mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cache
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation_mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440         VM_BUG_ON(!is_vm_hugetlb_page(vma));
441         if (!(vma->vm_flags & VM_MAYSHARE))
442                 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448         if (vma->vm_flags & VM_NORESERVE) {
449                 /*
450                  * This address is already reserved by other process(chg == 0),
451                  * so, we should decrement reserved count. Without decrementing,
452                  * reserve count remains after releasing inode, because this
453                  * allocated page will go into page cache and is regarded as
454                  * coming from reserved pool in releasing step.  Currently, we
455                  * don't have any other solution to deal with this situation
456                  * properly, so add work-around here.
457                  */
458                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459                         return 1;
460                 else
461                         return 0;
462         }
463
464         /* Shared mappings always use reserves */
465         if (vma->vm_flags & VM_MAYSHARE)
466                 return 1;
467
468         /*
469          * Only the process that called mmap() has reserves for
470          * private mappings.
471          */
472         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473                 return 1;
474
475         return 0;
476 }
477
478 static void copy_gigantic_page(struct page *dst, struct page *src)
479 {
480         int i;
481         struct hstate *h = page_hstate(src);
482         struct page *dst_base = dst;
483         struct page *src_base = src;
484
485         for (i = 0; i < pages_per_huge_page(h); ) {
486                 cond_resched();
487                 copy_highpage(dst, src);
488
489                 i++;
490                 dst = mem_map_next(dst, dst_base, i);
491                 src = mem_map_next(src, src_base, i);
492         }
493 }
494
495 void copy_huge_page(struct page *dst, struct page *src)
496 {
497         int i;
498         struct hstate *h = page_hstate(src);
499
500         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501                 copy_gigantic_page(dst, src);
502                 return;
503         }
504
505         might_sleep();
506         for (i = 0; i < pages_per_huge_page(h); i++) {
507                 cond_resched();
508                 copy_highpage(dst + i, src + i);
509         }
510 }
511
512 static void enqueue_huge_page(struct hstate *h, struct page *page)
513 {
514         int nid = page_to_nid(page);
515         list_move(&page->lru, &h->hugepage_freelists[nid]);
516         h->free_huge_pages++;
517         h->free_huge_pages_node[nid]++;
518 }
519
520 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 {
522         struct page *page;
523
524         if (list_empty(&h->hugepage_freelists[nid]))
525                 return NULL;
526         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
527         list_move(&page->lru, &h->hugepage_activelist);
528         set_page_refcounted(page);
529         h->free_huge_pages--;
530         h->free_huge_pages_node[nid]--;
531         return page;
532 }
533
534 static struct page *dequeue_huge_page_vma(struct hstate *h,
535                                 struct vm_area_struct *vma,
536                                 unsigned long address, int avoid_reserve,
537                                 long chg)
538 {
539         struct page *page = NULL;
540         struct mempolicy *mpol;
541         nodemask_t *nodemask;
542         struct zonelist *zonelist;
543         struct zone *zone;
544         struct zoneref *z;
545         unsigned int cpuset_mems_cookie;
546
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma, chg) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560 retry_cpuset:
561         cpuset_mems_cookie = get_mems_allowed();
562         zonelist = huge_zonelist(vma, address,
563                                         htlb_alloc_mask, &mpol, &nodemask);
564
565         for_each_zone_zonelist_nodemask(zone, z, zonelist,
566                                                 MAX_NR_ZONES - 1, nodemask) {
567                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
568                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
569                         if (page) {
570                                 if (avoid_reserve)
571                                         break;
572                                 if (!vma_has_reserves(vma, chg))
573                                         break;
574
575                                 h->resv_huge_pages--;
576                                 break;
577                         }
578                 }
579         }
580
581         mpol_cond_put(mpol);
582         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
583                 goto retry_cpuset;
584         return page;
585
586 err:
587         return NULL;
588 }
589
590 static void update_and_free_page(struct hstate *h, struct page *page)
591 {
592         int i;
593
594         VM_BUG_ON(h->order >= MAX_ORDER);
595
596         h->nr_huge_pages--;
597         h->nr_huge_pages_node[page_to_nid(page)]--;
598         for (i = 0; i < pages_per_huge_page(h); i++) {
599                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600                                 1 << PG_referenced | 1 << PG_dirty |
601                                 1 << PG_active | 1 << PG_reserved |
602                                 1 << PG_private | 1 << PG_writeback);
603         }
604         VM_BUG_ON(hugetlb_cgroup_from_page(page));
605         set_compound_page_dtor(page, NULL);
606         set_page_refcounted(page);
607         arch_release_hugepage(page);
608         __free_pages(page, huge_page_order(h));
609 }
610
611 struct hstate *size_to_hstate(unsigned long size)
612 {
613         struct hstate *h;
614
615         for_each_hstate(h) {
616                 if (huge_page_size(h) == size)
617                         return h;
618         }
619         return NULL;
620 }
621
622 static void free_huge_page(struct page *page)
623 {
624         /*
625          * Can't pass hstate in here because it is called from the
626          * compound page destructor.
627          */
628         struct hstate *h = page_hstate(page);
629         int nid = page_to_nid(page);
630         struct hugepage_subpool *spool =
631                 (struct hugepage_subpool *)page_private(page);
632
633         set_page_private(page, 0);
634         page->mapping = NULL;
635         BUG_ON(page_count(page));
636         BUG_ON(page_mapcount(page));
637
638         spin_lock(&hugetlb_lock);
639         hugetlb_cgroup_uncharge_page(hstate_index(h),
640                                      pages_per_huge_page(h), page);
641         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
642                 /* remove the page from active list */
643                 list_del(&page->lru);
644                 update_and_free_page(h, page);
645                 h->surplus_huge_pages--;
646                 h->surplus_huge_pages_node[nid]--;
647         } else {
648                 arch_clear_hugepage_flags(page);
649                 enqueue_huge_page(h, page);
650         }
651         spin_unlock(&hugetlb_lock);
652         hugepage_subpool_put_pages(spool, 1);
653 }
654
655 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
656 {
657         INIT_LIST_HEAD(&page->lru);
658         set_compound_page_dtor(page, free_huge_page);
659         spin_lock(&hugetlb_lock);
660         set_hugetlb_cgroup(page, NULL);
661         h->nr_huge_pages++;
662         h->nr_huge_pages_node[nid]++;
663         spin_unlock(&hugetlb_lock);
664         put_page(page); /* free it into the hugepage allocator */
665 }
666
667 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
668 {
669         int i;
670         int nr_pages = 1 << order;
671         struct page *p = page + 1;
672
673         /* we rely on prep_new_huge_page to set the destructor */
674         set_compound_order(page, order);
675         __SetPageHead(page);
676         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
677                 __SetPageTail(p);
678                 set_page_count(p, 0);
679                 p->first_page = page;
680         }
681 }
682
683 /*
684  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
685  * transparent huge pages.  See the PageTransHuge() documentation for more
686  * details.
687  */
688 int PageHuge(struct page *page)
689 {
690         compound_page_dtor *dtor;
691
692         if (!PageCompound(page))
693                 return 0;
694
695         page = compound_head(page);
696         dtor = get_compound_page_dtor(page);
697
698         return dtor == free_huge_page;
699 }
700 EXPORT_SYMBOL_GPL(PageHuge);
701
702 pgoff_t __basepage_index(struct page *page)
703 {
704         struct page *page_head = compound_head(page);
705         pgoff_t index = page_index(page_head);
706         unsigned long compound_idx;
707
708         if (!PageHuge(page_head))
709                 return page_index(page);
710
711         if (compound_order(page_head) >= MAX_ORDER)
712                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
713         else
714                 compound_idx = page - page_head;
715
716         return (index << compound_order(page_head)) + compound_idx;
717 }
718
719 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
720 {
721         struct page *page;
722
723         if (h->order >= MAX_ORDER)
724                 return NULL;
725
726         page = alloc_pages_exact_node(nid,
727                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
728                                                 __GFP_REPEAT|__GFP_NOWARN,
729                 huge_page_order(h));
730         if (page) {
731                 if (arch_prepare_hugepage(page)) {
732                         __free_pages(page, huge_page_order(h));
733                         return NULL;
734                 }
735                 prep_new_huge_page(h, page, nid);
736         }
737
738         return page;
739 }
740
741 /*
742  * common helper functions for hstate_next_node_to_{alloc|free}.
743  * We may have allocated or freed a huge page based on a different
744  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
745  * be outside of *nodes_allowed.  Ensure that we use an allowed
746  * node for alloc or free.
747  */
748 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
749 {
750         nid = next_node(nid, *nodes_allowed);
751         if (nid == MAX_NUMNODES)
752                 nid = first_node(*nodes_allowed);
753         VM_BUG_ON(nid >= MAX_NUMNODES);
754
755         return nid;
756 }
757
758 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
759 {
760         if (!node_isset(nid, *nodes_allowed))
761                 nid = next_node_allowed(nid, nodes_allowed);
762         return nid;
763 }
764
765 /*
766  * returns the previously saved node ["this node"] from which to
767  * allocate a persistent huge page for the pool and advance the
768  * next node from which to allocate, handling wrap at end of node
769  * mask.
770  */
771 static int hstate_next_node_to_alloc(struct hstate *h,
772                                         nodemask_t *nodes_allowed)
773 {
774         int nid;
775
776         VM_BUG_ON(!nodes_allowed);
777
778         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
779         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
780
781         return nid;
782 }
783
784 /*
785  * helper for free_pool_huge_page() - return the previously saved
786  * node ["this node"] from which to free a huge page.  Advance the
787  * next node id whether or not we find a free huge page to free so
788  * that the next attempt to free addresses the next node.
789  */
790 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
791 {
792         int nid;
793
794         VM_BUG_ON(!nodes_allowed);
795
796         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
797         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
798
799         return nid;
800 }
801
802 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
803         for (nr_nodes = nodes_weight(*mask);                            \
804                 nr_nodes > 0 &&                                         \
805                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
806                 nr_nodes--)
807
808 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
809         for (nr_nodes = nodes_weight(*mask);                            \
810                 nr_nodes > 0 &&                                         \
811                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
812                 nr_nodes--)
813
814 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
815 {
816         struct page *page;
817         int nr_nodes, node;
818         int ret = 0;
819
820         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
821                 page = alloc_fresh_huge_page_node(h, node);
822                 if (page) {
823                         ret = 1;
824                         break;
825                 }
826         }
827
828         if (ret)
829                 count_vm_event(HTLB_BUDDY_PGALLOC);
830         else
831                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832
833         return ret;
834 }
835
836 /*
837  * Free huge page from pool from next node to free.
838  * Attempt to keep persistent huge pages more or less
839  * balanced over allowed nodes.
840  * Called with hugetlb_lock locked.
841  */
842 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
843                                                          bool acct_surplus)
844 {
845         int nr_nodes, node;
846         int ret = 0;
847
848         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
849                 /*
850                  * If we're returning unused surplus pages, only examine
851                  * nodes with surplus pages.
