blk-throttle: fix lockdep warning of "cgroup_mutex or RCU read lock required!"
[linux-block.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61                                 1 << order);
62 }
63 #else
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66         return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82  * free_huge_pages, and surplus_huge_pages.
83  */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87  * Serializes faults on the same logical page.  This is used to
88  * prevent spurious OOMs when the hugepage pool is fully utilized.
89  */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99                 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104         if (spool->count)
105                 return false;
106         if (spool->max_hpages != -1)
107                 return spool->used_hpages == 0;
108         if (spool->min_hpages != -1)
109                 return spool->rsv_hpages == spool->min_hpages;
110
111         return true;
112 }
113
114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115                                                 unsigned long irq_flags)
116 {
117         spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119         /* If no pages are used, and no other handles to the subpool
120          * remain, give up any reservations based on minimum size and
121          * free the subpool */
122         if (subpool_is_free(spool)) {
123                 if (spool->min_hpages != -1)
124                         hugetlb_acct_memory(spool->hstate,
125                                                 -spool->min_hpages);
126                 kfree(spool);
127         }
128 }
129
130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131                                                 long min_hpages)
132 {
133         struct hugepage_subpool *spool;
134
135         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136         if (!spool)
137                 return NULL;
138
139         spin_lock_init(&spool->lock);
140         spool->count = 1;
141         spool->max_hpages = max_hpages;
142         spool->hstate = h;
143         spool->min_hpages = min_hpages;
144
145         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146                 kfree(spool);
147                 return NULL;
148         }
149         spool->rsv_hpages = min_hpages;
150
151         return spool;
152 }
153
154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156         unsigned long flags;
157
158         spin_lock_irqsave(&spool->lock, flags);
159         BUG_ON(!spool->count);
160         spool->count--;
161         unlock_or_release_subpool(spool, flags);
162 }
163
164 /*
165  * Subpool accounting for allocating and reserving pages.
166  * Return -ENOMEM if there are not enough resources to satisfy the
167  * request.  Otherwise, return the number of pages by which the
168  * global pools must be adjusted (upward).  The returned value may
169  * only be different than the passed value (delta) in the case where
170  * a subpool minimum size must be maintained.
171  */
172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173                                       long delta)
174 {
175         long ret = delta;
176
177         if (!spool)
178                 return ret;
179
180         spin_lock_irq(&spool->lock);
181
182         if (spool->max_hpages != -1) {          /* maximum size accounting */
183                 if ((spool->used_hpages + delta) <= spool->max_hpages)
184                         spool->used_hpages += delta;
185                 else {
186                         ret = -ENOMEM;
187                         goto unlock_ret;
188                 }
189         }
190
191         /* minimum size accounting */
192         if (spool->min_hpages != -1 && spool->rsv_hpages) {
193                 if (delta > spool->rsv_hpages) {
194                         /*
195                          * Asking for more reserves than those already taken on
196                          * behalf of subpool.  Return difference.
197                          */
198                         ret = delta - spool->rsv_hpages;
199                         spool->rsv_hpages = 0;
200                 } else {
201                         ret = 0;        /* reserves already accounted for */
202                         spool->rsv_hpages -= delta;
203                 }
204         }
205
206 unlock_ret:
207         spin_unlock_irq(&spool->lock);
208         return ret;
209 }
210
211 /*
212  * Subpool accounting for freeing and unreserving pages.
213  * Return the number of global page reservations that must be dropped.
214  * The return value may only be different than the passed value (delta)
215  * in the case where a subpool minimum size must be maintained.
216  */
217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218                                        long delta)
219 {
220         long ret = delta;
221         unsigned long flags;
222
223         if (!spool)
224                 return delta;
225
226         spin_lock_irqsave(&spool->lock, flags);
227
228         if (spool->max_hpages != -1)            /* maximum size accounting */
229                 spool->used_hpages -= delta;
230
231          /* minimum size accounting */
232         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233                 if (spool->rsv_hpages + delta <= spool->min_hpages)
234                         ret = 0;
235                 else
236                         ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238                 spool->rsv_hpages += delta;
239                 if (spool->rsv_hpages > spool->min_hpages)
240                         spool->rsv_hpages = spool->min_hpages;
241         }
242
243         /*
244          * If hugetlbfs_put_super couldn't free spool due to an outstanding
245          * quota reference, free it now.
246          */
247         unlock_or_release_subpool(spool, flags);
248
249         return ret;
250 }
251
252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254         return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256
257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259         return subpool_inode(file_inode(vma->vm_file));
260 }
261
262 /*
263  * hugetlb vma_lock helper routines
264  */
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267         if (__vma_shareable_lock(vma)) {
268                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270                 down_read(&vma_lock->rw_sema);
271         } else if (__vma_private_lock(vma)) {
272                 struct resv_map *resv_map = vma_resv_map(vma);
273
274                 down_read(&resv_map->rw_sema);
275         }
276 }
277
278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280         if (__vma_shareable_lock(vma)) {
281                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283                 up_read(&vma_lock->rw_sema);
284         } else if (__vma_private_lock(vma)) {
285                 struct resv_map *resv_map = vma_resv_map(vma);
286
287                 up_read(&resv_map->rw_sema);
288         }
289 }
290
291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293         if (__vma_shareable_lock(vma)) {
294                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296                 down_write(&vma_lock->rw_sema);
297         } else if (__vma_private_lock(vma)) {
298                 struct resv_map *resv_map = vma_resv_map(vma);
299
300                 down_write(&resv_map->rw_sema);
301         }
302 }
303
304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306         if (__vma_shareable_lock(vma)) {
307                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309                 up_write(&vma_lock->rw_sema);
310         } else if (__vma_private_lock(vma)) {
311                 struct resv_map *resv_map = vma_resv_map(vma);
312
313                 up_write(&resv_map->rw_sema);
314         }
315 }
316
317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319
320         if (__vma_shareable_lock(vma)) {
321                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323                 return down_write_trylock(&vma_lock->rw_sema);
324         } else if (__vma_private_lock(vma)) {
325                 struct resv_map *resv_map = vma_resv_map(vma);
326
327                 return down_write_trylock(&resv_map->rw_sema);
328         }
329
330         return 1;
331 }
332
333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335         if (__vma_shareable_lock(vma)) {
336                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338                 lockdep_assert_held(&vma_lock->rw_sema);
339         } else if (__vma_private_lock(vma)) {
340                 struct resv_map *resv_map = vma_resv_map(vma);
341
342                 lockdep_assert_held(&resv_map->rw_sema);
343         }
344 }
345
346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348         struct hugetlb_vma_lock *vma_lock = container_of(kref,
349                         struct hugetlb_vma_lock, refs);
350
351         kfree(vma_lock);
352 }
353
354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356         struct vm_area_struct *vma = vma_lock->vma;
357
358         /*
359          * vma_lock structure may or not be released as a result of put,
360          * it certainly will no longer be attached to vma so clear pointer.
361          * Semaphore synchronizes access to vma_lock->vma field.
362          */
363         vma_lock->vma = NULL;
364         vma->vm_private_data = NULL;
365         up_write(&vma_lock->rw_sema);
366         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368
369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371         if (__vma_shareable_lock(vma)) {
372                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374                 __hugetlb_vma_unlock_write_put(vma_lock);
375         } else if (__vma_private_lock(vma)) {
376                 struct resv_map *resv_map = vma_resv_map(vma);
377
378                 /* no free for anon vmas, but still need to unlock */
379                 up_write(&resv_map->rw_sema);
380         }
381 }
382
383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385         /*
386          * Only present in sharable vmas.
387          */
388         if (!vma || !__vma_shareable_lock(vma))
389                 return;
390
391         if (vma->vm_private_data) {
392                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394                 down_write(&vma_lock->rw_sema);
395                 __hugetlb_vma_unlock_write_put(vma_lock);
396         }
397 }
398
399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401         struct hugetlb_vma_lock *vma_lock;
402
403         /* Only establish in (flags) sharable vmas */
404         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405                 return;
406
407         /* Should never get here with non-NULL vm_private_data */
408         if (vma->vm_private_data)
409                 return;
410
411         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412         if (!vma_lock) {
413                 /*
414                  * If we can not allocate structure, then vma can not
415                  * participate in pmd sharing.  This is only a possible
416                  * performance enhancement and memory saving issue.
417                  * However, the lock is also used to synchronize page
418                  * faults with truncation.  If the lock is not present,
419                  * unlikely races could leave pages in a file past i_size
420                  * until the file is removed.  Warn in the unlikely case of
421                  * allocation failure.
422                  */
423                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424                 return;
425         }
426
427         kref_init(&vma_lock->refs);
428         init_rwsem(&vma_lock->rw_sema);
429         vma_lock->vma = vma;
430         vma->vm_private_data = vma_lock;
431 }
432
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434  * it for use.
435  */
436 static struct file_region *
437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439         struct file_region *nrg;
440
441         VM_BUG_ON(resv->region_cache_count <= 0);
442
443         resv->region_cache_count--;
444         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445         list_del(&nrg->link);
446
447         nrg->from = from;
448         nrg->to = to;
449
450         return nrg;
451 }
452
453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454                                               struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457         nrg->reservation_counter = rg->reservation_counter;
458         nrg->css = rg->css;
459         if (rg->css)
460                 css_get(rg->css);
461 #endif
462 }
463
464 /* Helper that records hugetlb_cgroup uncharge info. */
465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466                                                 struct hstate *h,
467                                                 struct resv_map *resv,
468                                                 struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471         if (h_cg) {
472                 nrg->reservation_counter =
473                         &h_cg->rsvd_hugepage[hstate_index(h)];
474                 nrg->css = &h_cg->css;
475                 /*
476                  * The caller will hold exactly one h_cg->css reference for the
477                  * whole contiguous reservation region. But this area might be
478                  * scattered when there are already some file_regions reside in
479                  * it. As a result, many file_regions may share only one css
480                  * reference. In order to ensure that one file_region must hold
481                  * exactly one h_cg->css reference, we should do css_get for
482                  * each file_region and leave the reference held by caller
483                  * untouched.
484                  */
485                 css_get(&h_cg->css);
486                 if (!resv->pages_per_hpage)
487                         resv->pages_per_hpage = pages_per_huge_page(h);
488                 /* pages_per_hpage should be the same for all entries in
489                  * a resv_map.
490                  */
491                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492         } else {
493                 nrg->reservation_counter = NULL;
494                 nrg->css = NULL;
495         }
496 #endif
497 }
498
499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502         if (rg->css)
503                 css_put(rg->css);
504 #endif
505 }
506
507 static bool has_same_uncharge_info(struct file_region *rg,
508                                    struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511         return rg->reservation_counter == org->reservation_counter &&
512                rg->css == org->css;
513
514 #else
515         return true;
516 #endif
517 }
518
519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521         struct file_region *nrg, *prg;
522
523         prg = list_prev_entry(rg, link);
524         if (&prg->link != &resv->regions && prg->to == rg->from &&
525             has_same_uncharge_info(prg, rg)) {
526                 prg->to = rg->to;
527
528                 list_del(&rg->link);
529                 put_uncharge_info(rg);
530                 kfree(rg);
531
532                 rg = prg;
533         }
534
535         nrg = list_next_entry(rg, link);
536         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537             has_same_uncharge_info(nrg, rg)) {
538                 nrg->from = rg->from;
539
540                 list_del(&rg->link);
541                 put_uncharge_info(rg);
542                 kfree(rg);
543         }
544 }
545
546 static inline long
547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
549                      long *regions_needed)
550 {
551         struct file_region *nrg;
552
553         if (!regions_needed) {
554                 nrg = get_file_region_entry_from_cache(map, from, to);
555                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556                 list_add(&nrg->link, rg);
557                 coalesce_file_region(map, nrg);
558         } else
559                 *regions_needed += 1;
560
561         return to - from;
562 }
563
564 /*
565  * Must be called with resv->lock held.
566  *
567  * Calling this with regions_needed != NULL will count the number of pages
568  * to be added but will not modify the linked list. And regions_needed will
569  * indicate the number of file_regions needed in the cache to carry out to add
570  * the regions for this range.
571  */
572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573                                      struct hugetlb_cgroup *h_cg,
574                                      struct hstate *h, long *regions_needed)
575 {
576         long add = 0;
577         struct list_head *head = &resv->regions;
578         long last_accounted_offset = f;
579         struct file_region *iter, *trg = NULL;
580         struct list_head *rg = NULL;
581
582         if (regions_needed)
583                 *regions_needed = 0;
584
585         /* In this loop, we essentially handle an entry for the range
586          * [last_accounted_offset, iter->from), at every iteration, with some
587          * bounds checking.
588          */
589         list_for_each_entry_safe(iter, trg, head, link) {
590                 /* Skip irrelevant regions that start before our range. */
591                 if (iter->from < f) {
592                         /* If this region ends after the last accounted offset,
593                          * then we need to update last_accounted_offset.
594                          */
595                         if (iter->to > last_accounted_offset)
596                                 last_accounted_offset = iter->to;
597                         continue;
598                 }
599
600                 /* When we find a region that starts beyond our range, we've
601                  * finished.
602                  */
603                 if (iter->from >= t) {
604                         rg = iter->link.prev;
605                         break;
606                 }
607
608                 /* Add an entry for last_accounted_offset -> iter->from, and
609                  * update last_accounted_offset.
610                  */
611                 if (iter->from > last_accounted_offset)
612                         add += hugetlb_resv_map_add(resv, iter->link.prev,
613                                                     last_accounted_offset,
614                                                     iter->from, h, h_cg,
615                                                     regions_needed);
616
617                 last_accounted_offset = iter->to;
618         }
619
620         /* Handle the case where our range extends beyond
621          * last_accounted_offset.
622          */
623         if (!rg)
624                 rg = head->prev;
625         if (last_accounted_offset < t)
626                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627                                             t, h, h_cg, regions_needed);
628
629         return add;
630 }
631
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633  */
634 static int allocate_file_region_entries(struct resv_map *resv,
635                                         int regions_needed)
636         __must_hold(&resv->lock)
637 {
638         LIST_HEAD(allocated_regions);
639         int to_allocate = 0, i = 0;
640         struct file_region *trg = NULL, *rg = NULL;
641
642         VM_BUG_ON(regions_needed < 0);
643
644         /*
645          * Check for sufficient descriptors in the cache to accommodate
646          * the number of in progress add operations plus regions_needed.
647          *
648          * This is a while loop because when we drop the lock, some other call
649          * to region_add or region_del may have consumed some region_entries,
650          * so we keep looping here until we finally have enough entries for
651          * (adds_in_progress + regions_needed).
652          */
653         while (resv->region_cache_count <
654                (resv->adds_in_progress + regions_needed)) {
655                 to_allocate = resv->adds_in_progress + regions_needed -
656                               resv->region_cache_count;
657
658                 /* At this point, we should have enough entries in the cache
659                  * for all the existing adds_in_progress. We should only be
660                  * needing to allocate for regions_needed.
661                  */
662                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664                 spin_unlock(&resv->lock);
665                 for (i = 0; i < to_allocate; i++) {
666                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667                         if (!trg)
668                                 goto out_of_memory;
669                         list_add(&trg->link, &allocated_regions);
670                 }
671
672                 spin_lock(&resv->lock);
673
674                 list_splice(&allocated_regions, &resv->region_cache);
675                 resv->region_cache_count += to_allocate;
676         }
677
678         return 0;
679
680 out_of_memory:
681         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682                 list_del(&rg->link);
683                 kfree(rg);
684         }
685         return -ENOMEM;
686 }
687
688 /*
689  * Add the huge page range represented by [f, t) to the reserve
690  * map.  Regions will be taken from the cache to fill in this range.
691  * Sufficient regions should exist in the cache due to the previous
692  * call to region_chg with the same range, but in some cases the cache will not
693  * have sufficient entries due to races with other code doing region_add or
694  * region_del.  The extra needed entries will be allocated.
695  *
696  * regions_needed is the out value provided by a previous call to region_chg.
697  *
698  * Return the number of new huge pages added to the map.  This number is greater
699  * than or equal to zero.  If file_region entries needed to be allocated for
700  * this operation and we were not able to allocate, it returns -ENOMEM.
701  * region_add of regions of length 1 never allocate file_regions and cannot
702  * fail; region_chg will always allocate at least 1 entry and a region_add for
703  * 1 page will only require at most 1 entry.
704  */
705 static long region_add(struct resv_map *resv, long f, long t,
706                        long in_regions_needed, struct hstate *h,
707                        struct hugetlb_cgroup *h_cg)
708 {
709         long add = 0, actual_regions_needed = 0;
710
711         spin_lock(&resv->lock);
712 retry:
713
714         /* Count how many regions are actually needed to execute this add. */
715         add_reservation_in_range(resv, f, t, NULL, NULL,
716                                  &actual_regions_needed);
717
718         /*
719          * Check for sufficient descriptors in the cache to accommodate
720          * this add operation. Note that actual_regions_needed may be greater
721          * than in_regions_needed, as the resv_map may have been modified since
722          * the region_chg call. In this case, we need to make sure that we
723          * allocate extra entries, such that we have enough for all the
724          * existing adds_in_progress, plus the excess needed for this
725          * operation.
726          */
727         if (actual_regions_needed > in_regions_needed &&
728             resv->region_cache_count <
729                     resv->adds_in_progress +
730                             (actual_regions_needed - in_regions_needed)) {
731                 /* region_add operation of range 1 should never need to
732                  * allocate file_region entries.
733                  */
734                 VM_BUG_ON(t - f <= 1);
735
736                 if (allocate_file_region_entries(
737                             resv, actual_regions_needed - in_regions_needed)) {
738                         return -ENOMEM;
739                 }
740
741                 goto retry;
742         }
743
744         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746         resv->adds_in_progress -= in_regions_needed;
747
748         spin_unlock(&resv->lock);
749         return add;
750 }
751
752 /*
753  * Examine the existing reserve map and determine how many
754  * huge pages in the specified range [f, t) are NOT currently
755  * represented.  This routine is called before a subsequent
756  * call to region_add that will actually modify the reserve
757  * map to add the specified range [f, t).  region_chg does
758  * not change the number of huge pages represented by the
759  * map.  A number of new file_region structures is added to the cache as a
760  * placeholder, for the subsequent region_add call to use. At least 1
761  * file_region structure is added.
762  *
763  * out_regions_needed is the number of regions added to the
764  * resv->adds_in_progress.  This value needs to be provided to a follow up call
765  * to region_add or region_abort for proper accounting.
766  *
767  * Returns the number of huge pages that need to be added to the existing
768  * reservation map for the range [f, t).  This number is greater or equal to
769  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770  * is needed and can not be allocated.
771  */
772 static long region_chg(struct resv_map *resv, long f, long t,
773                        long *out_regions_needed)
774 {
775         long chg = 0;
776
777         spin_lock(&resv->lock);
778
779         /* Count how many hugepages in this range are NOT represented. */
780         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781                                        out_regions_needed);
782
783         if (*out_regions_needed == 0)
784                 *out_regions_needed = 1;
785
786         if (allocate_file_region_entries(resv, *out_regions_needed))
787                 return -ENOMEM;
788
789         resv->adds_in_progress += *out_regions_needed;
790
791         spin_unlock(&resv->lock);
792         return chg;
793 }
794
795 /*
796  * Abort the in progress add operation.  The adds_in_progress field
797  * of the resv_map keeps track of the operations in progress between
798  * calls to region_chg and region_add.  Operations are sometimes
799  * aborted after the call to region_chg.  In such cases, region_abort
800  * is called to decrement the adds_in_progress counter. regions_needed
801  * is the value returned by the region_chg call, it is used to decrement
802  * the adds_in_progress counter.
803  *
804  * NOTE: The range arguments [f, t) are not needed or used in this
805  * routine.  They are kept to make reading the calling code easier as
806  * arguments will match the associated region_chg call.
807  */
808 static void region_abort(struct resv_map *resv, long f, long t,
809                          long regions_needed)
810 {
811         spin_lock(&resv->lock);
812         VM_BUG_ON(!resv->region_cache_count);
813         resv->adds_in_progress -= regions_needed;
814         spin_unlock(&resv->lock);
815 }
816
817 /*
818  * Delete the specified range [f, t) from the reserve map.  If the
819  * t parameter is LONG_MAX, this indicates that ALL regions after f
820  * should be deleted.  Locate the regions which intersect [f, t)
821  * and either trim, delete or split the existing regions.
822  *
823  * Returns the number of huge pages deleted from the reserve map.
824  * In the normal case, the return value is zero or more.  In the
825  * case where a region must be split, a new region descriptor must
826  * be allocated.  If the allocation fails, -ENOMEM will be returned.
827  * NOTE: If the parameter t == LONG_MAX, then we will never split
828  * a region and possibly return -ENOMEM.  Callers specifying
829  * t == LONG_MAX do not need to check for -ENOMEM error.
830  */
831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833         struct list_head *head = &resv->regions;
834         struct file_region *rg, *trg;
835         struct file_region *nrg = NULL;
836         long del = 0;
837
838 retry:
839         spin_lock(&resv->lock);
840         list_for_each_entry_safe(rg, trg, head, link) {
841                 /*
842                  * Skip regions before the range to be deleted.  file_region
843                  * ranges are normally of the form [from, to).  However, there
844                  * may be a "placeholder" entry in the map which is of the form
845                  * (from, to) with from == to.  Check for placeholder entries
846                  * at the beginning of the range to be deleted.
847                  */
848                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849                         continue;
850
851                 if (rg->from >= t)
852                         break;
853
854                 if (f > rg->from && t < rg->to) { /* Must split region */
855                         /*
856                          * Check for an entry in the cache before dropping
857                          * lock and attempting allocation.
858                          */
859                         if (!nrg &&
860                             resv->region_cache_count > resv->adds_in_progress) {
861                                 nrg = list_first_entry(&resv->region_cache,
862                                                         struct file_region,
863                                                         link);
864                                 list_del(&nrg->link);
865                                 resv->region_cache_count--;
866                         }
867
868                         if (!nrg) {
869                                 spin_unlock(&resv->lock);
870                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871                                 if (!nrg)
872                                         return -ENOMEM;
873                                 goto retry;
874                         }
875
876                         del += t - f;
877                         hugetlb_cgroup_uncharge_file_region(
878                                 resv, rg, t - f, false);
879
880                         /* New entry for end of split region */
881                         nrg->from = t;
882                         nrg->to = rg->to;
883
884                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886                         INIT_LIST_HEAD(&nrg->link);
887
888                         /* Original entry is trimmed */
889                         rg->to = f;
890
891                         list_add(&nrg->link, &rg->link);
892                         nrg = NULL;
893                         break;
894                 }
895
896                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897                         del += rg->to - rg->from;
898                         hugetlb_cgroup_uncharge_file_region(resv, rg,
899                                                             rg->to - rg->from, true);
900                         list_del(&rg->link);
901                         kfree(rg);
902                         continue;
903                 }
904
905                 if (f <= rg->from) {    /* Trim beginning of region */
906                         hugetlb_cgroup_uncharge_file_region(resv, rg,
907                                                             t - rg->from, false);
908
909                         del += t - rg->from;
910                         rg->from = t;
911                 } else {                /* Trim end of region */
912                         hugetlb_cgroup_uncharge_file_region(resv, rg,
913                                                             rg->to - f, false);
914
915                         del += rg->to - f;
916                         rg->to = f;
917                 }
918         }
919
920         spin_unlock(&resv->lock);
921         kfree(nrg);
922         return del;
923 }
924
925 /*
926  * A rare out of memory error was encountered which prevented removal of
927  * the reserve map region for a page.  The huge page itself was free'ed
928  * and removed from the page cache.  This routine will adjust the subpool
929  * usage count, and the global reserve count if needed.  By incrementing
930  * these counts, the reserve map entry which could not be deleted will
931  * appear as a "reserved" entry instead of simply dangling with incorrect
932  * counts.
933  */
934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936         struct hugepage_subpool *spool = subpool_inode(inode);
937         long rsv_adjust;
938         bool reserved = false;
939
940         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941         if (rsv_adjust > 0) {
942                 struct hstate *h = hstate_inode(inode);
943
944                 if (!hugetlb_acct_memory(h, 1))
945                         reserved = true;
946         } else if (!rsv_adjust) {
947                 reserved = true;
948         }
949
950         if (!reserved)
951                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953
954 /*
955  * Count and return the number of huge pages in the reserve map
956  * that intersect with the range [f, t).
957  */
958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960         struct list_head *head = &resv->regions;
961         struct file_region *rg;
962         long chg = 0;
963
964         spin_lock(&resv->lock);
965         /* Locate each segment we overlap with, and count that overlap. */
966         list_for_each_entry(rg, head, link) {
967                 long seg_from;
968                 long seg_to;
969
970                 if (rg->to <= f)
971                         continue;
972                 if (rg->from >= t)
973                         break;
974
975                 seg_from = max(rg->from, f);
976                 seg_to = min(rg->to, t);
977
978                 chg += seg_to - seg_from;
979         }
980         spin_unlock(&resv->lock);
981
982         return chg;
983 }
984
985 /*
986  * Convert the address within this vma to the page offset within
987  * the mapping, huge page units here.
988  */
989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990                         struct vm_area_struct *vma, unsigned long address)
991 {
992         return ((address - vma->vm_start) >> huge_page_shift(h)) +
993                         (vma->vm_pgoff >> huge_page_order(h));
994 }
995
996 /**
997  * vma_kernel_pagesize - Page size granularity for this VMA.
998  * @vma: The user mapping.
999  *
1000  * Folios in this VMA will be aligned to, and at least the size of the
1001  * number of bytes returned by this function.
1002  *
1003  * Return: The default size of the folios allocated when backing a VMA.
1004  */
1005 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1006 {
1007         if (vma->vm_ops && vma->vm_ops->pagesize)
1008                 return vma->vm_ops->pagesize(vma);
1009         return PAGE_SIZE;
1010 }
1011 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1012
1013 /*
1014  * Return the page size being used by the MMU to back a VMA. In the majority
1015  * of cases, the page size used by the kernel matches the MMU size. On
1016  * architectures where it differs, an architecture-specific 'strong'
1017  * version of this symbol is required.
1018  */
1019 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1020 {
1021         return vma_kernel_pagesize(vma);
1022 }
1023
1024 /*
1025  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1026  * bits of the reservation map pointer, which are always clear due to
1027  * alignment.
1028  */
1029 #define HPAGE_RESV_OWNER    (1UL << 0)
1030 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1031 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1032
1033 /*
1034  * These helpers are used to track how many pages are reserved for
1035  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1036  * is guaranteed to have their future faults succeed.
1037  *
1038  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1039  * the reserve counters are updated with the hugetlb_lock held. It is safe
1040  * to reset the VMA at fork() time as it is not in use yet and there is no
1041  * chance of the global counters getting corrupted as a result of the values.
1042  *
1043  * The private mapping reservation is represented in a subtly different
1044  * manner to a shared mapping.  A shared mapping has a region map associated
1045  * with the underlying file, this region map represents the backing file
1046  * pages which have ever had a reservation assigned which this persists even
1047  * after the page is instantiated.  A private mapping has a region map
1048  * associated with the original mmap which is attached to all VMAs which
1049  * reference it, this region map represents those offsets which have consumed
1050  * reservation ie. where pages have been instantiated.
1051  */
1052 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1053 {
1054         return (unsigned long)vma->vm_private_data;
1055 }
1056
1057 static void set_vma_private_data(struct vm_area_struct *vma,
1058                                                         unsigned long value)
1059 {
1060         vma->vm_private_data = (void *)value;
1061 }
1062
1063 static void
1064 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1065                                           struct hugetlb_cgroup *h_cg,
1066                                           struct hstate *h)
1067 {
1068 #ifdef CONFIG_CGROUP_HUGETLB
1069         if (!h_cg || !h) {
1070                 resv_map->reservation_counter = NULL;
1071                 resv_map->pages_per_hpage = 0;
1072                 resv_map->css = NULL;
1073         } else {
1074                 resv_map->reservation_counter =
1075                         &h_cg->rsvd_hugepage[hstate_index(h)];
1076                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1077                 resv_map->css = &h_cg->css;
1078         }
1079 #endif
1080 }
1081
1082 struct resv_map *resv_map_alloc(void)
1083 {
1084         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1085         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1086
1087         if (!resv_map || !rg) {
1088                 kfree(resv_map);
1089                 kfree(rg);
1090                 return NULL;
1091         }
1092
1093         kref_init(&resv_map->refs);
1094         spin_lock_init(&resv_map->lock);
1095         INIT_LIST_HEAD(&resv_map->regions);
1096         init_rwsem(&resv_map->rw_sema);
1097
1098         resv_map->adds_in_progress = 0;
1099         /*
1100          * Initialize these to 0. On shared mappings, 0's here indicate these
1101          * fields don't do cgroup accounting. On private mappings, these will be
1102          * re-initialized to the proper values, to indicate that hugetlb cgroup
1103          * reservations are to be un-charged from here.
1104          */
1105         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1106
1107         INIT_LIST_HEAD(&resv_map->region_cache);
1108         list_add(&rg->link, &resv_map->region_cache);
1109         resv_map->region_cache_count = 1;
1110
1111         return resv_map;
1112 }
1113
1114 void resv_map_release(struct kref *ref)
1115 {
1116         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1117         struct list_head *head = &resv_map->region_cache;
1118         struct file_region *rg, *trg;
1119
1120         /* Clear out any active regions before we release the map. */
1121         region_del(resv_map, 0, LONG_MAX);
1122
1123         /* ... and any entries left in the cache */
1124         list_for_each_entry_safe(rg, trg, head, link) {
1125                 list_del(&rg->link);
1126                 kfree(rg);
1127         }
1128
1129         VM_BUG_ON(resv_map->adds_in_progress);
1130
1131         kfree(resv_map);
1132 }
1133
1134 static inline struct resv_map *inode_resv_map(struct inode *inode)
1135 {
1136         /*
1137          * At inode evict time, i_mapping may not point to the original
1138          * address space within the inode.  This original address space
1139          * contains the pointer to the resv_map.  So, always use the
1140          * address space embedded within the inode.
