nid_to_free = first_memory_node;
3687         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3688                                         huge_page_size(h)/1024);
3689         hugetlb_vmemmap_init(h);
3690
3691         parsed_hstate = h;
3692 }
3693
3694 /*
3695  * hugepages command line processing
3696  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3697  * specification.  If not, ignore the hugepages value.  hugepages can also
3698  * be the first huge page command line  option in which case it implicitly
3699  * specifies the number of huge pages for the default size.
3700  */
3701 static int __init hugepages_setup(char *s)
3702 {
3703         unsigned long *mhp;
3704         static unsigned long *last_mhp;
3705
3706         if (!parsed_valid_hugepagesz) {
3707                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3708                 parsed_valid_hugepagesz = true;
3709                 return 0;
3710         }
3711
3712         /*
3713          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3714          * yet, so this hugepages= parameter goes to the "default hstate".
3715          * Otherwise, it goes with the previously parsed hugepagesz or
3716          * default_hugepagesz.
3717          */
3718         else if (!hugetlb_max_hstate)
3719                 mhp = &default_hstate_max_huge_pages;
3720         else
3721                 mhp = &parsed_hstate->max_huge_pages;
3722
3723         if (mhp == last_mhp) {
3724                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3725                 return 0;
3726         }
3727
3728         if (sscanf(s, "%lu", mhp) <= 0)
3729                 *mhp = 0;
3730
3731         /*
3732          * Global state is always initialized later in hugetlb_init.
3733          * But we need to allocate gigantic hstates here early to still
3734          * use the bootmem allocator.
3735          */
3736         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3737                 hugetlb_hstate_alloc_pages(parsed_hstate);
3738
3739         last_mhp = mhp;
3740
3741         return 1;
3742 }
3743 __setup("hugepages=", hugepages_setup);
3744
3745 /*
3746  * hugepagesz command line processing
3747  * A specific huge page size can only be specified once with hugepagesz.
3748  * hugepagesz is followed by hugepages on the command line.  The global
3749  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3750  * hugepagesz argument was valid.
3751  */
3752 static int __init hugepagesz_setup(char *s)
3753 {
3754         unsigned long size;
3755         struct hstate *h;
3756
3757         parsed_valid_hugepagesz = false;
3758         size = (unsigned long)memparse(s, NULL);
3759
3760         if (!arch_hugetlb_valid_size(size)) {
3761                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3762                 return 0;
3763         }
3764
3765         h = size_to_hstate(size);
3766         if (h) {
3767                 /*
3768                  * hstate for this size already exists.  This is normally
3769                  * an error, but is allowed if the existing hstate is the
3770                  * default hstate.  More specifically, it is only allowed if
3771                  * the number of huge pages for the default hstate was not
3772                  * previously specified.
3773                  */
3774                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3775                     default_hstate.max_huge_pages) {
3776                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3777                         return 0;
3778                 }
3779
3780                 /*
3781                  * No need to call hugetlb_add_hstate() as hstate already
3782                  * exists.  But, do set parsed_hstate so that a following
3783                  * hugepages= parameter will be applied to this hstate.
3784                  */
3785                 parsed_hstate = h;
3786                 parsed_valid_hugepagesz = true;
3787                 return 1;
3788         }
3789
3790         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3791         parsed_valid_hugepagesz = true;
3792         return 1;
3793 }
3794 __setup("hugepagesz=", hugepagesz_setup);
3795
3796 /*
3797  * default_hugepagesz command line input
3798  * Only one instance of default_hugepagesz allowed on command line.
3799  */
3800 static int __init default_hugepagesz_setup(char *s)
3801 {
3802         unsigned long size;
3803
3804         parsed_valid_hugepagesz = false;
3805         if (parsed_default_hugepagesz) {
3806                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3807                 return 0;
3808         }
3809
3810         size = (unsigned long)memparse(s, NULL);
3811
3812         if (!arch_hugetlb_valid_size(size)) {
3813                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3814                 return 0;
3815         }
3816
3817         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3818         parsed_valid_hugepagesz = true;
3819         parsed_default_hugepagesz = true;
3820         default_hstate_idx = hstate_index(size_to_hstate(size));
3821
3822         /*
3823          * The number of default huge pages (for this size) could have been
3824          * specified as the first hugetlb parameter: hugepages=X.  If so,
3825          * then default_hstate_max_huge_pages is set.  If the default huge
3826          * page size is gigantic (>= MAX_ORDER), then the pages must be
3827          * allocated here from bootmem allocator.
3828          */
3829         if (default_hstate_max_huge_pages) {
3830                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3831                 if (hstate_is_gigantic(&default_hstate))
3832                         hugetlb_hstate_alloc_pages(&default_hstate);
3833                 default_hstate_max_huge_pages = 0;
3834         }
3835
3836         return 1;
3837 }
3838 __setup("default_hugepagesz=", default_hugepagesz_setup);
3839
3840 static unsigned int allowed_mems_nr(struct hstate *h)
3841 {
3842         int node;
3843         unsigned int nr = 0;
3844         nodemask_t *mpol_allowed;
3845         unsigned int *array = h->free_huge_pages_node;
3846         gfp_t gfp_mask = htlb_alloc_mask(h);
3847
3848         mpol_allowed = policy_nodemask_current(gfp_mask);
3849
3850         for_each_node_mask(node, cpuset_current_mems_allowed) {
3851                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3852                         nr += array[node];
3853         }
3854
3855         return nr;
3856 }
3857
3858 #ifdef CONFIG_SYSCTL
3859 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3860                                           void *buffer, size_t *length,
3861                                           loff_t *ppos, unsigned long *out)
3862 {
3863         struct ctl_table dup_table;
3864
3865         /*
3866          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3867          * can duplicate the @table and alter the duplicate of it.
3868          */
3869         dup_table = *table;
3870         dup_table.data = out;
3871
3872         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3873 }
3874
3875 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3876                          struct ctl_table *table, int write,
3877                          void *buffer, size_t *length, loff_t *ppos)
3878 {
3879         struct hstate *h = &default_hstate;
3880         unsigned long tmp = h->max_huge_pages;
3881         int ret;
3882
3883         if (!hugepages_supported())
3884                 return -EOPNOTSUPP;
3885
3886         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3887                                              &tmp);
3888         if (ret)
3889                 goto out;
3890
3891         if (write)
3892                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3893                                                   NUMA_NO_NODE, tmp, *length);
3894 out:
3895         return ret;
3896 }
3897
3898 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3899                           void *buffer, size_t *length, loff_t *ppos)
3900 {
3901
3902         return hugetlb_sysctl_handler_common(false, table, write,
3903                                                         buffer, length, ppos);
3904 }
3905
3906 #ifdef CONFIG_NUMA
3907 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3908                           void *buffer, size_t *length, loff_t *ppos)
3909 {
3910         return hugetlb_sysctl_handler_common(true, table, write,
3911                                                         buffer, length, ppos);
3912 }
3913 #endif /* CONFIG_NUMA */
3914
3915 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3916                 void *buffer, size_t *length, loff_t *ppos)
3917 {
3918         struct hstate *h = &default_hstate;
3919         unsigned long tmp;
3920         int ret;
3921
3922         if (!hugepages_supported())
3923                 return -EOPNOTSUPP;
3924
3925         tmp = h->nr_overcommit_huge_pages;
3926
3927         if (write && hstate_is_gigantic(h))
3928                 return -EINVAL;
3929
3930         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3931                                              &tmp);
3932         if (ret)
3933                 goto out;
3934
3935         if (write) {
3936                 spin_lock_irq(&hugetlb_lock);
3937                 h->nr_overcommit_huge_pages = tmp;
3938                 spin_unlock_irq(&hugetlb_lock);
3939         }
3940 out:
3941         return ret;
3942 }
3943
3944 #endif /* CONFIG_SYSCTL */
3945
3946 void hugetlb_report_meminfo(struct seq_file *m)
3947 {
3948         struct hstate *h;
3949         unsigned long total = 0;
3950
3951         if (!hugepages_supported())
3952                 return;
3953
3954         for_each_hstate(h) {
3955                 unsigned long count = h->nr_huge_pages;
3956
3957                 total += huge_page_size(h) * count;
3958
3959                 if (h == &default_hstate)
3960                         seq_printf(m,
3961                                    "HugePages_Total:   %5lu\n"
3962                                    "HugePages_Free:    %5lu\n"
3963                                    "HugePages_Rsvd:    %5lu\n"
3964                                    "HugePages_Surp:    %5lu\n"
3965                                    "Hugepagesize:   %8lu kB\n",
3966                                    count,
3967                                    h->free_huge_pages,
3968                                    h->resv_huge_pages,
3969                                    h->surplus_huge_pages,
3970                                    huge_page_size(h) / SZ_1K);
3971         }
3972
3973         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3974 }
3975
3976 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3977 {
3978         struct hstate *h = &default_hstate;
3979
3980         if (!hugepages_supported())
3981                 return 0;
3982
3983         return sysfs_emit_at(buf, len,
3984                              "Node %d HugePages_Total: %5u\n"
3985                              "Node %d HugePages_Free:  %5u\n"
3986                              "Node %d HugePages_Surp:  %5u\n",
3987                              nid, h->nr_huge_pages_node[nid],
3988                              nid, h->free_huge_pages_node[nid],
3989                              nid, h->surplus_huge_pages_node[nid]);
3990 }
3991
3992 void hugetlb_show_meminfo(void)
3993 {
3994         struct hstate *h;
3995         int nid;
3996
3997         if (!hugepages_supported())
3998                 return;
3999
4000         for_each_node_state(nid, N_MEMORY)
4001                 for_each_hstate(h)
4002                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4003                                 nid,
4004                                 h->nr_huge_pages_node[nid],
4005                                 h->free_huge_pages_node[nid],
4006                                 h->surplus_huge_pages_node[nid],
4007                                 huge_page_size(h) / SZ_1K);
4008 }
4009
4010 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4011 {
4012         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4013                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4014 }
4015
4016 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4017 unsigned long hugetlb_total_pages(void)
4018 {
4019         struct hstate *h;
4020         unsigned long nr_total_pages = 0;
4021
4022         for_each_hstate(h)
4023                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4024         return nr_total_pages;
4025 }
4026
4027 static int hugetlb_acct_memory(struct hstate *h, long delta)
4028 {
4029         int ret = -ENOMEM;
4030
4031         if (!delta)
4032                 return 0;
4033
4034         spin_lock_irq(&hugetlb_lock);
4035         /*
4036          * When cpuset is configured, it breaks the strict hugetlb page
4037          * reservation as the accounting is done on a global variable. Such
4038          * reservation is completely rubbish in the presence of cpuset because
4039          * the reservation is not checked against page availability for the
4040          * current cpuset. Application can still potentially OOM'ed by kernel
4041          * with lack of free htlb page in cpuset that the task is in.
