mm/hugetlb: convert dissolve_free_huge_pages() to folios
[linux-2.6-block.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62                                 1 << order);
63 }
64 #else
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67         return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100                 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105         if (spool->count)
106                 return false;
107         if (spool->max_hpages != -1)
108                 return spool->used_hpages == 0;
109         if (spool->min_hpages != -1)
110                 return spool->rsv_hpages == spool->min_hpages;
111
112         return true;
113 }
114
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116                                                 unsigned long irq_flags)
117 {
118         spin_unlock_irqrestore(&spool->lock, irq_flags);
119
120         /* If no pages are used, and no other handles to the subpool
121          * remain, give up any reservations based on minimum size and
122          * free the subpool */
123         if (subpool_is_free(spool)) {
124                 if (spool->min_hpages != -1)
125                         hugetlb_acct_memory(spool->hstate,
126                                                 -spool->min_hpages);
127                 kfree(spool);
128         }
129 }
130
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132                                                 long min_hpages)
133 {
134         struct hugepage_subpool *spool;
135
136         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137         if (!spool)
138                 return NULL;
139
140         spin_lock_init(&spool->lock);
141         spool->count = 1;
142         spool->max_hpages = max_hpages;
143         spool->hstate = h;
144         spool->min_hpages = min_hpages;
145
146         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147                 kfree(spool);
148                 return NULL;
149         }
150         spool->rsv_hpages = min_hpages;
151
152         return spool;
153 }
154
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157         unsigned long flags;
158
159         spin_lock_irqsave(&spool->lock, flags);
160         BUG_ON(!spool->count);
161         spool->count--;
162         unlock_or_release_subpool(spool, flags);
163 }
164
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174                                       long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return ret;
180
181         spin_lock_irq(&spool->lock);
182
183         if (spool->max_hpages != -1) {          /* maximum size accounting */
184                 if ((spool->used_hpages + delta) <= spool->max_hpages)
185                         spool->used_hpages += delta;
186                 else {
187                         ret = -ENOMEM;
188                         goto unlock_ret;
189                 }
190         }
191
192         /* minimum size accounting */
193         if (spool->min_hpages != -1 && spool->rsv_hpages) {
194                 if (delta > spool->rsv_hpages) {
195                         /*
196                          * Asking for more reserves than those already taken on
197                          * behalf of subpool.  Return difference.
198                          */
199                         ret = delta - spool->rsv_hpages;
200                         spool->rsv_hpages = 0;
201                 } else {
202                         ret = 0;        /* reserves already accounted for */
203                         spool->rsv_hpages -= delta;
204                 }
205         }
206
207 unlock_ret:
208         spin_unlock_irq(&spool->lock);
209         return ret;
210 }
211
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219                                        long delta)
220 {
221         long ret = delta;
222         unsigned long flags;
223
224         if (!spool)
225                 return delta;
226
227         spin_lock_irqsave(&spool->lock, flags);
228
229         if (spool->max_hpages != -1)            /* maximum size accounting */
230                 spool->used_hpages -= delta;
231
232          /* minimum size accounting */
233         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234                 if (spool->rsv_hpages + delta <= spool->min_hpages)
235                         ret = 0;
236                 else
237                         ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239                 spool->rsv_hpages += delta;
240                 if (spool->rsv_hpages > spool->min_hpages)
241                         spool->rsv_hpages = spool->min_hpages;
242         }
243
244         /*
245          * If hugetlbfs_put_super couldn't free spool due to an outstanding
246          * quota reference, free it now.
247          */
248         unlock_or_release_subpool(spool, flags);
249
250         return ret;
251 }
252
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255         return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260         return subpool_inode(file_inode(vma->vm_file));
261 }
262
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268         if (__vma_shareable_lock(vma)) {
269                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271                 down_read(&vma_lock->rw_sema);
272         } else if (__vma_private_lock(vma)) {
273                 struct resv_map *resv_map = vma_resv_map(vma);
274
275                 down_read(&resv_map->rw_sema);
276         }
277 }
278
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281         if (__vma_shareable_lock(vma)) {
282                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284                 up_read(&vma_lock->rw_sema);
285         } else if (__vma_private_lock(vma)) {
286                 struct resv_map *resv_map = vma_resv_map(vma);
287
288                 up_read(&resv_map->rw_sema);
289         }
290 }
291
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294         if (__vma_shareable_lock(vma)) {
295                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297                 down_write(&vma_lock->rw_sema);
298         } else if (__vma_private_lock(vma)) {
299                 struct resv_map *resv_map = vma_resv_map(vma);
300
301                 down_write(&resv_map->rw_sema);
302         }
303 }
304
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307         if (__vma_shareable_lock(vma)) {
308                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310                 up_write(&vma_lock->rw_sema);
311         } else if (__vma_private_lock(vma)) {
312                 struct resv_map *resv_map = vma_resv_map(vma);
313
314                 up_write(&resv_map->rw_sema);
315         }
316 }
317
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320
321         if (__vma_shareable_lock(vma)) {
322                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323
324                 return down_write_trylock(&vma_lock->rw_sema);
325         } else if (__vma_private_lock(vma)) {
326                 struct resv_map *resv_map = vma_resv_map(vma);
327
328                 return down_write_trylock(&resv_map->rw_sema);
329         }
330
331         return 1;
332 }
333
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336         if (__vma_shareable_lock(vma)) {
337                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339                 lockdep_assert_held(&vma_lock->rw_sema);
340         } else if (__vma_private_lock(vma)) {
341                 struct resv_map *resv_map = vma_resv_map(vma);
342
343                 lockdep_assert_held(&resv_map->rw_sema);
344         }
345 }
346
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349         struct hugetlb_vma_lock *vma_lock = container_of(kref,
350                         struct hugetlb_vma_lock, refs);
351
352         kfree(vma_lock);
353 }
354
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357         struct vm_area_struct *vma = vma_lock->vma;
358
359         /*
360          * vma_lock structure may or not be released as a result of put,
361          * it certainly will no longer be attached to vma so clear pointer.
362          * Semaphore synchronizes access to vma_lock->vma field.
363          */
364         vma_lock->vma = NULL;
365         vma->vm_private_data = NULL;
366         up_write(&vma_lock->rw_sema);
367         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372         if (__vma_shareable_lock(vma)) {
373                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375                 __hugetlb_vma_unlock_write_put(vma_lock);
376         } else if (__vma_private_lock(vma)) {
377                 struct resv_map *resv_map = vma_resv_map(vma);
378
379                 /* no free for anon vmas, but still need to unlock */
380                 up_write(&resv_map->rw_sema);
381         }
382 }
383
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386         /*
387          * Only present in sharable vmas.
388          */
389         if (!vma || !__vma_shareable_lock(vma))
390                 return;
391
392         if (vma->vm_private_data) {
393                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395                 down_write(&vma_lock->rw_sema);
396                 __hugetlb_vma_unlock_write_put(vma_lock);
397         }
398 }
399
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402         struct hugetlb_vma_lock *vma_lock;
403
404         /* Only establish in (flags) sharable vmas */
405         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406                 return;
407
408         /* Should never get here with non-NULL vm_private_data */
409         if (vma->vm_private_data)
410                 return;
411
412         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413         if (!vma_lock) {
414                 /*
415                  * If we can not allocate structure, then vma can not
416                  * participate in pmd sharing.  This is only a possible
417                  * performance enhancement and memory saving issue.
418                  * However, the lock is also used to synchronize page
419                  * faults with truncation.  If the lock is not present,
420                  * unlikely races could leave pages in a file past i_size
421                  * until the file is removed.  Warn in the unlikely case of
422                  * allocation failure.
423                  */
424                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425                 return;
426         }
427
428         kref_init(&vma_lock->refs);
429         init_rwsem(&vma_lock->rw_sema);
430         vma_lock->vma = vma;
431         vma->vm_private_data = vma_lock;
432 }
433
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440         struct file_region *nrg;
441
442         VM_BUG_ON(resv->region_cache_count <= 0);
443
444         resv->region_cache_count--;
445         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446         list_del(&nrg->link);
447
448         nrg->from = from;
449         nrg->to = to;
450
451         return nrg;
452 }
453
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455                                               struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458         nrg->reservation_counter = rg->reservation_counter;
459         nrg->css = rg->css;
460         if (rg->css)
461                 css_get(rg->css);
462 #endif
463 }
464
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467                                                 struct hstate *h,
468                                                 struct resv_map *resv,
469                                                 struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472         if (h_cg) {
473                 nrg->reservation_counter =
474                         &h_cg->rsvd_hugepage[hstate_index(h)];
475                 nrg->css = &h_cg->css;
476                 /*
477                  * The caller will hold exactly one h_cg->css reference for the
478                  * whole contiguous reservation region. But this area might be
479                  * scattered when there are already some file_regions reside in
480                  * it. As a result, many file_regions may share only one css
481                  * reference. In order to ensure that one file_region must hold
482                  * exactly one h_cg->css reference, we should do css_get for
483                  * each file_region and leave the reference held by caller
484                  * untouched.
485                  */
486                 css_get(&h_cg->css);
487                 if (!resv->pages_per_hpage)
488                         resv->pages_per_hpage = pages_per_huge_page(h);
489                 /* pages_per_hpage should be the same for all entries in
490                  * a resv_map.
491                  */
492                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493         } else {
494                 nrg->reservation_counter = NULL;
495                 nrg->css = NULL;
496         }
497 #endif
498 }
499
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503         if (rg->css)
504                 css_put(rg->css);
505 #endif
506 }
507
508 static bool has_same_uncharge_info(struct file_region *rg,
509                                    struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512         return rg->reservation_counter == org->reservation_counter &&
513                rg->css == org->css;
514
515 #else
516         return true;
517 #endif
518 }
519
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522         struct file_region *nrg, *prg;
523
524         prg = list_prev_entry(rg, link);
525         if (&prg->link != &resv->regions && prg->to == rg->from &&
526             has_same_uncharge_info(prg, rg)) {
527                 prg->to = rg->to;
528
529                 list_del(&rg->link);
530                 put_uncharge_info(rg);
531                 kfree(rg);
532
533                 rg = prg;
534         }
535
536         nrg = list_next_entry(rg, link);
537         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538             has_same_uncharge_info(nrg, rg)) {
539                 nrg->from = rg->from;
540
541                 list_del(&rg->link);
542                 put_uncharge_info(rg);
543                 kfree(rg);
544         }
545 }
546
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
550                      long *regions_needed)
551 {
552         struct file_region *nrg;
553
554         if (!regions_needed) {
555                 nrg = get_file_region_entry_from_cache(map, from, to);
556                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557                 list_add(&nrg->link, rg);
558                 coalesce_file_region(map, nrg);
559         } else
560                 *regions_needed += 1;
561
562         return to - from;
563 }
564
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574                                      struct hugetlb_cgroup *h_cg,
575                                      struct hstate *h, long *regions_needed)
576 {
577         long add = 0;
578         struct list_head *head = &resv->regions;
579         long last_accounted_offset = f;
580         struct file_region *iter, *trg = NULL;
581         struct list_head *rg = NULL;
582
583         if (regions_needed)
584                 *regions_needed = 0;
585
586         /* In this loop, we essentially handle an entry for the range
587          * [last_accounted_offset, iter->from), at every iteration, with some
588          * bounds checking.
589          */
590         list_for_each_entry_safe(iter, trg, head, link) {
591                 /* Skip irrelevant regions that start before our range. */
592                 if (iter->from < f) {
593                         /* If this region ends after the last accounted offset,
594                          * then we need to update last_accounted_offset.
595                          */
596                         if (iter->to > last_accounted_offset)
597                                 last_accounted_offset = iter->to;
598                         continue;
599                 }
600
601                 /* When we find a region that starts beyond our range, we've
602                  * finished.
603                  */
604                 if (iter->from >= t) {
605                         rg = iter->link.prev;
606                         break;
607                 }
608
609                 /* Add an entry for last_accounted_offset -> iter->from, and
610                  * update last_accounted_offset.
611                  */
612                 if (iter->from > last_accounted_offset)
613                         add += hugetlb_resv_map_add(resv, iter->link.prev,
614                                                     last_accounted_offset,
615                                                     iter->from, h, h_cg,
616                                                     regions_needed);
617
618                 last_accounted_offset = iter->to;
619         }
620
621         /* Handle the case where our range extends beyond
622          * last_accounted_offset.
623          */
624         if (!rg)
625                 rg = head->prev;
626         if (last_accounted_offset < t)
627                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628                                             t, h, h_cg, regions_needed);
629
630         return add;
631 }
632
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636                                         int regions_needed)
637         __must_hold(&resv->lock)
638 {
639         LIST_HEAD(allocated_regions);
640         int to_allocate = 0, i = 0;
641         struct file_region *trg = NULL, *rg = NULL;
642
643         VM_BUG_ON(regions_needed < 0);
644
645         /*
646          * Check for sufficient descriptors in the cache to accommodate
647          * the number of in progress add operations plus regions_needed.
648          *
649          * This is a while loop because when we drop the lock, some other call
650          * to region_add or region_del may have consumed some region_entries,
651          * so we keep looping here until we finally have enough entries for
652          * (adds_in_progress + regions_needed).
653          */
654         while (resv->region_cache_count <
655                (resv->adds_in_progress + regions_needed)) {
656                 to_allocate = resv->adds_in_progress + regions_needed -
657                               resv->region_cache_count;
658
659                 /* At this point, we should have enough entries in the cache
660                  * for all the existing adds_in_progress. We should only be
661                  * needing to allocate for regions_needed.
662                  */
663                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665                 spin_unlock(&resv->lock);
666                 for (i = 0; i < to_allocate; i++) {
667                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668                         if (!trg)
669                                 goto out_of_memory;
670                         list_add(&trg->link, &allocated_regions);
671                 }
672
673                 spin_lock(&resv->lock);
674
675                 list_splice(&allocated_regions, &resv->region_cache);
676                 resv->region_cache_count += to_allocate;
677         }
678
679         return 0;
680
681 out_of_memory:
682         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683                 list_del(&rg->link);
684                 kfree(rg);
685         }
686         return -ENOMEM;
687 }
688
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707                        long in_regions_needed, struct hstate *h,
708                        struct hugetlb_cgroup *h_cg)
709 {
710         long add = 0, actual_regions_needed = 0;
711
712         spin_lock(&resv->lock);
713 retry:
714
715         /* Count how many regions are actually needed to execute this add. */
716         add_reservation_in_range(resv, f, t, NULL, NULL,
717                                  &actual_regions_needed);
718
719         /*
720          * Check for sufficient descriptors in the cache to accommodate
721          * this add operation. Note that actual_regions_needed may be greater
722          * than in_regions_needed, as the resv_map may have been modified since
723          * the region_chg call. In this case, we need to make sure that we
724          * allocate extra entries, such that we have enough for all the
725          * existing adds_in_progress, plus the excess needed for this
726          * operation.
727          */
728         if (actual_regions_needed > in_regions_needed &&
729             resv->region_cache_count <
730                     resv->adds_in_progress +
731                             (actual_regions_needed - in_regions_needed)) {
732                 /* region_add operation of range 1 should never need to
733                  * allocate file_region entries.
734                  */
735                 VM_BUG_ON(t - f <= 1);
736
737                 if (allocate_file_region_entries(
738                             resv, actual_regions_needed - in_regions_needed)) {
739                         return -ENOMEM;
740                 }
741
742                 goto retry;
743         }
744
745         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746
747         resv->adds_in_progress -= in_regions_needed;
748
749         spin_unlock(&resv->lock);
750         return add;
751 }
752
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774                        long *out_regions_needed)
775 {
776         long chg = 0;
777
778         spin_lock(&resv->lock);
779
780         /* Count how many hugepages in this range are NOT represented. */
781         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782                                        out_regions_needed);
783
784         if (*out_regions_needed == 0)
785                 *out_regions_needed = 1;
786
787         if (allocate_file_region_entries(resv, *out_regions_needed))
788                 return -ENOMEM;
789
790         resv->adds_in_progress += *out_regions_needed;
791
792         spin_unlock(&resv->lock);
793         return chg;
794 }
795
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810                          long regions_needed)
811 {
812         spin_lock(&resv->lock);
813         VM_BUG_ON(!resv->region_cache_count);
814         resv->adds_in_progress -= regions_needed;
815         spin_unlock(&resv->lock);
816 }
817
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834         struct list_head *head = &resv->regions;
835         struct file_region *rg, *trg;
836         struct file_region *nrg = NULL;
837         long del = 0;
838
839 retry:
840         spin_lock(&resv->lock);
841         list_for_each_entry_safe(rg, trg, head, link) {
842                 /*
843                  * Skip regions before the range to be deleted.  file_region
844                  * ranges are normally of the form [from, to).  However, there
845                  * may be a "placeholder" entry in the map which is of the form
846                  * (from, to) with from == to.  Check for placeholder entries
847                  * at the beginning of the range to be deleted.
848                  */
849                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850                         continue;
851
852                 if (rg->from >= t)
853                         break;
854
855                 if (f > rg->from && t < rg->to) { /* Must split region */
856                         /*
857                          * Check for an entry in the cache before dropping
858                          * lock and attempting allocation.
859                          */
860                         if (!nrg &&
861                             resv->region_cache_count > resv->adds_in_progress) {
862                                 nrg = list_first_entry(&resv->region_cache,
863                                                         struct file_region,
864                                                         link);
865                                 list_del(&nrg->link);
866                                 resv->region_cache_count--;
867                         }
868
869                         if (!nrg) {
870                                 spin_unlock(&resv->lock);
871                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872                                 if (!nrg)
873                                         return -ENOMEM;
874                                 goto retry;
875                         }
876
877                         del += t - f;
878                         hugetlb_cgroup_uncharge_file_region(
879                                 resv, rg, t - f, false);
880
881                         /* New entry for end of split region */
882                         nrg->from = t;
883                         nrg->to = rg->to;
884
885                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
887                         INIT_LIST_HEAD(&nrg->link);
888
889                         /* Original entry is trimmed */
890                         rg->to = f;
891
892                         list_add(&nrg->link, &rg->link);
893                         nrg = NULL;
894                         break;
895                 }
896
897                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898                         del += rg->to - rg->from;
899                         hugetlb_cgroup_uncharge_file_region(resv, rg,
900                                                             rg->to - rg->from, true);
901                         list_del(&rg->link);
902                         kfree(rg);
903                         continue;
904                 }
905
906                 if (f <= rg->from) {    /* Trim beginning of region */
907                         hugetlb_cgroup_uncharge_file_region(resv, rg,
908                                                             t - rg->from, false);
909
910                         del += t - rg->from;
911                         rg->from = t;
912                 } else {                /* Trim end of region */
913                         hugetlb_cgroup_uncharge_file_region(resv, rg,
914                                                             rg->to - f, false);
915
916                         del += rg->to - f;
917                         rg->to = f;
918                 }
919         }
920
921         spin_unlock(&resv->lock);
922         kfree(nrg);
923         return del;
924 }
925
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937         struct hugepage_subpool *spool = subpool_inode(inode);
938         long rsv_adjust;
939         bool reserved = false;
940
941         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942         if (rsv_adjust > 0) {
943                 struct hstate *h = hstate_inode(inode);
944
945                 if (!hugetlb_acct_memory(h, 1))
946                         reserved = true;
947         } else if (!rsv_adjust) {
948                 reserved = true;
949         }
950
951         if (!reserved)
952                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961         struct list_head *head = &resv->regions;
962         struct file_region *rg;
963         long chg = 0;
964
965         spin_lock(&resv->lock);
966         /* Locate each segment we overlap with, and count that overlap. */
967         list_for_each_entry(rg, head, link) {
968                 long seg_from;
969                 long seg_to;
970
971                 if (rg->to <= f)
972                         continue;
973                 if (rg->from >= t)
974                         break;
975
976                 seg_from = max(rg->from, f);
977                 seg_to = min(rg->to, t);
978
979                 chg += seg_to - seg_from;
980         }
981         spin_unlock(&resv->lock);
982
983         return chg;
984 }
985
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991                         struct vm_area_struct *vma, unsigned long address)
992 {
993         return ((address - vma->vm_start) >> huge_page_shift(h)) +
994                         (vma->vm_pgoff >> huge_page_order(h));
995 }
996
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008         if (vma->vm_ops && vma->vm_ops->pagesize)
1009                 return vma->vm_ops->pagesize(vma);
1010         return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022         return vma_kernel_pagesize(vma);
1023 }
1024
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055         return (unsigned long)vma->vm_private_data;
1056 }
1057
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059                                                         unsigned long value)
1060 {
1061         vma->vm_private_data = (void *)value;
1062 }
1063
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066                                           struct hugetlb_cgroup *h_cg,
1067                                           struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070         if (!h_cg || !h) {
1071                 resv_map->reservation_counter = NULL;
1072                 resv_map->pages_per_hpage = 0;
1073                 resv_map->css = NULL;
1074         } else {
1075                 resv_map->reservation_counter =
1076                         &h_cg->rsvd_hugepage[hstate_index(h)];
1077                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078                 resv_map->css = &h_cg->css;
1079         }
1080 #endif
1081 }
1082
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088         if (!resv_map || !rg) {
1089                 kfree(resv_map);
1090                 kfree(rg);
1091                 return NULL;
1092         }
1093
1094         kref_init(&resv_map->refs);
1095         spin_lock_init(&resv_map->lock);
1096         INIT_LIST_HEAD(&resv_map->regions);
1097         init_rwsem(&resv_map->rw_sema);
1098
1099         resv_map->adds_in_progress = 0;
1100         /*
1101          * Initialize these to 0. On shared mappings, 0's here indicate these
1102          * fields don't do cgroup accounting. On private mappings, these will be
1103          * re-initialized to the proper values, to indicate that hugetlb cgroup
1104          * reservations are to be un-charged from here.
1105          */
1106         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108         INIT_LIST_HEAD(&resv_map->region_cache);
1109         list_add(&rg->link, &resv_map->region_cache);
1110         resv_map->region_cache_count = 1;
1111
1112         return resv_map;
1113 }
1114
1115 void resv_map_release(struct kref *ref)
1116 {
1117         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118         struct list_head *head = &resv_map->region_cache;
1119         struct file_region *rg, *trg;
1120
1121         /* Clear out any active regions before we release the map. */
1122         region_del(resv_map, 0, LONG_MAX);
1123
1124         /* ... and any entries left in the cache */
1125         list_for_each_entry_safe(rg, trg, head, link) {
1126                 list_del(&rg->link);
1127                 kfree(rg);
1128         }
1129
1130         VM_BUG_ON(resv_map->adds_in_progress);
1131
1132         kfree(resv_map);
1133 }
1134
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137         /*
1138          * At inode evict time, i_mapping may not point to the original
1139          * address space within the inode.  This original address space
1140          * contains the pointer to the resv_map.  So, always use the
1141          * address space embedded within the inode.
1142          * The VERY common case is inode->mapping == &inode->i_data but,
1143          * this may not be true for device special inodes.
1144          */
1145         return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151         if (vma->vm_flags & VM_MAYSHARE) {
1152                 struct address_space *mapping = vma->vm_file->f_mapping;
1153                 struct inode *inode = mapping->host;
1154
1155                 return inode_resv_map(inode);
1156
1157         } else {
1158                 return (struct resv_map *)(get_vma_private_data(vma) &
1159                                                         ~HPAGE_RESV_MASK);
1160         }
1161 }
1162
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168         set_vma_private_data(vma, (unsigned long)map);
1169 }
1170
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183         return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188         return !(vma->vm_flags & VM_MAYSHARE) &&
1189                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196         /*
1197          * Clear vm_private_data
1198          * - For shared mappings this is a per-vma semaphore that may be
1199          *   allocated in a subsequent call to hugetlb_vm_op_open.
1200          *   Before clearing, make sure pointer is not associated with vma
1201          *   as this will leak the structure.  This is the case when called
1202          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203          *   been called to allocate a new structure.
1204          * - For MAP_PRIVATE mappings, this is the reserve map which does
1205          *   not apply to children.  Faults generated by the children are
1206          *   not guaranteed to succeed, even if read-only.
1207          */
1208         if (vma->vm_flags & VM_MAYSHARE) {
1209                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211                 if (vma_lock && vma_lock->vma != vma)
1212                         vma->vm_private_data = NULL;
1213         } else
1214                 vma->vm_private_data = NULL;
1215 }
1216
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226         /*
1227          * Clear the old hugetlb private page reservation.
1228          * It has already been transferred to new_vma.
1229          *
1230          * During a mremap() operation of a hugetlb vma we call move_vma()
1231          * which copies vma into new_vma and unmaps vma. After the copy
1232          * operation both new_vma and vma share a reference to the resv_map
1233          * struct, and at that point vma is about to be unmapped. We don't
1234          * want to return the reservation to the pool at unmap of vma because
1235          * the reservation still lives on in new_vma, so simply decrement the
1236          * ref here and remove the resv_map reference from this vma.
1237          */
1238         struct resv_map *reservations = vma_resv_map(vma);
1239
1240         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242                 kref_put(&reservations->refs, resv_map_release);
1243         }
1244
1245         hugetlb_dup_vma_private(vma);
1246 }
1247
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251         if (vma->vm_flags & VM_NORESERVE) {
1252                 /*
1253                  * This address is already reserved by other process(chg == 0),
1254                  * so, we should decrement reserved count. Without decrementing,
1255                  * reserve count remains after releasing inode, because this
1256                  * allocated page will go into page cache and is regarded as
1257                  * coming from reserved pool in releasing step.  Currently, we
1258                  * don't have any other solution to deal with this situation
1259                  * properly, so add work-around here.
1260                  */
1261                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262                         return true;
1263                 else
1264                         return false;
1265         }
1266
1267         /* Shared mappings always use reserves */
1268         if (vma->vm_flags & VM_MAYSHARE) {
1269                 /*
1270                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271                  * be a region map for all pages.  The only situation where
1272                  * there is no region map is if a hole was punched via
1273                  * fallocate.  In this case, there really are no reserves to
1274                  * use.  This situation is indicated if chg != 0.
1275                  */
1276                 if (chg)
1277                         return false;
1278                 else
1279                         return true;
1280         }
1281
1282         /*
1283          * Only the process that called mmap() has reserves for
1284          * private mappings.
1285          */
1286         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287                 /*
1288                  * Like the shared case above, a hole punch or truncate
1289                  * could have been performed on the private mapping.
1290                  * Examine the value of chg to determine if reserves
1291                  * actually exist or were previously consumed.
1292                  * Very Subtle - The value of chg comes from a previous
1293                  * call to vma_needs_reserves().  The reserve map for
1294                  * private mappings has different (opposite) semantics
1295                  * than that of shared mappings.  vma_needs_reserves()
1296                  * has already taken this difference in semantics into
1297                  * account.  Therefore, the meaning of chg is the same
1298                  * as in the shared case above.  Code could easily be
1299                  * combined, but keeping it separate draws attention to
1300                  * subtle differences.
1301                  */
1302                 if (chg)
1303                         return false;
1304                 else
1305                         return true;
1306         }
1307
1308         return false;
1309 }
1310
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313         int nid = folio_nid(folio);
1314
1315         lockdep_assert_held(&hugetlb_lock);
1316         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319         h->free_huge_pages++;
1320         h->free_huge_pages_node[nid]++;
1321         folio_set_hugetlb_freed(folio);
1322 }
1323
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325                                                                 int nid)
1326 {
1327         struct folio *folio;
1328         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330         lockdep_assert_held(&hugetlb_lock);
1331         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332                 if (pin && !folio_is_longterm_pinnable(folio))
1333                         continue;
1334
1335                 if (folio_test_hwpoison(folio))
1336                         continue;
1337
1338                 list_move(&folio->lru, &h->hugepage_activelist);
1339                 folio_ref_unfreeze(folio, 1);
1340                 folio_clear_hugetlb_freed(folio);
1341                 h->free_huge_pages--;
1342                 h->free_huge_pages_node[nid]--;
1343                 return folio;
1344         }
1345
1346         return NULL;
1347 }
1348
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350                                                         int nid, nodemask_t *nmask)
1351 {
1352         unsigned int cpuset_mems_cookie;
1353         struct zonelist *zonelist;
1354         struct zone *zone;
1355         struct zoneref *z;
1356         int node = NUMA_NO_NODE;
1357
1358         zonelist = node_zonelist(nid, gfp_mask);
1359
1360 retry_cpuset:
1361         cpuset_mems_cookie = read_mems_allowed_begin();
1362         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363                 struct folio *folio;
1364
1365                 if (!cpuset_zone_allowed(zone, gfp_mask))
1366                         continue;
1367                 /*
1368                  * no need to ask again on the same node. Pool is node rather than
1369                  * zone aware
1370                  */
1371                 if (zone_to_nid(zone) == node)
1372                         continue;
1373                 node = zone_to_nid(zone);
1374
1375                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1376                 if (folio)
1377                         return folio;
1378         }
1379         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380                 goto retry_cpuset;
1381
1382         return NULL;
1383 }
1384
1385 static unsigned long available_huge_pages(struct hstate *h)
1386 {
1387         return h->free_huge_pages - h->resv_huge_pages;
1388 }
1389
1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391                                 struct vm_area_struct *vma,
1392                                 unsigned long address, int avoid_reserve,
1393                                 long chg)
1394 {
1395         struct folio *folio = NULL;
1396         struct mempolicy *mpol;
1397         gfp_t gfp_mask;
1398         nodemask_t *nodemask;
1399         int nid;
1400
1401         /*
1402          * A child process with MAP_PRIVATE mappings created by their parent
1403          * have no page reserves. This check ensures that reservations are
1404          * not "stolen". The child may still get SIGKILLed
1405          */
1406         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407                 goto err;
1408
1409         /* If reserves cannot be used, ensure enough pages are in the pool */
1410         if (avoid_reserve && !available_huge_pages(h))
1411                 goto err;
1412
1413         gfp_mask = htlb_alloc_mask(h);
1414         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416         if (mpol_is_preferred_many(mpol)) {
1417                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418                                                         nid, nodemask);
1419
1420                 /* Fallback to all nodes if page==NULL */
1421                 nodemask = NULL;
1422         }
1423
1424         if (!folio)
1425                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426                                                         nid, nodemask);
1427
1428         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429                 folio_set_hugetlb_restore_reserve(folio);
1430                 h->resv_huge_pages--;
1431         }
1432
1433         mpol_cond_put(mpol);
1434         return folio;
1435
1436 err:
1437         return NULL;
1438 }
1439
1440 /*
1441  * common helper functions for hstate_next_node_to_{alloc|free}.