852                  */
853                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
854                     !list_empty(&h->hugepage_freelists[node])) {
855                         struct page *page =
856                                 list_entry(h->hugepage_freelists[node].next,
857                                           struct page, lru);
858                         list_del(&page->lru);
859                         h->free_huge_pages--;
860                         h->free_huge_pages_node[node]--;
861                         if (acct_surplus) {
862                                 h->surplus_huge_pages--;
863                                 h->surplus_huge_pages_node[node]--;
864                         }
865                         update_and_free_page(h, page);
866                         ret = 1;
867                         break;
868                 }
869         }
870
871         return ret;
872 }
873
874 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
875 {
876         struct page *page;
877         unsigned int r_nid;
878
879         if (h->order >= MAX_ORDER)
880                 return NULL;
881
882         /*
883          * Assume we will successfully allocate the surplus page to
884          * prevent racing processes from causing the surplus to exceed
885          * overcommit
886          *
887          * This however introduces a different race, where a process B
888          * tries to grow the static hugepage pool while alloc_pages() is
889          * called by process A. B will only examine the per-node
890          * counters in determining if surplus huge pages can be
891          * converted to normal huge pages in adjust_pool_surplus(). A
892          * won't be able to increment the per-node counter, until the
893          * lock is dropped by B, but B doesn't drop hugetlb_lock until
894          * no more huge pages can be converted from surplus to normal
895          * state (and doesn't try to convert again). Thus, we have a
896          * case where a surplus huge page exists, the pool is grown, and
897          * the surplus huge page still exists after, even though it
898          * should just have been converted to a normal huge page. This
899          * does not leak memory, though, as the hugepage will be freed
900          * once it is out of use. It also does not allow the counters to
901          * go out of whack in adjust_pool_surplus() as we don't modify
902          * the node values until we've gotten the hugepage and only the
903          * per-node value is checked there.
904          */
905         spin_lock(&hugetlb_lock);
906         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
907                 spin_unlock(&hugetlb_lock);
908                 return NULL;
909         } else {
910                 h->nr_huge_pages++;
911                 h->surplus_huge_pages++;
912         }
913         spin_unlock(&hugetlb_lock);
914
915         if (nid == NUMA_NO_NODE)
916                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
917                                    __GFP_REPEAT|__GFP_NOWARN,
918                                    huge_page_order(h));
919         else
920                 page = alloc_pages_exact_node(nid,
921                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
922                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
923
924         if (page && arch_prepare_hugepage(page)) {
925                 __free_pages(page, huge_page_order(h));
926                 page = NULL;
927         }
928
929         spin_lock(&hugetlb_lock);
930         if (page) {
931                 INIT_LIST_HEAD(&page->lru);
932                 r_nid = page_to_nid(page);
933                 set_compound_page_dtor(page, free_huge_page);
934                 set_hugetlb_cgroup(page, NULL);
935                 /*
936                  * We incremented the global counters already
937                  */
938                 h->nr_huge_pages_node[r_nid]++;
939                 h->surplus_huge_pages_node[r_nid]++;
940                 __count_vm_event(HTLB_BUDDY_PGALLOC);
941         } else {
942                 h->nr_huge_pages--;
943                 h->surplus_huge_pages--;
944                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
945         }
946         spin_unlock(&hugetlb_lock);
947
948         return page;
949 }
950
951 /*
952  * This allocation function is useful in the context where vma is irrelevant.
953  * E.g. soft-offlining uses this function because it only cares physical
954  * address of error page.
955  */
956 struct page *alloc_huge_page_node(struct hstate *h, int nid)
957 {
958         struct page *page;
959
960         spin_lock(&hugetlb_lock);
961         page = dequeue_huge_page_node(h, nid);
962         spin_unlock(&hugetlb_lock);
963
964         if (!page)
965                 page = alloc_buddy_huge_page(h, nid);
966
967         return page;
968 }
969
970 /*
971  * Increase the hugetlb pool such that it can accommodate a reservation
972  * of size 'delta'.
973  */
974 static int gather_surplus_pages(struct hstate *h, int delta)
975 {
976         struct list_head surplus_list;
977         struct page *page, *tmp;
978         int ret, i;
979         int needed, allocated;
980         bool alloc_ok = true;
981
982         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
983         if (needed <= 0) {
984                 h->resv_huge_pages += delta;
985                 return 0;
986         }
987
988         allocated = 0;
989         INIT_LIST_HEAD(&surplus_list);
990
991         ret = -ENOMEM;
992 retry:
993         spin_unlock(&hugetlb_lock);
994         for (i = 0; i < needed; i++) {
995                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
996                 if (!page) {
997                         alloc_ok = false;
998                         break;
999                 }
1000                 list_add(&page->lru, &surplus_list);
1001         }
1002         allocated += i;
1003
1004         /*
1005          * After retaking hugetlb_lock, we need to recalculate 'needed'
1006          * because either resv_huge_pages or free_huge_pages may have changed.
1007          */
1008         spin_lock(&hugetlb_lock);
1009         needed = (h->resv_huge_pages + delta) -
1010                         (h->free_huge_pages + allocated);
1011         if (needed > 0) {
1012                 if (alloc_ok)
1013                         goto retry;
1014                 /*
1015                  * We were not able to allocate enough pages to
1016                  * satisfy the entire reservation so we free what
1017                  * we've allocated so far.
1018                  */
1019                 goto free;
1020         }
1021         /*
1022          * The surplus_list now contains _at_least_ the number of extra pages
1023          * needed to accommodate the reservation.  Add the appropriate number
1024          * of pages to the hugetlb pool and free the extras back to the buddy
1025          * allocator.  Commit the entire reservation here to prevent another
1026          * process from stealing the pages as they are added to the pool but
1027          * before they are reserved.
1028          */
1029         needed += allocated;
1030         h->resv_huge_pages += delta;
1031         ret = 0;
1032
1033         /* Free the needed pages to the hugetlb pool */
1034         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1035                 if ((--needed) < 0)
1036                         break;
1037                 /*
1038                  * This page is now managed by the hugetlb allocator and has
1039                  * no users -- drop the buddy allocator's reference.
1040                  */
1041                 put_page_testzero(page);
1042                 VM_BUG_ON(page_count(page));
1043                 enqueue_huge_page(h, page);
1044         }
1045 free:
1046         spin_unlock(&hugetlb_lock);
1047
1048         /* Free unnecessary surplus pages to the buddy allocator */
1049         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1050                 put_page(page);
1051         spin_lock(&hugetlb_lock);
1052
1053         return ret;
1054 }
1055
1056 /*
1057  * When releasing a hugetlb pool reservation, any surplus pages that were
1058  * allocated to satisfy the reservation must be explicitly freed if they were
1059  * never used.
1060  * Called with hugetlb_lock held.
1061  */
1062 static void return_unused_surplus_pages(struct hstate *h,
1063                                         unsigned long unused_resv_pages)
1064 {
1065         unsigned long nr_pages;
1066
1067         /* Uncommit the reservation */
1068         h->resv_huge_pages -= unused_resv_pages;
1069
1070         /* Cannot return gigantic pages currently */
1071         if (h->order >= MAX_ORDER)
1072                 return;
1073
1074         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1075
1076         /*
1077          * We want to release as many surplus pages as possible, spread
1078          * evenly across all nodes with memory. Iterate across these nodes
1079          * until we can no longer free unreserved surplus pages. This occurs
1080          * when the nodes with surplus pages have no free pages.
1081          * free_pool_huge_page() will balance the the freed pages across the
1082          * on-line nodes with memory and will handle the hstate accounting.
1083          */
1084         while (nr_pages--) {
1085                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1086                         break;
1087         }
1088 }
1089
1090 /*
1091  * Determine if the huge page at addr within the vma has an associated
1092  * reservation.  Where it does not we will need to logically increase
1093  * reservation and actually increase subpool usage before an allocation
1094  * can occur.  Where any new reservation would be required the
1095  * reservation change is prepared, but not committed.  Once the page
1096  * has been allocated from the subpool and instantiated the change should
1097  * be committed via vma_commit_reservation.  No action is required on
1098  * failure.
1099  */
1100 static long vma_needs_reservation(struct hstate *h,
1101                         struct vm_area_struct *vma, unsigned long addr)
1102 {
1103         struct address_space *mapping = vma->vm_file->f_mapping;
1104         struct inode *inode = mapping->host;
1105
1106         if (vma->vm_flags & VM_MAYSHARE) {
1107                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108                 return region_chg(&inode->i_mapping->private_list,
1109                                                         idx, idx + 1);
1110
1111         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1112                 return 1;
1113
1114         } else  {
1115                 long err;
1116                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1117                 struct resv_map *reservations = vma_resv_map(vma);
1118
1119                 err = region_chg(&reservations->regions, idx, idx + 1);
1120                 if (err < 0)
1121                         return err;
1122                 return 0;
1123         }
1124 }
1125 static void vma_commit_reservation(struct hstate *h,
1126                         struct vm_area_struct *vma, unsigned long addr)
1127 {
1128         struct address_space *mapping = vma->vm_file->f_mapping;
1129         struct inode *inode = mapping->host;
1130
1131         if (vma->vm_flags & VM_MAYSHARE) {
1132                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1133                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1134
1135         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1136                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1137                 struct resv_map *reservations = vma_resv_map(vma);
1138
1139                 /* Mark this page used in the map. */
1140                 region_add(&reservations->regions, idx, idx + 1);
1141         }
1142 }
1143
1144 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1145                                     unsigned long addr, int avoid_reserve)
1146 {
1147         struct hugepage_subpool *spool = subpool_vma(vma);
1148         struct hstate *h = hstate_vma(vma);
1149         struct page *page;
1150         long chg;
1151         int ret, idx;
1152         struct hugetlb_cgroup *h_cg;
1153
1154         idx = hstate_index(h);
1155         /*
1156          * Processes that did not create the mapping will have no
1157          * reserves and will not have accounted against subpool
1158          * limit. Check that the subpool limit can be made before
1159          * satisfying the allocation MAP_NORESERVE mappings may also
1160          * need pages and subpool limit allocated allocated if no reserve
1161          * mapping overlaps.
1162          */
1163         chg = vma_needs_reservation(h, vma, addr);
1164         if (chg < 0)
1165                 return ERR_PTR(-ENOMEM);
1166         if (chg)
1167                 if (hugepage_subpool_get_pages(spool, chg))
1168                         return ERR_PTR(-ENOSPC);
1169
1170         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1171         if (ret) {
1172                 hugepage_subpool_put_pages(spool, chg);
1173                 return ERR_PTR(-ENOSPC);
1174         }
1175         spin_lock(&hugetlb_lock);
1176         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1177         if (!page) {
1178                 spin_unlock(&hugetlb_lock);
1179                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1180                 if (!page) {
1181                         hugetlb_cgroup_uncharge_cgroup(idx,
1182                                                        pages_per_huge_page(h),
1183                                                        h_cg);
1184                         hugepage_subpool_put_pages(spool, chg);
1185                         return ERR_PTR(-ENOSPC);
1186                 }
1187                 spin_lock(&hugetlb_lock);
1188                 list_move(&page->lru, &h->hugepage_activelist);
1189                 /* Fall through */
1190         }
1191         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1192         spin_unlock(&hugetlb_lock);
1193
1194         set_page_private(page, (unsigned long)spool);
1195
1196         vma_commit_reservation(h, vma, addr);
1197         return page;
1198 }
1199
1200 int __weak alloc_bootmem_huge_page(struct hstate *h)
1201 {
1202         struct huge_bootmem_page *m;
1203         int nr_nodes, node;
1204
1205         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1206                 void *addr;
1207
1208                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1209                                 huge_page_size(h), huge_page_size(h), 0);
1210
1211                 if (addr) {
1212                         /*
1213                          * Use the beginning of the huge page to store the
1214                          * huge_bootmem_page struct (until gather_bootmem
1215                          * puts them into the mem_map).