4042          * Attempt to enforce strict accounting with cpuset is almost
4043          * impossible (or too ugly) because cpuset is too fluid that
4044          * task or memory node can be dynamically moved between cpusets.
4045          *
4046          * The change of semantics for shared hugetlb mapping with cpuset is
4047          * undesirable. However, in order to preserve some of the semantics,
4048          * we fall back to check against current free page availability as
4049          * a best attempt and hopefully to minimize the impact of changing
4050          * semantics that cpuset has.
4051          *
4052          * Apart from cpuset, we also have memory policy mechanism that
4053          * also determines from which node the kernel will allocate memory
4054          * in a NUMA system. So similar to cpuset, we also should consider
4055          * the memory policy of the current task. Similar to the description
4056          * above.
4057          */
4058         if (delta > 0) {
4059                 if (gather_surplus_pages(h, delta) < 0)
4060                         goto out;
4061
4062                 if (delta > allowed_mems_nr(h)) {
4063                         return_unused_surplus_pages(h, delta);
4064                         goto out;
4065                 }
4066         }
4067
4068         ret = 0;
4069         if (delta < 0)
4070                 return_unused_surplus_pages(h, (unsigned long) -delta);
4071
4072 out:
4073         spin_unlock_irq(&hugetlb_lock);
4074         return ret;
4075 }
4076
4077 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4078 {
4079         struct resv_map *resv = vma_resv_map(vma);
4080
4081         /*
4082          * This new VMA should share its siblings reservation map if present.
4083          * The VMA will only ever have a valid reservation map pointer where
4084          * it is being copied for another still existing VMA.  As that VMA
4085          * has a reference to the reservation map it cannot disappear until
4086          * after this open call completes.  It is therefore safe to take a
4087          * new reference here without additional locking.
4088          */
4089         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4090                 kref_get(&resv->refs);
4091 }
4092
4093 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4094 {
4095         struct hstate *h = hstate_vma(vma);
4096         struct resv_map *resv = vma_resv_map(vma);
4097         struct hugepage_subpool *spool = subpool_vma(vma);
4098         unsigned long reserve, start, end;
4099         long gbl_reserve;
4100
4101         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4102                 return;
4103
4104         start = vma_hugecache_offset(h, vma, vma->vm_start);
4105         end = vma_hugecache_offset(h, vma, vma->vm_end);
4106
4107         reserve = (end - start) - region_count(resv, start, end);
4108         hugetlb_cgroup_uncharge_counter(resv, start, end);
4109         if (reserve) {
4110                 /*
4111                  * Decrement reserve counts.  The global reserve count may be
4112                  * adjusted if the subpool has a minimum size.
4113                  */
4114                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4115                 hugetlb_acct_memory(h, -gbl_reserve);
4116         }
4117
4118         kref_put(&resv->refs, resv_map_release);
4119 }
4120
4121 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4122 {
4123         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4124                 return -EINVAL;
4125         return 0;
4126 }
4127
4128 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4129 {
4130         return huge_page_size(hstate_vma(vma));
4131 }
4132
4133 /*
4134  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4135  * handle_mm_fault() to try to instantiate regular-sized pages in the
4136  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4137  * this far.
4138  */
4139 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4140 {
4141         BUG();
4142         return 0;
4143 }
4144
4145 /*
4146  * When a new function is introduced to vm_operations_struct and added
4147  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4148  * This is because under System V memory model, mappings created via
4149  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4150  * their original vm_ops are overwritten with shm_vm_ops.
4151  */
4152 const struct vm_operations_struct hugetlb_vm_ops = {
4153         .fault = hugetlb_vm_op_fault,
4154         .open = hugetlb_vm_op_open,
4155         .close = hugetlb_vm_op_close,
4156         .may_split = hugetlb_vm_op_split,
4157         .pagesize = hugetlb_vm_op_pagesize,
4158 };
4159
4160 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4161                                 int writable)
4162 {
4163         pte_t entry;
4164         unsigned int shift = huge_page_shift(hstate_vma(vma));
4165
4166         if (writable) {
4167                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4168                                          vma->vm_page_prot)));
4169         } else {
4170                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4171                                            vma->vm_page_prot));
4172         }
4173         entry = pte_mkyoung(entry);
4174         entry = pte_mkhuge(entry);
4175         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4176
4177         return entry;
4178 }
4179
4180 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4181                                    unsigned long address, pte_t *ptep)
4182 {
4183         pte_t entry;
4184
4185         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4186         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4187                 update_mmu_cache(vma, address, ptep);
4188 }
4189
4190 bool is_hugetlb_entry_migration(pte_t pte)
4191 {
4192         swp_entry_t swp;
4193
4194         if (huge_pte_none(pte) || pte_present(pte))
4195                 return false;
4196         swp = pte_to_swp_entry(pte);
4197         if (is_migration_entry(swp))
4198                 return true;
4199         else
4200                 return false;
4201 }
4202
4203 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4204 {
4205         swp_entry_t swp;
4206
4207         if (huge_pte_none(pte) || pte_present(pte))
4208                 return false;
4209         swp = pte_to_swp_entry(pte);
4210         if (is_hwpoison_entry(swp))
4211                 return true;
4212         else
4213                 return false;
4214 }
4215
4216 static void
4217 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4218                      struct page *new_page)
4219 {
4220         __SetPageUptodate(new_page);
4221         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4222         hugepage_add_new_anon_rmap(new_page, vma, addr);
4223         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4224         ClearHPageRestoreReserve(new_page);
4225         SetHPageMigratable(new_page);
4226 }
4227
4228 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4229                             struct vm_area_struct *vma)
4230 {
4231         pte_t *src_pte, *dst_pte, entry, dst_entry;
4232         struct page *ptepage;
4233         unsigned long addr;
4234         bool cow = is_cow_mapping(vma->vm_flags);
4235         struct hstate *h = hstate_vma(vma);
4236         unsigned long sz = huge_page_size(h);
4237         unsigned long npages = pages_per_huge_page(h);
4238         struct address_space *mapping = vma->vm_file->f_mapping;
4239         struct mmu_notifier_range range;
4240         int ret = 0;
4241
4242         if (cow) {
4243                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4244                                         vma->vm_start,
4245                                         vma->vm_end);
4246                 mmu_notifier_invalidate_range_start(&range);
4247         } else {
4248                 /*
4249                  * For shared mappings i_mmap_rwsem must be held to call
4250                  * huge_pte_alloc, otherwise the returned ptep could go
4251                  * away if part of a shared pmd and another thread calls
4252                  * huge_pmd_unshare.
4253                  */
4254                 i_mmap_lock_read(mapping);
4255         }
4256
4257         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4258                 spinlock_t *src_ptl, *dst_ptl;
4259                 src_pte = huge_pte_offset(src, addr, sz);
4260                 if (!src_pte)
4261                         continue;
4262                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4263                 if (!dst_pte) {
4264                         ret = -ENOMEM;
4265                         break;
4266                 }
4267
4268                 /*
4269                  * If the pagetables are shared don't copy or take references.
4270                  * dst_pte == src_pte is the common case of src/dest sharing.
4271                  *
4272                  * However, src could have 'unshared' and dst shares with
4273                  * another vma.  If dst_pte !none, this implies sharing.
4274                  * Check here before taking page table lock, and once again
4275                  * after taking the lock below.
4276                  */
4277                 dst_entry = huge_ptep_get(dst_pte);
4278                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4279                         continue;
4280
4281                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4282                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4283                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4284                 entry = huge_ptep_get(src_pte);
4285                 dst_entry = huge_ptep_get(dst_pte);
4286 again:
4287                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4288                         /*
4289                          * Skip if src entry none.  Also, skip in the
4290                          * unlikely case dst entry !none as this implies
4291                          * sharing with another vma.
4292                          */
4293                         ;
4294                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4295                                     is_hugetlb_entry_hwpoisoned(entry))) {
4296                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4297
4298                         if (is_writable_migration_entry(swp_entry) && cow) {
4299                                 /*
4300                                  * COW mappings require pages in both
4301                                  * parent and child to be set to read.
4302                                  */
4303                                 swp_entry = make_readable_migration_entry(
4304                                                         swp_offset(swp_entry));
4305                                 entry = swp_entry_to_pte(swp_entry);
4306                                 set_huge_swap_pte_at(src, addr, src_pte,
4307                                                      entry, sz);
4308                         }
4309                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4310                 } else {
4311                         entry = huge_ptep_get(src_pte);
4312                         ptepage = pte_page(entry);
4313                         get_page(ptepage);
4314
4315                         /*
4316                          * This is a rare case where we see pinned hugetlb
4317                          * pages while they're prone to COW.  We need to do the
4318                          * COW earlier during fork.
4319                          *
4320                          * When pre-allocating the page or copying data, we
4321                          * need to be without the pgtable locks since we could
4322                          * sleep during the process.
4323                          */
4324                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4325                                 pte_t src_pte_old = entry;
4326                                 struct page *new;
4327
4328                                 spin_unlock(src_ptl);
4329                                 spin_unlock(dst_ptl);
4330                                 /* Do not use reserve as it's private owned */
4331                                 new = alloc_huge_page(vma, addr, 1);
4332                                 if (IS_ERR(new)) {
4333                                         put_page(ptepage);
4334                                         ret = PTR_ERR(new);
4335                                         break;
4336                                 }
4337                                 copy_user_huge_page(new, ptepage, addr, vma,
4338                                                     npages);
4339                                 put_page(ptepage);
4340
4341                                 /* Install the new huge page if src pte stable */
4342                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4343                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4344                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4345                                 entry = huge_ptep_get(src_pte);
4346                                 if (!pte_same(src_pte_old, entry)) {
4347                                         restore_reserve_on_error(h, vma, addr,
4348                                                                 new);
4349                                         put_page(new);
4350                                         /* dst_entry won't change as in child */
4351                                         goto again;
4352                                 }
4353                                 hugetlb_install_page(vma, dst_pte, addr, new);
4354                                 spin_unlock(src_ptl);
4355                                 spin_unlock(dst_ptl);
4356                                 continue;
4357                         }
4358
4359                         if (cow) {
4360                                 /*
4361                                  * No need to notify as we are downgrading page
4362                                  * table protection not changing it to point
4363                                  * to a new page.
