mm, hugetlb: fix race in region tracking
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are embedded into a resv_map and
139  * protected by a resv_map's lock
140  */
141 struct file_region {
142         struct list_head link;
143         long from;
144         long to;
145 };
146
147 static long region_add(struct resv_map *resv, long f, long t)
148 {
149         struct list_head *head = &resv->regions;
150         struct file_region *rg, *nrg, *trg;
151
152         spin_lock(&resv->lock);
153         /* Locate the region we are either in or before. */
154         list_for_each_entry(rg, head, link)
155                 if (f <= rg->to)
156                         break;
157
158         /* Round our left edge to the current segment if it encloses us. */
159         if (f > rg->from)
160                 f = rg->from;
161
162         /* Check for and consume any regions we now overlap with. */
163         nrg = rg;
164         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
165                 if (&rg->link == head)
166                         break;
167                 if (rg->from > t)
168                         break;
169
170                 /* If this area reaches higher then extend our area to
171                  * include it completely.  If this is not the first area
172                  * which we intend to reuse, free it. */
173                 if (rg->to > t)
174                         t = rg->to;
175                 if (rg != nrg) {
176                         list_del(&rg->link);
177                         kfree(rg);
178                 }
179         }
180         nrg->from = f;
181         nrg->to = t;
182         spin_unlock(&resv->lock);
183         return 0;
184 }
185
186 static long region_chg(struct resv_map *resv, long f, long t)
187 {
188         struct list_head *head = &resv->regions;
189         struct file_region *rg, *nrg = NULL;
190         long chg = 0;
191
192 retry:
193         spin_lock(&resv->lock);
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 if (!nrg) {
204                         spin_unlock(&resv->lock);
205                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
206                         if (!nrg)
207                                 return -ENOMEM;
208
209                         nrg->from = f;
210                         nrg->to   = f;
211                         INIT_LIST_HEAD(&nrg->link);
212                         goto retry;
213                 }
214
215                 list_add(&nrg->link, rg->link.prev);
216                 chg = t - f;
217                 goto out_nrg;
218         }
219
220         /* Round our left edge to the current segment if it encloses us. */
221         if (f > rg->from)
222                 f = rg->from;
223         chg = t - f;
224
225         /* Check for and consume any regions we now overlap with. */
226         list_for_each_entry(rg, rg->link.prev, link) {
227                 if (&rg->link == head)
228                         break;
229                 if (rg->from > t)
230                         goto out;
231
232                 /* We overlap with this area, if it extends further than
233                  * us then we must extend ourselves.  Account for its
234                  * existing reservation. */
235                 if (rg->to > t) {
236                         chg += rg->to - t;
237                         t = rg->to;
238                 }
239                 chg -= rg->to - rg->from;
240         }
241
242 out:
243         spin_unlock(&resv->lock);
244         /*  We already know we raced and no longer need the new region */
245         kfree(nrg);
246         return chg;
247 out_nrg:
248         spin_unlock(&resv->lock);
249         return chg;
250 }
251
252 static long region_truncate(struct resv_map *resv, long end)
253 {
254         struct list_head *head = &resv->regions;
255         struct file_region *rg, *trg;
256         long chg = 0;
257
258         spin_lock(&resv->lock);
259         /* Locate the region we are either in or before. */
260         list_for_each_entry(rg, head, link)
261                 if (end <= rg->to)
262                         break;
263         if (&rg->link == head)
264                 goto out;
265
266         /* If we are in the middle of a region then adjust it. */
267         if (end > rg->from) {
268                 chg = rg->to - end;
269                 rg->to = end;
270                 rg = list_entry(rg->link.next, typeof(*rg), link);
271         }
272
273         /* Drop any remaining regions. */
274         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
275                 if (&rg->link == head)
276                         break;
277                 chg += rg->to - rg->from;
278                 list_del(&rg->link);
279                 kfree(rg);
280         }
281
282 out:
283         spin_unlock(&resv->lock);
284         return chg;
285 }
286
287 static long region_count(struct resv_map *resv, long f, long t)
288 {
289         struct list_head *head = &resv->regions;
290         struct file_region *rg;
291         long chg = 0;
292
293         spin_lock(&resv->lock);
294         /* Locate each segment we overlap with, and count that overlap. */
295         list_for_each_entry(rg, head, link) {
296                 long seg_from;
297                 long seg_to;
298
299                 if (rg->to <= f)
300                         continue;
301                 if (rg->from >= t)
302                         break;
303
304                 seg_from = max(rg->from, f);
305                 seg_to = min(rg->to, t);
306
307                 chg += seg_to - seg_from;
308         }
309         spin_unlock(&resv->lock);
310
311         return chg;
312 }
313
314 /*
315  * Convert the address within this vma to the page offset within
316  * the mapping, in pagecache page units; huge pages here.
317  */
318 static pgoff_t vma_hugecache_offset(struct hstate *h,
319                         struct vm_area_struct *vma, unsigned long address)
320 {
321         return ((address - vma->vm_start) >> huge_page_shift(h)) +
322                         (vma->vm_pgoff >> huge_page_order(h));
323 }
324
325 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
326                                      unsigned long address)
327 {
328         return vma_hugecache_offset(hstate_vma(vma), vma, address);
329 }
330
331 /*
332  * Return the size of the pages allocated when backing a VMA. In the majority
333  * cases this will be same size as used by the page table entries.
334  */
335 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
336 {
337         struct hstate *hstate;
338
339         if (!is_vm_hugetlb_page(vma))
340                 return PAGE_SIZE;
341
342         hstate = hstate_vma(vma);
343
344         return 1UL << huge_page_shift(hstate);
345 }
346 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
347
348 /*
349  * Return the page size being used by the MMU to back a VMA. In the majority
350  * of cases, the page size used by the kernel matches the MMU size. On
351  * architectures where it differs, an architecture-specific version of this
352  * function is required.
353  */
354 #ifndef vma_mmu_pagesize
355 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
356 {
357         return vma_kernel_pagesize(vma);
358 }
359 #endif
360
361 /*
362  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
363  * bits of the reservation map pointer, which are always clear due to
364  * alignment.
365  */
366 #define HPAGE_RESV_OWNER    (1UL << 0)
367 #define HPAGE_RESV_UNMAPPED (1UL << 1)
368 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
369
370 /*
371  * These helpers are used to track how many pages are reserved for
372  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
373  * is guaranteed to have their future faults succeed.
374  *
375  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
376  * the reserve counters are updated with the hugetlb_lock held. It is safe
377  * to reset the VMA at fork() time as it is not in use yet and there is no
378  * chance of the global counters getting corrupted as a result of the values.
379  *
380  * The private mapping reservation is represented in a subtly different
381  * manner to a shared mapping.  A shared mapping has a region map associated
382  * with the underlying file, this region map represents the backing file
383  * pages which have ever had a reservation assigned which this persists even
384  * after the page is instantiated.  A private mapping has a region map
385  * associated with the original mmap which is attached to all VMAs which
386  * reference it, this region map represents those offsets which have consumed
387  * reservation ie. where pages have been instantiated.
388  */
389 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
390 {
391         return (unsigned long)vma->vm_private_data;
392 }
393
394 static void set_vma_private_data(struct vm_area_struct *vma,
395                                                         unsigned long value)
396 {
397         vma->vm_private_data = (void *)value;
398 }
399
400 struct resv_map *resv_map_alloc(void)
401 {
402         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
403         if (!resv_map)
404                 return NULL;
405
406         kref_init(&resv_map->refs);
407         spin_lock_init(&resv_map->lock);
408         INIT_LIST_HEAD(&resv_map->regions);
409
410         return resv_map;
411 }
412
413 void resv_map_release(struct kref *ref)
414 {
415         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
416
417         /* Clear out any active regions before we release the map. */
418         region_truncate(resv_map, 0);
419         kfree(resv_map);
420 }
421
422 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         if (!(vma->vm_flags & VM_MAYSHARE))
426                 return (struct resv_map *)(get_vma_private_data(vma) &
427                                                         ~HPAGE_RESV_MASK);
428         return NULL;
429 }
430
431 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
435
436         set_vma_private_data(vma, (get_vma_private_data(vma) &
437                                 HPAGE_RESV_MASK) | (unsigned long)map);
438 }
439
440 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
441 {
442         VM_BUG_ON(!is_vm_hugetlb_page(vma));
443         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
444
445         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
446 }
447
448 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
449 {
450         VM_BUG_ON(!is_vm_hugetlb_page(vma));
451
452         return (get_vma_private_data(vma) & flag) != 0;
453 }
454
455 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
456 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
457 {
458         VM_BUG_ON(!is_vm_hugetlb_page(vma));
459         if (!(vma->vm_flags & VM_MAYSHARE))
460                 vma->vm_private_data = (void *)0;
461 }
462
463 /* Returns true if the VMA has associated reserve pages */
464 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
465 {
466         if (vma->vm_flags & VM_NORESERVE) {
467                 /*
468                  * This address is already reserved by other process(chg == 0),
469                  * so, we should decrement reserved count. Without decrementing,
470                  * reserve count remains after releasing inode, because this
471                  * allocated page will go into page cache and is regarded as
472                  * coming from reserved pool in releasing step.  Currently, we
473                  * don't have any other solution to deal with this situation
474                  * properly, so add work-around here.
475                  */
476                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
477                         return 1;
478                 else
479                         return 0;
480         }
481
482         /* Shared mappings always use reserves */
483         if (vma->vm_flags & VM_MAYSHARE)
484                 return 1;
485
486         /*
487          * Only the process that called mmap() has reserves for
488          * private mappings.
489          */
490         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
491                 return 1;
492
493         return 0;
494 }
495
496 static void enqueue_huge_page(struct hstate *h, struct page *page)
497 {
498         int nid = page_to_nid(page);
499         list_move(&page->lru, &h->hugepage_freelists[nid]);
500         h->free_huge_pages++;
501         h->free_huge_pages_node[nid]++;
502 }
503
504 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
505 {
506         struct page *page;
507
508         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
509                 if (!is_migrate_isolate_page(page))
510                         break;
511         /*
512          * if 'non-isolated free hugepage' not found on the list,
513          * the allocation fails.
514          */
515         if (&h->hugepage_freelists[nid] == &page->lru)
516                 return NULL;
517         list_move(&page->lru, &h->hugepage_activelist);
518         set_page_refcounted(page);
519         h->free_huge_pages--;
520         h->free_huge_pages_node[nid]--;
521         return page;
522 }
523
524 /* Movability of hugepages depends on migration support. */
525 static inline gfp_t htlb_alloc_mask(struct hstate *h)
526 {
527         if (hugepages_treat_as_movable || hugepage_migration_support(h))
528                 return GFP_HIGHUSER_MOVABLE;
529         else
530                 return GFP_HIGHUSER;
531 }
532
533 static struct page *dequeue_huge_page_vma(struct hstate *h,
534                                 struct vm_area_struct *vma,
535                                 unsigned long address, int avoid_reserve,
536                                 long chg)
537 {
538         struct page *page = NULL;
539         struct mempolicy *mpol;
540         nodemask_t *nodemask;
541         struct zonelist *zonelist;
542         struct zone *zone;
543         struct zoneref *z;
544         unsigned int cpuset_mems_cookie;
545
546         /*
547          * A child process with MAP_PRIVATE mappings created by their parent
548          * have no page reserves. This check ensures that reservations are
549          * not "stolen". The child may still get SIGKILLed
550          */
551         if (!vma_has_reserves(vma, chg) &&
552                         h->free_huge_pages - h->resv_huge_pages == 0)
553                 goto err;
554
555         /* If reserves cannot be used, ensure enough pages are in the pool */
556         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557                 goto err;
558
559 retry_cpuset:
560         cpuset_mems_cookie = read_mems_allowed_begin();
561         zonelist = huge_zonelist(vma, address,
562                                         htlb_alloc_mask(h), &mpol, &nodemask);
563
564         for_each_zone_zonelist_nodemask(zone, z, zonelist,
565                                                 MAX_NR_ZONES - 1, nodemask) {
566                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
567                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
568                         if (page) {
569                                 if (avoid_reserve)
570                                         break;
571                                 if (!vma_has_reserves(vma, chg))
572                                         break;
573
574                                 SetPagePrivate(page);
575                                 h->resv_huge_pages--;
576                                 break;
577                         }
578                 }
579         }
580
581         mpol_cond_put(mpol);
582         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
583                 goto retry_cpuset;
584         return page;
585
586 err:
587         return NULL;
588 }
589
590 static void update_and_free_page(struct hstate *h, struct page *page)
591 {
592         int i;
593
594         VM_BUG_ON(h->order >= MAX_ORDER);
595
596         h->nr_huge_pages--;
597         h->nr_huge_pages_node[page_to_nid(page)]--;
598         for (i = 0; i < pages_per_huge_page(h); i++) {
599                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600                                 1 << PG_referenced | 1 << PG_dirty |
601                                 1 << PG_active | 1 << PG_reserved |
602                                 1 << PG_private | 1 << PG_writeback);
603         }
604         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
605         set_compound_page_dtor(page, NULL);
606         set_page_refcounted(page);
607         arch_release_hugepage(page);
608         __free_pages(page, huge_page_order(h));
609 }
610
611 struct hstate *size_to_hstate(unsigned long size)
612 {
613         struct hstate *h;
614
615         for_each_hstate(h) {
616                 if (huge_page_size(h) == size)
617                         return h;
618         }
619         return NULL;
620 }
621
622 static void free_huge_page(struct page *page)
623 {
624         /*
625          * Can't pass hstate in here because it is called from the
626          * compound page destructor.