1442  * We may have allocated or freed a huge page based on a different
1443  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444  * be outside of *nodes_allowed.  Ensure that we use an allowed
1445  * node for alloc or free.
1446  */
1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449         nid = next_node_in(nid, *nodes_allowed);
1450         VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452         return nid;
1453 }
1454
1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 {
1457         if (!node_isset(nid, *nodes_allowed))
1458                 nid = next_node_allowed(nid, nodes_allowed);
1459         return nid;
1460 }
1461
1462 /*
1463  * returns the previously saved node ["this node"] from which to
1464  * allocate a persistent huge page for the pool and advance the
1465  * next node from which to allocate, handling wrap at end of node
1466  * mask.
1467  */
1468 static int hstate_next_node_to_alloc(int *next_node,
1469                                         nodemask_t *nodes_allowed)
1470 {
1471         int nid;
1472
1473         VM_BUG_ON(!nodes_allowed);
1474
1475         nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476         *next_node = next_node_allowed(nid, nodes_allowed);
1477
1478         return nid;
1479 }
1480
1481 /*
1482  * helper for remove_pool_hugetlb_folio() - return the previously saved
1483  * node ["this node"] from which to free a huge page.  Advance the
1484  * next node id whether or not we find a free huge page to free so
1485  * that the next attempt to free addresses the next node.
1486  */
1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488 {
1489         int nid;
1490
1491         VM_BUG_ON(!nodes_allowed);
1492
1493         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496         return nid;
1497 }
1498
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)            \
1500         for (nr_nodes = nodes_weight(*mask);                            \
1501                 nr_nodes > 0 &&                                         \
1502                 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1);     \
1503                 nr_nodes--)
1504
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1506         for (nr_nodes = nodes_weight(*mask);                            \
1507                 nr_nodes > 0 &&                                         \
1508                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1509                 nr_nodes--)
1510
1511 /* used to demote non-gigantic_huge pages as well */
1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513                                         unsigned int order, bool demote)
1514 {
1515         int i;
1516         int nr_pages = 1 << order;
1517         struct page *p;
1518
1519         atomic_set(&folio->_entire_mapcount, 0);
1520         atomic_set(&folio->_large_mapcount, 0);
1521         atomic_set(&folio->_pincount, 0);
1522
1523         for (i = 1; i < nr_pages; i++) {
1524                 p = folio_page(folio, i);
1525                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526                 p->mapping = NULL;
1527                 clear_compound_head(p);
1528                 if (!demote)
1529                         set_page_refcounted(p);
1530         }
1531
1532         __folio_clear_head(folio);
1533 }
1534
1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536                                         unsigned int order)
1537 {
1538         __destroy_compound_gigantic_folio(folio, order, true);
1539 }
1540
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1543                                         unsigned int order)
1544 {
1545         __destroy_compound_gigantic_folio(folio, order, false);
1546 }
1547
1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549 {
1550         /*
1551          * If the page isn't allocated using the cma allocator,
1552          * cma_release() returns false.
1553          */
1554 #ifdef CONFIG_CMA
1555         int nid = folio_nid(folio);
1556
1557         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558                 return;
1559 #endif
1560
1561         free_contig_range(folio_pfn(folio), 1 << order);
1562 }
1563
1564 #ifdef CONFIG_CONTIG_ALLOC
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566                 int nid, nodemask_t *nodemask)
1567 {
1568         struct page *page;
1569         unsigned long nr_pages = pages_per_huge_page(h);
1570         if (nid == NUMA_NO_NODE)
1571                 nid = numa_mem_id();
1572
1573 #ifdef CONFIG_CMA
1574         {
1575                 int node;
1576
1577                 if (hugetlb_cma[nid]) {
1578                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579                                         huge_page_order(h), true);
1580                         if (page)
1581                                 return page_folio(page);
1582                 }
1583
1584                 if (!(gfp_mask & __GFP_THISNODE)) {
1585                         for_each_node_mask(node, *nodemask) {
1586                                 if (node == nid || !hugetlb_cma[node])
1587                                         continue;
1588
1589                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590                                                 huge_page_order(h), true);
1591                                 if (page)
1592                                         return page_folio(page);
1593                         }
1594                 }
1595         }
1596 #endif
1597
1598         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599         return page ? page_folio(page) : NULL;
1600 }
1601
1602 #else /* !CONFIG_CONTIG_ALLOC */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604                                         int nid, nodemask_t *nodemask)
1605 {
1606         return NULL;
1607 }
1608 #endif /* CONFIG_CONTIG_ALLOC */
1609
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612                                         int nid, nodemask_t *nodemask)
1613 {
1614         return NULL;
1615 }
1616 static inline void free_gigantic_folio(struct folio *folio,
1617                                                 unsigned int order) { }
1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619                                                 unsigned int order) { }
1620 #endif
1621
1622 /*
1623  * Remove hugetlb folio from lists.
1624  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1625  * folio appears as just a compound page.  Otherwise, wait until after
1626  * allocating vmemmap to clear the flag.
1627  *
1628  * A reference is held on the folio, except in the case of demote.
1629  *
1630  * Must be called with hugetlb lock held.
1631  */
1632 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1633                                                         bool adjust_surplus,
1634                                                         bool demote)
1635 {
1636         int nid = folio_nid(folio);
1637
1638         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1639         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1640
1641         lockdep_assert_held(&hugetlb_lock);
1642         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1643                 return;
1644
1645         list_del(&folio->lru);
1646
1647         if (folio_test_hugetlb_freed(folio)) {
1648                 h->free_huge_pages--;
1649                 h->free_huge_pages_node[nid]--;
1650         }
1651         if (adjust_surplus) {
1652                 h->surplus_huge_pages--;
1653                 h->surplus_huge_pages_node[nid]--;
1654         }
1655
1656         /*
1657          * We can only clear the hugetlb flag after allocating vmemmap
1658          * pages.  Otherwise, someone (memory error handling) may try to write
1659          * to tail struct pages.
1660          */
1661         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1662                 __folio_clear_hugetlb(folio);
1663
1664          /*
1665           * In the case of demote we do not ref count the page as it will soon
1666           * be turned into a page of smaller size.
1667          */
1668         if (!demote)
1669                 folio_ref_unfreeze(folio, 1);
1670
1671         h->nr_huge_pages--;
1672         h->nr_huge_pages_node[nid]--;
1673 }
1674
1675 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1676                                                         bool adjust_surplus)
1677 {
1678         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1679 }
1680
1681 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1682                                                         bool adjust_surplus)
1683 {
1684         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1685 }
1686
1687 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1688                              bool adjust_surplus)
1689 {
1690         int zeroed;
1691         int nid = folio_nid(folio);
1692
1693         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1694
1695         lockdep_assert_held(&hugetlb_lock);
1696
1697         INIT_LIST_HEAD(&folio->lru);
1698         h->nr_huge_pages++;
1699         h->nr_huge_pages_node[nid]++;
1700
1701         if (adjust_surplus) {
1702                 h->surplus_huge_pages++;
1703                 h->surplus_huge_pages_node[nid]++;
1704         }
1705
1706         __folio_set_hugetlb(folio);
1707         folio_change_private(folio, NULL);
1708         /*
1709          * We have to set hugetlb_vmemmap_optimized again as above
1710          * folio_change_private(folio, NULL) cleared it.
1711          */
1712         folio_set_hugetlb_vmemmap_optimized(folio);
1713
1714         /*
1715          * This folio is about to be managed by the hugetlb allocator and
1716          * should have no users.  Drop our reference, and check for others
1717          * just in case.
1718          */
1719         zeroed = folio_put_testzero(folio);
1720         if (unlikely(!zeroed))
1721                 /*
1722                  * It is VERY unlikely soneone else has taken a ref
1723                  * on the folio.  In this case, we simply return as
1724                  * free_huge_folio() will be called when this other ref
1725                  * is dropped.
1726                  */
1727                 return;
1728
1729         arch_clear_hugetlb_flags(folio);
1730         enqueue_hugetlb_folio(h, folio);
1731 }
1732
1733 static void __update_and_free_hugetlb_folio(struct hstate *h,
1734                                                 struct folio *folio)
1735 {
1736         bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1737
1738         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1739                 return;
1740
1741         /*
1742          * If we don't know which subpages are hwpoisoned, we can't free
1743          * the hugepage, so it's leaked intentionally.
1744          */
1745         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1746                 return;
1747
1748         /*
1749          * If folio is not vmemmap optimized (!clear_flag), then the folio
1750          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1751          * can only be passed hugetlb pages and will BUG otherwise.
1752          */
1753         if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1754                 spin_lock_irq(&hugetlb_lock);
1755                 /*
1756                  * If we cannot allocate vmemmap pages, just refuse to free the
1757                  * page and put the page back on the hugetlb free list and treat
1758                  * as a surplus page.
1759                  */
1760                 add_hugetlb_folio(h, folio, true);
1761                 spin_unlock_irq(&hugetlb_lock);
1762                 return;
1763         }
1764
1765         /*
1766          * Move PageHWPoison flag from head page to the raw error pages,
1767          * which makes any healthy subpages reusable.
1768          */
1769         if (unlikely(folio_test_hwpoison(folio)))
1770                 folio_clear_hugetlb_hwpoison(folio);
1771
1772         /*
1773          * If vmemmap pages were allocated above, then we need to clear the
1774          * hugetlb flag under the hugetlb lock.
1775          */
1776         if (folio_test_hugetlb(folio)) {
1777                 spin_lock_irq(&hugetlb_lock);
1778                 __folio_clear_hugetlb(folio);
1779                 spin_unlock_irq(&hugetlb_lock);
1780         }
1781
1782         /*
1783          * Non-gigantic pages demoted from CMA allocated gigantic pages
1784          * need to be given back to CMA in free_gigantic_folio.
1785          */
1786         if (hstate_is_gigantic(h) ||
1787             hugetlb_cma_folio(folio, huge_page_order(h))) {
1788                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1789                 free_gigantic_folio(folio, huge_page_order(h));
1790         } else {
1791                 INIT_LIST_HEAD(&folio->_deferred_list);
1792                 folio_put(folio);
1793         }
1794 }
1795
1796 /*
1797  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1798  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1799  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1800  * the vmemmap pages.
1801  *
1802  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1803  * freed and frees them one-by-one. As the page->mapping pointer is going
1804  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1805  * structure of a lockless linked list of huge pages to be freed.
1806  */
1807 static LLIST_HEAD(hpage_freelist);
1808
1809 static void free_hpage_workfn(struct work_struct *work)
1810 {
1811         struct llist_node *node;
1812
1813         node = llist_del_all(&hpage_freelist);
1814
1815         while (node) {
1816                 struct folio *folio;
1817                 struct hstate *h;
1818
1819                 folio = container_of((struct address_space **)node,
1820                                      struct folio, mapping);
1821                 node = node->next;
1822                 folio->mapping = NULL;
1823                 /*
1824                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1825                  * folio_hstate() is going to trigger because a previous call to
1826                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1827                  * not use folio_hstate() directly.
1828                  */
1829                 h = size_to_hstate(folio_size(folio));
1830
1831                 __update_and_free_hugetlb_folio(h, folio);
1832
1833                 cond_resched();
1834         }
1835 }
1836 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1837
1838 static inline void flush_free_hpage_work(struct hstate *h)
1839 {
1840         if (hugetlb_vmemmap_optimizable(h))
1841                 flush_work(&free_hpage_work);
1842 }
1843
1844 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1845                                  bool atomic)
1846 {
1847         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1848                 __update_and_free_hugetlb_folio(h, folio);
1849                 return;
1850         }
1851
1852         /*
1853          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1854          *
1855          * Only call schedule_work() if hpage_freelist is previously
1856          * empty. Otherwise, schedule_work() had been called but the workfn
1857          * hasn't retrieved the list yet.
1858          */
1859         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1860                 schedule_work(&free_hpage_work);
1861 }
1862
1863 static void bulk_vmemmap_restore_error(struct hstate *h,
1864                                         struct list_head *folio_list,
1865                                         struct list_head *non_hvo_folios)
1866 {
1867         struct folio *folio, *t_folio;
1868
1869         if (!list_empty(non_hvo_folios)) {
1870                 /*
1871                  * Free any restored hugetlb pages so that restore of the
1872                  * entire list can be retried.
1873                  * The idea is that in the common case of ENOMEM errors freeing
1874                  * hugetlb pages with vmemmap we will free up memory so that we
1875                  * can allocate vmemmap for more hugetlb pages.
1876                  */
1877                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1878                         list_del(&folio->lru);
1879                         spin_lock_irq(&hugetlb_lock);
1880                         __folio_clear_hugetlb(folio);
1881                         spin_unlock_irq(&hugetlb_lock);
1882                         update_and_free_hugetlb_folio(h, folio, false);
1883                         cond_resched();
1884                 }
1885         } else {
1886                 /*
1887                  * In the case where there are no folios which can be
1888                  * immediately freed, we loop through the list trying to restore
1889                  * vmemmap individually in the hope that someone elsewhere may
1890                  * have done something to cause success (such as freeing some
1891                  * memory).  If unable to restore a hugetlb page, the hugetlb
1892                  * page is made a surplus page and removed from the list.
1893                  * If are able to restore vmemmap and free one hugetlb page, we
1894                  * quit processing the list to retry the bulk operation.
1895                  */
1896                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1897                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1898                                 list_del(&folio->lru);
1899                                 spin_lock_irq(&hugetlb_lock);
1900                                 add_hugetlb_folio(h, folio, true);
1901                                 spin_unlock_irq(&hugetlb_lock);
1902                         } else {
1903                                 list_del(&folio->lru);
1904                                 spin_lock_irq(&hugetlb_lock);
1905                                 __folio_clear_hugetlb(folio);
1906                                 spin_unlock_irq(&hugetlb_lock);
1907                                 update_and_free_hugetlb_folio(h, folio, false);
1908                                 cond_resched();
1909                                 break;
1910                         }
1911         }
1912 }
1913
1914 static void update_and_free_pages_bulk(struct hstate *h,
1915                                                 struct list_head *folio_list)
1916 {
1917         long ret;
1918         struct folio *folio, *t_folio;
1919         LIST_HEAD(non_hvo_folios);
1920
1921         /*
1922          * First allocate required vmemmmap (if necessary) for all folios.
1923          * Carefully handle errors and free up any available hugetlb pages
1924          * in an effort to make forward progress.
1925          */
1926 retry:
1927         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1928         if (ret < 0) {
1929                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1930                 goto retry;
1931         }
1932
1933         /*
1934          * At this point, list should be empty, ret should be >= 0 and there
1935          * should only be pages on the non_hvo_folios list.
1936          * Do note that the non_hvo_folios list could be empty.
1937          * Without HVO enabled, ret will be 0 and there is no need to call
1938          * __folio_clear_hugetlb as this was done previously.
1939          */
1940         VM_WARN_ON(!list_empty(folio_list));
1941         VM_WARN_ON(ret < 0);
1942         if (!list_empty(&non_hvo_folios) && ret) {
1943                 spin_lock_irq(&hugetlb_lock);
1944                 list_for_each_entry(folio, &non_hvo_folios, lru)
1945                         __folio_clear_hugetlb(folio);
1946                 spin_unlock_irq(&hugetlb_lock);
1947         }
1948
1949         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1950                 update_and_free_hugetlb_folio(h, folio, false);
1951                 cond_resched();
1952         }
1953 }
1954
1955 struct hstate *size_to_hstate(unsigned long size)
1956 {
1957         struct hstate *h;
1958
1959         for_each_hstate(h) {
1960                 if (huge_page_size(h) == size)
1961                         return h;
1962         }
1963         return NULL;
1964 }
1965
1966 void free_huge_folio(struct folio *folio)
1967 {
1968         /*
1969          * Can't pass hstate in here because it is called from the
1970          * generic mm code.
1971          */
1972         struct hstate *h = folio_hstate(folio);
1973         int nid = folio_nid(folio);
1974         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1975         bool restore_reserve;
1976         unsigned long flags;
1977
1978         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1979         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1980
1981         hugetlb_set_folio_subpool(folio, NULL);
1982         if (folio_test_anon(folio))
1983                 __ClearPageAnonExclusive(&folio->page);
1984         folio->mapping = NULL;
1985         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1986         folio_clear_hugetlb_restore_reserve(folio);
1987
1988         /*
1989          * If HPageRestoreReserve was set on page, page allocation consumed a
1990          * reservation.  If the page was associated with a subpool, there
1991          * would have been a page reserved in the subpool before allocation
1992          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1993          * reservation, do not call hugepage_subpool_put_pages() as this will
1994          * remove the reserved page from the subpool.
1995          */
1996         if (!restore_reserve) {
1997                 /*
1998                  * A return code of zero implies that the subpool will be
1999                  * under its minimum size if the reservation is not restored
2000                  * after page is free.  Therefore, force restore_reserve
2001                  * operation.
2002                  */
2003                 if (hugepage_subpool_put_pages(spool, 1) == 0)
2004                         restore_reserve = true;
2005         }
2006
2007         spin_lock_irqsave(&hugetlb_lock, flags);
2008         folio_clear_hugetlb_migratable(folio);
2009         hugetlb_cgroup_uncharge_folio(hstate_index(h),
2010                                      pages_per_huge_page(h), folio);
2011         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2012                                           pages_per_huge_page(h), folio);
2013         mem_cgroup_uncharge(folio);
2014         if (restore_reserve)
2015                 h->resv_huge_pages++;
2016
2017         if (folio_test_hugetlb_temporary(folio)) {
2018                 remove_hugetlb_folio(h, folio, false);
2019                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2020                 update_and_free_hugetlb_folio(h, folio, true);
2021         } else if (h->surplus_huge_pages_node[nid]) {
2022                 /* remove the page from active list */
2023                 remove_hugetlb_folio(h, folio, true);
2024                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2025                 update_and_free_hugetlb_folio(h, folio, true);
2026         } else {
2027                 arch_clear_hugetlb_flags(folio);
2028                 enqueue_hugetlb_folio(h, folio);
2029                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2030         }
2031 }
2032
2033 /*
2034  * Must be called with the hugetlb lock held
2035  */
2036 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2037 {
2038         lockdep_assert_held(&hugetlb_lock);
2039         h->nr_huge_pages++;
2040         h->nr_huge_pages_node[nid]++;
2041 }
2042
2043 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2044 {
2045         __folio_set_hugetlb(folio);
2046         INIT_LIST_HEAD(&folio->lru);
2047         hugetlb_set_folio_subpool(folio, NULL);
2048         set_hugetlb_cgroup(folio, NULL);
2049         set_hugetlb_cgroup_rsvd(folio, NULL);
2050 }
2051
2052 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2053 {
2054         init_new_hugetlb_folio(h, folio);
2055         hugetlb_vmemmap_optimize_folio(h, folio);
2056 }
2057
2058 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2059 {
2060         __prep_new_hugetlb_folio(h, folio);
2061         spin_lock_irq(&hugetlb_lock);
2062         __prep_account_new_huge_page(h, nid);
2063         spin_unlock_irq(&hugetlb_lock);
2064 }
2065
2066 static bool __prep_compound_gigantic_folio(struct folio *folio,
2067                                         unsigned int order, bool demote)
2068 {
2069         int i, j;
2070         int nr_pages = 1 << order;
2071         struct page *p;
2072
2073         __folio_clear_reserved(folio);
2074         for (i = 0; i < nr_pages; i++) {
2075                 p = folio_page(folio, i);
2076
2077                 /*
2078                  * For gigantic hugepages allocated through bootmem at
2079                  * boot, it's safer to be consistent with the not-gigantic
2080                  * hugepages and clear the PG_reserved bit from all tail pages
2081                  * too.  Otherwise drivers using get_user_pages() to access tail
2082                  * pages may get the reference counting wrong if they see
2083                  * PG_reserved set on a tail page (despite the head page not
2084                  * having PG_reserved set).  Enforcing this consistency between
2085                  * head and tail pages allows drivers to optimize away a check
2086                  * on the head page when they need know if put_page() is needed
2087                  * after get_user_pages().
2088                  */
2089                 if (i != 0)     /* head page cleared above */
2090                         __ClearPageReserved(p);
2091                 /*
2092                  * Subtle and very unlikely
2093                  *
2094                  * Gigantic 'page allocators' such as memblock or cma will
2095                  * return a set of pages with each page ref counted.  We need
2096                  * to turn this set of pages into a compound page with tail
2097                  * page ref counts set to zero.  Code such as speculative page
2098                  * cache adding could take a ref on a 'to be' tail page.
2099                  * We need to respect any increased ref count, and only set
2100                  * the ref count to zero if count is currently 1.  If count
2101                  * is not 1, we return an error.  An error return indicates
2102                  * the set of pages can not be converted to a gigantic page.
2103                  * The caller who allocated the pages should then discard the
2104                  * pages using the appropriate free interface.
2105                  *
2106                  * In the case of demote, the ref count will be zero.
2107                  */
2108                 if (!demote) {
2109                         if (!page_ref_freeze(p, 1)) {
2110                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2111                                 goto out_error;
2112                         }
2113                 } else {
2114                         VM_BUG_ON_PAGE(page_count(p), p);
2115                 }
2116                 if (i != 0)
2117                         set_compound_head(p, &folio->page);
2118         }
2119         __folio_set_head(folio);
2120         /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
2121         folio_set_order(folio, order);
2122         atomic_set(&folio->_entire_mapcount, -1);
2123         atomic_set(&folio->_large_mapcount, -1);
2124         atomic_set(&folio->_pincount, 0);
2125         return true;
2126
2127 out_error:
2128         /* undo page modifications made above */
2129         for (j = 0; j < i; j++) {
2130                 p = folio_page(folio, j);
2131                 if (j != 0)
2132                         clear_compound_head(p);
2133                 set_page_refcounted(p);
2134         }
2135         /* need to clear PG_reserved on remaining tail pages  */
2136         for (; j < nr_pages; j++) {
2137                 p = folio_page(folio, j);
2138                 __ClearPageReserved(p);
2139         }
2140         return false;
2141 }
2142
2143 static bool prep_compound_gigantic_folio(struct folio *folio,
2144                                                         unsigned int order)
2145 {
2146         return __prep_compound_gigantic_folio(folio, order, false);
2147 }
2148
2149 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2150                                                         unsigned int order)
2151 {
2152         return __prep_compound_gigantic_folio(folio, order, true);
2153 }
2154
2155 /*
2156  * Find and lock address space (mapping) in write mode.
2157  *
2158  * Upon entry, the page is locked which means that page_mapping() is
2159  * stable.  Due to locking order, we can only trylock_write.  If we can
2160  * not get the lock, simply return NULL to caller.
2161  */
2162 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2163 {
2164         struct address_space *mapping = page_mapping(hpage);
2165
2166         if (!mapping)
2167                 return mapping;
2168
2169         if (i_mmap_trylock_write(mapping))
2170                 return mapping;
2171
2172         return NULL;
2173 }
2174
2175 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2176                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2177                 nodemask_t *node_alloc_noretry)
2178 {
2179         int order = huge_page_order(h);
2180         struct folio *folio;
2181         bool alloc_try_hard = true;
2182         bool retry = true;
2183
2184         /*
2185          * By default we always try hard to allocate the folio with
2186          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
2187          * a loop (to adjust global huge page counts) and previous allocation
2188          * failed, do not continue to try hard on the same node.  Use the
2189          * node_alloc_noretry bitmap to manage this state information.
2190          */
2191         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2192                 alloc_try_hard = false;
2193         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2194         if (alloc_try_hard)
2195                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2196         if (nid == NUMA_NO_NODE)
2197                 nid = numa_mem_id();
2198 retry:
2199         folio = __folio_alloc(gfp_mask, order, nid, nmask);
2200
2201         if (folio && !folio_ref_freeze(folio, 1)) {
2202                 folio_put(folio);
2203                 if (retry) {    /* retry once */
2204                         retry = false;
2205                         goto retry;
2206                 }
2207                 /* WOW!  twice in a row. */
2208                 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2209                 folio = NULL;
2210         }
2211
2212         /*
2213          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2214          * folio this indicates an overall state change.  Clear bit so
2215          * that we resume normal 'try hard' allocations.
2216          */
2217         if (node_alloc_noretry && folio && !alloc_try_hard)
2218                 node_clear(nid, *node_alloc_noretry);
2219
2220         /*
2221          * If we tried hard to get a folio but failed, set bit so that
2222          * subsequent attempts will not try as hard until there is an
2223          * overall state change.
2224          */
2225         if (node_alloc_noretry && !folio && alloc_try_hard)
2226                 node_set(nid, *node_alloc_noretry);
2227
2228         if (!folio) {
2229                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2230                 return NULL;
2231         }
2232
2233         __count_vm_event(HTLB_BUDDY_PGALLOC);
2234         return folio;
2235 }
2236
2237 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2238                                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2239                                 nodemask_t *node_alloc_noretry)
2240 {
2241         struct folio *folio;
2242         bool retry = false;
2243
2244 retry:
2245         if (hstate_is_gigantic(h))
2246                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2247         else
2248                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2249                                 nid, nmask, node_alloc_noretry);
2250         if (!folio)
2251                 return NULL;
2252
2253         if (hstate_is_gigantic(h)) {
2254                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2255                         /*
2256                          * Rare failure to convert pages to compound page.
2257                          * Free pages and try again - ONCE!
2258                          */
2259                         free_gigantic_folio(folio, huge_page_order(h));
2260                         if (!retry) {
2261                                 retry = true;
2262                                 goto retry;
2263                         }
2264                         return NULL;
2265                 }
2266         }
2267
2268         return folio;
2269 }
2270
2271 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2272                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2273                 nodemask_t *node_alloc_noretry)
2274 {
2275         struct folio *folio;
2276
2277         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2278                                                 node_alloc_noretry);
2279         if (folio)
2280                 init_new_hugetlb_folio(h, folio);
2281         return folio;
2282 }
2283
2284 /*
2285  * Common helper to allocate a fresh hugetlb page. All specific allocators
2286  * should use this function to get new hugetlb pages
2287  *
2288  * Note that returned page is 'frozen':  ref count of head page and all tail
2289  * pages is zero.
2290  */
2291 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2292                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2293                 nodemask_t *node_alloc_noretry)
2294 {
2295         struct folio *folio;
2296
2297         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2298                                                 node_alloc_noretry);
2299         if (!folio)
2300                 return NULL;
2301
2302         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2303         return folio;
2304 }
2305
2306 static void prep_and_add_allocated_folios(struct hstate *h,
2307                                         struct list_head *folio_list)
2308 {
2309         unsigned long flags;
2310         struct folio *folio, *tmp_f;
2311
2312         /* Send list for bulk vmemmap optimization processing */
2313         hugetlb_vmemmap_optimize_folios(h, folio_list);
2314
2315         /* Add all new pool pages to free lists in one lock cycle */
2316         spin_lock_irqsave(&hugetlb_lock, flags);
2317         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2318                 __prep_account_new_huge_page(h, folio_nid(folio));
2319                 enqueue_hugetlb_folio(h, folio);
2320         }
2321         spin_unlock_irqrestore(&hugetlb_lock, flags);
2322 }
2323
2324 /*
2325  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2326  * will later be added to the appropriate hugetlb pool.