4364                                  *
4365                                  * See Documentation/vm/mmu_notifier.rst
4366                                  */
4367                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4368                                 entry = huge_pte_wrprotect(entry);
4369                         }
4370
4371                         page_dup_rmap(ptepage, true);
4372                         set_huge_pte_at(dst, addr, dst_pte, entry);
4373                         hugetlb_count_add(npages, dst);
4374                 }
4375                 spin_unlock(src_ptl);
4376                 spin_unlock(dst_ptl);
4377         }
4378
4379         if (cow)
4380                 mmu_notifier_invalidate_range_end(&range);
4381         else
4382                 i_mmap_unlock_read(mapping);
4383
4384         return ret;
4385 }
4386
4387 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4388                             unsigned long start, unsigned long end,
4389                             struct page *ref_page)
4390 {
4391         struct mm_struct *mm = vma->vm_mm;
4392         unsigned long address;
4393         pte_t *ptep;
4394         pte_t pte;
4395         spinlock_t *ptl;
4396         struct page *page;
4397         struct hstate *h = hstate_vma(vma);
4398         unsigned long sz = huge_page_size(h);
4399         struct mmu_notifier_range range;
4400
4401         WARN_ON(!is_vm_hugetlb_page(vma));
4402         BUG_ON(start & ~huge_page_mask(h));
4403         BUG_ON(end & ~huge_page_mask(h));
4404
4405         /*
4406          * This is a hugetlb vma, all the pte entries should point
4407          * to huge page.
4408          */
4409         tlb_change_page_size(tlb, sz);
4410         tlb_start_vma(tlb, vma);
4411
4412         /*
4413          * If sharing possible, alert mmu notifiers of worst case.
4414          */
4415         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4416                                 end);
4417         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4418         mmu_notifier_invalidate_range_start(&range);
4419         address = start;
4420         for (; address < end; address += sz) {
4421                 ptep = huge_pte_offset(mm, address, sz);
4422                 if (!ptep)
4423                         continue;
4424
4425                 ptl = huge_pte_lock(h, mm, ptep);
4426                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4427                         spin_unlock(ptl);
4428                         /*
4429                          * We just unmapped a page of PMDs by clearing a PUD.
4430                          * The caller's TLB flush range should cover this area.
4431                          */
4432                         continue;
4433                 }
4434
4435                 pte = huge_ptep_get(ptep);
4436                 if (huge_pte_none(pte)) {
4437                         spin_unlock(ptl);
4438                         continue;
4439                 }
4440
4441                 /*
4442                  * Migrating hugepage or HWPoisoned hugepage is already
4443                  * unmapped and its refcount is dropped, so just clear pte here.
4444                  */
4445                 if (unlikely(!pte_present(pte))) {
4446                         huge_pte_clear(mm, address, ptep, sz);
4447                         spin_unlock(ptl);
4448                         continue;
4449                 }
4450
4451                 page = pte_page(pte);
4452                 /*
4453                  * If a reference page is supplied, it is because a specific
4454                  * page is being unmapped, not a range. Ensure the page we
4455                  * are about to unmap is the actual page of interest.
4456                  */
4457                 if (ref_page) {
4458                         if (page != ref_page) {
4459                                 spin_unlock(ptl);
4460                                 continue;
4461                         }
4462                         /*
4463                          * Mark the VMA as having unmapped its page so that
4464                          * future faults in this VMA will fail rather than
4465                          * looking like data was lost
4466                          */
4467                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4468                 }
4469
4470                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4471                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4472                 if (huge_pte_dirty(pte))
4473                         set_page_dirty(page);
4474
4475                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4476                 page_remove_rmap(page, true);
4477
4478                 spin_unlock(ptl);
4479                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4480                 /*
4481                  * Bail out after unmapping reference page if supplied
4482                  */
4483                 if (ref_page)
4484                         break;
4485         }
4486         mmu_notifier_invalidate_range_end(&range);
4487         tlb_end_vma(tlb, vma);
4488 }
4489
4490 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4491                           struct vm_area_struct *vma, unsigned long start,
4492                           unsigned long end, struct page *ref_page)
4493 {
4494         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4495
4496         /*
4497          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4498          * test will fail on a vma being torn down, and not grab a page table
4499          * on its way out.  We're lucky that the flag has such an appropriate
4500          * name, and can in fact be safely cleared here. We could clear it
4501          * before the __unmap_hugepage_range above, but all that's necessary
4502          * is to clear it before releasing the i_mmap_rwsem. This works
4503          * because in the context this is called, the VMA is about to be
4504          * destroyed and the i_mmap_rwsem is held.
4505          */
4506         vma->vm_flags &= ~VM_MAYSHARE;
4507 }
4508
4509 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4510                           unsigned long end, struct page *ref_page)
4511 {
4512         struct mmu_gather tlb;
4513
4514         tlb_gather_mmu(&tlb, vma->vm_mm);
4515         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4516         tlb_finish_mmu(&tlb);
4517 }
4518
4519 /*
4520  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4521  * mapping it owns the reserve page for. The intention is to unmap the page
4522  * from other VMAs and let the children be SIGKILLed if they are faulting the
4523  * same region.
4524  */
4525 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4526                               struct page *page, unsigned long address)
4527 {
4528         struct hstate *h = hstate_vma(vma);
4529         struct vm_area_struct *iter_vma;
4530         struct address_space *mapping;
4531         pgoff_t pgoff;
4532
4533         /*
4534          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4535          * from page cache lookup which is in HPAGE_SIZE units.
4536          */
4537         address = address & huge_page_mask(h);
4538         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4539                         vma->vm_pgoff;
4540         mapping = vma->vm_file->f_mapping;
4541
4542         /*
4543          * Take the mapping lock for the duration of the table walk. As
4544          * this mapping should be shared between all the VMAs,
4545          * __unmap_hugepage_range() is called as the lock is already held
4546          */
4547         i_mmap_lock_write(mapping);
4548         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4549                 /* Do not unmap the current VMA */
4550                 if (iter_vma == vma)
4551                         continue;
4552
4553                 /*
4554                  * Shared VMAs have their own reserves and do not affect
4555                  * MAP_PRIVATE accounting but it is possible that a shared
4556                  * VMA is using the same page so check and skip such VMAs.
4557                  */
4558                 if (iter_vma->vm_flags & VM_MAYSHARE)
4559                         continue;
4560
4561                 /*
4562                  * Unmap the page from other VMAs without their own reserves.
4563                  * They get marked to be SIGKILLed if they fault in these
4564                  * areas. This is because a future no-page fault on this VMA
4565                  * could insert a zeroed page instead of the data existing
4566                  * from the time of fork. This would look like data corruption
4567                  */
4568                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4569                         unmap_hugepage_range(iter_vma, address,
4570                                              address + huge_page_size(h), page);
4571         }
4572         i_mmap_unlock_write(mapping);
4573 }
4574
4575 /*
4576  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4577  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4578  * cannot race with other handlers or page migration.
4579  * Keep the pte_same checks anyway to make transition from the mutex easier.
4580  */
4581 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4582                        unsigned long address, pte_t *ptep,
4583                        struct page *pagecache_page, spinlock_t *ptl)
4584 {
4585         pte_t pte;
4586         struct hstate *h = hstate_vma(vma);
4587         struct page *old_page, *new_page;
4588         int outside_reserve = 0;
4589         vm_fault_t ret = 0;
4590         unsigned long haddr = address & huge_page_mask(h);
4591         struct mmu_notifier_range range;
4592
4593         pte = huge_ptep_get(ptep);
4594         old_page = pte_page(pte);
4595
4596 retry_avoidcopy:
4597         /* If no-one else is actually using this page, avoid the copy
4598          * and just make the page writable */
4599         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4600                 page_move_anon_rmap(old_page, vma);
4601                 set_huge_ptep_writable(vma, haddr, ptep);
4602                 return 0;
4603         }
4604
4605         /*
4606          * If the process that created a MAP_PRIVATE mapping is about to
4607          * perform a COW due to a shared page count, attempt to satisfy
4608          * the allocation without using the existing reserves. The pagecache
4609          * page is used to determine if the reserve at this address was
4610          * consumed or not. If reserves were used, a partial faulted mapping
4611          * at the time of fork() could consume its reserves on COW instead
4612          * of the full address range.
4613          */
4614         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4615                         old_page != pagecache_page)
4616                 outside_reserve = 1;
4617
4618         get_page(old_page);
4619
4620         /*
4621          * Drop page table lock as buddy allocator may be called. It will
4622          * be acquired again before returning to the caller, as expected.
4623          */
4624         spin_unlock(ptl);
4625         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4626
4627         if (IS_ERR(new_page)) {
4628                 /*
4629                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4630                  * it is due to references held by a child and an insufficient
4631                  * huge page pool. To guarantee the original mappers
4632                  * reliability, unmap the page from child processes. The child
4633                  * may get SIGKILLed if it later faults.
4634                  */
4635                 if (outside_reserve) {
4636                         struct address_space *mapping = vma->vm_file->f_mapping;
4637                         pgoff_t idx;
4638                         u32 hash;
4639
4640                         put_page(old_page);
4641                         BUG_ON(huge_pte_none(pte));
4642                         /*
4643                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4644                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4645                          * in write mode.  Dropping i_mmap_rwsem in read mode
4646                          * here is OK as COW mappings do not interact with
4647                          * PMD sharing.
4648                          *
4649                          * Reacquire both after unmap operation.
4650                          */
4651                         idx = vma_hugecache_offset(h, vma, haddr);
4652                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4653                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4654                         i_mmap_unlock_read(mapping);
4655
4656                         unmap_ref_private(mm, vma, old_page, haddr);
4657
4658                         i_mmap_lock_read(mapping);
4659                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4660                         spin_lock(ptl);
4661                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4662                         if (likely(ptep &&
4663                                    pte_same(huge_ptep_get(ptep), pte)))
4664                                 goto retry_avoidcopy;
4665                         /*
4666                          * race occurs while re-acquiring page table
4667                          * lock, and our job is done.
4668                          */
4669                         return 0;
4670                 }
4671
4672                 ret = vmf_error(PTR_ERR(new_page));
4673                 goto out_release_old;
4674         }
4675
4676         /*
4677          * When the original hugepage is shared one, it does not have
4678          * anon_vma prepared.