627          */
628         struct hstate *h = page_hstate(page);
629         int nid = page_to_nid(page);
630         struct hugepage_subpool *spool =
631                 (struct hugepage_subpool *)page_private(page);
632         bool restore_reserve;
633
634         set_page_private(page, 0);
635         page->mapping = NULL;
636         BUG_ON(page_count(page));
637         BUG_ON(page_mapcount(page));
638         restore_reserve = PagePrivate(page);
639         ClearPagePrivate(page);
640
641         spin_lock(&hugetlb_lock);
642         hugetlb_cgroup_uncharge_page(hstate_index(h),
643                                      pages_per_huge_page(h), page);
644         if (restore_reserve)
645                 h->resv_huge_pages++;
646
647         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
648                 /* remove the page from active list */
649                 list_del(&page->lru);
650                 update_and_free_page(h, page);
651                 h->surplus_huge_pages--;
652                 h->surplus_huge_pages_node[nid]--;
653         } else {
654                 arch_clear_hugepage_flags(page);
655                 enqueue_huge_page(h, page);
656         }
657         spin_unlock(&hugetlb_lock);
658         hugepage_subpool_put_pages(spool, 1);
659 }
660
661 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
662 {
663         INIT_LIST_HEAD(&page->lru);
664         set_compound_page_dtor(page, free_huge_page);
665         spin_lock(&hugetlb_lock);
666         set_hugetlb_cgroup(page, NULL);
667         h->nr_huge_pages++;
668         h->nr_huge_pages_node[nid]++;
669         spin_unlock(&hugetlb_lock);
670         put_page(page); /* free it into the hugepage allocator */
671 }
672
673 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
674 {
675         int i;
676         int nr_pages = 1 << order;
677         struct page *p = page + 1;
678
679         /* we rely on prep_new_huge_page to set the destructor */
680         set_compound_order(page, order);
681         __SetPageHead(page);
682         __ClearPageReserved(page);
683         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
684                 __SetPageTail(p);
685                 /*
686                  * For gigantic hugepages allocated through bootmem at
687                  * boot, it's safer to be consistent with the not-gigantic
688                  * hugepages and clear the PG_reserved bit from all tail pages
689                  * too.  Otherwse drivers using get_user_pages() to access tail
690                  * pages may get the reference counting wrong if they see
691                  * PG_reserved set on a tail page (despite the head page not
692                  * having PG_reserved set).  Enforcing this consistency between
693                  * head and tail pages allows drivers to optimize away a check
694                  * on the head page when they need know if put_page() is needed
695                  * after get_user_pages().
696                  */
697                 __ClearPageReserved(p);
698                 set_page_count(p, 0);
699                 p->first_page = page;
700         }
701 }
702
703 /*
704  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
705  * transparent huge pages.  See the PageTransHuge() documentation for more
706  * details.
707  */
708 int PageHuge(struct page *page)
709 {
710         if (!PageCompound(page))
711                 return 0;
712
713         page = compound_head(page);
714         return get_compound_page_dtor(page) == free_huge_page;
715 }
716 EXPORT_SYMBOL_GPL(PageHuge);
717
718 /*
719  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
720  * normal or transparent huge pages.
721  */
722 int PageHeadHuge(struct page *page_head)
723 {
724         if (!PageHead(page_head))
725                 return 0;
726
727         return get_compound_page_dtor(page_head) == free_huge_page;
728 }
729
730 pgoff_t __basepage_index(struct page *page)
731 {
732         struct page *page_head = compound_head(page);
733         pgoff_t index = page_index(page_head);
734         unsigned long compound_idx;
735
736         if (!PageHuge(page_head))
737                 return page_index(page);
738
739         if (compound_order(page_head) >= MAX_ORDER)
740                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
741         else
742                 compound_idx = page - page_head;
743
744         return (index << compound_order(page_head)) + compound_idx;
745 }
746
747 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
748 {
749         struct page *page;
750
751         if (h->order >= MAX_ORDER)
752                 return NULL;
753
754         page = alloc_pages_exact_node(nid,
755                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
756                                                 __GFP_REPEAT|__GFP_NOWARN,
757                 huge_page_order(h));
758         if (page) {
759                 if (arch_prepare_hugepage(page)) {
760                         __free_pages(page, huge_page_order(h));
761                         return NULL;
762                 }
763                 prep_new_huge_page(h, page, nid);
764         }
765
766         return page;
767 }
768
769 /*
770  * common helper functions for hstate_next_node_to_{alloc|free}.
771  * We may have allocated or freed a huge page based on a different
772  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
773  * be outside of *nodes_allowed.  Ensure that we use an allowed
774  * node for alloc or free.
775  */
776 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
777 {
778         nid = next_node(nid, *nodes_allowed);
779         if (nid == MAX_NUMNODES)
780                 nid = first_node(*nodes_allowed);
781         VM_BUG_ON(nid >= MAX_NUMNODES);
782
783         return nid;
784 }
785
786 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
787 {
788         if (!node_isset(nid, *nodes_allowed))
789                 nid = next_node_allowed(nid, nodes_allowed);
790         return nid;
791 }
792
793 /*
794  * returns the previously saved node ["this node"] from which to
795  * allocate a persistent huge page for the pool and advance the
796  * next node from which to allocate, handling wrap at end of node
797  * mask.
798  */
799 static int hstate_next_node_to_alloc(struct hstate *h,
800                                         nodemask_t *nodes_allowed)
801 {
802         int nid;
803
804         VM_BUG_ON(!nodes_allowed);
805
806         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
807         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
808
809         return nid;
810 }
811
812 /*
813  * helper for free_pool_huge_page() - return the previously saved
814  * node ["this node"] from which to free a huge page.  Advance the
815  * next node id whether or not we find a free huge page to free so
816  * that the next attempt to free addresses the next node.
817  */
818 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
819 {
820         int nid;
821
822         VM_BUG_ON(!nodes_allowed);
823
824         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
825         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
826
827         return nid;
828 }
829
830 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
831         for (nr_nodes = nodes_weight(*mask);                            \
832                 nr_nodes > 0 &&                                         \
833                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
834                 nr_nodes--)
835
836 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
837         for (nr_nodes = nodes_weight(*mask);                            \
838                 nr_nodes > 0 &&                                         \
839                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
840                 nr_nodes--)
841
842 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
843 {
844         struct page *page;
845         int nr_nodes, node;
846         int ret = 0;
847
848         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
849                 page = alloc_fresh_huge_page_node(h, node);
850                 if (page) {
851                         ret = 1;
852                         break;
853                 }
854         }
855
856         if (ret)
857                 count_vm_event(HTLB_BUDDY_PGALLOC);
858         else
859                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
860
861         return ret;
862 }
863
864 /*
865  * Free huge page from pool from next node to free.
866  * Attempt to keep persistent huge pages more or less
867  * balanced over allowed nodes.
868  * Called with hugetlb_lock locked.
869  */
870 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
871                                                          bool acct_surplus)
872 {
873         int nr_nodes, node;
874         int ret = 0;
875
876         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
877                 /*
878                  * If we're returning unused surplus pages, only examine
879                  * nodes with surplus pages.
880                  */
881                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
882                     !list_empty(&h->hugepage_freelists[node])) {
883                         struct page *page =
884                                 list_entry(h->hugepage_freelists[node].next,
885                                           struct page, lru);
886                         list_del(&page->lru);
887                         h->free_huge_pages--;
888                         h->free_huge_pages_node[node]--;
889                         if (acct_surplus) {
890                                 h->surplus_huge_pages--;
891                                 h->surplus_huge_pages_node[node]--;
892                         }
893                         update_and_free_page(h, page);
894                         ret = 1;
895                         break;
896                 }
897         }
898
899         return ret;
900 }
901
902 /*
903  * Dissolve a given free hugepage into free buddy pages. This function does
904  * nothing for in-use (including surplus) hugepages.
905  */
906 static void dissolve_free_huge_page(struct page *page)
907 {
908         spin_lock(&hugetlb_lock);
909         if (PageHuge(page) && !page_count(page)) {
910                 struct hstate *h = page_hstate(page);
911                 int nid = page_to_nid(page);
912                 list_del(&page->lru);
913                 h->free_huge_pages--;
914                 h->free_huge_pages_node[nid]--;
915                 update_and_free_page(h, page);
916         }
917         spin_unlock(&hugetlb_lock);
918 }
919
920 /*
921  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
922  * make specified memory blocks removable from the system.
923  * Note that start_pfn should aligned with (minimum) hugepage size.
924  */
925 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
926 {
927         unsigned int order = 8 * sizeof(void *);
928         unsigned long pfn;
929         struct hstate *h;
930
931         /* Set scan step to minimum hugepage size */
932         for_each_hstate(h)
933                 if (order > huge_page_order(h))
934                         order = huge_page_order(h);
935         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
936         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
937                 dissolve_free_huge_page(pfn_to_page(pfn));
938 }
939
940 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
941 {
942         struct page *page;
943         unsigned int r_nid;
944
945         if (h->order >= MAX_ORDER)
946                 return NULL;
947
948         /*
949          * Assume we will successfully allocate the surplus page to
950          * prevent racing processes from causing the surplus to exceed
951          * overcommit
952          *
953          * This however introduces a different race, where a process B
954          * tries to grow the static hugepage pool while alloc_pages() is
955          * called by process A. B will only examine the per-node
956          * counters in determining if surplus huge pages can be
957          * converted to normal huge pages in adjust_pool_surplus(). A
958          * won't be able to increment the per-node counter, until the
959          * lock is dropped by B, but B doesn't drop hugetlb_lock until
960          * no more huge pages can be converted from surplus to normal
961          * state (and doesn't try to convert again). Thus, we have a
962          * case where a surplus huge page exists, the pool is grown, and
963          * the surplus huge page still exists after, even though it
964          * should just have been converted to a normal huge page. This
965          * does not leak memory, though, as the hugepage will be freed
966          * once it is out of use. It also does not allow the counters to
967          * go out of whack in adjust_pool_surplus() as we don't modify
968          * the node values until we've gotten the hugepage and only the
969          * per-node value is checked there.
970          */
971         spin_lock(&hugetlb_lock);
972         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
973                 spin_unlock(&hugetlb_lock);
974                 return NULL;
975         } else {
976                 h->nr_huge_pages++;
977                 h->surplus_huge_pages++;
978         }
979         spin_unlock(&hugetlb_lock);
980
981         if (nid == NUMA_NO_NODE)
982                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
983                                    __GFP_REPEAT|__GFP_NOWARN,
984                                    huge_page_order(h));
985         else
986                 page = alloc_pages_exact_node(nid,
987                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
988                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
989
990         if (page && arch_prepare_hugepage(page)) {
991                 __free_pages(page, huge_page_order(h));
992                 page = NULL;
993         }
994
995         spin_lock(&hugetlb_lock);
996         if (page) {
997                 INIT_LIST_HEAD(&page->lru);
998                 r_nid = page_to_nid(page);
999                 set_compound_page_dtor(page, free_huge_page);
1000                 set_hugetlb_cgroup(page, NULL);
1001                 /*
1002                  * We incremented the global counters already
1003                  */
1004                 h->nr_huge_pages_node[r_nid]++;
1005                 h->surplus_huge_pages_node[r_nid]++;
1006                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1007         } else {
1008                 h->nr_huge_pages--;
1009                 h->surplus_huge_pages--;
1010                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1011         }
1012         spin_unlock(&hugetlb_lock);
1013
1014         return page;
1015 }
1016
1017 /*
1018  * This allocation function is useful in the context where vma is irrelevant.
1019  * E.g. soft-offlining uses this function because it only cares physical
1020  * address of error page.
1021  */
1022 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1023 {
1024         struct page *page = NULL;
1025
1026         spin_lock(&hugetlb_lock);
1027         if (h->free_huge_pages - h->resv_huge_pages > 0)
1028                 page = dequeue_huge_page_node(h, nid);
1029         spin_unlock(&hugetlb_lock);
1030
1031         if (!page)
1032                 page = alloc_buddy_huge_page(h, nid);
1033
1034         return page;
1035 }
1036
1037 /*
1038  * Increase the hugetlb pool such that it can accommodate a reservation
1039  * of size 'delta'.
1040  */
1041 static int gather_surplus_pages(struct hstate *h, int delta)
1042 {
1043         struct list_head surplus_list;
1044         struct page *page, *tmp;
1045         int ret, i;
1046         int needed, allocated;
1047         bool alloc_ok = true;
1048
1049         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1050         if (needed <= 0) {
1051                 h->resv_huge_pages += delta;
1052                 return 0;
1053         }
1054
1055         allocated = 0;
1056         INIT_LIST_HEAD(&surplus_list);
1057
1058         ret = -ENOMEM;
1059 retry:
1060         spin_unlock(&hugetlb_lock);
1061         for (i = 0; i < needed; i++) {
1062                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1063                 if (!page) {
1064                         alloc_ok = false;
1065                         break;
1066                 }
1067                 list_add(&page->lru, &surplus_list);
1068         }
1069         allocated += i;
1070
1071         /*
1072          * After retaking hugetlb_lock, we need to recalculate 'needed'
1073          * because either resv_huge_pages or free_huge_pages may have changed.