1141          * The VERY common case is inode->mapping == &inode->i_data but,
1142          * this may not be true for device special inodes.
1143          */
1144         return (struct resv_map *)(&inode->i_data)->private_data;
1145 }
1146
1147 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150         if (vma->vm_flags & VM_MAYSHARE) {
1151                 struct address_space *mapping = vma->vm_file->f_mapping;
1152                 struct inode *inode = mapping->host;
1153
1154                 return inode_resv_map(inode);
1155
1156         } else {
1157                 return (struct resv_map *)(get_vma_private_data(vma) &
1158                                                         ~HPAGE_RESV_MASK);
1159         }
1160 }
1161
1162 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1163 {
1164         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1165         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1166
1167         set_vma_private_data(vma, (unsigned long)map);
1168 }
1169
1170 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1171 {
1172         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1173         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1174
1175         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1176 }
1177
1178 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1179 {
1180         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1181
1182         return (get_vma_private_data(vma) & flag) != 0;
1183 }
1184
1185 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1186 {
1187         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188         /*
1189          * Clear vm_private_data
1190          * - For shared mappings this is a per-vma semaphore that may be
1191          *   allocated in a subsequent call to hugetlb_vm_op_open.
1192          *   Before clearing, make sure pointer is not associated with vma
1193          *   as this will leak the structure.  This is the case when called
1194          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1195          *   been called to allocate a new structure.
1196          * - For MAP_PRIVATE mappings, this is the reserve map which does
1197          *   not apply to children.  Faults generated by the children are
1198          *   not guaranteed to succeed, even if read-only.
1199          */
1200         if (vma->vm_flags & VM_MAYSHARE) {
1201                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1202
1203                 if (vma_lock && vma_lock->vma != vma)
1204                         vma->vm_private_data = NULL;
1205         } else
1206                 vma->vm_private_data = NULL;
1207 }
1208
1209 /*
1210  * Reset and decrement one ref on hugepage private reservation.
1211  * Called with mm->mmap_lock writer semaphore held.
1212  * This function should be only used by move_vma() and operate on
1213  * same sized vma. It should never come here with last ref on the
1214  * reservation.
1215  */
1216 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1217 {
1218         /*
1219          * Clear the old hugetlb private page reservation.
1220          * It has already been transferred to new_vma.
1221          *
1222          * During a mremap() operation of a hugetlb vma we call move_vma()
1223          * which copies vma into new_vma and unmaps vma. After the copy
1224          * operation both new_vma and vma share a reference to the resv_map
1225          * struct, and at that point vma is about to be unmapped. We don't
1226          * want to return the reservation to the pool at unmap of vma because
1227          * the reservation still lives on in new_vma, so simply decrement the
1228          * ref here and remove the resv_map reference from this vma.
1229          */
1230         struct resv_map *reservations = vma_resv_map(vma);
1231
1232         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1233                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1234                 kref_put(&reservations->refs, resv_map_release);
1235         }
1236
1237         hugetlb_dup_vma_private(vma);
1238 }
1239
1240 /* Returns true if the VMA has associated reserve pages */
1241 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1242 {
1243         if (vma->vm_flags & VM_NORESERVE) {
1244                 /*
1245                  * This address is already reserved by other process(chg == 0),
1246                  * so, we should decrement reserved count. Without decrementing,
1247                  * reserve count remains after releasing inode, because this
1248                  * allocated page will go into page cache and is regarded as
1249                  * coming from reserved pool in releasing step.  Currently, we
1250                  * don't have any other solution to deal with this situation
1251                  * properly, so add work-around here.
1252                  */
1253                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1254                         return true;
1255                 else
1256                         return false;
1257         }
1258
1259         /* Shared mappings always use reserves */
1260         if (vma->vm_flags & VM_MAYSHARE) {
1261                 /*
1262                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1263                  * be a region map for all pages.  The only situation where
1264                  * there is no region map is if a hole was punched via
1265                  * fallocate.  In this case, there really are no reserves to
1266                  * use.  This situation is indicated if chg != 0.
1267                  */
1268                 if (chg)
1269                         return false;
1270                 else
1271                         return true;
1272         }
1273
1274         /*
1275          * Only the process that called mmap() has reserves for
1276          * private mappings.
1277          */
1278         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1279                 /*
1280                  * Like the shared case above, a hole punch or truncate
1281                  * could have been performed on the private mapping.
1282                  * Examine the value of chg to determine if reserves
1283                  * actually exist or were previously consumed.
1284                  * Very Subtle - The value of chg comes from a previous
1285                  * call to vma_needs_reserves().  The reserve map for
1286                  * private mappings has different (opposite) semantics
1287                  * than that of shared mappings.  vma_needs_reserves()
1288                  * has already taken this difference in semantics into
1289                  * account.  Therefore, the meaning of chg is the same
1290                  * as in the shared case above.  Code could easily be
1291                  * combined, but keeping it separate draws attention to
1292                  * subtle differences.
1293                  */
1294                 if (chg)
1295                         return false;
1296                 else
1297                         return true;
1298         }
1299
1300         return false;
1301 }
1302
1303 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1304 {
1305         int nid = folio_nid(folio);
1306
1307         lockdep_assert_held(&hugetlb_lock);
1308         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1309
1310         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1311         h->free_huge_pages++;
1312         h->free_huge_pages_node[nid]++;
1313         folio_set_hugetlb_freed(folio);
1314 }
1315
1316 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1317                                                                 int nid)
1318 {
1319         struct folio *folio;
1320         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1321
1322         lockdep_assert_held(&hugetlb_lock);
1323         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1324                 if (pin && !folio_is_longterm_pinnable(folio))
1325                         continue;
1326
1327                 if (folio_test_hwpoison(folio))
1328                         continue;
1329
1330                 list_move(&folio->lru, &h->hugepage_activelist);
1331                 folio_ref_unfreeze(folio, 1);
1332                 folio_clear_hugetlb_freed(folio);
1333                 h->free_huge_pages--;
1334                 h->free_huge_pages_node[nid]--;
1335                 return folio;
1336         }
1337
1338         return NULL;
1339 }
1340
1341 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1342                                                         int nid, nodemask_t *nmask)
1343 {
1344         unsigned int cpuset_mems_cookie;
1345         struct zonelist *zonelist;
1346         struct zone *zone;
1347         struct zoneref *z;
1348         int node = NUMA_NO_NODE;
1349
1350         zonelist = node_zonelist(nid, gfp_mask);
1351
1352 retry_cpuset:
1353         cpuset_mems_cookie = read_mems_allowed_begin();
1354         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1355                 struct folio *folio;
1356
1357                 if (!cpuset_zone_allowed(zone, gfp_mask))
1358                         continue;
1359                 /*
1360                  * no need to ask again on the same node. Pool is node rather than
1361                  * zone aware
1362                  */
1363                 if (zone_to_nid(zone) == node)
1364                         continue;
1365                 node = zone_to_nid(zone);
1366
1367                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1368                 if (folio)
1369                         return folio;
1370         }
1371         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1372                 goto retry_cpuset;
1373
1374         return NULL;
1375 }
1376
1377 static unsigned long available_huge_pages(struct hstate *h)
1378 {
1379         return h->free_huge_pages - h->resv_huge_pages;
1380 }
1381
1382 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1383                                 struct vm_area_struct *vma,
1384                                 unsigned long address, int avoid_reserve,
1385                                 long chg)
1386 {
1387         struct folio *folio = NULL;
1388         struct mempolicy *mpol;
1389         gfp_t gfp_mask;
1390         nodemask_t *nodemask;
1391         int nid;
1392
1393         /*
1394          * A child process with MAP_PRIVATE mappings created by their parent
1395          * have no page reserves. This check ensures that reservations are
1396          * not "stolen". The child may still get SIGKILLed
1397          */
1398         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1399                 goto err;
1400
1401         /* If reserves cannot be used, ensure enough pages are in the pool */
1402         if (avoid_reserve && !available_huge_pages(h))
1403                 goto err;
1404
1405         gfp_mask = htlb_alloc_mask(h);
1406         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1407
1408         if (mpol_is_preferred_many(mpol)) {
1409                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1410                                                         nid, nodemask);
1411
1412                 /* Fallback to all nodes if page==NULL */
1413                 nodemask = NULL;
1414         }
1415
1416         if (!folio)
1417                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418                                                         nid, nodemask);
1419
1420         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1421                 folio_set_hugetlb_restore_reserve(folio);
1422                 h->resv_huge_pages--;
1423         }
1424
1425         mpol_cond_put(mpol);
1426         return folio;
1427
1428 err:
1429         return NULL;
1430 }
1431
1432 /*
1433  * common helper functions for hstate_next_node_to_{alloc|free}.
1434  * We may have allocated or freed a huge page based on a different
1435  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1436  * be outside of *nodes_allowed.  Ensure that we use an allowed
1437  * node for alloc or free.
1438  */
1439 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1440 {
1441         nid = next_node_in(nid, *nodes_allowed);
1442         VM_BUG_ON(nid >= MAX_NUMNODES);
1443
1444         return nid;
1445 }
1446
1447 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449         if (!node_isset(nid, *nodes_allowed))
1450                 nid = next_node_allowed(nid, nodes_allowed);
1451         return nid;
1452 }
1453
1454 /*
1455  * returns the previously saved node ["this node"] from which to
1456  * allocate a persistent huge page for the pool and advance the
1457  * next node from which to allocate, handling wrap at end of node
1458  * mask.
1459  */
1460 static int hstate_next_node_to_alloc(struct hstate *h,
1461                                         nodemask_t *nodes_allowed)
1462 {
1463         int nid;
1464
1465         VM_BUG_ON(!nodes_allowed);
1466
1467         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1468         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1469
1470         return nid;
1471 }
1472
1473 /*
1474  * helper for remove_pool_hugetlb_folio() - return the previously saved
1475  * node ["this node"] from which to free a huge page.  Advance the
1476  * next node id whether or not we find a free huge page to free so
1477  * that the next attempt to free addresses the next node.
1478  */
1479 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1480 {
1481         int nid;
1482
1483         VM_BUG_ON(!nodes_allowed);
1484
1485         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1486         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1487
1488         return nid;
1489 }
1490
1491 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1492         for (nr_nodes = nodes_weight(*mask);                            \
1493                 nr_nodes > 0 &&                                         \
1494                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1495                 nr_nodes--)
1496
1497 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1498         for (nr_nodes = nodes_weight(*mask);                            \
1499                 nr_nodes > 0 &&                                         \
1500                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1501                 nr_nodes--)
1502
1503 /* used to demote non-gigantic_huge pages as well */
1504 static void __destroy_compound_gigantic_folio(struct folio *folio,
1505                                         unsigned int order, bool demote)
1506 {
1507         int i;
1508         int nr_pages = 1 << order;
1509         struct page *p;
1510
1511         atomic_set(&folio->_entire_mapcount, 0);
1512         atomic_set(&folio->_nr_pages_mapped, 0);
1513         atomic_set(&folio->_pincount, 0);
1514
1515         for (i = 1; i < nr_pages; i++) {
1516                 p = folio_page(folio, i);
1517                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1518                 p->mapping = NULL;
1519                 clear_compound_head(p);
1520                 if (!demote)
1521                         set_page_refcounted(p);
1522         }
1523
1524         __folio_clear_head(folio);
1525 }
1526
1527 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1528                                         unsigned int order)
1529 {
1530         __destroy_compound_gigantic_folio(folio, order, true);
1531 }
1532
1533 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1534 static void destroy_compound_gigantic_folio(struct folio *folio,
1535                                         unsigned int order)
1536 {
1537         __destroy_compound_gigantic_folio(folio, order, false);
1538 }
1539
1540 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1541 {
1542         /*
1543          * If the page isn't allocated using the cma allocator,
1544          * cma_release() returns false.
1545          */
1546 #ifdef CONFIG_CMA
1547         int nid = folio_nid(folio);
1548
1549         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1550                 return;
1551 #endif
1552
1553         free_contig_range(folio_pfn(folio), 1 << order);
1554 }
1555
1556 #ifdef CONFIG_CONTIG_ALLOC
1557 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1558                 int nid, nodemask_t *nodemask)
1559 {
1560         struct page *page;
1561         unsigned long nr_pages = pages_per_huge_page(h);
1562         if (nid == NUMA_NO_NODE)
1563                 nid = numa_mem_id();
1564
1565 #ifdef CONFIG_CMA
1566         {
1567                 int node;
1568
1569                 if (hugetlb_cma[nid]) {
1570                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1571                                         huge_page_order(h), true);
1572                         if (page)
1573                                 return page_folio(page);
1574                 }
1575
1576                 if (!(gfp_mask & __GFP_THISNODE)) {
1577                         for_each_node_mask(node, *nodemask) {
1578                                 if (node == nid || !hugetlb_cma[node])
1579                                         continue;
1580
1581                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1582                                                 huge_page_order(h), true);
1583                                 if (page)
1584                                         return page_folio(page);
1585                         }
1586                 }
1587         }
1588 #endif
1589
1590         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1591         return page ? page_folio(page) : NULL;
1592 }
1593
1594 #else /* !CONFIG_CONTIG_ALLOC */
1595 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1596                                         int nid, nodemask_t *nodemask)
1597 {
1598         return NULL;
1599 }
1600 #endif /* CONFIG_CONTIG_ALLOC */
1601
1602 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604                                         int nid, nodemask_t *nodemask)
1605 {
1606         return NULL;
1607 }
1608 static inline void free_gigantic_folio(struct folio *folio,
1609                                                 unsigned int order) { }
1610 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1611                                                 unsigned int order) { }
1612 #endif
1613
1614 static inline void __clear_hugetlb_destructor(struct hstate *h,
1615                                                 struct folio *folio)
1616 {
1617         lockdep_assert_held(&hugetlb_lock);
1618
1619         folio_clear_hugetlb(folio);
1620 }
1621
1622 /*
1623  * Remove hugetlb folio from lists.
1624  * If vmemmap exists for the folio, update dtor so that the folio appears
1625  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1626  * to update dtor.
1627  *
1628  * A reference is held on the folio, except in the case of demote.
1629  *
1630  * Must be called with hugetlb lock held.
1631  */
1632 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1633                                                         bool adjust_surplus,
1634                                                         bool demote)
1635 {
1636         int nid = folio_nid(folio);
1637
1638         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1639         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1640
1641         lockdep_assert_held(&hugetlb_lock);
1642         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1643                 return;
1644
1645         list_del(&folio->lru);
1646
1647         if (folio_test_hugetlb_freed(folio)) {
1648                 h->free_huge_pages--;
1649                 h->free_huge_pages_node[nid]--;
1650         }
1651         if (adjust_surplus) {
1652                 h->surplus_huge_pages--;
1653                 h->surplus_huge_pages_node[nid]--;
1654         }
1655
1656         /*
1657          * We can only clear the hugetlb destructor after allocating vmemmap
1658          * pages.  Otherwise, someone (memory error handling) may try to write
1659          * to tail struct pages.
1660          */
1661         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1662                 __clear_hugetlb_destructor(h, folio);
1663
1664          /*
1665           * In the case of demote we do not ref count the page as it will soon
1666           * be turned into a page of smaller size.
1667          */
1668         if (!demote)
1669                 folio_ref_unfreeze(folio, 1);
1670
1671         h->nr_huge_pages--;
1672         h->nr_huge_pages_node[nid]--;
1673 }
1674
1675 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1676                                                         bool adjust_surplus)
1677 {
1678         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1679 }
1680
1681 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1682                                                         bool adjust_surplus)
1683 {
1684         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1685 }
1686
1687 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1688                              bool adjust_surplus)
1689 {
1690         int zeroed;
1691         int nid = folio_nid(folio);
1692
1693         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1694
1695         lockdep_assert_held(&hugetlb_lock);
1696
1697         INIT_LIST_HEAD(&folio->lru);
1698         h->nr_huge_pages++;
1699         h->nr_huge_pages_node[nid]++;
1700
1701         if (adjust_surplus) {
1702                 h->surplus_huge_pages++;
1703                 h->surplus_huge_pages_node[nid]++;
1704         }
1705
1706         folio_set_hugetlb(folio);
1707         folio_change_private(folio, NULL);
1708         /*
1709          * We have to set hugetlb_vmemmap_optimized again as above
1710          * folio_change_private(folio, NULL) cleared it.
1711          */
1712         folio_set_hugetlb_vmemmap_optimized(folio);
1713
1714         /*
1715          * This folio is about to be managed by the hugetlb allocator and
1716          * should have no users.  Drop our reference, and check for others
1717          * just in case.
1718          */
1719         zeroed = folio_put_testzero(folio);
1720         if (unlikely(!zeroed))
1721                 /*
1722                  * It is VERY unlikely soneone else has taken a ref
1723                  * on the folio.  In this case, we simply return as
1724                  * free_huge_folio() will be called when this other ref
1725                  * is dropped.
1726                  */
1727                 return;
1728
1729         arch_clear_hugepage_flags(&folio->page);
1730         enqueue_hugetlb_folio(h, folio);
1731 }
1732
1733 static void __update_and_free_hugetlb_folio(struct hstate *h,
1734                                                 struct folio *folio)
1735 {
1736         bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1737
1738         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1739                 return;
1740
1741         /*
1742          * If we don't know which subpages are hwpoisoned, we can't free
1743          * the hugepage, so it's leaked intentionally.
1744          */
1745         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1746                 return;
1747
1748         /*
1749          * If folio is not vmemmap optimized (!clear_dtor), then the folio
1750          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1751          * can only be passed hugetlb pages and will BUG otherwise.
1752          */
1753         if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1754                 spin_lock_irq(&hugetlb_lock);
1755                 /*
1756                  * If we cannot allocate vmemmap pages, just refuse to free the
1757                  * page and put the page back on the hugetlb free list and treat
1758                  * as a surplus page.
1759                  */
1760                 add_hugetlb_folio(h, folio, true);
1761                 spin_unlock_irq(&hugetlb_lock);
1762                 return;
1763         }
1764
1765         /*
1766          * Move PageHWPoison flag from head page to the raw error pages,
1767          * which makes any healthy subpages reusable.
1768          */
1769         if (unlikely(folio_test_hwpoison(folio)))
1770                 folio_clear_hugetlb_hwpoison(folio);
1771
1772         /*
1773          * If vmemmap pages were allocated above, then we need to clear the
1774          * hugetlb destructor under the hugetlb lock.
1775          */
1776         if (clear_dtor) {
1777                 spin_lock_irq(&hugetlb_lock);
1778                 __clear_hugetlb_destructor(h, folio);
1779                 spin_unlock_irq(&hugetlb_lock);
1780         }
1781
1782         /*
1783          * Non-gigantic pages demoted from CMA allocated gigantic pages
1784          * need to be given back to CMA in free_gigantic_folio.
1785          */
1786         if (hstate_is_gigantic(h) ||
1787             hugetlb_cma_folio(folio, huge_page_order(h))) {
1788                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1789                 free_gigantic_folio(folio, huge_page_order(h));
1790         } else {
1791                 __free_pages(&folio->page, huge_page_order(h));
1792         }
1793 }
1794
1795 /*
1796  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1797  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1798  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1799  * the vmemmap pages.
1800  *
1801  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1802  * freed and frees them one-by-one. As the page->mapping pointer is going
1803  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1804  * structure of a lockless linked list of huge pages to be freed.
1805  */
1806 static LLIST_HEAD(hpage_freelist);
1807
1808 static void free_hpage_workfn(struct work_struct *work)
1809 {
1810         struct llist_node *node;
1811
1812         node = llist_del_all(&hpage_freelist);
1813
1814         while (node) {
1815                 struct folio *folio;
1816                 struct hstate *h;
1817
1818                 folio = container_of((struct address_space **)node,
1819                                      struct folio, mapping);
1820                 node = node->next;
1821                 folio->mapping = NULL;
1822                 /*
1823                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1824                  * folio_hstate() is going to trigger because a previous call to
1825                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1826                  * not use folio_hstate() directly.
1827                  */
1828                 h = size_to_hstate(folio_size(folio));
1829
1830                 __update_and_free_hugetlb_folio(h, folio);
1831
1832                 cond_resched();
1833         }
1834 }
1835 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1836
1837 static inline void flush_free_hpage_work(struct hstate *h)
1838 {
1839         if (hugetlb_vmemmap_optimizable(h))
1840                 flush_work(&free_hpage_work);
1841 }
1842
1843 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1844                                  bool atomic)
1845 {
1846         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1847                 __update_and_free_hugetlb_folio(h, folio);
1848                 return;
1849         }
1850
1851         /*
1852          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1853          *
1854          * Only call schedule_work() if hpage_freelist is previously
1855          * empty. Otherwise, schedule_work() had been called but the workfn
1856          * hasn't retrieved the list yet.
1857          */
1858         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1859                 schedule_work(&free_hpage_work);
1860 }
1861
1862 static void bulk_vmemmap_restore_error(struct hstate *h,
1863                                         struct list_head *folio_list,
1864                                         struct list_head *non_hvo_folios)
1865 {
1866         struct folio *folio, *t_folio;
1867
1868         if (!list_empty(non_hvo_folios)) {
1869                 /*
1870                  * Free any restored hugetlb pages so that restore of the
1871                  * entire list can be retried.
1872                  * The idea is that in the common case of ENOMEM errors freeing
1873                  * hugetlb pages with vmemmap we will free up memory so that we
1874                  * can allocate vmemmap for more hugetlb pages.
1875                  */
1876                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1877                         list_del(&folio->lru);
1878                         spin_lock_irq(&hugetlb_lock);
1879                         __clear_hugetlb_destructor(h, folio);
1880                         spin_unlock_irq(&hugetlb_lock);
1881                         update_and_free_hugetlb_folio(h, folio, false);
1882                         cond_resched();
1883                 }
1884         } else {
1885                 /*
1886                  * In the case where there are no folios which can be
1887                  * immediately freed, we loop through the list trying to restore
1888                  * vmemmap individually in the hope that someone elsewhere may
1889                  * have done something to cause success (such as freeing some
1890                  * memory).  If unable to restore a hugetlb page, the hugetlb
1891                  * page is made a surplus page and removed from the list.
1892                  * If are able to restore vmemmap and free one hugetlb page, we
1893                  * quit processing the list to retry the bulk operation.
1894                  */
1895                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1896                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1897                                 list_del(&folio->lru);
1898                                 spin_lock_irq(&hugetlb_lock);
1899                                 add_hugetlb_folio(h, folio, true);
1900                                 spin_unlock_irq(&hugetlb_lock);
1901                         } else {
1902                                 list_del(&folio->lru);
1903                                 spin_lock_irq(&hugetlb_lock);
1904                                 __clear_hugetlb_destructor(h, folio);
1905                                 spin_unlock_irq(&hugetlb_lock);
1906                                 update_and_free_hugetlb_folio(h, folio, false);
1907                                 cond_resched();
1908                                 break;
1909                         }
1910         }
1911 }
1912
1913 static void update_and_free_pages_bulk(struct hstate *h,
1914                                                 struct list_head *folio_list)
1915 {
1916         long ret;
1917         struct folio *folio, *t_folio;
1918         LIST_HEAD(non_hvo_folios);
1919
1920         /*
1921          * First allocate required vmemmmap (if necessary) for all folios.
1922          * Carefully handle errors and free up any available hugetlb pages
1923          * in an effort to make forward progress.
1924          */
1925 retry:
1926         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1927         if (ret < 0) {
1928                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1929                 goto retry;
1930         }
1931
1932         /*
1933          * At this point, list should be empty, ret should be >= 0 and there
1934          * should only be pages on the non_hvo_folios list.
1935          * Do note that the non_hvo_folios list could be empty.
1936          * Without HVO enabled, ret will be 0 and there is no need to call
1937          * __clear_hugetlb_destructor as this was done previously.
1938          */
1939         VM_WARN_ON(!list_empty(folio_list));
1940         VM_WARN_ON(ret < 0);
1941         if (!list_empty(&non_hvo_folios) && ret) {
1942                 spin_lock_irq(&hugetlb_lock);
1943                 list_for_each_entry(folio, &non_hvo_folios, lru)
1944                         __clear_hugetlb_destructor(h, folio);
1945                 spin_unlock_irq(&hugetlb_lock);
1946         }
1947
1948         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1949                 update_and_free_hugetlb_folio(h, folio, false);
1950                 cond_resched();
1951         }
1952 }
1953
1954 struct hstate *size_to_hstate(unsigned long size)
1955 {
1956         struct hstate *h;
1957
1958         for_each_hstate(h) {
1959                 if (huge_page_size(h) == size)
1960                         return h;
1961         }
1962         return NULL;
1963 }
1964
1965 void free_huge_folio(struct folio *folio)
1966 {
1967         /*
1968          * Can't pass hstate in here because it is called from the
1969          * compound page destructor.
1970          */
1971         struct hstate *h = folio_hstate(folio);
1972         int nid = folio_nid(folio);
1973         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1974         bool restore_reserve;
1975         unsigned long flags;
1976
1977         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1978         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1979
1980         hugetlb_set_folio_subpool(folio, NULL);
1981         if (folio_test_anon(folio))
1982                 __ClearPageAnonExclusive(&folio->page);
1983         folio->mapping = NULL;
1984         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1985         folio_clear_hugetlb_restore_reserve(folio);
1986
1987         /*
1988          * If HPageRestoreReserve was set on page, page allocation consumed a
1989          * reservation.  If the page was associated with a subpool, there
1990          * would have been a page reserved in the subpool before allocation
1991          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1992          * reservation, do not call hugepage_subpool_put_pages() as this will
1993          * remove the reserved page from the subpool.
1994          */
1995         if (!restore_reserve) {
1996                 /*
1997                  * A return code of zero implies that the subpool will be
1998                  * under its minimum size if the reservation is not restored
1999                  * after page is free.  Therefore, force restore_reserve
2000                  * operation.
2001                  */
2002                 if (hugepage_subpool_put_pages(spool, 1) == 0)
2003                         restore_reserve = true;
2004         }
2005
2006         spin_lock_irqsave(&hugetlb_lock, flags);
2007         folio_clear_hugetlb_migratable(folio);
2008         hugetlb_cgroup_uncharge_folio(hstate_index(h),
2009                                      pages_per_huge_page(h), folio);
2010         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2011                                           pages_per_huge_page(h), folio);
2012         mem_cgroup_uncharge(folio);
2013         if (restore_reserve)
2014                 h->resv_huge_pages++;
2015
2016         if (folio_test_hugetlb_temporary(folio)) {
2017                 remove_hugetlb_folio(h, folio, false);
2018                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2019                 update_and_free_hugetlb_folio(h, folio, true);
2020         } else if (h->surplus_huge_pages_node[nid]) {
2021                 /* remove the page from active list */
2022                 remove_hugetlb_folio(h, folio, true);
2023                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2024                 update_and_free_hugetlb_folio(h, folio, true);
2025         } else {
2026                 arch_clear_hugepage_flags(&folio->page);
2027                 enqueue_hugetlb_folio(h, folio);
2028                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2029         }
2030 }
2031
2032 /*
2033  * Must be called with the hugetlb lock held
2034  */
2035 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2036 {
2037         lockdep_assert_held(&hugetlb_lock);
2038         h->nr_huge_pages++;
2039         h->nr_huge_pages_node[nid]++;
2040 }
2041
2042 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2043 {
2044         folio_set_hugetlb(folio);
2045         INIT_LIST_HEAD(&folio->lru);
2046         hugetlb_set_folio_subpool(folio, NULL);
2047         set_hugetlb_cgroup(folio, NULL);
2048         set_hugetlb_cgroup_rsvd(folio, NULL);
2049 }
2050
2051 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2052 {
2053         init_new_hugetlb_folio(h, folio);
2054         hugetlb_vmemmap_optimize_folio(h, folio);
2055 }
2056
2057 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2058 {
2059         __prep_new_hugetlb_folio(h, folio);
2060         spin_lock_irq(&hugetlb_lock);
2061         __prep_account_new_huge_page(h, nid);
2062         spin_unlock_irq(&hugetlb_lock);
2063 }
2064
2065 static bool __prep_compound_gigantic_folio(struct folio *folio,
2066                                         unsigned int order, bool demote)
2067 {
2068         int i, j;
2069         int nr_pages = 1 << order;
2070         struct page *p;
2071
2072         __folio_clear_reserved(folio);
2073         for (i = 0; i < nr_pages; i++) {
2074                 p = folio_page(folio, i);
2075
2076                 /*
2077                  * For gigantic hugepages allocated through bootmem at
2078                  * boot, it's safer to be consistent with the not-gigantic
2079                  * hugepages and clear the PG_reserved bit from all tail pages
2080                  * too.  Otherwise drivers using get_user_pages() to access tail
2081                  * pages may get the reference counting wrong if they see
2082                  * PG_reserved set on a tail page (despite the head page not
2083                  * having PG_reserved set).  Enforcing this consistency between
2084                  * head and tail pages allows drivers to optimize away a check
2085                  * on the head page when they need know if put_page() is needed
2086                  * after get_user_pages().
2087                  */
2088                 if (i != 0)     /* head page cleared above */
2089                         __ClearPageReserved(p);
2090                 /*
2091                  * Subtle and very unlikely
2092                  *
2093                  * Gigantic 'page allocators' such as memblock or cma will
2094                  * return a set of pages with each page ref counted.  We need
2095                  * to turn this set of pages into a compound page with tail
2096                  * page ref counts set to zero.  Code such as speculative page
2097                  * cache adding could take a ref on a 'to be' tail page.