1216                          */
1217                         m = addr;
1218                         goto found;
1219                 }
1220         }
1221         return 0;
1222
1223 found:
1224         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1225         /* Put them into a private list first because mem_map is not up yet */
1226         list_add(&m->list, &huge_boot_pages);
1227         m->hstate = h;
1228         return 1;
1229 }
1230
1231 static void prep_compound_huge_page(struct page *page, int order)
1232 {
1233         if (unlikely(order > (MAX_ORDER - 1)))
1234                 prep_compound_gigantic_page(page, order);
1235         else
1236                 prep_compound_page(page, order);
1237 }
1238
1239 /* Put bootmem huge pages into the standard lists after mem_map is up */
1240 static void __init gather_bootmem_prealloc(void)
1241 {
1242         struct huge_bootmem_page *m;
1243
1244         list_for_each_entry(m, &huge_boot_pages, list) {
1245                 struct hstate *h = m->hstate;
1246                 struct page *page;
1247
1248 #ifdef CONFIG_HIGHMEM
1249                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1250                 free_bootmem_late((unsigned long)m,
1251                                   sizeof(struct huge_bootmem_page));
1252 #else
1253                 page = virt_to_page(m);
1254 #endif
1255                 __ClearPageReserved(page);
1256                 WARN_ON(page_count(page) != 1);
1257                 prep_compound_huge_page(page, h->order);
1258                 prep_new_huge_page(h, page, page_to_nid(page));
1259                 /*
1260                  * If we had gigantic hugepages allocated at boot time, we need
1261                  * to restore the 'stolen' pages to totalram_pages in order to
1262                  * fix confusing memory reports from free(1) and another
1263                  * side-effects, like CommitLimit going negative.
1264                  */
1265                 if (h->order > (MAX_ORDER - 1))
1266                         adjust_managed_page_count(page, 1 << h->order);
1267         }
1268 }
1269
1270 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1271 {
1272         unsigned long i;
1273
1274         for (i = 0; i < h->max_huge_pages; ++i) {
1275                 if (h->order >= MAX_ORDER) {
1276                         if (!alloc_bootmem_huge_page(h))
1277                                 break;
1278                 } else if (!alloc_fresh_huge_page(h,
1279                                          &node_states[N_MEMORY]))
1280                         break;
1281         }
1282         h->max_huge_pages = i;
1283 }
1284
1285 static void __init hugetlb_init_hstates(void)
1286 {
1287         struct hstate *h;
1288
1289         for_each_hstate(h) {
1290                 /* oversize hugepages were init'ed in early boot */
1291                 if (h->order < MAX_ORDER)
1292                         hugetlb_hstate_alloc_pages(h);
1293         }
1294 }
1295
1296 static char * __init memfmt(char *buf, unsigned long n)
1297 {
1298         if (n >= (1UL << 30))
1299                 sprintf(buf, "%lu GB", n >> 30);
1300         else if (n >= (1UL << 20))
1301                 sprintf(buf, "%lu MB", n >> 20);
1302         else
1303                 sprintf(buf, "%lu KB", n >> 10);
1304         return buf;
1305 }
1306
1307 static void __init report_hugepages(void)
1308 {
1309         struct hstate *h;
1310
1311         for_each_hstate(h) {
1312                 char buf[32];
1313                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1314                         memfmt(buf, huge_page_size(h)),
1315                         h->free_huge_pages);
1316         }
1317 }
1318
1319 #ifdef CONFIG_HIGHMEM
1320 static void try_to_free_low(struct hstate *h, unsigned long count,
1321                                                 nodemask_t *nodes_allowed)
1322 {
1323         int i;
1324
1325         if (h->order >= MAX_ORDER)
1326                 return;
1327
1328         for_each_node_mask(i, *nodes_allowed) {
1329                 struct page *page, *next;
1330                 struct list_head *freel = &h->hugepage_freelists[i];
1331                 list_for_each_entry_safe(page, next, freel, lru) {
1332                         if (count >= h->nr_huge_pages)
1333                                 return;
1334                         if (PageHighMem(page))
1335                                 continue;
1336                         list_del(&page->lru);
1337                         update_and_free_page(h, page);
1338                         h->free_huge_pages--;
1339                         h->free_huge_pages_node[page_to_nid(page)]--;
1340                 }
1341         }
1342 }
1343 #else
1344 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1345                                                 nodemask_t *nodes_allowed)
1346 {
1347 }
1348 #endif
1349
1350 /*
1351  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1352  * balanced by operating on them in a round-robin fashion.
1353  * Returns 1 if an adjustment was made.
1354  */
1355 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1356                                 int delta)
1357 {
1358         int nr_nodes, node;
1359
1360         VM_BUG_ON(delta != -1 && delta != 1);
1361
1362         if (delta < 0) {
1363                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1364                         if (h->surplus_huge_pages_node[node])
1365                                 goto found;
1366                 }
1367         } else {
1368                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1369                         if (h->surplus_huge_pages_node[node] <
1370                                         h->nr_huge_pages_node[node])
1371                                 goto found;
1372                 }
1373         }
1374         return 0;
1375
1376 found:
1377         h->surplus_huge_pages += delta;
1378         h->surplus_huge_pages_node[node] += delta;
1379         return 1;
1380 }
1381
1382 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1383 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1384                                                 nodemask_t *nodes_allowed)
1385 {
1386         unsigned long min_count, ret;
1387
1388         if (h->order >= MAX_ORDER)
1389                 return h->max_huge_pages;
1390
1391         /*
1392          * Increase the pool size
1393          * First take pages out of surplus state.  Then make up the
1394          * remaining difference by allocating fresh huge pages.
1395          *
1396          * We might race with alloc_buddy_huge_page() here and be unable
1397          * to convert a surplus huge page to a normal huge page. That is
1398          * not critical, though, it just means the overall size of the
1399          * pool might be one hugepage larger than it needs to be, but
1400          * within all the constraints specified by the sysctls.
1401          */
1402         spin_lock(&hugetlb_lock);
1403         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1404                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1405                         break;
1406         }
1407
1408         while (count > persistent_huge_pages(h)) {
1409                 /*
1410                  * If this allocation races such that we no longer need the
1411                  * page, free_huge_page will handle it by freeing the page
1412                  * and reducing the surplus.
1413                  */
1414                 spin_unlock(&hugetlb_lock);
1415                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1416                 spin_lock(&hugetlb_lock);
1417                 if (!ret)
1418                         goto out;
1419
1420                 /* Bail for signals. Probably ctrl-c from user */
1421                 if (signal_pending(current))
1422                         goto out;
1423         }
1424
1425         /*
1426          * Decrease the pool size
1427          * First return free pages to the buddy allocator (being careful
1428          * to keep enough around to satisfy reservations).  Then place
1429          * pages into surplus state as needed so the pool will shrink
1430          * to the desired size as pages become free.
1431          *
1432          * By placing pages into the surplus state independent of the
1433          * overcommit value, we are allowing the surplus pool size to
1434          * exceed overcommit. There are few sane options here. Since
1435          * alloc_buddy_huge_page() is checking the global counter,
1436          * though, we'll note that we're not allowed to exceed surplus
1437          * and won't grow the pool anywhere else. Not until one of the
1438          * sysctls are changed, or the surplus pages go out of use.
1439          */
1440         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1441         min_count = max(count, min_count);
1442         try_to_free_low(h, min_count, nodes_allowed);
1443         while (min_count < persistent_huge_pages(h)) {
1444                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1445                         break;
1446         }
1447         while (count < persistent_huge_pages(h)) {
1448                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1449                         break;
1450         }
1451 out:
1452         ret = persistent_huge_pages(h);
1453         spin_unlock(&hugetlb_lock);
1454         return ret;
1455 }
1456
1457 #define HSTATE_ATTR_RO(_name) \
1458         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1459
1460 #define HSTATE_ATTR(_name) \
1461         static struct kobj_attribute _name##_attr = \
1462                 __ATTR(_name, 0644, _name##_show, _name##_store)
1463
1464 static struct kobject *hugepages_kobj;
1465 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1466
1467 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1468
1469 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1470 {
1471         int i;
1472
1473         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1474                 if (hstate_kobjs[i] == kobj) {
1475                         if (nidp)
1476                                 *nidp = NUMA_NO_NODE;
1477                         return &hstates[i];
1478                 }
1479
1480         return kobj_to_node_hstate(kobj, nidp);
1481 }
1482
1483 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1484                                         struct kobj_attribute *attr, char *buf)
1485 {
1486         struct hstate *h;
1487         unsigned long nr_huge_pages;
1488         int nid;
1489
1490         h = kobj_to_hstate(kobj, &nid);
1491         if (nid == NUMA_NO_NODE)
1492                 nr_huge_pages = h->nr_huge_pages;
1493         else
1494                 nr_huge_pages = h->nr_huge_pages_node[nid];
1495
1496         return sprintf(buf, "%lu\n", nr_huge_pages);
1497 }
1498
1499 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1500                         struct kobject *kobj, struct kobj_attribute *attr,
1501                         const char *buf, size_t len)
1502 {
1503         int err;
1504         int nid;
1505         unsigned long count;
1506         struct hstate *h;
1507         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1508
1509         err = kstrtoul(buf, 10, &count);
1510         if (err)
1511                 goto out;
1512
1513         h = kobj_to_hstate(kobj, &nid);
1514         if (h->order >= MAX_ORDER) {
1515                 err = -EINVAL;
1516                 goto out;
1517         }
1518
1519         if (nid == NUMA_NO_NODE) {
1520                 /*
1521                  * global hstate attribute
1522                  */
1523                 if (!(obey_mempolicy &&
1524                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1525                         NODEMASK_FREE(nodes_allowed);
1526                         nodes_allowed = &node_states[N_MEMORY];
1527                 }
1528         } else if (nodes_allowed) {
1529                 /*
1530                  * per node hstate attribute: adjust count to global,
1531                  * but restrict alloc/free to the specified node.
1532                  */
1533                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1534                 init_nodemask_of_node(nodes_allowed, nid);
1535         } else
1536                 nodes_allowed = &node_states[N_MEMORY];
1537
1538         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1539
1540         if (nodes_allowed != &node_states[N_MEMORY])
1541                 NODEMASK_FREE(nodes_allowed);
1542
1543         return len;
1544 out:
1545         NODEMASK_FREE(nodes_allowed);
1546         return err;
1547 }
1548
1549 static ssize_t nr_hugepages_show(struct kobject *kobj,
1550                                        struct kobj_attribute *attr, char *buf)
1551 {
1552         return nr_hugepages_show_common(kobj, attr, buf);
1553 }
1554
1555 static ssize_t nr_hugepages_store(struct kobject *kobj,
1556                struct kobj_attribute *attr, const char *buf, size_t len)
1557 {
1558         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1559 }
1560 HSTATE_ATTR(nr_hugepages);
1561
1562 #ifdef CONFIG_NUMA
1563
1564 /*
1565  * hstate attribute for optionally mempolicy-based constraint on persistent
1566  * huge page alloc/free.