1074          */
1075         spin_lock(&hugetlb_lock);
1076         needed = (h->resv_huge_pages + delta) -
1077                         (h->free_huge_pages + allocated);
1078         if (needed > 0) {
1079                 if (alloc_ok)
1080                         goto retry;
1081                 /*
1082                  * We were not able to allocate enough pages to
1083                  * satisfy the entire reservation so we free what
1084                  * we've allocated so far.
1085                  */
1086                 goto free;
1087         }
1088         /*
1089          * The surplus_list now contains _at_least_ the number of extra pages
1090          * needed to accommodate the reservation.  Add the appropriate number
1091          * of pages to the hugetlb pool and free the extras back to the buddy
1092          * allocator.  Commit the entire reservation here to prevent another
1093          * process from stealing the pages as they are added to the pool but
1094          * before they are reserved.
1095          */
1096         needed += allocated;
1097         h->resv_huge_pages += delta;
1098         ret = 0;
1099
1100         /* Free the needed pages to the hugetlb pool */
1101         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1102                 if ((--needed) < 0)
1103                         break;
1104                 /*
1105                  * This page is now managed by the hugetlb allocator and has
1106                  * no users -- drop the buddy allocator's reference.
1107                  */
1108                 put_page_testzero(page);
1109                 VM_BUG_ON_PAGE(page_count(page), page);
1110                 enqueue_huge_page(h, page);
1111         }
1112 free:
1113         spin_unlock(&hugetlb_lock);
1114
1115         /* Free unnecessary surplus pages to the buddy allocator */
1116         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1117                 put_page(page);
1118         spin_lock(&hugetlb_lock);
1119
1120         return ret;
1121 }
1122
1123 /*
1124  * When releasing a hugetlb pool reservation, any surplus pages that were
1125  * allocated to satisfy the reservation must be explicitly freed if they were
1126  * never used.
1127  * Called with hugetlb_lock held.
1128  */
1129 static void return_unused_surplus_pages(struct hstate *h,
1130                                         unsigned long unused_resv_pages)
1131 {
1132         unsigned long nr_pages;
1133
1134         /* Uncommit the reservation */
1135         h->resv_huge_pages -= unused_resv_pages;
1136
1137         /* Cannot return gigantic pages currently */
1138         if (h->order >= MAX_ORDER)
1139                 return;
1140
1141         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1142
1143         /*
1144          * We want to release as many surplus pages as possible, spread
1145          * evenly across all nodes with memory. Iterate across these nodes
1146          * until we can no longer free unreserved surplus pages. This occurs
1147          * when the nodes with surplus pages have no free pages.
1148          * free_pool_huge_page() will balance the the freed pages across the
1149          * on-line nodes with memory and will handle the hstate accounting.
1150          */
1151         while (nr_pages--) {
1152                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1153                         break;
1154         }
1155 }
1156
1157 /*
1158  * Determine if the huge page at addr within the vma has an associated
1159  * reservation.  Where it does not we will need to logically increase
1160  * reservation and actually increase subpool usage before an allocation
1161  * can occur.  Where any new reservation would be required the
1162  * reservation change is prepared, but not committed.  Once the page
1163  * has been allocated from the subpool and instantiated the change should
1164  * be committed via vma_commit_reservation.  No action is required on
1165  * failure.
1166  */
1167 static long vma_needs_reservation(struct hstate *h,
1168                         struct vm_area_struct *vma, unsigned long addr)
1169 {
1170         struct address_space *mapping = vma->vm_file->f_mapping;
1171         struct inode *inode = mapping->host;
1172
1173         if (vma->vm_flags & VM_MAYSHARE) {
1174                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1175                 struct resv_map *resv = inode->i_mapping->private_data;
1176
1177                 return region_chg(resv, idx, idx + 1);
1178
1179         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1180                 return 1;
1181
1182         } else  {
1183                 long err;
1184                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1185                 struct resv_map *resv = vma_resv_map(vma);
1186
1187                 err = region_chg(resv, idx, idx + 1);
1188                 if (err < 0)
1189                         return err;
1190                 return 0;
1191         }
1192 }
1193 static void vma_commit_reservation(struct hstate *h,
1194                         struct vm_area_struct *vma, unsigned long addr)
1195 {
1196         struct address_space *mapping = vma->vm_file->f_mapping;
1197         struct inode *inode = mapping->host;
1198
1199         if (vma->vm_flags & VM_MAYSHARE) {
1200                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1201                 struct resv_map *resv = inode->i_mapping->private_data;
1202
1203                 region_add(resv, idx, idx + 1);
1204
1205         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1206                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1207                 struct resv_map *resv = vma_resv_map(vma);
1208
1209                 /* Mark this page used in the map. */
1210                 region_add(resv, idx, idx + 1);
1211         }
1212 }
1213
1214 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1215                                     unsigned long addr, int avoid_reserve)
1216 {
1217         struct hugepage_subpool *spool = subpool_vma(vma);
1218         struct hstate *h = hstate_vma(vma);
1219         struct page *page;
1220         long chg;
1221         int ret, idx;
1222         struct hugetlb_cgroup *h_cg;
1223
1224         idx = hstate_index(h);
1225         /*
1226          * Processes that did not create the mapping will have no
1227          * reserves and will not have accounted against subpool
1228          * limit. Check that the subpool limit can be made before
1229          * satisfying the allocation MAP_NORESERVE mappings may also
1230          * need pages and subpool limit allocated allocated if no reserve
1231          * mapping overlaps.
1232          */
1233         chg = vma_needs_reservation(h, vma, addr);
1234         if (chg < 0)
1235                 return ERR_PTR(-ENOMEM);
1236         if (chg || avoid_reserve)
1237                 if (hugepage_subpool_get_pages(spool, 1))
1238                         return ERR_PTR(-ENOSPC);
1239
1240         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1241         if (ret) {
1242                 if (chg || avoid_reserve)
1243                         hugepage_subpool_put_pages(spool, 1);
1244                 return ERR_PTR(-ENOSPC);
1245         }
1246         spin_lock(&hugetlb_lock);
1247         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1248         if (!page) {
1249                 spin_unlock(&hugetlb_lock);
1250                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1251                 if (!page) {
1252                         hugetlb_cgroup_uncharge_cgroup(idx,
1253                                                        pages_per_huge_page(h),
1254                                                        h_cg);
1255                         if (chg || avoid_reserve)
1256                                 hugepage_subpool_put_pages(spool, 1);
1257                         return ERR_PTR(-ENOSPC);
1258                 }
1259                 spin_lock(&hugetlb_lock);
1260                 list_move(&page->lru, &h->hugepage_activelist);
1261                 /* Fall through */
1262         }
1263         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1264         spin_unlock(&hugetlb_lock);
1265
1266         set_page_private(page, (unsigned long)spool);
1267
1268         vma_commit_reservation(h, vma, addr);
1269         return page;
1270 }
1271
1272 /*
1273  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1274  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1275  * where no ERR_VALUE is expected to be returned.
1276  */
1277 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1278                                 unsigned long addr, int avoid_reserve)
1279 {
1280         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1281         if (IS_ERR(page))
1282                 page = NULL;
1283         return page;
1284 }
1285
1286 int __weak alloc_bootmem_huge_page(struct hstate *h)
1287 {
1288         struct huge_bootmem_page *m;
1289         int nr_nodes, node;
1290
1291         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1292                 void *addr;
1293
1294                 addr = memblock_virt_alloc_try_nid_nopanic(
1295                                 huge_page_size(h), huge_page_size(h),
1296                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1297                 if (addr) {
1298                         /*
1299                          * Use the beginning of the huge page to store the
1300                          * huge_bootmem_page struct (until gather_bootmem
1301                          * puts them into the mem_map).
1302                          */
1303                         m = addr;
1304                         goto found;
1305                 }
1306         }
1307         return 0;
1308
1309 found:
1310         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1311         /* Put them into a private list first because mem_map is not up yet */
1312         list_add(&m->list, &huge_boot_pages);
1313         m->hstate = h;
1314         return 1;
1315 }
1316
1317 static void prep_compound_huge_page(struct page *page, int order)
1318 {
1319         if (unlikely(order > (MAX_ORDER - 1)))
1320                 prep_compound_gigantic_page(page, order);
1321         else
1322                 prep_compound_page(page, order);
1323 }
1324
1325 /* Put bootmem huge pages into the standard lists after mem_map is up */
1326 static void __init gather_bootmem_prealloc(void)
1327 {
1328         struct huge_bootmem_page *m;
1329
1330         list_for_each_entry(m, &huge_boot_pages, list) {
1331                 struct hstate *h = m->hstate;
1332                 struct page *page;
1333
1334 #ifdef CONFIG_HIGHMEM
1335                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1336                 memblock_free_late(__pa(m),
1337                                    sizeof(struct huge_bootmem_page));
1338 #else
1339                 page = virt_to_page(m);
1340 #endif
1341                 WARN_ON(page_count(page) != 1);
1342                 prep_compound_huge_page(page, h->order);
1343                 WARN_ON(PageReserved(page));
1344                 prep_new_huge_page(h, page, page_to_nid(page));
1345                 /*
1346                  * If we had gigantic hugepages allocated at boot time, we need
1347                  * to restore the 'stolen' pages to totalram_pages in order to
1348                  * fix confusing memory reports from free(1) and another
1349                  * side-effects, like CommitLimit going negative.
1350                  */
1351                 if (h->order > (MAX_ORDER - 1))
1352                         adjust_managed_page_count(page, 1 << h->order);
1353         }
1354 }
1355
1356 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1357 {
1358         unsigned long i;
1359
1360         for (i = 0; i < h->max_huge_pages; ++i) {
1361                 if (h->order >= MAX_ORDER) {
1362                         if (!alloc_bootmem_huge_page(h))
1363                                 break;
1364                 } else if (!alloc_fresh_huge_page(h,
1365                                          &node_states[N_MEMORY]))
1366                         break;
1367         }
1368         h->max_huge_pages = i;
1369 }
1370
1371 static void __init hugetlb_init_hstates(void)
1372 {
1373         struct hstate *h;
1374
1375         for_each_hstate(h) {
1376                 /* oversize hugepages were init'ed in early boot */
1377                 if (h->order < MAX_ORDER)
1378                         hugetlb_hstate_alloc_pages(h);
1379         }
1380 }
1381
1382 static char * __init memfmt(char *buf, unsigned long n)
1383 {
1384         if (n >= (1UL << 30))
1385                 sprintf(buf, "%lu GB", n >> 30);
1386         else if (n >= (1UL << 20))
1387                 sprintf(buf, "%lu MB", n >> 20);
1388         else
1389                 sprintf(buf, "%lu KB", n >> 10);
1390         return buf;
1391 }
1392
1393 static void __init report_hugepages(void)
1394 {
1395         struct hstate *h;
1396
1397         for_each_hstate(h) {
1398                 char buf[32];
1399                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1400                         memfmt(buf, huge_page_size(h)),
1401                         h->free_huge_pages);
1402         }
1403 }
1404
1405 #ifdef CONFIG_HIGHMEM
1406 static void try_to_free_low(struct hstate *h, unsigned long count,
1407                                                 nodemask_t *nodes_allowed)
1408 {
1409         int i;
1410
1411         if (h->order >= MAX_ORDER)
1412                 return;
1413
1414         for_each_node_mask(i, *nodes_allowed) {
1415                 struct page *page, *next;
1416                 struct list_head *freel = &h->hugepage_freelists[i];
1417                 list_for_each_entry_safe(page, next, freel, lru) {
1418                         if (count >= h->nr_huge_pages)
1419                                 return;
1420                         if (PageHighMem(page))
1421                                 continue;
1422                         list_del(&page->lru);
1423                         update_and_free_page(h, page);
1424                         h->free_huge_pages--;
1425                         h->free_huge_pages_node[page_to_nid(page)]--;
1426                 }
1427         }
1428 }
1429 #else
1430 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1431                                                 nodemask_t *nodes_allowed)
1432 {
1433 }
1434 #endif
1435
1436 /*
1437  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1438  * balanced by operating on them in a round-robin fashion.
1439  * Returns 1 if an adjustment was made.
1440  */
1441 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1442                                 int delta)
1443 {
1444         int nr_nodes, node;
1445
1446         VM_BUG_ON(delta != -1 && delta != 1);
1447
1448         if (delta < 0) {
1449                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1450                         if (h->surplus_huge_pages_node[node])
1451                                 goto found;
1452                 }
1453         } else {
1454                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1455                         if (h->surplus_huge_pages_node[node] <
1456                                         h->nr_huge_pages_node[node])
1457                                 goto found;
1458                 }
1459         }
1460         return 0;
1461
1462 found:
1463         h->surplus_huge_pages += delta;
1464         h->surplus_huge_pages_node[node] += delta;
1465         return 1;
1466 }
1467
1468 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1469 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1470                                                 nodemask_t *nodes_allowed)
1471 {
1472         unsigned long min_count, ret;
1473
1474         if (h->order >= MAX_ORDER)
1475                 return h->max_huge_pages;
1476
1477         /*
1478          * Increase the pool size
1479          * First take pages out of surplus state.  Then make up the
1480          * remaining difference by allocating fresh huge pages.