4679          */
4680         if (unlikely(anon_vma_prepare(vma))) {
4681                 ret = VM_FAULT_OOM;
4682                 goto out_release_all;
4683         }
4684
4685         copy_user_huge_page(new_page, old_page, address, vma,
4686                             pages_per_huge_page(h));
4687         __SetPageUptodate(new_page);
4688
4689         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4690                                 haddr + huge_page_size(h));
4691         mmu_notifier_invalidate_range_start(&range);
4692
4693         /*
4694          * Retake the page table lock to check for racing updates
4695          * before the page tables are altered
4696          */
4697         spin_lock(ptl);
4698         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4699         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4700                 ClearHPageRestoreReserve(new_page);
4701
4702                 /* Break COW */
4703                 huge_ptep_clear_flush(vma, haddr, ptep);
4704                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4705                 set_huge_pte_at(mm, haddr, ptep,
4706                                 make_huge_pte(vma, new_page, 1));
4707                 page_remove_rmap(old_page, true);
4708                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4709                 SetHPageMigratable(new_page);
4710                 /* Make the old page be freed below */
4711                 new_page = old_page;
4712         }
4713         spin_unlock(ptl);
4714         mmu_notifier_invalidate_range_end(&range);
4715 out_release_all:
4716         /* No restore in case of successful pagetable update (Break COW) */
4717         if (new_page != old_page)
4718                 restore_reserve_on_error(h, vma, haddr, new_page);
4719         put_page(new_page);
4720 out_release_old:
4721         put_page(old_page);
4722
4723         spin_lock(ptl); /* Caller expects lock to be held */
4724         return ret;
4725 }
4726
4727 /* Return the pagecache page at a given address within a VMA */
4728 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4729                         struct vm_area_struct *vma, unsigned long address)
4730 {
4731         struct address_space *mapping;
4732         pgoff_t idx;
4733
4734         mapping = vma->vm_file->f_mapping;
4735         idx = vma_hugecache_offset(h, vma, address);
4736
4737         return find_lock_page(mapping, idx);
4738 }
4739
4740 /*
4741  * Return whether there is a pagecache page to back given address within VMA.
4742  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4743  */
4744 static bool hugetlbfs_pagecache_present(struct hstate *h,
4745                         struct vm_area_struct *vma, unsigned long address)
4746 {
4747         struct address_space *mapping;
4748         pgoff_t idx;
4749         struct page *page;
4750
4751         mapping = vma->vm_file->f_mapping;
4752         idx = vma_hugecache_offset(h, vma, address);
4753
4754         page = find_get_page(mapping, idx);
4755         if (page)
4756                 put_page(page);
4757         return page != NULL;
4758 }
4759
4760 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4761                            pgoff_t idx)
4762 {
4763         struct inode *inode = mapping->host;
4764         struct hstate *h = hstate_inode(inode);
4765         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4766
4767         if (err)
4768                 return err;
4769         ClearHPageRestoreReserve(page);
4770
4771         /*
4772          * set page dirty so that it will not be removed from cache/file
4773          * by non-hugetlbfs specific code paths.
4774          */
4775         set_page_dirty(page);
4776
4777         spin_lock(&inode->i_lock);
4778         inode->i_blocks += blocks_per_huge_page(h);
4779         spin_unlock(&inode->i_lock);
4780         return 0;
4781 }
4782
4783 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4784                                                   struct address_space *mapping,
4785                                                   pgoff_t idx,
4786                                                   unsigned int flags,
4787                                                   unsigned long haddr,
4788                                                   unsigned long reason)
4789 {
4790         vm_fault_t ret;
4791         u32 hash;
4792         struct vm_fault vmf = {
4793                 .vma = vma,
4794                 .address = haddr,
4795                 .flags = flags,
4796
4797                 /*
4798                  * Hard to debug if it ends up being
4799                  * used by a callee that assumes
4800                  * something about the other
4801                  * uninitialized fields... same as in
4802                  * memory.c
4803                  */
4804         };
4805
4806         /*
4807          * hugetlb_fault_mutex and i_mmap_rwsem must be
4808          * dropped before handling userfault.  Reacquire
4809          * after handling fault to make calling code simpler.
4810          */
4811         hash = hugetlb_fault_mutex_hash(mapping, idx);
4812         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4813         i_mmap_unlock_read(mapping);
4814         ret = handle_userfault(&vmf, reason);
4815         i_mmap_lock_read(mapping);
4816         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4817
4818         return ret;
4819 }
4820
4821 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4822                         struct vm_area_struct *vma,
4823                         struct address_space *mapping, pgoff_t idx,
4824                         unsigned long address, pte_t *ptep, unsigned int flags)
4825 {
4826         struct hstate *h = hstate_vma(vma);
4827         vm_fault_t ret = VM_FAULT_SIGBUS;
4828         int anon_rmap = 0;
4829         unsigned long size;
4830         struct page *page;
4831         pte_t new_pte;
4832         spinlock_t *ptl;
4833         unsigned long haddr = address & huge_page_mask(h);
4834         bool new_page, new_pagecache_page = false;
4835
4836         /*
4837          * Currently, we are forced to kill the process in the event the
4838          * original mapper has unmapped pages from the child due to a failed
4839          * COW. Warn that such a situation has occurred as it may not be obvious
4840          */
4841         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4842                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4843                            current->pid);
4844                 return ret;
4845         }
4846
4847         /*
4848          * We can not race with truncation due to holding i_mmap_rwsem.
4849          * i_size is modified when holding i_mmap_rwsem, so check here
4850          * once for faults beyond end of file.
4851          */
4852         size = i_size_read(mapping->host) >> huge_page_shift(h);
4853         if (idx >= size)
4854                 goto out;
4855
4856 retry:
4857         new_page = false;
4858         page = find_lock_page(mapping, idx);
4859         if (!page) {
4860                 /* Check for page in userfault range */
4861                 if (userfaultfd_missing(vma)) {
4862                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4863                                                        flags, haddr,
4864                                                        VM_UFFD_MISSING);
4865                         goto out;
4866                 }
4867
4868                 page = alloc_huge_page(vma, haddr, 0);
4869                 if (IS_ERR(page)) {
4870                         /*
4871                          * Returning error will result in faulting task being
4872                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4873                          * tasks from racing to fault in the same page which
4874                          * could result in false unable to allocate errors.
4875                          * Page migration does not take the fault mutex, but
4876                          * does a clear then write of pte's under page table
4877                          * lock.  Page fault code could race with migration,
4878                          * notice the clear pte and try to allocate a page
4879                          * here.  Before returning error, get ptl and make
4880                          * sure there really is no pte entry.
4881                          */
4882                         ptl = huge_pte_lock(h, mm, ptep);
4883                         ret = 0;
4884                         if (huge_pte_none(huge_ptep_get(ptep)))
4885                                 ret = vmf_error(PTR_ERR(page));
4886                         spin_unlock(ptl);
4887                         goto out;
4888                 }
4889                 clear_huge_page(page, address, pages_per_huge_page(h));
4890                 __SetPageUptodate(page);
4891                 new_page = true;
4892
4893                 if (vma->vm_flags & VM_MAYSHARE) {
4894                         int err = huge_add_to_page_cache(page, mapping, idx);
4895                         if (err) {
4896                                 put_page(page);
4897                                 if (err == -EEXIST)
4898                                         goto retry;
4899                                 goto out;
4900                         }
4901                         new_pagecache_page = true;
4902                 } else {
4903                         lock_page(page);
4904                         if (unlikely(anon_vma_prepare(vma))) {
4905                                 ret = VM_FAULT_OOM;
4906                                 goto backout_unlocked;
4907                         }
4908                         anon_rmap = 1;
4909                 }
4910         } else {
4911                 /*
4912                  * If memory error occurs between mmap() and fault, some process
4913                  * don't have hwpoisoned swap entry for errored virtual address.
4914                  * So we need to block hugepage fault by PG_hwpoison bit check.
4915                  */
4916                 if (unlikely(PageHWPoison(page))) {
4917                         ret = VM_FAULT_HWPOISON_LARGE |
4918                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4919                         goto backout_unlocked;
4920                 }
4921
4922                 /* Check for page in userfault range. */
4923                 if (userfaultfd_minor(vma)) {
4924                         unlock_page(page);
4925                         put_page(page);
4926                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4927                                                        flags, haddr,
4928                                                        VM_UFFD_MINOR);
4929                         goto out;
4930                 }
4931         }
4932
4933         /*
4934          * If we are going to COW a private mapping later, we examine the
4935          * pending reservations for this page now. This will ensure that
4936          * any allocations necessary to record that reservation occur outside
4937          * the spinlock.
4938          */
4939         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4940                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4941                         ret = VM_FAULT_OOM;
4942                         goto backout_unlocked;
4943                 }
4944                 /* Just decrements count, does not deallocate */
4945                 vma_end_reservation(h, vma, haddr);
4946         }
4947
4948         ptl = huge_pte_lock(h, mm, ptep);
4949         ret = 0;
4950         if (!huge_pte_none(huge_ptep_get(ptep)))
4951                 goto backout;
4952
4953         if (anon_rmap) {
4954                 ClearHPageRestoreReserve(page);
4955                 hugepage_add_new_anon_rmap(page, vma, haddr);
4956         } else
4957                 page_dup_rmap(page, true);
4958         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4959                                 && (vma->vm_flags & VM_SHARED)));
4960         set_huge_pte_at(mm, haddr, ptep, new_pte);
4961
4962         hugetlb_count_add(pages_per_huge_page(h), mm);
4963         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4964                 /* Optimization, do the COW without a second fault */
4965                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4966         }
4967
4968         spin_unlock(ptl);
4969
4970         /*
4971          * Only set HPageMigratable in newly allocated pages.  Existing pages
4972          * found in the pagecache may not have HPageMigratableset if they have
4973          * been isolated for migration.
4974          */
4975         if (new_page)
4976                 SetHPageMigratable(page);
4977
4978         unlock_page(page);
4979 out:
4980         return ret;
4981
4982 backout:
4983         spin_unlock(ptl);
4984 backout_unlocked:
4985         unlock_page(page);
4986         /* restore reserve for newly allocated pages not in page cache */
4987         if (new_page && !new_pagecache_page)
4988                 restore_reserve_on_error(h, vma, haddr, page);
4989         put_page(page);
4990         goto out;
4991 }
4992
4993 #ifdef CONFIG_SMP
4994 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4995 {
4996         unsigned long key[2];
4997         u32 hash;
4998
4999         key[0] = (unsigned long) mapping;
5000         key[1] = idx;
5001
5002         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5003
5004         return hash & (num_fault_mutexes - 1);
5005 }
5006 #else
5007 /*
5008  * For uniprocessor systems we always use a single mutex, so just
5009  * return 0 and avoid the hashing overhead.
5010  */
5011 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5012 {
5013         return 0;
5014 }
5015 #endif
5016
5017 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5018                         unsigned long address, unsigned int flags)
5019 {
5020         pte_t *ptep, entry;
5021         spinlock_t *ptl;
5022         vm_fault_t ret;
5023         u32 hash;
5024         pgoff_t idx;
5025         struct page *page = NULL;
5026         struct page *pagecache_page = NULL;
5027         struct hstate *h = hstate_vma(vma);
5028         struct address_space *mapping;
5029         int need_wait_lock = 0;
5030         unsigned long haddr = address & huge_page_mask(h);
5031
5032         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5033         if (ptep) {
5034                 /*
5035                  * Since we hold no locks, ptep could be stale.  That is
5036                  * OK as we are only making decisions based on content and
5037                  * not actually modifying content here.