2098                  * We need to respect any increased ref count, and only set
2099                  * the ref count to zero if count is currently 1.  If count
2100                  * is not 1, we return an error.  An error return indicates
2101                  * the set of pages can not be converted to a gigantic page.
2102                  * The caller who allocated the pages should then discard the
2103                  * pages using the appropriate free interface.
2104                  *
2105                  * In the case of demote, the ref count will be zero.
2106                  */
2107                 if (!demote) {
2108                         if (!page_ref_freeze(p, 1)) {
2109                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2110                                 goto out_error;
2111                         }
2112                 } else {
2113                         VM_BUG_ON_PAGE(page_count(p), p);
2114                 }
2115                 if (i != 0)
2116                         set_compound_head(p, &folio->page);
2117         }
2118         __folio_set_head(folio);
2119         /* we rely on prep_new_hugetlb_folio to set the destructor */
2120         folio_set_order(folio, order);
2121         atomic_set(&folio->_entire_mapcount, -1);
2122         atomic_set(&folio->_nr_pages_mapped, 0);
2123         atomic_set(&folio->_pincount, 0);
2124         return true;
2125
2126 out_error:
2127         /* undo page modifications made above */
2128         for (j = 0; j < i; j++) {
2129                 p = folio_page(folio, j);
2130                 if (j != 0)
2131                         clear_compound_head(p);
2132                 set_page_refcounted(p);
2133         }
2134         /* need to clear PG_reserved on remaining tail pages  */
2135         for (; j < nr_pages; j++) {
2136                 p = folio_page(folio, j);
2137                 __ClearPageReserved(p);
2138         }
2139         return false;
2140 }
2141
2142 static bool prep_compound_gigantic_folio(struct folio *folio,
2143                                                         unsigned int order)
2144 {
2145         return __prep_compound_gigantic_folio(folio, order, false);
2146 }
2147
2148 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2149                                                         unsigned int order)
2150 {
2151         return __prep_compound_gigantic_folio(folio, order, true);
2152 }
2153
2154 /*
2155  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2156  * transparent huge pages.  See the PageTransHuge() documentation for more
2157  * details.
2158  */
2159 int PageHuge(struct page *page)
2160 {
2161         struct folio *folio;
2162
2163         if (!PageCompound(page))
2164                 return 0;
2165         folio = page_folio(page);
2166         return folio_test_hugetlb(folio);
2167 }
2168 EXPORT_SYMBOL_GPL(PageHuge);
2169
2170 /*
2171  * Find and lock address space (mapping) in write mode.
2172  *
2173  * Upon entry, the page is locked which means that page_mapping() is
2174  * stable.  Due to locking order, we can only trylock_write.  If we can
2175  * not get the lock, simply return NULL to caller.
2176  */
2177 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2178 {
2179         struct address_space *mapping = page_mapping(hpage);
2180
2181         if (!mapping)
2182                 return mapping;
2183
2184         if (i_mmap_trylock_write(mapping))
2185                 return mapping;
2186
2187         return NULL;
2188 }
2189
2190 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2191                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2192                 nodemask_t *node_alloc_noretry)
2193 {
2194         int order = huge_page_order(h);
2195         struct page *page;
2196         bool alloc_try_hard = true;
2197         bool retry = true;
2198
2199         /*
2200          * By default we always try hard to allocate the page with
2201          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2202          * a loop (to adjust global huge page counts) and previous allocation
2203          * failed, do not continue to try hard on the same node.  Use the
2204          * node_alloc_noretry bitmap to manage this state information.
2205          */
2206         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2207                 alloc_try_hard = false;
2208         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2209         if (alloc_try_hard)
2210                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2211         if (nid == NUMA_NO_NODE)
2212                 nid = numa_mem_id();
2213 retry:
2214         page = __alloc_pages(gfp_mask, order, nid, nmask);
2215
2216         /* Freeze head page */
2217         if (page && !page_ref_freeze(page, 1)) {
2218                 __free_pages(page, order);
2219                 if (retry) {    /* retry once */
2220                         retry = false;
2221                         goto retry;
2222                 }
2223                 /* WOW!  twice in a row. */
2224                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2225                 page = NULL;
2226         }
2227
2228         /*
2229          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2230          * indicates an overall state change.  Clear bit so that we resume
2231          * normal 'try hard' allocations.
2232          */
2233         if (node_alloc_noretry && page && !alloc_try_hard)
2234                 node_clear(nid, *node_alloc_noretry);
2235
2236         /*
2237          * If we tried hard to get a page but failed, set bit so that
2238          * subsequent attempts will not try as hard until there is an
2239          * overall state change.
2240          */
2241         if (node_alloc_noretry && !page && alloc_try_hard)
2242                 node_set(nid, *node_alloc_noretry);
2243
2244         if (!page) {
2245                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2246                 return NULL;
2247         }
2248
2249         __count_vm_event(HTLB_BUDDY_PGALLOC);
2250         return page_folio(page);
2251 }
2252
2253 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2254                                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2255                                 nodemask_t *node_alloc_noretry)
2256 {
2257         struct folio *folio;
2258         bool retry = false;
2259
2260 retry:
2261         if (hstate_is_gigantic(h))
2262                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2263         else
2264                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2265                                 nid, nmask, node_alloc_noretry);
2266         if (!folio)
2267                 return NULL;
2268
2269         if (hstate_is_gigantic(h)) {
2270                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2271                         /*
2272                          * Rare failure to convert pages to compound page.
2273                          * Free pages and try again - ONCE!
2274                          */
2275                         free_gigantic_folio(folio, huge_page_order(h));
2276                         if (!retry) {
2277                                 retry = true;
2278                                 goto retry;
2279                         }
2280                         return NULL;
2281                 }
2282         }
2283
2284         return folio;
2285 }
2286
2287 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2288                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2289                 nodemask_t *node_alloc_noretry)
2290 {
2291         struct folio *folio;
2292
2293         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2294                                                 node_alloc_noretry);
2295         if (folio)
2296                 init_new_hugetlb_folio(h, folio);
2297         return folio;
2298 }
2299
2300 /*
2301  * Common helper to allocate a fresh hugetlb page. All specific allocators
2302  * should use this function to get new hugetlb pages
2303  *
2304  * Note that returned page is 'frozen':  ref count of head page and all tail
2305  * pages is zero.
2306  */
2307 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2308                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2309                 nodemask_t *node_alloc_noretry)
2310 {
2311         struct folio *folio;
2312
2313         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2314                                                 node_alloc_noretry);
2315         if (!folio)
2316                 return NULL;
2317
2318         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2319         return folio;
2320 }
2321
2322 static void prep_and_add_allocated_folios(struct hstate *h,
2323                                         struct list_head *folio_list)
2324 {
2325         unsigned long flags;
2326         struct folio *folio, *tmp_f;
2327
2328         /* Send list for bulk vmemmap optimization processing */
2329         hugetlb_vmemmap_optimize_folios(h, folio_list);
2330
2331         /* Add all new pool pages to free lists in one lock cycle */
2332         spin_lock_irqsave(&hugetlb_lock, flags);
2333         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2334                 __prep_account_new_huge_page(h, folio_nid(folio));
2335                 enqueue_hugetlb_folio(h, folio);
2336         }
2337         spin_unlock_irqrestore(&hugetlb_lock, flags);
2338 }
2339
2340 /*
2341  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2342  * will later be added to the appropriate hugetlb pool.
2343  */
2344 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2345                                         nodemask_t *nodes_allowed,
2346                                         nodemask_t *node_alloc_noretry)
2347 {
2348         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2349         int nr_nodes, node;
2350
2351         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2352                 struct folio *folio;
2353
2354                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2355                                         nodes_allowed, node_alloc_noretry);
2356                 if (folio)
2357                         return folio;
2358         }
2359
2360         return NULL;
2361 }
2362
2363 /*
2364  * Remove huge page from pool from next node to free.  Attempt to keep
2365  * persistent huge pages more or less balanced over allowed nodes.
2366  * This routine only 'removes' the hugetlb page.  The caller must make
2367  * an additional call to free the page to low level allocators.
2368  * Called with hugetlb_lock locked.
2369  */
2370 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2371                 nodemask_t *nodes_allowed, bool acct_surplus)
2372 {
2373         int nr_nodes, node;
2374         struct folio *folio = NULL;
2375
2376         lockdep_assert_held(&hugetlb_lock);
2377         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2378                 /*
2379                  * If we're returning unused surplus pages, only examine
2380                  * nodes with surplus pages.
2381                  */
2382                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2383                     !list_empty(&h->hugepage_freelists[node])) {
2384                         folio = list_entry(h->hugepage_freelists[node].next,
2385                                           struct folio, lru);
2386                         remove_hugetlb_folio(h, folio, acct_surplus);
2387                         break;
2388                 }
2389         }
2390
2391         return folio;
2392 }
2393
2394 /*
2395  * Dissolve a given free hugepage into free buddy pages. This function does
2396  * nothing for in-use hugepages and non-hugepages.
2397  * This function returns values like below:
2398  *
2399  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2400  *           when the system is under memory pressure and the feature of
2401  *           freeing unused vmemmap pages associated with each hugetlb page
2402  *           is enabled.
2403  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2404  *           (allocated or reserved.)
2405  *       0:  successfully dissolved free hugepages or the page is not a
2406  *           hugepage (considered as already dissolved)
2407  */
2408 int dissolve_free_huge_page(struct page *page)
2409 {
2410         int rc = -EBUSY;
2411         struct folio *folio = page_folio(page);
2412
2413 retry:
2414         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2415         if (!folio_test_hugetlb(folio))
2416                 return 0;
2417
2418         spin_lock_irq(&hugetlb_lock);
2419         if (!folio_test_hugetlb(folio)) {
2420                 rc = 0;
2421                 goto out;
2422         }
2423
2424         if (!folio_ref_count(folio)) {
2425                 struct hstate *h = folio_hstate(folio);
2426                 if (!available_huge_pages(h))
2427                         goto out;
2428
2429                 /*
2430                  * We should make sure that the page is already on the free list
2431                  * when it is dissolved.
2432                  */
2433                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2434                         spin_unlock_irq(&hugetlb_lock);
2435                         cond_resched();
2436
2437                         /*
2438                          * Theoretically, we should return -EBUSY when we
2439                          * encounter this race. In fact, we have a chance
2440                          * to successfully dissolve the page if we do a
2441                          * retry. Because the race window is quite small.
2442                          * If we seize this opportunity, it is an optimization
2443                          * for increasing the success rate of dissolving page.
2444                          */
2445                         goto retry;
2446                 }
2447
2448                 remove_hugetlb_folio(h, folio, false);
2449                 h->max_huge_pages--;
2450                 spin_unlock_irq(&hugetlb_lock);
2451
2452                 /*
2453                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2454                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2455                  * free the page if it can not allocate required vmemmap.  We
2456                  * need to adjust max_huge_pages if the page is not freed.
2457                  * Attempt to allocate vmemmmap here so that we can take
2458                  * appropriate action on failure.
2459                  *
2460                  * The folio_test_hugetlb check here is because
2461                  * remove_hugetlb_folio will clear hugetlb folio flag for
2462                  * non-vmemmap optimized hugetlb folios.
2463                  */
2464                 if (folio_test_hugetlb(folio)) {
2465                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2466                         if (rc) {
2467                                 spin_lock_irq(&hugetlb_lock);
2468                                 add_hugetlb_folio(h, folio, false);
2469                                 h->max_huge_pages++;
2470                                 goto out;
2471                         }
2472                 } else
2473                         rc = 0;
2474
2475                 update_and_free_hugetlb_folio(h, folio, false);
2476                 return rc;
2477         }
2478 out:
2479         spin_unlock_irq(&hugetlb_lock);
2480         return rc;
2481 }
2482
2483 /*
2484  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2485  * make specified memory blocks removable from the system.
2486  * Note that this will dissolve a free gigantic hugepage completely, if any
2487  * part of it lies within the given range.
2488  * Also note that if dissolve_free_huge_page() returns with an error, all
2489  * free hugepages that were dissolved before that error are lost.
2490  */
2491 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2492 {
2493         unsigned long pfn;
2494         struct page *page;
2495         int rc = 0;
2496         unsigned int order;
2497         struct hstate *h;
2498
2499         if (!hugepages_supported())
2500                 return rc;
2501
2502         order = huge_page_order(&default_hstate);
2503         for_each_hstate(h)
2504                 order = min(order, huge_page_order(h));
2505
2506         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2507                 page = pfn_to_page(pfn);
2508                 rc = dissolve_free_huge_page(page);
2509                 if (rc)
2510                         break;
2511         }
2512
2513         return rc;
2514 }
2515
2516 /*
2517  * Allocates a fresh surplus page from the page allocator.
2518  */
2519 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2520                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2521 {
2522         struct folio *folio = NULL;
2523
2524         if (hstate_is_gigantic(h))
2525                 return NULL;
2526
2527         spin_lock_irq(&hugetlb_lock);
2528         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2529                 goto out_unlock;
2530         spin_unlock_irq(&hugetlb_lock);
2531
2532         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2533         if (!folio)
2534                 return NULL;
2535
2536         spin_lock_irq(&hugetlb_lock);
2537         /*
2538          * We could have raced with the pool size change.
2539          * Double check that and simply deallocate the new page
2540          * if we would end up overcommiting the surpluses. Abuse
2541          * temporary page to workaround the nasty free_huge_folio
2542          * codeflow
2543          */
2544         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2545                 folio_set_hugetlb_temporary(folio);
2546                 spin_unlock_irq(&hugetlb_lock);
2547                 free_huge_folio(folio);
2548                 return NULL;
2549         }
2550
2551         h->surplus_huge_pages++;
2552         h->surplus_huge_pages_node[folio_nid(folio)]++;
2553
2554 out_unlock:
2555         spin_unlock_irq(&hugetlb_lock);
2556
2557         return folio;
2558 }
2559
2560 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2561                                      int nid, nodemask_t *nmask)
2562 {
2563         struct folio *folio;
2564
2565         if (hstate_is_gigantic(h))
2566                 return NULL;
2567
2568         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2569         if (!folio)
2570                 return NULL;
2571
2572         /* fresh huge pages are frozen */
2573         folio_ref_unfreeze(folio, 1);
2574         /*
2575          * We do not account these pages as surplus because they are only
2576          * temporary and will be released properly on the last reference
2577          */
2578         folio_set_hugetlb_temporary(folio);
2579
2580         return folio;
2581 }
2582
2583 /*
2584  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2585  */
2586 static
2587 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2588                 struct vm_area_struct *vma, unsigned long addr)
2589 {
2590         struct folio *folio = NULL;
2591         struct mempolicy *mpol;
2592         gfp_t gfp_mask = htlb_alloc_mask(h);
2593         int nid;
2594         nodemask_t *nodemask;
2595
2596         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2597         if (mpol_is_preferred_many(mpol)) {
2598                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2599
2600                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2601                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2602
2603                 /* Fallback to all nodes if page==NULL */
2604                 nodemask = NULL;
2605         }
2606
2607         if (!folio)
2608                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2609         mpol_cond_put(mpol);
2610         return folio;
2611 }
2612
2613 /* folio migration callback function */
2614 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2615                 nodemask_t *nmask, gfp_t gfp_mask)
2616 {
2617         spin_lock_irq(&hugetlb_lock);
2618         if (available_huge_pages(h)) {
2619                 struct folio *folio;
2620
2621                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2622                                                 preferred_nid, nmask);
2623                 if (folio) {
2624                         spin_unlock_irq(&hugetlb_lock);
2625                         return folio;
2626                 }
2627         }
2628         spin_unlock_irq(&hugetlb_lock);
2629
2630         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2631 }
2632
2633 /*
2634  * Increase the hugetlb pool such that it can accommodate a reservation
2635  * of size 'delta'.
2636  */
2637 static int gather_surplus_pages(struct hstate *h, long delta)
2638         __must_hold(&hugetlb_lock)
2639 {
2640         LIST_HEAD(surplus_list);
2641         struct folio *folio, *tmp;
2642         int ret;
2643         long i;
2644         long needed, allocated;
2645         bool alloc_ok = true;
2646
2647         lockdep_assert_held(&hugetlb_lock);
2648         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2649         if (needed <= 0) {
2650                 h->resv_huge_pages += delta;
2651                 return 0;
2652         }
2653
2654         allocated = 0;
2655
2656         ret = -ENOMEM;
2657 retry:
2658         spin_unlock_irq(&hugetlb_lock);
2659         for (i = 0; i < needed; i++) {
2660                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2661                                 NUMA_NO_NODE, NULL);
2662                 if (!folio) {
2663                         alloc_ok = false;
2664                         break;
2665                 }
2666                 list_add(&folio->lru, &surplus_list);
2667                 cond_resched();
2668         }
2669         allocated += i;
2670
2671         /*
2672          * After retaking hugetlb_lock, we need to recalculate 'needed'
2673          * because either resv_huge_pages or free_huge_pages may have changed.
2674          */
2675         spin_lock_irq(&hugetlb_lock);
2676         needed = (h->resv_huge_pages + delta) -
2677                         (h->free_huge_pages + allocated);
2678         if (needed > 0) {
2679                 if (alloc_ok)
2680                         goto retry;
2681                 /*
2682                  * We were not able to allocate enough pages to
2683                  * satisfy the entire reservation so we free what
2684                  * we've allocated so far.
2685                  */
2686                 goto free;
2687         }
2688         /*
2689          * The surplus_list now contains _at_least_ the number of extra pages
2690          * needed to accommodate the reservation.  Add the appropriate number
2691          * of pages to the hugetlb pool and free the extras back to the buddy
2692          * allocator.  Commit the entire reservation here to prevent another
2693          * process from stealing the pages as they are added to the pool but
2694          * before they are reserved.
2695          */
2696         needed += allocated;
2697         h->resv_huge_pages += delta;
2698         ret = 0;
2699
2700         /* Free the needed pages to the hugetlb pool */
2701         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2702                 if ((--needed) < 0)
2703                         break;
2704                 /* Add the page to the hugetlb allocator */
2705                 enqueue_hugetlb_folio(h, folio);
2706         }
2707 free:
2708         spin_unlock_irq(&hugetlb_lock);
2709
2710         /*
2711          * Free unnecessary surplus pages to the buddy allocator.
2712          * Pages have no ref count, call free_huge_folio directly.
2713          */
2714         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2715                 free_huge_folio(folio);
2716         spin_lock_irq(&hugetlb_lock);
2717
2718         return ret;
2719 }
2720
2721 /*
2722  * This routine has two main purposes:
2723  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2724  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2725  *    to the associated reservation map.
2726  * 2) Free any unused surplus pages that may have been allocated to satisfy
2727  *    the reservation.  As many as unused_resv_pages may be freed.
2728  */
2729 static void return_unused_surplus_pages(struct hstate *h,
2730                                         unsigned long unused_resv_pages)
2731 {
2732         unsigned long nr_pages;
2733         LIST_HEAD(page_list);
2734
2735         lockdep_assert_held(&hugetlb_lock);
2736         /* Uncommit the reservation */
2737         h->resv_huge_pages -= unused_resv_pages;
2738
2739         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2740                 goto out;
2741
2742         /*
2743          * Part (or even all) of the reservation could have been backed
2744          * by pre-allocated pages. Only free surplus pages.
2745          */
2746         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2747
2748         /*
2749          * We want to release as many surplus pages as possible, spread
2750          * evenly across all nodes with memory. Iterate across these nodes
2751          * until we can no longer free unreserved surplus pages. This occurs
2752          * when the nodes with surplus pages have no free pages.
2753          * remove_pool_hugetlb_folio() will balance the freed pages across the
2754          * on-line nodes with memory and will handle the hstate accounting.
2755          */
2756         while (nr_pages--) {
2757                 struct folio *folio;
2758
2759                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2760                 if (!folio)
2761                         goto out;
2762
2763                 list_add(&folio->lru, &page_list);
2764         }
2765
2766 out:
2767         spin_unlock_irq(&hugetlb_lock);
2768         update_and_free_pages_bulk(h, &page_list);
2769         spin_lock_irq(&hugetlb_lock);
2770 }
2771
2772
2773 /*
2774  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2775  * are used by the huge page allocation routines to manage reservations.
2776  *
2777  * vma_needs_reservation is called to determine if the huge page at addr
2778  * within the vma has an associated reservation.  If a reservation is
2779  * needed, the value 1 is returned.  The caller is then responsible for
2780  * managing the global reservation and subpool usage counts.  After
2781  * the huge page has been allocated, vma_commit_reservation is called
2782  * to add the page to the reservation map.  If the page allocation fails,
2783  * the reservation must be ended instead of committed.  vma_end_reservation
2784  * is called in such cases.
2785  *
2786  * In the normal case, vma_commit_reservation returns the same value
2787  * as the preceding vma_needs_reservation call.  The only time this
2788  * is not the case is if a reserve map was changed between calls.  It
2789  * is the responsibility of the caller to notice the difference and
2790  * take appropriate action.
2791  *
2792  * vma_add_reservation is used in error paths where a reservation must
2793  * be restored when a newly allocated huge page must be freed.  It is
2794  * to be called after calling vma_needs_reservation to determine if a
2795  * reservation exists.
2796  *
2797  * vma_del_reservation is used in error paths where an entry in the reserve
2798  * map was created during huge page allocation and must be removed.  It is to
2799  * be called after calling vma_needs_reservation to determine if a reservation
2800  * exists.
2801  */
2802 enum vma_resv_mode {
2803         VMA_NEEDS_RESV,
2804         VMA_COMMIT_RESV,
2805         VMA_END_RESV,
2806         VMA_ADD_RESV,
2807         VMA_DEL_RESV,
2808 };
2809 static long __vma_reservation_common(struct hstate *h,
2810                                 struct vm_area_struct *vma, unsigned long addr,
2811                                 enum vma_resv_mode mode)
2812 {
2813         struct resv_map *resv;
2814         pgoff_t idx;
2815         long ret;
2816         long dummy_out_regions_needed;
2817
2818         resv = vma_resv_map(vma);
2819         if (!resv)
2820                 return 1;
2821
2822         idx = vma_hugecache_offset(h, vma, addr);
2823         switch (mode) {
2824         case VMA_NEEDS_RESV:
2825                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2826                 /* We assume that vma_reservation_* routines always operate on
2827                  * 1 page, and that adding to resv map a 1 page entry can only
2828                  * ever require 1 region.
2829                  */
2830                 VM_BUG_ON(dummy_out_regions_needed != 1);
2831                 break;
2832         case VMA_COMMIT_RESV:
2833                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2834                 /* region_add calls of range 1 should never fail. */
2835                 VM_BUG_ON(ret < 0);
2836                 break;
2837         case VMA_END_RESV:
2838                 region_abort(resv, idx, idx + 1, 1);
2839                 ret = 0;
2840                 break;
2841         case VMA_ADD_RESV:
2842                 if (vma->vm_flags & VM_MAYSHARE) {
2843                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2844                         /* region_add calls of range 1 should never fail. */
2845                         VM_BUG_ON(ret < 0);
2846                 } else {
2847                         region_abort(resv, idx, idx + 1, 1);
2848                         ret = region_del(resv, idx, idx + 1);
2849                 }
2850                 break;
2851         case VMA_DEL_RESV:
2852                 if (vma->vm_flags & VM_MAYSHARE) {
2853                         region_abort(resv, idx, idx + 1, 1);
2854                         ret = region_del(resv, idx, idx + 1);
2855                 } else {
2856                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2857                         /* region_add calls of range 1 should never fail. */
2858                         VM_BUG_ON(ret < 0);
2859                 }
2860                 break;
2861         default:
2862                 BUG();
2863         }
2864
2865         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2866                 return ret;
2867         /*
2868          * We know private mapping must have HPAGE_RESV_OWNER set.
2869          *
2870          * In most cases, reserves always exist for private mappings.
2871          * However, a file associated with mapping could have been
2872          * hole punched or truncated after reserves were consumed.
2873          * As subsequent fault on such a range will not use reserves.
2874          * Subtle - The reserve map for private mappings has the
2875          * opposite meaning than that of shared mappings.  If NO
2876          * entry is in the reserve map, it means a reservation exists.
2877          * If an entry exists in the reserve map, it means the
2878          * reservation has already been consumed.  As a result, the
2879          * return value of this routine is the opposite of the
2880          * value returned from reserve map manipulation routines above.
2881          */
2882         if (ret > 0)
2883                 return 0;
2884         if (ret == 0)
2885                 return 1;
2886         return ret;
2887 }
2888
2889 static long vma_needs_reservation(struct hstate *h,
2890                         struct vm_area_struct *vma, unsigned long addr)
2891 {
2892         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2893 }
2894
2895 static long vma_commit_reservation(struct hstate *h,
2896                         struct vm_area_struct *vma, unsigned long addr)
2897 {
2898         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2899 }
2900
2901 static void vma_end_reservation(struct hstate *h,
2902                         struct vm_area_struct *vma, unsigned long addr)
2903 {
2904         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2905 }
2906
2907 static long vma_add_reservation(struct hstate *h,
2908                         struct vm_area_struct *vma, unsigned long addr)
2909 {
2910         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2911 }
2912
2913 static long vma_del_reservation(struct hstate *h,
2914                         struct vm_area_struct *vma, unsigned long addr)
2915 {
2916         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2917 }
2918
2919 /*
2920  * This routine is called to restore reservation information on error paths.
2921  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2922  * and the hugetlb mutex should remain held when calling this routine.
2923  *
2924  * It handles two specific cases:
2925  * 1) A reservation was in place and the folio consumed the reservation.
2926  *    hugetlb_restore_reserve is set in the folio.
2927  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2928  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2929  *
2930  * In case 1, free_huge_folio later in the error path will increment the
2931  * global reserve count.  But, free_huge_folio does not have enough context
2932  * to adjust the reservation map.  This case deals primarily with private
2933  * mappings.  Adjust the reserve map here to be consistent with global
2934  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2935  * reserve map indicates there is a reservation present.
2936  *
2937  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2938  */
2939 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2940                         unsigned long address, struct folio *folio)
2941 {
2942         long rc = vma_needs_reservation(h, vma, address);
2943
2944         if (folio_test_hugetlb_restore_reserve(folio)) {
2945                 if (unlikely(rc < 0))
2946                         /*
2947                          * Rare out of memory condition in reserve map
2948                          * manipulation.  Clear hugetlb_restore_reserve so
2949                          * that global reserve count will not be incremented
2950                          * by free_huge_folio.  This will make it appear
2951                          * as though the reservation for this folio was
2952                          * consumed.  This may prevent the task from
2953                          * faulting in the folio at a later time.  This
2954                          * is better than inconsistent global huge page
2955                          * accounting of reserve counts.
2956                          */
2957                         folio_clear_hugetlb_restore_reserve(folio);
2958                 else if (rc)
2959                         (void)vma_add_reservation(h, vma, address);
2960                 else
2961                         vma_end_reservation(h, vma, address);
2962         } else {
2963                 if (!rc) {
2964                         /*
2965                          * This indicates there is an entry in the reserve map
2966                          * not added by alloc_hugetlb_folio.  We know it was added
2967                          * before the alloc_hugetlb_folio call, otherwise
2968                          * hugetlb_restore_reserve would be set on the folio.
2969                          * Remove the entry so that a subsequent allocation
2970                          * does not consume a reservation.
2971                          */
2972                         rc = vma_del_reservation(h, vma, address);
2973                         if (rc < 0)
2974                                 /*
2975                                  * VERY rare out of memory condition.  Since
2976                                  * we can not delete the entry, set
2977                                  * hugetlb_restore_reserve so that the reserve
2978                                  * count will be incremented when the folio
2979                                  * is freed.  This reserve will be consumed
2980                                  * on a subsequent allocation.
2981                                  */
2982                                 folio_set_hugetlb_restore_reserve(folio);
2983                 } else if (rc < 0) {
2984                         /*
2985                          * Rare out of memory condition from
2986                          * vma_needs_reservation call.  Memory allocation is
2987                          * only attempted if a new entry is needed.  Therefore,
2988                          * this implies there is not an entry in the
2989                          * reserve map.
2990                          *
2991                          * For shared mappings, no entry in the map indicates
2992                          * no reservation.  We are done.
2993                          */
2994                         if (!(vma->vm_flags & VM_MAYSHARE))
2995                                 /*
2996                                  * For private mappings, no entry indicates
2997                                  * a reservation is present.  Since we can
2998                                  * not add an entry, set hugetlb_restore_reserve
2999                                  * on the folio so reserve count will be
3000                                  * incremented when freed.  This reserve will
3001                                  * be consumed on a subsequent allocation.
3002                                  */
3003                                 folio_set_hugetlb_restore_reserve(folio);
3004                 } else
3005                         /*
3006                          * No reservation present, do nothing
3007                          */
3008                          vma_end_reservation(h, vma, address);
3009         }
3010 }
3011
3012 /*
3013  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3014  * the old one
3015  * @h: struct hstate old page belongs to
3016  * @old_folio: Old folio to dissolve
3017  * @list: List to isolate the page in case we need to
3018  * Returns 0 on success, otherwise negated error.
3019  */
3020 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3021                         struct folio *old_folio, struct list_head *list)
3022 {
3023         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3024         int nid = folio_nid(old_folio);
3025         struct folio *new_folio;
3026         int ret = 0;
3027
3028         /*
3029          * Before dissolving the folio, we need to allocate a new one for the
3030          * pool to remain stable.  Here, we allocate the folio and 'prep' it
3031          * by doing everything but actually updating counters and adding to
3032          * the pool.  This simplifies and let us do most of the processing
3033          * under the lock.