1481          *
1482          * We might race with alloc_buddy_huge_page() here and be unable
1483          * to convert a surplus huge page to a normal huge page. That is
1484          * not critical, though, it just means the overall size of the
1485          * pool might be one hugepage larger than it needs to be, but
1486          * within all the constraints specified by the sysctls.
1487          */
1488         spin_lock(&hugetlb_lock);
1489         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1490                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1491                         break;
1492         }
1493
1494         while (count > persistent_huge_pages(h)) {
1495                 /*
1496                  * If this allocation races such that we no longer need the
1497                  * page, free_huge_page will handle it by freeing the page
1498                  * and reducing the surplus.
1499                  */
1500                 spin_unlock(&hugetlb_lock);
1501                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1502                 spin_lock(&hugetlb_lock);
1503                 if (!ret)
1504                         goto out;
1505
1506                 /* Bail for signals. Probably ctrl-c from user */
1507                 if (signal_pending(current))
1508                         goto out;
1509         }
1510
1511         /*
1512          * Decrease the pool size
1513          * First return free pages to the buddy allocator (being careful
1514          * to keep enough around to satisfy reservations).  Then place
1515          * pages into surplus state as needed so the pool will shrink
1516          * to the desired size as pages become free.
1517          *
1518          * By placing pages into the surplus state independent of the
1519          * overcommit value, we are allowing the surplus pool size to
1520          * exceed overcommit. There are few sane options here. Since
1521          * alloc_buddy_huge_page() is checking the global counter,
1522          * though, we'll note that we're not allowed to exceed surplus
1523          * and won't grow the pool anywhere else. Not until one of the
1524          * sysctls are changed, or the surplus pages go out of use.
1525          */
1526         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1527         min_count = max(count, min_count);
1528         try_to_free_low(h, min_count, nodes_allowed);
1529         while (min_count < persistent_huge_pages(h)) {
1530                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1531                         break;
1532         }
1533         while (count < persistent_huge_pages(h)) {
1534                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1535                         break;
1536         }
1537 out:
1538         ret = persistent_huge_pages(h);
1539         spin_unlock(&hugetlb_lock);
1540         return ret;
1541 }
1542
1543 #define HSTATE_ATTR_RO(_name) \
1544         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1545
1546 #define HSTATE_ATTR(_name) \
1547         static struct kobj_attribute _name##_attr = \
1548                 __ATTR(_name, 0644, _name##_show, _name##_store)
1549
1550 static struct kobject *hugepages_kobj;
1551 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1552
1553 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1554
1555 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1556 {
1557         int i;
1558
1559         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1560                 if (hstate_kobjs[i] == kobj) {
1561                         if (nidp)
1562                                 *nidp = NUMA_NO_NODE;
1563                         return &hstates[i];
1564                 }
1565
1566         return kobj_to_node_hstate(kobj, nidp);
1567 }
1568
1569 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1570                                         struct kobj_attribute *attr, char *buf)
1571 {
1572         struct hstate *h;
1573         unsigned long nr_huge_pages;
1574         int nid;
1575
1576         h = kobj_to_hstate(kobj, &nid);
1577         if (nid == NUMA_NO_NODE)
1578                 nr_huge_pages = h->nr_huge_pages;
1579         else
1580                 nr_huge_pages = h->nr_huge_pages_node[nid];
1581
1582         return sprintf(buf, "%lu\n", nr_huge_pages);
1583 }
1584
1585 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1586                         struct kobject *kobj, struct kobj_attribute *attr,
1587                         const char *buf, size_t len)
1588 {
1589         int err;
1590         int nid;
1591         unsigned long count;
1592         struct hstate *h;
1593         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1594
1595         err = kstrtoul(buf, 10, &count);
1596         if (err)
1597                 goto out;
1598
1599         h = kobj_to_hstate(kobj, &nid);
1600         if (h->order >= MAX_ORDER) {
1601                 err = -EINVAL;
1602                 goto out;
1603         }
1604
1605         if (nid == NUMA_NO_NODE) {
1606                 /*
1607                  * global hstate attribute
1608                  */
1609                 if (!(obey_mempolicy &&
1610                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1611                         NODEMASK_FREE(nodes_allowed);
1612                         nodes_allowed = &node_states[N_MEMORY];
1613                 }
1614         } else if (nodes_allowed) {
1615                 /*
1616                  * per node hstate attribute: adjust count to global,
1617                  * but restrict alloc/free to the specified node.
1618                  */
1619                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1620                 init_nodemask_of_node(nodes_allowed, nid);
1621         } else
1622                 nodes_allowed = &node_states[N_MEMORY];
1623
1624         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1625
1626         if (nodes_allowed != &node_states[N_MEMORY])
1627                 NODEMASK_FREE(nodes_allowed);
1628
1629         return len;
1630 out:
1631         NODEMASK_FREE(nodes_allowed);
1632         return err;
1633 }
1634
1635 static ssize_t nr_hugepages_show(struct kobject *kobj,
1636                                        struct kobj_attribute *attr, char *buf)
1637 {
1638         return nr_hugepages_show_common(kobj, attr, buf);
1639 }
1640
1641 static ssize_t nr_hugepages_store(struct kobject *kobj,
1642                struct kobj_attribute *attr, const char *buf, size_t len)
1643 {
1644         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1645 }
1646 HSTATE_ATTR(nr_hugepages);
1647
1648 #ifdef CONFIG_NUMA
1649
1650 /*
1651  * hstate attribute for optionally mempolicy-based constraint on persistent
1652  * huge page alloc/free.
1653  */
1654 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1655                                        struct kobj_attribute *attr, char *buf)
1656 {
1657         return nr_hugepages_show_common(kobj, attr, buf);
1658 }
1659
1660 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1661                struct kobj_attribute *attr, const char *buf, size_t len)
1662 {
1663         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1664 }
1665 HSTATE_ATTR(nr_hugepages_mempolicy);
1666 #endif
1667
1668
1669 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1670                                         struct kobj_attribute *attr, char *buf)
1671 {
1672         struct hstate *h = kobj_to_hstate(kobj, NULL);
1673         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1674 }
1675
1676 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1677                 struct kobj_attribute *attr, const char *buf, size_t count)
1678 {
1679         int err;
1680         unsigned long input;
1681         struct hstate *h = kobj_to_hstate(kobj, NULL);
1682
1683         if (h->order >= MAX_ORDER)
1684                 return -EINVAL;
1685
1686         err = kstrtoul(buf, 10, &input);
1687         if (err)
1688                 return err;
1689
1690         spin_lock(&hugetlb_lock);
1691         h->nr_overcommit_huge_pages = input;
1692         spin_unlock(&hugetlb_lock);
1693
1694         return count;
1695 }
1696 HSTATE_ATTR(nr_overcommit_hugepages);
1697
1698 static ssize_t free_hugepages_show(struct kobject *kobj,
1699                                         struct kobj_attribute *attr, char *buf)
1700 {
1701         struct hstate *h;
1702         unsigned long free_huge_pages;
1703         int nid;
1704
1705         h = kobj_to_hstate(kobj, &nid);
1706         if (nid == NUMA_NO_NODE)
1707                 free_huge_pages = h->free_huge_pages;
1708         else
1709                 free_huge_pages = h->free_huge_pages_node[nid];
1710
1711         return sprintf(buf, "%lu\n", free_huge_pages);
1712 }
1713 HSTATE_ATTR_RO(free_hugepages);
1714
1715 static ssize_t resv_hugepages_show(struct kobject *kobj,
1716                                         struct kobj_attribute *attr, char *buf)
1717 {
1718         struct hstate *h = kobj_to_hstate(kobj, NULL);
1719         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1720 }
1721 HSTATE_ATTR_RO(resv_hugepages);
1722
1723 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1724                                         struct kobj_attribute *attr, char *buf)
1725 {
1726         struct hstate *h;
1727         unsigned long surplus_huge_pages;
1728         int nid;
1729
1730         h = kobj_to_hstate(kobj, &nid);
1731         if (nid == NUMA_NO_NODE)
1732                 surplus_huge_pages = h->surplus_huge_pages;
1733         else
1734                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1735
1736         return sprintf(buf, "%lu\n", surplus_huge_pages);
1737 }
1738 HSTATE_ATTR_RO(surplus_hugepages);
1739
1740 static struct attribute *hstate_attrs[] = {
1741         &nr_hugepages_attr.attr,
1742         &nr_overcommit_hugepages_attr.attr,
1743         &free_hugepages_attr.attr,
1744         &resv_hugepages_attr.attr,
1745         &surplus_hugepages_attr.attr,
1746 #ifdef CONFIG_NUMA
1747         &nr_hugepages_mempolicy_attr.attr,
1748 #endif
1749         NULL,
1750 };
1751
1752 static struct attribute_group hstate_attr_group = {
1753         .attrs = hstate_attrs,
1754 };
1755
1756 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1757                                     struct kobject **hstate_kobjs,
1758                                     struct attribute_group *hstate_attr_group)
1759 {
1760         int retval;
1761         int hi = hstate_index(h);
1762
1763         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1764         if (!hstate_kobjs[hi])
1765                 return -ENOMEM;
1766
1767         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1768         if (retval)
1769                 kobject_put(hstate_kobjs[hi]);
1770
1771         return retval;
1772 }
1773
1774 static void __init hugetlb_sysfs_init(void)
1775 {
1776         struct hstate *h;
1777         int err;
1778
1779         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1780         if (!hugepages_kobj)
1781                 return;
1782
1783         for_each_hstate(h) {
1784                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1785                                          hstate_kobjs, &hstate_attr_group);
1786                 if (err)
1787                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1788         }
1789 }
1790
1791 #ifdef CONFIG_NUMA
1792
1793 /*
1794  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1795  * with node devices in node_devices[] using a parallel array.  The array
1796  * index of a node device or _hstate == node id.
1797  * This is here to avoid any static dependency of the node device driver, in
1798  * the base kernel, on the hugetlb module.
1799  */
1800 struct node_hstate {
1801         struct kobject          *hugepages_kobj;
1802         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1803 };
1804 struct node_hstate node_hstates[MAX_NUMNODES];
1805
1806 /*
1807  * A subset of global hstate attributes for node devices
1808  */
1809 static struct attribute *per_node_hstate_attrs[] = {
1810         &nr_hugepages_attr.attr,
1811         &free_hugepages_attr.attr,
1812         &surplus_hugepages_attr.attr,
1813         NULL,
1814 };
1815
1816 static struct attribute_group per_node_hstate_attr_group = {
1817         .attrs = per_node_hstate_attrs,
1818 };
1819
1820 /*
1821  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1822  * Returns node id via non-NULL nidp.
1823  */
1824 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1825 {
1826         int nid;
1827
1828         for (nid = 0; nid < nr_node_ids; nid++) {
1829                 struct node_hstate *nhs = &node_hstates[nid];
1830                 int i;
1831                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1832                         if (nhs->hstate_kobjs[i] == kobj) {
1833                                 if (nidp)
1834                                         *nidp = nid;
1835                                 return &hstates[i];
1836                         }
1837         }
1838
1839         BUG();
1840         return NULL;
1841 }
1842
1843 /*
1844  * Unregister hstate attributes from a single node device.
1845  * No-op if no hstate attributes attached.
1846  */
1847 static void hugetlb_unregister_node(struct node *node)
1848 {
1849         struct hstate *h;
1850         struct node_hstate *nhs = &node_hstates[node->dev.id];
1851
1852         if (!nhs->hugepages_kobj)
1853                 return;         /* no hstate attributes */
1854
1855         for_each_hstate(h) {
1856                 int idx = hstate_index(h);
1857                 if (nhs->hstate_kobjs[idx]) {
1858                         kobject_put(nhs->hstate_kobjs[idx]);
1859                         nhs->hstate_kobjs[idx] = NULL;
1860                 }
1861         }
1862
1863         kobject_put(nhs->hugepages_kobj);
1864         nhs->hugepages_kobj = NULL;
1865 }
1866
1867 /*
1868  * hugetlb module exit:  unregister hstate attributes from node devices
1869  * that have them.
1870  */
1871 static void hugetlb_unregister_all_nodes(void)
1872 {
1873         int nid;
1874
1875         /*
1876          * disable node device registrations.
1877          */
1878         register_hugetlbfs_with_node(NULL, NULL);
1879
1880         /*
1881          * remove hstate attributes from any nodes that have them.
1882          */
1883         for (nid = 0; nid < nr_node_ids; nid++)
1884                 hugetlb_unregister_node(node_devices[nid]);
1885 }
1886
1887 /*
1888  * Register hstate attributes for a single node device.
1889  * No-op if attributes already registered.