5038                  */
5039                 entry = huge_ptep_get(ptep);
5040                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5041                         migration_entry_wait_huge(vma, mm, ptep);
5042                         return 0;
5043                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5044                         return VM_FAULT_HWPOISON_LARGE |
5045                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5046         }
5047
5048         /*
5049          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5050          * until finished with ptep.  This serves two purposes:
5051          * 1) It prevents huge_pmd_unshare from being called elsewhere
5052          *    and making the ptep no longer valid.
5053          * 2) It synchronizes us with i_size modifications during truncation.
5054          *
5055          * ptep could have already be assigned via huge_pte_offset.  That
5056          * is OK, as huge_pte_alloc will return the same value unless
5057          * something has changed.
5058          */
5059         mapping = vma->vm_file->f_mapping;
5060         i_mmap_lock_read(mapping);
5061         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5062         if (!ptep) {
5063                 i_mmap_unlock_read(mapping);
5064                 return VM_FAULT_OOM;
5065         }
5066
5067         /*
5068          * Serialize hugepage allocation and instantiation, so that we don't
5069          * get spurious allocation failures if two CPUs race to instantiate
5070          * the same page in the page cache.
5071          */
5072         idx = vma_hugecache_offset(h, vma, haddr);
5073         hash = hugetlb_fault_mutex_hash(mapping, idx);
5074         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5075
5076         entry = huge_ptep_get(ptep);
5077         if (huge_pte_none(entry)) {
5078                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5079                 goto out_mutex;
5080         }
5081
5082         ret = 0;
5083
5084         /*
5085          * entry could be a migration/hwpoison entry at this point, so this
5086          * check prevents the kernel from going below assuming that we have
5087          * an active hugepage in pagecache. This goto expects the 2nd page
5088          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5089          * properly handle it.
5090          */
5091         if (!pte_present(entry))
5092                 goto out_mutex;
5093
5094         /*
5095          * If we are going to COW the mapping later, we examine the pending
5096          * reservations for this page now. This will ensure that any
5097          * allocations necessary to record that reservation occur outside the
5098          * spinlock. For private mappings, we also lookup the pagecache
5099          * page now as it is used to determine if a reservation has been
5100          * consumed.
5101          */
5102         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5103                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5104                         ret = VM_FAULT_OOM;
5105                         goto out_mutex;
5106                 }
5107                 /* Just decrements count, does not deallocate */
5108                 vma_end_reservation(h, vma, haddr);
5109
5110                 if (!(vma->vm_flags & VM_MAYSHARE))
5111                         pagecache_page = hugetlbfs_pagecache_page(h,
5112                                                                 vma, haddr);
5113         }
5114
5115         ptl = huge_pte_lock(h, mm, ptep);
5116
5117         /* Check for a racing update before calling hugetlb_cow */
5118         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5119                 goto out_ptl;
5120
5121         /*
5122          * hugetlb_cow() requires page locks of pte_page(entry) and
5123          * pagecache_page, so here we need take the former one
5124          * when page != pagecache_page or !pagecache_page.
5125          */
5126         page = pte_page(entry);
5127         if (page != pagecache_page)
5128                 if (!trylock_page(page)) {
5129                         need_wait_lock = 1;
5130                         goto out_ptl;
5131                 }
5132
5133         get_page(page);
5134
5135         if (flags & FAULT_FLAG_WRITE) {
5136                 if (!huge_pte_write(entry)) {
5137                         ret = hugetlb_cow(mm, vma, address, ptep,
5138                                           pagecache_page, ptl);
5139                         goto out_put_page;
5140                 }
5141                 entry = huge_pte_mkdirty(entry);
5142         }
5143         entry = pte_mkyoung(entry);
5144         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5145                                                 flags & FAULT_FLAG_WRITE))
5146                 update_mmu_cache(vma, haddr, ptep);
5147 out_put_page:
5148         if (page != pagecache_page)
5149                 unlock_page(page);
5150         put_page(page);
5151 out_ptl:
5152         spin_unlock(ptl);
5153
5154         if (pagecache_page) {
5155                 unlock_page(pagecache_page);
5156                 put_page(pagecache_page);
5157         }
5158 out_mutex:
5159         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5160         i_mmap_unlock_read(mapping);
5161         /*
5162          * Generally it's safe to hold refcount during waiting page lock. But
5163          * here we just wait to defer the next page fault to avoid busy loop and
5164          * the page is not used after unlocked before returning from the current
5165          * page fault. So we are safe from accessing freed page, even if we wait
5166          * here without taking refcount.
5167          */
5168         if (need_wait_lock)
5169                 wait_on_page_locked(page);
5170         return ret;
5171 }
5172
5173 #ifdef CONFIG_USERFAULTFD
5174 /*
5175  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5176  * modifications for huge pages.
5177  */
5178 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5179                             pte_t *dst_pte,
5180                             struct vm_area_struct *dst_vma,
5181                             unsigned long dst_addr,
5182                             unsigned long src_addr,
5183                             enum mcopy_atomic_mode mode,
5184                             struct page **pagep)
5185 {
5186         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5187         struct hstate *h = hstate_vma(dst_vma);
5188         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5189         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5190         unsigned long size;
5191         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5192         pte_t _dst_pte;
5193         spinlock_t *ptl;
5194         int ret = -ENOMEM;
5195         struct page *page;
5196         int writable;
5197         bool new_pagecache_page = false;
5198
5199         if (is_continue) {
5200                 ret = -EFAULT;
5201                 page = find_lock_page(mapping, idx);
5202                 if (!page)
5203                         goto out;
5204         } else if (!*pagep) {
5205                 /* If a page already exists, then it's UFFDIO_COPY for
5206                  * a non-missing case. Return -EEXIST.
5207                  */
5208                 if (vm_shared &&
5209                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5210                         ret = -EEXIST;
5211                         goto out;
5212                 }
5213
5214                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5215                 if (IS_ERR(page)) {
5216                         ret = -ENOMEM;
5217                         goto out;
5218                 }
5219
5220                 ret = copy_huge_page_from_user(page,
5221                                                 (const void __user *) src_addr,
5222                                                 pages_per_huge_page(h), false);
5223
5224                 /* fallback to copy_from_user outside mmap_lock */
5225                 if (unlikely(ret)) {
5226                         ret = -ENOENT;
5227                         /* Free the allocated page which may have
5228                          * consumed a reservation.
5229                          */
5230                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5231                         put_page(page);
5232
5233                         /* Allocate a temporary page to hold the copied
5234                          * contents.
5235                          */
5236                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5237                         if (!page) {
5238                                 ret = -ENOMEM;
5239                                 goto out;
5240                         }
5241                         *pagep = page;
5242                         /* Set the outparam pagep and return to the caller to
5243                          * copy the contents outside the lock. Don't free the
5244                          * page.
5245                          */
5246                         goto out;
5247                 }
5248         } else {
5249                 if (vm_shared &&
5250                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5251                         put_page(*pagep);
5252                         ret = -EEXIST;
5253                         *pagep = NULL;
5254                         goto out;
5255                 }
5256
5257                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5258                 if (IS_ERR(page)) {
5259                         ret = -ENOMEM;
5260                         *pagep = NULL;
5261                         goto out;
5262                 }
5263                 copy_huge_page(page, *pagep);
5264                 put_page(*pagep);
5265                 *pagep = NULL;
5266         }
5267
5268         /*
5269          * The memory barrier inside __SetPageUptodate makes sure that
5270          * preceding stores to the page contents become visible before
5271          * the set_pte_at() write.
5272          */
5273         __SetPageUptodate(page);
5274
5275         /* Add shared, newly allocated pages to the page cache. */
5276         if (vm_shared && !is_continue) {
5277                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5278                 ret = -EFAULT;
5279                 if (idx >= size)
5280                         goto out_release_nounlock;
5281
5282                 /*
5283                  * Serialization between remove_inode_hugepages() and
5284                  * huge_add_to_page_cache() below happens through the
5285                  * hugetlb_fault_mutex_table that here must be hold by
5286                  * the caller.
5287                  */
5288                 ret = huge_add_to_page_cache(page, mapping, idx);
5289                 if (ret)
5290                         goto out_release_nounlock;
5291                 new_pagecache_page = true;
5292         }
5293
5294         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5295         spin_lock(ptl);
5296
5297         /*
5298          * Recheck the i_size after holding PT lock to make sure not
5299          * to leave any page mapped (as page_mapped()) beyond the end
5300          * of the i_size (remove_inode_hugepages() is strict about
5301          * enforcing that). If we bail out here, we'll also leave a
5302          * page in the radix tree in the vm_shared case beyond the end
5303          * of the i_size, but remove_inode_hugepages() will take care
5304          * of it as soon as we drop the hugetlb_fault_mutex_table.
5305          */
5306         size = i_size_read(mapping->host) >> huge_page_shift(h);
5307         ret = -EFAULT;
5308         if (idx >= size)
5309                 goto out_release_unlock;
5310
5311         ret = -EEXIST;
5312         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5313                 goto out_release_unlock;
5314
5315         if (vm_shared) {
5316                 page_dup_rmap(page, true);
5317         } else {
5318                 ClearHPageRestoreReserve(page);
5319                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5320         }
5321
5322         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5323         if (is_continue && !vm_shared)
5324                 writable = 0;
5325         else
5326                 writable = dst_vma->vm_flags & VM_WRITE;
5327
5328         _dst_pte = make_huge_pte(dst_vma, page, writable);
5329         if (writable)
5330                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5331         _dst_pte = pte_mkyoung(_dst_pte);
5332
5333         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5334
5335         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5336                                         dst_vma->vm_flags & VM_WRITE);
5337         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5338
5339         /* No need to invalidate - it was non-present before */
5340         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5341
5342         spin_unlock(ptl);
5343         if (!is_continue)
5344                 SetHPageMigratable(page);
5345         if (vm_shared || is_continue)
5346                 unlock_page(page);
5347         ret = 0;
5348 out:
5349         return ret;
5350 out_release_unlock:
5351         spin_unlock(ptl);
5352         if (vm_shared || is_continue)
5353                 unlock_page(page);
5354 out_release_nounlock:
5355         if (!new_pagecache_page)
5356                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5357         put_page(page);
5358         goto out;
5359 }
5360 #endif /* CONFIG_USERFAULTFD */
5361
5362 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5363                                  int refs, struct page **pages,
5364                                  struct vm_area_struct **vmas)
5365 {
5366         int nr;
5367
5368         for (nr = 0; nr < refs; nr++) {
5369                 if (likely(pages))
5370                         pages[nr] = mem_map_offset(page, nr);
5371                 if (vmas)
5372                         vmas[nr] = vma;
5373         }
5374 }
5375
5376 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5377                          struct page **pages, struct vm_area_struct **vmas,
5378                          unsigned long *position, unsigned long *nr_pages,
5379                          long i, unsigned int flags, int *locked)
5380 {
5381         unsigned long pfn_offset;
5382         unsigned long vaddr = *position;
5383         unsigned long remainder = *nr_pages;
5384         struct hstate *h = hstate_vma(vma);
5385         int err = -EFAULT, refs;
5386
5387         while (vaddr < vma->vm_end && remainder) {
5388                 pte_t *pte;
5389                 spinlock_t *ptl = NULL;
5390                 int absent;
5391                 struct page *page;
5392
5393                 /*
5394                  * If we have a pending SIGKILL, don't keep faulting pages and
5395                  * potentially allocating memory.