1567  */
1568 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1569                                        struct kobj_attribute *attr, char *buf)
1570 {
1571         return nr_hugepages_show_common(kobj, attr, buf);
1572 }
1573
1574 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1575                struct kobj_attribute *attr, const char *buf, size_t len)
1576 {
1577         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1578 }
1579 HSTATE_ATTR(nr_hugepages_mempolicy);
1580 #endif
1581
1582
1583 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1584                                         struct kobj_attribute *attr, char *buf)
1585 {
1586         struct hstate *h = kobj_to_hstate(kobj, NULL);
1587         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1588 }
1589
1590 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1591                 struct kobj_attribute *attr, const char *buf, size_t count)
1592 {
1593         int err;
1594         unsigned long input;
1595         struct hstate *h = kobj_to_hstate(kobj, NULL);
1596
1597         if (h->order >= MAX_ORDER)
1598                 return -EINVAL;
1599
1600         err = kstrtoul(buf, 10, &input);
1601         if (err)
1602                 return err;
1603
1604         spin_lock(&hugetlb_lock);
1605         h->nr_overcommit_huge_pages = input;
1606         spin_unlock(&hugetlb_lock);
1607
1608         return count;
1609 }
1610 HSTATE_ATTR(nr_overcommit_hugepages);
1611
1612 static ssize_t free_hugepages_show(struct kobject *kobj,
1613                                         struct kobj_attribute *attr, char *buf)
1614 {
1615         struct hstate *h;
1616         unsigned long free_huge_pages;
1617         int nid;
1618
1619         h = kobj_to_hstate(kobj, &nid);
1620         if (nid == NUMA_NO_NODE)
1621                 free_huge_pages = h->free_huge_pages;
1622         else
1623                 free_huge_pages = h->free_huge_pages_node[nid];
1624
1625         return sprintf(buf, "%lu\n", free_huge_pages);
1626 }
1627 HSTATE_ATTR_RO(free_hugepages);
1628
1629 static ssize_t resv_hugepages_show(struct kobject *kobj,
1630                                         struct kobj_attribute *attr, char *buf)
1631 {
1632         struct hstate *h = kobj_to_hstate(kobj, NULL);
1633         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1634 }
1635 HSTATE_ATTR_RO(resv_hugepages);
1636
1637 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1638                                         struct kobj_attribute *attr, char *buf)
1639 {
1640         struct hstate *h;
1641         unsigned long surplus_huge_pages;
1642         int nid;
1643
1644         h = kobj_to_hstate(kobj, &nid);
1645         if (nid == NUMA_NO_NODE)
1646                 surplus_huge_pages = h->surplus_huge_pages;
1647         else
1648                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1649
1650         return sprintf(buf, "%lu\n", surplus_huge_pages);
1651 }
1652 HSTATE_ATTR_RO(surplus_hugepages);
1653
1654 static struct attribute *hstate_attrs[] = {
1655         &nr_hugepages_attr.attr,
1656         &nr_overcommit_hugepages_attr.attr,
1657         &free_hugepages_attr.attr,
1658         &resv_hugepages_attr.attr,
1659         &surplus_hugepages_attr.attr,
1660 #ifdef CONFIG_NUMA
1661         &nr_hugepages_mempolicy_attr.attr,
1662 #endif
1663         NULL,
1664 };
1665
1666 static struct attribute_group hstate_attr_group = {
1667         .attrs = hstate_attrs,
1668 };
1669
1670 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1671                                     struct kobject **hstate_kobjs,
1672                                     struct attribute_group *hstate_attr_group)
1673 {
1674         int retval;
1675         int hi = hstate_index(h);
1676
1677         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1678         if (!hstate_kobjs[hi])
1679                 return -ENOMEM;
1680
1681         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1682         if (retval)
1683                 kobject_put(hstate_kobjs[hi]);
1684
1685         return retval;
1686 }
1687
1688 static void __init hugetlb_sysfs_init(void)
1689 {
1690         struct hstate *h;
1691         int err;
1692
1693         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1694         if (!hugepages_kobj)
1695                 return;
1696
1697         for_each_hstate(h) {
1698                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1699                                          hstate_kobjs, &hstate_attr_group);
1700                 if (err)
1701                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1702         }
1703 }
1704
1705 #ifdef CONFIG_NUMA
1706
1707 /*
1708  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1709  * with node devices in node_devices[] using a parallel array.  The array
1710  * index of a node device or _hstate == node id.
1711  * This is here to avoid any static dependency of the node device driver, in
1712  * the base kernel, on the hugetlb module.
1713  */
1714 struct node_hstate {
1715         struct kobject          *hugepages_kobj;
1716         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1717 };
1718 struct node_hstate node_hstates[MAX_NUMNODES];
1719
1720 /*
1721  * A subset of global hstate attributes for node devices
1722  */
1723 static struct attribute *per_node_hstate_attrs[] = {
1724         &nr_hugepages_attr.attr,
1725         &free_hugepages_attr.attr,
1726         &surplus_hugepages_attr.attr,
1727         NULL,
1728 };
1729
1730 static struct attribute_group per_node_hstate_attr_group = {
1731         .attrs = per_node_hstate_attrs,
1732 };
1733
1734 /*
1735  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1736  * Returns node id via non-NULL nidp.
1737  */
1738 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1739 {
1740         int nid;
1741
1742         for (nid = 0; nid < nr_node_ids; nid++) {
1743                 struct node_hstate *nhs = &node_hstates[nid];
1744                 int i;
1745                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1746                         if (nhs->hstate_kobjs[i] == kobj) {
1747                                 if (nidp)
1748                                         *nidp = nid;
1749                                 return &hstates[i];
1750                         }
1751         }
1752
1753         BUG();
1754         return NULL;
1755 }
1756
1757 /*
1758  * Unregister hstate attributes from a single node device.
1759  * No-op if no hstate attributes attached.
1760  */
1761 static void hugetlb_unregister_node(struct node *node)
1762 {
1763         struct hstate *h;
1764         struct node_hstate *nhs = &node_hstates[node->dev.id];
1765
1766         if (!nhs->hugepages_kobj)
1767                 return;         /* no hstate attributes */
1768
1769         for_each_hstate(h) {
1770                 int idx = hstate_index(h);
1771                 if (nhs->hstate_kobjs[idx]) {
1772                         kobject_put(nhs->hstate_kobjs[idx]);
1773                         nhs->hstate_kobjs[idx] = NULL;
1774                 }
1775         }
1776
1777         kobject_put(nhs->hugepages_kobj);
1778         nhs->hugepages_kobj = NULL;
1779 }
1780
1781 /*
1782  * hugetlb module exit:  unregister hstate attributes from node devices
1783  * that have them.
1784  */
1785 static void hugetlb_unregister_all_nodes(void)
1786 {
1787         int nid;
1788
1789         /*
1790          * disable node device registrations.
1791          */
1792         register_hugetlbfs_with_node(NULL, NULL);
1793
1794         /*
1795          * remove hstate attributes from any nodes that have them.
1796          */
1797         for (nid = 0; nid < nr_node_ids; nid++)
1798                 hugetlb_unregister_node(node_devices[nid]);
1799 }
1800
1801 /*
1802  * Register hstate attributes for a single node device.
1803  * No-op if attributes already registered.
1804  */
1805 static void hugetlb_register_node(struct node *node)
1806 {
1807         struct hstate *h;
1808         struct node_hstate *nhs = &node_hstates[node->dev.id];
1809         int err;
1810
1811         if (nhs->hugepages_kobj)
1812                 return;         /* already allocated */
1813
1814         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1815                                                         &node->dev.kobj);
1816         if (!nhs->hugepages_kobj)
1817                 return;
1818
1819         for_each_hstate(h) {
1820                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1821                                                 nhs->hstate_kobjs,
1822                                                 &per_node_hstate_attr_group);
1823                 if (err) {
1824                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1825                                 h->name, node->dev.id);
1826                         hugetlb_unregister_node(node);
1827                         break;
1828                 }
1829         }
1830 }
1831
1832 /*
1833  * hugetlb init time:  register hstate attributes for all registered node
1834  * devices of nodes that have memory.  All on-line nodes should have
1835  * registered their associated device by this time.
1836  */
1837 static void hugetlb_register_all_nodes(void)
1838 {
1839         int nid;
1840
1841         for_each_node_state(nid, N_MEMORY) {
1842                 struct node *node = node_devices[nid];
1843                 if (node->dev.id == nid)
1844                         hugetlb_register_node(node);
1845         }
1846
1847         /*
1848          * Let the node device driver know we're here so it can
1849          * [un]register hstate attributes on node hotplug.
1850          */
1851         register_hugetlbfs_with_node(hugetlb_register_node,
1852                                      hugetlb_unregister_node);
1853 }
1854 #else   /* !CONFIG_NUMA */
1855
1856 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1857 {
1858         BUG();
1859         if (nidp)
1860                 *nidp = -1;
1861         return NULL;
1862 }
1863
1864 static void hugetlb_unregister_all_nodes(void) { }
1865
1866 static void hugetlb_register_all_nodes(void) { }
1867
1868 #endif
1869
1870 static void __exit hugetlb_exit(void)
1871 {
1872         struct hstate *h;
1873
1874         hugetlb_unregister_all_nodes();
1875
1876         for_each_hstate(h) {
1877                 kobject_put(hstate_kobjs[hstate_index(h)]);
1878         }
1879
1880         kobject_put(hugepages_kobj);
1881 }
1882 module_exit(hugetlb_exit);
1883
1884 static int __init hugetlb_init(void)
1885 {
1886         /* Some platform decide whether they support huge pages at boot
1887          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1888          * there is no such support
1889          */
1890         if (HPAGE_SHIFT == 0)
1891                 return 0;
1892
1893         if (!size_to_hstate(default_hstate_size)) {
1894                 default_hstate_size = HPAGE_SIZE;
1895                 if (!size_to_hstate(default_hstate_size))
1896                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1897         }
1898         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1899         if (default_hstate_max_huge_pages)
1900                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1901
1902         hugetlb_init_hstates();
1903         gather_bootmem_prealloc();
1904         report_hugepages();
1905
1906         hugetlb_sysfs_init();
1907         hugetlb_register_all_nodes();
1908         hugetlb_cgroup_file_init();
1909
1910         return 0;
1911 }
1912 module_init(hugetlb_init);
1913
1914 /* Should be called on processing a hugepagesz=... option */
1915 void __init hugetlb_add_hstate(unsigned order)
1916 {
1917         struct hstate *h;
1918         unsigned long i;
1919
1920         if (size_to_hstate(PAGE_SIZE << order)) {
1921                 pr_warning("hugepagesz= specified twice, ignoring\n");
1922                 return;
1923         }
1924         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1925         BUG_ON(order == 0);
1926         h = &hstates[hugetlb_max_hstate++];
1927         h->order = order;
1928         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1929         h->nr_huge_pages = 0;
1930         h->free_huge_pages = 0;
1931         for (i = 0; i < MAX_NUMNODES; ++i)
1932                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1933         INIT_LIST_HEAD(&h->hugepage_activelist);
1934         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1935         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1936         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1937                                         huge_page_size(h)/1024);
1938
1939         parsed_hstate = h;
1940 }
1941
1942 static int __init hugetlb_nrpages_setup(char *s)
1943 {
1944         unsigned long *mhp;
1945         static unsigned long *last_mhp;
1946
1947         /*
1948          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1949          * so this hugepages= parameter goes to the "default hstate".
1950          */
1951         if (!hugetlb_max_hstate)
1952                 mhp = &default_hstate_max_huge_pages;
1953         else
1954                 mhp = &parsed_hstate->max_huge_pages;
1955
1956         if (mhp == last_mhp) {
1957                 pr_warning("hugepages= specified twice without "
1958                            "interleaving hugepagesz=, ignoring\n");
1959                 return 1;
1960         }
1961
1962         if (sscanf(s, "%lu", mhp) <= 0)
1963                 *mhp = 0;
1964
1965         /*
1966          * Global state is always initialized later in hugetlb_init.