3034          */
3035         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
3036         if (!new_folio)
3037                 return -ENOMEM;
3038         __prep_new_hugetlb_folio(h, new_folio);
3039
3040 retry:
3041         spin_lock_irq(&hugetlb_lock);
3042         if (!folio_test_hugetlb(old_folio)) {
3043                 /*
3044                  * Freed from under us. Drop new_folio too.
3045                  */
3046                 goto free_new;
3047         } else if (folio_ref_count(old_folio)) {
3048                 bool isolated;
3049
3050                 /*
3051                  * Someone has grabbed the folio, try to isolate it here.
3052                  * Fail with -EBUSY if not possible.
3053                  */
3054                 spin_unlock_irq(&hugetlb_lock);
3055                 isolated = isolate_hugetlb(old_folio, list);
3056                 ret = isolated ? 0 : -EBUSY;
3057                 spin_lock_irq(&hugetlb_lock);
3058                 goto free_new;
3059         } else if (!folio_test_hugetlb_freed(old_folio)) {
3060                 /*
3061                  * Folio's refcount is 0 but it has not been enqueued in the
3062                  * freelist yet. Race window is small, so we can succeed here if
3063                  * we retry.
3064                  */
3065                 spin_unlock_irq(&hugetlb_lock);
3066                 cond_resched();
3067                 goto retry;
3068         } else {
3069                 /*
3070                  * Ok, old_folio is still a genuine free hugepage. Remove it from
3071                  * the freelist and decrease the counters. These will be
3072                  * incremented again when calling __prep_account_new_huge_page()
3073                  * and enqueue_hugetlb_folio() for new_folio. The counters will
3074                  * remain stable since this happens under the lock.
3075                  */
3076                 remove_hugetlb_folio(h, old_folio, false);
3077
3078                 /*
3079                  * Ref count on new_folio is already zero as it was dropped
3080                  * earlier.  It can be directly added to the pool free list.
3081                  */
3082                 __prep_account_new_huge_page(h, nid);
3083                 enqueue_hugetlb_folio(h, new_folio);
3084
3085                 /*
3086                  * Folio has been replaced, we can safely free the old one.
3087                  */
3088                 spin_unlock_irq(&hugetlb_lock);
3089                 update_and_free_hugetlb_folio(h, old_folio, false);
3090         }
3091
3092         return ret;
3093
3094 free_new:
3095         spin_unlock_irq(&hugetlb_lock);
3096         /* Folio has a zero ref count, but needs a ref to be freed */
3097         folio_ref_unfreeze(new_folio, 1);
3098         update_and_free_hugetlb_folio(h, new_folio, false);
3099
3100         return ret;
3101 }
3102
3103 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3104 {
3105         struct hstate *h;
3106         struct folio *folio = page_folio(page);
3107         int ret = -EBUSY;
3108
3109         /*
3110          * The page might have been dissolved from under our feet, so make sure
3111          * to carefully check the state under the lock.
3112          * Return success when racing as if we dissolved the page ourselves.
3113          */
3114         spin_lock_irq(&hugetlb_lock);
3115         if (folio_test_hugetlb(folio)) {
3116                 h = folio_hstate(folio);
3117         } else {
3118                 spin_unlock_irq(&hugetlb_lock);
3119                 return 0;
3120         }
3121         spin_unlock_irq(&hugetlb_lock);
3122
3123         /*
3124          * Fence off gigantic pages as there is a cyclic dependency between
3125          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3126          * of bailing out right away without further retrying.
3127          */
3128         if (hstate_is_gigantic(h))
3129                 return -ENOMEM;
3130
3131         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3132                 ret = 0;
3133         else if (!folio_ref_count(folio))
3134                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3135
3136         return ret;
3137 }
3138
3139 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3140                                     unsigned long addr, int avoid_reserve)
3141 {
3142         struct hugepage_subpool *spool = subpool_vma(vma);
3143         struct hstate *h = hstate_vma(vma);
3144         struct folio *folio;
3145         long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3146         long gbl_chg;
3147         int memcg_charge_ret, ret, idx;
3148         struct hugetlb_cgroup *h_cg = NULL;
3149         struct mem_cgroup *memcg;
3150         bool deferred_reserve;
3151         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3152
3153         memcg = get_mem_cgroup_from_current();
3154         memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3155         if (memcg_charge_ret == -ENOMEM) {
3156                 mem_cgroup_put(memcg);
3157                 return ERR_PTR(-ENOMEM);
3158         }
3159
3160         idx = hstate_index(h);
3161         /*
3162          * Examine the region/reserve map to determine if the process
3163          * has a reservation for the page to be allocated.  A return
3164          * code of zero indicates a reservation exists (no change).
3165          */
3166         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3167         if (map_chg < 0) {
3168                 if (!memcg_charge_ret)
3169                         mem_cgroup_cancel_charge(memcg, nr_pages);
3170                 mem_cgroup_put(memcg);
3171                 return ERR_PTR(-ENOMEM);
3172         }
3173
3174         /*
3175          * Processes that did not create the mapping will have no
3176          * reserves as indicated by the region/reserve map. Check
3177          * that the allocation will not exceed the subpool limit.
3178          * Allocations for MAP_NORESERVE mappings also need to be
3179          * checked against any subpool limit.
3180          */
3181         if (map_chg || avoid_reserve) {
3182                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3183                 if (gbl_chg < 0)
3184                         goto out_end_reservation;
3185
3186                 /*
3187                  * Even though there was no reservation in the region/reserve
3188                  * map, there could be reservations associated with the
3189                  * subpool that can be used.  This would be indicated if the
3190                  * return value of hugepage_subpool_get_pages() is zero.
3191                  * However, if avoid_reserve is specified we still avoid even
3192                  * the subpool reservations.
3193                  */
3194                 if (avoid_reserve)
3195                         gbl_chg = 1;
3196         }
3197
3198         /* If this allocation is not consuming a reservation, charge it now.
3199          */
3200         deferred_reserve = map_chg || avoid_reserve;
3201         if (deferred_reserve) {
3202                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3203                         idx, pages_per_huge_page(h), &h_cg);
3204                 if (ret)
3205                         goto out_subpool_put;
3206         }
3207
3208         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3209         if (ret)
3210                 goto out_uncharge_cgroup_reservation;
3211
3212         spin_lock_irq(&hugetlb_lock);
3213         /*
3214          * glb_chg is passed to indicate whether or not a page must be taken
3215          * from the global free pool (global change).  gbl_chg == 0 indicates
3216          * a reservation exists for the allocation.
3217          */
3218         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3219         if (!folio) {
3220                 spin_unlock_irq(&hugetlb_lock);
3221                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3222                 if (!folio)
3223                         goto out_uncharge_cgroup;
3224                 spin_lock_irq(&hugetlb_lock);
3225                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3226                         folio_set_hugetlb_restore_reserve(folio);
3227                         h->resv_huge_pages--;
3228                 }
3229                 list_add(&folio->lru, &h->hugepage_activelist);
3230                 folio_ref_unfreeze(folio, 1);
3231                 /* Fall through */
3232         }
3233
3234         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3235         /* If allocation is not consuming a reservation, also store the
3236          * hugetlb_cgroup pointer on the page.
3237          */
3238         if (deferred_reserve) {
3239                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3240                                                   h_cg, folio);
3241         }
3242
3243         spin_unlock_irq(&hugetlb_lock);
3244
3245         hugetlb_set_folio_subpool(folio, spool);
3246
3247         map_commit = vma_commit_reservation(h, vma, addr);
3248         if (unlikely(map_chg > map_commit)) {
3249                 /*
3250                  * The page was added to the reservation map between
3251                  * vma_needs_reservation and vma_commit_reservation.
3252                  * This indicates a race with hugetlb_reserve_pages.
3253                  * Adjust for the subpool count incremented above AND
3254                  * in hugetlb_reserve_pages for the same page.  Also,
3255                  * the reservation count added in hugetlb_reserve_pages
3256                  * no longer applies.
3257                  */
3258                 long rsv_adjust;
3259
3260                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3261                 hugetlb_acct_memory(h, -rsv_adjust);
3262                 if (deferred_reserve)
3263                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3264                                         pages_per_huge_page(h), folio);
3265         }
3266
3267         if (!memcg_charge_ret)
3268                 mem_cgroup_commit_charge(folio, memcg);
3269         mem_cgroup_put(memcg);
3270
3271         return folio;
3272
3273 out_uncharge_cgroup:
3274         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3275 out_uncharge_cgroup_reservation:
3276         if (deferred_reserve)
3277                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3278                                                     h_cg);
3279 out_subpool_put:
3280         if (map_chg || avoid_reserve)
3281                 hugepage_subpool_put_pages(spool, 1);
3282 out_end_reservation:
3283         vma_end_reservation(h, vma, addr);
3284         if (!memcg_charge_ret)
3285                 mem_cgroup_cancel_charge(memcg, nr_pages);
3286         mem_cgroup_put(memcg);
3287         return ERR_PTR(-ENOSPC);
3288 }
3289
3290 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3291         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3292 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3293 {
3294         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3295         int nr_nodes, node;
3296
3297         /* do node specific alloc */
3298         if (nid != NUMA_NO_NODE) {
3299                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3300                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3301                 if (!m)
3302                         return 0;
3303                 goto found;
3304         }
3305         /* allocate from next node when distributing huge pages */
3306         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3307                 m = memblock_alloc_try_nid_raw(
3308                                 huge_page_size(h), huge_page_size(h),
3309                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3310                 /*
3311                  * Use the beginning of the huge page to store the
3312                  * huge_bootmem_page struct (until gather_bootmem
3313                  * puts them into the mem_map).
3314                  */
3315                 if (!m)
3316                         return 0;
3317                 goto found;
3318         }
3319
3320 found:
3321
3322         /*
3323          * Only initialize the head struct page in memmap_init_reserved_pages,
3324          * rest of the struct pages will be initialized by the HugeTLB
3325          * subsystem itself.
3326          * The head struct page is used to get folio information by the HugeTLB
3327          * subsystem like zone id and node id.
3328          */
3329         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3330                 huge_page_size(h) - PAGE_SIZE);
3331         /* Put them into a private list first because mem_map is not up yet */
3332         INIT_LIST_HEAD(&m->list);
3333         list_add(&m->list, &huge_boot_pages);
3334         m->hstate = h;
3335         return 1;
3336 }
3337
3338 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3339 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3340                                         unsigned long start_page_number,
3341                                         unsigned long end_page_number)
3342 {
3343         enum zone_type zone = zone_idx(folio_zone(folio));
3344         int nid = folio_nid(folio);
3345         unsigned long head_pfn = folio_pfn(folio);
3346         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3347         int ret;
3348
3349         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3350                 struct page *page = pfn_to_page(pfn);
3351
3352                 __init_single_page(page, pfn, zone, nid);
3353                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3354                 ret = page_ref_freeze(page, 1);
3355                 VM_BUG_ON(!ret);
3356         }
3357 }
3358
3359 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3360                                               struct hstate *h,
3361                                               unsigned long nr_pages)
3362 {
3363         int ret;
3364
3365         /* Prepare folio head */
3366         __folio_clear_reserved(folio);
3367         __folio_set_head(folio);
3368         ret = folio_ref_freeze(folio, 1);
3369         VM_BUG_ON(!ret);
3370         /* Initialize the necessary tail struct pages */
3371         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3372         prep_compound_head((struct page *)folio, huge_page_order(h));
3373 }
3374
3375 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3376                                         struct list_head *folio_list)
3377 {
3378         unsigned long flags;
3379         struct folio *folio, *tmp_f;
3380
3381         /* Send list for bulk vmemmap optimization processing */
3382         hugetlb_vmemmap_optimize_folios(h, folio_list);
3383
3384         /* Add all new pool pages to free lists in one lock cycle */
3385         spin_lock_irqsave(&hugetlb_lock, flags);
3386         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3387                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3388                         /*
3389                          * If HVO fails, initialize all tail struct pages
3390                          * We do not worry about potential long lock hold
3391                          * time as this is early in boot and there should
3392                          * be no contention.
3393                          */
3394                         hugetlb_folio_init_tail_vmemmap(folio,
3395                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3396                                         pages_per_huge_page(h));
3397                 }
3398                 __prep_account_new_huge_page(h, folio_nid(folio));
3399                 enqueue_hugetlb_folio(h, folio);
3400         }
3401         spin_unlock_irqrestore(&hugetlb_lock, flags);
3402 }
3403
3404 /*
3405  * Put bootmem huge pages into the standard lists after mem_map is up.
3406  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3407  */
3408 static void __init gather_bootmem_prealloc(void)
3409 {
3410         LIST_HEAD(folio_list);
3411         struct huge_bootmem_page *m;
3412         struct hstate *h = NULL, *prev_h = NULL;
3413
3414         list_for_each_entry(m, &huge_boot_pages, list) {
3415                 struct page *page = virt_to_page(m);
3416                 struct folio *folio = (void *)page;
3417
3418                 h = m->hstate;
3419                 /*
3420                  * It is possible to have multiple huge page sizes (hstates)
3421                  * in this list.  If so, process each size separately.
3422                  */
3423                 if (h != prev_h && prev_h != NULL)
3424                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3425                 prev_h = h;
3426
3427                 VM_BUG_ON(!hstate_is_gigantic(h));
3428                 WARN_ON(folio_ref_count(folio) != 1);
3429
3430                 hugetlb_folio_init_vmemmap(folio, h,
3431                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3432                 init_new_hugetlb_folio(h, folio);
3433                 list_add(&folio->lru, &folio_list);
3434
3435                 /*
3436                  * We need to restore the 'stolen' pages to totalram_pages
3437                  * in order to fix confusing memory reports from free(1) and
3438                  * other side-effects, like CommitLimit going negative.
3439                  */
3440                 adjust_managed_page_count(page, pages_per_huge_page(h));
3441                 cond_resched();
3442         }
3443
3444         prep_and_add_bootmem_folios(h, &folio_list);
3445 }
3446
3447 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3448 {
3449         unsigned long i;
3450         char buf[32];
3451
3452         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3453                 if (hstate_is_gigantic(h)) {
3454                         if (!alloc_bootmem_huge_page(h, nid))
3455                                 break;
3456                 } else {
3457                         struct folio *folio;
3458                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3459
3460                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3461                                         &node_states[N_MEMORY], NULL);
3462                         if (!folio)
3463                                 break;
3464                         free_huge_folio(folio); /* free it into the hugepage allocator */
3465                 }
3466                 cond_resched();
3467         }
3468         if (i == h->max_huge_pages_node[nid])
3469                 return;
3470
3471         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3472         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3473                 h->max_huge_pages_node[nid], buf, nid, i);
3474         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3475         h->max_huge_pages_node[nid] = i;
3476 }
3477
3478 /*
3479  * NOTE: this routine is called in different contexts for gigantic and
3480  * non-gigantic pages.
3481  * - For gigantic pages, this is called early in the boot process and
3482  *   pages are allocated from memblock allocated or something similar.
3483  *   Gigantic pages are actually added to pools later with the routine
3484  *   gather_bootmem_prealloc.
3485  * - For non-gigantic pages, this is called later in the boot process after
3486  *   all of mm is up and functional.  Pages are allocated from buddy and
3487  *   then added to hugetlb pools.
3488  */
3489 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3490 {
3491         unsigned long i;
3492         struct folio *folio;
3493         LIST_HEAD(folio_list);
3494         nodemask_t *node_alloc_noretry;
3495         bool node_specific_alloc = false;
3496
3497         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3498         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3499                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3500                 return;
3501         }
3502
3503         /* do node specific alloc */
3504         for_each_online_node(i) {
3505                 if (h->max_huge_pages_node[i] > 0) {
3506                         hugetlb_hstate_alloc_pages_onenode(h, i);
3507                         node_specific_alloc = true;
3508                 }
3509         }
3510
3511         if (node_specific_alloc)
3512                 return;
3513
3514         /* below will do all node balanced alloc */
3515         if (!hstate_is_gigantic(h)) {
3516                 /*
3517                  * Bit mask controlling how hard we retry per-node allocations.
3518                  * Ignore errors as lower level routines can deal with
3519                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3520                  * time, we are likely in bigger trouble.
3521                  */
3522                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3523                                                 GFP_KERNEL);
3524         } else {
3525                 /* allocations done at boot time */
3526                 node_alloc_noretry = NULL;
3527         }
3528
3529         /* bit mask controlling how hard we retry per-node allocations */
3530         if (node_alloc_noretry)
3531                 nodes_clear(*node_alloc_noretry);
3532
3533         for (i = 0; i < h->max_huge_pages; ++i) {
3534                 if (hstate_is_gigantic(h)) {
3535                         /*
3536                          * gigantic pages not added to list as they are not
3537                          * added to pools now.
3538                          */
3539                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3540                                 break;
3541                 } else {
3542                         folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3543                                                         node_alloc_noretry);
3544                         if (!folio)
3545                                 break;
3546                         list_add(&folio->lru, &folio_list);
3547                 }
3548                 cond_resched();
3549         }
3550
3551         /* list will be empty if hstate_is_gigantic */
3552         prep_and_add_allocated_folios(h, &folio_list);
3553
3554         if (i < h->max_huge_pages) {
3555                 char buf[32];
3556
3557                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3558                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3559                         h->max_huge_pages, buf, i);
3560                 h->max_huge_pages = i;
3561         }
3562         kfree(node_alloc_noretry);
3563 }
3564
3565 static void __init hugetlb_init_hstates(void)
3566 {
3567         struct hstate *h, *h2;
3568
3569         for_each_hstate(h) {
3570                 /* oversize hugepages were init'ed in early boot */
3571                 if (!hstate_is_gigantic(h))
3572                         hugetlb_hstate_alloc_pages(h);
3573
3574                 /*
3575                  * Set demote order for each hstate.  Note that
3576                  * h->demote_order is initially 0.
3577                  * - We can not demote gigantic pages if runtime freeing
3578                  *   is not supported, so skip this.
3579                  * - If CMA allocation is possible, we can not demote
3580                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3581                  */
3582                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3583                         continue;
3584                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3585                         continue;
3586                 for_each_hstate(h2) {
3587                         if (h2 == h)
3588                                 continue;
3589                         if (h2->order < h->order &&
3590                             h2->order > h->demote_order)
3591                                 h->demote_order = h2->order;
3592                 }
3593         }
3594 }
3595
3596 static void __init report_hugepages(void)
3597 {
3598         struct hstate *h;
3599
3600         for_each_hstate(h) {
3601                 char buf[32];
3602
3603                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3604                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3605                         buf, h->free_huge_pages);
3606                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3607                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3608         }
3609 }
3610
3611 #ifdef CONFIG_HIGHMEM
3612 static void try_to_free_low(struct hstate *h, unsigned long count,
3613                                                 nodemask_t *nodes_allowed)
3614 {
3615         int i;
3616         LIST_HEAD(page_list);
3617
3618         lockdep_assert_held(&hugetlb_lock);
3619         if (hstate_is_gigantic(h))
3620                 return;
3621
3622         /*
3623          * Collect pages to be freed on a list, and free after dropping lock
3624          */
3625         for_each_node_mask(i, *nodes_allowed) {
3626                 struct folio *folio, *next;
3627                 struct list_head *freel = &h->hugepage_freelists[i];
3628                 list_for_each_entry_safe(folio, next, freel, lru) {
3629                         if (count >= h->nr_huge_pages)
3630                                 goto out;
3631                         if (folio_test_highmem(folio))
3632                                 continue;
3633                         remove_hugetlb_folio(h, folio, false);
3634                         list_add(&folio->lru, &page_list);
3635                 }
3636         }
3637
3638 out:
3639         spin_unlock_irq(&hugetlb_lock);
3640         update_and_free_pages_bulk(h, &page_list);
3641         spin_lock_irq(&hugetlb_lock);
3642 }
3643 #else
3644 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3645                                                 nodemask_t *nodes_allowed)
3646 {
3647 }
3648 #endif
3649
3650 /*
3651  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3652  * balanced by operating on them in a round-robin fashion.
3653  * Returns 1 if an adjustment was made.
3654  */
3655 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3656                                 int delta)
3657 {
3658         int nr_nodes, node;
3659
3660         lockdep_assert_held(&hugetlb_lock);
3661         VM_BUG_ON(delta != -1 && delta != 1);
3662
3663         if (delta < 0) {
3664                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3665                         if (h->surplus_huge_pages_node[node])
3666                                 goto found;
3667                 }
3668         } else {
3669                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3670                         if (h->surplus_huge_pages_node[node] <
3671                                         h->nr_huge_pages_node[node])
3672                                 goto found;
3673                 }
3674         }
3675         return 0;
3676
3677 found:
3678         h->surplus_huge_pages += delta;
3679         h->surplus_huge_pages_node[node] += delta;
3680         return 1;
3681 }
3682
3683 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3684 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3685                               nodemask_t *nodes_allowed)
3686 {
3687         unsigned long min_count;
3688         unsigned long allocated;
3689         struct folio *folio;
3690         LIST_HEAD(page_list);
3691         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3692
3693         /*
3694          * Bit mask controlling how hard we retry per-node allocations.
3695          * If we can not allocate the bit mask, do not attempt to allocate
3696          * the requested huge pages.
3697          */
3698         if (node_alloc_noretry)
3699                 nodes_clear(*node_alloc_noretry);
3700         else
3701                 return -ENOMEM;
3702
3703         /*
3704          * resize_lock mutex prevents concurrent adjustments to number of
3705          * pages in hstate via the proc/sysfs interfaces.
3706          */
3707         mutex_lock(&h->resize_lock);
3708         flush_free_hpage_work(h);
3709         spin_lock_irq(&hugetlb_lock);
3710
3711         /*
3712          * Check for a node specific request.
3713          * Changing node specific huge page count may require a corresponding
3714          * change to the global count.  In any case, the passed node mask
3715          * (nodes_allowed) will restrict alloc/free to the specified node.
3716          */
3717         if (nid != NUMA_NO_NODE) {
3718                 unsigned long old_count = count;
3719
3720                 count += persistent_huge_pages(h) -
3721                          (h->nr_huge_pages_node[nid] -
3722                           h->surplus_huge_pages_node[nid]);
3723                 /*
3724                  * User may have specified a large count value which caused the
3725                  * above calculation to overflow.  In this case, they wanted
3726                  * to allocate as many huge pages as possible.  Set count to
3727                  * largest possible value to align with their intention.
3728                  */
3729                 if (count < old_count)
3730                         count = ULONG_MAX;
3731         }
3732
3733         /*
3734          * Gigantic pages runtime allocation depend on the capability for large
3735          * page range allocation.
3736          * If the system does not provide this feature, return an error when
3737          * the user tries to allocate gigantic pages but let the user free the
3738          * boottime allocated gigantic pages.
3739          */
3740         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3741                 if (count > persistent_huge_pages(h)) {
3742                         spin_unlock_irq(&hugetlb_lock);
3743                         mutex_unlock(&h->resize_lock);
3744                         NODEMASK_FREE(node_alloc_noretry);
3745                         return -EINVAL;
3746                 }
3747                 /* Fall through to decrease pool */
3748         }
3749
3750         /*
3751          * Increase the pool size
3752          * First take pages out of surplus state.  Then make up the
3753          * remaining difference by allocating fresh huge pages.
3754          *
3755          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3756          * to convert a surplus huge page to a normal huge page. That is
3757          * not critical, though, it just means the overall size of the
3758          * pool might be one hugepage larger than it needs to be, but
3759          * within all the constraints specified by the sysctls.
3760          */
3761         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3762                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3763                         break;
3764         }
3765
3766         allocated = 0;
3767         while (count > (persistent_huge_pages(h) + allocated)) {
3768                 /*
3769                  * If this allocation races such that we no longer need the
3770                  * page, free_huge_folio will handle it by freeing the page
3771                  * and reducing the surplus.
3772                  */
3773                 spin_unlock_irq(&hugetlb_lock);
3774
3775                 /* yield cpu to avoid soft lockup */
3776                 cond_resched();
3777
3778                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3779                                                 node_alloc_noretry);
3780                 if (!folio) {
3781                         prep_and_add_allocated_folios(h, &page_list);
3782                         spin_lock_irq(&hugetlb_lock);
3783                         goto out;
3784                 }
3785
3786                 list_add(&folio->lru, &page_list);
3787                 allocated++;
3788
3789                 /* Bail for signals. Probably ctrl-c from user */
3790                 if (signal_pending(current)) {
3791                         prep_and_add_allocated_folios(h, &page_list);
3792                         spin_lock_irq(&hugetlb_lock);
3793                         goto out;
3794                 }
3795
3796                 spin_lock_irq(&hugetlb_lock);
3797         }
3798
3799         /* Add allocated pages to the pool */
3800         if (!list_empty(&page_list)) {
3801                 spin_unlock_irq(&hugetlb_lock);
3802                 prep_and_add_allocated_folios(h, &page_list);
3803                 spin_lock_irq(&hugetlb_lock);
3804         }
3805
3806         /*
3807          * Decrease the pool size
3808          * First return free pages to the buddy allocator (being careful
3809          * to keep enough around to satisfy reservations).  Then place
3810          * pages into surplus state as needed so the pool will shrink
3811          * to the desired size as pages become free.
3812          *
3813          * By placing pages into the surplus state independent of the
3814          * overcommit value, we are allowing the surplus pool size to
3815          * exceed overcommit. There are few sane options here. Since
3816          * alloc_surplus_hugetlb_folio() is checking the global counter,
3817          * though, we'll note that we're not allowed to exceed surplus
3818          * and won't grow the pool anywhere else. Not until one of the
3819          * sysctls are changed, or the surplus pages go out of use.
3820          */
3821         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3822         min_count = max(count, min_count);
3823         try_to_free_low(h, min_count, nodes_allowed);
3824
3825         /*
3826          * Collect pages to be removed on list without dropping lock
3827          */
3828         while (min_count < persistent_huge_pages(h)) {
3829                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3830                 if (!folio)
3831                         break;
3832
3833                 list_add(&folio->lru, &page_list);
3834         }
3835         /* free the pages after dropping lock */
3836         spin_unlock_irq(&hugetlb_lock);
3837         update_and_free_pages_bulk(h, &page_list);
3838         flush_free_hpage_work(h);
3839         spin_lock_irq(&hugetlb_lock);
3840
3841         while (count < persistent_huge_pages(h)) {
3842                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3843                         break;
3844         }
3845 out:
3846         h->max_huge_pages = persistent_huge_pages(h);
3847         spin_unlock_irq(&hugetlb_lock);
3848         mutex_unlock(&h->resize_lock);
3849
3850         NODEMASK_FREE(node_alloc_noretry);
3851
3852         return 0;
3853 }
3854
3855 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3856 {
3857         int i, nid = folio_nid(folio);
3858         struct hstate *target_hstate;
3859         struct page *subpage;
3860         struct folio *inner_folio;
3861         int rc = 0;
3862
3863         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3864
3865         remove_hugetlb_folio_for_demote(h, folio, false);
3866         spin_unlock_irq(&hugetlb_lock);
3867
3868         /*
3869          * If vmemmap already existed for folio, the remove routine above would
3870          * have cleared the hugetlb folio flag.  Hence the folio is technically
3871          * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3872          * passed hugetlb folios and will BUG otherwise.
3873          */
3874         if (folio_test_hugetlb(folio)) {
3875                 rc = hugetlb_vmemmap_restore_folio(h, folio);
3876                 if (rc) {
3877                         /* Allocation of vmemmmap failed, we can not demote folio */
3878                         spin_lock_irq(&hugetlb_lock);
3879                         folio_ref_unfreeze(folio, 1);
3880                         add_hugetlb_folio(h, folio, false);
3881                         return rc;
3882                 }
3883         }
3884
3885         /*
3886          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3887          * sizes as it will not ref count folios.
3888          */
3889         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3890
3891         /*
3892          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3893          * Without the mutex, pages added to target hstate could be marked
3894          * as surplus.
3895          *
3896          * Note that we already hold h->resize_lock.  To prevent deadlock,
3897          * use the convention of always taking larger size hstate mutex first.
3898          */
3899         mutex_lock(&target_hstate->resize_lock);
3900         for (i = 0; i < pages_per_huge_page(h);
3901                                 i += pages_per_huge_page(target_hstate)) {
3902                 subpage = folio_page(folio, i);
3903                 inner_folio = page_folio(subpage);
3904                 if (hstate_is_gigantic(target_hstate))
3905                         prep_compound_gigantic_folio_for_demote(inner_folio,
3906                                                         target_hstate->order);
3907                 else
3908                         prep_compound_page(subpage, target_hstate->order);
3909                 folio_change_private(inner_folio, NULL);
3910                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3911                 free_huge_folio(inner_folio);
3912         }
3913         mutex_unlock(&target_hstate->resize_lock);
3914
3915         spin_lock_irq(&hugetlb_lock);
3916
3917         /*
3918          * Not absolutely necessary, but for consistency update max_huge_pages
3919          * based on pool changes for the demoted page.
3920          */
3921         h->max_huge_pages--;
3922         target_hstate->max_huge_pages +=
3923                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3924
3925         return rc;
3926 }
3927
3928 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3929         __must_hold(&hugetlb_lock)
3930 {
3931         int nr_nodes, node;
3932         struct folio *folio;
3933
3934         lockdep_assert_held(&hugetlb_lock);
3935
3936         /* We should never get here if no demote order */
3937         if (!h->demote_order) {
3938                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3939                 return -EINVAL;         /* internal error */
3940         }
3941
3942         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3943                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3944                         if (folio_test_hwpoison(folio))
3945                                 continue;
3946                         return demote_free_hugetlb_folio(h, folio);
3947                 }
3948         }
3949
3950         /*
3951          * Only way to get here is if all pages on free lists are poisoned.