1890  */
1891 static void hugetlb_register_node(struct node *node)
1892 {
1893         struct hstate *h;
1894         struct node_hstate *nhs = &node_hstates[node->dev.id];
1895         int err;
1896
1897         if (nhs->hugepages_kobj)
1898                 return;         /* already allocated */
1899
1900         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1901                                                         &node->dev.kobj);
1902         if (!nhs->hugepages_kobj)
1903                 return;
1904
1905         for_each_hstate(h) {
1906                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1907                                                 nhs->hstate_kobjs,
1908                                                 &per_node_hstate_attr_group);
1909                 if (err) {
1910                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1911                                 h->name, node->dev.id);
1912                         hugetlb_unregister_node(node);
1913                         break;
1914                 }
1915         }
1916 }
1917
1918 /*
1919  * hugetlb init time:  register hstate attributes for all registered node
1920  * devices of nodes that have memory.  All on-line nodes should have
1921  * registered their associated device by this time.
1922  */
1923 static void hugetlb_register_all_nodes(void)
1924 {
1925         int nid;
1926
1927         for_each_node_state(nid, N_MEMORY) {
1928                 struct node *node = node_devices[nid];
1929                 if (node->dev.id == nid)
1930                         hugetlb_register_node(node);
1931         }
1932
1933         /*
1934          * Let the node device driver know we're here so it can
1935          * [un]register hstate attributes on node hotplug.
1936          */
1937         register_hugetlbfs_with_node(hugetlb_register_node,
1938                                      hugetlb_unregister_node);
1939 }
1940 #else   /* !CONFIG_NUMA */
1941
1942 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1943 {
1944         BUG();
1945         if (nidp)
1946                 *nidp = -1;
1947         return NULL;
1948 }
1949
1950 static void hugetlb_unregister_all_nodes(void) { }
1951
1952 static void hugetlb_register_all_nodes(void) { }
1953
1954 #endif
1955
1956 static void __exit hugetlb_exit(void)
1957 {
1958         struct hstate *h;
1959
1960         hugetlb_unregister_all_nodes();
1961
1962         for_each_hstate(h) {
1963                 kobject_put(hstate_kobjs[hstate_index(h)]);
1964         }
1965
1966         kobject_put(hugepages_kobj);
1967 }
1968 module_exit(hugetlb_exit);
1969
1970 static int __init hugetlb_init(void)
1971 {
1972         /* Some platform decide whether they support huge pages at boot
1973          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1974          * there is no such support
1975          */
1976         if (HPAGE_SHIFT == 0)
1977                 return 0;
1978
1979         if (!size_to_hstate(default_hstate_size)) {
1980                 default_hstate_size = HPAGE_SIZE;
1981                 if (!size_to_hstate(default_hstate_size))
1982                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1983         }
1984         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1985         if (default_hstate_max_huge_pages)
1986                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1987
1988         hugetlb_init_hstates();
1989         gather_bootmem_prealloc();
1990         report_hugepages();
1991
1992         hugetlb_sysfs_init();
1993         hugetlb_register_all_nodes();
1994         hugetlb_cgroup_file_init();
1995
1996         return 0;
1997 }
1998 module_init(hugetlb_init);
1999
2000 /* Should be called on processing a hugepagesz=... option */
2001 void __init hugetlb_add_hstate(unsigned order)
2002 {
2003         struct hstate *h;
2004         unsigned long i;
2005
2006         if (size_to_hstate(PAGE_SIZE << order)) {
2007                 pr_warning("hugepagesz= specified twice, ignoring\n");
2008                 return;
2009         }
2010         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2011         BUG_ON(order == 0);
2012         h = &hstates[hugetlb_max_hstate++];
2013         h->order = order;
2014         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2015         h->nr_huge_pages = 0;
2016         h->free_huge_pages = 0;
2017         for (i = 0; i < MAX_NUMNODES; ++i)
2018                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2019         INIT_LIST_HEAD(&h->hugepage_activelist);
2020         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2021         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2022         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2023                                         huge_page_size(h)/1024);
2024
2025         parsed_hstate = h;
2026 }
2027
2028 static int __init hugetlb_nrpages_setup(char *s)
2029 {
2030         unsigned long *mhp;
2031         static unsigned long *last_mhp;
2032
2033         /*
2034          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2035          * so this hugepages= parameter goes to the "default hstate".
2036          */
2037         if (!hugetlb_max_hstate)
2038                 mhp = &default_hstate_max_huge_pages;
2039         else
2040                 mhp = &parsed_hstate->max_huge_pages;
2041
2042         if (mhp == last_mhp) {
2043                 pr_warning("hugepages= specified twice without "
2044                            "interleaving hugepagesz=, ignoring\n");
2045                 return 1;
2046         }
2047
2048         if (sscanf(s, "%lu", mhp) <= 0)
2049                 *mhp = 0;
2050
2051         /*
2052          * Global state is always initialized later in hugetlb_init.
2053          * But we need to allocate >= MAX_ORDER hstates here early to still
2054          * use the bootmem allocator.
2055          */
2056         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2057                 hugetlb_hstate_alloc_pages(parsed_hstate);
2058
2059         last_mhp = mhp;
2060
2061         return 1;
2062 }
2063 __setup("hugepages=", hugetlb_nrpages_setup);
2064
2065 static int __init hugetlb_default_setup(char *s)
2066 {
2067         default_hstate_size = memparse(s, &s);
2068         return 1;
2069 }
2070 __setup("default_hugepagesz=", hugetlb_default_setup);
2071
2072 static unsigned int cpuset_mems_nr(unsigned int *array)
2073 {
2074         int node;
2075         unsigned int nr = 0;
2076
2077         for_each_node_mask(node, cpuset_current_mems_allowed)
2078                 nr += array[node];
2079
2080         return nr;
2081 }
2082
2083 #ifdef CONFIG_SYSCTL
2084 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2085                          struct ctl_table *table, int write,
2086                          void __user *buffer, size_t *length, loff_t *ppos)
2087 {
2088         struct hstate *h = &default_hstate;
2089         unsigned long tmp;
2090         int ret;
2091
2092         tmp = h->max_huge_pages;
2093
2094         if (write && h->order >= MAX_ORDER)
2095                 return -EINVAL;
2096
2097         table->data = &tmp;
2098         table->maxlen = sizeof(unsigned long);
2099         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2100         if (ret)
2101                 goto out;
2102
2103         if (write) {
2104                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2105                                                 GFP_KERNEL | __GFP_NORETRY);
2106                 if (!(obey_mempolicy &&
2107                                init_nodemask_of_mempolicy(nodes_allowed))) {
2108                         NODEMASK_FREE(nodes_allowed);
2109                         nodes_allowed = &node_states[N_MEMORY];
2110                 }
2111                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2112
2113                 if (nodes_allowed != &node_states[N_MEMORY])
2114                         NODEMASK_FREE(nodes_allowed);
2115         }
2116 out:
2117         return ret;
2118 }
2119
2120 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2121                           void __user *buffer, size_t *length, loff_t *ppos)
2122 {
2123
2124         return hugetlb_sysctl_handler_common(false, table, write,
2125                                                         buffer, length, ppos);
2126 }
2127
2128 #ifdef CONFIG_NUMA
2129 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2130                           void __user *buffer, size_t *length, loff_t *ppos)
2131 {
2132         return hugetlb_sysctl_handler_common(true, table, write,
2133                                                         buffer, length, ppos);
2134 }
2135 #endif /* CONFIG_NUMA */
2136
2137 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2138                         void __user *buffer,
2139                         size_t *length, loff_t *ppos)
2140 {
2141         struct hstate *h = &default_hstate;
2142         unsigned long tmp;
2143         int ret;
2144
2145         tmp = h->nr_overcommit_huge_pages;
2146
2147         if (write && h->order >= MAX_ORDER)
2148                 return -EINVAL;
2149
2150         table->data = &tmp;
2151         table->maxlen = sizeof(unsigned long);
2152         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2153         if (ret)
2154                 goto out;
2155
2156         if (write) {
2157                 spin_lock(&hugetlb_lock);
2158                 h->nr_overcommit_huge_pages = tmp;
2159                 spin_unlock(&hugetlb_lock);
2160         }
2161 out:
2162         return ret;
2163 }
2164
2165 #endif /* CONFIG_SYSCTL */
2166
2167 void hugetlb_report_meminfo(struct seq_file *m)
2168 {
2169         struct hstate *h = &default_hstate;
2170         seq_printf(m,
2171                         "HugePages_Total:   %5lu\n"
2172                         "HugePages_Free:    %5lu\n"
2173                         "HugePages_Rsvd:    %5lu\n"
2174                         "HugePages_Surp:    %5lu\n"
2175                         "Hugepagesize:   %8lu kB\n",
2176                         h->nr_huge_pages,
2177                         h->free_huge_pages,
2178                         h->resv_huge_pages,
2179                         h->surplus_huge_pages,
2180                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2181 }
2182
2183 int hugetlb_report_node_meminfo(int nid, char *buf)
2184 {
2185         struct hstate *h = &default_hstate;
2186         return sprintf(buf,
2187                 "Node %d HugePages_Total: %5u\n"
2188                 "Node %d HugePages_Free:  %5u\n"
2189                 "Node %d HugePages_Surp:  %5u\n",
2190                 nid, h->nr_huge_pages_node[nid],
2191                 nid, h->free_huge_pages_node[nid],
2192                 nid, h->surplus_huge_pages_node[nid]);
2193 }
2194
2195 void hugetlb_show_meminfo(void)
2196 {
2197         struct hstate *h;
2198         int nid;
2199
2200         for_each_node_state(nid, N_MEMORY)
2201                 for_each_hstate(h)
2202                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2203                                 nid,
2204                                 h->nr_huge_pages_node[nid],
2205                                 h->free_huge_pages_node[nid],
2206                                 h->surplus_huge_pages_node[nid],
2207                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2208 }
2209
2210 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2211 unsigned long hugetlb_total_pages(void)
2212 {
2213         struct hstate *h;
2214         unsigned long nr_total_pages = 0;
2215
2216         for_each_hstate(h)
2217                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2218         return nr_total_pages;
2219 }
2220
2221 static int hugetlb_acct_memory(struct hstate *h, long delta)
2222 {
2223         int ret = -ENOMEM;
2224
2225         spin_lock(&hugetlb_lock);
2226         /*
2227          * When cpuset is configured, it breaks the strict hugetlb page
2228          * reservation as the accounting is done on a global variable. Such
2229          * reservation is completely rubbish in the presence of cpuset because
2230          * the reservation is not checked against page availability for the
2231          * current cpuset. Application can still potentially OOM'ed by kernel
2232          * with lack of free htlb page in cpuset that the task is in.
2233          * Attempt to enforce strict accounting with cpuset is almost
2234          * impossible (or too ugly) because cpuset is too fluid that
2235          * task or memory node can be dynamically moved between cpusets.
2236          *
2237          * The change of semantics for shared hugetlb mapping with cpuset is
2238          * undesirable. However, in order to preserve some of the semantics,
2239          * we fall back to check against current free page availability as
2240          * a best attempt and hopefully to minimize the impact of changing
2241          * semantics that cpuset has.
2242          */
2243         if (delta > 0) {
2244                 if (gather_surplus_pages(h, delta) < 0)
2245                         goto out;
2246
2247                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2248                         return_unused_surplus_pages(h, delta);
2249                         goto out;
2250                 }
2251         }
2252
2253         ret = 0;
2254         if (delta < 0)
2255                 return_unused_surplus_pages(h, (unsigned long) -delta);
2256
2257 out:
2258         spin_unlock(&hugetlb_lock);
2259         return ret;
2260 }
2261
2262 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2263 {
2264         struct resv_map *resv = vma_resv_map(vma);
2265
2266         /*
2267          * This new VMA should share its siblings reservation map if present.
2268          * The VMA will only ever have a valid reservation map pointer where
2269          * it is being copied for another still existing VMA.  As that VMA
2270          * has a reference to the reservation map it cannot disappear until
2271          * after this open call completes.  It is therefore safe to take a
2272          * new reference here without additional locking.
2273          */
2274         if (resv)
2275                 kref_get(&resv->refs);
2276 }
2277
2278 static void resv_map_put(struct vm_area_struct *vma)
2279 {
2280         struct resv_map *resv = vma_resv_map(vma);
2281
2282         if (!resv)
2283                 return;
2284         kref_put(&resv->refs, resv_map_release);
2285 }
2286
2287 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2288 {
2289         struct hstate *h = hstate_vma(vma);
2290         struct resv_map *resv = vma_resv_map(vma);
2291         struct hugepage_subpool *spool = subpool_vma(vma);
2292         unsigned long reserve;
2293         unsigned long start;
2294         unsigned long end;
2295
2296         if (resv) {
2297                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2298                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2299
2300                 reserve = (end - start) -
2301                         region_count(resv, start, end);
2302
2303                 resv_map_put(vma);
2304
2305                 if (reserve) {
2306                         hugetlb_acct_memory(h, -reserve);
2307                         hugepage_subpool_put_pages(spool, reserve);
2308                 }
2309         }
2310 }
2311
2312 /*
2313  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2314  * handle_mm_fault() to try to instantiate regular-sized pages in the
2315  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2316  * this far.