1967          * But we need to allocate >= MAX_ORDER hstates here early to still
1968          * use the bootmem allocator.
1969          */
1970         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1971                 hugetlb_hstate_alloc_pages(parsed_hstate);
1972
1973         last_mhp = mhp;
1974
1975         return 1;
1976 }
1977 __setup("hugepages=", hugetlb_nrpages_setup);
1978
1979 static int __init hugetlb_default_setup(char *s)
1980 {
1981         default_hstate_size = memparse(s, &s);
1982         return 1;
1983 }
1984 __setup("default_hugepagesz=", hugetlb_default_setup);
1985
1986 static unsigned int cpuset_mems_nr(unsigned int *array)
1987 {
1988         int node;
1989         unsigned int nr = 0;
1990
1991         for_each_node_mask(node, cpuset_current_mems_allowed)
1992                 nr += array[node];
1993
1994         return nr;
1995 }
1996
1997 #ifdef CONFIG_SYSCTL
1998 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1999                          struct ctl_table *table, int write,
2000                          void __user *buffer, size_t *length, loff_t *ppos)
2001 {
2002         struct hstate *h = &default_hstate;
2003         unsigned long tmp;
2004         int ret;
2005
2006         tmp = h->max_huge_pages;
2007
2008         if (write && h->order >= MAX_ORDER)
2009                 return -EINVAL;
2010
2011         table->data = &tmp;
2012         table->maxlen = sizeof(unsigned long);
2013         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2014         if (ret)
2015                 goto out;
2016
2017         if (write) {
2018                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2019                                                 GFP_KERNEL | __GFP_NORETRY);
2020                 if (!(obey_mempolicy &&
2021                                init_nodemask_of_mempolicy(nodes_allowed))) {
2022                         NODEMASK_FREE(nodes_allowed);
2023                         nodes_allowed = &node_states[N_MEMORY];
2024                 }
2025                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2026
2027                 if (nodes_allowed != &node_states[N_MEMORY])
2028                         NODEMASK_FREE(nodes_allowed);
2029         }
2030 out:
2031         return ret;
2032 }
2033
2034 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2035                           void __user *buffer, size_t *length, loff_t *ppos)
2036 {
2037
2038         return hugetlb_sysctl_handler_common(false, table, write,
2039                                                         buffer, length, ppos);
2040 }
2041
2042 #ifdef CONFIG_NUMA
2043 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2044                           void __user *buffer, size_t *length, loff_t *ppos)
2045 {
2046         return hugetlb_sysctl_handler_common(true, table, write,
2047                                                         buffer, length, ppos);
2048 }
2049 #endif /* CONFIG_NUMA */
2050
2051 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2052                         void __user *buffer,
2053                         size_t *length, loff_t *ppos)
2054 {
2055         proc_dointvec(table, write, buffer, length, ppos);
2056         if (hugepages_treat_as_movable)
2057                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2058         else
2059                 htlb_alloc_mask = GFP_HIGHUSER;
2060         return 0;
2061 }
2062
2063 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2064                         void __user *buffer,
2065                         size_t *length, loff_t *ppos)
2066 {
2067         struct hstate *h = &default_hstate;
2068         unsigned long tmp;
2069         int ret;
2070
2071         tmp = h->nr_overcommit_huge_pages;
2072
2073         if (write && h->order >= MAX_ORDER)
2074                 return -EINVAL;
2075
2076         table->data = &tmp;
2077         table->maxlen = sizeof(unsigned long);
2078         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2079         if (ret)
2080                 goto out;
2081
2082         if (write) {
2083                 spin_lock(&hugetlb_lock);
2084                 h->nr_overcommit_huge_pages = tmp;
2085                 spin_unlock(&hugetlb_lock);
2086         }
2087 out:
2088         return ret;
2089 }
2090
2091 #endif /* CONFIG_SYSCTL */
2092
2093 void hugetlb_report_meminfo(struct seq_file *m)
2094 {
2095         struct hstate *h = &default_hstate;
2096         seq_printf(m,
2097                         "HugePages_Total:   %5lu\n"
2098                         "HugePages_Free:    %5lu\n"
2099                         "HugePages_Rsvd:    %5lu\n"
2100                         "HugePages_Surp:    %5lu\n"
2101                         "Hugepagesize:   %8lu kB\n",
2102                         h->nr_huge_pages,
2103                         h->free_huge_pages,
2104                         h->resv_huge_pages,
2105                         h->surplus_huge_pages,
2106                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2107 }
2108
2109 int hugetlb_report_node_meminfo(int nid, char *buf)
2110 {
2111         struct hstate *h = &default_hstate;
2112         return sprintf(buf,
2113                 "Node %d HugePages_Total: %5u\n"
2114                 "Node %d HugePages_Free:  %5u\n"
2115                 "Node %d HugePages_Surp:  %5u\n",
2116                 nid, h->nr_huge_pages_node[nid],
2117                 nid, h->free_huge_pages_node[nid],
2118                 nid, h->surplus_huge_pages_node[nid]);
2119 }
2120
2121 void hugetlb_show_meminfo(void)
2122 {
2123         struct hstate *h;
2124         int nid;
2125
2126         for_each_node_state(nid, N_MEMORY)
2127                 for_each_hstate(h)
2128                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2129                                 nid,
2130                                 h->nr_huge_pages_node[nid],
2131                                 h->free_huge_pages_node[nid],
2132                                 h->surplus_huge_pages_node[nid],
2133                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2134 }
2135
2136 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2137 unsigned long hugetlb_total_pages(void)
2138 {
2139         struct hstate *h;
2140         unsigned long nr_total_pages = 0;
2141
2142         for_each_hstate(h)
2143                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2144         return nr_total_pages;
2145 }
2146
2147 static int hugetlb_acct_memory(struct hstate *h, long delta)
2148 {
2149         int ret = -ENOMEM;
2150
2151         spin_lock(&hugetlb_lock);
2152         /*
2153          * When cpuset is configured, it breaks the strict hugetlb page
2154          * reservation as the accounting is done on a global variable. Such
2155          * reservation is completely rubbish in the presence of cpuset because
2156          * the reservation is not checked against page availability for the
2157          * current cpuset. Application can still potentially OOM'ed by kernel
2158          * with lack of free htlb page in cpuset that the task is in.
2159          * Attempt to enforce strict accounting with cpuset is almost
2160          * impossible (or too ugly) because cpuset is too fluid that
2161          * task or memory node can be dynamically moved between cpusets.
2162          *
2163          * The change of semantics for shared hugetlb mapping with cpuset is
2164          * undesirable. However, in order to preserve some of the semantics,
2165          * we fall back to check against current free page availability as
2166          * a best attempt and hopefully to minimize the impact of changing
2167          * semantics that cpuset has.
2168          */
2169         if (delta > 0) {
2170                 if (gather_surplus_pages(h, delta) < 0)
2171                         goto out;
2172
2173                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2174                         return_unused_surplus_pages(h, delta);
2175                         goto out;
2176                 }
2177         }
2178
2179         ret = 0;
2180         if (delta < 0)
2181                 return_unused_surplus_pages(h, (unsigned long) -delta);
2182
2183 out:
2184         spin_unlock(&hugetlb_lock);
2185         return ret;
2186 }
2187
2188 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2189 {
2190         struct resv_map *reservations = vma_resv_map(vma);
2191
2192         /*
2193          * This new VMA should share its siblings reservation map if present.
2194          * The VMA will only ever have a valid reservation map pointer where
2195          * it is being copied for another still existing VMA.  As that VMA
2196          * has a reference to the reservation map it cannot disappear until
2197          * after this open call completes.  It is therefore safe to take a
2198          * new reference here without additional locking.
2199          */
2200         if (reservations)
2201                 kref_get(&reservations->refs);
2202 }
2203
2204 static void resv_map_put(struct vm_area_struct *vma)
2205 {
2206         struct resv_map *reservations = vma_resv_map(vma);
2207
2208         if (!reservations)
2209                 return;
2210         kref_put(&reservations->refs, resv_map_release);
2211 }
2212
2213 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2214 {
2215         struct hstate *h = hstate_vma(vma);
2216         struct resv_map *reservations = vma_resv_map(vma);
2217         struct hugepage_subpool *spool = subpool_vma(vma);
2218         unsigned long reserve;
2219         unsigned long start;
2220         unsigned long end;
2221
2222         if (reservations) {
2223                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2224                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2225
2226                 reserve = (end - start) -
2227                         region_count(&reservations->regions, start, end);
2228
2229                 resv_map_put(vma);
2230
2231                 if (reserve) {
2232                         hugetlb_acct_memory(h, -reserve);
2233                         hugepage_subpool_put_pages(spool, reserve);
2234                 }
2235         }
2236 }
2237
2238 /*
2239  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2240  * handle_mm_fault() to try to instantiate regular-sized pages in the
2241  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2242  * this far.
2243  */
2244 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2245 {
2246         BUG();
2247         return 0;
2248 }
2249
2250 const struct vm_operations_struct hugetlb_vm_ops = {
2251         .fault = hugetlb_vm_op_fault,
2252         .open = hugetlb_vm_op_open,
2253         .close = hugetlb_vm_op_close,
2254 };
2255
2256 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2257                                 int writable)
2258 {
2259         pte_t entry;
2260
2261         if (writable) {
2262                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2263                                          vma->vm_page_prot)));
2264         } else {
2265                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2266                                            vma->vm_page_prot));
2267         }
2268         entry = pte_mkyoung(entry);
2269         entry = pte_mkhuge(entry);
2270         entry = arch_make_huge_pte(entry, vma, page, writable);
2271
2272         return entry;
2273 }
2274
2275 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2276                                    unsigned long address, pte_t *ptep)
2277 {
2278         pte_t entry;
2279
2280         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2281         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2282                 update_mmu_cache(vma, address, ptep);
2283 }
2284
2285
2286 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2287                             struct vm_area_struct *vma)
2288 {
2289         pte_t *src_pte, *dst_pte, entry;
2290         struct page *ptepage;
2291         unsigned long addr;
2292         int cow;
2293         struct hstate *h = hstate_vma(vma);
2294         unsigned long sz = huge_page_size(h);
2295
2296         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2297
2298         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2299                 src_pte = huge_pte_offset(src, addr);
2300                 if (!src_pte)
2301                         continue;
2302                 dst_pte = huge_pte_alloc(dst, addr, sz);
2303                 if (!dst_pte)
2304                         goto nomem;
2305
2306                 /* If the pagetables are shared don't copy or take references */
2307                 if (dst_pte == src_pte)
2308                         continue;
2309
2310                 spin_lock(&dst->page_table_lock);
2311                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2312                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2313                         if (cow)
2314                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2315                         entry = huge_ptep_get(src_pte);
2316                         ptepage = pte_page(entry);
2317                         get_page(ptepage);
2318                         page_dup_rmap(ptepage);
2319                         set_huge_pte_at(dst, addr, dst_pte, entry);
2320                 }
2321                 spin_unlock(&src->page_table_lock);
2322                 spin_unlock(&dst->page_table_lock);
2323         }
2324         return 0;
2325
2326 nomem:
2327         return -ENOMEM;
2328 }
2329
2330 static int is_hugetlb_entry_migration(pte_t pte)
2331 {
2332         swp_entry_t swp;
2333
2334         if (huge_pte_none(pte) || pte_present(pte))
2335                 return 0;
2336         swp = pte_to_swp_entry(pte);
2337         if (non_swap_entry(swp) && is_migration_entry(swp))
2338                 return 1;
2339         else
2340                 return 0;
2341 }
2342
2343 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2344 {
2345         swp_entry_t swp;
2346
2347         if (huge_pte_none(pte) || pte_present(pte))
2348                 return 0;
2349         swp = pte_to_swp_entry(pte);
2350         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2351                 return 1;
2352         else
2353                 return 0;
2354 }
2355
2356 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2357                             unsigned long start, unsigned long end,
2358                             struct page *ref_page)
2359 {
2360         int force_flush = 0;
2361         struct mm_struct *mm = vma->vm_mm;
2362         unsigned long address;
2363         pte_t *ptep;
2364         pte_t pte;
2365         struct page *page;
2366         struct hstate *h = hstate_vma(vma);
2367         unsigned long sz = huge_page_size(h);
2368         const unsigned long mmun_start = start; /* For mmu_notifiers */
2369         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2370
2371         WARN_ON(!is_vm_hugetlb_page(vma));
2372         BUG_ON(start & ~huge_page_mask(h));
2373         BUG_ON(end & ~huge_page_mask(h));
2374
2375         tlb_start_vma(tlb, vma);
2376         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2377 again:
2378         spin_lock(&mm->page_table_lock);
2379         for (address = start; address < end; address += sz) {
2380                 ptep = huge_pte_offset(mm, address);
2381                 if (!ptep)
2382                         continue;
2383
2384                 if (huge_pmd_unshare(mm, &address, ptep))
2385                         continue;
2386
2387                 pte = huge_ptep_get(ptep);
2388                 if (huge_pte_none(pte))
2389                         continue;
2390
2391                 /*
2392                  * HWPoisoned hugepage is already unmapped and dropped reference
2393                  */
2394                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2395                         huge_pte_clear(mm, address, ptep);
2396                         continue;
2397                 }
2398
2399                 page = pte_page(pte);
2400                 /*
2401                  * If a reference page is supplied, it is because a specific
2402                  * page is being unmapped, not a range. Ensure the page we
2403                  * are about to unmap is the actual page of interest.