3952          * Return -EBUSY so that caller will not retry.
3953          */
3954         return -EBUSY;
3955 }
3956
3957 #define HSTATE_ATTR_RO(_name) \
3958         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3959
3960 #define HSTATE_ATTR_WO(_name) \
3961         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3962
3963 #define HSTATE_ATTR(_name) \
3964         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3965
3966 static struct kobject *hugepages_kobj;
3967 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3968
3969 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3970
3971 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3972 {
3973         int i;
3974
3975         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3976                 if (hstate_kobjs[i] == kobj) {
3977                         if (nidp)
3978                                 *nidp = NUMA_NO_NODE;
3979                         return &hstates[i];
3980                 }
3981
3982         return kobj_to_node_hstate(kobj, nidp);
3983 }
3984
3985 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3986                                         struct kobj_attribute *attr, char *buf)
3987 {
3988         struct hstate *h;
3989         unsigned long nr_huge_pages;
3990         int nid;
3991
3992         h = kobj_to_hstate(kobj, &nid);
3993         if (nid == NUMA_NO_NODE)
3994                 nr_huge_pages = h->nr_huge_pages;
3995         else
3996                 nr_huge_pages = h->nr_huge_pages_node[nid];
3997
3998         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3999 }
4000
4001 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4002                                            struct hstate *h, int nid,
4003                                            unsigned long count, size_t len)
4004 {
4005         int err;
4006         nodemask_t nodes_allowed, *n_mask;
4007
4008         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4009                 return -EINVAL;
4010
4011         if (nid == NUMA_NO_NODE) {
4012                 /*
4013                  * global hstate attribute
4014                  */
4015                 if (!(obey_mempolicy &&
4016                                 init_nodemask_of_mempolicy(&nodes_allowed)))
4017                         n_mask = &node_states[N_MEMORY];
4018                 else
4019                         n_mask = &nodes_allowed;
4020         } else {
4021                 /*
4022                  * Node specific request.  count adjustment happens in
4023                  * set_max_huge_pages() after acquiring hugetlb_lock.
4024                  */
4025                 init_nodemask_of_node(&nodes_allowed, nid);
4026                 n_mask = &nodes_allowed;
4027         }
4028
4029         err = set_max_huge_pages(h, count, nid, n_mask);
4030
4031         return err ? err : len;
4032 }
4033
4034 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4035                                          struct kobject *kobj, const char *buf,
4036                                          size_t len)
4037 {
4038         struct hstate *h;
4039         unsigned long count;
4040         int nid;
4041         int err;
4042
4043         err = kstrtoul(buf, 10, &count);
4044         if (err)
4045                 return err;
4046
4047         h = kobj_to_hstate(kobj, &nid);
4048         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4049 }
4050
4051 static ssize_t nr_hugepages_show(struct kobject *kobj,
4052                                        struct kobj_attribute *attr, char *buf)
4053 {
4054         return nr_hugepages_show_common(kobj, attr, buf);
4055 }
4056
4057 static ssize_t nr_hugepages_store(struct kobject *kobj,
4058                struct kobj_attribute *attr, const char *buf, size_t len)
4059 {
4060         return nr_hugepages_store_common(false, kobj, buf, len);
4061 }
4062 HSTATE_ATTR(nr_hugepages);
4063
4064 #ifdef CONFIG_NUMA
4065
4066 /*
4067  * hstate attribute for optionally mempolicy-based constraint on persistent
4068  * huge page alloc/free.
4069  */
4070 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4071                                            struct kobj_attribute *attr,
4072                                            char *buf)
4073 {
4074         return nr_hugepages_show_common(kobj, attr, buf);
4075 }
4076
4077 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4078                struct kobj_attribute *attr, const char *buf, size_t len)
4079 {
4080         return nr_hugepages_store_common(true, kobj, buf, len);
4081 }
4082 HSTATE_ATTR(nr_hugepages_mempolicy);
4083 #endif
4084
4085
4086 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4087                                         struct kobj_attribute *attr, char *buf)
4088 {
4089         struct hstate *h = kobj_to_hstate(kobj, NULL);
4090         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4091 }
4092
4093 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4094                 struct kobj_attribute *attr, const char *buf, size_t count)
4095 {
4096         int err;
4097         unsigned long input;
4098         struct hstate *h = kobj_to_hstate(kobj, NULL);
4099
4100         if (hstate_is_gigantic(h))
4101                 return -EINVAL;
4102
4103         err = kstrtoul(buf, 10, &input);
4104         if (err)
4105                 return err;
4106
4107         spin_lock_irq(&hugetlb_lock);
4108         h->nr_overcommit_huge_pages = input;
4109         spin_unlock_irq(&hugetlb_lock);
4110
4111         return count;
4112 }
4113 HSTATE_ATTR(nr_overcommit_hugepages);
4114
4115 static ssize_t free_hugepages_show(struct kobject *kobj,
4116                                         struct kobj_attribute *attr, char *buf)
4117 {
4118         struct hstate *h;
4119         unsigned long free_huge_pages;
4120         int nid;
4121
4122         h = kobj_to_hstate(kobj, &nid);
4123         if (nid == NUMA_NO_NODE)
4124                 free_huge_pages = h->free_huge_pages;
4125         else
4126                 free_huge_pages = h->free_huge_pages_node[nid];
4127
4128         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4129 }
4130 HSTATE_ATTR_RO(free_hugepages);
4131
4132 static ssize_t resv_hugepages_show(struct kobject *kobj,
4133                                         struct kobj_attribute *attr, char *buf)
4134 {
4135         struct hstate *h = kobj_to_hstate(kobj, NULL);
4136         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4137 }
4138 HSTATE_ATTR_RO(resv_hugepages);
4139
4140 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4141                                         struct kobj_attribute *attr, char *buf)
4142 {
4143         struct hstate *h;
4144         unsigned long surplus_huge_pages;
4145         int nid;
4146
4147         h = kobj_to_hstate(kobj, &nid);
4148         if (nid == NUMA_NO_NODE)
4149                 surplus_huge_pages = h->surplus_huge_pages;
4150         else
4151                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4152
4153         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4154 }
4155 HSTATE_ATTR_RO(surplus_hugepages);
4156
4157 static ssize_t demote_store(struct kobject *kobj,
4158                struct kobj_attribute *attr, const char *buf, size_t len)
4159 {
4160         unsigned long nr_demote;
4161         unsigned long nr_available;
4162         nodemask_t nodes_allowed, *n_mask;
4163         struct hstate *h;
4164         int err;
4165         int nid;
4166
4167         err = kstrtoul(buf, 10, &nr_demote);
4168         if (err)
4169                 return err;
4170         h = kobj_to_hstate(kobj, &nid);
4171
4172         if (nid != NUMA_NO_NODE) {
4173                 init_nodemask_of_node(&nodes_allowed, nid);
4174                 n_mask = &nodes_allowed;
4175         } else {
4176                 n_mask = &node_states[N_MEMORY];
4177         }
4178
4179         /* Synchronize with other sysfs operations modifying huge pages */
4180         mutex_lock(&h->resize_lock);
4181         spin_lock_irq(&hugetlb_lock);
4182
4183         while (nr_demote) {
4184                 /*
4185                  * Check for available pages to demote each time thorough the
4186                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4187                  */
4188                 if (nid != NUMA_NO_NODE)
4189                         nr_available = h->free_huge_pages_node[nid];
4190                 else
4191                         nr_available = h->free_huge_pages;
4192                 nr_available -= h->resv_huge_pages;
4193                 if (!nr_available)
4194                         break;
4195
4196                 err = demote_pool_huge_page(h, n_mask);
4197                 if (err)
4198                         break;
4199
4200                 nr_demote--;
4201         }
4202
4203         spin_unlock_irq(&hugetlb_lock);
4204         mutex_unlock(&h->resize_lock);
4205
4206         if (err)
4207                 return err;
4208         return len;
4209 }
4210 HSTATE_ATTR_WO(demote);
4211
4212 static ssize_t demote_size_show(struct kobject *kobj,
4213                                         struct kobj_attribute *attr, char *buf)
4214 {
4215         struct hstate *h = kobj_to_hstate(kobj, NULL);
4216         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4217
4218         return sysfs_emit(buf, "%lukB\n", demote_size);
4219 }
4220
4221 static ssize_t demote_size_store(struct kobject *kobj,
4222                                         struct kobj_attribute *attr,
4223                                         const char *buf, size_t count)
4224 {
4225         struct hstate *h, *demote_hstate;
4226         unsigned long demote_size;
4227         unsigned int demote_order;
4228
4229         demote_size = (unsigned long)memparse(buf, NULL);
4230
4231         demote_hstate = size_to_hstate(demote_size);
4232         if (!demote_hstate)
4233                 return -EINVAL;
4234         demote_order = demote_hstate->order;
4235         if (demote_order < HUGETLB_PAGE_ORDER)
4236                 return -EINVAL;
4237
4238         /* demote order must be smaller than hstate order */
4239         h = kobj_to_hstate(kobj, NULL);
4240         if (demote_order >= h->order)
4241                 return -EINVAL;
4242
4243         /* resize_lock synchronizes access to demote size and writes */
4244         mutex_lock(&h->resize_lock);
4245         h->demote_order = demote_order;
4246         mutex_unlock(&h->resize_lock);
4247
4248         return count;
4249 }
4250 HSTATE_ATTR(demote_size);
4251
4252 static struct attribute *hstate_attrs[] = {
4253         &nr_hugepages_attr.attr,
4254         &nr_overcommit_hugepages_attr.attr,
4255         &free_hugepages_attr.attr,
4256         &resv_hugepages_attr.attr,
4257         &surplus_hugepages_attr.attr,
4258 #ifdef CONFIG_NUMA
4259         &nr_hugepages_mempolicy_attr.attr,
4260 #endif
4261         NULL,
4262 };
4263
4264 static const struct attribute_group hstate_attr_group = {
4265         .attrs = hstate_attrs,
4266 };
4267
4268 static struct attribute *hstate_demote_attrs[] = {
4269         &demote_size_attr.attr,
4270         &demote_attr.attr,
4271         NULL,
4272 };
4273
4274 static const struct attribute_group hstate_demote_attr_group = {
4275         .attrs = hstate_demote_attrs,
4276 };
4277
4278 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4279                                     struct kobject **hstate_kobjs,
4280                                     const struct attribute_group *hstate_attr_group)
4281 {
4282         int retval;
4283         int hi = hstate_index(h);
4284
4285         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4286         if (!hstate_kobjs[hi])
4287                 return -ENOMEM;
4288
4289         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4290         if (retval) {
4291                 kobject_put(hstate_kobjs[hi]);
4292                 hstate_kobjs[hi] = NULL;
4293                 return retval;
4294         }
4295
4296         if (h->demote_order) {
4297                 retval = sysfs_create_group(hstate_kobjs[hi],
4298                                             &hstate_demote_attr_group);
4299                 if (retval) {
4300                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4301                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4302                         kobject_put(hstate_kobjs[hi]);
4303                         hstate_kobjs[hi] = NULL;
4304                         return retval;
4305                 }
4306         }
4307
4308         return 0;
4309 }
4310
4311 #ifdef CONFIG_NUMA
4312 static bool hugetlb_sysfs_initialized __ro_after_init;
4313
4314 /*
4315  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4316  * with node devices in node_devices[] using a parallel array.  The array
4317  * index of a node device or _hstate == node id.
4318  * This is here to avoid any static dependency of the node device driver, in
4319  * the base kernel, on the hugetlb module.
4320  */
4321 struct node_hstate {
4322         struct kobject          *hugepages_kobj;
4323         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4324 };
4325 static struct node_hstate node_hstates[MAX_NUMNODES];
4326
4327 /*
4328  * A subset of global hstate attributes for node devices
4329  */
4330 static struct attribute *per_node_hstate_attrs[] = {
4331         &nr_hugepages_attr.attr,
4332         &free_hugepages_attr.attr,
4333         &surplus_hugepages_attr.attr,
4334         NULL,
4335 };
4336
4337 static const struct attribute_group per_node_hstate_attr_group = {
4338         .attrs = per_node_hstate_attrs,
4339 };
4340
4341 /*
4342  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4343  * Returns node id via non-NULL nidp.
4344  */
4345 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4346 {
4347         int nid;
4348
4349         for (nid = 0; nid < nr_node_ids; nid++) {
4350                 struct node_hstate *nhs = &node_hstates[nid];
4351                 int i;
4352                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4353                         if (nhs->hstate_kobjs[i] == kobj) {
4354                                 if (nidp)
4355                                         *nidp = nid;
4356                                 return &hstates[i];
4357                         }
4358         }
4359
4360         BUG();
4361         return NULL;
4362 }
4363
4364 /*
4365  * Unregister hstate attributes from a single node device.
4366  * No-op if no hstate attributes attached.
4367  */
4368 void hugetlb_unregister_node(struct node *node)
4369 {
4370         struct hstate *h;
4371         struct node_hstate *nhs = &node_hstates[node->dev.id];
4372
4373         if (!nhs->hugepages_kobj)
4374                 return;         /* no hstate attributes */
4375
4376         for_each_hstate(h) {
4377                 int idx = hstate_index(h);
4378                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4379
4380                 if (!hstate_kobj)
4381                         continue;
4382                 if (h->demote_order)
4383                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4384                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4385                 kobject_put(hstate_kobj);
4386                 nhs->hstate_kobjs[idx] = NULL;
4387         }
4388
4389         kobject_put(nhs->hugepages_kobj);
4390         nhs->hugepages_kobj = NULL;
4391 }
4392
4393
4394 /*
4395  * Register hstate attributes for a single node device.
4396  * No-op if attributes already registered.
4397  */
4398 void hugetlb_register_node(struct node *node)
4399 {
4400         struct hstate *h;
4401         struct node_hstate *nhs = &node_hstates[node->dev.id];
4402         int err;
4403
4404         if (!hugetlb_sysfs_initialized)
4405                 return;
4406
4407         if (nhs->hugepages_kobj)
4408                 return;         /* already allocated */
4409
4410         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4411                                                         &node->dev.kobj);
4412         if (!nhs->hugepages_kobj)
4413                 return;
4414
4415         for_each_hstate(h) {
4416                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4417                                                 nhs->hstate_kobjs,
4418                                                 &per_node_hstate_attr_group);
4419                 if (err) {
4420                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4421                                 h->name, node->dev.id);
4422                         hugetlb_unregister_node(node);
4423                         break;
4424                 }
4425         }
4426 }
4427
4428 /*
4429  * hugetlb init time:  register hstate attributes for all registered node
4430  * devices of nodes that have memory.  All on-line nodes should have
4431  * registered their associated device by this time.
4432  */
4433 static void __init hugetlb_register_all_nodes(void)
4434 {
4435         int nid;
4436
4437         for_each_online_node(nid)
4438                 hugetlb_register_node(node_devices[nid]);
4439 }
4440 #else   /* !CONFIG_NUMA */
4441
4442 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4443 {
4444         BUG();
4445         if (nidp)
4446                 *nidp = -1;
4447         return NULL;
4448 }
4449
4450 static void hugetlb_register_all_nodes(void) { }
4451
4452 #endif
4453
4454 #ifdef CONFIG_CMA
4455 static void __init hugetlb_cma_check(void);
4456 #else
4457 static inline __init void hugetlb_cma_check(void)
4458 {
4459 }
4460 #endif
4461
4462 static void __init hugetlb_sysfs_init(void)
4463 {
4464         struct hstate *h;
4465         int err;
4466
4467         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4468         if (!hugepages_kobj)
4469                 return;
4470
4471         for_each_hstate(h) {
4472                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4473                                          hstate_kobjs, &hstate_attr_group);
4474                 if (err)
4475                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4476         }
4477
4478 #ifdef CONFIG_NUMA
4479         hugetlb_sysfs_initialized = true;
4480 #endif
4481         hugetlb_register_all_nodes();
4482 }
4483
4484 #ifdef CONFIG_SYSCTL
4485 static void hugetlb_sysctl_init(void);
4486 #else
4487 static inline void hugetlb_sysctl_init(void) { }
4488 #endif
4489
4490 static int __init hugetlb_init(void)
4491 {
4492         int i;
4493
4494         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4495                         __NR_HPAGEFLAGS);
4496
4497         if (!hugepages_supported()) {
4498                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4499                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4500                 return 0;
4501         }
4502
4503         /*
4504          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4505          * architectures depend on setup being done here.
4506          */
4507         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4508         if (!parsed_default_hugepagesz) {
4509                 /*
4510                  * If we did not parse a default huge page size, set
4511                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4512                  * number of huge pages for this default size was implicitly
4513                  * specified, set that here as well.
4514                  * Note that the implicit setting will overwrite an explicit
4515                  * setting.  A warning will be printed in this case.
4516                  */
4517                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4518                 if (default_hstate_max_huge_pages) {
4519                         if (default_hstate.max_huge_pages) {
4520                                 char buf[32];
4521
4522                                 string_get_size(huge_page_size(&default_hstate),
4523                                         1, STRING_UNITS_2, buf, 32);
4524                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4525                                         default_hstate.max_huge_pages, buf);
4526                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4527                                         default_hstate_max_huge_pages);
4528                         }
4529                         default_hstate.max_huge_pages =
4530                                 default_hstate_max_huge_pages;
4531
4532                         for_each_online_node(i)
4533                                 default_hstate.max_huge_pages_node[i] =
4534                                         default_hugepages_in_node[i];
4535                 }
4536         }
4537
4538         hugetlb_cma_check();
4539         hugetlb_init_hstates();
4540         gather_bootmem_prealloc();
4541         report_hugepages();
4542
4543         hugetlb_sysfs_init();
4544         hugetlb_cgroup_file_init();
4545         hugetlb_sysctl_init();
4546
4547 #ifdef CONFIG_SMP
4548         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4549 #else
4550         num_fault_mutexes = 1;
4551 #endif
4552         hugetlb_fault_mutex_table =
4553                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4554                               GFP_KERNEL);
4555         BUG_ON(!hugetlb_fault_mutex_table);
4556
4557         for (i = 0; i < num_fault_mutexes; i++)
4558                 mutex_init(&hugetlb_fault_mutex_table[i]);
4559         return 0;
4560 }
4561 subsys_initcall(hugetlb_init);
4562
4563 /* Overwritten by architectures with more huge page sizes */
4564 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4565 {
4566         return size == HPAGE_SIZE;
4567 }
4568
4569 void __init hugetlb_add_hstate(unsigned int order)
4570 {
4571         struct hstate *h;
4572         unsigned long i;
4573
4574         if (size_to_hstate(PAGE_SIZE << order)) {
4575                 return;
4576         }
4577         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4578         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4579         h = &hstates[hugetlb_max_hstate++];
4580         mutex_init(&h->resize_lock);
4581         h->order = order;
4582         h->mask = ~(huge_page_size(h) - 1);
4583         for (i = 0; i < MAX_NUMNODES; ++i)
4584                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4585         INIT_LIST_HEAD(&h->hugepage_activelist);
4586         h->next_nid_to_alloc = first_memory_node;
4587         h->next_nid_to_free = first_memory_node;
4588         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4589                                         huge_page_size(h)/SZ_1K);
4590
4591         parsed_hstate = h;
4592 }
4593
4594 bool __init __weak hugetlb_node_alloc_supported(void)
4595 {
4596         return true;
4597 }
4598
4599 static void __init hugepages_clear_pages_in_node(void)
4600 {
4601         if (!hugetlb_max_hstate) {
4602                 default_hstate_max_huge_pages = 0;
4603                 memset(default_hugepages_in_node, 0,
4604                         sizeof(default_hugepages_in_node));
4605         } else {
4606                 parsed_hstate->max_huge_pages = 0;
4607                 memset(parsed_hstate->max_huge_pages_node, 0,
4608                         sizeof(parsed_hstate->max_huge_pages_node));
4609         }
4610 }
4611
4612 /*
4613  * hugepages command line processing
4614  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4615  * specification.  If not, ignore the hugepages value.  hugepages can also
4616  * be the first huge page command line  option in which case it implicitly
4617  * specifies the number of huge pages for the default size.
4618  */
4619 static int __init hugepages_setup(char *s)
4620 {
4621         unsigned long *mhp;
4622         static unsigned long *last_mhp;
4623         int node = NUMA_NO_NODE;
4624         int count;
4625         unsigned long tmp;
4626         char *p = s;
4627
4628         if (!parsed_valid_hugepagesz) {
4629                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4630                 parsed_valid_hugepagesz = true;
4631                 return 1;
4632         }
4633
4634         /*
4635          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4636          * yet, so this hugepages= parameter goes to the "default hstate".
4637          * Otherwise, it goes with the previously parsed hugepagesz or
4638          * default_hugepagesz.
4639          */
4640         else if (!hugetlb_max_hstate)
4641                 mhp = &default_hstate_max_huge_pages;
4642         else
4643                 mhp = &parsed_hstate->max_huge_pages;
4644
4645         if (mhp == last_mhp) {
4646                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4647                 return 1;
4648         }
4649
4650         while (*p) {
4651                 count = 0;
4652                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4653                         goto invalid;
4654                 /* Parameter is node format */
4655                 if (p[count] == ':') {
4656                         if (!hugetlb_node_alloc_supported()) {
4657                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4658                                 return 1;
4659                         }
4660                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4661                                 goto invalid;
4662                         node = array_index_nospec(tmp, MAX_NUMNODES);
4663                         p += count + 1;
4664                         /* Parse hugepages */
4665                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4666                                 goto invalid;
4667                         if (!hugetlb_max_hstate)
4668                                 default_hugepages_in_node[node] = tmp;
4669                         else
4670                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4671                         *mhp += tmp;
4672                         /* Go to parse next node*/
4673                         if (p[count] == ',')
4674                                 p += count + 1;
4675                         else
4676                                 break;
4677                 } else {
4678                         if (p != s)
4679                                 goto invalid;
4680                         *mhp = tmp;
4681                         break;
4682                 }
4683         }
4684
4685         /*
4686          * Global state is always initialized later in hugetlb_init.
4687          * But we need to allocate gigantic hstates here early to still
4688          * use the bootmem allocator.
4689          */
4690         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4691                 hugetlb_hstate_alloc_pages(parsed_hstate);
4692
4693         last_mhp = mhp;
4694
4695         return 1;
4696
4697 invalid:
4698         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4699         hugepages_clear_pages_in_node();
4700         return 1;
4701 }
4702 __setup("hugepages=", hugepages_setup);
4703
4704 /*
4705  * hugepagesz command line processing
4706  * A specific huge page size can only be specified once with hugepagesz.
4707  * hugepagesz is followed by hugepages on the command line.  The global
4708  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4709  * hugepagesz argument was valid.
4710  */
4711 static int __init hugepagesz_setup(char *s)
4712 {
4713         unsigned long size;
4714         struct hstate *h;
4715
4716         parsed_valid_hugepagesz = false;
4717         size = (unsigned long)memparse(s, NULL);
4718
4719         if (!arch_hugetlb_valid_size(size)) {
4720                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4721                 return 1;
4722         }
4723
4724         h = size_to_hstate(size);
4725         if (h) {
4726                 /*
4727                  * hstate for this size already exists.  This is normally
4728                  * an error, but is allowed if the existing hstate is the
4729                  * default hstate.  More specifically, it is only allowed if
4730                  * the number of huge pages for the default hstate was not
4731                  * previously specified.
4732                  */
4733                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4734                     default_hstate.max_huge_pages) {
4735                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4736                         return 1;
4737                 }
4738
4739                 /*
4740                  * No need to call hugetlb_add_hstate() as hstate already
4741                  * exists.  But, do set parsed_hstate so that a following
4742                  * hugepages= parameter will be applied to this hstate.
4743                  */
4744                 parsed_hstate = h;
4745                 parsed_valid_hugepagesz = true;
4746                 return 1;
4747         }
4748
4749         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4750         parsed_valid_hugepagesz = true;
4751         return 1;
4752 }
4753 __setup("hugepagesz=", hugepagesz_setup);
4754
4755 /*
4756  * default_hugepagesz command line input
4757  * Only one instance of default_hugepagesz allowed on command line.
4758  */
4759 static int __init default_hugepagesz_setup(char *s)
4760 {
4761         unsigned long size;
4762         int i;
4763
4764         parsed_valid_hugepagesz = false;
4765         if (parsed_default_hugepagesz) {
4766                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4767                 return 1;
4768         }
4769
4770         size = (unsigned long)memparse(s, NULL);
4771
4772         if (!arch_hugetlb_valid_size(size)) {
4773                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4774                 return 1;
4775         }
4776
4777         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4778         parsed_valid_hugepagesz = true;
4779         parsed_default_hugepagesz = true;
4780         default_hstate_idx = hstate_index(size_to_hstate(size));
4781
4782         /*
4783          * The number of default huge pages (for this size) could have been
4784          * specified as the first hugetlb parameter: hugepages=X.  If so,
4785          * then default_hstate_max_huge_pages is set.  If the default huge
4786          * page size is gigantic (> MAX_ORDER), then the pages must be
4787          * allocated here from bootmem allocator.
4788          */
4789         if (default_hstate_max_huge_pages) {
4790                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4791                 for_each_online_node(i)
4792                         default_hstate.max_huge_pages_node[i] =
4793                                 default_hugepages_in_node[i];
4794                 if (hstate_is_gigantic(&default_hstate))
4795                         hugetlb_hstate_alloc_pages(&default_hstate);
4796                 default_hstate_max_huge_pages = 0;
4797         }
4798
4799         return 1;
4800 }
4801 __setup("default_hugepagesz=", default_hugepagesz_setup);
4802
4803 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4804 {
4805 #ifdef CONFIG_NUMA
4806         struct mempolicy *mpol = get_task_policy(current);
4807
4808         /*
4809          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4810          * (from policy_nodemask) specifically for hugetlb case
4811          */
4812         if (mpol->mode == MPOL_BIND &&
4813                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4814                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4815                 return &mpol->nodes;
4816 #endif
4817         return NULL;
4818 }
4819
4820 static unsigned int allowed_mems_nr(struct hstate *h)
4821 {
4822         int node;
4823         unsigned int nr = 0;
4824         nodemask_t *mbind_nodemask;
4825         unsigned int *array = h->free_huge_pages_node;
4826         gfp_t gfp_mask = htlb_alloc_mask(h);
4827
4828         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4829         for_each_node_mask(node, cpuset_current_mems_allowed) {
4830                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4831                         nr += array[node];
4832         }
4833
4834         return nr;
4835 }
4836
4837 #ifdef CONFIG_SYSCTL
4838 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4839                                           void *buffer, size_t *length,
4840                                           loff_t *ppos, unsigned long *out)
4841 {
4842         struct ctl_table dup_table;
4843
4844         /*
4845          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4846          * can duplicate the @table and alter the duplicate of it.