2327  */
2328 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2329                                         nodemask_t *nodes_allowed,
2330                                         nodemask_t *node_alloc_noretry,
2331                                         int *next_node)
2332 {
2333         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2334         int nr_nodes, node;
2335
2336         for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2337                 struct folio *folio;
2338
2339                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2340                                         nodes_allowed, node_alloc_noretry);
2341                 if (folio)
2342                         return folio;
2343         }
2344
2345         return NULL;
2346 }
2347
2348 /*
2349  * Remove huge page from pool from next node to free.  Attempt to keep
2350  * persistent huge pages more or less balanced over allowed nodes.
2351  * This routine only 'removes' the hugetlb page.  The caller must make
2352  * an additional call to free the page to low level allocators.
2353  * Called with hugetlb_lock locked.
2354  */
2355 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2356                 nodemask_t *nodes_allowed, bool acct_surplus)
2357 {
2358         int nr_nodes, node;
2359         struct folio *folio = NULL;
2360
2361         lockdep_assert_held(&hugetlb_lock);
2362         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2363                 /*
2364                  * If we're returning unused surplus pages, only examine
2365                  * nodes with surplus pages.
2366                  */
2367                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2368                     !list_empty(&h->hugepage_freelists[node])) {
2369                         folio = list_entry(h->hugepage_freelists[node].next,
2370                                           struct folio, lru);
2371                         remove_hugetlb_folio(h, folio, acct_surplus);
2372                         break;
2373                 }
2374         }
2375
2376         return folio;
2377 }
2378
2379 /*
2380  * Dissolve a given free hugetlb folio into free buddy pages. This function
2381  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2382  * This function returns values like below:
2383  *
2384  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2385  *           when the system is under memory pressure and the feature of
2386  *           freeing unused vmemmap pages associated with each hugetlb page
2387  *           is enabled.
2388  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2389  *           (allocated or reserved.)
2390  *       0:  successfully dissolved free hugepages or the page is not a
2391  *           hugepage (considered as already dissolved)
2392  */
2393 int dissolve_free_hugetlb_folio(struct folio *folio)
2394 {
2395         int rc = -EBUSY;
2396
2397 retry:
2398         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2399         if (!folio_test_hugetlb(folio))
2400                 return 0;
2401
2402         spin_lock_irq(&hugetlb_lock);
2403         if (!folio_test_hugetlb(folio)) {
2404                 rc = 0;
2405                 goto out;
2406         }
2407
2408         if (!folio_ref_count(folio)) {
2409                 struct hstate *h = folio_hstate(folio);
2410                 if (!available_huge_pages(h))
2411                         goto out;
2412
2413                 /*
2414                  * We should make sure that the page is already on the free list
2415                  * when it is dissolved.
2416                  */
2417                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2418                         spin_unlock_irq(&hugetlb_lock);
2419                         cond_resched();
2420
2421                         /*
2422                          * Theoretically, we should return -EBUSY when we
2423                          * encounter this race. In fact, we have a chance
2424                          * to successfully dissolve the page if we do a
2425                          * retry. Because the race window is quite small.
2426                          * If we seize this opportunity, it is an optimization
2427                          * for increasing the success rate of dissolving page.
2428                          */
2429                         goto retry;
2430                 }
2431
2432                 remove_hugetlb_folio(h, folio, false);
2433                 h->max_huge_pages--;
2434                 spin_unlock_irq(&hugetlb_lock);
2435
2436                 /*
2437                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2438                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2439                  * free the page if it can not allocate required vmemmap.  We
2440                  * need to adjust max_huge_pages if the page is not freed.
2441                  * Attempt to allocate vmemmmap here so that we can take
2442                  * appropriate action on failure.
2443                  *
2444                  * The folio_test_hugetlb check here is because
2445                  * remove_hugetlb_folio will clear hugetlb folio flag for
2446                  * non-vmemmap optimized hugetlb folios.
2447                  */
2448                 if (folio_test_hugetlb(folio)) {
2449                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2450                         if (rc) {
2451                                 spin_lock_irq(&hugetlb_lock);
2452                                 add_hugetlb_folio(h, folio, false);
2453                                 h->max_huge_pages++;
2454                                 goto out;
2455                         }
2456                 } else
2457                         rc = 0;
2458
2459                 update_and_free_hugetlb_folio(h, folio, false);
2460                 return rc;
2461         }
2462 out:
2463         spin_unlock_irq(&hugetlb_lock);
2464         return rc;
2465 }
2466
2467 /*
2468  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2469  * make specified memory blocks removable from the system.
2470  * Note that this will dissolve a free gigantic hugepage completely, if any
2471  * part of it lies within the given range.
2472  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2473  * free hugetlb folios that were dissolved before that error are lost.
2474  */
2475 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2476 {
2477         unsigned long pfn;
2478         struct folio *folio;
2479         int rc = 0;
2480         unsigned int order;
2481         struct hstate *h;
2482
2483         if (!hugepages_supported())
2484                 return rc;
2485
2486         order = huge_page_order(&default_hstate);
2487         for_each_hstate(h)
2488                 order = min(order, huge_page_order(h));
2489
2490         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2491                 folio = pfn_folio(pfn);
2492                 rc = dissolve_free_hugetlb_folio(folio);
2493                 if (rc)
2494                         break;
2495         }
2496
2497         return rc;
2498 }
2499
2500 /*
2501  * Allocates a fresh surplus page from the page allocator.
2502  */
2503 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2504                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2505 {
2506         struct folio *folio = NULL;
2507
2508         if (hstate_is_gigantic(h))
2509                 return NULL;
2510
2511         spin_lock_irq(&hugetlb_lock);
2512         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2513                 goto out_unlock;
2514         spin_unlock_irq(&hugetlb_lock);
2515
2516         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2517         if (!folio)
2518                 return NULL;
2519
2520         spin_lock_irq(&hugetlb_lock);
2521         /*
2522          * We could have raced with the pool size change.
2523          * Double check that and simply deallocate the new page
2524          * if we would end up overcommiting the surpluses. Abuse
2525          * temporary page to workaround the nasty free_huge_folio
2526          * codeflow
2527          */
2528         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2529                 folio_set_hugetlb_temporary(folio);
2530                 spin_unlock_irq(&hugetlb_lock);
2531                 free_huge_folio(folio);
2532                 return NULL;
2533         }
2534
2535         h->surplus_huge_pages++;
2536         h->surplus_huge_pages_node[folio_nid(folio)]++;
2537
2538 out_unlock:
2539         spin_unlock_irq(&hugetlb_lock);
2540
2541         return folio;
2542 }
2543
2544 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2545                                      int nid, nodemask_t *nmask)
2546 {
2547         struct folio *folio;
2548
2549         if (hstate_is_gigantic(h))
2550                 return NULL;
2551
2552         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2553         if (!folio)
2554                 return NULL;
2555
2556         /* fresh huge pages are frozen */
2557         folio_ref_unfreeze(folio, 1);
2558         /*
2559          * We do not account these pages as surplus because they are only
2560          * temporary and will be released properly on the last reference
2561          */
2562         folio_set_hugetlb_temporary(folio);
2563
2564         return folio;
2565 }
2566
2567 /*
2568  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2569  */
2570 static
2571 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2572                 struct vm_area_struct *vma, unsigned long addr)
2573 {
2574         struct folio *folio = NULL;
2575         struct mempolicy *mpol;
2576         gfp_t gfp_mask = htlb_alloc_mask(h);
2577         int nid;
2578         nodemask_t *nodemask;
2579
2580         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2581         if (mpol_is_preferred_many(mpol)) {
2582                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2583
2584                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2585                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2586
2587                 /* Fallback to all nodes if page==NULL */
2588                 nodemask = NULL;
2589         }
2590
2591         if (!folio)
2592                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2593         mpol_cond_put(mpol);
2594         return folio;
2595 }
2596
2597 /* folio migration callback function */
2598 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2599                 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2600 {
2601         spin_lock_irq(&hugetlb_lock);
2602         if (available_huge_pages(h)) {
2603                 struct folio *folio;
2604
2605                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2606                                                 preferred_nid, nmask);
2607                 if (folio) {
2608                         spin_unlock_irq(&hugetlb_lock);
2609                         return folio;
2610                 }
2611         }
2612         spin_unlock_irq(&hugetlb_lock);
2613
2614         /* We cannot fallback to other nodes, as we could break the per-node pool. */
2615         if (!allow_alloc_fallback)
2616                 gfp_mask |= __GFP_THISNODE;
2617
2618         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2619 }
2620
2621 /*
2622  * Increase the hugetlb pool such that it can accommodate a reservation
2623  * of size 'delta'.
2624  */
2625 static int gather_surplus_pages(struct hstate *h, long delta)
2626         __must_hold(&hugetlb_lock)
2627 {
2628         LIST_HEAD(surplus_list);
2629         struct folio *folio, *tmp;
2630         int ret;
2631         long i;
2632         long needed, allocated;
2633         bool alloc_ok = true;
2634
2635         lockdep_assert_held(&hugetlb_lock);
2636         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2637         if (needed <= 0) {
2638                 h->resv_huge_pages += delta;
2639                 return 0;
2640         }
2641
2642         allocated = 0;
2643
2644         ret = -ENOMEM;
2645 retry:
2646         spin_unlock_irq(&hugetlb_lock);
2647         for (i = 0; i < needed; i++) {
2648                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2649                                 NUMA_NO_NODE, NULL);
2650                 if (!folio) {
2651                         alloc_ok = false;
2652                         break;
2653                 }
2654                 list_add(&folio->lru, &surplus_list);
2655                 cond_resched();
2656         }
2657         allocated += i;
2658
2659         /*
2660          * After retaking hugetlb_lock, we need to recalculate 'needed'
2661          * because either resv_huge_pages or free_huge_pages may have changed.
2662          */
2663         spin_lock_irq(&hugetlb_lock);
2664         needed = (h->resv_huge_pages + delta) -
2665                         (h->free_huge_pages + allocated);
2666         if (needed > 0) {
2667                 if (alloc_ok)
2668                         goto retry;
2669                 /*
2670                  * We were not able to allocate enough pages to
2671                  * satisfy the entire reservation so we free what
2672                  * we've allocated so far.
2673                  */
2674                 goto free;
2675         }
2676         /*
2677          * The surplus_list now contains _at_least_ the number of extra pages
2678          * needed to accommodate the reservation.  Add the appropriate number
2679          * of pages to the hugetlb pool and free the extras back to the buddy
2680          * allocator.  Commit the entire reservation here to prevent another
2681          * process from stealing the pages as they are added to the pool but
2682          * before they are reserved.
2683          */
2684         needed += allocated;
2685         h->resv_huge_pages += delta;
2686         ret = 0;
2687
2688         /* Free the needed pages to the hugetlb pool */
2689         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2690                 if ((--needed) < 0)
2691                         break;
2692                 /* Add the page to the hugetlb allocator */
2693                 enqueue_hugetlb_folio(h, folio);
2694         }
2695 free:
2696         spin_unlock_irq(&hugetlb_lock);
2697
2698         /*
2699          * Free unnecessary surplus pages to the buddy allocator.
2700          * Pages have no ref count, call free_huge_folio directly.
2701          */
2702         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2703                 free_huge_folio(folio);
2704         spin_lock_irq(&hugetlb_lock);
2705
2706         return ret;
2707 }
2708
2709 /*
2710  * This routine has two main purposes:
2711  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2712  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2713  *    to the associated reservation map.
2714  * 2) Free any unused surplus pages that may have been allocated to satisfy
2715  *    the reservation.  As many as unused_resv_pages may be freed.
2716  */
2717 static void return_unused_surplus_pages(struct hstate *h,
2718                                         unsigned long unused_resv_pages)
2719 {
2720         unsigned long nr_pages;
2721         LIST_HEAD(page_list);
2722
2723         lockdep_assert_held(&hugetlb_lock);
2724         /* Uncommit the reservation */
2725         h->resv_huge_pages -= unused_resv_pages;
2726
2727         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2728                 goto out;
2729
2730         /*
2731          * Part (or even all) of the reservation could have been backed
2732          * by pre-allocated pages. Only free surplus pages.
2733          */
2734         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2735
2736         /*
2737          * We want to release as many surplus pages as possible, spread
2738          * evenly across all nodes with memory. Iterate across these nodes
2739          * until we can no longer free unreserved surplus pages. This occurs
2740          * when the nodes with surplus pages have no free pages.
2741          * remove_pool_hugetlb_folio() will balance the freed pages across the
2742          * on-line nodes with memory and will handle the hstate accounting.
2743          */
2744         while (nr_pages--) {
2745                 struct folio *folio;
2746
2747                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2748                 if (!folio)
2749                         goto out;
2750
2751                 list_add(&folio->lru, &page_list);
2752         }
2753
2754 out:
2755         spin_unlock_irq(&hugetlb_lock);
2756         update_and_free_pages_bulk(h, &page_list);
2757         spin_lock_irq(&hugetlb_lock);
2758 }
2759
2760
2761 /*
2762  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2763  * are used by the huge page allocation routines to manage reservations.
2764  *
2765  * vma_needs_reservation is called to determine if the huge page at addr
2766  * within the vma has an associated reservation.  If a reservation is
2767  * needed, the value 1 is returned.  The caller is then responsible for
2768  * managing the global reservation and subpool usage counts.  After
2769  * the huge page has been allocated, vma_commit_reservation is called
2770  * to add the page to the reservation map.  If the page allocation fails,
2771  * the reservation must be ended instead of committed.  vma_end_reservation
2772  * is called in such cases.
2773  *
2774  * In the normal case, vma_commit_reservation returns the same value
2775  * as the preceding vma_needs_reservation call.  The only time this
2776  * is not the case is if a reserve map was changed between calls.  It
2777  * is the responsibility of the caller to notice the difference and
2778  * take appropriate action.
2779  *
2780  * vma_add_reservation is used in error paths where a reservation must
2781  * be restored when a newly allocated huge page must be freed.  It is
2782  * to be called after calling vma_needs_reservation to determine if a
2783  * reservation exists.
2784  *
2785  * vma_del_reservation is used in error paths where an entry in the reserve
2786  * map was created during huge page allocation and must be removed.  It is to
2787  * be called after calling vma_needs_reservation to determine if a reservation
2788  * exists.
2789  */
2790 enum vma_resv_mode {
2791         VMA_NEEDS_RESV,
2792         VMA_COMMIT_RESV,
2793         VMA_END_RESV,
2794         VMA_ADD_RESV,
2795         VMA_DEL_RESV,
2796 };
2797 static long __vma_reservation_common(struct hstate *h,
2798                                 struct vm_area_struct *vma, unsigned long addr,
2799                                 enum vma_resv_mode mode)
2800 {
2801         struct resv_map *resv;
2802         pgoff_t idx;
2803         long ret;
2804         long dummy_out_regions_needed;
2805
2806         resv = vma_resv_map(vma);
2807         if (!resv)
2808                 return 1;
2809
2810         idx = vma_hugecache_offset(h, vma, addr);
2811         switch (mode) {
2812         case VMA_NEEDS_RESV:
2813                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2814                 /* We assume that vma_reservation_* routines always operate on
2815                  * 1 page, and that adding to resv map a 1 page entry can only
2816                  * ever require 1 region.
2817                  */
2818                 VM_BUG_ON(dummy_out_regions_needed != 1);
2819                 break;
2820         case VMA_COMMIT_RESV:
2821                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2822                 /* region_add calls of range 1 should never fail. */
2823                 VM_BUG_ON(ret < 0);
2824                 break;
2825         case VMA_END_RESV:
2826                 region_abort(resv, idx, idx + 1, 1);
2827                 ret = 0;
2828                 break;
2829         case VMA_ADD_RESV:
2830                 if (vma->vm_flags & VM_MAYSHARE) {
2831                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2832                         /* region_add calls of range 1 should never fail. */
2833                         VM_BUG_ON(ret < 0);
2834                 } else {
2835                         region_abort(resv, idx, idx + 1, 1);
2836                         ret = region_del(resv, idx, idx + 1);
2837                 }
2838                 break;
2839         case VMA_DEL_RESV:
2840                 if (vma->vm_flags & VM_MAYSHARE) {
2841                         region_abort(resv, idx, idx + 1, 1);
2842                         ret = region_del(resv, idx, idx + 1);
2843                 } else {
2844                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2845                         /* region_add calls of range 1 should never fail. */
2846                         VM_BUG_ON(ret < 0);
2847                 }
2848                 break;
2849         default:
2850                 BUG();
2851         }
2852
2853         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2854                 return ret;
2855         /*
2856          * We know private mapping must have HPAGE_RESV_OWNER set.
2857          *
2858          * In most cases, reserves always exist for private mappings.
2859          * However, a file associated with mapping could have been
2860          * hole punched or truncated after reserves were consumed.
2861          * As subsequent fault on such a range will not use reserves.
2862          * Subtle - The reserve map for private mappings has the
2863          * opposite meaning than that of shared mappings.  If NO
2864          * entry is in the reserve map, it means a reservation exists.
2865          * If an entry exists in the reserve map, it means the
2866          * reservation has already been consumed.  As a result, the
2867          * return value of this routine is the opposite of the
2868          * value returned from reserve map manipulation routines above.
2869          */
2870         if (ret > 0)
2871                 return 0;
2872         if (ret == 0)
2873                 return 1;
2874         return ret;
2875 }
2876
2877 static long vma_needs_reservation(struct hstate *h,
2878                         struct vm_area_struct *vma, unsigned long addr)
2879 {
2880         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2881 }
2882
2883 static long vma_commit_reservation(struct hstate *h,
2884                         struct vm_area_struct *vma, unsigned long addr)
2885 {
2886         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2887 }
2888
2889 static void vma_end_reservation(struct hstate *h,
2890                         struct vm_area_struct *vma, unsigned long addr)
2891 {
2892         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2893 }
2894
2895 static long vma_add_reservation(struct hstate *h,
2896                         struct vm_area_struct *vma, unsigned long addr)
2897 {
2898         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2899 }
2900
2901 static long vma_del_reservation(struct hstate *h,
2902                         struct vm_area_struct *vma, unsigned long addr)
2903 {
2904         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2905 }
2906
2907 /*
2908  * This routine is called to restore reservation information on error paths.
2909  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2910  * and the hugetlb mutex should remain held when calling this routine.
2911  *
2912  * It handles two specific cases:
2913  * 1) A reservation was in place and the folio consumed the reservation.
2914  *    hugetlb_restore_reserve is set in the folio.
2915  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2916  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2917  *
2918  * In case 1, free_huge_folio later in the error path will increment the
2919  * global reserve count.  But, free_huge_folio does not have enough context
2920  * to adjust the reservation map.  This case deals primarily with private
2921  * mappings.  Adjust the reserve map here to be consistent with global
2922  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2923  * reserve map indicates there is a reservation present.
2924  *
2925  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2926  */
2927 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2928                         unsigned long address, struct folio *folio)
2929 {
2930         long rc = vma_needs_reservation(h, vma, address);
2931
2932         if (folio_test_hugetlb_restore_reserve(folio)) {
2933                 if (unlikely(rc < 0))
2934                         /*
2935                          * Rare out of memory condition in reserve map
2936                          * manipulation.  Clear hugetlb_restore_reserve so
2937                          * that global reserve count will not be incremented
2938                          * by free_huge_folio.  This will make it appear
2939                          * as though the reservation for this folio was
2940                          * consumed.  This may prevent the task from
2941                          * faulting in the folio at a later time.  This
2942                          * is better than inconsistent global huge page
2943                          * accounting of reserve counts.
2944                          */
2945                         folio_clear_hugetlb_restore_reserve(folio);
2946                 else if (rc)
2947                         (void)vma_add_reservation(h, vma, address);
2948                 else
2949                         vma_end_reservation(h, vma, address);
2950         } else {
2951                 if (!rc) {
2952                         /*
2953                          * This indicates there is an entry in the reserve map
2954                          * not added by alloc_hugetlb_folio.  We know it was added
2955                          * before the alloc_hugetlb_folio call, otherwise
2956                          * hugetlb_restore_reserve would be set on the folio.
2957                          * Remove the entry so that a subsequent allocation
2958                          * does not consume a reservation.
2959                          */
2960                         rc = vma_del_reservation(h, vma, address);
2961                         if (rc < 0)
2962                                 /*
2963                                  * VERY rare out of memory condition.  Since
2964                                  * we can not delete the entry, set
2965                                  * hugetlb_restore_reserve so that the reserve
2966                                  * count will be incremented when the folio
2967                                  * is freed.  This reserve will be consumed
2968                                  * on a subsequent allocation.
2969                                  */
2970                                 folio_set_hugetlb_restore_reserve(folio);
2971                 } else if (rc < 0) {
2972                         /*
2973                          * Rare out of memory condition from
2974                          * vma_needs_reservation call.  Memory allocation is
2975                          * only attempted if a new entry is needed.  Therefore,
2976                          * this implies there is not an entry in the
2977                          * reserve map.
2978                          *
2979                          * For shared mappings, no entry in the map indicates
2980                          * no reservation.  We are done.
2981                          */
2982                         if (!(vma->vm_flags & VM_MAYSHARE))
2983                                 /*
2984                                  * For private mappings, no entry indicates
2985                                  * a reservation is present.  Since we can
2986                                  * not add an entry, set hugetlb_restore_reserve
2987                                  * on the folio so reserve count will be
2988                                  * incremented when freed.  This reserve will
2989                                  * be consumed on a subsequent allocation.
2990                                  */
2991                                 folio_set_hugetlb_restore_reserve(folio);
2992                 } else
2993                         /*
2994                          * No reservation present, do nothing
2995                          */
2996                          vma_end_reservation(h, vma, address);
2997         }
2998 }
2999
3000 /*
3001  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3002  * the old one
3003  * @h: struct hstate old page belongs to
3004  * @old_folio: Old folio to dissolve
3005  * @list: List to isolate the page in case we need to
3006  * Returns 0 on success, otherwise negated error.
3007  */
3008 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3009                         struct folio *old_folio, struct list_head *list)
3010 {
3011         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3012         int nid = folio_nid(old_folio);
3013         struct folio *new_folio = NULL;
3014         int ret = 0;
3015
3016 retry:
3017         spin_lock_irq(&hugetlb_lock);
3018         if (!folio_test_hugetlb(old_folio)) {
3019                 /*
3020                  * Freed from under us. Drop new_folio too.
3021                  */
3022                 goto free_new;
3023         } else if (folio_ref_count(old_folio)) {
3024                 bool isolated;
3025
3026                 /*
3027                  * Someone has grabbed the folio, try to isolate it here.
3028                  * Fail with -EBUSY if not possible.
3029                  */
3030                 spin_unlock_irq(&hugetlb_lock);
3031                 isolated = isolate_hugetlb(old_folio, list);
3032                 ret = isolated ? 0 : -EBUSY;
3033                 spin_lock_irq(&hugetlb_lock);
3034                 goto free_new;
3035         } else if (!folio_test_hugetlb_freed(old_folio)) {
3036                 /*
3037                  * Folio's refcount is 0 but it has not been enqueued in the
3038                  * freelist yet. Race window is small, so we can succeed here if
3039                  * we retry.
3040                  */
3041                 spin_unlock_irq(&hugetlb_lock);
3042                 cond_resched();
3043                 goto retry;
3044         } else {
3045                 if (!new_folio) {
3046                         spin_unlock_irq(&hugetlb_lock);
3047                         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3048                                                               NULL, NULL);
3049                         if (!new_folio)
3050                                 return -ENOMEM;
3051                         __prep_new_hugetlb_folio(h, new_folio);
3052                         goto retry;
3053                 }
3054
3055                 /*
3056                  * Ok, old_folio is still a genuine free hugepage. Remove it from
3057                  * the freelist and decrease the counters. These will be
3058                  * incremented again when calling __prep_account_new_huge_page()
3059                  * and enqueue_hugetlb_folio() for new_folio. The counters will
3060                  * remain stable since this happens under the lock.
3061                  */
3062                 remove_hugetlb_folio(h, old_folio, false);
3063
3064                 /*
3065                  * Ref count on new_folio is already zero as it was dropped
3066                  * earlier.  It can be directly added to the pool free list.
3067                  */
3068                 __prep_account_new_huge_page(h, nid);
3069                 enqueue_hugetlb_folio(h, new_folio);
3070
3071                 /*
3072                  * Folio has been replaced, we can safely free the old one.
3073                  */
3074                 spin_unlock_irq(&hugetlb_lock);
3075                 update_and_free_hugetlb_folio(h, old_folio, false);
3076         }
3077
3078         return ret;
3079
3080 free_new:
3081         spin_unlock_irq(&hugetlb_lock);
3082         if (new_folio) {
3083                 /* Folio has a zero ref count, but needs a ref to be freed */
3084                 folio_ref_unfreeze(new_folio, 1);
3085                 update_and_free_hugetlb_folio(h, new_folio, false);
3086         }
3087
3088         return ret;
3089 }
3090
3091 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3092 {
3093         struct hstate *h;
3094         struct folio *folio = page_folio(page);
3095         int ret = -EBUSY;
3096
3097         /*
3098          * The page might have been dissolved from under our feet, so make sure
3099          * to carefully check the state under the lock.
3100          * Return success when racing as if we dissolved the page ourselves.
3101          */
3102         spin_lock_irq(&hugetlb_lock);
3103         if (folio_test_hugetlb(folio)) {
3104                 h = folio_hstate(folio);
3105         } else {
3106                 spin_unlock_irq(&hugetlb_lock);
3107                 return 0;
3108         }
3109         spin_unlock_irq(&hugetlb_lock);
3110
3111         /*
3112          * Fence off gigantic pages as there is a cyclic dependency between
3113          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3114          * of bailing out right away without further retrying.
3115          */
3116         if (hstate_is_gigantic(h))
3117                 return -ENOMEM;
3118
3119         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3120                 ret = 0;
3121         else if (!folio_ref_count(folio))
3122                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3123
3124         return ret;
3125 }
3126
3127 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3128                                     unsigned long addr, int avoid_reserve)
3129 {
3130         struct hugepage_subpool *spool = subpool_vma(vma);
3131         struct hstate *h = hstate_vma(vma);
3132         struct folio *folio;
3133         long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3134         long gbl_chg;
3135         int memcg_charge_ret, ret, idx;
3136         struct hugetlb_cgroup *h_cg = NULL;
3137         struct mem_cgroup *memcg;
3138         bool deferred_reserve;
3139         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3140
3141         memcg = get_mem_cgroup_from_current();
3142         memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3143         if (memcg_charge_ret == -ENOMEM) {
3144                 mem_cgroup_put(memcg);
3145                 return ERR_PTR(-ENOMEM);
3146         }
3147
3148         idx = hstate_index(h);
3149         /*
3150          * Examine the region/reserve map to determine if the process
3151          * has a reservation for the page to be allocated.  A return
3152          * code of zero indicates a reservation exists (no change).
3153          */
3154         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3155         if (map_chg < 0) {
3156                 if (!memcg_charge_ret)
3157                         mem_cgroup_cancel_charge(memcg, nr_pages);
3158                 mem_cgroup_put(memcg);
3159                 return ERR_PTR(-ENOMEM);
3160         }
3161
3162         /*
3163          * Processes that did not create the mapping will have no
3164          * reserves as indicated by the region/reserve map. Check
3165          * that the allocation will not exceed the subpool limit.
3166          * Allocations for MAP_NORESERVE mappings also need to be
3167          * checked against any subpool limit.
3168          */
3169         if (map_chg || avoid_reserve) {
3170                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3171                 if (gbl_chg < 0)
3172                         goto out_end_reservation;
3173
3174                 /*
3175                  * Even though there was no reservation in the region/reserve
3176                  * map, there could be reservations associated with the
3177                  * subpool that can be used.  This would be indicated if the
3178                  * return value of hugepage_subpool_get_pages() is zero.
3179                  * However, if avoid_reserve is specified we still avoid even
3180                  * the subpool reservations.
3181                  */
3182                 if (avoid_reserve)
3183                         gbl_chg = 1;
3184         }
3185
3186         /* If this allocation is not consuming a reservation, charge it now.
3187          */
3188         deferred_reserve = map_chg || avoid_reserve;
3189         if (deferred_reserve) {
3190                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3191                         idx, pages_per_huge_page(h), &h_cg);
3192                 if (ret)
3193                         goto out_subpool_put;
3194         }
3195
3196         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3197         if (ret)
3198                 goto out_uncharge_cgroup_reservation;
3199
3200         spin_lock_irq(&hugetlb_lock);
3201         /*
3202          * glb_chg is passed to indicate whether or not a page must be taken
3203          * from the global free pool (global change).  gbl_chg == 0 indicates
3204          * a reservation exists for the allocation.