2317  */
2318 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2319 {
2320         BUG();
2321         return 0;
2322 }
2323
2324 const struct vm_operations_struct hugetlb_vm_ops = {
2325         .fault = hugetlb_vm_op_fault,
2326         .open = hugetlb_vm_op_open,
2327         .close = hugetlb_vm_op_close,
2328 };
2329
2330 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2331                                 int writable)
2332 {
2333         pte_t entry;
2334
2335         if (writable) {
2336                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2337                                          vma->vm_page_prot)));
2338         } else {
2339                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2340                                            vma->vm_page_prot));
2341         }
2342         entry = pte_mkyoung(entry);
2343         entry = pte_mkhuge(entry);
2344         entry = arch_make_huge_pte(entry, vma, page, writable);
2345
2346         return entry;
2347 }
2348
2349 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2350                                    unsigned long address, pte_t *ptep)
2351 {
2352         pte_t entry;
2353
2354         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2355         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2356                 update_mmu_cache(vma, address, ptep);
2357 }
2358
2359
2360 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2361                             struct vm_area_struct *vma)
2362 {
2363         pte_t *src_pte, *dst_pte, entry;
2364         struct page *ptepage;
2365         unsigned long addr;
2366         int cow;
2367         struct hstate *h = hstate_vma(vma);
2368         unsigned long sz = huge_page_size(h);
2369         unsigned long mmun_start;       /* For mmu_notifiers */
2370         unsigned long mmun_end;         /* For mmu_notifiers */
2371         int ret = 0;
2372
2373         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2374
2375         mmun_start = vma->vm_start;
2376         mmun_end = vma->vm_end;
2377         if (cow)
2378                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2379
2380         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2381                 spinlock_t *src_ptl, *dst_ptl;
2382                 src_pte = huge_pte_offset(src, addr);
2383                 if (!src_pte)
2384                         continue;
2385                 dst_pte = huge_pte_alloc(dst, addr, sz);
2386                 if (!dst_pte) {
2387                         ret = -ENOMEM;
2388                         break;
2389                 }
2390
2391                 /* If the pagetables are shared don't copy or take references */
2392                 if (dst_pte == src_pte)
2393                         continue;
2394
2395                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2396                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2397                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2398                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2399                         if (cow)
2400                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2401                         entry = huge_ptep_get(src_pte);
2402                         ptepage = pte_page(entry);
2403                         get_page(ptepage);
2404                         page_dup_rmap(ptepage);
2405                         set_huge_pte_at(dst, addr, dst_pte, entry);
2406                 }
2407                 spin_unlock(src_ptl);
2408                 spin_unlock(dst_ptl);
2409         }
2410
2411         if (cow)
2412                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2413
2414         return ret;
2415 }
2416
2417 static int is_hugetlb_entry_migration(pte_t pte)
2418 {
2419         swp_entry_t swp;
2420
2421         if (huge_pte_none(pte) || pte_present(pte))
2422                 return 0;
2423         swp = pte_to_swp_entry(pte);
2424         if (non_swap_entry(swp) && is_migration_entry(swp))
2425                 return 1;
2426         else
2427                 return 0;
2428 }
2429
2430 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2431 {
2432         swp_entry_t swp;
2433
2434         if (huge_pte_none(pte) || pte_present(pte))
2435                 return 0;
2436         swp = pte_to_swp_entry(pte);
2437         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2438                 return 1;
2439         else
2440                 return 0;
2441 }
2442
2443 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2444                             unsigned long start, unsigned long end,
2445                             struct page *ref_page)
2446 {
2447         int force_flush = 0;
2448         struct mm_struct *mm = vma->vm_mm;
2449         unsigned long address;
2450         pte_t *ptep;
2451         pte_t pte;
2452         spinlock_t *ptl;
2453         struct page *page;
2454         struct hstate *h = hstate_vma(vma);
2455         unsigned long sz = huge_page_size(h);
2456         const unsigned long mmun_start = start; /* For mmu_notifiers */
2457         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2458
2459         WARN_ON(!is_vm_hugetlb_page(vma));
2460         BUG_ON(start & ~huge_page_mask(h));
2461         BUG_ON(end & ~huge_page_mask(h));
2462
2463         tlb_start_vma(tlb, vma);
2464         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2465 again:
2466         for (address = start; address < end; address += sz) {
2467                 ptep = huge_pte_offset(mm, address);
2468                 if (!ptep)
2469                         continue;
2470
2471                 ptl = huge_pte_lock(h, mm, ptep);
2472                 if (huge_pmd_unshare(mm, &address, ptep))
2473                         goto unlock;
2474
2475                 pte = huge_ptep_get(ptep);
2476                 if (huge_pte_none(pte))
2477                         goto unlock;
2478
2479                 /*
2480                  * HWPoisoned hugepage is already unmapped and dropped reference
2481                  */
2482                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2483                         huge_pte_clear(mm, address, ptep);
2484                         goto unlock;
2485                 }
2486
2487                 page = pte_page(pte);
2488                 /*
2489                  * If a reference page is supplied, it is because a specific
2490                  * page is being unmapped, not a range. Ensure the page we
2491                  * are about to unmap is the actual page of interest.
2492                  */
2493                 if (ref_page) {
2494                         if (page != ref_page)
2495                                 goto unlock;
2496
2497                         /*
2498                          * Mark the VMA as having unmapped its page so that
2499                          * future faults in this VMA will fail rather than
2500                          * looking like data was lost
2501                          */
2502                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2503                 }
2504
2505                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2506                 tlb_remove_tlb_entry(tlb, ptep, address);
2507                 if (huge_pte_dirty(pte))
2508                         set_page_dirty(page);
2509
2510                 page_remove_rmap(page);
2511                 force_flush = !__tlb_remove_page(tlb, page);
2512                 if (force_flush) {
2513                         spin_unlock(ptl);
2514                         break;
2515                 }
2516                 /* Bail out after unmapping reference page if supplied */
2517                 if (ref_page) {
2518                         spin_unlock(ptl);
2519                         break;
2520                 }
2521 unlock:
2522                 spin_unlock(ptl);
2523         }
2524         /*
2525          * mmu_gather ran out of room to batch pages, we break out of
2526          * the PTE lock to avoid doing the potential expensive TLB invalidate
2527          * and page-free while holding it.
2528          */
2529         if (force_flush) {
2530                 force_flush = 0;
2531                 tlb_flush_mmu(tlb);
2532                 if (address < end && !ref_page)
2533                         goto again;
2534         }
2535         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2536         tlb_end_vma(tlb, vma);
2537 }
2538
2539 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2540                           struct vm_area_struct *vma, unsigned long start,
2541                           unsigned long end, struct page *ref_page)
2542 {
2543         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2544
2545         /*
2546          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2547          * test will fail on a vma being torn down, and not grab a page table
2548          * on its way out.  We're lucky that the flag has such an appropriate
2549          * name, and can in fact be safely cleared here. We could clear it
2550          * before the __unmap_hugepage_range above, but all that's necessary
2551          * is to clear it before releasing the i_mmap_mutex. This works
2552          * because in the context this is called, the VMA is about to be
2553          * destroyed and the i_mmap_mutex is held.
2554          */
2555         vma->vm_flags &= ~VM_MAYSHARE;
2556 }
2557
2558 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2559                           unsigned long end, struct page *ref_page)
2560 {
2561         struct mm_struct *mm;
2562         struct mmu_gather tlb;
2563
2564         mm = vma->vm_mm;
2565
2566         tlb_gather_mmu(&tlb, mm, start, end);
2567         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2568         tlb_finish_mmu(&tlb, start, end);
2569 }
2570
2571 /*
2572  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2573  * mappping it owns the reserve page for. The intention is to unmap the page
2574  * from other VMAs and let the children be SIGKILLed if they are faulting the
2575  * same region.
2576  */
2577 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2578                                 struct page *page, unsigned long address)
2579 {
2580         struct hstate *h = hstate_vma(vma);
2581         struct vm_area_struct *iter_vma;
2582         struct address_space *mapping;
2583         pgoff_t pgoff;
2584
2585         /*
2586          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2587          * from page cache lookup which is in HPAGE_SIZE units.
2588          */
2589         address = address & huge_page_mask(h);
2590         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2591                         vma->vm_pgoff;
2592         mapping = file_inode(vma->vm_file)->i_mapping;
2593
2594         /*
2595          * Take the mapping lock for the duration of the table walk. As
2596          * this mapping should be shared between all the VMAs,
2597          * __unmap_hugepage_range() is called as the lock is already held
2598          */
2599         mutex_lock(&mapping->i_mmap_mutex);
2600         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2601                 /* Do not unmap the current VMA */
2602                 if (iter_vma == vma)
2603                         continue;
2604
2605                 /*
2606                  * Unmap the page from other VMAs without their own reserves.
2607                  * They get marked to be SIGKILLed if they fault in these
2608                  * areas. This is because a future no-page fault on this VMA
2609                  * could insert a zeroed page instead of the data existing
2610                  * from the time of fork. This would look like data corruption
2611                  */
2612                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2613                         unmap_hugepage_range(iter_vma, address,
2614                                              address + huge_page_size(h), page);
2615         }
2616         mutex_unlock(&mapping->i_mmap_mutex);
2617
2618         return 1;
2619 }
2620
2621 /*
2622  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2623  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2624  * cannot race with other handlers or page migration.
2625  * Keep the pte_same checks anyway to make transition from the mutex easier.
2626  */
2627 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2628                         unsigned long address, pte_t *ptep, pte_t pte,
2629                         struct page *pagecache_page, spinlock_t *ptl)
2630 {
2631         struct hstate *h = hstate_vma(vma);
2632         struct page *old_page, *new_page;
2633         int outside_reserve = 0;
2634         unsigned long mmun_start;       /* For mmu_notifiers */
2635         unsigned long mmun_end;         /* For mmu_notifiers */
2636
2637         old_page = pte_page(pte);
2638
2639 retry_avoidcopy:
2640         /* If no-one else is actually using this page, avoid the copy
2641          * and just make the page writable */
2642         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2643                 page_move_anon_rmap(old_page, vma, address);
2644                 set_huge_ptep_writable(vma, address, ptep);
2645                 return 0;
2646         }
2647
2648         /*
2649          * If the process that created a MAP_PRIVATE mapping is about to
2650          * perform a COW due to a shared page count, attempt to satisfy
2651          * the allocation without using the existing reserves. The pagecache
2652          * page is used to determine if the reserve at this address was
2653          * consumed or not. If reserves were used, a partial faulted mapping
2654          * at the time of fork() could consume its reserves on COW instead
2655          * of the full address range.
2656          */
2657         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2658                         old_page != pagecache_page)
2659                 outside_reserve = 1;
2660
2661         page_cache_get(old_page);
2662
2663         /* Drop page table lock as buddy allocator may be called */
2664         spin_unlock(ptl);
2665         new_page = alloc_huge_page(vma, address, outside_reserve);
2666
2667         if (IS_ERR(new_page)) {
2668                 long err = PTR_ERR(new_page);
2669                 page_cache_release(old_page);
2670
2671                 /*
2672                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2673                  * it is due to references held by a child and an insufficient
2674                  * huge page pool. To guarantee the original mappers
2675                  * reliability, unmap the page from child processes. The child
2676                  * may get SIGKILLed if it later faults.
2677                  */
2678                 if (outside_reserve) {
2679                         BUG_ON(huge_pte_none(pte));
2680                         if (unmap_ref_private(mm, vma, old_page, address)) {
2681                                 BUG_ON(huge_pte_none(pte));
2682                                 spin_lock(ptl);
2683                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2684                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2685                                         goto retry_avoidcopy;
2686                                 /*
2687                                  * race occurs while re-acquiring page table
2688                                  * lock, and our job is done.
2689                                  */
2690                                 return 0;
2691                         }
2692                         WARN_ON_ONCE(1);
2693                 }
2694
2695                 /* Caller expects lock to be held */
2696                 spin_lock(ptl);
2697                 if (err == -ENOMEM)
2698                         return VM_FAULT_OOM;
2699                 else
2700                         return VM_FAULT_SIGBUS;
2701         }
2702
2703         /*
2704          * When the original hugepage is shared one, it does not have
2705          * anon_vma prepared.