4847          */
4848         dup_table = *table;
4849         dup_table.data = out;
4850
4851         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4852 }
4853
4854 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4855                          struct ctl_table *table, int write,
4856                          void *buffer, size_t *length, loff_t *ppos)
4857 {
4858         struct hstate *h = &default_hstate;
4859         unsigned long tmp = h->max_huge_pages;
4860         int ret;
4861
4862         if (!hugepages_supported())
4863                 return -EOPNOTSUPP;
4864
4865         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4866                                              &tmp);
4867         if (ret)
4868                 goto out;
4869
4870         if (write)
4871                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4872                                                   NUMA_NO_NODE, tmp, *length);
4873 out:
4874         return ret;
4875 }
4876
4877 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4878                           void *buffer, size_t *length, loff_t *ppos)
4879 {
4880
4881         return hugetlb_sysctl_handler_common(false, table, write,
4882                                                         buffer, length, ppos);
4883 }
4884
4885 #ifdef CONFIG_NUMA
4886 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4887                           void *buffer, size_t *length, loff_t *ppos)
4888 {
4889         return hugetlb_sysctl_handler_common(true, table, write,
4890                                                         buffer, length, ppos);
4891 }
4892 #endif /* CONFIG_NUMA */
4893
4894 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4895                 void *buffer, size_t *length, loff_t *ppos)
4896 {
4897         struct hstate *h = &default_hstate;
4898         unsigned long tmp;
4899         int ret;
4900
4901         if (!hugepages_supported())
4902                 return -EOPNOTSUPP;
4903
4904         tmp = h->nr_overcommit_huge_pages;
4905
4906         if (write && hstate_is_gigantic(h))
4907                 return -EINVAL;
4908
4909         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4910                                              &tmp);
4911         if (ret)
4912                 goto out;
4913
4914         if (write) {
4915                 spin_lock_irq(&hugetlb_lock);
4916                 h->nr_overcommit_huge_pages = tmp;
4917                 spin_unlock_irq(&hugetlb_lock);
4918         }
4919 out:
4920         return ret;
4921 }
4922
4923 static struct ctl_table hugetlb_table[] = {
4924         {
4925                 .procname       = "nr_hugepages",
4926                 .data           = NULL,
4927                 .maxlen         = sizeof(unsigned long),
4928                 .mode           = 0644,
4929                 .proc_handler   = hugetlb_sysctl_handler,
4930         },
4931 #ifdef CONFIG_NUMA
4932         {
4933                 .procname       = "nr_hugepages_mempolicy",
4934                 .data           = NULL,
4935                 .maxlen         = sizeof(unsigned long),
4936                 .mode           = 0644,
4937                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4938         },
4939 #endif
4940         {
4941                 .procname       = "hugetlb_shm_group",
4942                 .data           = &sysctl_hugetlb_shm_group,
4943                 .maxlen         = sizeof(gid_t),
4944                 .mode           = 0644,
4945                 .proc_handler   = proc_dointvec,
4946         },
4947         {
4948                 .procname       = "nr_overcommit_hugepages",
4949                 .data           = NULL,
4950                 .maxlen         = sizeof(unsigned long),
4951                 .mode           = 0644,
4952                 .proc_handler   = hugetlb_overcommit_handler,
4953         },
4954         { }
4955 };
4956
4957 static void hugetlb_sysctl_init(void)
4958 {
4959         register_sysctl_init("vm", hugetlb_table);
4960 }
4961 #endif /* CONFIG_SYSCTL */
4962
4963 void hugetlb_report_meminfo(struct seq_file *m)
4964 {
4965         struct hstate *h;
4966         unsigned long total = 0;
4967
4968         if (!hugepages_supported())
4969                 return;
4970
4971         for_each_hstate(h) {
4972                 unsigned long count = h->nr_huge_pages;
4973
4974                 total += huge_page_size(h) * count;
4975
4976                 if (h == &default_hstate)
4977                         seq_printf(m,
4978                                    "HugePages_Total:   %5lu\n"
4979                                    "HugePages_Free:    %5lu\n"
4980                                    "HugePages_Rsvd:    %5lu\n"
4981                                    "HugePages_Surp:    %5lu\n"
4982                                    "Hugepagesize:   %8lu kB\n",
4983                                    count,
4984                                    h->free_huge_pages,
4985                                    h->resv_huge_pages,
4986                                    h->surplus_huge_pages,
4987                                    huge_page_size(h) / SZ_1K);
4988         }
4989
4990         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4991 }
4992
4993 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4994 {
4995         struct hstate *h = &default_hstate;
4996
4997         if (!hugepages_supported())
4998                 return 0;
4999
5000         return sysfs_emit_at(buf, len,
5001                              "Node %d HugePages_Total: %5u\n"
5002                              "Node %d HugePages_Free:  %5u\n"
5003                              "Node %d HugePages_Surp:  %5u\n",
5004                              nid, h->nr_huge_pages_node[nid],
5005                              nid, h->free_huge_pages_node[nid],
5006                              nid, h->surplus_huge_pages_node[nid]);
5007 }
5008
5009 void hugetlb_show_meminfo_node(int nid)
5010 {
5011         struct hstate *h;
5012
5013         if (!hugepages_supported())
5014                 return;
5015
5016         for_each_hstate(h)
5017                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5018                         nid,
5019                         h->nr_huge_pages_node[nid],
5020                         h->free_huge_pages_node[nid],
5021                         h->surplus_huge_pages_node[nid],
5022                         huge_page_size(h) / SZ_1K);
5023 }
5024
5025 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5026 {
5027         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5028                    K(atomic_long_read(&mm->hugetlb_usage)));
5029 }
5030
5031 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5032 unsigned long hugetlb_total_pages(void)
5033 {
5034         struct hstate *h;
5035         unsigned long nr_total_pages = 0;
5036
5037         for_each_hstate(h)
5038                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5039         return nr_total_pages;
5040 }
5041
5042 static int hugetlb_acct_memory(struct hstate *h, long delta)
5043 {
5044         int ret = -ENOMEM;
5045
5046         if (!delta)
5047                 return 0;
5048
5049         spin_lock_irq(&hugetlb_lock);
5050         /*
5051          * When cpuset is configured, it breaks the strict hugetlb page
5052          * reservation as the accounting is done on a global variable. Such
5053          * reservation is completely rubbish in the presence of cpuset because
5054          * the reservation is not checked against page availability for the
5055          * current cpuset. Application can still potentially OOM'ed by kernel
5056          * with lack of free htlb page in cpuset that the task is in.
5057          * Attempt to enforce strict accounting with cpuset is almost
5058          * impossible (or too ugly) because cpuset is too fluid that
5059          * task or memory node can be dynamically moved between cpusets.
5060          *
5061          * The change of semantics for shared hugetlb mapping with cpuset is
5062          * undesirable. However, in order to preserve some of the semantics,
5063          * we fall back to check against current free page availability as
5064          * a best attempt and hopefully to minimize the impact of changing
5065          * semantics that cpuset has.
5066          *
5067          * Apart from cpuset, we also have memory policy mechanism that
5068          * also determines from which node the kernel will allocate memory
5069          * in a NUMA system. So similar to cpuset, we also should consider
5070          * the memory policy of the current task. Similar to the description
5071          * above.
5072          */
5073         if (delta > 0) {
5074                 if (gather_surplus_pages(h, delta) < 0)
5075                         goto out;
5076
5077                 if (delta > allowed_mems_nr(h)) {
5078                         return_unused_surplus_pages(h, delta);
5079                         goto out;
5080                 }
5081         }
5082
5083         ret = 0;
5084         if (delta < 0)
5085                 return_unused_surplus_pages(h, (unsigned long) -delta);
5086
5087 out:
5088         spin_unlock_irq(&hugetlb_lock);
5089         return ret;
5090 }
5091
5092 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5093 {
5094         struct resv_map *resv = vma_resv_map(vma);
5095
5096         /*
5097          * HPAGE_RESV_OWNER indicates a private mapping.
5098          * This new VMA should share its siblings reservation map if present.
5099          * The VMA will only ever have a valid reservation map pointer where
5100          * it is being copied for another still existing VMA.  As that VMA
5101          * has a reference to the reservation map it cannot disappear until
5102          * after this open call completes.  It is therefore safe to take a
5103          * new reference here without additional locking.
5104          */
5105         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5106                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5107                 kref_get(&resv->refs);
5108         }
5109
5110         /*
5111          * vma_lock structure for sharable mappings is vma specific.
5112          * Clear old pointer (if copied via vm_area_dup) and allocate
5113          * new structure.  Before clearing, make sure vma_lock is not
5114          * for this vma.
5115          */
5116         if (vma->vm_flags & VM_MAYSHARE) {
5117                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5118
5119                 if (vma_lock) {
5120                         if (vma_lock->vma != vma) {
5121                                 vma->vm_private_data = NULL;
5122                                 hugetlb_vma_lock_alloc(vma);
5123                         } else
5124                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5125                 } else
5126                         hugetlb_vma_lock_alloc(vma);
5127         }
5128 }
5129
5130 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5131 {
5132         struct hstate *h = hstate_vma(vma);
5133         struct resv_map *resv;
5134         struct hugepage_subpool *spool = subpool_vma(vma);
5135         unsigned long reserve, start, end;
5136         long gbl_reserve;
5137
5138         hugetlb_vma_lock_free(vma);
5139
5140         resv = vma_resv_map(vma);
5141         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5142                 return;
5143
5144         start = vma_hugecache_offset(h, vma, vma->vm_start);
5145         end = vma_hugecache_offset(h, vma, vma->vm_end);
5146
5147         reserve = (end - start) - region_count(resv, start, end);
5148         hugetlb_cgroup_uncharge_counter(resv, start, end);
5149         if (reserve) {
5150                 /*
5151                  * Decrement reserve counts.  The global reserve count may be
5152                  * adjusted if the subpool has a minimum size.
5153                  */
5154                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5155                 hugetlb_acct_memory(h, -gbl_reserve);
5156         }
5157
5158         kref_put(&resv->refs, resv_map_release);
5159 }
5160
5161 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5162 {
5163         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5164                 return -EINVAL;
5165
5166         /*
5167          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5168          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5169          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5170          */
5171         if (addr & ~PUD_MASK) {
5172                 /*
5173                  * hugetlb_vm_op_split is called right before we attempt to
5174                  * split the VMA. We will need to unshare PMDs in the old and
5175                  * new VMAs, so let's unshare before we split.
5176                  */
5177                 unsigned long floor = addr & PUD_MASK;
5178                 unsigned long ceil = floor + PUD_SIZE;
5179
5180                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5181                         hugetlb_unshare_pmds(vma, floor, ceil);
5182         }
5183
5184         return 0;
5185 }
5186
5187 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5188 {
5189         return huge_page_size(hstate_vma(vma));
5190 }
5191
5192 /*
5193  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5194  * handle_mm_fault() to try to instantiate regular-sized pages in the
5195  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5196  * this far.
5197  */
5198 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5199 {
5200         BUG();
5201         return 0;
5202 }
5203
5204 /*
5205  * When a new function is introduced to vm_operations_struct and added
5206  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5207  * This is because under System V memory model, mappings created via
5208  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5209  * their original vm_ops are overwritten with shm_vm_ops.
5210  */
5211 const struct vm_operations_struct hugetlb_vm_ops = {
5212         .fault = hugetlb_vm_op_fault,
5213         .open = hugetlb_vm_op_open,
5214         .close = hugetlb_vm_op_close,
5215         .may_split = hugetlb_vm_op_split,
5216         .pagesize = hugetlb_vm_op_pagesize,
5217 };
5218
5219 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5220                                 int writable)
5221 {
5222         pte_t entry;
5223         unsigned int shift = huge_page_shift(hstate_vma(vma));
5224
5225         if (writable) {
5226                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5227                                          vma->vm_page_prot)));
5228         } else {
5229                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5230                                            vma->vm_page_prot));
5231         }
5232         entry = pte_mkyoung(entry);
5233         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5234
5235         return entry;
5236 }
5237
5238 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5239                                    unsigned long address, pte_t *ptep)
5240 {
5241         pte_t entry;
5242
5243         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5244         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5245                 update_mmu_cache(vma, address, ptep);
5246 }
5247
5248 bool is_hugetlb_entry_migration(pte_t pte)
5249 {
5250         swp_entry_t swp;
5251
5252         if (huge_pte_none(pte) || pte_present(pte))
5253                 return false;
5254         swp = pte_to_swp_entry(pte);
5255         if (is_migration_entry(swp))
5256                 return true;
5257         else
5258                 return false;
5259 }
5260
5261 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5262 {
5263         swp_entry_t swp;
5264
5265         if (huge_pte_none(pte) || pte_present(pte))
5266                 return false;
5267         swp = pte_to_swp_entry(pte);
5268         if (is_hwpoison_entry(swp))
5269                 return true;
5270         else
5271                 return false;
5272 }
5273
5274 static void
5275 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5276                       struct folio *new_folio, pte_t old, unsigned long sz)
5277 {
5278         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5279
5280         __folio_mark_uptodate(new_folio);
5281         hugepage_add_new_anon_rmap(new_folio, vma, addr);
5282         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5283                 newpte = huge_pte_mkuffd_wp(newpte);
5284         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5285         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5286         folio_set_hugetlb_migratable(new_folio);
5287 }
5288
5289 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5290                             struct vm_area_struct *dst_vma,
5291                             struct vm_area_struct *src_vma)
5292 {
5293         pte_t *src_pte, *dst_pte, entry;
5294         struct folio *pte_folio;
5295         unsigned long addr;
5296         bool cow = is_cow_mapping(src_vma->vm_flags);
5297         struct hstate *h = hstate_vma(src_vma);
5298         unsigned long sz = huge_page_size(h);
5299         unsigned long npages = pages_per_huge_page(h);
5300         struct mmu_notifier_range range;
5301         unsigned long last_addr_mask;
5302         int ret = 0;
5303
5304         if (cow) {
5305                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5306                                         src_vma->vm_start,
5307                                         src_vma->vm_end);
5308                 mmu_notifier_invalidate_range_start(&range);
5309                 vma_assert_write_locked(src_vma);
5310                 raw_write_seqcount_begin(&src->write_protect_seq);
5311         } else {
5312                 /*
5313                  * For shared mappings the vma lock must be held before
5314                  * calling hugetlb_walk() in the src vma. Otherwise, the
5315                  * returned ptep could go away if part of a shared pmd and
5316                  * another thread calls huge_pmd_unshare.
5317                  */
5318                 hugetlb_vma_lock_read(src_vma);
5319         }
5320
5321         last_addr_mask = hugetlb_mask_last_page(h);
5322         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5323                 spinlock_t *src_ptl, *dst_ptl;
5324                 src_pte = hugetlb_walk(src_vma, addr, sz);
5325                 if (!src_pte) {
5326                         addr |= last_addr_mask;
5327                         continue;
5328                 }
5329                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5330                 if (!dst_pte) {
5331                         ret = -ENOMEM;
5332                         break;
5333                 }
5334
5335                 /*
5336                  * If the pagetables are shared don't copy or take references.
5337                  *
5338                  * dst_pte == src_pte is the common case of src/dest sharing.
5339                  * However, src could have 'unshared' and dst shares with
5340                  * another vma. So page_count of ptep page is checked instead
5341                  * to reliably determine whether pte is shared.
5342                  */
5343                 if (page_count(virt_to_page(dst_pte)) > 1) {
5344                         addr |= last_addr_mask;
5345                         continue;
5346                 }
5347
5348                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5349                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5350                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5351                 entry = huge_ptep_get(src_pte);
5352 again:
5353                 if (huge_pte_none(entry)) {
5354                         /*
5355                          * Skip if src entry none.
5356                          */
5357                         ;
5358                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5359                         if (!userfaultfd_wp(dst_vma))
5360                                 entry = huge_pte_clear_uffd_wp(entry);
5361                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5362                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5363                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5364                         bool uffd_wp = pte_swp_uffd_wp(entry);
5365
5366                         if (!is_readable_migration_entry(swp_entry) && cow) {
5367                                 /*
5368                                  * COW mappings require pages in both
5369                                  * parent and child to be set to read.
5370                                  */
5371                                 swp_entry = make_readable_migration_entry(
5372                                                         swp_offset(swp_entry));
5373                                 entry = swp_entry_to_pte(swp_entry);
5374                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5375                                         entry = pte_swp_mkuffd_wp(entry);
5376                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5377                         }
5378                         if (!userfaultfd_wp(dst_vma))
5379                                 entry = huge_pte_clear_uffd_wp(entry);
5380                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5381                 } else if (unlikely(is_pte_marker(entry))) {
5382                         pte_marker marker = copy_pte_marker(
5383                                 pte_to_swp_entry(entry), dst_vma);
5384
5385                         if (marker)
5386                                 set_huge_pte_at(dst, addr, dst_pte,
5387                                                 make_pte_marker(marker), sz);
5388                 } else {
5389                         entry = huge_ptep_get(src_pte);
5390                         pte_folio = page_folio(pte_page(entry));
5391                         folio_get(pte_folio);
5392
5393                         /*
5394                          * Failing to duplicate the anon rmap is a rare case
5395                          * where we see pinned hugetlb pages while they're
5396                          * prone to COW. We need to do the COW earlier during
5397                          * fork.
5398                          *
5399                          * When pre-allocating the page or copying data, we
5400                          * need to be without the pgtable locks since we could
5401                          * sleep during the process.
5402                          */
5403                         if (!folio_test_anon(pte_folio)) {
5404                                 page_dup_file_rmap(&pte_folio->page, true);
5405                         } else if (page_try_dup_anon_rmap(&pte_folio->page,
5406                                                           true, src_vma)) {
5407                                 pte_t src_pte_old = entry;
5408                                 struct folio *new_folio;
5409
5410                                 spin_unlock(src_ptl);
5411                                 spin_unlock(dst_ptl);
5412                                 /* Do not use reserve as it's private owned */
5413                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5414                                 if (IS_ERR(new_folio)) {
5415                                         folio_put(pte_folio);
5416                                         ret = PTR_ERR(new_folio);
5417                                         break;
5418                                 }
5419                                 ret = copy_user_large_folio(new_folio,
5420                                                             pte_folio,
5421                                                             addr, dst_vma);
5422                                 folio_put(pte_folio);
5423                                 if (ret) {
5424                                         folio_put(new_folio);
5425                                         break;
5426                                 }
5427
5428                                 /* Install the new hugetlb folio if src pte stable */
5429                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5430                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5431                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5432                                 entry = huge_ptep_get(src_pte);
5433                                 if (!pte_same(src_pte_old, entry)) {
5434                                         restore_reserve_on_error(h, dst_vma, addr,
5435                                                                 new_folio);
5436                                         folio_put(new_folio);
5437                                         /* huge_ptep of dst_pte won't change as in child */
5438                                         goto again;
5439                                 }
5440                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5441                                                       new_folio, src_pte_old, sz);
5442                                 spin_unlock(src_ptl);
5443                                 spin_unlock(dst_ptl);
5444                                 continue;
5445                         }
5446
5447                         if (cow) {
5448                                 /*
5449                                  * No need to notify as we are downgrading page
5450                                  * table protection not changing it to point
5451                                  * to a new page.
5452                                  *
5453                                  * See Documentation/mm/mmu_notifier.rst
5454                                  */
5455                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5456                                 entry = huge_pte_wrprotect(entry);
5457                         }
5458
5459                         if (!userfaultfd_wp(dst_vma))
5460                                 entry = huge_pte_clear_uffd_wp(entry);
5461
5462                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5463                         hugetlb_count_add(npages, dst);
5464                 }
5465                 spin_unlock(src_ptl);
5466                 spin_unlock(dst_ptl);
5467         }
5468
5469         if (cow) {
5470                 raw_write_seqcount_end(&src->write_protect_seq);
5471                 mmu_notifier_invalidate_range_end(&range);
5472         } else {
5473                 hugetlb_vma_unlock_read(src_vma);
5474         }
5475
5476         return ret;
5477 }
5478
5479 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5480                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5481                           unsigned long sz)
5482 {
5483         struct hstate *h = hstate_vma(vma);
5484         struct mm_struct *mm = vma->vm_mm;
5485         spinlock_t *src_ptl, *dst_ptl;
5486         pte_t pte;
5487
5488         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5489         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5490
5491         /*
5492          * We don't have to worry about the ordering of src and dst ptlocks
5493          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5494          */
5495         if (src_ptl != dst_ptl)
5496                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5497
5498         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5499         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5500
5501         if (src_ptl != dst_ptl)
5502                 spin_unlock(src_ptl);
5503         spin_unlock(dst_ptl);
5504 }
5505
5506 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5507                              struct vm_area_struct *new_vma,
5508                              unsigned long old_addr, unsigned long new_addr,
5509                              unsigned long len)
5510 {
5511         struct hstate *h = hstate_vma(vma);
5512         struct address_space *mapping = vma->vm_file->f_mapping;
5513         unsigned long sz = huge_page_size(h);
5514         struct mm_struct *mm = vma->vm_mm;
5515         unsigned long old_end = old_addr + len;
5516         unsigned long last_addr_mask;
5517         pte_t *src_pte, *dst_pte;
5518         struct mmu_notifier_range range;
5519         bool shared_pmd = false;
5520
5521         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5522                                 old_end);
5523         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5524         /*
5525          * In case of shared PMDs, we should cover the maximum possible
5526          * range.
5527          */
5528         flush_cache_range(vma, range.start, range.end);
5529
5530         mmu_notifier_invalidate_range_start(&range);
5531         last_addr_mask = hugetlb_mask_last_page(h);
5532         /* Prevent race with file truncation */
5533         hugetlb_vma_lock_write(vma);
5534         i_mmap_lock_write(mapping);
5535         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5536                 src_pte = hugetlb_walk(vma, old_addr, sz);
5537                 if (!src_pte) {
5538                         old_addr |= last_addr_mask;
5539                         new_addr |= last_addr_mask;
5540                         continue;
5541                 }
5542                 if (huge_pte_none(huge_ptep_get(src_pte)))
5543                         continue;
5544
5545                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5546                         shared_pmd = true;
5547                         old_addr |= last_addr_mask;
5548                         new_addr |= last_addr_mask;
5549                         continue;
5550                 }
5551
5552                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5553                 if (!dst_pte)
5554                         break;
5555
5556                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5557         }
5558
5559         if (shared_pmd)
5560                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5561         else
5562                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5563         mmu_notifier_invalidate_range_end(&range);
5564         i_mmap_unlock_write(mapping);
5565         hugetlb_vma_unlock_write(vma);
5566
5567         return len + old_addr - old_end;
5568 }
5569
5570 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5571                             unsigned long start, unsigned long end,
5572                             struct page *ref_page, zap_flags_t zap_flags)
5573 {
5574         struct mm_struct *mm = vma->vm_mm;
5575         unsigned long address;
5576         pte_t *ptep;
5577         pte_t pte;
5578         spinlock_t *ptl;
5579         struct page *page;
5580         struct hstate *h = hstate_vma(vma);
5581         unsigned long sz = huge_page_size(h);
5582         unsigned long last_addr_mask;
5583         bool force_flush = false;
5584
5585         WARN_ON(!is_vm_hugetlb_page(vma));
5586         BUG_ON(start & ~huge_page_mask(h));
5587         BUG_ON(end & ~huge_page_mask(h));
5588
5589         /*
5590          * This is a hugetlb vma, all the pte entries should point
5591          * to huge page.
5592          */
5593         tlb_change_page_size(tlb, sz);
5594         tlb_start_vma(tlb, vma);
5595
5596         last_addr_mask = hugetlb_mask_last_page(h);
5597         address = start;
5598         for (; address < end; address += sz) {
5599                 ptep = hugetlb_walk(vma, address, sz);
5600                 if (!ptep) {
5601                         address |= last_addr_mask;
5602                         continue;
5603                 }
5604
5605                 ptl = huge_pte_lock(h, mm, ptep);
5606                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5607                         spin_unlock(ptl);
5608                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5609                         force_flush = true;
5610                         address |= last_addr_mask;
5611                         continue;
5612                 }
5613
5614                 pte = huge_ptep_get(ptep);
5615                 if (huge_pte_none(pte)) {
5616                         spin_unlock(ptl);
5617                         continue;
5618                 }
5619
5620                 /*
5621                  * Migrating hugepage or HWPoisoned hugepage is already
5622                  * unmapped and its refcount is dropped, so just clear pte here.
5623                  */
5624                 if (unlikely(!pte_present(pte))) {
5625                         /*
5626                          * If the pte was wr-protected by uffd-wp in any of the
5627                          * swap forms, meanwhile the caller does not want to
5628                          * drop the uffd-wp bit in this zap, then replace the
5629                          * pte with a marker.
5630                          */
5631                         if (pte_swp_uffd_wp_any(pte) &&
5632                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5633                                 set_huge_pte_at(mm, address, ptep,
5634                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5635                                                 sz);
5636                         else
5637                                 huge_pte_clear(mm, address, ptep, sz);
5638                         spin_unlock(ptl);
5639                         continue;
5640                 }
5641
5642                 page = pte_page(pte);
5643                 /*
5644                  * If a reference page is supplied, it is because a specific
5645                  * page is being unmapped, not a range. Ensure the page we
5646                  * are about to unmap is the actual page of interest.
5647                  */
5648                 if (ref_page) {
5649                         if (page != ref_page) {
5650                                 spin_unlock(ptl);
5651                                 continue;
5652                         }
5653                         /*
5654                          * Mark the VMA as having unmapped its page so that
5655                          * future faults in this VMA will fail rather than
5656                          * looking like data was lost
5657                          */
5658                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5659                 }
5660
5661                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5662                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5663                 if (huge_pte_dirty(pte))
5664                         set_page_dirty(page);
5665                 /* Leave a uffd-wp pte marker if needed */
5666                 if (huge_pte_uffd_wp(pte) &&
5667                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5668                         set_huge_pte_at(mm, address, ptep,
5669                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5670                                         sz);
5671                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5672                 page_remove_rmap(page, vma, true);
5673
5674                 spin_unlock(ptl);
5675                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5676                 /*
5677                  * Bail out after unmapping reference page if supplied
5678                  */
5679                 if (ref_page)
5680                         break;
5681         }
5682         tlb_end_vma(tlb, vma);
5683
5684         /*
5685          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5686          * could defer the flush until now, since by holding i_mmap_rwsem we
5687          * guaranteed that the last refernece would not be dropped. But we must
5688          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5689          * dropped and the last reference to the shared PMDs page might be
5690          * dropped as well.
5691          *
5692          * In theory we could defer the freeing of the PMD pages as well, but
5693          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5694          * detect sharing, so we cannot defer the release of the page either.
5695          * Instead, do flush now.
5696          */
5697         if (force_flush)
5698                 tlb_flush_mmu_tlbonly(tlb);
5699 }
5700
5701 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5702                          unsigned long *start, unsigned long *end)
5703 {
5704         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5705                 return;
5706
5707         adjust_range_if_pmd_sharing_possible(vma, start, end);
5708         hugetlb_vma_lock_write(vma);
5709         if (vma->vm_file)
5710                 i_mmap_lock_write(vma->vm_file->f_mapping);
5711 }
5712
5713 void __hugetlb_zap_end(struct vm_area_struct *vma,
5714                        struct zap_details *details)
5715 {
5716         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5717
5718         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5719                 return;
5720
5721         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5722                 /*
5723                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5724                  * When the vma_lock is freed, this makes the vma ineligible
5725                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5726                  * pmd sharing.  This is important as page tables for this
5727                  * unmapped range will be asynchrously deleted.  If the page
5728                  * tables are shared, there will be issues when accessed by
5729                  * someone else.
5730                  */
5731                 __hugetlb_vma_unlock_write_free(vma);
5732         } else {
5733                 hugetlb_vma_unlock_write(vma);
5734         }
5735
5736         if (vma->vm_file)
5737                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5738 }
5739
5740 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5741                           unsigned long end, struct page *ref_page,
5742                           zap_flags_t zap_flags)
5743 {
5744         struct mmu_notifier_range range;
5745         struct mmu_gather tlb;
5746
5747         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5748                                 start, end);
5749         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5750         mmu_notifier_invalidate_range_start(&range);
5751         tlb_gather_mmu(&tlb, vma->vm_mm);
5752
5753         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5754
5755         mmu_notifier_invalidate_range_end(&range);
5756         tlb_finish_mmu(&tlb);
5757 }
5758
5759 /*
5760  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5761  * mapping it owns the reserve page for. The intention is to unmap the page
5762  * from other VMAs and let the children be SIGKILLed if they are faulting the
5763  * same region.
5764  */
5765 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5766                               struct page *page, unsigned long address)
5767 {
5768         struct hstate *h = hstate_vma(vma);
5769         struct vm_area_struct *iter_vma;
5770         struct address_space *mapping;
5771         pgoff_t pgoff;
5772
5773         /*
5774          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5775          * from page cache lookup which is in HPAGE_SIZE units.
5776          */
5777         address = address & huge_page_mask(h);
5778         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5779                         vma->vm_pgoff;
5780         mapping = vma->vm_file->f_mapping;
5781
5782         /*
5783          * Take the mapping lock for the duration of the table walk. As
5784          * this mapping should be shared between all the VMAs,
5785          * __unmap_hugepage_range() is called as the lock is already held
5786          */
5787         i_mmap_lock_write(mapping);
5788         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5789                 /* Do not unmap the current VMA */
5790                 if (iter_vma == vma)
5791                         continue;
5792
5793                 /*
5794                  * Shared VMAs have their own reserves and do not affect
5795                  * MAP_PRIVATE accounting but it is possible that a shared
5796                  * VMA is using the same page so check and skip such VMAs.
5797                  */
5798                 if (iter_vma->vm_flags & VM_MAYSHARE)
5799                         continue;
5800
5801                 /*
5802                  * Unmap the page from other VMAs without their own reserves.
5803                  * They get marked to be SIGKILLed if they fault in these
5804                  * areas. This is because a future no-page fault on this VMA
5805                  * could insert a zeroed page instead of the data existing
5806                  * from the time of fork. This would look like data corruption
5807                  */
5808                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5809                         unmap_hugepage_range(iter_vma, address,
5810                                              address + huge_page_size(h), page, 0);
5811         }
5812         i_mmap_unlock_write(mapping);
5813 }
5814
5815 /*
5816  * hugetlb_wp() should be called with page lock of the original hugepage held.
5817  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5818  * cannot race with other handlers or page migration.
5819  * Keep the pte_same checks anyway to make transition from the mutex easier.
5820  */
5821 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5822                        unsigned long address, pte_t *ptep, unsigned int flags,
5823                        struct folio *pagecache_folio, spinlock_t *ptl)
5824 {
5825         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5826         pte_t pte = huge_ptep_get(ptep);
5827         struct hstate *h = hstate_vma(vma);
5828         struct folio *old_folio;
5829         struct folio *new_folio;
5830         int outside_reserve = 0;
5831         vm_fault_t ret = 0;
5832         unsigned long haddr = address & huge_page_mask(h);
5833         struct mmu_notifier_range range;
5834
5835         /*
5836          * Never handle CoW for uffd-wp protected pages.  It should be only
5837          * handled when the uffd-wp protection is removed.
5838          *
5839          * Note that only the CoW optimization path (in hugetlb_no_page())
5840          * can trigger this, because hugetlb_fault() will always resolve
5841          * uffd-wp bit first.
5842          */
5843         if (!unshare && huge_pte_uffd_wp(pte))
5844                 return 0;
5845
5846         /*
5847          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5848          * PTE mapped R/O such as maybe_mkwrite() would do.
5849          */
5850         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5851                 return VM_FAULT_SIGSEGV;
5852
5853         /* Let's take out MAP_SHARED mappings first. */
5854         if (vma->vm_flags & VM_MAYSHARE) {
5855                 set_huge_ptep_writable(vma, haddr, ptep);
5856                 return 0;
5857         }
5858
5859         old_folio = page_folio(pte_page(pte));
5860
5861         delayacct_wpcopy_start();
5862
5863 retry_avoidcopy:
5864         /*
5865          * If no-one else is actually using this page, we're the exclusive
5866          * owner and can reuse this page.
5867          */
5868         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5869                 if (!PageAnonExclusive(&old_folio->page)) {
5870                         folio_move_anon_rmap(old_folio, vma);
5871                         SetPageAnonExclusive(&old_folio->page);
5872                 }
5873                 if (likely(!unshare))
5874                         set_huge_ptep_writable(vma, haddr, ptep);
5875
5876                 delayacct_wpcopy_end();
5877                 return 0;
5878         }
5879         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5880                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5881
5882         /*
5883          * If the process that created a MAP_PRIVATE mapping is about to
5884          * perform a COW due to a shared page count, attempt to satisfy
5885          * the allocation without using the existing reserves. The pagecache
5886          * page is used to determine if the reserve at this address was
5887          * consumed or not. If reserves were used, a partial faulted mapping
5888          * at the time of fork() could consume its reserves on COW instead
5889          * of the full address range.