3205          */
3206         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3207         if (!folio) {
3208                 spin_unlock_irq(&hugetlb_lock);
3209                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3210                 if (!folio)
3211                         goto out_uncharge_cgroup;
3212                 spin_lock_irq(&hugetlb_lock);
3213                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3214                         folio_set_hugetlb_restore_reserve(folio);
3215                         h->resv_huge_pages--;
3216                 }
3217                 list_add(&folio->lru, &h->hugepage_activelist);
3218                 folio_ref_unfreeze(folio, 1);
3219                 /* Fall through */
3220         }
3221
3222         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3223         /* If allocation is not consuming a reservation, also store the
3224          * hugetlb_cgroup pointer on the page.
3225          */
3226         if (deferred_reserve) {
3227                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3228                                                   h_cg, folio);
3229         }
3230
3231         spin_unlock_irq(&hugetlb_lock);
3232
3233         hugetlb_set_folio_subpool(folio, spool);
3234
3235         map_commit = vma_commit_reservation(h, vma, addr);
3236         if (unlikely(map_chg > map_commit)) {
3237                 /*
3238                  * The page was added to the reservation map between
3239                  * vma_needs_reservation and vma_commit_reservation.
3240                  * This indicates a race with hugetlb_reserve_pages.
3241                  * Adjust for the subpool count incremented above AND
3242                  * in hugetlb_reserve_pages for the same page.  Also,
3243                  * the reservation count added in hugetlb_reserve_pages
3244                  * no longer applies.
3245                  */
3246                 long rsv_adjust;
3247
3248                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3249                 hugetlb_acct_memory(h, -rsv_adjust);
3250                 if (deferred_reserve) {
3251                         spin_lock_irq(&hugetlb_lock);
3252                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3253                                         pages_per_huge_page(h), folio);
3254                         spin_unlock_irq(&hugetlb_lock);
3255                 }
3256         }
3257
3258         if (!memcg_charge_ret)
3259                 mem_cgroup_commit_charge(folio, memcg);
3260         mem_cgroup_put(memcg);
3261
3262         return folio;
3263
3264 out_uncharge_cgroup:
3265         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3266 out_uncharge_cgroup_reservation:
3267         if (deferred_reserve)
3268                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3269                                                     h_cg);
3270 out_subpool_put:
3271         if (map_chg || avoid_reserve)
3272                 hugepage_subpool_put_pages(spool, 1);
3273 out_end_reservation:
3274         vma_end_reservation(h, vma, addr);
3275         if (!memcg_charge_ret)
3276                 mem_cgroup_cancel_charge(memcg, nr_pages);
3277         mem_cgroup_put(memcg);
3278         return ERR_PTR(-ENOSPC);
3279 }
3280
3281 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3282         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3283 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3284 {
3285         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3286         int nr_nodes, node = nid;
3287
3288         /* do node specific alloc */
3289         if (nid != NUMA_NO_NODE) {
3290                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3291                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3292                 if (!m)
3293                         return 0;
3294                 goto found;
3295         }
3296         /* allocate from next node when distributing huge pages */
3297         for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3298                 m = memblock_alloc_try_nid_raw(
3299                                 huge_page_size(h), huge_page_size(h),
3300                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3301                 /*
3302                  * Use the beginning of the huge page to store the
3303                  * huge_bootmem_page struct (until gather_bootmem
3304                  * puts them into the mem_map).
3305                  */
3306                 if (!m)
3307                         return 0;
3308                 goto found;
3309         }
3310
3311 found:
3312
3313         /*
3314          * Only initialize the head struct page in memmap_init_reserved_pages,
3315          * rest of the struct pages will be initialized by the HugeTLB
3316          * subsystem itself.
3317          * The head struct page is used to get folio information by the HugeTLB
3318          * subsystem like zone id and node id.
3319          */
3320         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3321                 huge_page_size(h) - PAGE_SIZE);
3322         /* Put them into a private list first because mem_map is not up yet */
3323         INIT_LIST_HEAD(&m->list);
3324         list_add(&m->list, &huge_boot_pages[node]);
3325         m->hstate = h;
3326         return 1;
3327 }
3328
3329 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3330 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3331                                         unsigned long start_page_number,
3332                                         unsigned long end_page_number)
3333 {
3334         enum zone_type zone = zone_idx(folio_zone(folio));
3335         int nid = folio_nid(folio);
3336         unsigned long head_pfn = folio_pfn(folio);
3337         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3338         int ret;
3339
3340         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3341                 struct page *page = pfn_to_page(pfn);
3342
3343                 __init_single_page(page, pfn, zone, nid);
3344                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3345                 ret = page_ref_freeze(page, 1);
3346                 VM_BUG_ON(!ret);
3347         }
3348 }
3349
3350 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3351                                               struct hstate *h,
3352                                               unsigned long nr_pages)
3353 {
3354         int ret;
3355
3356         /* Prepare folio head */
3357         __folio_clear_reserved(folio);
3358         __folio_set_head(folio);
3359         ret = folio_ref_freeze(folio, 1);
3360         VM_BUG_ON(!ret);
3361         /* Initialize the necessary tail struct pages */
3362         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3363         prep_compound_head((struct page *)folio, huge_page_order(h));
3364 }
3365
3366 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3367                                         struct list_head *folio_list)
3368 {
3369         unsigned long flags;
3370         struct folio *folio, *tmp_f;
3371
3372         /* Send list for bulk vmemmap optimization processing */
3373         hugetlb_vmemmap_optimize_folios(h, folio_list);
3374
3375         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3376                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3377                         /*
3378                          * If HVO fails, initialize all tail struct pages
3379                          * We do not worry about potential long lock hold
3380                          * time as this is early in boot and there should
3381                          * be no contention.
3382                          */
3383                         hugetlb_folio_init_tail_vmemmap(folio,
3384                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3385                                         pages_per_huge_page(h));
3386                 }
3387                 /* Subdivide locks to achieve better parallel performance */
3388                 spin_lock_irqsave(&hugetlb_lock, flags);
3389                 __prep_account_new_huge_page(h, folio_nid(folio));
3390                 enqueue_hugetlb_folio(h, folio);
3391                 spin_unlock_irqrestore(&hugetlb_lock, flags);
3392         }
3393 }
3394
3395 /*
3396  * Put bootmem huge pages into the standard lists after mem_map is up.
3397  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3398  */
3399 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3400 {
3401         LIST_HEAD(folio_list);
3402         struct huge_bootmem_page *m;
3403         struct hstate *h = NULL, *prev_h = NULL;
3404
3405         list_for_each_entry(m, &huge_boot_pages[nid], list) {
3406                 struct page *page = virt_to_page(m);
3407                 struct folio *folio = (void *)page;
3408
3409                 h = m->hstate;
3410                 /*
3411                  * It is possible to have multiple huge page sizes (hstates)
3412                  * in this list.  If so, process each size separately.
3413                  */
3414                 if (h != prev_h && prev_h != NULL)
3415                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3416                 prev_h = h;
3417
3418                 VM_BUG_ON(!hstate_is_gigantic(h));
3419                 WARN_ON(folio_ref_count(folio) != 1);
3420
3421                 hugetlb_folio_init_vmemmap(folio, h,
3422                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3423                 init_new_hugetlb_folio(h, folio);
3424                 list_add(&folio->lru, &folio_list);
3425
3426                 /*
3427                  * We need to restore the 'stolen' pages to totalram_pages
3428                  * in order to fix confusing memory reports from free(1) and
3429                  * other side-effects, like CommitLimit going negative.
3430                  */
3431                 adjust_managed_page_count(page, pages_per_huge_page(h));
3432                 cond_resched();
3433         }
3434
3435         prep_and_add_bootmem_folios(h, &folio_list);
3436 }
3437
3438 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3439                                                     unsigned long end, void *arg)
3440 {
3441         int nid;
3442
3443         for (nid = start; nid < end; nid++)
3444                 gather_bootmem_prealloc_node(nid);
3445 }
3446
3447 static void __init gather_bootmem_prealloc(void)
3448 {
3449         struct padata_mt_job job = {
3450                 .thread_fn      = gather_bootmem_prealloc_parallel,
3451                 .fn_arg         = NULL,
3452                 .start          = 0,
3453                 .size           = num_node_state(N_MEMORY),
3454                 .align          = 1,
3455                 .min_chunk      = 1,
3456                 .max_threads    = num_node_state(N_MEMORY),
3457                 .numa_aware     = true,
3458         };
3459
3460         padata_do_multithreaded(&job);
3461 }
3462
3463 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3464 {
3465         unsigned long i;
3466         char buf[32];
3467
3468         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3469                 if (hstate_is_gigantic(h)) {
3470                         if (!alloc_bootmem_huge_page(h, nid))
3471                                 break;
3472                 } else {
3473                         struct folio *folio;
3474                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3475
3476                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3477                                         &node_states[N_MEMORY], NULL);
3478                         if (!folio)
3479                                 break;
3480                         free_huge_folio(folio); /* free it into the hugepage allocator */
3481                 }
3482                 cond_resched();
3483         }
3484         if (i == h->max_huge_pages_node[nid])
3485                 return;
3486
3487         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3488         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3489                 h->max_huge_pages_node[nid], buf, nid, i);
3490         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3491         h->max_huge_pages_node[nid] = i;
3492 }
3493
3494 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3495 {
3496         int i;
3497         bool node_specific_alloc = false;
3498
3499         for_each_online_node(i) {
3500                 if (h->max_huge_pages_node[i] > 0) {
3501                         hugetlb_hstate_alloc_pages_onenode(h, i);
3502                         node_specific_alloc = true;
3503                 }
3504         }
3505
3506         return node_specific_alloc;
3507 }
3508
3509 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3510 {
3511         if (allocated < h->max_huge_pages) {
3512                 char buf[32];
3513
3514                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3515                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3516                         h->max_huge_pages, buf, allocated);
3517                 h->max_huge_pages = allocated;
3518         }
3519 }
3520
3521 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3522 {
3523         struct hstate *h = (struct hstate *)arg;
3524         int i, num = end - start;
3525         nodemask_t node_alloc_noretry;
3526         LIST_HEAD(folio_list);
3527         int next_node = first_online_node;
3528
3529         /* Bit mask controlling how hard we retry per-node allocations.*/
3530         nodes_clear(node_alloc_noretry);
3531
3532         for (i = 0; i < num; ++i) {
3533                 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3534                                                 &node_alloc_noretry, &next_node);
3535                 if (!folio)
3536                         break;
3537
3538                 list_move(&folio->lru, &folio_list);
3539                 cond_resched();
3540         }
3541
3542         prep_and_add_allocated_folios(h, &folio_list);
3543 }
3544
3545 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3546 {
3547         unsigned long i;
3548
3549         for (i = 0; i < h->max_huge_pages; ++i) {
3550                 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3551                         break;
3552                 cond_resched();
3553         }
3554
3555         return i;
3556 }
3557
3558 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3559 {
3560         struct padata_mt_job job = {
3561                 .fn_arg         = h,
3562                 .align          = 1,
3563                 .numa_aware     = true
3564         };
3565
3566         job.thread_fn   = hugetlb_pages_alloc_boot_node;
3567         job.start       = 0;
3568         job.size        = h->max_huge_pages;
3569
3570         /*
3571          * job.max_threads is twice the num_node_state(N_MEMORY),
3572          *
3573          * Tests below indicate that a multiplier of 2 significantly improves
3574          * performance, and although larger values also provide improvements,
3575          * the gains are marginal.
3576          *
3577          * Therefore, choosing 2 as the multiplier strikes a good balance between
3578          * enhancing parallel processing capabilities and maintaining efficient
3579          * resource management.
3580          *
3581          * +------------+-------+-------+-------+-------+-------+
3582          * | multiplier |   1   |   2   |   3   |   4   |   5   |
3583          * +------------+-------+-------+-------+-------+-------+
3584          * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3585          * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3586          * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3587          * +------------+-------+-------+-------+-------+-------+
3588          */
3589         job.max_threads = num_node_state(N_MEMORY) * 2;
3590         job.min_chunk   = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3591         padata_do_multithreaded(&job);
3592
3593         return h->nr_huge_pages;
3594 }
3595
3596 /*
3597  * NOTE: this routine is called in different contexts for gigantic and
3598  * non-gigantic pages.
3599  * - For gigantic pages, this is called early in the boot process and
3600  *   pages are allocated from memblock allocated or something similar.
3601  *   Gigantic pages are actually added to pools later with the routine
3602  *   gather_bootmem_prealloc.
3603  * - For non-gigantic pages, this is called later in the boot process after
3604  *   all of mm is up and functional.  Pages are allocated from buddy and
3605  *   then added to hugetlb pools.
3606  */
3607 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3608 {
3609         unsigned long allocated;
3610         static bool initialized __initdata;
3611
3612         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3613         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3614                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3615                 return;
3616         }
3617
3618         /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3619         if (!initialized) {
3620                 int i = 0;
3621
3622                 for (i = 0; i < MAX_NUMNODES; i++)
3623                         INIT_LIST_HEAD(&huge_boot_pages[i]);
3624                 initialized = true;
3625         }
3626
3627         /* do node specific alloc */
3628         if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3629                 return;
3630
3631         /* below will do all node balanced alloc */
3632         if (hstate_is_gigantic(h))
3633                 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3634         else
3635                 allocated = hugetlb_pages_alloc_boot(h);
3636
3637         hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3638 }
3639
3640 static void __init hugetlb_init_hstates(void)
3641 {
3642         struct hstate *h, *h2;
3643
3644         for_each_hstate(h) {
3645                 /* oversize hugepages were init'ed in early boot */
3646                 if (!hstate_is_gigantic(h))
3647                         hugetlb_hstate_alloc_pages(h);
3648
3649                 /*
3650                  * Set demote order for each hstate.  Note that
3651                  * h->demote_order is initially 0.
3652                  * - We can not demote gigantic pages if runtime freeing
3653                  *   is not supported, so skip this.
3654                  * - If CMA allocation is possible, we can not demote
3655                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3656                  */
3657                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3658                         continue;
3659                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3660                         continue;
3661                 for_each_hstate(h2) {
3662                         if (h2 == h)
3663                                 continue;
3664                         if (h2->order < h->order &&
3665                             h2->order > h->demote_order)
3666                                 h->demote_order = h2->order;
3667                 }
3668         }
3669 }
3670
3671 static void __init report_hugepages(void)
3672 {
3673         struct hstate *h;
3674
3675         for_each_hstate(h) {
3676                 char buf[32];
3677
3678                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3679                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3680                         buf, h->free_huge_pages);
3681                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3682                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3683         }
3684 }
3685
3686 #ifdef CONFIG_HIGHMEM
3687 static void try_to_free_low(struct hstate *h, unsigned long count,
3688                                                 nodemask_t *nodes_allowed)
3689 {
3690         int i;
3691         LIST_HEAD(page_list);
3692
3693         lockdep_assert_held(&hugetlb_lock);
3694         if (hstate_is_gigantic(h))
3695                 return;
3696
3697         /*
3698          * Collect pages to be freed on a list, and free after dropping lock
3699          */
3700         for_each_node_mask(i, *nodes_allowed) {
3701                 struct folio *folio, *next;
3702                 struct list_head *freel = &h->hugepage_freelists[i];
3703                 list_for_each_entry_safe(folio, next, freel, lru) {
3704                         if (count >= h->nr_huge_pages)
3705                                 goto out;
3706                         if (folio_test_highmem(folio))
3707                                 continue;
3708                         remove_hugetlb_folio(h, folio, false);
3709                         list_add(&folio->lru, &page_list);
3710                 }
3711         }
3712
3713 out:
3714         spin_unlock_irq(&hugetlb_lock);
3715         update_and_free_pages_bulk(h, &page_list);
3716         spin_lock_irq(&hugetlb_lock);
3717 }
3718 #else
3719 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3720                                                 nodemask_t *nodes_allowed)
3721 {
3722 }
3723 #endif
3724
3725 /*
3726  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3727  * balanced by operating on them in a round-robin fashion.
3728  * Returns 1 if an adjustment was made.
3729  */
3730 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3731                                 int delta)
3732 {
3733         int nr_nodes, node;
3734
3735         lockdep_assert_held(&hugetlb_lock);
3736         VM_BUG_ON(delta != -1 && delta != 1);
3737
3738         if (delta < 0) {
3739                 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3740                         if (h->surplus_huge_pages_node[node])
3741                                 goto found;
3742                 }
3743         } else {
3744                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3745                         if (h->surplus_huge_pages_node[node] <
3746                                         h->nr_huge_pages_node[node])
3747                                 goto found;
3748                 }
3749         }
3750         return 0;
3751
3752 found:
3753         h->surplus_huge_pages += delta;
3754         h->surplus_huge_pages_node[node] += delta;
3755         return 1;
3756 }
3757
3758 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3759 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3760                               nodemask_t *nodes_allowed)
3761 {
3762         unsigned long min_count;
3763         unsigned long allocated;
3764         struct folio *folio;
3765         LIST_HEAD(page_list);
3766         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3767
3768         /*
3769          * Bit mask controlling how hard we retry per-node allocations.
3770          * If we can not allocate the bit mask, do not attempt to allocate
3771          * the requested huge pages.
3772          */
3773         if (node_alloc_noretry)
3774                 nodes_clear(*node_alloc_noretry);
3775         else
3776                 return -ENOMEM;
3777
3778         /*
3779          * resize_lock mutex prevents concurrent adjustments to number of
3780          * pages in hstate via the proc/sysfs interfaces.
3781          */
3782         mutex_lock(&h->resize_lock);
3783         flush_free_hpage_work(h);
3784         spin_lock_irq(&hugetlb_lock);
3785
3786         /*
3787          * Check for a node specific request.
3788          * Changing node specific huge page count may require a corresponding
3789          * change to the global count.  In any case, the passed node mask
3790          * (nodes_allowed) will restrict alloc/free to the specified node.
3791          */
3792         if (nid != NUMA_NO_NODE) {
3793                 unsigned long old_count = count;
3794
3795                 count += persistent_huge_pages(h) -
3796                          (h->nr_huge_pages_node[nid] -
3797                           h->surplus_huge_pages_node[nid]);
3798                 /*
3799                  * User may have specified a large count value which caused the
3800                  * above calculation to overflow.  In this case, they wanted
3801                  * to allocate as many huge pages as possible.  Set count to
3802                  * largest possible value to align with their intention.
3803                  */
3804                 if (count < old_count)
3805                         count = ULONG_MAX;
3806         }
3807
3808         /*
3809          * Gigantic pages runtime allocation depend on the capability for large
3810          * page range allocation.
3811          * If the system does not provide this feature, return an error when
3812          * the user tries to allocate gigantic pages but let the user free the
3813          * boottime allocated gigantic pages.
3814          */
3815         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3816                 if (count > persistent_huge_pages(h)) {
3817                         spin_unlock_irq(&hugetlb_lock);
3818                         mutex_unlock(&h->resize_lock);
3819                         NODEMASK_FREE(node_alloc_noretry);
3820                         return -EINVAL;
3821                 }
3822                 /* Fall through to decrease pool */
3823         }
3824
3825         /*
3826          * Increase the pool size
3827          * First take pages out of surplus state.  Then make up the
3828          * remaining difference by allocating fresh huge pages.
3829          *
3830          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3831          * to convert a surplus huge page to a normal huge page. That is
3832          * not critical, though, it just means the overall size of the
3833          * pool might be one hugepage larger than it needs to be, but
3834          * within all the constraints specified by the sysctls.
3835          */
3836         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3837                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3838                         break;
3839         }
3840
3841         allocated = 0;
3842         while (count > (persistent_huge_pages(h) + allocated)) {
3843                 /*
3844                  * If this allocation races such that we no longer need the
3845                  * page, free_huge_folio will handle it by freeing the page
3846                  * and reducing the surplus.
3847                  */
3848                 spin_unlock_irq(&hugetlb_lock);
3849
3850                 /* yield cpu to avoid soft lockup */
3851                 cond_resched();
3852
3853                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3854                                                 node_alloc_noretry,
3855                                                 &h->next_nid_to_alloc);
3856                 if (!folio) {
3857                         prep_and_add_allocated_folios(h, &page_list);
3858                         spin_lock_irq(&hugetlb_lock);
3859                         goto out;
3860                 }
3861
3862                 list_add(&folio->lru, &page_list);
3863                 allocated++;
3864
3865                 /* Bail for signals. Probably ctrl-c from user */
3866                 if (signal_pending(current)) {
3867                         prep_and_add_allocated_folios(h, &page_list);
3868                         spin_lock_irq(&hugetlb_lock);
3869                         goto out;
3870                 }
3871
3872                 spin_lock_irq(&hugetlb_lock);
3873         }
3874
3875         /* Add allocated pages to the pool */
3876         if (!list_empty(&page_list)) {
3877                 spin_unlock_irq(&hugetlb_lock);
3878                 prep_and_add_allocated_folios(h, &page_list);
3879                 spin_lock_irq(&hugetlb_lock);
3880         }
3881
3882         /*
3883          * Decrease the pool size
3884          * First return free pages to the buddy allocator (being careful
3885          * to keep enough around to satisfy reservations).  Then place
3886          * pages into surplus state as needed so the pool will shrink
3887          * to the desired size as pages become free.
3888          *
3889          * By placing pages into the surplus state independent of the
3890          * overcommit value, we are allowing the surplus pool size to
3891          * exceed overcommit. There are few sane options here. Since
3892          * alloc_surplus_hugetlb_folio() is checking the global counter,
3893          * though, we'll note that we're not allowed to exceed surplus
3894          * and won't grow the pool anywhere else. Not until one of the
3895          * sysctls are changed, or the surplus pages go out of use.
3896          */
3897         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3898         min_count = max(count, min_count);
3899         try_to_free_low(h, min_count, nodes_allowed);
3900
3901         /*
3902          * Collect pages to be removed on list without dropping lock
3903          */
3904         while (min_count < persistent_huge_pages(h)) {
3905                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3906                 if (!folio)
3907                         break;
3908
3909                 list_add(&folio->lru, &page_list);
3910         }
3911         /* free the pages after dropping lock */
3912         spin_unlock_irq(&hugetlb_lock);
3913         update_and_free_pages_bulk(h, &page_list);
3914         flush_free_hpage_work(h);
3915         spin_lock_irq(&hugetlb_lock);
3916
3917         while (count < persistent_huge_pages(h)) {
3918                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3919                         break;
3920         }
3921 out:
3922         h->max_huge_pages = persistent_huge_pages(h);
3923         spin_unlock_irq(&hugetlb_lock);
3924         mutex_unlock(&h->resize_lock);
3925
3926         NODEMASK_FREE(node_alloc_noretry);
3927
3928         return 0;
3929 }
3930
3931 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3932 {
3933         int i, nid = folio_nid(folio);
3934         struct hstate *target_hstate;
3935         struct page *subpage;
3936         struct folio *inner_folio;
3937         int rc = 0;
3938
3939         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3940
3941         remove_hugetlb_folio_for_demote(h, folio, false);
3942         spin_unlock_irq(&hugetlb_lock);
3943
3944         /*
3945          * If vmemmap already existed for folio, the remove routine above would
3946          * have cleared the hugetlb folio flag.  Hence the folio is technically
3947          * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3948          * passed hugetlb folios and will BUG otherwise.
3949          */
3950         if (folio_test_hugetlb(folio)) {
3951                 rc = hugetlb_vmemmap_restore_folio(h, folio);
3952                 if (rc) {
3953                         /* Allocation of vmemmmap failed, we can not demote folio */
3954                         spin_lock_irq(&hugetlb_lock);
3955                         folio_ref_unfreeze(folio, 1);
3956                         add_hugetlb_folio(h, folio, false);
3957                         return rc;
3958                 }
3959         }
3960
3961         /*
3962          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3963          * sizes as it will not ref count folios.
3964          */
3965         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3966
3967         /*
3968          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3969          * Without the mutex, pages added to target hstate could be marked
3970          * as surplus.
3971          *
3972          * Note that we already hold h->resize_lock.  To prevent deadlock,
3973          * use the convention of always taking larger size hstate mutex first.
3974          */
3975         mutex_lock(&target_hstate->resize_lock);
3976         for (i = 0; i < pages_per_huge_page(h);
3977                                 i += pages_per_huge_page(target_hstate)) {
3978                 subpage = folio_page(folio, i);
3979                 inner_folio = page_folio(subpage);
3980                 if (hstate_is_gigantic(target_hstate))
3981                         prep_compound_gigantic_folio_for_demote(inner_folio,
3982                                                         target_hstate->order);
3983                 else
3984                         prep_compound_page(subpage, target_hstate->order);
3985                 folio_change_private(inner_folio, NULL);
3986                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3987                 free_huge_folio(inner_folio);
3988         }
3989         mutex_unlock(&target_hstate->resize_lock);
3990
3991         spin_lock_irq(&hugetlb_lock);
3992
3993         /*
3994          * Not absolutely necessary, but for consistency update max_huge_pages
3995          * based on pool changes for the demoted page.
3996          */
3997         h->max_huge_pages--;
3998         target_hstate->max_huge_pages +=
3999                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4000
4001         return rc;
4002 }
4003
4004 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4005         __must_hold(&hugetlb_lock)
4006 {
4007         int nr_nodes, node;
4008         struct folio *folio;
4009
4010         lockdep_assert_held(&hugetlb_lock);
4011
4012         /* We should never get here if no demote order */
4013         if (!h->demote_order) {
4014                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4015                 return -EINVAL;         /* internal error */
4016         }
4017
4018         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4019                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4020                         if (folio_test_hwpoison(folio))
4021                                 continue;
4022                         return demote_free_hugetlb_folio(h, folio);
4023                 }
4024         }
4025
4026         /*
4027          * Only way to get here is if all pages on free lists are poisoned.
4028          * Return -EBUSY so that caller will not retry.
4029          */
4030         return -EBUSY;
4031 }
4032
4033 #define HSTATE_ATTR_RO(_name) \
4034         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4035
4036 #define HSTATE_ATTR_WO(_name) \
4037         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4038
4039 #define HSTATE_ATTR(_name) \
4040         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4041
4042 static struct kobject *hugepages_kobj;
4043 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4044
4045 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4046
4047 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4048 {
4049         int i;
4050
4051         for (i = 0; i < HUGE_MAX_HSTATE; i++)
4052                 if (hstate_kobjs[i] == kobj) {
4053                         if (nidp)
4054                                 *nidp = NUMA_NO_NODE;
4055                         return &hstates[i];
4056                 }
4057
4058         return kobj_to_node_hstate(kobj, nidp);
4059 }
4060
4061 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4062                                         struct kobj_attribute *attr, char *buf)
4063 {
4064         struct hstate *h;
4065         unsigned long nr_huge_pages;
4066         int nid;
4067
4068         h = kobj_to_hstate(kobj, &nid);
4069         if (nid == NUMA_NO_NODE)
4070                 nr_huge_pages = h->nr_huge_pages;
4071         else
4072                 nr_huge_pages = h->nr_huge_pages_node[nid];
4073
4074         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4075 }
4076
4077 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4078                                            struct hstate *h, int nid,
4079                                            unsigned long count, size_t len)
4080 {
4081         int err;
4082         nodemask_t nodes_allowed, *n_mask;
4083
4084         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4085                 return -EINVAL;
4086
4087         if (nid == NUMA_NO_NODE) {
4088                 /*
4089                  * global hstate attribute
4090                  */
4091                 if (!(obey_mempolicy &&
4092                                 init_nodemask_of_mempolicy(&nodes_allowed)))
4093                         n_mask = &node_states[N_MEMORY];
4094                 else
4095                         n_mask = &nodes_allowed;
4096         } else {
4097                 /*
4098                  * Node specific request.  count adjustment happens in
4099                  * set_max_huge_pages() after acquiring hugetlb_lock.
4100                  */
4101                 init_nodemask_of_node(&nodes_allowed, nid);
4102                 n_mask = &nodes_allowed;
4103         }
4104
4105         err = set_max_huge_pages(h, count, nid, n_mask);
4106
4107         return err ? err : len;
4108 }
4109
4110 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4111                                          struct kobject *kobj, const char *buf,
4112                                          size_t len)
4113 {
4114         struct hstate *h;
4115         unsigned long count;
4116         int nid;
4117         int err;
4118
4119         err = kstrtoul(buf, 10, &count);
4120         if (err)
4121                 return err;
4122
4123         h = kobj_to_hstate(kobj, &nid);
4124         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4125 }
4126
4127 static ssize_t nr_hugepages_show(struct kobject *kobj,
4128                                        struct kobj_attribute *attr, char *buf)
4129 {
4130         return nr_hugepages_show_common(kobj, attr, buf);
4131 }
4132
4133 static ssize_t nr_hugepages_store(struct kobject *kobj,
4134                struct kobj_attribute *attr, const char *buf, size_t len)
4135 {
4136         return nr_hugepages_store_common(false, kobj, buf, len);
4137 }
4138 HSTATE_ATTR(nr_hugepages);
4139
4140 #ifdef CONFIG_NUMA
4141
4142 /*
4143  * hstate attribute for optionally mempolicy-based constraint on persistent
4144  * huge page alloc/free.