2404                  */
2405                 if (ref_page) {
2406                         if (page != ref_page)
2407                                 continue;
2408
2409                         /*
2410                          * Mark the VMA as having unmapped its page so that
2411                          * future faults in this VMA will fail rather than
2412                          * looking like data was lost
2413                          */
2414                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2415                 }
2416
2417                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2418                 tlb_remove_tlb_entry(tlb, ptep, address);
2419                 if (huge_pte_dirty(pte))
2420                         set_page_dirty(page);
2421
2422                 page_remove_rmap(page);
2423                 force_flush = !__tlb_remove_page(tlb, page);
2424                 if (force_flush)
2425                         break;
2426                 /* Bail out after unmapping reference page if supplied */
2427                 if (ref_page)
2428                         break;
2429         }
2430         spin_unlock(&mm->page_table_lock);
2431         /*
2432          * mmu_gather ran out of room to batch pages, we break out of
2433          * the PTE lock to avoid doing the potential expensive TLB invalidate
2434          * and page-free while holding it.
2435          */
2436         if (force_flush) {
2437                 force_flush = 0;
2438                 tlb_flush_mmu(tlb);
2439                 if (address < end && !ref_page)
2440                         goto again;
2441         }
2442         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2443         tlb_end_vma(tlb, vma);
2444 }
2445
2446 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2447                           struct vm_area_struct *vma, unsigned long start,
2448                           unsigned long end, struct page *ref_page)
2449 {
2450         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2451
2452         /*
2453          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2454          * test will fail on a vma being torn down, and not grab a page table
2455          * on its way out.  We're lucky that the flag has such an appropriate
2456          * name, and can in fact be safely cleared here. We could clear it
2457          * before the __unmap_hugepage_range above, but all that's necessary
2458          * is to clear it before releasing the i_mmap_mutex. This works
2459          * because in the context this is called, the VMA is about to be
2460          * destroyed and the i_mmap_mutex is held.
2461          */
2462         vma->vm_flags &= ~VM_MAYSHARE;
2463 }
2464
2465 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2466                           unsigned long end, struct page *ref_page)
2467 {
2468         struct mm_struct *mm;
2469         struct mmu_gather tlb;
2470
2471         mm = vma->vm_mm;
2472
2473         tlb_gather_mmu(&tlb, mm, start, end);
2474         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2475         tlb_finish_mmu(&tlb, start, end);
2476 }
2477
2478 /*
2479  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2480  * mappping it owns the reserve page for. The intention is to unmap the page
2481  * from other VMAs and let the children be SIGKILLed if they are faulting the
2482  * same region.
2483  */
2484 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2485                                 struct page *page, unsigned long address)
2486 {
2487         struct hstate *h = hstate_vma(vma);
2488         struct vm_area_struct *iter_vma;
2489         struct address_space *mapping;
2490         pgoff_t pgoff;
2491
2492         /*
2493          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2494          * from page cache lookup which is in HPAGE_SIZE units.
2495          */
2496         address = address & huge_page_mask(h);
2497         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2498                         vma->vm_pgoff;
2499         mapping = file_inode(vma->vm_file)->i_mapping;
2500
2501         /*
2502          * Take the mapping lock for the duration of the table walk. As
2503          * this mapping should be shared between all the VMAs,
2504          * __unmap_hugepage_range() is called as the lock is already held
2505          */
2506         mutex_lock(&mapping->i_mmap_mutex);
2507         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2508                 /* Do not unmap the current VMA */
2509                 if (iter_vma == vma)
2510                         continue;
2511
2512                 /*
2513                  * Unmap the page from other VMAs without their own reserves.
2514                  * They get marked to be SIGKILLed if they fault in these
2515                  * areas. This is because a future no-page fault on this VMA
2516                  * could insert a zeroed page instead of the data existing
2517                  * from the time of fork. This would look like data corruption
2518                  */
2519                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2520                         unmap_hugepage_range(iter_vma, address,
2521                                              address + huge_page_size(h), page);
2522         }
2523         mutex_unlock(&mapping->i_mmap_mutex);
2524
2525         return 1;
2526 }
2527
2528 /*
2529  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2530  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2531  * cannot race with other handlers or page migration.
2532  * Keep the pte_same checks anyway to make transition from the mutex easier.
2533  */
2534 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2535                         unsigned long address, pte_t *ptep, pte_t pte,
2536                         struct page *pagecache_page)
2537 {
2538         struct hstate *h = hstate_vma(vma);
2539         struct page *old_page, *new_page;
2540         int outside_reserve = 0;
2541         unsigned long mmun_start;       /* For mmu_notifiers */
2542         unsigned long mmun_end;         /* For mmu_notifiers */
2543
2544         old_page = pte_page(pte);
2545
2546 retry_avoidcopy:
2547         /* If no-one else is actually using this page, avoid the copy
2548          * and just make the page writable */
2549         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2550                 page_move_anon_rmap(old_page, vma, address);
2551                 set_huge_ptep_writable(vma, address, ptep);
2552                 return 0;
2553         }
2554
2555         /*
2556          * If the process that created a MAP_PRIVATE mapping is about to
2557          * perform a COW due to a shared page count, attempt to satisfy
2558          * the allocation without using the existing reserves. The pagecache
2559          * page is used to determine if the reserve at this address was
2560          * consumed or not. If reserves were used, a partial faulted mapping
2561          * at the time of fork() could consume its reserves on COW instead
2562          * of the full address range.
2563          */
2564         if (!(vma->vm_flags & VM_MAYSHARE) &&
2565                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2566                         old_page != pagecache_page)
2567                 outside_reserve = 1;
2568
2569         page_cache_get(old_page);
2570
2571         /* Drop page_table_lock as buddy allocator may be called */
2572         spin_unlock(&mm->page_table_lock);
2573         new_page = alloc_huge_page(vma, address, outside_reserve);
2574
2575         if (IS_ERR(new_page)) {
2576                 long err = PTR_ERR(new_page);
2577                 page_cache_release(old_page);
2578
2579                 /*
2580                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2581                  * it is due to references held by a child and an insufficient
2582                  * huge page pool. To guarantee the original mappers
2583                  * reliability, unmap the page from child processes. The child
2584                  * may get SIGKILLed if it later faults.
2585                  */
2586                 if (outside_reserve) {
2587                         BUG_ON(huge_pte_none(pte));
2588                         if (unmap_ref_private(mm, vma, old_page, address)) {
2589                                 BUG_ON(huge_pte_none(pte));
2590                                 spin_lock(&mm->page_table_lock);
2591                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2592                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2593                                         goto retry_avoidcopy;
2594                                 /*
2595                                  * race occurs while re-acquiring page_table_lock, and
2596                                  * our job is done.
2597                                  */
2598                                 return 0;
2599                         }
2600                         WARN_ON_ONCE(1);
2601                 }
2602
2603                 /* Caller expects lock to be held */
2604                 spin_lock(&mm->page_table_lock);
2605                 if (err == -ENOMEM)
2606                         return VM_FAULT_OOM;
2607                 else
2608                         return VM_FAULT_SIGBUS;
2609         }
2610
2611         /*
2612          * When the original hugepage is shared one, it does not have
2613          * anon_vma prepared.
2614          */
2615         if (unlikely(anon_vma_prepare(vma))) {
2616                 page_cache_release(new_page);
2617                 page_cache_release(old_page);
2618                 /* Caller expects lock to be held */
2619                 spin_lock(&mm->page_table_lock);
2620                 return VM_FAULT_OOM;
2621         }
2622
2623         copy_user_huge_page(new_page, old_page, address, vma,
2624                             pages_per_huge_page(h));
2625         __SetPageUptodate(new_page);
2626
2627         mmun_start = address & huge_page_mask(h);
2628         mmun_end = mmun_start + huge_page_size(h);
2629         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2630         /*
2631          * Retake the page_table_lock to check for racing updates
2632          * before the page tables are altered
2633          */
2634         spin_lock(&mm->page_table_lock);
2635         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2636         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2637                 /* Break COW */
2638                 huge_ptep_clear_flush(vma, address, ptep);
2639                 set_huge_pte_at(mm, address, ptep,
2640                                 make_huge_pte(vma, new_page, 1));
2641                 page_remove_rmap(old_page);
2642                 hugepage_add_new_anon_rmap(new_page, vma, address);
2643                 /* Make the old page be freed below */
2644                 new_page = old_page;
2645         }
2646         spin_unlock(&mm->page_table_lock);
2647         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2648         /* Caller expects lock to be held */
2649         spin_lock(&mm->page_table_lock);
2650         page_cache_release(new_page);
2651         page_cache_release(old_page);
2652         return 0;
2653 }
2654
2655 /* Return the pagecache page at a given address within a VMA */
2656 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2657                         struct vm_area_struct *vma, unsigned long address)
2658 {
2659         struct address_space *mapping;
2660         pgoff_t idx;
2661
2662         mapping = vma->vm_file->f_mapping;
2663         idx = vma_hugecache_offset(h, vma, address);
2664
2665         return find_lock_page(mapping, idx);
2666 }
2667
2668 /*
2669  * Return whether there is a pagecache page to back given address within VMA.