5890          */
5891         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5892                         old_folio != pagecache_folio)
5893                 outside_reserve = 1;
5894
5895         folio_get(old_folio);
5896
5897         /*
5898          * Drop page table lock as buddy allocator may be called. It will
5899          * be acquired again before returning to the caller, as expected.
5900          */
5901         spin_unlock(ptl);
5902         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5903
5904         if (IS_ERR(new_folio)) {
5905                 /*
5906                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5907                  * it is due to references held by a child and an insufficient
5908                  * huge page pool. To guarantee the original mappers
5909                  * reliability, unmap the page from child processes. The child
5910                  * may get SIGKILLed if it later faults.
5911                  */
5912                 if (outside_reserve) {
5913                         struct address_space *mapping = vma->vm_file->f_mapping;
5914                         pgoff_t idx;
5915                         u32 hash;
5916
5917                         folio_put(old_folio);
5918                         /*
5919                          * Drop hugetlb_fault_mutex and vma_lock before
5920                          * unmapping.  unmapping needs to hold vma_lock
5921                          * in write mode.  Dropping vma_lock in read mode
5922                          * here is OK as COW mappings do not interact with
5923                          * PMD sharing.
5924                          *
5925                          * Reacquire both after unmap operation.
5926                          */
5927                         idx = vma_hugecache_offset(h, vma, haddr);
5928                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5929                         hugetlb_vma_unlock_read(vma);
5930                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5931
5932                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
5933
5934                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5935                         hugetlb_vma_lock_read(vma);
5936                         spin_lock(ptl);
5937                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5938                         if (likely(ptep &&
5939                                    pte_same(huge_ptep_get(ptep), pte)))
5940                                 goto retry_avoidcopy;
5941                         /*
5942                          * race occurs while re-acquiring page table
5943                          * lock, and our job is done.
5944                          */
5945                         delayacct_wpcopy_end();
5946                         return 0;
5947                 }
5948
5949                 ret = vmf_error(PTR_ERR(new_folio));
5950                 goto out_release_old;
5951         }
5952
5953         /*
5954          * When the original hugepage is shared one, it does not have
5955          * anon_vma prepared.
5956          */
5957         if (unlikely(anon_vma_prepare(vma))) {
5958                 ret = VM_FAULT_OOM;
5959                 goto out_release_all;
5960         }
5961
5962         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5963                 ret = VM_FAULT_HWPOISON_LARGE;
5964                 goto out_release_all;
5965         }
5966         __folio_mark_uptodate(new_folio);
5967
5968         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5969                                 haddr + huge_page_size(h));
5970         mmu_notifier_invalidate_range_start(&range);
5971
5972         /*
5973          * Retake the page table lock to check for racing updates
5974          * before the page tables are altered
5975          */
5976         spin_lock(ptl);
5977         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5978         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5979                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5980
5981                 /* Break COW or unshare */
5982                 huge_ptep_clear_flush(vma, haddr, ptep);
5983                 page_remove_rmap(&old_folio->page, vma, true);
5984                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5985                 if (huge_pte_uffd_wp(pte))
5986                         newpte = huge_pte_mkuffd_wp(newpte);
5987                 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5988                 folio_set_hugetlb_migratable(new_folio);
5989                 /* Make the old page be freed below */
5990                 new_folio = old_folio;
5991         }
5992         spin_unlock(ptl);
5993         mmu_notifier_invalidate_range_end(&range);
5994 out_release_all:
5995         /*
5996          * No restore in case of successful pagetable update (Break COW or
5997          * unshare)
5998          */
5999         if (new_folio != old_folio)
6000                 restore_reserve_on_error(h, vma, haddr, new_folio);
6001         folio_put(new_folio);
6002 out_release_old:
6003         folio_put(old_folio);
6004
6005         spin_lock(ptl); /* Caller expects lock to be held */
6006
6007         delayacct_wpcopy_end();
6008         return ret;
6009 }
6010
6011 /*
6012  * Return whether there is a pagecache page to back given address within VMA.
6013  */
6014 static bool hugetlbfs_pagecache_present(struct hstate *h,
6015                         struct vm_area_struct *vma, unsigned long address)
6016 {
6017         struct address_space *mapping = vma->vm_file->f_mapping;
6018         pgoff_t idx = linear_page_index(vma, address);
6019         struct folio *folio;
6020
6021         folio = filemap_get_folio(mapping, idx);
6022         if (IS_ERR(folio))
6023                 return false;
6024         folio_put(folio);
6025         return true;
6026 }
6027
6028 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6029                            pgoff_t idx)
6030 {
6031         struct inode *inode = mapping->host;
6032         struct hstate *h = hstate_inode(inode);
6033         int err;
6034
6035         idx <<= huge_page_order(h);
6036         __folio_set_locked(folio);
6037         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6038
6039         if (unlikely(err)) {
6040                 __folio_clear_locked(folio);
6041                 return err;
6042         }
6043         folio_clear_hugetlb_restore_reserve(folio);
6044
6045         /*
6046          * mark folio dirty so that it will not be removed from cache/file
6047          * by non-hugetlbfs specific code paths.
6048          */
6049         folio_mark_dirty(folio);
6050
6051         spin_lock(&inode->i_lock);
6052         inode->i_blocks += blocks_per_huge_page(h);
6053         spin_unlock(&inode->i_lock);
6054         return 0;
6055 }
6056
6057 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
6058                                                   struct address_space *mapping,
6059                                                   pgoff_t idx,
6060                                                   unsigned int flags,
6061                                                   unsigned long haddr,
6062                                                   unsigned long addr,
6063                                                   unsigned long reason)
6064 {
6065         u32 hash;
6066         struct vm_fault vmf = {
6067                 .vma = vma,
6068                 .address = haddr,
6069                 .real_address = addr,
6070                 .flags = flags,
6071
6072                 /*
6073                  * Hard to debug if it ends up being
6074                  * used by a callee that assumes
6075                  * something about the other
6076                  * uninitialized fields... same as in
6077                  * memory.c
6078                  */
6079         };
6080
6081         /*
6082          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6083          * userfault. Also mmap_lock could be dropped due to handling
6084          * userfault, any vma operation should be careful from here.
6085          */
6086         hugetlb_vma_unlock_read(vma);
6087         hash = hugetlb_fault_mutex_hash(mapping, idx);
6088         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6089         return handle_userfault(&vmf, reason);
6090 }
6091
6092 /*
6093  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6094  * false if pte changed or is changing.
6095  */
6096 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6097                                pte_t *ptep, pte_t old_pte)
6098 {
6099         spinlock_t *ptl;
6100         bool same;
6101
6102         ptl = huge_pte_lock(h, mm, ptep);
6103         same = pte_same(huge_ptep_get(ptep), old_pte);
6104         spin_unlock(ptl);
6105
6106         return same;
6107 }
6108
6109 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6110                         struct vm_area_struct *vma,
6111                         struct address_space *mapping, pgoff_t idx,
6112                         unsigned long address, pte_t *ptep,
6113                         pte_t old_pte, unsigned int flags)
6114 {
6115         struct hstate *h = hstate_vma(vma);
6116         vm_fault_t ret = VM_FAULT_SIGBUS;
6117         int anon_rmap = 0;
6118         unsigned long size;
6119         struct folio *folio;
6120         pte_t new_pte;
6121         spinlock_t *ptl;
6122         unsigned long haddr = address & huge_page_mask(h);
6123         bool new_folio, new_pagecache_folio = false;
6124         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6125
6126         /*
6127          * Currently, we are forced to kill the process in the event the
6128          * original mapper has unmapped pages from the child due to a failed
6129          * COW/unsharing. Warn that such a situation has occurred as it may not
6130          * be obvious.
6131          */
6132         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6133                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6134                            current->pid);
6135                 goto out;
6136         }
6137
6138         /*
6139          * Use page lock to guard against racing truncation
6140          * before we get page_table_lock.
6141          */
6142         new_folio = false;
6143         folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6144         if (IS_ERR(folio)) {
6145                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6146                 if (idx >= size)
6147                         goto out;
6148                 /* Check for page in userfault range */
6149                 if (userfaultfd_missing(vma)) {
6150                         /*
6151                          * Since hugetlb_no_page() was examining pte
6152                          * without pgtable lock, we need to re-test under
6153                          * lock because the pte may not be stable and could
6154                          * have changed from under us.  Try to detect
6155                          * either changed or during-changing ptes and retry
6156                          * properly when needed.
6157                          *
6158                          * Note that userfaultfd is actually fine with
6159                          * false positives (e.g. caused by pte changed),
6160                          * but not wrong logical events (e.g. caused by
6161                          * reading a pte during changing).  The latter can
6162                          * confuse the userspace, so the strictness is very
6163                          * much preferred.  E.g., MISSING event should
6164                          * never happen on the page after UFFDIO_COPY has
6165                          * correctly installed the page and returned.
6166                          */
6167                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6168                                 ret = 0;
6169                                 goto out;
6170                         }
6171
6172                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
6173                                                         haddr, address,
6174                                                         VM_UFFD_MISSING);
6175                 }
6176
6177                 folio = alloc_hugetlb_folio(vma, haddr, 0);
6178                 if (IS_ERR(folio)) {
6179                         /*
6180                          * Returning error will result in faulting task being
6181                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6182                          * tasks from racing to fault in the same page which
6183                          * could result in false unable to allocate errors.
6184                          * Page migration does not take the fault mutex, but
6185                          * does a clear then write of pte's under page table
6186                          * lock.  Page fault code could race with migration,
6187                          * notice the clear pte and try to allocate a page
6188                          * here.  Before returning error, get ptl and make
6189                          * sure there really is no pte entry.
6190                          */
6191                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6192                                 ret = vmf_error(PTR_ERR(folio));
6193                         else
6194                                 ret = 0;
6195                         goto out;
6196                 }
6197                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6198                 __folio_mark_uptodate(folio);
6199                 new_folio = true;
6200
6201                 if (vma->vm_flags & VM_MAYSHARE) {
6202                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6203                         if (err) {
6204                                 /*
6205                                  * err can't be -EEXIST which implies someone
6206                                  * else consumed the reservation since hugetlb
6207                                  * fault mutex is held when add a hugetlb page
6208                                  * to the page cache. So it's safe to call
6209                                  * restore_reserve_on_error() here.
6210                                  */
6211                                 restore_reserve_on_error(h, vma, haddr, folio);
6212                                 folio_put(folio);
6213                                 goto out;
6214                         }
6215                         new_pagecache_folio = true;
6216                 } else {
6217                         folio_lock(folio);
6218                         if (unlikely(anon_vma_prepare(vma))) {
6219                                 ret = VM_FAULT_OOM;
6220                                 goto backout_unlocked;
6221                         }
6222                         anon_rmap = 1;
6223                 }
6224         } else {
6225                 /*
6226                  * If memory error occurs between mmap() and fault, some process
6227                  * don't have hwpoisoned swap entry for errored virtual address.
6228                  * So we need to block hugepage fault by PG_hwpoison bit check.
6229                  */
6230                 if (unlikely(folio_test_hwpoison(folio))) {
6231                         ret = VM_FAULT_HWPOISON_LARGE |
6232                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6233                         goto backout_unlocked;
6234                 }
6235
6236                 /* Check for page in userfault range. */
6237                 if (userfaultfd_minor(vma)) {
6238                         folio_unlock(folio);
6239                         folio_put(folio);
6240                         /* See comment in userfaultfd_missing() block above */
6241                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6242                                 ret = 0;
6243                                 goto out;
6244                         }
6245                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
6246                                                         haddr, address,
6247                                                         VM_UFFD_MINOR);
6248                 }
6249         }
6250
6251         /*
6252          * If we are going to COW a private mapping later, we examine the
6253          * pending reservations for this page now. This will ensure that
6254          * any allocations necessary to record that reservation occur outside
6255          * the spinlock.
6256          */
6257         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6258                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6259                         ret = VM_FAULT_OOM;
6260                         goto backout_unlocked;
6261                 }
6262                 /* Just decrements count, does not deallocate */
6263                 vma_end_reservation(h, vma, haddr);
6264         }
6265
6266         ptl = huge_pte_lock(h, mm, ptep);
6267         ret = 0;
6268         /* If pte changed from under us, retry */
6269         if (!pte_same(huge_ptep_get(ptep), old_pte))
6270                 goto backout;
6271
6272         if (anon_rmap)
6273                 hugepage_add_new_anon_rmap(folio, vma, haddr);
6274         else
6275                 page_dup_file_rmap(&folio->page, true);
6276         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6277                                 && (vma->vm_flags & VM_SHARED)));
6278         /*
6279          * If this pte was previously wr-protected, keep it wr-protected even
6280          * if populated.
6281          */
6282         if (unlikely(pte_marker_uffd_wp(old_pte)))
6283                 new_pte = huge_pte_mkuffd_wp(new_pte);
6284         set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6285
6286         hugetlb_count_add(pages_per_huge_page(h), mm);
6287         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6288                 /* Optimization, do the COW without a second fault */
6289                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6290         }
6291
6292         spin_unlock(ptl);
6293
6294         /*
6295          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6296          * found in the pagecache may not have hugetlb_migratable if they have
6297          * been isolated for migration.
6298          */
6299         if (new_folio)
6300                 folio_set_hugetlb_migratable(folio);
6301
6302         folio_unlock(folio);
6303 out:
6304         hugetlb_vma_unlock_read(vma);
6305         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6306         return ret;
6307
6308 backout:
6309         spin_unlock(ptl);
6310 backout_unlocked:
6311         if (new_folio && !new_pagecache_folio)
6312                 restore_reserve_on_error(h, vma, haddr, folio);
6313
6314         folio_unlock(folio);
6315         folio_put(folio);
6316         goto out;
6317 }
6318
6319 #ifdef CONFIG_SMP
6320 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6321 {
6322         unsigned long key[2];
6323         u32 hash;
6324
6325         key[0] = (unsigned long) mapping;
6326         key[1] = idx;
6327
6328         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6329
6330         return hash & (num_fault_mutexes - 1);
6331 }
6332 #else
6333 /*
6334  * For uniprocessor systems we always use a single mutex, so just
6335  * return 0 and avoid the hashing overhead.
6336  */
6337 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6338 {
6339         return 0;
6340 }
6341 #endif
6342
6343 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6344                         unsigned long address, unsigned int flags)
6345 {
6346         pte_t *ptep, entry;
6347         spinlock_t *ptl;
6348         vm_fault_t ret;
6349         u32 hash;
6350         pgoff_t idx;
6351         struct folio *folio = NULL;
6352         struct folio *pagecache_folio = NULL;
6353         struct hstate *h = hstate_vma(vma);
6354         struct address_space *mapping;
6355         int need_wait_lock = 0;
6356         unsigned long haddr = address & huge_page_mask(h);
6357
6358         /* TODO: Handle faults under the VMA lock */
6359         if (flags & FAULT_FLAG_VMA_LOCK) {
6360                 vma_end_read(vma);
6361                 return VM_FAULT_RETRY;
6362         }
6363
6364         /*
6365          * Serialize hugepage allocation and instantiation, so that we don't
6366          * get spurious allocation failures if two CPUs race to instantiate
6367          * the same page in the page cache.
6368          */
6369         mapping = vma->vm_file->f_mapping;
6370         idx = vma_hugecache_offset(h, vma, haddr);
6371         hash = hugetlb_fault_mutex_hash(mapping, idx);
6372         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6373
6374         /*
6375          * Acquire vma lock before calling huge_pte_alloc and hold
6376          * until finished with ptep.  This prevents huge_pmd_unshare from
6377          * being called elsewhere and making the ptep no longer valid.
6378          */
6379         hugetlb_vma_lock_read(vma);
6380         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6381         if (!ptep) {
6382                 hugetlb_vma_unlock_read(vma);
6383                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6384                 return VM_FAULT_OOM;
6385         }
6386
6387         entry = huge_ptep_get(ptep);
6388         if (huge_pte_none_mostly(entry)) {
6389                 if (is_pte_marker(entry)) {
6390                         pte_marker marker =
6391                                 pte_marker_get(pte_to_swp_entry(entry));
6392
6393                         if (marker & PTE_MARKER_POISONED) {
6394                                 ret = VM_FAULT_HWPOISON_LARGE;
6395                                 goto out_mutex;
6396                         }
6397                 }
6398
6399                 /*
6400                  * Other PTE markers should be handled the same way as none PTE.
6401                  *
6402                  * hugetlb_no_page will drop vma lock and hugetlb fault
6403                  * mutex internally, which make us return immediately.
6404                  */
6405                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6406                                       entry, flags);
6407         }
6408
6409         ret = 0;
6410
6411         /*
6412          * entry could be a migration/hwpoison entry at this point, so this
6413          * check prevents the kernel from going below assuming that we have
6414          * an active hugepage in pagecache. This goto expects the 2nd page
6415          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6416          * properly handle it.
6417          */
6418         if (!pte_present(entry)) {
6419                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6420                         /*
6421                          * Release the hugetlb fault lock now, but retain
6422                          * the vma lock, because it is needed to guard the
6423                          * huge_pte_lockptr() later in
6424                          * migration_entry_wait_huge(). The vma lock will
6425                          * be released there.
6426                          */
6427                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6428                         migration_entry_wait_huge(vma, ptep);
6429                         return 0;
6430                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6431                         ret = VM_FAULT_HWPOISON_LARGE |
6432                             VM_FAULT_SET_HINDEX(hstate_index(h));
6433                 goto out_mutex;
6434         }
6435
6436         /*
6437          * If we are going to COW/unshare the mapping later, we examine the
6438          * pending reservations for this page now. This will ensure that any
6439          * allocations necessary to record that reservation occur outside the
6440          * spinlock. Also lookup the pagecache page now as it is used to
6441          * determine if a reservation has been consumed.
6442          */
6443         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6444             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6445                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6446                         ret = VM_FAULT_OOM;
6447                         goto out_mutex;
6448                 }
6449                 /* Just decrements count, does not deallocate */
6450                 vma_end_reservation(h, vma, haddr);
6451
6452                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6453                 if (IS_ERR(pagecache_folio))
6454                         pagecache_folio = NULL;
6455         }
6456
6457         ptl = huge_pte_lock(h, mm, ptep);
6458
6459         /* Check for a racing update before calling hugetlb_wp() */
6460         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6461                 goto out_ptl;
6462
6463         /* Handle userfault-wp first, before trying to lock more pages */
6464         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6465             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6466                 if (!userfaultfd_wp_async(vma)) {
6467                         struct vm_fault vmf = {
6468                                 .vma = vma,
6469                                 .address = haddr,
6470                                 .real_address = address,
6471                                 .flags = flags,
6472                         };
6473
6474                         spin_unlock(ptl);
6475                         if (pagecache_folio) {
6476                                 folio_unlock(pagecache_folio);
6477                                 folio_put(pagecache_folio);
6478                         }
6479                         hugetlb_vma_unlock_read(vma);
6480                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6481                         return handle_userfault(&vmf, VM_UFFD_WP);
6482                 }
6483
6484                 entry = huge_pte_clear_uffd_wp(entry);
6485                 set_huge_pte_at(mm, haddr, ptep, entry,
6486                                 huge_page_size(hstate_vma(vma)));
6487                 /* Fallthrough to CoW */
6488         }
6489
6490         /*
6491          * hugetlb_wp() requires page locks of pte_page(entry) and
6492          * pagecache_folio, so here we need take the former one
6493          * when folio != pagecache_folio or !pagecache_folio.
6494          */
6495         folio = page_folio(pte_page(entry));
6496         if (folio != pagecache_folio)
6497                 if (!folio_trylock(folio)) {
6498                         need_wait_lock = 1;
6499                         goto out_ptl;
6500                 }
6501
6502         folio_get(folio);
6503
6504         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6505                 if (!huge_pte_write(entry)) {
6506                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6507                                          pagecache_folio, ptl);
6508                         goto out_put_page;
6509                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6510                         entry = huge_pte_mkdirty(entry);
6511                 }
6512         }
6513         entry = pte_mkyoung(entry);
6514         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6515                                                 flags & FAULT_FLAG_WRITE))
6516                 update_mmu_cache(vma, haddr, ptep);
6517 out_put_page:
6518         if (folio != pagecache_folio)
6519                 folio_unlock(folio);
6520         folio_put(folio);
6521 out_ptl:
6522         spin_unlock(ptl);
6523
6524         if (pagecache_folio) {
6525                 folio_unlock(pagecache_folio);
6526                 folio_put(pagecache_folio);
6527         }
6528 out_mutex:
6529         hugetlb_vma_unlock_read(vma);
6530         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6531         /*
6532          * Generally it's safe to hold refcount during waiting page lock. But
6533          * here we just wait to defer the next page fault to avoid busy loop and
6534          * the page is not used after unlocked before returning from the current
6535          * page fault. So we are safe from accessing freed page, even if we wait
6536          * here without taking refcount.
6537          */
6538         if (need_wait_lock)
6539                 folio_wait_locked(folio);
6540         return ret;
6541 }
6542
6543 #ifdef CONFIG_USERFAULTFD
6544 /*
6545  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6546  */
6547 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6548                 struct vm_area_struct *vma, unsigned long address)
6549 {
6550         struct mempolicy *mpol;
6551         nodemask_t *nodemask;
6552         struct folio *folio;
6553         gfp_t gfp_mask;
6554         int node;
6555
6556         gfp_mask = htlb_alloc_mask(h);
6557         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6558         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6559         mpol_cond_put(mpol);
6560
6561         return folio;
6562 }
6563
6564 /*
6565  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6566  * with modifications for hugetlb pages.
6567  */
6568 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6569                              struct vm_area_struct *dst_vma,
6570                              unsigned long dst_addr,
6571                              unsigned long src_addr,
6572                              uffd_flags_t flags,
6573                              struct folio **foliop)
6574 {
6575         struct mm_struct *dst_mm = dst_vma->vm_mm;
6576         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6577         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6578         struct hstate *h = hstate_vma(dst_vma);
6579         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6580         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6581         unsigned long size;
6582         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6583         pte_t _dst_pte;
6584         spinlock_t *ptl;
6585         int ret = -ENOMEM;
6586         struct folio *folio;
6587         int writable;
6588         bool folio_in_pagecache = false;
6589
6590         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6591                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6592
6593                 /* Don't overwrite any existing PTEs (even markers) */
6594                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6595                         spin_unlock(ptl);
6596                         return -EEXIST;
6597                 }
6598
6599                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6600                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6601                                 huge_page_size(h));
6602
6603                 /* No need to invalidate - it was non-present before */
6604                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6605
6606                 spin_unlock(ptl);
6607                 return 0;
6608         }
6609
6610         if (is_continue) {
6611                 ret = -EFAULT;
6612                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6613                 if (IS_ERR(folio))
6614                         goto out;
6615                 folio_in_pagecache = true;
6616         } else if (!*foliop) {
6617                 /* If a folio already exists, then it's UFFDIO_COPY for
6618                  * a non-missing case. Return -EEXIST.
6619                  */
6620                 if (vm_shared &&
6621                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6622                         ret = -EEXIST;
6623                         goto out;
6624                 }
6625
6626                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6627                 if (IS_ERR(folio)) {
6628                         ret = -ENOMEM;
6629                         goto out;
6630                 }
6631
6632                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6633                                            false);
6634
6635                 /* fallback to copy_from_user outside mmap_lock */
6636                 if (unlikely(ret)) {
6637                         ret = -ENOENT;
6638                         /* Free the allocated folio which may have
6639                          * consumed a reservation.
6640                          */
6641                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6642                         folio_put(folio);
6643
6644                         /* Allocate a temporary folio to hold the copied
6645                          * contents.
6646                          */
6647                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6648                         if (!folio) {
6649                                 ret = -ENOMEM;
6650                                 goto out;
6651                         }
6652                         *foliop = folio;
6653                         /* Set the outparam foliop and return to the caller to
6654                          * copy the contents outside the lock. Don't free the
6655                          * folio.
6656                          */
6657                         goto out;
6658                 }
6659         } else {
6660                 if (vm_shared &&
6661                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6662                         folio_put(*foliop);
6663                         ret = -EEXIST;
6664                         *foliop = NULL;
6665                         goto out;
6666                 }
6667
6668                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6669                 if (IS_ERR(folio)) {
6670                         folio_put(*foliop);
6671                         ret = -ENOMEM;
6672                         *foliop = NULL;
6673                         goto out;
6674                 }
6675                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6676                 folio_put(*foliop);
6677                 *foliop = NULL;
6678                 if (ret) {
6679                         folio_put(folio);
6680                         goto out;
6681                 }
6682         }
6683
6684         /*
6685          * The memory barrier inside __folio_mark_uptodate makes sure that
6686          * preceding stores to the page contents become visible before
6687          * the set_pte_at() write.
6688          */
6689         __folio_mark_uptodate(folio);
6690
6691         /* Add shared, newly allocated pages to the page cache. */
6692         if (vm_shared && !is_continue) {
6693                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6694                 ret = -EFAULT;
6695                 if (idx >= size)
6696                         goto out_release_nounlock;
6697
6698                 /*
6699                  * Serialization between remove_inode_hugepages() and
6700                  * hugetlb_add_to_page_cache() below happens through the
6701                  * hugetlb_fault_mutex_table that here must be hold by
6702                  * the caller.
6703                  */
6704                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6705                 if (ret)
6706                         goto out_release_nounlock;
6707                 folio_in_pagecache = true;
6708         }
6709
6710         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6711
6712         ret = -EIO;
6713         if (folio_test_hwpoison(folio))
6714                 goto out_release_unlock;
6715
6716         /*
6717          * We allow to overwrite a pte marker: consider when both MISSING|WP
6718          * registered, we firstly wr-protect a none pte which has no page cache
6719          * page backing it, then access the page.
6720          */
6721         ret = -EEXIST;
6722         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6723                 goto out_release_unlock;
6724
6725         if (folio_in_pagecache)
6726                 page_dup_file_rmap(&folio->page, true);
6727         else
6728                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6729
6730         /*
6731          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6732          * with wp flag set, don't set pte write bit.
6733          */
6734         if (wp_enabled || (is_continue && !vm_shared))
6735                 writable = 0;
6736         else
6737                 writable = dst_vma->vm_flags & VM_WRITE;
6738
6739         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6740         /*
6741          * Always mark UFFDIO_COPY page dirty; note that this may not be
6742          * extremely important for hugetlbfs for now since swapping is not
6743          * supported, but we should still be clear in that this page cannot be
6744          * thrown away at will, even if write bit not set.
6745          */
6746         _dst_pte = huge_pte_mkdirty(_dst_pte);
6747         _dst_pte = pte_mkyoung(_dst_pte);
6748
6749         if (wp_enabled)
6750                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6751
6752         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6753
6754         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6755
6756         /* No need to invalidate - it was non-present before */
6757         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6758
6759         spin_unlock(ptl);
6760         if (!is_continue)
6761                 folio_set_hugetlb_migratable(folio);
6762         if (vm_shared || is_continue)
6763                 folio_unlock(folio);
6764         ret = 0;
6765 out:
6766         return ret;
6767 out_release_unlock:
6768         spin_unlock(ptl);
6769         if (vm_shared || is_continue)
6770                 folio_unlock(folio);
6771 out_release_nounlock:
6772         if (!folio_in_pagecache)
6773                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6774         folio_put(folio);
6775         goto out;
6776 }
6777 #endif /* CONFIG_USERFAULTFD */
6778
6779 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6780                                       unsigned long address, unsigned int flags,
6781                                       unsigned int *page_mask)
6782 {
6783         struct hstate *h = hstate_vma(vma);
6784         struct mm_struct *mm = vma->vm_mm;
6785         unsigned long haddr = address & huge_page_mask(h);
6786         struct page *page = NULL;
6787         spinlock_t *ptl;
6788         pte_t *pte, entry;
6789         int ret;
6790
6791         hugetlb_vma_lock_read(vma);
6792         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6793         if (!pte)
6794                 goto out_unlock;
6795
6796         ptl = huge_pte_lock(h, mm, pte);
6797         entry = huge_ptep_get(pte);
6798         if (pte_present(entry)) {
6799                 page = pte_page(entry);
6800
6801                 if (!huge_pte_write(entry)) {
6802                         if (flags & FOLL_WRITE) {
6803                                 page = NULL;
6804                                 goto out;
6805                         }
6806
6807                         if (gup_must_unshare(vma, flags, page)) {
6808                                 /* Tell the caller to do unsharing */
6809                                 page = ERR_PTR(-EMLINK);
6810                                 goto out;
6811                         }
6812                 }
6813
6814                 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6815
6816                 /*
6817                  * Note that page may be a sub-page, and with vmemmap
6818                  * optimizations the page struct may be read only.
6819                  * try_grab_page() will increase the ref count on the
6820                  * head page, so this will be OK.
6821                  *
6822                  * try_grab_page() should always be able to get the page here,
6823                  * because we hold the ptl lock and have verified pte_present().
6824                  */
6825                 ret = try_grab_page(page, flags);
6826
6827                 if (WARN_ON_ONCE(ret)) {
6828                         page = ERR_PTR(ret);
6829                         goto out;
6830                 }
6831
6832                 *page_mask = (1U << huge_page_order(h)) - 1;
6833         }
6834 out:
6835         spin_unlock(ptl);
6836 out_unlock:
6837         hugetlb_vma_unlock_read(vma);
6838
6839         /*
6840          * Fixup retval for dump requests: if pagecache doesn't exist,
6841          * don't try to allocate a new page but just skip it.