4145  */
4146 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4147                                            struct kobj_attribute *attr,
4148                                            char *buf)
4149 {
4150         return nr_hugepages_show_common(kobj, attr, buf);
4151 }
4152
4153 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4154                struct kobj_attribute *attr, const char *buf, size_t len)
4155 {
4156         return nr_hugepages_store_common(true, kobj, buf, len);
4157 }
4158 HSTATE_ATTR(nr_hugepages_mempolicy);
4159 #endif
4160
4161
4162 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4163                                         struct kobj_attribute *attr, char *buf)
4164 {
4165         struct hstate *h = kobj_to_hstate(kobj, NULL);
4166         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4167 }
4168
4169 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4170                 struct kobj_attribute *attr, const char *buf, size_t count)
4171 {
4172         int err;
4173         unsigned long input;
4174         struct hstate *h = kobj_to_hstate(kobj, NULL);
4175
4176         if (hstate_is_gigantic(h))
4177                 return -EINVAL;
4178
4179         err = kstrtoul(buf, 10, &input);
4180         if (err)
4181                 return err;
4182
4183         spin_lock_irq(&hugetlb_lock);
4184         h->nr_overcommit_huge_pages = input;
4185         spin_unlock_irq(&hugetlb_lock);
4186
4187         return count;
4188 }
4189 HSTATE_ATTR(nr_overcommit_hugepages);
4190
4191 static ssize_t free_hugepages_show(struct kobject *kobj,
4192                                         struct kobj_attribute *attr, char *buf)
4193 {
4194         struct hstate *h;
4195         unsigned long free_huge_pages;
4196         int nid;
4197
4198         h = kobj_to_hstate(kobj, &nid);
4199         if (nid == NUMA_NO_NODE)
4200                 free_huge_pages = h->free_huge_pages;
4201         else
4202                 free_huge_pages = h->free_huge_pages_node[nid];
4203
4204         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4205 }
4206 HSTATE_ATTR_RO(free_hugepages);
4207
4208 static ssize_t resv_hugepages_show(struct kobject *kobj,
4209                                         struct kobj_attribute *attr, char *buf)
4210 {
4211         struct hstate *h = kobj_to_hstate(kobj, NULL);
4212         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4213 }
4214 HSTATE_ATTR_RO(resv_hugepages);
4215
4216 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4217                                         struct kobj_attribute *attr, char *buf)
4218 {
4219         struct hstate *h;
4220         unsigned long surplus_huge_pages;
4221         int nid;
4222
4223         h = kobj_to_hstate(kobj, &nid);
4224         if (nid == NUMA_NO_NODE)
4225                 surplus_huge_pages = h->surplus_huge_pages;
4226         else
4227                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4228
4229         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4230 }
4231 HSTATE_ATTR_RO(surplus_hugepages);
4232
4233 static ssize_t demote_store(struct kobject *kobj,
4234                struct kobj_attribute *attr, const char *buf, size_t len)
4235 {
4236         unsigned long nr_demote;
4237         unsigned long nr_available;
4238         nodemask_t nodes_allowed, *n_mask;
4239         struct hstate *h;
4240         int err;
4241         int nid;
4242
4243         err = kstrtoul(buf, 10, &nr_demote);
4244         if (err)
4245                 return err;
4246         h = kobj_to_hstate(kobj, &nid);
4247
4248         if (nid != NUMA_NO_NODE) {
4249                 init_nodemask_of_node(&nodes_allowed, nid);
4250                 n_mask = &nodes_allowed;
4251         } else {
4252                 n_mask = &node_states[N_MEMORY];
4253         }
4254
4255         /* Synchronize with other sysfs operations modifying huge pages */
4256         mutex_lock(&h->resize_lock);
4257         spin_lock_irq(&hugetlb_lock);
4258
4259         while (nr_demote) {
4260                 /*
4261                  * Check for available pages to demote each time thorough the
4262                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4263                  */
4264                 if (nid != NUMA_NO_NODE)
4265                         nr_available = h->free_huge_pages_node[nid];
4266                 else
4267                         nr_available = h->free_huge_pages;
4268                 nr_available -= h->resv_huge_pages;
4269                 if (!nr_available)
4270                         break;
4271
4272                 err = demote_pool_huge_page(h, n_mask);
4273                 if (err)
4274                         break;
4275
4276                 nr_demote--;
4277         }
4278
4279         spin_unlock_irq(&hugetlb_lock);
4280         mutex_unlock(&h->resize_lock);
4281
4282         if (err)
4283                 return err;
4284         return len;
4285 }
4286 HSTATE_ATTR_WO(demote);
4287
4288 static ssize_t demote_size_show(struct kobject *kobj,
4289                                         struct kobj_attribute *attr, char *buf)
4290 {
4291         struct hstate *h = kobj_to_hstate(kobj, NULL);
4292         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4293
4294         return sysfs_emit(buf, "%lukB\n", demote_size);
4295 }
4296
4297 static ssize_t demote_size_store(struct kobject *kobj,
4298                                         struct kobj_attribute *attr,
4299                                         const char *buf, size_t count)
4300 {
4301         struct hstate *h, *demote_hstate;
4302         unsigned long demote_size;
4303         unsigned int demote_order;
4304
4305         demote_size = (unsigned long)memparse(buf, NULL);
4306
4307         demote_hstate = size_to_hstate(demote_size);
4308         if (!demote_hstate)
4309                 return -EINVAL;
4310         demote_order = demote_hstate->order;
4311         if (demote_order < HUGETLB_PAGE_ORDER)
4312                 return -EINVAL;
4313
4314         /* demote order must be smaller than hstate order */
4315         h = kobj_to_hstate(kobj, NULL);
4316         if (demote_order >= h->order)
4317                 return -EINVAL;
4318
4319         /* resize_lock synchronizes access to demote size and writes */
4320         mutex_lock(&h->resize_lock);
4321         h->demote_order = demote_order;
4322         mutex_unlock(&h->resize_lock);
4323
4324         return count;
4325 }
4326 HSTATE_ATTR(demote_size);
4327
4328 static struct attribute *hstate_attrs[] = {
4329         &nr_hugepages_attr.attr,
4330         &nr_overcommit_hugepages_attr.attr,
4331         &free_hugepages_attr.attr,
4332         &resv_hugepages_attr.attr,
4333         &surplus_hugepages_attr.attr,
4334 #ifdef CONFIG_NUMA
4335         &nr_hugepages_mempolicy_attr.attr,
4336 #endif
4337         NULL,
4338 };
4339
4340 static const struct attribute_group hstate_attr_group = {
4341         .attrs = hstate_attrs,
4342 };
4343
4344 static struct attribute *hstate_demote_attrs[] = {
4345         &demote_size_attr.attr,
4346         &demote_attr.attr,
4347         NULL,
4348 };
4349
4350 static const struct attribute_group hstate_demote_attr_group = {
4351         .attrs = hstate_demote_attrs,
4352 };
4353
4354 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4355                                     struct kobject **hstate_kobjs,
4356                                     const struct attribute_group *hstate_attr_group)
4357 {
4358         int retval;
4359         int hi = hstate_index(h);
4360
4361         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4362         if (!hstate_kobjs[hi])
4363                 return -ENOMEM;
4364
4365         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4366         if (retval) {
4367                 kobject_put(hstate_kobjs[hi]);
4368                 hstate_kobjs[hi] = NULL;
4369                 return retval;
4370         }
4371
4372         if (h->demote_order) {
4373                 retval = sysfs_create_group(hstate_kobjs[hi],
4374                                             &hstate_demote_attr_group);
4375                 if (retval) {
4376                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4377                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4378                         kobject_put(hstate_kobjs[hi]);
4379                         hstate_kobjs[hi] = NULL;
4380                         return retval;
4381                 }
4382         }
4383
4384         return 0;
4385 }
4386
4387 #ifdef CONFIG_NUMA
4388 static bool hugetlb_sysfs_initialized __ro_after_init;
4389
4390 /*
4391  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4392  * with node devices in node_devices[] using a parallel array.  The array
4393  * index of a node device or _hstate == node id.
4394  * This is here to avoid any static dependency of the node device driver, in
4395  * the base kernel, on the hugetlb module.
4396  */
4397 struct node_hstate {
4398         struct kobject          *hugepages_kobj;
4399         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4400 };
4401 static struct node_hstate node_hstates[MAX_NUMNODES];
4402
4403 /*
4404  * A subset of global hstate attributes for node devices
4405  */
4406 static struct attribute *per_node_hstate_attrs[] = {
4407         &nr_hugepages_attr.attr,
4408         &free_hugepages_attr.attr,
4409         &surplus_hugepages_attr.attr,
4410         NULL,
4411 };
4412
4413 static const struct attribute_group per_node_hstate_attr_group = {
4414         .attrs = per_node_hstate_attrs,
4415 };
4416
4417 /*
4418  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4419  * Returns node id via non-NULL nidp.
4420  */
4421 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4422 {
4423         int nid;
4424
4425         for (nid = 0; nid < nr_node_ids; nid++) {
4426                 struct node_hstate *nhs = &node_hstates[nid];
4427                 int i;
4428                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4429                         if (nhs->hstate_kobjs[i] == kobj) {
4430                                 if (nidp)
4431                                         *nidp = nid;
4432                                 return &hstates[i];
4433                         }
4434         }
4435
4436         BUG();
4437         return NULL;
4438 }
4439
4440 /*
4441  * Unregister hstate attributes from a single node device.
4442  * No-op if no hstate attributes attached.
4443  */
4444 void hugetlb_unregister_node(struct node *node)
4445 {
4446         struct hstate *h;
4447         struct node_hstate *nhs = &node_hstates[node->dev.id];
4448
4449         if (!nhs->hugepages_kobj)
4450                 return;         /* no hstate attributes */
4451
4452         for_each_hstate(h) {
4453                 int idx = hstate_index(h);
4454                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4455
4456                 if (!hstate_kobj)
4457                         continue;
4458                 if (h->demote_order)
4459                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4460                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4461                 kobject_put(hstate_kobj);
4462                 nhs->hstate_kobjs[idx] = NULL;
4463         }
4464
4465         kobject_put(nhs->hugepages_kobj);
4466         nhs->hugepages_kobj = NULL;
4467 }
4468
4469
4470 /*
4471  * Register hstate attributes for a single node device.
4472  * No-op if attributes already registered.
4473  */
4474 void hugetlb_register_node(struct node *node)
4475 {
4476         struct hstate *h;
4477         struct node_hstate *nhs = &node_hstates[node->dev.id];
4478         int err;
4479
4480         if (!hugetlb_sysfs_initialized)
4481                 return;
4482
4483         if (nhs->hugepages_kobj)
4484                 return;         /* already allocated */
4485
4486         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4487                                                         &node->dev.kobj);
4488         if (!nhs->hugepages_kobj)
4489                 return;
4490
4491         for_each_hstate(h) {
4492                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4493                                                 nhs->hstate_kobjs,
4494                                                 &per_node_hstate_attr_group);
4495                 if (err) {
4496                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4497                                 h->name, node->dev.id);
4498                         hugetlb_unregister_node(node);
4499                         break;
4500                 }
4501         }
4502 }
4503
4504 /*
4505  * hugetlb init time:  register hstate attributes for all registered node
4506  * devices of nodes that have memory.  All on-line nodes should have
4507  * registered their associated device by this time.
4508  */
4509 static void __init hugetlb_register_all_nodes(void)
4510 {
4511         int nid;
4512
4513         for_each_online_node(nid)
4514                 hugetlb_register_node(node_devices[nid]);
4515 }
4516 #else   /* !CONFIG_NUMA */
4517
4518 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4519 {
4520         BUG();
4521         if (nidp)
4522                 *nidp = -1;
4523         return NULL;
4524 }
4525
4526 static void hugetlb_register_all_nodes(void) { }
4527
4528 #endif
4529
4530 #ifdef CONFIG_CMA
4531 static void __init hugetlb_cma_check(void);
4532 #else
4533 static inline __init void hugetlb_cma_check(void)
4534 {
4535 }
4536 #endif
4537
4538 static void __init hugetlb_sysfs_init(void)
4539 {
4540         struct hstate *h;
4541         int err;
4542
4543         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4544         if (!hugepages_kobj)
4545                 return;
4546
4547         for_each_hstate(h) {
4548                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4549                                          hstate_kobjs, &hstate_attr_group);
4550                 if (err)
4551                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4552         }
4553
4554 #ifdef CONFIG_NUMA
4555         hugetlb_sysfs_initialized = true;
4556 #endif
4557         hugetlb_register_all_nodes();
4558 }
4559
4560 #ifdef CONFIG_SYSCTL
4561 static void hugetlb_sysctl_init(void);
4562 #else
4563 static inline void hugetlb_sysctl_init(void) { }
4564 #endif
4565
4566 static int __init hugetlb_init(void)
4567 {
4568         int i;
4569
4570         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4571                         __NR_HPAGEFLAGS);
4572
4573         if (!hugepages_supported()) {
4574                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4575                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4576                 return 0;
4577         }
4578
4579         /*
4580          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4581          * architectures depend on setup being done here.
4582          */
4583         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4584         if (!parsed_default_hugepagesz) {
4585                 /*
4586                  * If we did not parse a default huge page size, set
4587                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4588                  * number of huge pages for this default size was implicitly
4589                  * specified, set that here as well.
4590                  * Note that the implicit setting will overwrite an explicit
4591                  * setting.  A warning will be printed in this case.
4592                  */
4593                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4594                 if (default_hstate_max_huge_pages) {
4595                         if (default_hstate.max_huge_pages) {
4596                                 char buf[32];
4597
4598                                 string_get_size(huge_page_size(&default_hstate),
4599                                         1, STRING_UNITS_2, buf, 32);
4600                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4601                                         default_hstate.max_huge_pages, buf);
4602                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4603                                         default_hstate_max_huge_pages);
4604                         }
4605                         default_hstate.max_huge_pages =
4606                                 default_hstate_max_huge_pages;
4607
4608                         for_each_online_node(i)
4609                                 default_hstate.max_huge_pages_node[i] =
4610                                         default_hugepages_in_node[i];
4611                 }
4612         }
4613
4614         hugetlb_cma_check();
4615         hugetlb_init_hstates();
4616         gather_bootmem_prealloc();
4617         report_hugepages();
4618
4619         hugetlb_sysfs_init();
4620         hugetlb_cgroup_file_init();
4621         hugetlb_sysctl_init();
4622
4623 #ifdef CONFIG_SMP
4624         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4625 #else
4626         num_fault_mutexes = 1;
4627 #endif
4628         hugetlb_fault_mutex_table =
4629                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4630                               GFP_KERNEL);
4631         BUG_ON(!hugetlb_fault_mutex_table);
4632
4633         for (i = 0; i < num_fault_mutexes; i++)
4634                 mutex_init(&hugetlb_fault_mutex_table[i]);
4635         return 0;
4636 }
4637 subsys_initcall(hugetlb_init);
4638
4639 /* Overwritten by architectures with more huge page sizes */
4640 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4641 {
4642         return size == HPAGE_SIZE;
4643 }
4644
4645 void __init hugetlb_add_hstate(unsigned int order)
4646 {
4647         struct hstate *h;
4648         unsigned long i;
4649
4650         if (size_to_hstate(PAGE_SIZE << order)) {
4651                 return;
4652         }
4653         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4654         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4655         h = &hstates[hugetlb_max_hstate++];
4656         mutex_init(&h->resize_lock);
4657         h->order = order;
4658         h->mask = ~(huge_page_size(h) - 1);
4659         for (i = 0; i < MAX_NUMNODES; ++i)
4660                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4661         INIT_LIST_HEAD(&h->hugepage_activelist);
4662         h->next_nid_to_alloc = first_memory_node;
4663         h->next_nid_to_free = first_memory_node;
4664         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4665                                         huge_page_size(h)/SZ_1K);
4666
4667         parsed_hstate = h;
4668 }
4669
4670 bool __init __weak hugetlb_node_alloc_supported(void)
4671 {
4672         return true;
4673 }
4674
4675 static void __init hugepages_clear_pages_in_node(void)
4676 {
4677         if (!hugetlb_max_hstate) {
4678                 default_hstate_max_huge_pages = 0;
4679                 memset(default_hugepages_in_node, 0,
4680                         sizeof(default_hugepages_in_node));
4681         } else {
4682                 parsed_hstate->max_huge_pages = 0;
4683                 memset(parsed_hstate->max_huge_pages_node, 0,
4684                         sizeof(parsed_hstate->max_huge_pages_node));
4685         }
4686 }
4687
4688 /*
4689  * hugepages command line processing
4690  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4691  * specification.  If not, ignore the hugepages value.  hugepages can also
4692  * be the first huge page command line  option in which case it implicitly
4693  * specifies the number of huge pages for the default size.
4694  */
4695 static int __init hugepages_setup(char *s)
4696 {
4697         unsigned long *mhp;
4698         static unsigned long *last_mhp;
4699         int node = NUMA_NO_NODE;
4700         int count;
4701         unsigned long tmp;
4702         char *p = s;
4703
4704         if (!parsed_valid_hugepagesz) {
4705                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4706                 parsed_valid_hugepagesz = true;
4707                 return 1;
4708         }
4709
4710         /*
4711          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4712          * yet, so this hugepages= parameter goes to the "default hstate".
4713          * Otherwise, it goes with the previously parsed hugepagesz or
4714          * default_hugepagesz.
4715          */
4716         else if (!hugetlb_max_hstate)
4717                 mhp = &default_hstate_max_huge_pages;
4718         else
4719                 mhp = &parsed_hstate->max_huge_pages;
4720
4721         if (mhp == last_mhp) {
4722                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4723                 return 1;
4724         }
4725
4726         while (*p) {
4727                 count = 0;
4728                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4729                         goto invalid;
4730                 /* Parameter is node format */
4731                 if (p[count] == ':') {
4732                         if (!hugetlb_node_alloc_supported()) {
4733                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4734                                 return 1;
4735                         }
4736                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4737                                 goto invalid;
4738                         node = array_index_nospec(tmp, MAX_NUMNODES);
4739                         p += count + 1;
4740                         /* Parse hugepages */
4741                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4742                                 goto invalid;
4743                         if (!hugetlb_max_hstate)
4744                                 default_hugepages_in_node[node] = tmp;
4745                         else
4746                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4747                         *mhp += tmp;
4748                         /* Go to parse next node*/
4749                         if (p[count] == ',')
4750                                 p += count + 1;
4751                         else
4752                                 break;
4753                 } else {
4754                         if (p != s)
4755                                 goto invalid;
4756                         *mhp = tmp;
4757                         break;
4758                 }
4759         }
4760
4761         /*
4762          * Global state is always initialized later in hugetlb_init.
4763          * But we need to allocate gigantic hstates here early to still
4764          * use the bootmem allocator.
4765          */
4766         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4767                 hugetlb_hstate_alloc_pages(parsed_hstate);
4768
4769         last_mhp = mhp;
4770
4771         return 1;
4772
4773 invalid:
4774         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4775         hugepages_clear_pages_in_node();
4776         return 1;
4777 }
4778 __setup("hugepages=", hugepages_setup);
4779
4780 /*
4781  * hugepagesz command line processing
4782  * A specific huge page size can only be specified once with hugepagesz.
4783  * hugepagesz is followed by hugepages on the command line.  The global
4784  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4785  * hugepagesz argument was valid.
4786  */
4787 static int __init hugepagesz_setup(char *s)
4788 {
4789         unsigned long size;
4790         struct hstate *h;
4791
4792         parsed_valid_hugepagesz = false;
4793         size = (unsigned long)memparse(s, NULL);
4794
4795         if (!arch_hugetlb_valid_size(size)) {
4796                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4797                 return 1;
4798         }
4799
4800         h = size_to_hstate(size);
4801         if (h) {
4802                 /*
4803                  * hstate for this size already exists.  This is normally
4804                  * an error, but is allowed if the existing hstate is the
4805                  * default hstate.  More specifically, it is only allowed if
4806                  * the number of huge pages for the default hstate was not
4807                  * previously specified.
4808                  */
4809                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4810                     default_hstate.max_huge_pages) {
4811                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4812                         return 1;
4813                 }
4814
4815                 /*
4816                  * No need to call hugetlb_add_hstate() as hstate already
4817                  * exists.  But, do set parsed_hstate so that a following
4818                  * hugepages= parameter will be applied to this hstate.
4819                  */
4820                 parsed_hstate = h;
4821                 parsed_valid_hugepagesz = true;
4822                 return 1;
4823         }
4824
4825         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4826         parsed_valid_hugepagesz = true;
4827         return 1;
4828 }
4829 __setup("hugepagesz=", hugepagesz_setup);
4830
4831 /*
4832  * default_hugepagesz command line input
4833  * Only one instance of default_hugepagesz allowed on command line.
4834  */
4835 static int __init default_hugepagesz_setup(char *s)
4836 {
4837         unsigned long size;
4838         int i;
4839
4840         parsed_valid_hugepagesz = false;
4841         if (parsed_default_hugepagesz) {
4842                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4843                 return 1;
4844         }
4845
4846         size = (unsigned long)memparse(s, NULL);
4847
4848         if (!arch_hugetlb_valid_size(size)) {
4849                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4850                 return 1;
4851         }
4852
4853         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4854         parsed_valid_hugepagesz = true;
4855         parsed_default_hugepagesz = true;
4856         default_hstate_idx = hstate_index(size_to_hstate(size));
4857
4858         /*
4859          * The number of default huge pages (for this size) could have been
4860          * specified as the first hugetlb parameter: hugepages=X.  If so,
4861          * then default_hstate_max_huge_pages is set.  If the default huge
4862          * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4863          * allocated here from bootmem allocator.
4864          */
4865         if (default_hstate_max_huge_pages) {
4866                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4867                 for_each_online_node(i)
4868                         default_hstate.max_huge_pages_node[i] =
4869                                 default_hugepages_in_node[i];
4870                 if (hstate_is_gigantic(&default_hstate))
4871                         hugetlb_hstate_alloc_pages(&default_hstate);
4872                 default_hstate_max_huge_pages = 0;
4873         }
4874
4875         return 1;
4876 }
4877 __setup("default_hugepagesz=", default_hugepagesz_setup);
4878
4879 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4880 {
4881 #ifdef CONFIG_NUMA
4882         struct mempolicy *mpol = get_task_policy(current);
4883
4884         /*
4885          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4886          * (from policy_nodemask) specifically for hugetlb case
4887          */
4888         if (mpol->mode == MPOL_BIND &&
4889                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4890                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4891                 return &mpol->nodes;
4892 #endif
4893         return NULL;
4894 }
4895
4896 static unsigned int allowed_mems_nr(struct hstate *h)
4897 {
4898         int node;
4899         unsigned int nr = 0;
4900         nodemask_t *mbind_nodemask;
4901         unsigned int *array = h->free_huge_pages_node;
4902         gfp_t gfp_mask = htlb_alloc_mask(h);
4903
4904         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4905         for_each_node_mask(node, cpuset_current_mems_allowed) {
4906                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4907                         nr += array[node];
4908         }
4909
4910         return nr;
4911 }
4912
4913 #ifdef CONFIG_SYSCTL
4914 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4915                                           void *buffer, size_t *length,
4916                                           loff_t *ppos, unsigned long *out)
4917 {
4918         struct ctl_table dup_table;
4919
4920         /*
4921          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4922          * can duplicate the @table and alter the duplicate of it.
4923          */
4924         dup_table = *table;
4925         dup_table.data = out;
4926
4927         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4928 }
4929
4930 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4931                          struct ctl_table *table, int write,
4932                          void *buffer, size_t *length, loff_t *ppos)
4933 {
4934         struct hstate *h = &default_hstate;
4935         unsigned long tmp = h->max_huge_pages;
4936         int ret;
4937
4938         if (!hugepages_supported())
4939                 return -EOPNOTSUPP;
4940
4941         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4942                                              &tmp);
4943         if (ret)
4944                 goto out;
4945
4946         if (write)
4947                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4948                                                   NUMA_NO_NODE, tmp, *length);
4949 out:
4950         return ret;
4951 }
4952
4953 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4954                           void *buffer, size_t *length, loff_t *ppos)
4955 {
4956
4957         return hugetlb_sysctl_handler_common(false, table, write,
4958                                                         buffer, length, ppos);
4959 }
4960
4961 #ifdef CONFIG_NUMA
4962 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4963                           void *buffer, size_t *length, loff_t *ppos)
4964 {
4965         return hugetlb_sysctl_handler_common(true, table, write,
4966                                                         buffer, length, ppos);
4967 }
4968 #endif /* CONFIG_NUMA */
4969
4970 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4971                 void *buffer, size_t *length, loff_t *ppos)
4972 {
4973         struct hstate *h = &default_hstate;
4974         unsigned long tmp;
4975         int ret;
4976
4977         if (!hugepages_supported())
4978                 return -EOPNOTSUPP;
4979
4980         tmp = h->nr_overcommit_huge_pages;
4981
4982         if (write && hstate_is_gigantic(h))
4983                 return -EINVAL;
4984
4985         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4986                                              &tmp);
4987         if (ret)
4988                 goto out;
4989
4990         if (write) {
4991                 spin_lock_irq(&hugetlb_lock);
4992                 h->nr_overcommit_huge_pages = tmp;
4993                 spin_unlock_irq(&hugetlb_lock);
4994         }
4995 out:
4996         return ret;
4997 }
4998
4999 static struct ctl_table hugetlb_table[] = {
5000         {
5001                 .procname       = "nr_hugepages",
5002                 .data           = NULL,
5003                 .maxlen         = sizeof(unsigned long),
5004                 .mode           = 0644,
5005                 .proc_handler   = hugetlb_sysctl_handler,
5006         },
5007 #ifdef CONFIG_NUMA
5008         {
5009                 .procname       = "nr_hugepages_mempolicy",
5010                 .data           = NULL,
5011                 .maxlen         = sizeof(unsigned long),
5012                 .mode           = 0644,
5013                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5014         },
5015 #endif
5016         {
5017                 .procname       = "hugetlb_shm_group",
5018                 .data           = &sysctl_hugetlb_shm_group,
5019                 .maxlen         = sizeof(gid_t),
5020                 .mode           = 0644,
5021                 .proc_handler   = proc_dointvec,
5022         },
5023         {
5024                 .procname       = "nr_overcommit_hugepages",
5025                 .data           = NULL,
5026                 .maxlen         = sizeof(unsigned long),
5027                 .mode           = 0644,
5028                 .proc_handler   = hugetlb_overcommit_handler,
5029         },
5030 };
5031
5032 static void hugetlb_sysctl_init(void)
5033 {
5034         register_sysctl_init("vm", hugetlb_table);
5035 }
5036 #endif /* CONFIG_SYSCTL */
5037
5038 void hugetlb_report_meminfo(struct seq_file *m)
5039 {
5040         struct hstate *h;
5041         unsigned long total = 0;
5042
5043         if (!hugepages_supported())
5044                 return;
5045
5046         for_each_hstate(h) {
5047                 unsigned long count = h->nr_huge_pages;
5048
5049                 total += huge_page_size(h) * count;
5050
5051                 if (h == &default_hstate)
5052                         seq_printf(m,
5053                                    "HugePages_Total:   %5lu\n"
5054                                    "HugePages_Free:    %5lu\n"
5055                                    "HugePages_Rsvd:    %5lu\n"
5056                                    "HugePages_Surp:    %5lu\n"
5057                                    "Hugepagesize:   %8lu kB\n",
5058                                    count,
5059                                    h->free_huge_pages,
5060                                    h->resv_huge_pages,
5061                                    h->surplus_huge_pages,
5062                                    huge_page_size(h) / SZ_1K);
5063         }
5064
5065         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5066 }
5067
5068 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5069 {
5070         struct hstate *h = &default_hstate;
5071
5072         if (!hugepages_supported())
5073                 return 0;
5074
5075         return sysfs_emit_at(buf, len,
5076                              "Node %d HugePages_Total: %5u\n"
5077                              "Node %d HugePages_Free:  %5u\n"
5078                              "Node %d HugePages_Surp:  %5u\n",
5079                              nid, h->nr_huge_pages_node[nid],
5080                              nid, h->free_huge_pages_node[nid],
5081                              nid, h->surplus_huge_pages_node[nid]);
5082 }
5083
5084 void hugetlb_show_meminfo_node(int nid)
5085 {
5086         struct hstate *h;
5087
5088         if (!hugepages_supported())
5089                 return;
5090
5091         for_each_hstate(h)
5092                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5093                         nid,
5094                         h->nr_huge_pages_node[nid],
5095                         h->free_huge_pages_node[nid],
5096                         h->surplus_huge_pages_node[nid],
5097                         huge_page_size(h) / SZ_1K);
5098 }
5099
5100 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5101 {
5102         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5103                    K(atomic_long_read(&mm->hugetlb_usage)));
5104 }
5105
5106 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5107 unsigned long hugetlb_total_pages(void)
5108 {
5109         struct hstate *h;
5110         unsigned long nr_total_pages = 0;
5111
5112         for_each_hstate(h)
5113                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5114         return nr_total_pages;
5115 }
5116
5117 static int hugetlb_acct_memory(struct hstate *h, long delta)
5118 {
5119         int ret = -ENOMEM;
5120
5121         if (!delta)
5122                 return 0;
5123
5124         spin_lock_irq(&hugetlb_lock);
5125         /*
5126          * When cpuset is configured, it breaks the strict hugetlb page
5127          * reservation as the accounting is done on a global variable. Such
5128          * reservation is completely rubbish in the presence of cpuset because
5129          * the reservation is not checked against page availability for the
5130          * current cpuset. Application can still potentially OOM'ed by kernel
5131          * with lack of free htlb page in cpuset that the task is in.