2670  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2671  */
2672 static bool hugetlbfs_pagecache_present(struct hstate *h,
2673                         struct vm_area_struct *vma, unsigned long address)
2674 {
2675         struct address_space *mapping;
2676         pgoff_t idx;
2677         struct page *page;
2678
2679         mapping = vma->vm_file->f_mapping;
2680         idx = vma_hugecache_offset(h, vma, address);
2681
2682         page = find_get_page(mapping, idx);
2683         if (page)
2684                 put_page(page);
2685         return page != NULL;
2686 }
2687
2688 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2689                         unsigned long address, pte_t *ptep, unsigned int flags)
2690 {
2691         struct hstate *h = hstate_vma(vma);
2692         int ret = VM_FAULT_SIGBUS;
2693         int anon_rmap = 0;
2694         pgoff_t idx;
2695         unsigned long size;
2696         struct page *page;
2697         struct address_space *mapping;
2698         pte_t new_pte;
2699
2700         /*
2701          * Currently, we are forced to kill the process in the event the
2702          * original mapper has unmapped pages from the child due to a failed
2703          * COW. Warn that such a situation has occurred as it may not be obvious
2704          */
2705         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2706                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2707                            current->pid);
2708                 return ret;
2709         }
2710
2711         mapping = vma->vm_file->f_mapping;
2712         idx = vma_hugecache_offset(h, vma, address);
2713
2714         /*
2715          * Use page lock to guard against racing truncation
2716          * before we get page_table_lock.
2717          */
2718 retry:
2719         page = find_lock_page(mapping, idx);
2720         if (!page) {
2721                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2722                 if (idx >= size)
2723                         goto out;
2724                 page = alloc_huge_page(vma, address, 0);
2725                 if (IS_ERR(page)) {
2726                         ret = PTR_ERR(page);
2727                         if (ret == -ENOMEM)
2728                                 ret = VM_FAULT_OOM;
2729                         else
2730                                 ret = VM_FAULT_SIGBUS;
2731                         goto out;
2732                 }
2733                 clear_huge_page(page, address, pages_per_huge_page(h));
2734                 __SetPageUptodate(page);
2735
2736                 if (vma->vm_flags & VM_MAYSHARE) {
2737                         int err;
2738                         struct inode *inode = mapping->host;
2739
2740                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2741                         if (err) {
2742                                 put_page(page);
2743                                 if (err == -EEXIST)
2744                                         goto retry;
2745                                 goto out;
2746                         }
2747
2748                         spin_lock(&inode->i_lock);
2749                         inode->i_blocks += blocks_per_huge_page(h);
2750                         spin_unlock(&inode->i_lock);
2751                 } else {
2752                         lock_page(page);
2753                         if (unlikely(anon_vma_prepare(vma))) {
2754                                 ret = VM_FAULT_OOM;
2755                                 goto backout_unlocked;
2756                         }
2757                         anon_rmap = 1;
2758                 }
2759         } else {
2760                 /*
2761                  * If memory error occurs between mmap() and fault, some process
2762                  * don't have hwpoisoned swap entry for errored virtual address.
2763                  * So we need to block hugepage fault by PG_hwpoison bit check.
2764                  */
2765                 if (unlikely(PageHWPoison(page))) {
2766                         ret = VM_FAULT_HWPOISON |
2767                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2768                         goto backout_unlocked;
2769                 }
2770         }
2771
2772         /*
2773          * If we are going to COW a private mapping later, we examine the
2774          * pending reservations for this page now. This will ensure that
2775          * any allocations necessary to record that reservation occur outside
2776          * the spinlock.
2777          */
2778         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2779                 if (vma_needs_reservation(h, vma, address) < 0) {
2780                         ret = VM_FAULT_OOM;
2781                         goto backout_unlocked;
2782                 }
2783
2784         spin_lock(&mm->page_table_lock);
2785         size = i_size_read(mapping->host) >> huge_page_shift(h);
2786         if (idx >= size)
2787                 goto backout;
2788
2789         ret = 0;
2790         if (!huge_pte_none(huge_ptep_get(ptep)))
2791                 goto backout;
2792
2793         if (anon_rmap)
2794                 hugepage_add_new_anon_rmap(page, vma, address);
2795         else
2796                 page_dup_rmap(page);
2797         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2798                                 && (vma->vm_flags & VM_SHARED)));
2799         set_huge_pte_at(mm, address, ptep, new_pte);
2800
2801         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2802                 /* Optimization, do the COW without a second fault */
2803                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2804         }
2805
2806         spin_unlock(&mm->page_table_lock);
2807         unlock_page(page);
2808 out:
2809         return ret;
2810
2811 backout:
2812         spin_unlock(&mm->page_table_lock);
2813 backout_unlocked:
2814         unlock_page(page);
2815         put_page(page);
2816         goto out;
2817 }
2818
2819 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2820                         unsigned long address, unsigned int flags)
2821 {
2822         pte_t *ptep;
2823         pte_t entry;
2824         int ret;
2825         struct page *page = NULL;
2826         struct page *pagecache_page = NULL;
2827         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2828         struct hstate *h = hstate_vma(vma);
2829
2830         address &= huge_page_mask(h);
2831
2832         ptep = huge_pte_offset(mm, address);
2833         if (ptep) {
2834                 entry = huge_ptep_get(ptep);
2835                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2836                         migration_entry_wait_huge(mm, ptep);
2837                         return 0;
2838                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2839                         return VM_FAULT_HWPOISON_LARGE |
2840                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2841         }
2842
2843         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2844         if (!ptep)
2845                 return VM_FAULT_OOM;
2846
2847         /*
2848          * Serialize hugepage allocation and instantiation, so that we don't
2849          * get spurious allocation failures if two CPUs race to instantiate
2850          * the same page in the page cache.
2851          */
2852         mutex_lock(&hugetlb_instantiation_mutex);
2853         entry = huge_ptep_get(ptep);
2854         if (huge_pte_none(entry)) {
2855                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2856                 goto out_mutex;
2857         }
2858
2859         ret = 0;
2860
2861         /*
2862          * If we are going to COW the mapping later, we examine the pending
2863          * reservations for this page now. This will ensure that any
2864          * allocations necessary to record that reservation occur outside the
2865          * spinlock. For private mappings, we also lookup the pagecache
2866          * page now as it is used to determine if a reservation has been
2867          * consumed.
2868          */
2869         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2870                 if (vma_needs_reservation(h, vma, address) < 0) {
2871                         ret = VM_FAULT_OOM;
2872                         goto out_mutex;
2873                 }
2874
2875                 if (!(vma->vm_flags & VM_MAYSHARE))
2876                         pagecache_page = hugetlbfs_pagecache_page(h,
2877                                                                 vma, address);
2878         }
2879
2880         /*
2881          * hugetlb_cow() requires page locks of pte_page(entry) and
2882          * pagecache_page, so here we need take the former one
2883          * when page != pagecache_page or !pagecache_page.
2884          * Note that locking order is always pagecache_page -> page,
2885          * so no worry about deadlock.
2886          */
2887         page = pte_page(entry);
2888         get_page(page);
2889         if (page != pagecache_page)
2890                 lock_page(page);
2891
2892         spin_lock(&mm->page_table_lock);
2893         /* Check for a racing update before calling hugetlb_cow */
2894         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2895                 goto out_page_table_lock;
2896
2897
2898         if (flags & FAULT_FLAG_WRITE) {
2899                 if (!huge_pte_write(entry)) {
2900                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2901                                                         pagecache_page);
2902                         goto out_page_table_lock;
2903                 }
2904                 entry = huge_pte_mkdirty(entry);
2905         }
2906         entry = pte_mkyoung(entry);
2907         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2908                                                 flags & FAULT_FLAG_WRITE))
2909                 update_mmu_cache(vma, address, ptep);
2910
2911 out_page_table_lock:
2912         spin_unlock(&mm->page_table_lock);
2913
2914         if (pagecache_page) {
2915                 unlock_page(pagecache_page);
2916                 put_page(pagecache_page);
2917         }
2918         if (page != pagecache_page)
2919                 unlock_page(page);
2920         put_page(page);
2921
2922 out_mutex:
2923         mutex_unlock(&hugetlb_instantiation_mutex);
2924
2925         return ret;
2926 }
2927
2928 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2929                          struct page **pages, struct vm_area_struct **vmas,
2930                          unsigned long *position, unsigned long *nr_pages,
2931                          long i, unsigned int flags)
2932 {
2933         unsigned long pfn_offset;
2934         unsigned long vaddr = *position;
2935         unsigned long remainder = *nr_pages;
2936         struct hstate *h = hstate_vma(vma);
2937
2938         spin_lock(&mm->page_table_lock);
2939         while (vaddr < vma->vm_end && remainder) {
2940                 pte_t *pte;
2941                 int absent;
2942                 struct page *page;
2943
2944                 /*
2945                  * Some archs (sparc64, sh*) have multiple pte_ts to
2946                  * each hugepage.  We have to make sure we get the
2947                  * first, for the page indexing below to work.
2948                  */
2949                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2950                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2951
2952                 /*
2953                  * When coredumping, it suits get_dump_page if we just return
2954                  * an error where there's an empty slot with no huge pagecache
2955                  * to back it.  This way, we avoid allocating a hugepage, and
2956                  * the sparse dumpfile avoids allocating disk blocks, but its
2957                  * huge holes still show up with zeroes where they need to be.
2958                  */
2959                 if (absent && (flags & FOLL_DUMP) &&
2960                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2961                         remainder = 0;
2962                         break;
2963                 }
2964
2965                 /*
2966                  * We need call hugetlb_fault for both hugepages under migration
2967                  * (in which case hugetlb_fault waits for the migration,) and
2968                  * hwpoisoned hugepages (in which case we need to prevent the
2969                  * caller from accessing to them.) In order to do this, we use
2970                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2971                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2972                  * both cases, and because we can't follow correct pages
2973                  * directly from any kind of swap entries.
2974                  */
2975                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2976                     ((flags & FOLL_WRITE) &&
2977                       !huge_pte_write(huge_ptep_get(pte)))) {
2978                         int ret;
2979
2980                         spin_unlock(&mm->page_table_lock);
2981                         ret = hugetlb_fault(mm, vma, vaddr,
2982                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2983                         spin_lock(&mm->page_table_lock);
2984                         if (!(ret & VM_FAULT_ERROR))
2985                                 continue;
2986
2987                         remainder = 0;
2988                         break;
2989                 }
2990
2991                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2992                 page = pte_page(huge_ptep_get(pte));
2993 same_page:
2994                 if (pages) {
2995                         pages[i] = mem_map_offset(page, pfn_offset);
2996                         get_page(pages[i]);
2997                 }
2998
2999                 if (vmas)
3000                         vmas[i] = vma;
3001
3002                 vaddr += PAGE_SIZE;
3003                 ++pfn_offset;
3004                 --remainder;
3005                 ++i;
3006                 if (vaddr < vma->vm_end && remainder &&
3007                                 pfn_offset < pages_per_huge_page(h)) {
3008                         /*
3009                          * We use pfn_offset to avoid touching the pageframes
3010                          * of this compound page.