5396                  */
5397                 if (fatal_signal_pending(current)) {
5398                         remainder = 0;
5399                         break;
5400                 }
5401
5402                 /*
5403                  * Some archs (sparc64, sh*) have multiple pte_ts to
5404                  * each hugepage.  We have to make sure we get the
5405                  * first, for the page indexing below to work.
5406                  *
5407                  * Note that page table lock is not held when pte is null.
5408                  */
5409                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5410                                       huge_page_size(h));
5411                 if (pte)
5412                         ptl = huge_pte_lock(h, mm, pte);
5413                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5414
5415                 /*
5416                  * When coredumping, it suits get_dump_page if we just return
5417                  * an error where there's an empty slot with no huge pagecache
5418                  * to back it.  This way, we avoid allocating a hugepage, and
5419                  * the sparse dumpfile avoids allocating disk blocks, but its
5420                  * huge holes still show up with zeroes where they need to be.
5421                  */
5422                 if (absent && (flags & FOLL_DUMP) &&
5423                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5424                         if (pte)
5425                                 spin_unlock(ptl);
5426                         remainder = 0;
5427                         break;
5428                 }
5429
5430                 /*
5431                  * We need call hugetlb_fault for both hugepages under migration
5432                  * (in which case hugetlb_fault waits for the migration,) and
5433                  * hwpoisoned hugepages (in which case we need to prevent the
5434                  * caller from accessing to them.) In order to do this, we use
5435                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5436                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5437                  * both cases, and because we can't follow correct pages
5438                  * directly from any kind of swap entries.
5439                  */
5440                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5441                     ((flags & FOLL_WRITE) &&
5442                       !huge_pte_write(huge_ptep_get(pte)))) {
5443                         vm_fault_t ret;
5444                         unsigned int fault_flags = 0;
5445
5446                         if (pte)
5447                                 spin_unlock(ptl);
5448                         if (flags & FOLL_WRITE)
5449                                 fault_flags |= FAULT_FLAG_WRITE;
5450                         if (locked)
5451                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5452                                         FAULT_FLAG_KILLABLE;
5453                         if (flags & FOLL_NOWAIT)
5454                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5455                                         FAULT_FLAG_RETRY_NOWAIT;
5456                         if (flags & FOLL_TRIED) {
5457                                 /*
5458                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5459                                  * FAULT_FLAG_TRIED can co-exist
5460                                  */
5461                                 fault_flags |= FAULT_FLAG_TRIED;
5462                         }
5463                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5464                         if (ret & VM_FAULT_ERROR) {
5465                                 err = vm_fault_to_errno(ret, flags);
5466                                 remainder = 0;
5467                                 break;
5468                         }
5469                         if (ret & VM_FAULT_RETRY) {
5470                                 if (locked &&
5471                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5472                                         *locked = 0;
5473                                 *nr_pages = 0;
5474                                 /*
5475                                  * VM_FAULT_RETRY must not return an
5476                                  * error, it will return zero
5477                                  * instead.
5478                                  *
5479                                  * No need to update "position" as the
5480                                  * caller will not check it after
5481                                  * *nr_pages is set to 0.
5482                                  */
5483                                 return i;
5484                         }
5485                         continue;
5486                 }
5487
5488                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5489                 page = pte_page(huge_ptep_get(pte));
5490
5491                 /*
5492                  * If subpage information not requested, update counters
5493                  * and skip the same_page loop below.
5494                  */
5495                 if (!pages && !vmas && !pfn_offset &&
5496                     (vaddr + huge_page_size(h) < vma->vm_end) &&
5497                     (remainder >= pages_per_huge_page(h))) {
5498                         vaddr += huge_page_size(h);
5499                         remainder -= pages_per_huge_page(h);
5500                         i += pages_per_huge_page(h);
5501                         spin_unlock(ptl);
5502                         continue;
5503                 }
5504
5505                 /* vaddr may not be aligned to PAGE_SIZE */
5506                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5507                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5508
5509                 if (pages || vmas)
5510                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5511                                              vma, refs,
5512                                              likely(pages) ? pages + i : NULL,
5513                                              vmas ? vmas + i : NULL);
5514
5515                 if (pages) {
5516                         /*
5517                          * try_grab_compound_head() should always succeed here,
5518                          * because: a) we hold the ptl lock, and b) we've just
5519                          * checked that the huge page is present in the page
5520                          * tables. If the huge page is present, then the tail
5521                          * pages must also be present. The ptl prevents the
5522                          * head page and tail pages from being rearranged in
5523                          * any way. So this page must be available at this
5524                          * point, unless the page refcount overflowed:
5525                          */
5526                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5527                                                                  refs,
5528                                                                  flags))) {
5529                                 spin_unlock(ptl);
5530                                 remainder = 0;
5531                                 err = -ENOMEM;
5532                                 break;
5533                         }
5534                 }
5535
5536                 vaddr += (refs << PAGE_SHIFT);
5537                 remainder -= refs;
5538                 i += refs;
5539
5540                 spin_unlock(ptl);
5541         }
5542         *nr_pages = remainder;
5543         /*
5544          * setting position is actually required only if remainder is
5545          * not zero but it's faster not to add a "if (remainder)"
5546          * branch.
5547          */
5548         *position = vaddr;
5549
5550         return i ? i : err;
5551 }
5552
5553 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5554                 unsigned long address, unsigned long end, pgprot_t newprot)
5555 {
5556         struct mm_struct *mm = vma->vm_mm;
5557         unsigned long start = address;
5558         pte_t *ptep;
5559         pte_t pte;
5560         struct hstate *h = hstate_vma(vma);
5561         unsigned long pages = 0;
5562         bool shared_pmd = false;
5563         struct mmu_notifier_range range;
5564
5565         /*
5566          * In the case of shared PMDs, the area to flush could be beyond
5567          * start/end.  Set range.start/range.end to cover the maximum possible
5568          * range if PMD sharing is possible.
5569          */
5570         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5571                                 0, vma, mm, start, end);
5572         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5573
5574         BUG_ON(address >= end);
5575         flush_cache_range(vma, range.start, range.end);
5576
5577         mmu_notifier_invalidate_range_start(&range);
5578         i_mmap_lock_write(vma->vm_file->f_mapping);
5579         for (; address < end; address += huge_page_size(h)) {
5580                 spinlock_t *ptl;
5581                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5582                 if (!ptep)
5583                         continue;
5584                 ptl = huge_pte_lock(h, mm, ptep);
5585                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5586                         pages++;
5587                         spin_unlock(ptl);
5588                         shared_pmd = true;
5589                         continue;
5590                 }
5591                 pte = huge_ptep_get(ptep);
5592                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5593                         spin_unlock(ptl);
5594                         continue;
5595                 }
5596                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5597                         swp_entry_t entry = pte_to_swp_entry(pte);
5598
5599                         if (is_writable_migration_entry(entry)) {
5600                                 pte_t newpte;
5601
5602                                 entry = make_readable_migration_entry(
5603                                                         swp_offset(entry));
5604                                 newpte = swp_entry_to_pte(entry);
5605                                 set_huge_swap_pte_at(mm, address, ptep,
5606                                                      newpte, huge_page_size(h));
5607                                 pages++;
5608                         }
5609                         spin_unlock(ptl);
5610                         continue;
5611                 }
5612                 if (!huge_pte_none(pte)) {
5613                         pte_t old_pte;
5614                         unsigned int shift = huge_page_shift(hstate_vma(vma));
5615
5616                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5617                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5618                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5619                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5620                         pages++;
5621                 }
5622                 spin_unlock(ptl);
5623         }
5624         /*
5625          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5626          * may have cleared our pud entry and done put_page on the page table:
5627          * once we release i_mmap_rwsem, another task can do the final put_page
5628          * and that page table be reused and filled with junk.  If we actually
5629          * did unshare a page of pmds, flush the range corresponding to the pud.
5630          */
5631         if (shared_pmd)
5632                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5633         else
5634                 flush_hugetlb_tlb_range(vma, start, end);
5635         /*
5636          * No need to call mmu_notifier_invalidate_range() we are downgrading
5637          * page table protection not changing it to point to a new page.
5638          *
5639          * See Documentation/vm/mmu_notifier.rst
5640          */
5641         i_mmap_unlock_write(vma->vm_file->f_mapping);
5642         mmu_notifier_invalidate_range_end(&range);
5643
5644         return pages << h->order;
5645 }
5646
5647 /* Return true if reservation was successful, false otherwise.  */
5648 bool hugetlb_reserve_pages(struct inode *inode,
5649                                         long from, long to,
5650                                         struct vm_area_struct *vma,
5651                                         vm_flags_t vm_flags)
5652 {
5653         long chg, add = -1;
5654         struct hstate *h = hstate_inode(inode);
5655         struct hugepage_subpool *spool = subpool_inode(inode);
5656         struct resv_map *resv_map;
5657         struct hugetlb_cgroup *h_cg = NULL;
5658         long gbl_reserve, regions_needed = 0;
5659
5660         /* This should never happen */
5661         if (from > to) {
5662                 VM_WARN(1, "%s called with a negative range\n", __func__);
5663                 return false;
5664         }
5665
5666         /*
5667          * Only apply hugepage reservation if asked. At fault time, an
5668          * attempt will be made for VM_NORESERVE to allocate a page
5669          * without using reserves
5670          */
5671         if (vm_flags & VM_NORESERVE)
5672                 return true;
5673
5674         /*
5675          * Shared mappings base their reservation on the number of pages that
5676          * are already allocated on behalf of the file. Private mappings need
5677          * to reserve the full area even if read-only as mprotect() may be
5678          * called to make the mapping read-write. Assume !vma is a shm mapping
5679          */
5680         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5681                 /*
5682                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5683                  * called for inodes for which resv_maps were created (see
5684                  * hugetlbfs_get_inode).