5132          * Attempt to enforce strict accounting with cpuset is almost
5133          * impossible (or too ugly) because cpuset is too fluid that
5134          * task or memory node can be dynamically moved between cpusets.
5135          *
5136          * The change of semantics for shared hugetlb mapping with cpuset is
5137          * undesirable. However, in order to preserve some of the semantics,
5138          * we fall back to check against current free page availability as
5139          * a best attempt and hopefully to minimize the impact of changing
5140          * semantics that cpuset has.
5141          *
5142          * Apart from cpuset, we also have memory policy mechanism that
5143          * also determines from which node the kernel will allocate memory
5144          * in a NUMA system. So similar to cpuset, we also should consider
5145          * the memory policy of the current task. Similar to the description
5146          * above.
5147          */
5148         if (delta > 0) {
5149                 if (gather_surplus_pages(h, delta) < 0)
5150                         goto out;
5151
5152                 if (delta > allowed_mems_nr(h)) {
5153                         return_unused_surplus_pages(h, delta);
5154                         goto out;
5155                 }
5156         }
5157
5158         ret = 0;
5159         if (delta < 0)
5160                 return_unused_surplus_pages(h, (unsigned long) -delta);
5161
5162 out:
5163         spin_unlock_irq(&hugetlb_lock);
5164         return ret;
5165 }
5166
5167 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5168 {
5169         struct resv_map *resv = vma_resv_map(vma);
5170
5171         /*
5172          * HPAGE_RESV_OWNER indicates a private mapping.
5173          * This new VMA should share its siblings reservation map if present.
5174          * The VMA will only ever have a valid reservation map pointer where
5175          * it is being copied for another still existing VMA.  As that VMA
5176          * has a reference to the reservation map it cannot disappear until
5177          * after this open call completes.  It is therefore safe to take a
5178          * new reference here without additional locking.
5179          */
5180         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5181                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5182                 kref_get(&resv->refs);
5183         }
5184
5185         /*
5186          * vma_lock structure for sharable mappings is vma specific.
5187          * Clear old pointer (if copied via vm_area_dup) and allocate
5188          * new structure.  Before clearing, make sure vma_lock is not
5189          * for this vma.
5190          */
5191         if (vma->vm_flags & VM_MAYSHARE) {
5192                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5193
5194                 if (vma_lock) {
5195                         if (vma_lock->vma != vma) {
5196                                 vma->vm_private_data = NULL;
5197                                 hugetlb_vma_lock_alloc(vma);
5198                         } else
5199                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5200                 } else
5201                         hugetlb_vma_lock_alloc(vma);
5202         }
5203 }
5204
5205 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5206 {
5207         struct hstate *h = hstate_vma(vma);
5208         struct resv_map *resv;
5209         struct hugepage_subpool *spool = subpool_vma(vma);
5210         unsigned long reserve, start, end;
5211         long gbl_reserve;
5212
5213         hugetlb_vma_lock_free(vma);
5214
5215         resv = vma_resv_map(vma);
5216         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5217                 return;
5218
5219         start = vma_hugecache_offset(h, vma, vma->vm_start);
5220         end = vma_hugecache_offset(h, vma, vma->vm_end);
5221
5222         reserve = (end - start) - region_count(resv, start, end);
5223         hugetlb_cgroup_uncharge_counter(resv, start, end);
5224         if (reserve) {
5225                 /*
5226                  * Decrement reserve counts.  The global reserve count may be
5227                  * adjusted if the subpool has a minimum size.
5228                  */
5229                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5230                 hugetlb_acct_memory(h, -gbl_reserve);
5231         }
5232
5233         kref_put(&resv->refs, resv_map_release);
5234 }
5235
5236 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5237 {
5238         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5239                 return -EINVAL;
5240
5241         /*
5242          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5243          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5244          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5245          */
5246         if (addr & ~PUD_MASK) {
5247                 /*
5248                  * hugetlb_vm_op_split is called right before we attempt to
5249                  * split the VMA. We will need to unshare PMDs in the old and
5250                  * new VMAs, so let's unshare before we split.
5251                  */
5252                 unsigned long floor = addr & PUD_MASK;
5253                 unsigned long ceil = floor + PUD_SIZE;
5254
5255                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5256                         hugetlb_unshare_pmds(vma, floor, ceil);
5257         }
5258
5259         return 0;
5260 }
5261
5262 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5263 {
5264         return huge_page_size(hstate_vma(vma));
5265 }
5266
5267 /*
5268  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5269  * handle_mm_fault() to try to instantiate regular-sized pages in the
5270  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5271  * this far.
5272  */
5273 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5274 {
5275         BUG();
5276         return 0;
5277 }
5278
5279 /*
5280  * When a new function is introduced to vm_operations_struct and added
5281  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5282  * This is because under System V memory model, mappings created via
5283  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5284  * their original vm_ops are overwritten with shm_vm_ops.
5285  */
5286 const struct vm_operations_struct hugetlb_vm_ops = {
5287         .fault = hugetlb_vm_op_fault,
5288         .open = hugetlb_vm_op_open,
5289         .close = hugetlb_vm_op_close,
5290         .may_split = hugetlb_vm_op_split,
5291         .pagesize = hugetlb_vm_op_pagesize,
5292 };
5293
5294 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5295                                 int writable)
5296 {
5297         pte_t entry;
5298         unsigned int shift = huge_page_shift(hstate_vma(vma));
5299
5300         if (writable) {
5301                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5302                                          vma->vm_page_prot)));
5303         } else {
5304                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5305                                            vma->vm_page_prot));
5306         }
5307         entry = pte_mkyoung(entry);
5308         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5309
5310         return entry;
5311 }
5312
5313 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5314                                    unsigned long address, pte_t *ptep)
5315 {
5316         pte_t entry;
5317
5318         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5319         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5320                 update_mmu_cache(vma, address, ptep);
5321 }
5322
5323 bool is_hugetlb_entry_migration(pte_t pte)
5324 {
5325         swp_entry_t swp;
5326
5327         if (huge_pte_none(pte) || pte_present(pte))
5328                 return false;
5329         swp = pte_to_swp_entry(pte);
5330         if (is_migration_entry(swp))
5331                 return true;
5332         else
5333                 return false;
5334 }
5335
5336 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5337 {
5338         swp_entry_t swp;
5339
5340         if (huge_pte_none(pte) || pte_present(pte))
5341                 return false;
5342         swp = pte_to_swp_entry(pte);
5343         if (is_hwpoison_entry(swp))
5344                 return true;
5345         else
5346                 return false;
5347 }
5348
5349 static void
5350 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5351                       struct folio *new_folio, pte_t old, unsigned long sz)
5352 {
5353         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5354
5355         __folio_mark_uptodate(new_folio);
5356         hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5357         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5358                 newpte = huge_pte_mkuffd_wp(newpte);
5359         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5360         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5361         folio_set_hugetlb_migratable(new_folio);
5362 }
5363
5364 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5365                             struct vm_area_struct *dst_vma,
5366                             struct vm_area_struct *src_vma)
5367 {
5368         pte_t *src_pte, *dst_pte, entry;
5369         struct folio *pte_folio;
5370         unsigned long addr;
5371         bool cow = is_cow_mapping(src_vma->vm_flags);
5372         struct hstate *h = hstate_vma(src_vma);
5373         unsigned long sz = huge_page_size(h);
5374         unsigned long npages = pages_per_huge_page(h);
5375         struct mmu_notifier_range range;
5376         unsigned long last_addr_mask;
5377         int ret = 0;
5378
5379         if (cow) {
5380                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5381                                         src_vma->vm_start,
5382                                         src_vma->vm_end);
5383                 mmu_notifier_invalidate_range_start(&range);
5384                 vma_assert_write_locked(src_vma);
5385                 raw_write_seqcount_begin(&src->write_protect_seq);
5386         } else {
5387                 /*
5388                  * For shared mappings the vma lock must be held before
5389                  * calling hugetlb_walk() in the src vma. Otherwise, the
5390                  * returned ptep could go away if part of a shared pmd and
5391                  * another thread calls huge_pmd_unshare.
5392                  */
5393                 hugetlb_vma_lock_read(src_vma);
5394         }
5395
5396         last_addr_mask = hugetlb_mask_last_page(h);
5397         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5398                 spinlock_t *src_ptl, *dst_ptl;
5399                 src_pte = hugetlb_walk(src_vma, addr, sz);
5400                 if (!src_pte) {
5401                         addr |= last_addr_mask;
5402                         continue;
5403                 }
5404                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5405                 if (!dst_pte) {
5406                         ret = -ENOMEM;
5407                         break;
5408                 }
5409
5410                 /*
5411                  * If the pagetables are shared don't copy or take references.
5412                  *
5413                  * dst_pte == src_pte is the common case of src/dest sharing.
5414                  * However, src could have 'unshared' and dst shares with
5415                  * another vma. So page_count of ptep page is checked instead
5416                  * to reliably determine whether pte is shared.
5417                  */
5418                 if (page_count(virt_to_page(dst_pte)) > 1) {
5419                         addr |= last_addr_mask;
5420                         continue;
5421                 }
5422
5423                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5424                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5425                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5426                 entry = huge_ptep_get(src_pte);
5427 again:
5428                 if (huge_pte_none(entry)) {
5429                         /*
5430                          * Skip if src entry none.
5431                          */
5432                         ;
5433                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5434                         if (!userfaultfd_wp(dst_vma))
5435                                 entry = huge_pte_clear_uffd_wp(entry);
5436                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5437                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5438                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5439                         bool uffd_wp = pte_swp_uffd_wp(entry);
5440
5441                         if (!is_readable_migration_entry(swp_entry) && cow) {
5442                                 /*
5443                                  * COW mappings require pages in both
5444                                  * parent and child to be set to read.
5445                                  */
5446                                 swp_entry = make_readable_migration_entry(
5447                                                         swp_offset(swp_entry));
5448                                 entry = swp_entry_to_pte(swp_entry);
5449                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5450                                         entry = pte_swp_mkuffd_wp(entry);
5451                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5452                         }
5453                         if (!userfaultfd_wp(dst_vma))
5454                                 entry = huge_pte_clear_uffd_wp(entry);
5455                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5456                 } else if (unlikely(is_pte_marker(entry))) {
5457                         pte_marker marker = copy_pte_marker(
5458                                 pte_to_swp_entry(entry), dst_vma);
5459
5460                         if (marker)
5461                                 set_huge_pte_at(dst, addr, dst_pte,
5462                                                 make_pte_marker(marker), sz);
5463                 } else {
5464                         entry = huge_ptep_get(src_pte);
5465                         pte_folio = page_folio(pte_page(entry));
5466                         folio_get(pte_folio);
5467
5468                         /*
5469                          * Failing to duplicate the anon rmap is a rare case
5470                          * where we see pinned hugetlb pages while they're
5471                          * prone to COW. We need to do the COW earlier during
5472                          * fork.
5473                          *
5474                          * When pre-allocating the page or copying data, we
5475                          * need to be without the pgtable locks since we could
5476                          * sleep during the process.
5477                          */
5478                         if (!folio_test_anon(pte_folio)) {
5479                                 hugetlb_add_file_rmap(pte_folio);
5480                         } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5481                                 pte_t src_pte_old = entry;
5482                                 struct folio *new_folio;
5483
5484                                 spin_unlock(src_ptl);
5485                                 spin_unlock(dst_ptl);
5486                                 /* Do not use reserve as it's private owned */
5487                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5488                                 if (IS_ERR(new_folio)) {
5489                                         folio_put(pte_folio);
5490                                         ret = PTR_ERR(new_folio);
5491                                         break;
5492                                 }
5493                                 ret = copy_user_large_folio(new_folio,
5494                                                             pte_folio,
5495                                                             addr, dst_vma);
5496                                 folio_put(pte_folio);
5497                                 if (ret) {
5498                                         folio_put(new_folio);
5499                                         break;
5500                                 }
5501
5502                                 /* Install the new hugetlb folio if src pte stable */
5503                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5504                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5505                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5506                                 entry = huge_ptep_get(src_pte);
5507                                 if (!pte_same(src_pte_old, entry)) {
5508                                         restore_reserve_on_error(h, dst_vma, addr,
5509                                                                 new_folio);
5510                                         folio_put(new_folio);
5511                                         /* huge_ptep of dst_pte won't change as in child */
5512                                         goto again;
5513                                 }
5514                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5515                                                       new_folio, src_pte_old, sz);
5516                                 spin_unlock(src_ptl);
5517                                 spin_unlock(dst_ptl);
5518                                 continue;
5519                         }
5520
5521                         if (cow) {
5522                                 /*
5523                                  * No need to notify as we are downgrading page
5524                                  * table protection not changing it to point
5525                                  * to a new page.
5526                                  *
5527                                  * See Documentation/mm/mmu_notifier.rst
5528                                  */
5529                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5530                                 entry = huge_pte_wrprotect(entry);
5531                         }
5532
5533                         if (!userfaultfd_wp(dst_vma))
5534                                 entry = huge_pte_clear_uffd_wp(entry);
5535
5536                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5537                         hugetlb_count_add(npages, dst);
5538                 }
5539                 spin_unlock(src_ptl);
5540                 spin_unlock(dst_ptl);
5541         }
5542
5543         if (cow) {
5544                 raw_write_seqcount_end(&src->write_protect_seq);
5545                 mmu_notifier_invalidate_range_end(&range);
5546         } else {
5547                 hugetlb_vma_unlock_read(src_vma);
5548         }
5549
5550         return ret;
5551 }
5552
5553 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5554                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5555                           unsigned long sz)
5556 {
5557         struct hstate *h = hstate_vma(vma);
5558         struct mm_struct *mm = vma->vm_mm;
5559         spinlock_t *src_ptl, *dst_ptl;
5560         pte_t pte;
5561
5562         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5563         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5564
5565         /*
5566          * We don't have to worry about the ordering of src and dst ptlocks
5567          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5568          */
5569         if (src_ptl != dst_ptl)
5570                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5571
5572         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5573         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5574
5575         if (src_ptl != dst_ptl)
5576                 spin_unlock(src_ptl);
5577         spin_unlock(dst_ptl);
5578 }
5579
5580 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5581                              struct vm_area_struct *new_vma,
5582                              unsigned long old_addr, unsigned long new_addr,
5583                              unsigned long len)
5584 {
5585         struct hstate *h = hstate_vma(vma);
5586         struct address_space *mapping = vma->vm_file->f_mapping;
5587         unsigned long sz = huge_page_size(h);
5588         struct mm_struct *mm = vma->vm_mm;
5589         unsigned long old_end = old_addr + len;
5590         unsigned long last_addr_mask;
5591         pte_t *src_pte, *dst_pte;
5592         struct mmu_notifier_range range;
5593         bool shared_pmd = false;
5594
5595         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5596                                 old_end);
5597         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5598         /*
5599          * In case of shared PMDs, we should cover the maximum possible
5600          * range.
5601          */
5602         flush_cache_range(vma, range.start, range.end);
5603
5604         mmu_notifier_invalidate_range_start(&range);
5605         last_addr_mask = hugetlb_mask_last_page(h);
5606         /* Prevent race with file truncation */
5607         hugetlb_vma_lock_write(vma);
5608         i_mmap_lock_write(mapping);
5609         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5610                 src_pte = hugetlb_walk(vma, old_addr, sz);
5611                 if (!src_pte) {
5612                         old_addr |= last_addr_mask;
5613                         new_addr |= last_addr_mask;
5614                         continue;
5615                 }
5616                 if (huge_pte_none(huge_ptep_get(src_pte)))
5617                         continue;
5618
5619                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5620                         shared_pmd = true;
5621                         old_addr |= last_addr_mask;
5622                         new_addr |= last_addr_mask;
5623                         continue;
5624                 }
5625
5626                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5627                 if (!dst_pte)
5628                         break;
5629
5630                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5631         }
5632
5633         if (shared_pmd)
5634                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5635         else
5636                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5637         mmu_notifier_invalidate_range_end(&range);
5638         i_mmap_unlock_write(mapping);
5639         hugetlb_vma_unlock_write(vma);
5640
5641         return len + old_addr - old_end;
5642 }
5643
5644 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5645                             unsigned long start, unsigned long end,
5646                             struct page *ref_page, zap_flags_t zap_flags)
5647 {
5648         struct mm_struct *mm = vma->vm_mm;
5649         unsigned long address;
5650         pte_t *ptep;
5651         pte_t pte;
5652         spinlock_t *ptl;
5653         struct page *page;
5654         struct hstate *h = hstate_vma(vma);
5655         unsigned long sz = huge_page_size(h);
5656         bool adjust_reservation = false;
5657         unsigned long last_addr_mask;
5658         bool force_flush = false;
5659
5660         WARN_ON(!is_vm_hugetlb_page(vma));
5661         BUG_ON(start & ~huge_page_mask(h));
5662         BUG_ON(end & ~huge_page_mask(h));
5663
5664         /*
5665          * This is a hugetlb vma, all the pte entries should point
5666          * to huge page.
5667          */
5668         tlb_change_page_size(tlb, sz);
5669         tlb_start_vma(tlb, vma);
5670
5671         last_addr_mask = hugetlb_mask_last_page(h);
5672         address = start;
5673         for (; address < end; address += sz) {
5674                 ptep = hugetlb_walk(vma, address, sz);
5675                 if (!ptep) {
5676                         address |= last_addr_mask;
5677                         continue;
5678                 }
5679
5680                 ptl = huge_pte_lock(h, mm, ptep);
5681                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5682                         spin_unlock(ptl);
5683                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5684                         force_flush = true;
5685                         address |= last_addr_mask;
5686                         continue;
5687                 }
5688
5689                 pte = huge_ptep_get(ptep);
5690                 if (huge_pte_none(pte)) {
5691                         spin_unlock(ptl);
5692                         continue;
5693                 }
5694
5695                 /*
5696                  * Migrating hugepage or HWPoisoned hugepage is already
5697                  * unmapped and its refcount is dropped, so just clear pte here.
5698                  */
5699                 if (unlikely(!pte_present(pte))) {
5700                         /*
5701                          * If the pte was wr-protected by uffd-wp in any of the
5702                          * swap forms, meanwhile the caller does not want to
5703                          * drop the uffd-wp bit in this zap, then replace the
5704                          * pte with a marker.
5705                          */
5706                         if (pte_swp_uffd_wp_any(pte) &&
5707                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5708                                 set_huge_pte_at(mm, address, ptep,
5709                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5710                                                 sz);
5711                         else
5712                                 huge_pte_clear(mm, address, ptep, sz);
5713                         spin_unlock(ptl);
5714                         continue;
5715                 }
5716
5717                 page = pte_page(pte);
5718                 /*
5719                  * If a reference page is supplied, it is because a specific
5720                  * page is being unmapped, not a range. Ensure the page we
5721                  * are about to unmap is the actual page of interest.
5722                  */
5723                 if (ref_page) {
5724                         if (page != ref_page) {
5725                                 spin_unlock(ptl);
5726                                 continue;
5727                         }
5728                         /*
5729                          * Mark the VMA as having unmapped its page so that
5730                          * future faults in this VMA will fail rather than
5731                          * looking like data was lost
5732                          */
5733                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5734                 }
5735
5736                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5737                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5738                 if (huge_pte_dirty(pte))
5739                         set_page_dirty(page);
5740                 /* Leave a uffd-wp pte marker if needed */
5741                 if (huge_pte_uffd_wp(pte) &&
5742                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5743                         set_huge_pte_at(mm, address, ptep,
5744                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5745                                         sz);
5746                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5747                 hugetlb_remove_rmap(page_folio(page));
5748
5749                 /*
5750                  * Restore the reservation for anonymous page, otherwise the
5751                  * backing page could be stolen by someone.
5752                  * If there we are freeing a surplus, do not set the restore
5753                  * reservation bit.
5754                  */
5755                 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5756                     folio_test_anon(page_folio(page))) {
5757                         folio_set_hugetlb_restore_reserve(page_folio(page));
5758                         /* Reservation to be adjusted after the spin lock */
5759                         adjust_reservation = true;
5760                 }
5761
5762                 spin_unlock(ptl);
5763
5764                 /*
5765                  * Adjust the reservation for the region that will have the
5766                  * reserve restored. Keep in mind that vma_needs_reservation() changes
5767                  * resv->adds_in_progress if it succeeds. If this is not done,
5768                  * do_exit() will not see it, and will keep the reservation
5769                  * forever.
5770                  */
5771                 if (adjust_reservation && vma_needs_reservation(h, vma, address))
5772                         vma_add_reservation(h, vma, address);
5773
5774                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5775                 /*
5776                  * Bail out after unmapping reference page if supplied
5777                  */
5778                 if (ref_page)
5779                         break;
5780         }
5781         tlb_end_vma(tlb, vma);
5782
5783         /*
5784          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5785          * could defer the flush until now, since by holding i_mmap_rwsem we
5786          * guaranteed that the last refernece would not be dropped. But we must
5787          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5788          * dropped and the last reference to the shared PMDs page might be
5789          * dropped as well.
5790          *
5791          * In theory we could defer the freeing of the PMD pages as well, but
5792          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5793          * detect sharing, so we cannot defer the release of the page either.
5794          * Instead, do flush now.
5795          */
5796         if (force_flush)
5797                 tlb_flush_mmu_tlbonly(tlb);
5798 }
5799
5800 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5801                          unsigned long *start, unsigned long *end)
5802 {
5803         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5804                 return;
5805
5806         adjust_range_if_pmd_sharing_possible(vma, start, end);
5807         hugetlb_vma_lock_write(vma);
5808         if (vma->vm_file)
5809                 i_mmap_lock_write(vma->vm_file->f_mapping);
5810 }
5811
5812 void __hugetlb_zap_end(struct vm_area_struct *vma,
5813                        struct zap_details *details)
5814 {
5815         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5816
5817         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5818                 return;
5819
5820         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5821                 /*
5822                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5823                  * When the vma_lock is freed, this makes the vma ineligible
5824                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5825                  * pmd sharing.  This is important as page tables for this
5826                  * unmapped range will be asynchrously deleted.  If the page
5827                  * tables are shared, there will be issues when accessed by
5828                  * someone else.
5829                  */
5830                 __hugetlb_vma_unlock_write_free(vma);
5831         } else {
5832                 hugetlb_vma_unlock_write(vma);
5833         }
5834
5835         if (vma->vm_file)
5836                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5837 }
5838
5839 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5840                           unsigned long end, struct page *ref_page,
5841                           zap_flags_t zap_flags)
5842 {
5843         struct mmu_notifier_range range;
5844         struct mmu_gather tlb;
5845
5846         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5847                                 start, end);
5848         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5849         mmu_notifier_invalidate_range_start(&range);
5850         tlb_gather_mmu(&tlb, vma->vm_mm);
5851
5852         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5853
5854         mmu_notifier_invalidate_range_end(&range);
5855         tlb_finish_mmu(&tlb);
5856 }
5857
5858 /*
5859  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5860  * mapping it owns the reserve page for. The intention is to unmap the page
5861  * from other VMAs and let the children be SIGKILLed if they are faulting the
5862  * same region.
5863  */
5864 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5865                               struct page *page, unsigned long address)
5866 {
5867         struct hstate *h = hstate_vma(vma);
5868         struct vm_area_struct *iter_vma;
5869         struct address_space *mapping;
5870         pgoff_t pgoff;
5871
5872         /*
5873          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5874          * from page cache lookup which is in HPAGE_SIZE units.
5875          */
5876         address = address & huge_page_mask(h);
5877         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5878                         vma->vm_pgoff;
5879         mapping = vma->vm_file->f_mapping;
5880
5881         /*
5882          * Take the mapping lock for the duration of the table walk. As
5883          * this mapping should be shared between all the VMAs,
5884          * __unmap_hugepage_range() is called as the lock is already held
5885          */
5886         i_mmap_lock_write(mapping);
5887         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5888                 /* Do not unmap the current VMA */
5889                 if (iter_vma == vma)
5890                         continue;
5891
5892                 /*
5893                  * Shared VMAs have their own reserves and do not affect
5894                  * MAP_PRIVATE accounting but it is possible that a shared
5895                  * VMA is using the same page so check and skip such VMAs.
5896                  */
5897                 if (iter_vma->vm_flags & VM_MAYSHARE)
5898                         continue;
5899
5900                 /*
5901                  * Unmap the page from other VMAs without their own reserves.
5902                  * They get marked to be SIGKILLed if they fault in these
5903                  * areas. This is because a future no-page fault on this VMA
5904                  * could insert a zeroed page instead of the data existing
5905                  * from the time of fork. This would look like data corruption
5906                  */
5907                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5908                         unmap_hugepage_range(iter_vma, address,
5909                                              address + huge_page_size(h), page, 0);
5910         }
5911         i_mmap_unlock_write(mapping);
5912 }
5913
5914 /*
5915  * hugetlb_wp() should be called with page lock of the original hugepage held.
5916  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5917  * cannot race with other handlers or page migration.
5918  * Keep the pte_same checks anyway to make transition from the mutex easier.
5919  */
5920 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5921                        struct vm_fault *vmf)
5922 {
5923         struct vm_area_struct *vma = vmf->vma;
5924         struct mm_struct *mm = vma->vm_mm;
5925         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5926         pte_t pte = huge_ptep_get(vmf->pte);
5927         struct hstate *h = hstate_vma(vma);
5928         struct folio *old_folio;
5929         struct folio *new_folio;
5930         int outside_reserve = 0;
5931         vm_fault_t ret = 0;
5932         struct mmu_notifier_range range;
5933
5934         /*
5935          * Never handle CoW for uffd-wp protected pages.  It should be only
5936          * handled when the uffd-wp protection is removed.
5937          *
5938          * Note that only the CoW optimization path (in hugetlb_no_page())
5939          * can trigger this, because hugetlb_fault() will always resolve
5940          * uffd-wp bit first.
5941          */
5942         if (!unshare && huge_pte_uffd_wp(pte))
5943                 return 0;
5944
5945         /*
5946          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5947          * PTE mapped R/O such as maybe_mkwrite() would do.
5948          */
5949         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5950                 return VM_FAULT_SIGSEGV;
5951
5952         /* Let's take out MAP_SHARED mappings first. */
5953         if (vma->vm_flags & VM_MAYSHARE) {
5954                 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5955                 return 0;
5956         }
5957
5958         old_folio = page_folio(pte_page(pte));
5959
5960         delayacct_wpcopy_start();
5961
5962 retry_avoidcopy:
5963         /*
5964          * If no-one else is actually using this page, we're the exclusive
5965          * owner and can reuse this page.
5966          */
5967         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5968                 if (!PageAnonExclusive(&old_folio->page)) {
5969                         folio_move_anon_rmap(old_folio, vma);
5970                         SetPageAnonExclusive(&old_folio->page);
5971                 }
5972                 if (likely(!unshare))
5973                         set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5974
5975                 delayacct_wpcopy_end();
5976                 return 0;
5977         }
5978         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5979                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5980
5981         /*
5982          * If the process that created a MAP_PRIVATE mapping is about to
5983          * perform a COW due to a shared page count, attempt to satisfy
5984          * the allocation without using the existing reserves. The pagecache
5985          * page is used to determine if the reserve at this address was
5986          * consumed or not. If reserves were used, a partial faulted mapping
5987          * at the time of fork() could consume its reserves on COW instead
5988          * of the full address range.