2706          */
2707         if (unlikely(anon_vma_prepare(vma))) {
2708                 page_cache_release(new_page);
2709                 page_cache_release(old_page);
2710                 /* Caller expects lock to be held */
2711                 spin_lock(ptl);
2712                 return VM_FAULT_OOM;
2713         }
2714
2715         copy_user_huge_page(new_page, old_page, address, vma,
2716                             pages_per_huge_page(h));
2717         __SetPageUptodate(new_page);
2718
2719         mmun_start = address & huge_page_mask(h);
2720         mmun_end = mmun_start + huge_page_size(h);
2721         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2722         /*
2723          * Retake the page table lock to check for racing updates
2724          * before the page tables are altered
2725          */
2726         spin_lock(ptl);
2727         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2728         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2729                 ClearPagePrivate(new_page);
2730
2731                 /* Break COW */
2732                 huge_ptep_clear_flush(vma, address, ptep);
2733                 set_huge_pte_at(mm, address, ptep,
2734                                 make_huge_pte(vma, new_page, 1));
2735                 page_remove_rmap(old_page);
2736                 hugepage_add_new_anon_rmap(new_page, vma, address);
2737                 /* Make the old page be freed below */
2738                 new_page = old_page;
2739         }
2740         spin_unlock(ptl);
2741         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2742         page_cache_release(new_page);
2743         page_cache_release(old_page);
2744
2745         /* Caller expects lock to be held */
2746         spin_lock(ptl);
2747         return 0;
2748 }
2749
2750 /* Return the pagecache page at a given address within a VMA */
2751 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2752                         struct vm_area_struct *vma, unsigned long address)
2753 {
2754         struct address_space *mapping;
2755         pgoff_t idx;
2756
2757         mapping = vma->vm_file->f_mapping;
2758         idx = vma_hugecache_offset(h, vma, address);
2759
2760         return find_lock_page(mapping, idx);
2761 }
2762
2763 /*
2764  * Return whether there is a pagecache page to back given address within VMA.
2765  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2766  */
2767 static bool hugetlbfs_pagecache_present(struct hstate *h,
2768                         struct vm_area_struct *vma, unsigned long address)
2769 {
2770         struct address_space *mapping;
2771         pgoff_t idx;
2772         struct page *page;
2773
2774         mapping = vma->vm_file->f_mapping;
2775         idx = vma_hugecache_offset(h, vma, address);
2776
2777         page = find_get_page(mapping, idx);
2778         if (page)
2779                 put_page(page);
2780         return page != NULL;
2781 }
2782
2783 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2784                         unsigned long address, pte_t *ptep, unsigned int flags)
2785 {
2786         struct hstate *h = hstate_vma(vma);
2787         int ret = VM_FAULT_SIGBUS;
2788         int anon_rmap = 0;
2789         pgoff_t idx;
2790         unsigned long size;
2791         struct page *page;
2792         struct address_space *mapping;
2793         pte_t new_pte;
2794         spinlock_t *ptl;
2795
2796         /*
2797          * Currently, we are forced to kill the process in the event the
2798          * original mapper has unmapped pages from the child due to a failed
2799          * COW. Warn that such a situation has occurred as it may not be obvious
2800          */
2801         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2802                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2803                            current->pid);
2804                 return ret;
2805         }
2806
2807         mapping = vma->vm_file->f_mapping;
2808         idx = vma_hugecache_offset(h, vma, address);
2809
2810         /*
2811          * Use page lock to guard against racing truncation
2812          * before we get page_table_lock.
2813          */
2814 retry:
2815         page = find_lock_page(mapping, idx);
2816         if (!page) {
2817                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2818                 if (idx >= size)
2819                         goto out;
2820                 page = alloc_huge_page(vma, address, 0);
2821                 if (IS_ERR(page)) {
2822                         ret = PTR_ERR(page);
2823                         if (ret == -ENOMEM)
2824                                 ret = VM_FAULT_OOM;
2825                         else
2826                                 ret = VM_FAULT_SIGBUS;
2827                         goto out;
2828                 }
2829                 clear_huge_page(page, address, pages_per_huge_page(h));
2830                 __SetPageUptodate(page);
2831
2832                 if (vma->vm_flags & VM_MAYSHARE) {
2833                         int err;
2834                         struct inode *inode = mapping->host;
2835
2836                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2837                         if (err) {
2838                                 put_page(page);
2839                                 if (err == -EEXIST)
2840                                         goto retry;
2841                                 goto out;
2842                         }
2843                         ClearPagePrivate(page);
2844
2845                         spin_lock(&inode->i_lock);
2846                         inode->i_blocks += blocks_per_huge_page(h);
2847                         spin_unlock(&inode->i_lock);
2848                 } else {
2849                         lock_page(page);
2850                         if (unlikely(anon_vma_prepare(vma))) {
2851                                 ret = VM_FAULT_OOM;
2852                                 goto backout_unlocked;
2853                         }
2854                         anon_rmap = 1;
2855                 }
2856         } else {
2857                 /*
2858                  * If memory error occurs between mmap() and fault, some process
2859                  * don't have hwpoisoned swap entry for errored virtual address.
2860                  * So we need to block hugepage fault by PG_hwpoison bit check.
2861                  */
2862                 if (unlikely(PageHWPoison(page))) {
2863                         ret = VM_FAULT_HWPOISON |
2864                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2865                         goto backout_unlocked;
2866                 }
2867         }
2868
2869         /*
2870          * If we are going to COW a private mapping later, we examine the
2871          * pending reservations for this page now. This will ensure that
2872          * any allocations necessary to record that reservation occur outside
2873          * the spinlock.
2874          */
2875         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2876                 if (vma_needs_reservation(h, vma, address) < 0) {
2877                         ret = VM_FAULT_OOM;
2878                         goto backout_unlocked;
2879                 }
2880
2881         ptl = huge_pte_lockptr(h, mm, ptep);
2882         spin_lock(ptl);
2883         size = i_size_read(mapping->host) >> huge_page_shift(h);
2884         if (idx >= size)
2885                 goto backout;
2886
2887         ret = 0;
2888         if (!huge_pte_none(huge_ptep_get(ptep)))
2889                 goto backout;
2890
2891         if (anon_rmap) {
2892                 ClearPagePrivate(page);
2893                 hugepage_add_new_anon_rmap(page, vma, address);
2894         }
2895         else
2896                 page_dup_rmap(page);
2897         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2898                                 && (vma->vm_flags & VM_SHARED)));
2899         set_huge_pte_at(mm, address, ptep, new_pte);
2900
2901         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2902                 /* Optimization, do the COW without a second fault */
2903                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2904         }
2905
2906         spin_unlock(ptl);
2907         unlock_page(page);
2908 out:
2909         return ret;
2910
2911 backout:
2912         spin_unlock(ptl);
2913 backout_unlocked:
2914         unlock_page(page);
2915         put_page(page);
2916         goto out;
2917 }
2918
2919 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2920                         unsigned long address, unsigned int flags)
2921 {
2922         pte_t *ptep;
2923         pte_t entry;
2924         spinlock_t *ptl;
2925         int ret;
2926         struct page *page = NULL;
2927         struct page *pagecache_page = NULL;
2928         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2929         struct hstate *h = hstate_vma(vma);
2930
2931         address &= huge_page_mask(h);
2932
2933         ptep = huge_pte_offset(mm, address);
2934         if (ptep) {
2935                 entry = huge_ptep_get(ptep);
2936                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2937                         migration_entry_wait_huge(vma, mm, ptep);
2938                         return 0;
2939                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2940                         return VM_FAULT_HWPOISON_LARGE |
2941                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2942         }
2943
2944         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2945         if (!ptep)
2946                 return VM_FAULT_OOM;
2947
2948         /*
2949          * Serialize hugepage allocation and instantiation, so that we don't
2950          * get spurious allocation failures if two CPUs race to instantiate
2951          * the same page in the page cache.
2952          */
2953         mutex_lock(&hugetlb_instantiation_mutex);
2954         entry = huge_ptep_get(ptep);
2955         if (huge_pte_none(entry)) {
2956                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2957                 goto out_mutex;
2958         }
2959
2960         ret = 0;
2961
2962         /*
2963          * If we are going to COW the mapping later, we examine the pending
2964          * reservations for this page now. This will ensure that any
2965          * allocations necessary to record that reservation occur outside the
2966          * spinlock. For private mappings, we also lookup the pagecache
2967          * page now as it is used to determine if a reservation has been
2968          * consumed.
2969          */
2970         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2971                 if (vma_needs_reservation(h, vma, address) < 0) {
2972                         ret = VM_FAULT_OOM;
2973                         goto out_mutex;
2974                 }
2975
2976                 if (!(vma->vm_flags & VM_MAYSHARE))
2977                         pagecache_page = hugetlbfs_pagecache_page(h,
2978                                                                 vma, address);
2979         }
2980
2981         /*
2982          * hugetlb_cow() requires page locks of pte_page(entry) and
2983          * pagecache_page, so here we need take the former one
2984          * when page != pagecache_page or !pagecache_page.
2985          * Note that locking order is always pagecache_page -> page,
2986          * so no worry about deadlock.
2987          */
2988         page = pte_page(entry);
2989         get_page(page);
2990         if (page != pagecache_page)
2991                 lock_page(page);
2992
2993         ptl = huge_pte_lockptr(h, mm, ptep);
2994         spin_lock(ptl);
2995         /* Check for a racing update before calling hugetlb_cow */
2996         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2997                 goto out_ptl;
2998
2999
3000         if (flags & FAULT_FLAG_WRITE) {
3001                 if (!huge_pte_write(entry)) {
3002                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3003                                         pagecache_page, ptl);
3004                         goto out_ptl;
3005                 }
3006                 entry = huge_pte_mkdirty(entry);
3007         }
3008         entry = pte_mkyoung(entry);
3009         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3010                                                 flags & FAULT_FLAG_WRITE))
3011                 update_mmu_cache(vma, address, ptep);
3012
3013 out_ptl:
3014         spin_unlock(ptl);
3015
3016         if (pagecache_page) {
3017                 unlock_page(pagecache_page);
3018                 put_page(pagecache_page);
3019         }
3020         if (page != pagecache_page)
3021                 unlock_page(page);
3022         put_page(page);
3023
3024 out_mutex:
3025         mutex_unlock(&hugetlb_instantiation_mutex);
3026
3027         return ret;
3028 }
3029
3030 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3031                          struct page **pages, struct vm_area_struct **vmas,
3032                          unsigned long *position, unsigned long *nr_pages,
3033                          long i, unsigned int flags)
3034 {
3035         unsigned long pfn_offset;
3036         unsigned long vaddr = *position;
3037         unsigned long remainder = *nr_pages;
3038         struct hstate *h = hstate_vma(vma);
3039
3040         while (vaddr < vma->vm_end && remainder) {
3041                 pte_t *pte;
3042                 spinlock_t *ptl = NULL;
3043                 int absent;
3044                 struct page *page;
3045
3046                 /*
3047                  * Some archs (sparc64, sh*) have multiple pte_ts to
3048                  * each hugepage.  We have to make sure we get the
3049                  * first, for the page indexing below to work.
3050                  *
3051                  * Note that page table lock is not held when pte is null.
3052                  */
3053                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3054                 if (pte)
3055                         ptl = huge_pte_lock(h, mm, pte);
3056                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3057
3058                 /*
3059                  * When coredumping, it suits get_dump_page if we just return
3060                  * an error where there's an empty slot with no huge pagecache
3061                  * to back it.  This way, we avoid allocating a hugepage, and
3062                  * the sparse dumpfile avoids allocating disk blocks, but its
3063                  * huge holes still show up with zeroes where they need to be.
3064                  */
3065                 if (absent && (flags & FOLL_DUMP) &&
3066                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3067                         if (pte)
3068                                 spin_unlock(ptl);
3069                         remainder = 0;
3070                         break;
3071                 }
3072
3073                 /*
3074                  * We need call hugetlb_fault for both hugepages under migration
3075                  * (in which case hugetlb_fault waits for the migration,) and
3076                  * hwpoisoned hugepages (in which case we need to prevent the
3077                  * caller from accessing to them.) In order to do this, we use
3078                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3079                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3080                  * both cases, and because we can't follow correct pages
3081                  * directly from any kind of swap entries.
3082                  */
3083                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3084                     ((flags & FOLL_WRITE) &&
3085                       !huge_pte_write(huge_ptep_get(pte)))) {
3086                         int ret;
3087
3088                         if (pte)
3089                                 spin_unlock(ptl);
3090                         ret = hugetlb_fault(mm, vma, vaddr,
3091                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3092                         if (!(ret & VM_FAULT_ERROR))
3093                                 continue;
3094
3095                         remainder = 0;
3096                         break;
3097                 }
3098
3099                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3100                 page = pte_page(huge_ptep_get(pte));
3101 same_page:
3102                 if (pages) {
3103                         pages[i] = mem_map_offset(page, pfn_offset);
3104                         get_page_foll(pages[i]);
3105                 }
3106
3107                 if (vmas)
3108                         vmas[i] = vma;
3109
3110                 vaddr += PAGE_SIZE;
3111                 ++pfn_offset;
3112                 --remainder;
3113                 ++i;
3114                 if (vaddr < vma->vm_end && remainder &&
3115                                 pfn_offset < pages_per_huge_page(h)) {
3116                         /*
3117                          * We use pfn_offset to avoid touching the pageframes
3118                          * of this compound page.