3011                          */
3012                         goto same_page;
3013                 }
3014         }
3015         spin_unlock(&mm->page_table_lock);
3016         *nr_pages = remainder;
3017         *position = vaddr;
3018
3019         return i ? i : -EFAULT;
3020 }
3021
3022 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3023                 unsigned long address, unsigned long end, pgprot_t newprot)
3024 {
3025         struct mm_struct *mm = vma->vm_mm;
3026         unsigned long start = address;
3027         pte_t *ptep;
3028         pte_t pte;
3029         struct hstate *h = hstate_vma(vma);
3030         unsigned long pages = 0;
3031
3032         BUG_ON(address >= end);
3033         flush_cache_range(vma, address, end);
3034
3035         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3036         spin_lock(&mm->page_table_lock);
3037         for (; address < end; address += huge_page_size(h)) {
3038                 ptep = huge_pte_offset(mm, address);
3039                 if (!ptep)
3040                         continue;
3041                 if (huge_pmd_unshare(mm, &address, ptep)) {
3042                         pages++;
3043                         continue;
3044                 }
3045                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3046                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3047                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3048                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3049                         set_huge_pte_at(mm, address, ptep, pte);
3050                         pages++;
3051                 }
3052         }
3053         spin_unlock(&mm->page_table_lock);
3054         /*
3055          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3056          * may have cleared our pud entry and done put_page on the page table:
3057          * once we release i_mmap_mutex, another task can do the final put_page
3058          * and that page table be reused and filled with junk.
3059          */
3060         flush_tlb_range(vma, start, end);
3061         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3062
3063         return pages << h->order;
3064 }
3065
3066 int hugetlb_reserve_pages(struct inode *inode,
3067                                         long from, long to,
3068                                         struct vm_area_struct *vma,
3069                                         vm_flags_t vm_flags)
3070 {
3071         long ret, chg;
3072         struct hstate *h = hstate_inode(inode);
3073         struct hugepage_subpool *spool = subpool_inode(inode);
3074
3075         /*
3076          * Only apply hugepage reservation if asked. At fault time, an
3077          * attempt will be made for VM_NORESERVE to allocate a page
3078          * without using reserves
3079          */
3080         if (vm_flags & VM_NORESERVE)
3081                 return 0;
3082
3083         /*
3084          * Shared mappings base their reservation on the number of pages that
3085          * are already allocated on behalf of the file. Private mappings need
3086          * to reserve the full area even if read-only as mprotect() may be
3087          * called to make the mapping read-write. Assume !vma is a shm mapping
3088          */
3089         if (!vma || vma->vm_flags & VM_MAYSHARE)
3090                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3091         else {
3092                 struct resv_map *resv_map = resv_map_alloc();
3093                 if (!resv_map)
3094                         return -ENOMEM;
3095
3096                 chg = to - from;
3097
3098                 set_vma_resv_map(vma, resv_map);
3099                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3100         }
3101
3102         if (chg < 0) {
3103                 ret = chg;
3104                 goto out_err;
3105         }
3106
3107         /* There must be enough pages in the subpool for the mapping */
3108         if (hugepage_subpool_get_pages(spool, chg)) {
3109                 ret = -ENOSPC;
3110                 goto out_err;
3111         }
3112
3113         /*
3114          * Check enough hugepages are available for the reservation.
3115          * Hand the pages back to the subpool if there are not
3116          */
3117         ret = hugetlb_acct_memory(h, chg);
3118         if (ret < 0) {
3119                 hugepage_subpool_put_pages(spool, chg);
3120                 goto out_err;
3121         }
3122
3123         /*
3124          * Account for the reservations made. Shared mappings record regions
3125          * that have reservations as they are shared by multiple VMAs.
3126          * When the last VMA disappears, the region map says how much
3127          * the reservation was and the page cache tells how much of
3128          * the reservation was consumed. Private mappings are per-VMA and
3129          * only the consumed reservations are tracked. When the VMA
3130          * disappears, the original reservation is the VMA size and the
3131          * consumed reservations are stored in the map. Hence, nothing
3132          * else has to be done for private mappings here
3133          */
3134         if (!vma || vma->vm_flags & VM_MAYSHARE)
3135                 region_add(&inode->i_mapping->private_list, from, to);
3136         return 0;
3137 out_err:
3138         if (vma)
3139                 resv_map_put(vma);
3140         return ret;
3141 }
3142
3143 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3144 {
3145         struct hstate *h = hstate_inode(inode);
3146         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3147         struct hugepage_subpool *spool = subpool_inode(inode);
3148
3149         spin_lock(&inode->i_lock);
3150         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3151         spin_unlock(&inode->i_lock);
3152
3153         hugepage_subpool_put_pages(spool, (chg - freed));
3154         hugetlb_acct_memory(h, -(chg - freed));
3155 }
3156
3157 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3158 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3159                                 struct vm_area_struct *vma,
3160                                 unsigned long addr, pgoff_t idx)
3161 {
3162         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3163                                 svma->vm_start;
3164         unsigned long sbase = saddr & PUD_MASK;
3165         unsigned long s_end = sbase + PUD_SIZE;
3166
3167         /* Allow segments to share if only one is marked locked */
3168         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3169         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3170
3171         /*
3172          * match the virtual addresses, permission and the alignment of the
3173          * page table page.
3174          */
3175         if (pmd_index(addr) != pmd_index(saddr) ||
3176             vm_flags != svm_flags ||
3177             sbase < svma->vm_start || svma->vm_end < s_end)
3178                 return 0;
3179
3180         return saddr;
3181 }
3182
3183 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3184 {
3185         unsigned long base = addr & PUD_MASK;
3186         unsigned long end = base + PUD_SIZE;
3187
3188         /*
3189          * check on proper vm_flags and page table alignment
3190          */
3191         if (vma->vm_flags & VM_MAYSHARE &&
3192             vma->vm_start <= base && end <= vma->vm_end)
3193                 return 1;
3194         return 0;
3195 }
3196
3197 /*
3198  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3199  * and returns the corresponding pte. While this is not necessary for the
3200  * !shared pmd case because we can allocate the pmd later as well, it makes the
3201  * code much cleaner. pmd allocation is essential for the shared case because
3202  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3203  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3204  * bad pmd for sharing.
3205  */
3206 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3207 {
3208         struct vm_area_struct *vma = find_vma(mm, addr);
3209         struct address_space *mapping = vma->vm_file->f_mapping;
3210         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3211                         vma->vm_pgoff;
3212         struct vm_area_struct *svma;
3213         unsigned long saddr;
3214         pte_t *spte = NULL;
3215         pte_t *pte;
3216
3217         if (!vma_shareable(vma, addr))
3218                 return (pte_t *)pmd_alloc(mm, pud, addr);
3219
3220         mutex_lock(&mapping->i_mmap_mutex);
3221         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3222                 if (svma == vma)
3223                         continue;
3224
3225                 saddr = page_table_shareable(svma, vma, addr, idx);
3226                 if (saddr) {
3227                         spte = huge_pte_offset(svma->vm_mm, saddr);
3228                         if (spte) {
3229                                 get_page(virt_to_page(spte));
3230                                 break;
3231                         }
3232                 }
3233         }
3234
3235         if (!spte)
3236                 goto out;
3237
3238         spin_lock(&mm->page_table_lock);
3239         if (pud_none(*pud))
3240                 pud_populate(mm, pud,
3241                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3242         else
3243                 put_page(virt_to_page(spte));
3244         spin_unlock(&mm->page_table_lock);
3245 out:
3246         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3247         mutex_unlock(&mapping->i_mmap_mutex);
3248         return pte;
3249 }
3250
3251 /*
3252  * unmap huge page backed by shared pte.
3253  *
3254  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3255  * indicated by page_count > 1, unmap is achieved by clearing pud and
3256  * decrementing the ref count. If count == 1, the pte page is not shared.
3257  *
3258  * called with vma->vm_mm->page_table_lock held.
3259  *
3260  * returns: 1 successfully unmapped a shared pte page
3261  *          0 the underlying pte page is not shared, or it is the last user
3262  */
3263 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3264 {
3265         pgd_t *pgd = pgd_offset(mm, *addr);
3266         pud_t *pud = pud_offset(pgd, *addr);
3267
3268         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3269         if (page_count(virt_to_page(ptep)) == 1)
3270                 return 0;
3271
3272         pud_clear(pud);
3273         put_page(virt_to_page(ptep));
3274         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3275         return 1;
3276 }
3277 #define want_pmd_share()        (1)
3278 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3279 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3280 {
3281         return NULL;
3282 }
3283 #define want_pmd_share()        (0)
3284 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3285
3286 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3287 pte_t *huge_pte_alloc(struct mm_struct *mm,
3288                         unsigned long addr, unsigned long sz)
3289 {
3290         pgd_t *pgd;
3291         pud_t *pud;
3292         pte_t *pte = NULL;
3293
3294         pgd = pgd_offset(mm, addr);
3295         pud = pud_alloc(mm, pgd, addr);
3296         if (pud) {
3297                 if (sz == PUD_SIZE) {
3298                         pte = (pte_t *)pud;
3299                 } else {
3300                         BUG_ON(sz != PMD_SIZE);
3301                         if (want_pmd_share() && pud_none(*pud))
3302                                 pte = huge_pmd_share(mm, addr, pud);
3303                         else
3304                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3305                 }
3306         }
3307         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3308
3309         return pte;
3310 }
3311
3312 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3313 {
3314         pgd_t *pgd;
3315         pud_t *pud;
3316         pmd_t *pmd = NULL;
3317
3318         pgd = pgd_offset(mm, addr);
3319         if (pgd_present(*pgd)) {
3320                 pud = pud_offset(pgd, addr);
3321                 if (pud_present(*pud)) {
3322                         if (pud_huge(*pud))
3323                                 return (pte_t *)pud;
3324                         pmd = pmd_offset(pud, addr);
3325                 }
3326         }
3327         return (pte_t *) pmd;
3328 }
3329
3330 struct page *
3331 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3332                 pmd_t *pmd, int write)
3333 {
3334         struct page *page;
3335
3336         page = pte_page(*(pte_t *)pmd);
3337         if (page)
3338                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3339         return page;
3340 }
3341
3342 struct page *
3343 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3344                 pud_t *pud, int write)
3345 {
3346         struct page *page;
3347
3348         page = pte_page(*(pte_t *)pud);
3349         if (page)
3350                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3351         return page;
3352 }
3353
3354 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3355
3356 /* Can be overriden by architectures */
3357 __attribute__((weak)) struct page *
3358 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3359                pud_t *pud, int write)
3360 {
3361         BUG();
3362         return NULL;
3363 }
3364
3365 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3366
3367 #ifdef CONFIG_MEMORY_FAILURE
3368
3369 /* Should be called in hugetlb_lock */
3370 static int is_hugepage_on_freelist(struct page *hpage)
3371 {
3372         struct page *page;
3373         struct page *tmp;
3374         struct hstate *h = page_hstate(hpage);
3375         int nid = page_to_nid(hpage);
3376
3377         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3378                 if (page == hpage)
3379                         return 1;
3380         return 0;
3381 }
3382
3383 /*
3384  * This function is called from memory failure code.
3385  * Assume the caller holds page lock of the head page.
3386  */
3387 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3388 {
3389         struct hstate *h = page_hstate(hpage);
3390         int nid = page_to_nid(hpage);
3391         int ret = -EBUSY;
3392
3393         spin_lock(&hugetlb_lock);
3394         if (is_hugepage_on_freelist(hpage)) {
3395                 /*
3396                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3397                  * but dangling hpage->lru can trigger list-debug warnings
3398                  * (this happens when we call unpoison_memory() on it),
3399                  * so let it point to itself with list_del_init().
3400                  */
3401                 list_del_init(&hpage->lru);
3402                 set_page_refcounted(hpage);
3403                 h->free_huge_pages--;
3404                 h->free_huge_pages_node[nid]--;
3405                 ret = 0;
3406         }
3407         spin_unlock(&hugetlb_lock);
3408         return ret;
3409 }
3410 #endif