5989          */
5990         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5991                         old_folio != pagecache_folio)
5992                 outside_reserve = 1;
5993
5994         folio_get(old_folio);
5995
5996         /*
5997          * Drop page table lock as buddy allocator may be called. It will
5998          * be acquired again before returning to the caller, as expected.
5999          */
6000         spin_unlock(vmf->ptl);
6001         new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
6002
6003         if (IS_ERR(new_folio)) {
6004                 /*
6005                  * If a process owning a MAP_PRIVATE mapping fails to COW,
6006                  * it is due to references held by a child and an insufficient
6007                  * huge page pool. To guarantee the original mappers
6008                  * reliability, unmap the page from child processes. The child
6009                  * may get SIGKILLed if it later faults.
6010                  */
6011                 if (outside_reserve) {
6012                         struct address_space *mapping = vma->vm_file->f_mapping;
6013                         pgoff_t idx;
6014                         u32 hash;
6015
6016                         folio_put(old_folio);
6017                         /*
6018                          * Drop hugetlb_fault_mutex and vma_lock before
6019                          * unmapping.  unmapping needs to hold vma_lock
6020                          * in write mode.  Dropping vma_lock in read mode
6021                          * here is OK as COW mappings do not interact with
6022                          * PMD sharing.
6023                          *
6024                          * Reacquire both after unmap operation.
6025                          */
6026                         idx = vma_hugecache_offset(h, vma, vmf->address);
6027                         hash = hugetlb_fault_mutex_hash(mapping, idx);
6028                         hugetlb_vma_unlock_read(vma);
6029                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6030
6031                         unmap_ref_private(mm, vma, &old_folio->page,
6032                                         vmf->address);
6033
6034                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6035                         hugetlb_vma_lock_read(vma);
6036                         spin_lock(vmf->ptl);
6037                         vmf->pte = hugetlb_walk(vma, vmf->address,
6038                                         huge_page_size(h));
6039                         if (likely(vmf->pte &&
6040                                    pte_same(huge_ptep_get(vmf->pte), pte)))
6041                                 goto retry_avoidcopy;
6042                         /*
6043                          * race occurs while re-acquiring page table
6044                          * lock, and our job is done.
6045                          */
6046                         delayacct_wpcopy_end();
6047                         return 0;
6048                 }
6049
6050                 ret = vmf_error(PTR_ERR(new_folio));
6051                 goto out_release_old;
6052         }
6053
6054         /*
6055          * When the original hugepage is shared one, it does not have
6056          * anon_vma prepared.
6057          */
6058         ret = vmf_anon_prepare(vmf);
6059         if (unlikely(ret))
6060                 goto out_release_all;
6061
6062         if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6063                 ret = VM_FAULT_HWPOISON_LARGE;
6064                 goto out_release_all;
6065         }
6066         __folio_mark_uptodate(new_folio);
6067
6068         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6069                                 vmf->address + huge_page_size(h));
6070         mmu_notifier_invalidate_range_start(&range);
6071
6072         /*
6073          * Retake the page table lock to check for racing updates
6074          * before the page tables are altered
6075          */
6076         spin_lock(vmf->ptl);
6077         vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6078         if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) {
6079                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6080
6081                 /* Break COW or unshare */
6082                 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6083                 hugetlb_remove_rmap(old_folio);
6084                 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6085                 if (huge_pte_uffd_wp(pte))
6086                         newpte = huge_pte_mkuffd_wp(newpte);
6087                 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6088                                 huge_page_size(h));
6089                 folio_set_hugetlb_migratable(new_folio);
6090                 /* Make the old page be freed below */
6091                 new_folio = old_folio;
6092         }
6093         spin_unlock(vmf->ptl);
6094         mmu_notifier_invalidate_range_end(&range);
6095 out_release_all:
6096         /*
6097          * No restore in case of successful pagetable update (Break COW or
6098          * unshare)
6099          */
6100         if (new_folio != old_folio)
6101                 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6102         folio_put(new_folio);
6103 out_release_old:
6104         folio_put(old_folio);
6105
6106         spin_lock(vmf->ptl); /* Caller expects lock to be held */
6107
6108         delayacct_wpcopy_end();
6109         return ret;
6110 }
6111
6112 /*
6113  * Return whether there is a pagecache page to back given address within VMA.
6114  */
6115 bool hugetlbfs_pagecache_present(struct hstate *h,
6116                                  struct vm_area_struct *vma, unsigned long address)
6117 {
6118         struct address_space *mapping = vma->vm_file->f_mapping;
6119         pgoff_t idx = linear_page_index(vma, address);
6120         struct folio *folio;
6121
6122         folio = filemap_get_folio(mapping, idx);
6123         if (IS_ERR(folio))
6124                 return false;
6125         folio_put(folio);
6126         return true;
6127 }
6128
6129 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6130                            pgoff_t idx)
6131 {
6132         struct inode *inode = mapping->host;
6133         struct hstate *h = hstate_inode(inode);
6134         int err;
6135
6136         idx <<= huge_page_order(h);
6137         __folio_set_locked(folio);
6138         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6139
6140         if (unlikely(err)) {
6141                 __folio_clear_locked(folio);
6142                 return err;
6143         }
6144         folio_clear_hugetlb_restore_reserve(folio);
6145
6146         /*
6147          * mark folio dirty so that it will not be removed from cache/file
6148          * by non-hugetlbfs specific code paths.
6149          */
6150         folio_mark_dirty(folio);
6151
6152         spin_lock(&inode->i_lock);
6153         inode->i_blocks += blocks_per_huge_page(h);
6154         spin_unlock(&inode->i_lock);
6155         return 0;
6156 }
6157
6158 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6159                                                   struct address_space *mapping,
6160                                                   unsigned long reason)
6161 {
6162         u32 hash;
6163
6164         /*
6165          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6166          * userfault. Also mmap_lock could be dropped due to handling
6167          * userfault, any vma operation should be careful from here.
6168          */
6169         hugetlb_vma_unlock_read(vmf->vma);
6170         hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6171         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6172         return handle_userfault(vmf, reason);
6173 }
6174
6175 /*
6176  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6177  * false if pte changed or is changing.
6178  */
6179 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6180                                pte_t *ptep, pte_t old_pte)
6181 {
6182         spinlock_t *ptl;
6183         bool same;
6184
6185         ptl = huge_pte_lock(h, mm, ptep);
6186         same = pte_same(huge_ptep_get(ptep), old_pte);
6187         spin_unlock(ptl);
6188
6189         return same;
6190 }
6191
6192 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6193                         struct vm_fault *vmf)
6194 {
6195         struct vm_area_struct *vma = vmf->vma;
6196         struct mm_struct *mm = vma->vm_mm;
6197         struct hstate *h = hstate_vma(vma);
6198         vm_fault_t ret = VM_FAULT_SIGBUS;
6199         int anon_rmap = 0;
6200         unsigned long size;
6201         struct folio *folio;
6202         pte_t new_pte;
6203         bool new_folio, new_pagecache_folio = false;
6204         u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6205
6206         /*
6207          * Currently, we are forced to kill the process in the event the
6208          * original mapper has unmapped pages from the child due to a failed
6209          * COW/unsharing. Warn that such a situation has occurred as it may not
6210          * be obvious.
6211          */
6212         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6213                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6214                            current->pid);
6215                 goto out;
6216         }
6217
6218         /*
6219          * Use page lock to guard against racing truncation
6220          * before we get page_table_lock.
6221          */
6222         new_folio = false;
6223         folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6224         if (IS_ERR(folio)) {
6225                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6226                 if (vmf->pgoff >= size)
6227                         goto out;
6228                 /* Check for page in userfault range */
6229                 if (userfaultfd_missing(vma)) {
6230                         /*
6231                          * Since hugetlb_no_page() was examining pte
6232                          * without pgtable lock, we need to re-test under
6233                          * lock because the pte may not be stable and could
6234                          * have changed from under us.  Try to detect
6235                          * either changed or during-changing ptes and retry
6236                          * properly when needed.
6237                          *
6238                          * Note that userfaultfd is actually fine with
6239                          * false positives (e.g. caused by pte changed),
6240                          * but not wrong logical events (e.g. caused by
6241                          * reading a pte during changing).  The latter can
6242                          * confuse the userspace, so the strictness is very
6243                          * much preferred.  E.g., MISSING event should
6244                          * never happen on the page after UFFDIO_COPY has
6245                          * correctly installed the page and returned.
6246                          */
6247                         if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6248                                 ret = 0;
6249                                 goto out;
6250                         }
6251
6252                         return hugetlb_handle_userfault(vmf, mapping,
6253                                                         VM_UFFD_MISSING);
6254                 }
6255
6256                 if (!(vma->vm_flags & VM_MAYSHARE)) {
6257                         ret = vmf_anon_prepare(vmf);
6258                         if (unlikely(ret))
6259                                 goto out;
6260                 }
6261
6262                 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6263                 if (IS_ERR(folio)) {
6264                         /*
6265                          * Returning error will result in faulting task being
6266                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6267                          * tasks from racing to fault in the same page which
6268                          * could result in false unable to allocate errors.
6269                          * Page migration does not take the fault mutex, but
6270                          * does a clear then write of pte's under page table
6271                          * lock.  Page fault code could race with migration,
6272                          * notice the clear pte and try to allocate a page
6273                          * here.  Before returning error, get ptl and make
6274                          * sure there really is no pte entry.
6275                          */
6276                         if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte))
6277                                 ret = vmf_error(PTR_ERR(folio));
6278                         else
6279                                 ret = 0;
6280                         goto out;
6281                 }
6282                 clear_huge_page(&folio->page, vmf->real_address,
6283                                 pages_per_huge_page(h));
6284                 __folio_mark_uptodate(folio);
6285                 new_folio = true;
6286
6287                 if (vma->vm_flags & VM_MAYSHARE) {
6288                         int err = hugetlb_add_to_page_cache(folio, mapping,
6289                                                         vmf->pgoff);
6290                         if (err) {
6291                                 /*
6292                                  * err can't be -EEXIST which implies someone
6293                                  * else consumed the reservation since hugetlb
6294                                  * fault mutex is held when add a hugetlb page
6295                                  * to the page cache. So it's safe to call
6296                                  * restore_reserve_on_error() here.
6297                                  */
6298                                 restore_reserve_on_error(h, vma, vmf->address,
6299                                                         folio);
6300                                 folio_put(folio);
6301                                 ret = VM_FAULT_SIGBUS;
6302                                 goto out;
6303                         }
6304                         new_pagecache_folio = true;
6305                 } else {
6306                         folio_lock(folio);
6307                         anon_rmap = 1;
6308                 }
6309         } else {
6310                 /*
6311                  * If memory error occurs between mmap() and fault, some process
6312                  * don't have hwpoisoned swap entry for errored virtual address.
6313                  * So we need to block hugepage fault by PG_hwpoison bit check.
6314                  */
6315                 if (unlikely(folio_test_hwpoison(folio))) {
6316                         ret = VM_FAULT_HWPOISON_LARGE |
6317                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6318                         goto backout_unlocked;
6319                 }
6320
6321                 /* Check for page in userfault range. */
6322                 if (userfaultfd_minor(vma)) {
6323                         folio_unlock(folio);
6324                         folio_put(folio);
6325                         /* See comment in userfaultfd_missing() block above */
6326                         if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
6327                                 ret = 0;
6328                                 goto out;
6329                         }
6330                         return hugetlb_handle_userfault(vmf, mapping,
6331                                                         VM_UFFD_MINOR);
6332                 }
6333         }
6334
6335         /*
6336          * If we are going to COW a private mapping later, we examine the
6337          * pending reservations for this page now. This will ensure that
6338          * any allocations necessary to record that reservation occur outside
6339          * the spinlock.
6340          */
6341         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6342                 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6343                         ret = VM_FAULT_OOM;
6344                         goto backout_unlocked;
6345                 }
6346                 /* Just decrements count, does not deallocate */
6347                 vma_end_reservation(h, vma, vmf->address);
6348         }
6349
6350         vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6351         ret = 0;
6352         /* If pte changed from under us, retry */
6353         if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte))
6354                 goto backout;
6355
6356         if (anon_rmap)
6357                 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6358         else
6359                 hugetlb_add_file_rmap(folio);
6360         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6361                                 && (vma->vm_flags & VM_SHARED)));
6362         /*
6363          * If this pte was previously wr-protected, keep it wr-protected even
6364          * if populated.
6365          */
6366         if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6367                 new_pte = huge_pte_mkuffd_wp(new_pte);
6368         set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6369
6370         hugetlb_count_add(pages_per_huge_page(h), mm);
6371         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6372                 /* Optimization, do the COW without a second fault */
6373                 ret = hugetlb_wp(folio, vmf);
6374         }
6375
6376         spin_unlock(vmf->ptl);
6377
6378         /*
6379          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6380          * found in the pagecache may not have hugetlb_migratable if they have
6381          * been isolated for migration.
6382          */
6383         if (new_folio)
6384                 folio_set_hugetlb_migratable(folio);
6385
6386         folio_unlock(folio);
6387 out:
6388         hugetlb_vma_unlock_read(vma);
6389         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6390         return ret;
6391
6392 backout:
6393         spin_unlock(vmf->ptl);
6394 backout_unlocked:
6395         if (new_folio && !new_pagecache_folio)
6396                 restore_reserve_on_error(h, vma, vmf->address, folio);
6397
6398         folio_unlock(folio);
6399         folio_put(folio);
6400         goto out;
6401 }
6402
6403 #ifdef CONFIG_SMP
6404 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6405 {
6406         unsigned long key[2];
6407         u32 hash;
6408
6409         key[0] = (unsigned long) mapping;
6410         key[1] = idx;
6411
6412         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6413
6414         return hash & (num_fault_mutexes - 1);
6415 }
6416 #else
6417 /*
6418  * For uniprocessor systems we always use a single mutex, so just
6419  * return 0 and avoid the hashing overhead.
6420  */
6421 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6422 {
6423         return 0;
6424 }
6425 #endif
6426
6427 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6428                         unsigned long address, unsigned int flags)
6429 {
6430         vm_fault_t ret;
6431         u32 hash;
6432         struct folio *folio = NULL;
6433         struct folio *pagecache_folio = NULL;
6434         struct hstate *h = hstate_vma(vma);
6435         struct address_space *mapping;
6436         int need_wait_lock = 0;
6437         struct vm_fault vmf = {
6438                 .vma = vma,
6439                 .address = address & huge_page_mask(h),
6440                 .real_address = address,
6441                 .flags = flags,
6442                 .pgoff = vma_hugecache_offset(h, vma,
6443                                 address & huge_page_mask(h)),
6444                 /* TODO: Track hugetlb faults using vm_fault */
6445
6446                 /*
6447                  * Some fields may not be initialized, be careful as it may
6448                  * be hard to debug if called functions make assumptions
6449                  */
6450         };
6451
6452         /*
6453          * Serialize hugepage allocation and instantiation, so that we don't
6454          * get spurious allocation failures if two CPUs race to instantiate
6455          * the same page in the page cache.
6456          */
6457         mapping = vma->vm_file->f_mapping;
6458         hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6459         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6460
6461         /*
6462          * Acquire vma lock before calling huge_pte_alloc and hold
6463          * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6464          * being called elsewhere and making the vmf.pte no longer valid.
6465          */
6466         hugetlb_vma_lock_read(vma);
6467         vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6468         if (!vmf.pte) {
6469                 hugetlb_vma_unlock_read(vma);
6470                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6471                 return VM_FAULT_OOM;
6472         }
6473
6474         vmf.orig_pte = huge_ptep_get(vmf.pte);
6475         if (huge_pte_none_mostly(vmf.orig_pte)) {
6476                 if (is_pte_marker(vmf.orig_pte)) {
6477                         pte_marker marker =
6478                                 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6479
6480                         if (marker & PTE_MARKER_POISONED) {
6481                                 ret = VM_FAULT_HWPOISON_LARGE;
6482                                 goto out_mutex;
6483                         }
6484                 }
6485
6486                 /*
6487                  * Other PTE markers should be handled the same way as none PTE.
6488                  *
6489                  * hugetlb_no_page will drop vma lock and hugetlb fault
6490                  * mutex internally, which make us return immediately.
6491                  */
6492                 return hugetlb_no_page(mapping, &vmf);
6493         }
6494
6495         ret = 0;
6496
6497         /*
6498          * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6499          * point, so this check prevents the kernel from going below assuming
6500          * that we have an active hugepage in pagecache. This goto expects
6501          * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6502          * check will properly handle it.
6503          */
6504         if (!pte_present(vmf.orig_pte)) {
6505                 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6506                         /*
6507                          * Release the hugetlb fault lock now, but retain
6508                          * the vma lock, because it is needed to guard the
6509                          * huge_pte_lockptr() later in
6510                          * migration_entry_wait_huge(). The vma lock will
6511                          * be released there.
6512                          */
6513                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6514                         migration_entry_wait_huge(vma, vmf.pte);
6515                         return 0;
6516                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6517                         ret = VM_FAULT_HWPOISON_LARGE |
6518                             VM_FAULT_SET_HINDEX(hstate_index(h));
6519                 goto out_mutex;
6520         }
6521
6522         /*
6523          * If we are going to COW/unshare the mapping later, we examine the
6524          * pending reservations for this page now. This will ensure that any
6525          * allocations necessary to record that reservation occur outside the
6526          * spinlock. Also lookup the pagecache page now as it is used to
6527          * determine if a reservation has been consumed.
6528          */
6529         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6530             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6531                 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6532                         ret = VM_FAULT_OOM;
6533                         goto out_mutex;
6534                 }
6535                 /* Just decrements count, does not deallocate */
6536                 vma_end_reservation(h, vma, vmf.address);
6537
6538                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6539                                                              vmf.pgoff);
6540                 if (IS_ERR(pagecache_folio))
6541                         pagecache_folio = NULL;
6542         }
6543
6544         vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6545
6546         /* Check for a racing update before calling hugetlb_wp() */
6547         if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte))))
6548                 goto out_ptl;
6549
6550         /* Handle userfault-wp first, before trying to lock more pages */
6551         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) &&
6552             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6553                 if (!userfaultfd_wp_async(vma)) {
6554                         spin_unlock(vmf.ptl);
6555                         if (pagecache_folio) {
6556                                 folio_unlock(pagecache_folio);
6557                                 folio_put(pagecache_folio);
6558                         }
6559                         hugetlb_vma_unlock_read(vma);
6560                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6561                         return handle_userfault(&vmf, VM_UFFD_WP);
6562                 }
6563
6564                 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6565                 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6566                                 huge_page_size(hstate_vma(vma)));
6567                 /* Fallthrough to CoW */
6568         }
6569
6570         /*
6571          * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6572          * pagecache_folio, so here we need take the former one
6573          * when folio != pagecache_folio or !pagecache_folio.
6574          */
6575         folio = page_folio(pte_page(vmf.orig_pte));
6576         if (folio != pagecache_folio)
6577                 if (!folio_trylock(folio)) {
6578                         need_wait_lock = 1;
6579                         goto out_ptl;
6580                 }
6581
6582         folio_get(folio);
6583
6584         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6585                 if (!huge_pte_write(vmf.orig_pte)) {
6586                         ret = hugetlb_wp(pagecache_folio, &vmf);
6587                         goto out_put_page;
6588                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6589                         vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6590                 }
6591         }
6592         vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6593         if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6594                                                 flags & FAULT_FLAG_WRITE))
6595                 update_mmu_cache(vma, vmf.address, vmf.pte);
6596 out_put_page:
6597         if (folio != pagecache_folio)
6598                 folio_unlock(folio);
6599         folio_put(folio);
6600 out_ptl:
6601         spin_unlock(vmf.ptl);
6602
6603         if (pagecache_folio) {
6604                 folio_unlock(pagecache_folio);
6605                 folio_put(pagecache_folio);
6606         }
6607 out_mutex:
6608         hugetlb_vma_unlock_read(vma);
6609         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6610         /*
6611          * Generally it's safe to hold refcount during waiting page lock. But
6612          * here we just wait to defer the next page fault to avoid busy loop and
6613          * the page is not used after unlocked before returning from the current
6614          * page fault. So we are safe from accessing freed page, even if we wait
6615          * here without taking refcount.
6616          */
6617         if (need_wait_lock)
6618                 folio_wait_locked(folio);
6619         return ret;
6620 }
6621
6622 #ifdef CONFIG_USERFAULTFD
6623 /*
6624  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6625  */
6626 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6627                 struct vm_area_struct *vma, unsigned long address)
6628 {
6629         struct mempolicy *mpol;
6630         nodemask_t *nodemask;
6631         struct folio *folio;
6632         gfp_t gfp_mask;
6633         int node;
6634
6635         gfp_mask = htlb_alloc_mask(h);
6636         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6637         /*
6638          * This is used to allocate a temporary hugetlb to hold the copied
6639          * content, which will then be copied again to the final hugetlb
6640          * consuming a reservation. Set the alloc_fallback to false to indicate
6641          * that breaking the per-node hugetlb pool is not allowed in this case.
6642          */
6643         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6644         mpol_cond_put(mpol);
6645
6646         return folio;
6647 }
6648
6649 /*
6650  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6651  * with modifications for hugetlb pages.
6652  */
6653 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6654                              struct vm_area_struct *dst_vma,
6655                              unsigned long dst_addr,
6656                              unsigned long src_addr,
6657                              uffd_flags_t flags,
6658                              struct folio **foliop)
6659 {
6660         struct mm_struct *dst_mm = dst_vma->vm_mm;
6661         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6662         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6663         struct hstate *h = hstate_vma(dst_vma);
6664         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6665         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6666         unsigned long size;
6667         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6668         pte_t _dst_pte;
6669         spinlock_t *ptl;
6670         int ret = -ENOMEM;
6671         struct folio *folio;
6672         int writable;
6673         bool folio_in_pagecache = false;
6674
6675         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6676                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6677
6678                 /* Don't overwrite any existing PTEs (even markers) */
6679                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6680                         spin_unlock(ptl);
6681                         return -EEXIST;
6682                 }
6683
6684                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6685                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6686                                 huge_page_size(h));
6687
6688                 /* No need to invalidate - it was non-present before */
6689                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6690
6691                 spin_unlock(ptl);
6692                 return 0;
6693         }
6694
6695         if (is_continue) {
6696                 ret = -EFAULT;
6697                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6698                 if (IS_ERR(folio))
6699                         goto out;
6700                 folio_in_pagecache = true;
6701         } else if (!*foliop) {
6702                 /* If a folio already exists, then it's UFFDIO_COPY for
6703                  * a non-missing case. Return -EEXIST.
6704                  */
6705                 if (vm_shared &&
6706                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6707                         ret = -EEXIST;
6708                         goto out;
6709                 }
6710
6711                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6712                 if (IS_ERR(folio)) {
6713                         ret = -ENOMEM;
6714                         goto out;
6715                 }
6716
6717                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6718                                            false);
6719
6720                 /* fallback to copy_from_user outside mmap_lock */
6721                 if (unlikely(ret)) {
6722                         ret = -ENOENT;
6723                         /* Free the allocated folio which may have
6724                          * consumed a reservation.
6725                          */
6726                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6727                         folio_put(folio);
6728
6729                         /* Allocate a temporary folio to hold the copied
6730                          * contents.
6731                          */
6732                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6733                         if (!folio) {
6734                                 ret = -ENOMEM;
6735                                 goto out;
6736                         }
6737                         *foliop = folio;
6738                         /* Set the outparam foliop and return to the caller to
6739                          * copy the contents outside the lock. Don't free the
6740                          * folio.
6741                          */
6742                         goto out;
6743                 }
6744         } else {
6745                 if (vm_shared &&
6746                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6747                         folio_put(*foliop);
6748                         ret = -EEXIST;
6749                         *foliop = NULL;
6750                         goto out;
6751                 }
6752
6753                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6754                 if (IS_ERR(folio)) {
6755                         folio_put(*foliop);
6756                         ret = -ENOMEM;
6757                         *foliop = NULL;
6758                         goto out;
6759                 }
6760                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6761                 folio_put(*foliop);
6762                 *foliop = NULL;
6763                 if (ret) {
6764                         folio_put(folio);
6765                         goto out;
6766                 }
6767         }
6768
6769         /*
6770          * If we just allocated a new page, we need a memory barrier to ensure
6771          * that preceding stores to the page become visible before the
6772          * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6773          * is what we need.
6774          *
6775          * In the case where we have not allocated a new page (is_continue),
6776          * the page must already be uptodate. UFFDIO_CONTINUE already includes
6777          * an earlier smp_wmb() to ensure that prior stores will be visible
6778          * before the set_pte_at() write.
6779          */
6780         if (!is_continue)
6781                 __folio_mark_uptodate(folio);
6782         else
6783                 WARN_ON_ONCE(!folio_test_uptodate(folio));
6784
6785         /* Add shared, newly allocated pages to the page cache. */
6786         if (vm_shared && !is_continue) {
6787                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6788                 ret = -EFAULT;
6789                 if (idx >= size)
6790                         goto out_release_nounlock;
6791
6792                 /*
6793                  * Serialization between remove_inode_hugepages() and
6794                  * hugetlb_add_to_page_cache() below happens through the
6795                  * hugetlb_fault_mutex_table that here must be hold by
6796                  * the caller.
6797                  */
6798                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6799                 if (ret)
6800                         goto out_release_nounlock;
6801                 folio_in_pagecache = true;
6802         }
6803
6804         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6805
6806         ret = -EIO;
6807         if (folio_test_hwpoison(folio))
6808                 goto out_release_unlock;
6809
6810         /*
6811          * We allow to overwrite a pte marker: consider when both MISSING|WP
6812          * registered, we firstly wr-protect a none pte which has no page cache
6813          * page backing it, then access the page.
6814          */
6815         ret = -EEXIST;
6816         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6817                 goto out_release_unlock;
6818
6819         if (folio_in_pagecache)
6820                 hugetlb_add_file_rmap(folio);
6821         else
6822                 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6823
6824         /*
6825          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6826          * with wp flag set, don't set pte write bit.
6827          */
6828         if (wp_enabled || (is_continue && !vm_shared))
6829                 writable = 0;
6830         else
6831                 writable = dst_vma->vm_flags & VM_WRITE;
6832
6833         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6834         /*
6835          * Always mark UFFDIO_COPY page dirty; note that this may not be
6836          * extremely important for hugetlbfs for now since swapping is not
6837          * supported, but we should still be clear in that this page cannot be
6838          * thrown away at will, even if write bit not set.
6839          */
6840         _dst_pte = huge_pte_mkdirty(_dst_pte);
6841         _dst_pte = pte_mkyoung(_dst_pte);
6842
6843         if (wp_enabled)
6844                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6845
6846         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6847
6848         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6849
6850         /* No need to invalidate - it was non-present before */
6851         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6852
6853         spin_unlock(ptl);
6854         if (!is_continue)
6855                 folio_set_hugetlb_migratable(folio);
6856         if (vm_shared || is_continue)
6857                 folio_unlock(folio);
6858         ret = 0;
6859 out:
6860         return ret;
6861 out_release_unlock:
6862         spin_unlock(ptl);
6863         if (vm_shared || is_continue)
6864                 folio_unlock(folio);
6865 out_release_nounlock:
6866         if (!folio_in_pagecache)
6867                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6868         folio_put(folio);
6869         goto out;
6870 }
6871 #endif /* CONFIG_USERFAULTFD */
6872
6873 long hugetlb_change_protection(struct vm_area_struct *vma,
6874                 unsigned long address, unsigned long end,
6875                 pgprot_t newprot, unsigned long cp_flags)
6876 {
6877         struct mm_struct *mm = vma->vm_mm;
6878         unsigned long start = address;
6879         pte_t *ptep;
6880         pte_t pte;
6881         struct hstate *h = hstate_vma(vma);
6882         long pages = 0, psize = huge_page_size(h);
6883         bool shared_pmd = false;
6884         struct mmu_notifier_range range;
6885         unsigned long last_addr_mask;
6886         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6887         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6888
6889         /*
6890          * In the case of shared PMDs, the area to flush could be beyond
6891          * start/end.  Set range.start/range.end to cover the maximum possible
6892          * range if PMD sharing is possible.
6893          */
6894         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6895                                 0, mm, start, end);
6896         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6897
6898         BUG_ON(address >= end);
6899         flush_cache_range(vma, range.start, range.end);
6900
6901         mmu_notifier_invalidate_range_start(&range);
6902         hugetlb_vma_lock_write(vma);
6903         i_mmap_lock_write(vma->vm_file->f_mapping);
6904         last_addr_mask = hugetlb_mask_last_page(h);
6905         for (; address < end; address += psize) {
6906                 spinlock_t *ptl;
6907                 ptep = hugetlb_walk(vma, address, psize);
6908                 if (!ptep) {
6909                         if (!uffd_wp) {
6910                                 address |= last_addr_mask;
6911                                 continue;
6912                         }
6913                         /*
6914                          * Userfaultfd wr-protect requires pgtable
6915                          * pre-allocations to install pte markers.