6842          */
6843         if (!page && (flags & FOLL_DUMP) &&
6844             !hugetlbfs_pagecache_present(h, vma, address))
6845                 page = ERR_PTR(-EFAULT);
6846
6847         return page;
6848 }
6849
6850 long hugetlb_change_protection(struct vm_area_struct *vma,
6851                 unsigned long address, unsigned long end,
6852                 pgprot_t newprot, unsigned long cp_flags)
6853 {
6854         struct mm_struct *mm = vma->vm_mm;
6855         unsigned long start = address;
6856         pte_t *ptep;
6857         pte_t pte;
6858         struct hstate *h = hstate_vma(vma);
6859         long pages = 0, psize = huge_page_size(h);
6860         bool shared_pmd = false;
6861         struct mmu_notifier_range range;
6862         unsigned long last_addr_mask;
6863         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6864         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6865
6866         /*
6867          * In the case of shared PMDs, the area to flush could be beyond
6868          * start/end.  Set range.start/range.end to cover the maximum possible
6869          * range if PMD sharing is possible.
6870          */
6871         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6872                                 0, mm, start, end);
6873         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6874
6875         BUG_ON(address >= end);
6876         flush_cache_range(vma, range.start, range.end);
6877
6878         mmu_notifier_invalidate_range_start(&range);
6879         hugetlb_vma_lock_write(vma);
6880         i_mmap_lock_write(vma->vm_file->f_mapping);
6881         last_addr_mask = hugetlb_mask_last_page(h);
6882         for (; address < end; address += psize) {
6883                 spinlock_t *ptl;
6884                 ptep = hugetlb_walk(vma, address, psize);
6885                 if (!ptep) {
6886                         if (!uffd_wp) {
6887                                 address |= last_addr_mask;
6888                                 continue;
6889                         }
6890                         /*
6891                          * Userfaultfd wr-protect requires pgtable
6892                          * pre-allocations to install pte markers.
6893                          */
6894                         ptep = huge_pte_alloc(mm, vma, address, psize);
6895                         if (!ptep) {
6896                                 pages = -ENOMEM;
6897                                 break;
6898                         }
6899                 }
6900                 ptl = huge_pte_lock(h, mm, ptep);
6901                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6902                         /*
6903                          * When uffd-wp is enabled on the vma, unshare
6904                          * shouldn't happen at all.  Warn about it if it
6905                          * happened due to some reason.
6906                          */
6907                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6908                         pages++;
6909                         spin_unlock(ptl);
6910                         shared_pmd = true;
6911                         address |= last_addr_mask;
6912                         continue;
6913                 }
6914                 pte = huge_ptep_get(ptep);
6915                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6916                         /* Nothing to do. */
6917                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6918                         swp_entry_t entry = pte_to_swp_entry(pte);
6919                         struct page *page = pfn_swap_entry_to_page(entry);
6920                         pte_t newpte = pte;
6921
6922                         if (is_writable_migration_entry(entry)) {
6923                                 if (PageAnon(page))
6924                                         entry = make_readable_exclusive_migration_entry(
6925                                                                 swp_offset(entry));
6926                                 else
6927                                         entry = make_readable_migration_entry(
6928                                                                 swp_offset(entry));
6929                                 newpte = swp_entry_to_pte(entry);
6930                                 pages++;
6931                         }
6932
6933                         if (uffd_wp)
6934                                 newpte = pte_swp_mkuffd_wp(newpte);
6935                         else if (uffd_wp_resolve)
6936                                 newpte = pte_swp_clear_uffd_wp(newpte);
6937                         if (!pte_same(pte, newpte))
6938                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
6939                 } else if (unlikely(is_pte_marker(pte))) {
6940                         /* No other markers apply for now. */
6941                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6942                         if (uffd_wp_resolve)
6943                                 /* Safe to modify directly (non-present->none). */
6944                                 huge_pte_clear(mm, address, ptep, psize);
6945                 } else if (!huge_pte_none(pte)) {
6946                         pte_t old_pte;
6947                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6948
6949                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6950                         pte = huge_pte_modify(old_pte, newprot);
6951                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6952                         if (uffd_wp)
6953                                 pte = huge_pte_mkuffd_wp(pte);
6954                         else if (uffd_wp_resolve)
6955                                 pte = huge_pte_clear_uffd_wp(pte);
6956                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6957                         pages++;
6958                 } else {
6959                         /* None pte */
6960                         if (unlikely(uffd_wp))
6961                                 /* Safe to modify directly (none->non-present). */
6962                                 set_huge_pte_at(mm, address, ptep,
6963                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
6964                                                 psize);
6965                 }
6966                 spin_unlock(ptl);
6967         }
6968         /*
6969          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6970          * may have cleared our pud entry and done put_page on the page table:
6971          * once we release i_mmap_rwsem, another task can do the final put_page
6972          * and that page table be reused and filled with junk.  If we actually
6973          * did unshare a page of pmds, flush the range corresponding to the pud.
6974          */
6975         if (shared_pmd)
6976                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6977         else
6978                 flush_hugetlb_tlb_range(vma, start, end);
6979         /*
6980          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6981          * downgrading page table protection not changing it to point to a new
6982          * page.
6983          *
6984          * See Documentation/mm/mmu_notifier.rst
6985          */
6986         i_mmap_unlock_write(vma->vm_file->f_mapping);
6987         hugetlb_vma_unlock_write(vma);
6988         mmu_notifier_invalidate_range_end(&range);
6989
6990         return pages > 0 ? (pages << h->order) : pages;
6991 }
6992
6993 /* Return true if reservation was successful, false otherwise.  */
6994 bool hugetlb_reserve_pages(struct inode *inode,
6995                                         long from, long to,
6996                                         struct vm_area_struct *vma,
6997                                         vm_flags_t vm_flags)
6998 {
6999         long chg = -1, add = -1;
7000         struct hstate *h = hstate_inode(inode);
7001         struct hugepage_subpool *spool = subpool_inode(inode);
7002         struct resv_map *resv_map;
7003         struct hugetlb_cgroup *h_cg = NULL;
7004         long gbl_reserve, regions_needed = 0;
7005
7006         /* This should never happen */
7007         if (from > to) {
7008                 VM_WARN(1, "%s called with a negative range\n", __func__);
7009                 return false;
7010         }
7011
7012         /*
7013          * vma specific semaphore used for pmd sharing and fault/truncation
7014          * synchronization
7015          */
7016         hugetlb_vma_lock_alloc(vma);
7017
7018         /*
7019          * Only apply hugepage reservation if asked. At fault time, an
7020          * attempt will be made for VM_NORESERVE to allocate a page
7021          * without using reserves
7022          */
7023         if (vm_flags & VM_NORESERVE)
7024                 return true;
7025
7026         /*
7027          * Shared mappings base their reservation on the number of pages that
7028          * are already allocated on behalf of the file. Private mappings need
7029          * to reserve the full area even if read-only as mprotect() may be
7030          * called to make the mapping read-write. Assume !vma is a shm mapping
7031          */
7032         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7033                 /*
7034                  * resv_map can not be NULL as hugetlb_reserve_pages is only
7035                  * called for inodes for which resv_maps were created (see
7036                  * hugetlbfs_get_inode).
7037                  */
7038                 resv_map = inode_resv_map(inode);
7039
7040                 chg = region_chg(resv_map, from, to, &regions_needed);
7041         } else {
7042                 /* Private mapping. */
7043                 resv_map = resv_map_alloc();
7044                 if (!resv_map)
7045                         goto out_err;
7046
7047                 chg = to - from;
7048
7049                 set_vma_resv_map(vma, resv_map);
7050                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7051         }
7052
7053         if (chg < 0)
7054                 goto out_err;
7055
7056         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7057                                 chg * pages_per_huge_page(h), &h_cg) < 0)
7058                 goto out_err;
7059
7060         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7061                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7062                  * of the resv_map.
7063                  */
7064                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7065         }
7066
7067         /*
7068          * There must be enough pages in the subpool for the mapping. If
7069          * the subpool has a minimum size, there may be some global
7070          * reservations already in place (gbl_reserve).
7071          */
7072         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7073         if (gbl_reserve < 0)
7074                 goto out_uncharge_cgroup;
7075
7076         /*
7077          * Check enough hugepages are available for the reservation.
7078          * Hand the pages back to the subpool if there are not
7079          */
7080         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7081                 goto out_put_pages;
7082
7083         /*
7084          * Account for the reservations made. Shared mappings record regions
7085          * that have reservations as they are shared by multiple VMAs.
7086          * When the last VMA disappears, the region map says how much
7087          * the reservation was and the page cache tells how much of
7088          * the reservation was consumed. Private mappings are per-VMA and
7089          * only the consumed reservations are tracked. When the VMA
7090          * disappears, the original reservation is the VMA size and the
7091          * consumed reservations are stored in the map. Hence, nothing
7092          * else has to be done for private mappings here
7093          */
7094         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7095                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7096
7097                 if (unlikely(add < 0)) {
7098                         hugetlb_acct_memory(h, -gbl_reserve);
7099                         goto out_put_pages;
7100                 } else if (unlikely(chg > add)) {
7101                         /*
7102                          * pages in this range were added to the reserve
7103                          * map between region_chg and region_add.  This
7104                          * indicates a race with alloc_hugetlb_folio.  Adjust
7105                          * the subpool and reserve counts modified above
7106                          * based on the difference.
7107                          */
7108                         long rsv_adjust;
7109
7110                         /*
7111                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7112                          * reference to h_cg->css. See comment below for detail.
7113                          */
7114                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7115                                 hstate_index(h),
7116                                 (chg - add) * pages_per_huge_page(h), h_cg);
7117
7118                         rsv_adjust = hugepage_subpool_put_pages(spool,
7119                                                                 chg - add);
7120                         hugetlb_acct_memory(h, -rsv_adjust);
7121                 } else if (h_cg) {
7122                         /*
7123                          * The file_regions will hold their own reference to
7124                          * h_cg->css. So we should release the reference held
7125                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7126                          * done.
7127                          */
7128                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7129                 }
7130         }
7131         return true;
7132
7133 out_put_pages:
7134         /* put back original number of pages, chg */
7135         (void)hugepage_subpool_put_pages(spool, chg);
7136 out_uncharge_cgroup:
7137         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7138                                             chg * pages_per_huge_page(h), h_cg);
7139 out_err:
7140         hugetlb_vma_lock_free(vma);
7141         if (!vma || vma->vm_flags & VM_MAYSHARE)
7142                 /* Only call region_abort if the region_chg succeeded but the
7143                  * region_add failed or didn't run.
7144                  */
7145                 if (chg >= 0 && add < 0)
7146                         region_abort(resv_map, from, to, regions_needed);
7147         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7148                 kref_put(&resv_map->refs, resv_map_release);
7149                 set_vma_resv_map(vma, NULL);
7150         }
7151         return false;
7152 }
7153
7154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7155                                                                 long freed)
7156 {
7157         struct hstate *h = hstate_inode(inode);
7158         struct resv_map *resv_map = inode_resv_map(inode);
7159         long chg = 0;
7160         struct hugepage_subpool *spool = subpool_inode(inode);
7161         long gbl_reserve;
7162
7163         /*
7164          * Since this routine can be called in the evict inode path for all
7165          * hugetlbfs inodes, resv_map could be NULL.
7166          */
7167         if (resv_map) {
7168                 chg = region_del(resv_map, start, end);
7169                 /*
7170                  * region_del() can fail in the rare case where a region
7171                  * must be split and another region descriptor can not be
7172                  * allocated.  If end == LONG_MAX, it will not fail.
7173                  */
7174                 if (chg < 0)
7175                         return chg;
7176         }
7177
7178         spin_lock(&inode->i_lock);
7179         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7180         spin_unlock(&inode->i_lock);
7181
7182         /*
7183          * If the subpool has a minimum size, the number of global
7184          * reservations to be released may be adjusted.
7185          *
7186          * Note that !resv_map implies freed == 0. So (chg - freed)
7187          * won't go negative.
7188          */
7189         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7190         hugetlb_acct_memory(h, -gbl_reserve);
7191
7192         return 0;
7193 }
7194
7195 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7196 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7197                                 struct vm_area_struct *vma,
7198                                 unsigned long addr, pgoff_t idx)
7199 {
7200         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7201                                 svma->vm_start;
7202         unsigned long sbase = saddr & PUD_MASK;
7203         unsigned long s_end = sbase + PUD_SIZE;
7204
7205         /* Allow segments to share if only one is marked locked */
7206         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7207         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7208
7209         /*
7210          * match the virtual addresses, permission and the alignment of the
7211          * page table page.
7212          *
7213          * Also, vma_lock (vm_private_data) is required for sharing.
7214          */
7215         if (pmd_index(addr) != pmd_index(saddr) ||
7216             vm_flags != svm_flags ||
7217             !range_in_vma(svma, sbase, s_end) ||
7218             !svma->vm_private_data)
7219                 return 0;
7220
7221         return saddr;
7222 }
7223
7224 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7225 {
7226         unsigned long start = addr & PUD_MASK;
7227         unsigned long end = start + PUD_SIZE;
7228
7229 #ifdef CONFIG_USERFAULTFD
7230         if (uffd_disable_huge_pmd_share(vma))
7231                 return false;
7232 #endif
7233         /*
7234          * check on proper vm_flags and page table alignment
7235          */
7236         if (!(vma->vm_flags & VM_MAYSHARE))
7237                 return false;
7238         if (!vma->vm_private_data)      /* vma lock required for sharing */
7239                 return false;
7240         if (!range_in_vma(vma, start, end))
7241                 return false;
7242         return true;
7243 }
7244
7245 /*
7246  * Determine if start,end range within vma could be mapped by shared pmd.
7247  * If yes, adjust start and end to cover range associated with possible
7248  * shared pmd mappings.
7249  */
7250 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7251                                 unsigned long *start, unsigned long *end)
7252 {
7253         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7254                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7255
7256         /*
7257          * vma needs to span at least one aligned PUD size, and the range
7258          * must be at least partially within in.
7259          */
7260         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7261                 (*end <= v_start) || (*start >= v_end))
7262                 return;
7263
7264         /* Extend the range to be PUD aligned for a worst case scenario */
7265         if (*start > v_start)
7266                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7267
7268         if (*end < v_end)
7269                 *end = ALIGN(*end, PUD_SIZE);
7270 }
7271
7272 /*
7273  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7274  * and returns the corresponding pte. While this is not necessary for the
7275  * !shared pmd case because we can allocate the pmd later as well, it makes the
7276  * code much cleaner. pmd allocation is essential for the shared case because
7277  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7278  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7279  * bad pmd for sharing.
7280  */
7281 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7282                       unsigned long addr, pud_t *pud)
7283 {
7284         struct address_space *mapping = vma->vm_file->f_mapping;
7285         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7286                         vma->vm_pgoff;
7287         struct vm_area_struct *svma;
7288         unsigned long saddr;
7289         pte_t *spte = NULL;
7290         pte_t *pte;
7291
7292         i_mmap_lock_read(mapping);
7293         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7294                 if (svma == vma)
7295                         continue;
7296
7297                 saddr = page_table_shareable(svma, vma, addr, idx);
7298                 if (saddr) {
7299                         spte = hugetlb_walk(svma, saddr,
7300                                             vma_mmu_pagesize(svma));
7301                         if (spte) {
7302                                 get_page(virt_to_page(spte));
7303                                 break;
7304                         }
7305                 }
7306         }
7307
7308         if (!spte)
7309                 goto out;
7310
7311         spin_lock(&mm->page_table_lock);
7312         if (pud_none(*pud)) {
7313                 pud_populate(mm, pud,
7314                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7315                 mm_inc_nr_pmds(mm);
7316         } else {
7317                 put_page(virt_to_page(spte));
7318         }
7319         spin_unlock(&mm->page_table_lock);
7320 out:
7321         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7322         i_mmap_unlock_read(mapping);
7323         return pte;
7324 }
7325
7326 /*
7327  * unmap huge page backed by shared pte.
7328  *
7329  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7330  * indicated by page_count > 1, unmap is achieved by clearing pud and
7331  * decrementing the ref count. If count == 1, the pte page is not shared.
7332  *
7333  * Called with page table lock held.
7334  *
7335  * returns: 1 successfully unmapped a shared pte page
7336  *          0 the underlying pte page is not shared, or it is the last user
7337  */
7338 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7339                                         unsigned long addr, pte_t *ptep)
7340 {
7341         pgd_t *pgd = pgd_offset(mm, addr);
7342         p4d_t *p4d = p4d_offset(pgd, addr);
7343         pud_t *pud = pud_offset(p4d, addr);
7344
7345         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7346         hugetlb_vma_assert_locked(vma);
7347         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7348         if (page_count(virt_to_page(ptep)) == 1)
7349                 return 0;
7350
7351         pud_clear(pud);
7352         put_page(virt_to_page(ptep));
7353         mm_dec_nr_pmds(mm);
7354         return 1;
7355 }
7356
7357 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7358
7359 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7360                       unsigned long addr, pud_t *pud)
7361 {
7362         return NULL;
7363 }
7364
7365 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7366                                 unsigned long addr, pte_t *ptep)
7367 {
7368         return 0;
7369 }
7370
7371 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7372                                 unsigned long *start, unsigned long *end)
7373 {
7374 }
7375
7376 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7377 {
7378         return false;
7379 }
7380 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7381
7382 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7383 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7384                         unsigned long addr, unsigned long sz)
7385 {
7386         pgd_t *pgd;
7387         p4d_t *p4d;
7388         pud_t *pud;
7389         pte_t *pte = NULL;
7390
7391         pgd = pgd_offset(mm, addr);
7392         p4d = p4d_alloc(mm, pgd, addr);
7393         if (!p4d)
7394                 return NULL;
7395         pud = pud_alloc(mm, p4d, addr);
7396         if (pud) {
7397                 if (sz == PUD_SIZE) {
7398                         pte = (pte_t *)pud;
7399                 } else {
7400                         BUG_ON(sz != PMD_SIZE);
7401                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7402                                 pte = huge_pmd_share(mm, vma, addr, pud);
7403                         else
7404                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7405                 }
7406         }
7407
7408         if (pte) {
7409                 pte_t pteval = ptep_get_lockless(pte);
7410
7411                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7412         }
7413
7414         return pte;
7415 }
7416
7417 /*
7418  * huge_pte_offset() - Walk the page table to resolve the hugepage
7419  * entry at address @addr
7420  *
7421  * Return: Pointer to page table entry (PUD or PMD) for
7422  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7423  * size @sz doesn't match the hugepage size at this level of the page
7424  * table.
7425  */
7426 pte_t *huge_pte_offset(struct mm_struct *mm,
7427                        unsigned long addr, unsigned long sz)
7428 {
7429         pgd_t *pgd;
7430         p4d_t *p4d;
7431         pud_t *pud;
7432         pmd_t *pmd;
7433
7434         pgd = pgd_offset(mm, addr);
7435         if (!pgd_present(*pgd))
7436                 return NULL;
7437         p4d = p4d_offset(pgd, addr);
7438         if (!p4d_present(*p4d))
7439                 return NULL;
7440
7441         pud = pud_offset(p4d, addr);
7442         if (sz == PUD_SIZE)
7443                 /* must be pud huge, non-present or none */
7444                 return (pte_t *)pud;
7445         if (!pud_present(*pud))
7446                 return NULL;
7447         /* must have a valid entry and size to go further */
7448
7449         pmd = pmd_offset(pud, addr);
7450         /* must be pmd huge, non-present or none */
7451         return (pte_t *)pmd;
7452 }
7453
7454 /*
7455  * Return a mask that can be used to update an address to the last huge
7456  * page in a page table page mapping size.  Used to skip non-present
7457  * page table entries when linearly scanning address ranges.  Architectures
7458  * with unique huge page to page table relationships can define their own
7459  * version of this routine.
7460  */
7461 unsigned long hugetlb_mask_last_page(struct hstate *h)
7462 {
7463         unsigned long hp_size = huge_page_size(h);
7464
7465         if (hp_size == PUD_SIZE)
7466                 return P4D_SIZE - PUD_SIZE;
7467         else if (hp_size == PMD_SIZE)
7468                 return PUD_SIZE - PMD_SIZE;
7469         else
7470                 return 0UL;
7471 }
7472
7473 #else
7474
7475 /* See description above.  Architectures can provide their own version. */
7476 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7477 {
7478 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7479         if (huge_page_size(h) == PMD_SIZE)
7480                 return PUD_SIZE - PMD_SIZE;
7481 #endif
7482         return 0UL;
7483 }
7484
7485 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7486
7487 /*
7488  * These functions are overwritable if your architecture needs its own
7489  * behavior.
7490  */
7491 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7492 {
7493         bool ret = true;
7494
7495         spin_lock_irq(&hugetlb_lock);
7496         if (!folio_test_hugetlb(folio) ||
7497             !folio_test_hugetlb_migratable(folio) ||
7498             !folio_try_get(folio)) {
7499                 ret = false;
7500                 goto unlock;
7501         }
7502         folio_clear_hugetlb_migratable(folio);
7503         list_move_tail(&folio->lru, list);
7504 unlock:
7505         spin_unlock_irq(&hugetlb_lock);
7506         return ret;
7507 }
7508
7509 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7510 {
7511         int ret = 0;
7512
7513         *hugetlb = false;
7514         spin_lock_irq(&hugetlb_lock);
7515         if (folio_test_hugetlb(folio)) {
7516                 *hugetlb = true;
7517                 if (folio_test_hugetlb_freed(folio))
7518                         ret = 0;
7519                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7520                         ret = folio_try_get(folio);
7521                 else
7522                         ret = -EBUSY;
7523         }
7524         spin_unlock_irq(&hugetlb_lock);
7525         return ret;
7526 }
7527
7528 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7529                                 bool *migratable_cleared)
7530 {
7531         int ret;
7532
7533         spin_lock_irq(&hugetlb_lock);
7534         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7535         spin_unlock_irq(&hugetlb_lock);
7536         return ret;
7537 }
7538
7539 void folio_putback_active_hugetlb(struct folio *folio)
7540 {
7541         spin_lock_irq(&hugetlb_lock);
7542         folio_set_hugetlb_migratable(folio);
7543         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7544         spin_unlock_irq(&hugetlb_lock);
7545         folio_put(folio);
7546 }
7547
7548 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7549 {
7550         struct hstate *h = folio_hstate(old_folio);
7551
7552         hugetlb_cgroup_migrate(old_folio, new_folio);
7553         set_page_owner_migrate_reason(&new_folio->page, reason);
7554
7555         /*
7556          * transfer temporary state of the new hugetlb folio. This is
7557          * reverse to other transitions because the newpage is going to
7558          * be final while the old one will be freed so it takes over
7559          * the temporary status.
7560          *
7561          * Also note that we have to transfer the per-node surplus state
7562          * here as well otherwise the global surplus count will not match
7563          * the per-node's.
7564          */
7565         if (folio_test_hugetlb_temporary(new_folio)) {
7566                 int old_nid = folio_nid(old_folio);
7567                 int new_nid = folio_nid(new_folio);
7568
7569                 folio_set_hugetlb_temporary(old_folio);
7570                 folio_clear_hugetlb_temporary(new_folio);
7571
7572
7573                 /*
7574                  * There is no need to transfer the per-node surplus state
7575                  * when we do not cross the node.
7576                  */
7577                 if (new_nid == old_nid)
7578                         return;
7579                 spin_lock_irq(&hugetlb_lock);
7580                 if (h->surplus_huge_pages_node[old_nid]) {
7581                         h->surplus_huge_pages_node[old_nid]--;
7582                         h->surplus_huge_pages_node[new_nid]++;
7583                 }
7584                 spin_unlock_irq(&hugetlb_lock);
7585         }
7586 }
7587
7588 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7589                                    unsigned long start,
7590                                    unsigned long end)
7591 {
7592         struct hstate *h = hstate_vma(vma);
7593         unsigned long sz = huge_page_size(h);
7594         struct mm_struct *mm = vma->vm_mm;
7595         struct mmu_notifier_range range;
7596         unsigned long address;
7597         spinlock_t *ptl;
7598         pte_t *ptep;
7599
7600         if (!(vma->vm_flags & VM_MAYSHARE))
7601                 return;
7602
7603         if (start >= end)
7604                 return;
7605
7606         flush_cache_range(vma, start, end);
7607         /*
7608          * No need to call adjust_range_if_pmd_sharing_possible(), because
7609          * we have already done the PUD_SIZE alignment.
7610          */
7611         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7612                                 start, end);
7613         mmu_notifier_invalidate_range_start(&range);
7614         hugetlb_vma_lock_write(vma);
7615         i_mmap_lock_write(vma->vm_file->f_mapping);
7616         for (address = start; address < end; address += PUD_SIZE) {
7617                 ptep = hugetlb_walk(vma, address, sz);
7618                 if (!ptep)
7619                         continue;
7620                 ptl = huge_pte_lock(h, mm, ptep);
7621                 huge_pmd_unshare(mm, vma, address, ptep);
7622                 spin_unlock(ptl);
7623         }
7624         flush_hugetlb_tlb_range(vma, start, end);
7625         i_mmap_unlock_write(vma->vm_file->f_mapping);
7626         hugetlb_vma_unlock_write(vma);
7627         /*
7628          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7629          * Documentation/mm/mmu_notifier.rst.
7630          */
7631         mmu_notifier_invalidate_range_end(&range);
7632 }
7633
7634 /*
7635  * This function will unconditionally remove all the shared pmd pgtable entries
7636  * within the specific vma for a hugetlbfs memory range.
7637  */
7638 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7639 {
7640         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7641                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7642 }
7643
7644 #ifdef CONFIG_CMA
7645 static bool cma_reserve_called __initdata;
7646
7647 static int __init cmdline_parse_hugetlb_cma(char *p)
7648 {
7649         int nid, count = 0;
7650         unsigned long tmp;
7651         char *s = p;
7652
7653         while (*s) {
7654                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7655                         break;
7656
7657                 if (s[count] == ':') {
7658                         if (tmp >= MAX_NUMNODES)
7659                                 break;
7660                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7661
7662                         s += count + 1;
7663                         tmp = memparse(s, &s);
7664                         hugetlb_cma_size_in_node[nid] = tmp;
7665                         hugetlb_cma_size += tmp;
7666
7667                         /*
7668                          * Skip the separator if have one, otherwise
7669                          * break the parsing.
7670                          */
7671                         if (*s == ',')
7672                                 s++;
7673                         else
7674                                 break;
7675                 } else {
7676                         hugetlb_cma_size = memparse(p, &p);
7677                         break;
7678                 }
7679         }
7680
7681         return 0;
7682 }
7683
7684 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7685
7686 void __init hugetlb_cma_reserve(int order)
7687 {
7688         unsigned long size, reserved, per_node;
7689         bool node_specific_cma_alloc = false;
7690         int nid;
7691
7692         cma_reserve_called = true;
7693
7694         if (!hugetlb_cma_size)
7695                 return;
7696
7697         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7698                 if (hugetlb_cma_size_in_node[nid] == 0)
7699                         continue;
7700
7701                 if (!node_online(nid)) {
7702                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7703                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7704                         hugetlb_cma_size_in_node[nid] = 0;
7705                         continue;
7706                 }
7707
7708                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7709                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7710                                 nid, (PAGE_SIZE << order) / SZ_1M);
7711                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7712                         hugetlb_cma_size_in_node[nid] = 0;
7713                 } else {
7714                         node_specific_cma_alloc = true;
7715                 }
7716         }
7717
7718         /* Validate the CMA size again in case some invalid nodes specified. */
7719         if (!hugetlb_cma_size)
7720                 return;
7721
7722         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7723                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7724                         (PAGE_SIZE << order) / SZ_1M);
7725                 hugetlb_cma_size = 0;
7726                 return;
7727         }
7728
7729         if (!node_specific_cma_alloc) {
7730                 /*
7731                  * If 3 GB area is requested on a machine with 4 numa nodes,
7732                  * let's allocate 1 GB on first three nodes and ignore the last one.
7733                  */
7734                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7735                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7736                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7737         }
7738
7739         reserved = 0;
7740         for_each_online_node(nid) {
7741                 int res;
7742                 char name[CMA_MAX_NAME];
7743
7744                 if (node_specific_cma_alloc) {
7745                         if (hugetlb_cma_size_in_node[nid] == 0)
7746                                 continue;
7747
7748                         size = hugetlb_cma_size_in_node[nid];
7749                 } else {
7750                         size = min(per_node, hugetlb_cma_size - reserved);
7751                 }
7752
7753                 size = round_up(size, PAGE_SIZE << order);
7754
7755                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7756                 /*
7757                  * Note that 'order per bit' is based on smallest size that
7758                  * may be returned to CMA allocator in the case of
7759                  * huge page demotion.
7760                  */
7761                 res = cma_declare_contiguous_nid(0, size, 0,
7762                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7763                                                  0, false, name,
7764                                                  &hugetlb_cma[nid], nid);
7765                 if (res) {
7766                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7767                                 res, nid);
7768                         continue;
7769                 }
7770
7771                 reserved += size;
7772                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7773                         size / SZ_1M, nid);
7774
7775                 if (reserved >= hugetlb_cma_size)
7776                         break;
7777         }
7778
7779         if (!reserved)
7780                 /*
7781                  * hugetlb_cma_size is used to determine if allocations from
7782                  * cma are possible.  Set to zero if no cma regions are set up.
7783                  */
7784                 hugetlb_cma_size = 0;
7785 }
7786
7787 static void __init hugetlb_cma_check(void)
7788 {
7789         if (!hugetlb_cma_size || cma_reserve_called)
7790                 return;
7791
7792         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7793 }
7794
7795 #endif /* CONFIG_CMA */