5685                  */
5686                 resv_map = inode_resv_map(inode);
5687
5688                 chg = region_chg(resv_map, from, to, &regions_needed);
5689
5690         } else {
5691                 /* Private mapping. */
5692                 resv_map = resv_map_alloc();
5693                 if (!resv_map)
5694                         return false;
5695
5696                 chg = to - from;
5697
5698                 set_vma_resv_map(vma, resv_map);
5699                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5700         }
5701
5702         if (chg < 0)
5703                 goto out_err;
5704
5705         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5706                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5707                 goto out_err;
5708
5709         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5710                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5711                  * of the resv_map.
5712                  */
5713                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5714         }
5715
5716         /*
5717          * There must be enough pages in the subpool for the mapping. If
5718          * the subpool has a minimum size, there may be some global
5719          * reservations already in place (gbl_reserve).
5720          */
5721         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5722         if (gbl_reserve < 0)
5723                 goto out_uncharge_cgroup;
5724
5725         /*
5726          * Check enough hugepages are available for the reservation.
5727          * Hand the pages back to the subpool if there are not
5728          */
5729         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5730                 goto out_put_pages;
5731
5732         /*
5733          * Account for the reservations made. Shared mappings record regions
5734          * that have reservations as they are shared by multiple VMAs.
5735          * When the last VMA disappears, the region map says how much
5736          * the reservation was and the page cache tells how much of
5737          * the reservation was consumed. Private mappings are per-VMA and
5738          * only the consumed reservations are tracked. When the VMA
5739          * disappears, the original reservation is the VMA size and the
5740          * consumed reservations are stored in the map. Hence, nothing
5741          * else has to be done for private mappings here
5742          */
5743         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5744                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5745
5746                 if (unlikely(add < 0)) {
5747                         hugetlb_acct_memory(h, -gbl_reserve);
5748                         goto out_put_pages;
5749                 } else if (unlikely(chg > add)) {
5750                         /*
5751                          * pages in this range were added to the reserve
5752                          * map between region_chg and region_add.  This
5753                          * indicates a race with alloc_huge_page.  Adjust
5754                          * the subpool and reserve counts modified above
5755                          * based on the difference.
5756                          */
5757                         long rsv_adjust;
5758
5759                         /*
5760                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5761                          * reference to h_cg->css. See comment below for detail.
5762                          */
5763                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5764                                 hstate_index(h),
5765                                 (chg - add) * pages_per_huge_page(h), h_cg);
5766
5767                         rsv_adjust = hugepage_subpool_put_pages(spool,
5768                                                                 chg - add);
5769                         hugetlb_acct_memory(h, -rsv_adjust);
5770                 } else if (h_cg) {
5771                         /*
5772                          * The file_regions will hold their own reference to
5773                          * h_cg->css. So we should release the reference held
5774                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5775                          * done.
5776                          */
5777                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5778                 }
5779         }
5780         return true;
5781
5782 out_put_pages:
5783         /* put back original number of pages, chg */
5784         (void)hugepage_subpool_put_pages(spool, chg);
5785 out_uncharge_cgroup:
5786         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5787                                             chg * pages_per_huge_page(h), h_cg);
5788 out_err:
5789         if (!vma || vma->vm_flags & VM_MAYSHARE)
5790                 /* Only call region_abort if the region_chg succeeded but the
5791                  * region_add failed or didn't run.
5792                  */
5793                 if (chg >= 0 && add < 0)
5794                         region_abort(resv_map, from, to, regions_needed);
5795         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5796                 kref_put(&resv_map->refs, resv_map_release);
5797         return false;
5798 }
5799
5800 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5801                                                                 long freed)
5802 {
5803         struct hstate *h = hstate_inode(inode);
5804         struct resv_map *resv_map = inode_resv_map(inode);
5805         long chg = 0;
5806         struct hugepage_subpool *spool = subpool_inode(inode);
5807         long gbl_reserve;
5808
5809         /*
5810          * Since this routine can be called in the evict inode path for all
5811          * hugetlbfs inodes, resv_map could be NULL.
5812          */
5813         if (resv_map) {
5814                 chg = region_del(resv_map, start, end);
5815                 /*
5816                  * region_del() can fail in the rare case where a region
5817                  * must be split and another region descriptor can not be
5818                  * allocated.  If end == LONG_MAX, it will not fail.
5819                  */
5820                 if (chg < 0)
5821                         return chg;
5822         }
5823
5824         spin_lock(&inode->i_lock);
5825         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5826         spin_unlock(&inode->i_lock);
5827
5828         /*
5829          * If the subpool has a minimum size, the number of global
5830          * reservations to be released may be adjusted.
5831          *
5832          * Note that !resv_map implies freed == 0. So (chg - freed)
5833          * won't go negative.
5834          */
5835         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5836         hugetlb_acct_memory(h, -gbl_reserve);
5837
5838         return 0;
5839 }
5840
5841 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5842 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5843                                 struct vm_area_struct *vma,
5844                                 unsigned long addr, pgoff_t idx)
5845 {
5846         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5847                                 svma->vm_start;
5848         unsigned long sbase = saddr & PUD_MASK;
5849         unsigned long s_end = sbase + PUD_SIZE;
5850
5851         /* Allow segments to share if only one is marked locked */
5852         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5853         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5854
5855         /*
5856          * match the virtual addresses, permission and the alignment of the
5857          * page table page.
5858          */
5859         if (pmd_index(addr) != pmd_index(saddr) ||
5860             vm_flags != svm_flags ||
5861             !range_in_vma(svma, sbase, s_end))
5862                 return 0;
5863
5864         return saddr;
5865 }
5866
5867 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5868 {
5869         unsigned long base = addr & PUD_MASK;
5870         unsigned long end = base + PUD_SIZE;
5871
5872         /*
5873          * check on proper vm_flags and page table alignment
5874          */
5875         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5876                 return true;
5877         return false;
5878 }
5879
5880 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5881 {
5882 #ifdef CONFIG_USERFAULTFD
5883         if (uffd_disable_huge_pmd_share(vma))
5884                 return false;
5885 #endif
5886         return vma_shareable(vma, addr);
5887 }
5888
5889 /*
5890  * Determine if start,end range within vma could be mapped by shared pmd.
5891  * If yes, adjust start and end to cover range associated with possible
5892  * shared pmd mappings.
5893  */
5894 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5895                                 unsigned long *start, unsigned long *end)
5896 {
5897         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5898                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5899
5900         /*
5901          * vma needs to span at least one aligned PUD size, and the range
5902          * must be at least partially within in.
5903          */
5904         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5905                 (*end <= v_start) || (*start >= v_end))
5906                 return;
5907
5908         /* Extend the range to be PUD aligned for a worst case scenario */
5909         if (*start > v_start)
5910                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5911
5912         if (*end < v_end)
5913                 *end = ALIGN(*end, PUD_SIZE);
5914 }
5915
5916 /*
5917  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5918  * and returns the corresponding pte. While this is not necessary for the
5919  * !shared pmd case because we can allocate the pmd later as well, it makes the
5920  * code much cleaner.
5921  *
5922  * This routine must be called with i_mmap_rwsem held in at least read mode if
5923  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5924  * table entries associated with the address space.  This is important as we
5925  * are setting up sharing based on existing page table entries (mappings).
5926  *
5927  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5928  * huge_pte_alloc know that sharing is not possible and do not take
5929  * i_mmap_rwsem as a performance optimization.  This is handled by the
5930  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5931  * only required for subsequent processing.
5932  */
5933 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5934                       unsigned long addr, pud_t *pud)
5935 {
5936         struct address_space *mapping = vma->vm_file->f_mapping;
5937         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5938                         vma->vm_pgoff;
5939         struct vm_area_struct *svma;
5940         unsigned long saddr;
5941         pte_t *spte = NULL;
5942         pte_t *pte;
5943         spinlock_t *ptl;
5944
5945         i_mmap_assert_locked(mapping);
5946         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5947                 if (svma == vma)
5948                         continue;
5949
5950                 saddr = page_table_shareable(svma, vma, addr, idx);
5951                 if (saddr) {
5952                         spte = huge_pte_offset(svma->vm_mm, saddr,
5953                                                vma_mmu_pagesize(svma));
5954                         if (spte) {
5955                                 get_page(virt_to_page(spte));
5956                                 break;
5957                         }
5958                 }
5959         }
5960
5961         if (!spte)
5962                 goto out;
5963
5964         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5965         if (pud_none(*pud)) {
5966                 pud_populate(mm, pud,
5967                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5968                 mm_inc_nr_pmds(mm);
5969         } else {
5970                 put_page(virt_to_page(spte));
5971         }
5972         spin_unlock(ptl);
5973 out:
5974         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5975         return pte;
5976 }
5977
5978 /*
5979  * unmap huge page backed by shared pte.
5980  *
5981  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5982  * indicated by page_count > 1, unmap is achieved by clearing pud and
5983  * decrementing the ref count. If count == 1, the pte page is not shared.
5984  *
5985  * Called with page table lock held and i_mmap_rwsem held in write mode.
5986  *
5987  * returns: 1 successfully unmapped a shared pte page
5988  *          0 the underlying pte page is not shared, or it is the last user
5989  */
5990 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5991                                         unsigned long *addr, pte_t *ptep)
5992 {
5993         pgd_t *pgd = pgd_offset(mm, *addr);
5994         p4d_t *p4d = p4d_offset(pgd, *addr);
5995         pud_t *pud = pud_offset(p4d, *addr);
5996
5997         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5998         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5999         if (page_count(virt_to_page(ptep)) == 1)
6000                 return 0;
6001
6002         pud_clear(pud);
6003         put_page(virt_to_page(ptep));
6004         mm_dec_nr_pmds(mm);
6005         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6006         return 1;
6007 }
6008
6009 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6010 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6011                       unsigned long addr, pud_t *pud)
6012 {
6013         return NULL;
6014 }
6015
6016 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6017                                 unsigned long *addr, pte_t *ptep)
6018 {
6019         return 0;
6020 }
6021
6022 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6023                                 unsigned long *start, unsigned long *end)
6024 {
6025 }
6026
6027 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6028 {
6029         return false;
6030 }
6031 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6032
6033 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6034 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6035                         unsigned long addr, unsigned long sz)
6036 {
6037         pgd_t *pgd;
6038         p4d_t *p4d;
6039         pud_t *pud;
6040         pte_t *pte = NULL;
6041
6042         pgd = pgd_offset(mm, addr);
6043         p4d = p4d_alloc(mm, pgd, addr);
6044         if (!p4d)
6045                 return NULL;
6046         pud = pud_alloc(mm, p4d, addr);
6047         if (pud) {
6048                 if (sz == PUD_SIZE) {
6049                         pte = (pte_t *)pud;
6050                 } else {
6051                         BUG_ON(sz != PMD_SIZE);
6052                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6053                                 pte = huge_pmd_share(mm, vma, addr, pud);
6054                         else
6055                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6056                 }
6057         }
6058         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6059
6060         return pte;
6061 }
6062
6063 /*
6064  * huge_pte_offset() - Walk the page table to resolve the hugepage
6065  * entry at address @addr
6066  *
6067  * Return: Pointer to page table entry (PUD or PMD) for
6068  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6069  * size @sz doesn't match the hugepage size at this level of the page
6070  * table.