6916                          */
6917                         ptep = huge_pte_alloc(mm, vma, address, psize);
6918                         if (!ptep) {
6919                                 pages = -ENOMEM;
6920                                 break;
6921                         }
6922                 }
6923                 ptl = huge_pte_lock(h, mm, ptep);
6924                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6925                         /*
6926                          * When uffd-wp is enabled on the vma, unshare
6927                          * shouldn't happen at all.  Warn about it if it
6928                          * happened due to some reason.
6929                          */
6930                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6931                         pages++;
6932                         spin_unlock(ptl);
6933                         shared_pmd = true;
6934                         address |= last_addr_mask;
6935                         continue;
6936                 }
6937                 pte = huge_ptep_get(ptep);
6938                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6939                         /* Nothing to do. */
6940                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6941                         swp_entry_t entry = pte_to_swp_entry(pte);
6942                         struct page *page = pfn_swap_entry_to_page(entry);
6943                         pte_t newpte = pte;
6944
6945                         if (is_writable_migration_entry(entry)) {
6946                                 if (PageAnon(page))
6947                                         entry = make_readable_exclusive_migration_entry(
6948                                                                 swp_offset(entry));
6949                                 else
6950                                         entry = make_readable_migration_entry(
6951                                                                 swp_offset(entry));
6952                                 newpte = swp_entry_to_pte(entry);
6953                                 pages++;
6954                         }
6955
6956                         if (uffd_wp)
6957                                 newpte = pte_swp_mkuffd_wp(newpte);
6958                         else if (uffd_wp_resolve)
6959                                 newpte = pte_swp_clear_uffd_wp(newpte);
6960                         if (!pte_same(pte, newpte))
6961                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6962                 } else if (unlikely(is_pte_marker(pte))) {
6963                         /*
6964                          * Do nothing on a poison marker; page is
6965                          * corrupted, permissons do not apply.  Here
6966                          * pte_marker_uffd_wp()==true implies !poison
6967                          * because they're mutual exclusive.
6968                          */
6969                         if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6970                                 /* Safe to modify directly (non-present->none). */
6971                                 huge_pte_clear(mm, address, ptep, psize);
6972                 } else if (!huge_pte_none(pte)) {
6973                         pte_t old_pte;
6974                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6975
6976                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6977                         pte = huge_pte_modify(old_pte, newprot);
6978                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6979                         if (uffd_wp)
6980                                 pte = huge_pte_mkuffd_wp(pte);
6981                         else if (uffd_wp_resolve)
6982                                 pte = huge_pte_clear_uffd_wp(pte);
6983                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6984                         pages++;
6985                 } else {
6986                         /* None pte */
6987                         if (unlikely(uffd_wp))
6988                                 /* Safe to modify directly (none->non-present). */
6989                                 set_huge_pte_at(mm, address, ptep,
6990                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6991                                                 psize);
6992                 }
6993                 spin_unlock(ptl);
6994         }
6995         /*
6996          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6997          * may have cleared our pud entry and done put_page on the page table:
6998          * once we release i_mmap_rwsem, another task can do the final put_page
6999          * and that page table be reused and filled with junk.  If we actually
7000          * did unshare a page of pmds, flush the range corresponding to the pud.
7001          */
7002         if (shared_pmd)
7003                 flush_hugetlb_tlb_range(vma, range.start, range.end);
7004         else
7005                 flush_hugetlb_tlb_range(vma, start, end);
7006         /*
7007          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7008          * downgrading page table protection not changing it to point to a new
7009          * page.
7010          *
7011          * See Documentation/mm/mmu_notifier.rst
7012          */
7013         i_mmap_unlock_write(vma->vm_file->f_mapping);
7014         hugetlb_vma_unlock_write(vma);
7015         mmu_notifier_invalidate_range_end(&range);
7016
7017         return pages > 0 ? (pages << h->order) : pages;
7018 }
7019
7020 /* Return true if reservation was successful, false otherwise.  */
7021 bool hugetlb_reserve_pages(struct inode *inode,
7022                                         long from, long to,
7023                                         struct vm_area_struct *vma,
7024                                         vm_flags_t vm_flags)
7025 {
7026         long chg = -1, add = -1;
7027         struct hstate *h = hstate_inode(inode);
7028         struct hugepage_subpool *spool = subpool_inode(inode);
7029         struct resv_map *resv_map;
7030         struct hugetlb_cgroup *h_cg = NULL;
7031         long gbl_reserve, regions_needed = 0;
7032
7033         /* This should never happen */
7034         if (from > to) {
7035                 VM_WARN(1, "%s called with a negative range\n", __func__);
7036                 return false;
7037         }
7038
7039         /*
7040          * vma specific semaphore used for pmd sharing and fault/truncation
7041          * synchronization
7042          */
7043         hugetlb_vma_lock_alloc(vma);
7044
7045         /*
7046          * Only apply hugepage reservation if asked. At fault time, an
7047          * attempt will be made for VM_NORESERVE to allocate a page
7048          * without using reserves
7049          */
7050         if (vm_flags & VM_NORESERVE)
7051                 return true;
7052
7053         /*
7054          * Shared mappings base their reservation on the number of pages that
7055          * are already allocated on behalf of the file. Private mappings need
7056          * to reserve the full area even if read-only as mprotect() may be
7057          * called to make the mapping read-write. Assume !vma is a shm mapping
7058          */
7059         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7060                 /*
7061                  * resv_map can not be NULL as hugetlb_reserve_pages is only
7062                  * called for inodes for which resv_maps were created (see
7063                  * hugetlbfs_get_inode).
7064                  */
7065                 resv_map = inode_resv_map(inode);
7066
7067                 chg = region_chg(resv_map, from, to, &regions_needed);
7068         } else {
7069                 /* Private mapping. */
7070                 resv_map = resv_map_alloc();
7071                 if (!resv_map)
7072                         goto out_err;
7073
7074                 chg = to - from;
7075
7076                 set_vma_resv_map(vma, resv_map);
7077                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7078         }
7079
7080         if (chg < 0)
7081                 goto out_err;
7082
7083         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7084                                 chg * pages_per_huge_page(h), &h_cg) < 0)
7085                 goto out_err;
7086
7087         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7088                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7089                  * of the resv_map.
7090                  */
7091                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7092         }
7093
7094         /*
7095          * There must be enough pages in the subpool for the mapping. If
7096          * the subpool has a minimum size, there may be some global
7097          * reservations already in place (gbl_reserve).
7098          */
7099         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7100         if (gbl_reserve < 0)
7101                 goto out_uncharge_cgroup;
7102
7103         /*
7104          * Check enough hugepages are available for the reservation.
7105          * Hand the pages back to the subpool if there are not
7106          */
7107         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7108                 goto out_put_pages;
7109
7110         /*
7111          * Account for the reservations made. Shared mappings record regions
7112          * that have reservations as they are shared by multiple VMAs.
7113          * When the last VMA disappears, the region map says how much
7114          * the reservation was and the page cache tells how much of
7115          * the reservation was consumed. Private mappings are per-VMA and
7116          * only the consumed reservations are tracked. When the VMA
7117          * disappears, the original reservation is the VMA size and the
7118          * consumed reservations are stored in the map. Hence, nothing
7119          * else has to be done for private mappings here
7120          */
7121         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7122                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7123
7124                 if (unlikely(add < 0)) {
7125                         hugetlb_acct_memory(h, -gbl_reserve);
7126                         goto out_put_pages;
7127                 } else if (unlikely(chg > add)) {
7128                         /*
7129                          * pages in this range were added to the reserve
7130                          * map between region_chg and region_add.  This
7131                          * indicates a race with alloc_hugetlb_folio.  Adjust
7132                          * the subpool and reserve counts modified above
7133                          * based on the difference.
7134                          */
7135                         long rsv_adjust;
7136
7137                         /*
7138                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7139                          * reference to h_cg->css. See comment below for detail.
7140                          */
7141                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7142                                 hstate_index(h),
7143                                 (chg - add) * pages_per_huge_page(h), h_cg);
7144
7145                         rsv_adjust = hugepage_subpool_put_pages(spool,
7146                                                                 chg - add);
7147                         hugetlb_acct_memory(h, -rsv_adjust);
7148                 } else if (h_cg) {
7149                         /*
7150                          * The file_regions will hold their own reference to
7151                          * h_cg->css. So we should release the reference held
7152                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7153                          * done.
7154                          */
7155                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7156                 }
7157         }
7158         return true;
7159
7160 out_put_pages:
7161         /* put back original number of pages, chg */
7162         (void)hugepage_subpool_put_pages(spool, chg);
7163 out_uncharge_cgroup:
7164         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7165                                             chg * pages_per_huge_page(h), h_cg);
7166 out_err:
7167         hugetlb_vma_lock_free(vma);
7168         if (!vma || vma->vm_flags & VM_MAYSHARE)
7169                 /* Only call region_abort if the region_chg succeeded but the
7170                  * region_add failed or didn't run.
7171                  */
7172                 if (chg >= 0 && add < 0)
7173                         region_abort(resv_map, from, to, regions_needed);
7174         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7175                 kref_put(&resv_map->refs, resv_map_release);
7176                 set_vma_resv_map(vma, NULL);
7177         }
7178         return false;
7179 }
7180
7181 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7182                                                                 long freed)
7183 {
7184         struct hstate *h = hstate_inode(inode);
7185         struct resv_map *resv_map = inode_resv_map(inode);
7186         long chg = 0;
7187         struct hugepage_subpool *spool = subpool_inode(inode);
7188         long gbl_reserve;
7189
7190         /*
7191          * Since this routine can be called in the evict inode path for all
7192          * hugetlbfs inodes, resv_map could be NULL.
7193          */
7194         if (resv_map) {
7195                 chg = region_del(resv_map, start, end);
7196                 /*
7197                  * region_del() can fail in the rare case where a region
7198                  * must be split and another region descriptor can not be
7199                  * allocated.  If end == LONG_MAX, it will not fail.
7200                  */
7201                 if (chg < 0)
7202                         return chg;
7203         }
7204
7205         spin_lock(&inode->i_lock);
7206         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7207         spin_unlock(&inode->i_lock);
7208
7209         /*
7210          * If the subpool has a minimum size, the number of global
7211          * reservations to be released may be adjusted.
7212          *
7213          * Note that !resv_map implies freed == 0. So (chg - freed)
7214          * won't go negative.
7215          */
7216         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7217         hugetlb_acct_memory(h, -gbl_reserve);
7218
7219         return 0;
7220 }
7221
7222 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7223 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7224                                 struct vm_area_struct *vma,
7225                                 unsigned long addr, pgoff_t idx)
7226 {
7227         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7228                                 svma->vm_start;
7229         unsigned long sbase = saddr & PUD_MASK;
7230         unsigned long s_end = sbase + PUD_SIZE;
7231
7232         /* Allow segments to share if only one is marked locked */
7233         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7234         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7235
7236         /*
7237          * match the virtual addresses, permission and the alignment of the
7238          * page table page.
7239          *
7240          * Also, vma_lock (vm_private_data) is required for sharing.
7241          */
7242         if (pmd_index(addr) != pmd_index(saddr) ||
7243             vm_flags != svm_flags ||
7244             !range_in_vma(svma, sbase, s_end) ||
7245             !svma->vm_private_data)
7246                 return 0;
7247
7248         return saddr;
7249 }
7250
7251 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7252 {
7253         unsigned long start = addr & PUD_MASK;
7254         unsigned long end = start + PUD_SIZE;
7255
7256 #ifdef CONFIG_USERFAULTFD
7257         if (uffd_disable_huge_pmd_share(vma))
7258                 return false;
7259 #endif
7260         /*
7261          * check on proper vm_flags and page table alignment
7262          */
7263         if (!(vma->vm_flags & VM_MAYSHARE))
7264                 return false;
7265         if (!vma->vm_private_data)      /* vma lock required for sharing */
7266                 return false;
7267         if (!range_in_vma(vma, start, end))
7268                 return false;
7269         return true;
7270 }
7271
7272 /*
7273  * Determine if start,end range within vma could be mapped by shared pmd.
7274  * If yes, adjust start and end to cover range associated with possible
7275  * shared pmd mappings.
7276  */
7277 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7278                                 unsigned long *start, unsigned long *end)
7279 {
7280         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7281                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7282
7283         /*
7284          * vma needs to span at least one aligned PUD size, and the range
7285          * must be at least partially within in.
7286          */
7287         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7288                 (*end <= v_start) || (*start >= v_end))
7289                 return;
7290
7291         /* Extend the range to be PUD aligned for a worst case scenario */
7292         if (*start > v_start)
7293                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7294
7295         if (*end < v_end)
7296                 *end = ALIGN(*end, PUD_SIZE);
7297 }
7298
7299 /*
7300  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7301  * and returns the corresponding pte. While this is not necessary for the
7302  * !shared pmd case because we can allocate the pmd later as well, it makes the
7303  * code much cleaner. pmd allocation is essential for the shared case because
7304  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7305  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7306  * bad pmd for sharing.
7307  */
7308 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7309                       unsigned long addr, pud_t *pud)
7310 {
7311         struct address_space *mapping = vma->vm_file->f_mapping;
7312         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7313                         vma->vm_pgoff;
7314         struct vm_area_struct *svma;
7315         unsigned long saddr;
7316         pte_t *spte = NULL;
7317         pte_t *pte;
7318
7319         i_mmap_lock_read(mapping);
7320         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7321                 if (svma == vma)
7322                         continue;
7323
7324                 saddr = page_table_shareable(svma, vma, addr, idx);
7325                 if (saddr) {
7326                         spte = hugetlb_walk(svma, saddr,
7327                                             vma_mmu_pagesize(svma));
7328                         if (spte) {
7329                                 get_page(virt_to_page(spte));
7330                                 break;
7331                         }
7332                 }
7333         }
7334
7335         if (!spte)
7336                 goto out;
7337
7338         spin_lock(&mm->page_table_lock);
7339         if (pud_none(*pud)) {
7340                 pud_populate(mm, pud,
7341                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7342                 mm_inc_nr_pmds(mm);
7343         } else {
7344                 put_page(virt_to_page(spte));
7345         }
7346         spin_unlock(&mm->page_table_lock);
7347 out:
7348         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7349         i_mmap_unlock_read(mapping);
7350         return pte;
7351 }
7352
7353 /*
7354  * unmap huge page backed by shared pte.
7355  *
7356  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7357  * indicated by page_count > 1, unmap is achieved by clearing pud and
7358  * decrementing the ref count. If count == 1, the pte page is not shared.
7359  *
7360  * Called with page table lock held.
7361  *
7362  * returns: 1 successfully unmapped a shared pte page
7363  *          0 the underlying pte page is not shared, or it is the last user
7364  */
7365 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7366                                         unsigned long addr, pte_t *ptep)
7367 {
7368         pgd_t *pgd = pgd_offset(mm, addr);
7369         p4d_t *p4d = p4d_offset(pgd, addr);
7370         pud_t *pud = pud_offset(p4d, addr);
7371
7372         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7373         hugetlb_vma_assert_locked(vma);
7374         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7375         if (page_count(virt_to_page(ptep)) == 1)
7376                 return 0;
7377
7378         pud_clear(pud);
7379         put_page(virt_to_page(ptep));
7380         mm_dec_nr_pmds(mm);
7381         return 1;
7382 }
7383
7384 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7385
7386 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7387                       unsigned long addr, pud_t *pud)
7388 {
7389         return NULL;
7390 }
7391
7392 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7393                                 unsigned long addr, pte_t *ptep)
7394 {
7395         return 0;
7396 }
7397
7398 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7399                                 unsigned long *start, unsigned long *end)
7400 {
7401 }
7402
7403 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7404 {
7405         return false;
7406 }
7407 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7408
7409 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7410 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7411                         unsigned long addr, unsigned long sz)
7412 {
7413         pgd_t *pgd;
7414         p4d_t *p4d;
7415         pud_t *pud;
7416         pte_t *pte = NULL;
7417
7418         pgd = pgd_offset(mm, addr);
7419         p4d = p4d_alloc(mm, pgd, addr);
7420         if (!p4d)
7421                 return NULL;
7422         pud = pud_alloc(mm, p4d, addr);
7423         if (pud) {
7424                 if (sz == PUD_SIZE) {
7425                         pte = (pte_t *)pud;
7426                 } else {
7427                         BUG_ON(sz != PMD_SIZE);
7428                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7429                                 pte = huge_pmd_share(mm, vma, addr, pud);
7430                         else
7431                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7432                 }
7433         }
7434
7435         if (pte) {
7436                 pte_t pteval = ptep_get_lockless(pte);
7437
7438                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7439         }
7440
7441         return pte;
7442 }
7443
7444 /*
7445  * huge_pte_offset() - Walk the page table to resolve the hugepage
7446  * entry at address @addr
7447  *
7448  * Return: Pointer to page table entry (PUD or PMD) for
7449  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7450  * size @sz doesn't match the hugepage size at this level of the page
7451  * table.
7452  */
7453 pte_t *huge_pte_offset(struct mm_struct *mm,
7454                        unsigned long addr, unsigned long sz)
7455 {
7456         pgd_t *pgd;
7457         p4d_t *p4d;
7458         pud_t *pud;
7459         pmd_t *pmd;
7460
7461         pgd = pgd_offset(mm, addr);
7462         if (!pgd_present(*pgd))
7463                 return NULL;
7464         p4d = p4d_offset(pgd, addr);
7465         if (!p4d_present(*p4d))
7466                 return NULL;
7467
7468         pud = pud_offset(p4d, addr);
7469         if (sz == PUD_SIZE)
7470                 /* must be pud huge, non-present or none */
7471                 return (pte_t *)pud;
7472         if (!pud_present(*pud))
7473                 return NULL;
7474         /* must have a valid entry and size to go further */
7475
7476         pmd = pmd_offset(pud, addr);
7477         /* must be pmd huge, non-present or none */
7478         return (pte_t *)pmd;
7479 }
7480
7481 /*
7482  * Return a mask that can be used to update an address to the last huge
7483  * page in a page table page mapping size.  Used to skip non-present
7484  * page table entries when linearly scanning address ranges.  Architectures
7485  * with unique huge page to page table relationships can define their own
7486  * version of this routine.
7487  */
7488 unsigned long hugetlb_mask_last_page(struct hstate *h)
7489 {
7490         unsigned long hp_size = huge_page_size(h);
7491
7492         if (hp_size == PUD_SIZE)
7493                 return P4D_SIZE - PUD_SIZE;
7494         else if (hp_size == PMD_SIZE)
7495                 return PUD_SIZE - PMD_SIZE;
7496         else
7497                 return 0UL;
7498 }
7499
7500 #else
7501
7502 /* See description above.  Architectures can provide their own version. */
7503 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7504 {
7505 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7506         if (huge_page_size(h) == PMD_SIZE)
7507                 return PUD_SIZE - PMD_SIZE;
7508 #endif
7509         return 0UL;
7510 }
7511
7512 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7513
7514 /*
7515  * These functions are overwritable if your architecture needs its own
7516  * behavior.
7517  */
7518 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7519 {
7520         bool ret = true;
7521
7522         spin_lock_irq(&hugetlb_lock);
7523         if (!folio_test_hugetlb(folio) ||
7524             !folio_test_hugetlb_migratable(folio) ||
7525             !folio_try_get(folio)) {
7526                 ret = false;
7527                 goto unlock;
7528         }
7529         folio_clear_hugetlb_migratable(folio);
7530         list_move_tail(&folio->lru, list);
7531 unlock:
7532         spin_unlock_irq(&hugetlb_lock);
7533         return ret;
7534 }
7535
7536 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7537 {
7538         int ret = 0;
7539
7540         *hugetlb = false;
7541         spin_lock_irq(&hugetlb_lock);
7542         if (folio_test_hugetlb(folio)) {
7543                 *hugetlb = true;
7544                 if (folio_test_hugetlb_freed(folio))
7545                         ret = 0;
7546                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7547                         ret = folio_try_get(folio);
7548                 else
7549                         ret = -EBUSY;
7550         }
7551         spin_unlock_irq(&hugetlb_lock);
7552         return ret;
7553 }
7554
7555 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7556                                 bool *migratable_cleared)
7557 {
7558         int ret;
7559
7560         spin_lock_irq(&hugetlb_lock);
7561         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7562         spin_unlock_irq(&hugetlb_lock);
7563         return ret;
7564 }
7565
7566 void folio_putback_active_hugetlb(struct folio *folio)
7567 {
7568         spin_lock_irq(&hugetlb_lock);
7569         folio_set_hugetlb_migratable(folio);
7570         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7571         spin_unlock_irq(&hugetlb_lock);
7572         folio_put(folio);
7573 }
7574
7575 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7576 {
7577         struct hstate *h = folio_hstate(old_folio);
7578
7579         hugetlb_cgroup_migrate(old_folio, new_folio);
7580         set_page_owner_migrate_reason(&new_folio->page, reason);
7581
7582         /*
7583          * transfer temporary state of the new hugetlb folio. This is
7584          * reverse to other transitions because the newpage is going to
7585          * be final while the old one will be freed so it takes over
7586          * the temporary status.
7587          *
7588          * Also note that we have to transfer the per-node surplus state
7589          * here as well otherwise the global surplus count will not match
7590          * the per-node's.
7591          */
7592         if (folio_test_hugetlb_temporary(new_folio)) {
7593                 int old_nid = folio_nid(old_folio);
7594                 int new_nid = folio_nid(new_folio);
7595
7596                 folio_set_hugetlb_temporary(old_folio);
7597                 folio_clear_hugetlb_temporary(new_folio);
7598
7599
7600                 /*
7601                  * There is no need to transfer the per-node surplus state
7602                  * when we do not cross the node.
7603                  */
7604                 if (new_nid == old_nid)
7605                         return;
7606                 spin_lock_irq(&hugetlb_lock);
7607                 if (h->surplus_huge_pages_node[old_nid]) {
7608                         h->surplus_huge_pages_node[old_nid]--;
7609                         h->surplus_huge_pages_node[new_nid]++;
7610                 }
7611                 spin_unlock_irq(&hugetlb_lock);
7612         }
7613 }
7614
7615 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7616                                    unsigned long start,
7617                                    unsigned long end)
7618 {
7619         struct hstate *h = hstate_vma(vma);
7620         unsigned long sz = huge_page_size(h);
7621         struct mm_struct *mm = vma->vm_mm;
7622         struct mmu_notifier_range range;
7623         unsigned long address;
7624         spinlock_t *ptl;
7625         pte_t *ptep;
7626
7627         if (!(vma->vm_flags & VM_MAYSHARE))
7628                 return;
7629
7630         if (start >= end)
7631                 return;
7632
7633         flush_cache_range(vma, start, end);
7634         /*
7635          * No need to call adjust_range_if_pmd_sharing_possible(), because
7636          * we have already done the PUD_SIZE alignment.
7637          */
7638         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7639                                 start, end);
7640         mmu_notifier_invalidate_range_start(&range);
7641         hugetlb_vma_lock_write(vma);
7642         i_mmap_lock_write(vma->vm_file->f_mapping);
7643         for (address = start; address < end; address += PUD_SIZE) {
7644                 ptep = hugetlb_walk(vma, address, sz);
7645                 if (!ptep)
7646                         continue;
7647                 ptl = huge_pte_lock(h, mm, ptep);
7648                 huge_pmd_unshare(mm, vma, address, ptep);
7649                 spin_unlock(ptl);
7650         }
7651         flush_hugetlb_tlb_range(vma, start, end);
7652         i_mmap_unlock_write(vma->vm_file->f_mapping);
7653         hugetlb_vma_unlock_write(vma);
7654         /*
7655          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7656          * Documentation/mm/mmu_notifier.rst.
7657          */
7658         mmu_notifier_invalidate_range_end(&range);
7659 }
7660
7661 /*
7662  * This function will unconditionally remove all the shared pmd pgtable entries
7663  * within the specific vma for a hugetlbfs memory range.
7664  */
7665 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7666 {
7667         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7668                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7669 }
7670
7671 #ifdef CONFIG_CMA
7672 static bool cma_reserve_called __initdata;
7673
7674 static int __init cmdline_parse_hugetlb_cma(char *p)
7675 {
7676         int nid, count = 0;
7677         unsigned long tmp;
7678         char *s = p;
7679
7680         while (*s) {
7681                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7682                         break;
7683
7684                 if (s[count] == ':') {
7685                         if (tmp >= MAX_NUMNODES)
7686                                 break;
7687                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7688
7689                         s += count + 1;
7690                         tmp = memparse(s, &s);
7691                         hugetlb_cma_size_in_node[nid] = tmp;
7692                         hugetlb_cma_size += tmp;
7693
7694                         /*
7695                          * Skip the separator if have one, otherwise
7696                          * break the parsing.
7697                          */
7698                         if (*s == ',')
7699                                 s++;
7700                         else
7701                                 break;
7702                 } else {
7703                         hugetlb_cma_size = memparse(p, &p);
7704                         break;
7705                 }
7706         }
7707
7708         return 0;
7709 }
7710
7711 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7712
7713 void __init hugetlb_cma_reserve(int order)
7714 {
7715         unsigned long size, reserved, per_node;
7716         bool node_specific_cma_alloc = false;
7717         int nid;
7718
7719         /*
7720          * HugeTLB CMA reservation is required for gigantic
7721          * huge pages which could not be allocated via the
7722          * page allocator. Just warn if there is any change
7723          * breaking this assumption.
7724          */
7725         VM_WARN_ON(order <= MAX_PAGE_ORDER);
7726         cma_reserve_called = true;
7727
7728         if (!hugetlb_cma_size)
7729                 return;
7730
7731         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7732                 if (hugetlb_cma_size_in_node[nid] == 0)
7733                         continue;
7734
7735                 if (!node_online(nid)) {
7736                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7737                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7738                         hugetlb_cma_size_in_node[nid] = 0;
7739                         continue;
7740                 }
7741
7742                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7743                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7744                                 nid, (PAGE_SIZE << order) / SZ_1M);
7745                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7746                         hugetlb_cma_size_in_node[nid] = 0;
7747                 } else {
7748                         node_specific_cma_alloc = true;
7749                 }
7750         }
7751
7752         /* Validate the CMA size again in case some invalid nodes specified. */
7753         if (!hugetlb_cma_size)
7754                 return;
7755
7756         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7757                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7758                         (PAGE_SIZE << order) / SZ_1M);
7759                 hugetlb_cma_size = 0;
7760                 return;
7761         }
7762
7763         if (!node_specific_cma_alloc) {
7764                 /*
7765                  * If 3 GB area is requested on a machine with 4 numa nodes,
7766                  * let's allocate 1 GB on first three nodes and ignore the last one.
7767                  */
7768                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7769                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7770                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7771         }
7772
7773         reserved = 0;
7774         for_each_online_node(nid) {
7775                 int res;
7776                 char name[CMA_MAX_NAME];
7777
7778                 if (node_specific_cma_alloc) {
7779                         if (hugetlb_cma_size_in_node[nid] == 0)
7780                                 continue;
7781
7782                         size = hugetlb_cma_size_in_node[nid];
7783                 } else {
7784                         size = min(per_node, hugetlb_cma_size - reserved);
7785                 }
7786
7787                 size = round_up(size, PAGE_SIZE << order);
7788
7789                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7790                 /*
7791                  * Note that 'order per bit' is based on smallest size that
7792                  * may be returned to CMA allocator in the case of
7793                  * huge page demotion.
7794                  */
7795                 res = cma_declare_contiguous_nid(0, size, 0,
7796                                         PAGE_SIZE << HUGETLB_PAGE_ORDER,
7797                                         HUGETLB_PAGE_ORDER, false, name,
7798                                         &hugetlb_cma[nid], nid);
7799                 if (res) {
7800                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7801                                 res, nid);
7802                         continue;
7803                 }
7804
7805                 reserved += size;
7806                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7807                         size / SZ_1M, nid);
7808
7809                 if (reserved >= hugetlb_cma_size)
7810                         break;
7811         }
7812
7813         if (!reserved)
7814                 /*
7815                  * hugetlb_cma_size is used to determine if allocations from
7816                  * cma are possible.  Set to zero if no cma regions are set up.
7817                  */
7818                 hugetlb_cma_size = 0;
7819 }
7820
7821 static void __init hugetlb_cma_check(void)
7822 {
7823         if (!hugetlb_cma_size || cma_reserve_called)
7824                 return;
7825
7826         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7827 }
7828
7829 #endif /* CONFIG_CMA */