3119                          */
3120                         goto same_page;
3121                 }
3122                 spin_unlock(ptl);
3123         }
3124         *nr_pages = remainder;
3125         *position = vaddr;
3126
3127         return i ? i : -EFAULT;
3128 }
3129
3130 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3131                 unsigned long address, unsigned long end, pgprot_t newprot)
3132 {
3133         struct mm_struct *mm = vma->vm_mm;
3134         unsigned long start = address;
3135         pte_t *ptep;
3136         pte_t pte;
3137         struct hstate *h = hstate_vma(vma);
3138         unsigned long pages = 0;
3139
3140         BUG_ON(address >= end);
3141         flush_cache_range(vma, address, end);
3142
3143         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3144         for (; address < end; address += huge_page_size(h)) {
3145                 spinlock_t *ptl;
3146                 ptep = huge_pte_offset(mm, address);
3147                 if (!ptep)
3148                         continue;
3149                 ptl = huge_pte_lock(h, mm, ptep);
3150                 if (huge_pmd_unshare(mm, &address, ptep)) {
3151                         pages++;
3152                         spin_unlock(ptl);
3153                         continue;
3154                 }
3155                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3156                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3157                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3158                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3159                         set_huge_pte_at(mm, address, ptep, pte);
3160                         pages++;
3161                 }
3162                 spin_unlock(ptl);
3163         }
3164         /*
3165          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3166          * may have cleared our pud entry and done put_page on the page table:
3167          * once we release i_mmap_mutex, another task can do the final put_page
3168          * and that page table be reused and filled with junk.
3169          */
3170         flush_tlb_range(vma, start, end);
3171         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3172
3173         return pages << h->order;
3174 }
3175
3176 int hugetlb_reserve_pages(struct inode *inode,
3177                                         long from, long to,
3178                                         struct vm_area_struct *vma,
3179                                         vm_flags_t vm_flags)
3180 {
3181         long ret, chg;
3182         struct hstate *h = hstate_inode(inode);
3183         struct hugepage_subpool *spool = subpool_inode(inode);
3184         struct resv_map *resv_map;
3185
3186         /*
3187          * Only apply hugepage reservation if asked. At fault time, an
3188          * attempt will be made for VM_NORESERVE to allocate a page
3189          * without using reserves
3190          */
3191         if (vm_flags & VM_NORESERVE)
3192                 return 0;
3193
3194         /*
3195          * Shared mappings base their reservation on the number of pages that
3196          * are already allocated on behalf of the file. Private mappings need
3197          * to reserve the full area even if read-only as mprotect() may be
3198          * called to make the mapping read-write. Assume !vma is a shm mapping
3199          */
3200         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3201                 resv_map = inode->i_mapping->private_data;
3202
3203                 chg = region_chg(resv_map, from, to);
3204
3205         } else {
3206                 resv_map = resv_map_alloc();
3207                 if (!resv_map)
3208                         return -ENOMEM;
3209
3210                 chg = to - from;
3211
3212                 set_vma_resv_map(vma, resv_map);
3213                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3214         }
3215
3216         if (chg < 0) {
3217                 ret = chg;
3218                 goto out_err;
3219         }
3220
3221         /* There must be enough pages in the subpool for the mapping */
3222         if (hugepage_subpool_get_pages(spool, chg)) {
3223                 ret = -ENOSPC;
3224                 goto out_err;
3225         }
3226
3227         /*
3228          * Check enough hugepages are available for the reservation.
3229          * Hand the pages back to the subpool if there are not
3230          */
3231         ret = hugetlb_acct_memory(h, chg);
3232         if (ret < 0) {
3233                 hugepage_subpool_put_pages(spool, chg);
3234                 goto out_err;
3235         }
3236
3237         /*
3238          * Account for the reservations made. Shared mappings record regions
3239          * that have reservations as they are shared by multiple VMAs.
3240          * When the last VMA disappears, the region map says how much
3241          * the reservation was and the page cache tells how much of
3242          * the reservation was consumed. Private mappings are per-VMA and
3243          * only the consumed reservations are tracked. When the VMA
3244          * disappears, the original reservation is the VMA size and the
3245          * consumed reservations are stored in the map. Hence, nothing
3246          * else has to be done for private mappings here
3247          */
3248         if (!vma || vma->vm_flags & VM_MAYSHARE)
3249                 region_add(resv_map, from, to);
3250         return 0;
3251 out_err:
3252         if (vma)
3253                 resv_map_put(vma);
3254         return ret;
3255 }
3256
3257 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3258 {
3259         struct hstate *h = hstate_inode(inode);
3260         struct resv_map *resv_map = inode->i_mapping->private_data;
3261         long chg = 0;
3262         struct hugepage_subpool *spool = subpool_inode(inode);
3263
3264         if (resv_map)
3265                 chg = region_truncate(resv_map, offset);
3266         spin_lock(&inode->i_lock);
3267         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3268         spin_unlock(&inode->i_lock);
3269
3270         hugepage_subpool_put_pages(spool, (chg - freed));
3271         hugetlb_acct_memory(h, -(chg - freed));
3272 }
3273
3274 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3275 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3276                                 struct vm_area_struct *vma,
3277                                 unsigned long addr, pgoff_t idx)
3278 {
3279         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3280                                 svma->vm_start;
3281         unsigned long sbase = saddr & PUD_MASK;
3282         unsigned long s_end = sbase + PUD_SIZE;
3283
3284         /* Allow segments to share if only one is marked locked */
3285         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3286         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3287
3288         /*
3289          * match the virtual addresses, permission and the alignment of the
3290          * page table page.
3291          */
3292         if (pmd_index(addr) != pmd_index(saddr) ||
3293             vm_flags != svm_flags ||
3294             sbase < svma->vm_start || svma->vm_end < s_end)
3295                 return 0;
3296
3297         return saddr;
3298 }
3299
3300 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3301 {
3302         unsigned long base = addr & PUD_MASK;
3303         unsigned long end = base + PUD_SIZE;
3304
3305         /*
3306          * check on proper vm_flags and page table alignment
3307          */
3308         if (vma->vm_flags & VM_MAYSHARE &&
3309             vma->vm_start <= base && end <= vma->vm_end)
3310                 return 1;
3311         return 0;
3312 }
3313
3314 /*
3315  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3316  * and returns the corresponding pte. While this is not necessary for the
3317  * !shared pmd case because we can allocate the pmd later as well, it makes the
3318  * code much cleaner. pmd allocation is essential for the shared case because
3319  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3320  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3321  * bad pmd for sharing.
3322  */
3323 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3324 {
3325         struct vm_area_struct *vma = find_vma(mm, addr);
3326         struct address_space *mapping = vma->vm_file->f_mapping;
3327         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3328                         vma->vm_pgoff;
3329         struct vm_area_struct *svma;
3330         unsigned long saddr;
3331         pte_t *spte = NULL;
3332         pte_t *pte;
3333         spinlock_t *ptl;
3334
3335         if (!vma_shareable(vma, addr))
3336                 return (pte_t *)pmd_alloc(mm, pud, addr);
3337
3338         mutex_lock(&mapping->i_mmap_mutex);
3339         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3340                 if (svma == vma)
3341                         continue;
3342
3343                 saddr = page_table_shareable(svma, vma, addr, idx);
3344                 if (saddr) {
3345                         spte = huge_pte_offset(svma->vm_mm, saddr);
3346                         if (spte) {
3347                                 get_page(virt_to_page(spte));
3348                                 break;
3349                         }
3350                 }
3351         }
3352
3353         if (!spte)
3354                 goto out;
3355
3356         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3357         spin_lock(ptl);
3358         if (pud_none(*pud))
3359                 pud_populate(mm, pud,
3360                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3361         else
3362                 put_page(virt_to_page(spte));
3363         spin_unlock(ptl);
3364 out:
3365         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3366         mutex_unlock(&mapping->i_mmap_mutex);
3367         return pte;
3368 }
3369
3370 /*
3371  * unmap huge page backed by shared pte.
3372  *
3373  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3374  * indicated by page_count > 1, unmap is achieved by clearing pud and
3375  * decrementing the ref count. If count == 1, the pte page is not shared.
3376  *
3377  * called with page table lock held.
3378  *
3379  * returns: 1 successfully unmapped a shared pte page
3380  *          0 the underlying pte page is not shared, or it is the last user
3381  */
3382 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3383 {
3384         pgd_t *pgd = pgd_offset(mm, *addr);
3385         pud_t *pud = pud_offset(pgd, *addr);
3386
3387         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3388         if (page_count(virt_to_page(ptep)) == 1)
3389                 return 0;
3390
3391         pud_clear(pud);
3392         put_page(virt_to_page(ptep));
3393         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3394         return 1;
3395 }
3396 #define want_pmd_share()        (1)
3397 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3398 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3399 {
3400         return NULL;
3401 }
3402 #define want_pmd_share()        (0)
3403 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3404
3405 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3406 pte_t *huge_pte_alloc(struct mm_struct *mm,
3407                         unsigned long addr, unsigned long sz)
3408 {
3409         pgd_t *pgd;
3410         pud_t *pud;
3411         pte_t *pte = NULL;
3412
3413         pgd = pgd_offset(mm, addr);
3414         pud = pud_alloc(mm, pgd, addr);
3415         if (pud) {
3416                 if (sz == PUD_SIZE) {
3417                         pte = (pte_t *)pud;
3418                 } else {
3419                         BUG_ON(sz != PMD_SIZE);
3420                         if (want_pmd_share() && pud_none(*pud))
3421                                 pte = huge_pmd_share(mm, addr, pud);
3422                         else
3423                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3424                 }
3425         }
3426         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3427
3428         return pte;
3429 }
3430
3431 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3432 {
3433         pgd_t *pgd;
3434         pud_t *pud;
3435         pmd_t *pmd = NULL;
3436
3437         pgd = pgd_offset(mm, addr);
3438         if (pgd_present(*pgd)) {
3439                 pud = pud_offset(pgd, addr);
3440                 if (pud_present(*pud)) {
3441                         if (pud_huge(*pud))
3442                                 return (pte_t *)pud;
3443                         pmd = pmd_offset(pud, addr);
3444                 }
3445         }
3446         return (pte_t *) pmd;
3447 }
3448
3449 struct page *
3450 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3451                 pmd_t *pmd, int write)
3452 {
3453         struct page *page;
3454
3455         page = pte_page(*(pte_t *)pmd);
3456         if (page)
3457                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3458         return page;
3459 }
3460
3461 struct page *
3462 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3463                 pud_t *pud, int write)
3464 {
3465         struct page *page;
3466
3467         page = pte_page(*(pte_t *)pud);
3468         if (page)
3469                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3470         return page;
3471 }
3472
3473 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3474
3475 /* Can be overriden by architectures */
3476 __attribute__((weak)) struct page *
3477 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3478                pud_t *pud, int write)
3479 {
3480         BUG();
3481         return NULL;
3482 }
3483
3484 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3485
3486 #ifdef CONFIG_MEMORY_FAILURE
3487
3488 /* Should be called in hugetlb_lock */
3489 static int is_hugepage_on_freelist(struct page *hpage)
3490 {
3491         struct page *page;
3492         struct page *tmp;
3493         struct hstate *h = page_hstate(hpage);
3494         int nid = page_to_nid(hpage);
3495
3496         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3497                 if (page == hpage)
3498                         return 1;
3499         return 0;
3500 }
3501
3502 /*
3503  * This function is called from memory failure code.
3504  * Assume the caller holds page lock of the head page.
3505  */
3506 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3507 {
3508         struct hstate *h = page_hstate(hpage);
3509         int nid = page_to_nid(hpage);
3510         int ret = -EBUSY;
3511
3512         spin_lock(&hugetlb_lock);
3513         if (is_hugepage_on_freelist(hpage)) {
3514                 /*
3515                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3516                  * but dangling hpage->lru can trigger list-debug warnings
3517                  * (this happens when we call unpoison_memory() on it),
3518                  * so let it point to itself with list_del_init().
3519                  */
3520                 list_del_init(&hpage->lru);
3521                 set_page_refcounted(hpage);
3522                 h->free_huge_pages--;
3523                 h->free_huge_pages_node[nid]--;
3524                 ret = 0;
3525         }
3526         spin_unlock(&hugetlb_lock);
3527         return ret;
3528 }
3529 #endif
3530
3531 bool isolate_huge_page(struct page *page, struct list_head *list)
3532 {
3533         VM_BUG_ON_PAGE(!PageHead(page), page);
3534         if (!get_page_unless_zero(page))
3535                 return false;
3536         spin_lock(&hugetlb_lock);
3537         list_move_tail(&page->lru, list);
3538         spin_unlock(&hugetlb_lock);
3539         return true;
3540 }
3541
3542 void putback_active_hugepage(struct page *page)
3543 {
3544         VM_BUG_ON_PAGE(!PageHead(page), page);
3545         spin_lock(&hugetlb_lock);
3546         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3547         spin_unlock(&hugetlb_lock);
3548         put_page(page);
3549 }
3550
3551 bool is_hugepage_active(struct page *page)
3552 {
3553         VM_BUG_ON_PAGE(!PageHuge(page), page);
3554         /*
3555          * This function can be called for a tail page because the caller,
3556          * scan_movable_pages, scans through a given pfn-range which typically
3557          * covers one memory block. In systems using gigantic hugepage (1GB
3558          * for x86_64,) a hugepage is larger than a memory block, and we don't
3559          * support migrating such large hugepages for now, so return false
3560          * when called for tail pages.
3561          */
3562         if (PageTail(page))
3563                 return false;
3564         /*
3565          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3566          * so we should return false for them.
3567          */
3568         if (unlikely(PageHWPoison(page)))
3569                 return false;
3570         return page_count(page) > 0;
3571 }