6071  */
6072 pte_t *huge_pte_offset(struct mm_struct *mm,
6073                        unsigned long addr, unsigned long sz)
6074 {
6075         pgd_t *pgd;
6076         p4d_t *p4d;
6077         pud_t *pud;
6078         pmd_t *pmd;
6079
6080         pgd = pgd_offset(mm, addr);
6081         if (!pgd_present(*pgd))
6082                 return NULL;
6083         p4d = p4d_offset(pgd, addr);
6084         if (!p4d_present(*p4d))
6085                 return NULL;
6086
6087         pud = pud_offset(p4d, addr);
6088         if (sz == PUD_SIZE)
6089                 /* must be pud huge, non-present or none */
6090                 return (pte_t *)pud;
6091         if (!pud_present(*pud))
6092                 return NULL;
6093         /* must have a valid entry and size to go further */
6094
6095         pmd = pmd_offset(pud, addr);
6096         /* must be pmd huge, non-present or none */
6097         return (pte_t *)pmd;
6098 }
6099
6100 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6101
6102 /*
6103  * These functions are overwritable if your architecture needs its own
6104  * behavior.
6105  */
6106 struct page * __weak
6107 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6108                               int write)
6109 {
6110         return ERR_PTR(-EINVAL);
6111 }
6112
6113 struct page * __weak
6114 follow_huge_pd(struct vm_area_struct *vma,
6115                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6116 {
6117         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6118         return NULL;
6119 }
6120
6121 struct page * __weak
6122 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6123                 pmd_t *pmd, int flags)
6124 {
6125         struct page *page = NULL;
6126         spinlock_t *ptl;
6127         pte_t pte;
6128
6129         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6130         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6131                          (FOLL_PIN | FOLL_GET)))
6132                 return NULL;
6133
6134 retry:
6135         ptl = pmd_lockptr(mm, pmd);
6136         spin_lock(ptl);
6137         /*
6138          * make sure that the address range covered by this pmd is not
6139          * unmapped from other threads.
6140          */
6141         if (!pmd_huge(*pmd))
6142                 goto out;
6143         pte = huge_ptep_get((pte_t *)pmd);
6144         if (pte_present(pte)) {
6145                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6146                 /*
6147                  * try_grab_page() should always succeed here, because: a) we
6148                  * hold the pmd (ptl) lock, and b) we've just checked that the
6149                  * huge pmd (head) page is present in the page tables. The ptl
6150                  * prevents the head page and tail pages from being rearranged
6151                  * in any way. So this page must be available at this point,
6152                  * unless the page refcount overflowed:
6153                  */
6154                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6155                         page = NULL;
6156                         goto out;
6157                 }
6158         } else {
6159                 if (is_hugetlb_entry_migration(pte)) {
6160                         spin_unlock(ptl);
6161                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6162                         goto retry;
6163                 }
6164                 /*
6165                  * hwpoisoned entry is treated as no_page_table in
6166                  * follow_page_mask().
6167                  */
6168         }
6169 out:
6170         spin_unlock(ptl);
6171         return page;
6172 }
6173
6174 struct page * __weak
6175 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6176                 pud_t *pud, int flags)
6177 {
6178         if (flags & (FOLL_GET | FOLL_PIN))
6179                 return NULL;
6180
6181         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6182 }
6183
6184 struct page * __weak
6185 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6186 {
6187         if (flags & (FOLL_GET | FOLL_PIN))
6188                 return NULL;
6189
6190         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6191 }
6192
6193 bool isolate_huge_page(struct page *page, struct list_head *list)
6194 {
6195         bool ret = true;
6196
6197         spin_lock_irq(&hugetlb_lock);
6198         if (!PageHeadHuge(page) ||
6199             !HPageMigratable(page) ||
6200             !get_page_unless_zero(page)) {
6201                 ret = false;
6202                 goto unlock;
6203         }
6204         ClearHPageMigratable(page);
6205         list_move_tail(&page->lru, list);
6206 unlock:
6207         spin_unlock_irq(&hugetlb_lock);
6208         return ret;
6209 }
6210
6211 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6212 {
6213         int ret = 0;
6214
6215         *hugetlb = false;
6216         spin_lock_irq(&hugetlb_lock);
6217         if (PageHeadHuge(page)) {
6218                 *hugetlb = true;
6219                 if (HPageFreed(page) || HPageMigratable(page))
6220                         ret = get_page_unless_zero(page);
6221                 else
6222                         ret = -EBUSY;
6223         }
6224         spin_unlock_irq(&hugetlb_lock);
6225         return ret;
6226 }
6227
6228 void putback_active_hugepage(struct page *page)
6229 {
6230         spin_lock_irq(&hugetlb_lock);
6231         SetHPageMigratable(page);
6232         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6233         spin_unlock_irq(&hugetlb_lock);
6234         put_page(page);
6235 }
6236
6237 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6238 {
6239         struct hstate *h = page_hstate(oldpage);
6240
6241         hugetlb_cgroup_migrate(oldpage, newpage);
6242         set_page_owner_migrate_reason(newpage, reason);
6243
6244         /*
6245          * transfer temporary state of the new huge page. This is
6246          * reverse to other transitions because the newpage is going to
6247          * be final while the old one will be freed so it takes over
6248          * the temporary status.
6249          *
6250          * Also note that we have to transfer the per-node surplus state
6251          * here as well otherwise the global surplus count will not match
6252          * the per-node's.
6253          */
6254         if (HPageTemporary(newpage)) {
6255                 int old_nid = page_to_nid(oldpage);
6256                 int new_nid = page_to_nid(newpage);
6257
6258                 SetHPageTemporary(oldpage);
6259                 ClearHPageTemporary(newpage);
6260
6261                 /*
6262                  * There is no need to transfer the per-node surplus state
6263                  * when we do not cross the node.
6264                  */
6265                 if (new_nid == old_nid)
6266                         return;
6267                 spin_lock_irq(&hugetlb_lock);
6268                 if (h->surplus_huge_pages_node[old_nid]) {
6269                         h->surplus_huge_pages_node[old_nid]--;
6270                         h->surplus_huge_pages_node[new_nid]++;
6271                 }
6272                 spin_unlock_irq(&hugetlb_lock);
6273         }
6274 }
6275
6276 /*
6277  * This function will unconditionally remove all the shared pmd pgtable entries
6278  * within the specific vma for a hugetlbfs memory range.
6279  */
6280 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6281 {
6282         struct hstate *h = hstate_vma(vma);
6283         unsigned long sz = huge_page_size(h);
6284         struct mm_struct *mm = vma->vm_mm;
6285         struct mmu_notifier_range range;
6286         unsigned long address, start, end;
6287         spinlock_t *ptl;
6288         pte_t *ptep;
6289
6290         if (!(vma->vm_flags & VM_MAYSHARE))
6291                 return;
6292
6293         start = ALIGN(vma->vm_start, PUD_SIZE);
6294         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6295
6296         if (start >= end)
6297                 return;
6298
6299         /*
6300          * No need to call adjust_range_if_pmd_sharing_possible(), because
6301          * we have already done the PUD_SIZE alignment.
6302          */
6303         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6304                                 start, end);
6305         mmu_notifier_invalidate_range_start(&range);
6306         i_mmap_lock_write(vma->vm_file->f_mapping);
6307         for (address = start; address < end; address += PUD_SIZE) {
6308                 unsigned long tmp = address;
6309
6310                 ptep = huge_pte_offset(mm, address, sz);
6311                 if (!ptep)
6312                         continue;
6313                 ptl = huge_pte_lock(h, mm, ptep);
6314                 /* We don't want 'address' to be changed */
6315                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6316                 spin_unlock(ptl);
6317         }
6318         flush_hugetlb_tlb_range(vma, start, end);
6319         i_mmap_unlock_write(vma->vm_file->f_mapping);
6320         /*
6321          * No need to call mmu_notifier_invalidate_range(), see
6322          * Documentation/vm/mmu_notifier.rst.
6323          */
6324         mmu_notifier_invalidate_range_end(&range);
6325 }
6326
6327 #ifdef CONFIG_CMA
6328 static bool cma_reserve_called __initdata;
6329
6330 static int __init cmdline_parse_hugetlb_cma(char *p)
6331 {
6332         hugetlb_cma_size = memparse(p, &p);
6333         return 0;
6334 }
6335
6336 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6337
6338 void __init hugetlb_cma_reserve(int order)
6339 {
6340         unsigned long size, reserved, per_node;
6341         int nid;
6342
6343         cma_reserve_called = true;
6344
6345         if (!hugetlb_cma_size)
6346                 return;
6347
6348         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6349                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6350                         (PAGE_SIZE << order) / SZ_1M);
6351                 return;
6352         }
6353
6354         /*
6355          * If 3 GB area is requested on a machine with 4 numa nodes,
6356          * let's allocate 1 GB on first three nodes and ignore the last one.
6357          */
6358         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6359         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6360                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6361
6362         reserved = 0;
6363         for_each_node_state(nid, N_ONLINE) {
6364                 int res;
6365                 char name[CMA_MAX_NAME];
6366
6367                 size = min(per_node, hugetlb_cma_size - reserved);
6368                 size = round_up(size, PAGE_SIZE << order);
6369
6370                 snprintf(name, sizeof(name), "hugetlb%d", nid);
6371                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6372                                                  0, false, name,
6373                                                  &hugetlb_cma[nid], nid);
6374                 if (res) {
6375                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6376                                 res, nid);
6377                         continue;
6378                 }
6379
6380                 reserved += size;
6381                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6382                         size / SZ_1M, nid);
6383
6384                 if (reserved >= hugetlb_cma_size)
6385                         break;
6386         }
6387 }
6388
6389 void __init hugetlb_cma_check(void)
6390 {
6391         if (!hugetlb_cma_size || cma_reserve_called)
6392                 return;
6393
6394         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6395 }
6396
6397 #endif /* CONFIG_CMA */