mm, hugetlb: return a reserved page to a reserved pool if failed
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include "internal.h"
34
35 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52  */
53 DEFINE_SPINLOCK(hugetlb_lock);
54
55 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56 {
57         bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59         spin_unlock(&spool->lock);
60
61         /* If no pages are used, and no other handles to the subpool
62          * remain, free the subpool the subpool remain */
63         if (free)
64                 kfree(spool);
65 }
66
67 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68 {
69         struct hugepage_subpool *spool;
70
71         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72         if (!spool)
73                 return NULL;
74
75         spin_lock_init(&spool->lock);
76         spool->count = 1;
77         spool->max_hpages = nr_blocks;
78         spool->used_hpages = 0;
79
80         return spool;
81 }
82
83 void hugepage_put_subpool(struct hugepage_subpool *spool)
84 {
85         spin_lock(&spool->lock);
86         BUG_ON(!spool->count);
87         spool->count--;
88         unlock_or_release_subpool(spool);
89 }
90
91 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92                                       long delta)
93 {
94         int ret = 0;
95
96         if (!spool)
97                 return 0;
98
99         spin_lock(&spool->lock);
100         if ((spool->used_hpages + delta) <= spool->max_hpages) {
101                 spool->used_hpages += delta;
102         } else {
103                 ret = -ENOMEM;
104         }
105         spin_unlock(&spool->lock);
106
107         return ret;
108 }
109
110 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111                                        long delta)
112 {
113         if (!spool)
114                 return;
115
116         spin_lock(&spool->lock);
117         spool->used_hpages -= delta;
118         /* If hugetlbfs_put_super couldn't free spool due to
119         * an outstanding quota reference, free it now. */
120         unlock_or_release_subpool(spool);
121 }
122
123 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124 {
125         return HUGETLBFS_SB(inode->i_sb)->spool;
126 }
127
128 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129 {
130         return subpool_inode(file_inode(vma->vm_file));
131 }
132
133 /*
134  * Region tracking -- allows tracking of reservations and instantiated pages
135  *                    across the pages in a mapping.
136  *
137  * The region data structures are protected by a combination of the mmap_sem
138  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139  * must either hold the mmap_sem for write, or the mmap_sem for read and
140  * the hugetlb_instantiation_mutex:
141  *
142  *      down_write(&mm->mmap_sem);
143  * or
144  *      down_read(&mm->mmap_sem);
145  *      mutex_lock(&hugetlb_instantiation_mutex);
146  */
147 struct file_region {
148         struct list_head link;
149         long from;
150         long to;
151 };
152
153 static long region_add(struct list_head *head, long f, long t)
154 {
155         struct file_region *rg, *nrg, *trg;
156
157         /* Locate the region we are either in or before. */
158         list_for_each_entry(rg, head, link)
159                 if (f <= rg->to)
160                         break;
161
162         /* Round our left edge to the current segment if it encloses us. */
163         if (f > rg->from)
164                 f = rg->from;
165
166         /* Check for and consume any regions we now overlap with. */
167         nrg = rg;
168         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169                 if (&rg->link == head)
170                         break;
171                 if (rg->from > t)
172                         break;
173
174                 /* If this area reaches higher then extend our area to
175                  * include it completely.  If this is not the first area
176                  * which we intend to reuse, free it. */
177                 if (rg->to > t)
178                         t = rg->to;
179                 if (rg != nrg) {
180                         list_del(&rg->link);
181                         kfree(rg);
182                 }
183         }
184         nrg->from = f;
185         nrg->to = t;
186         return 0;
187 }
188
189 static long region_chg(struct list_head *head, long f, long t)
190 {
191         struct file_region *rg, *nrg;
192         long chg = 0;
193
194         /* Locate the region we are before or in. */
195         list_for_each_entry(rg, head, link)
196                 if (f <= rg->to)
197                         break;
198
199         /* If we are below the current region then a new region is required.
200          * Subtle, allocate a new region at the position but make it zero
201          * size such that we can guarantee to record the reservation. */
202         if (&rg->link == head || t < rg->from) {
203                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204                 if (!nrg)
205                         return -ENOMEM;
206                 nrg->from = f;
207                 nrg->to   = f;
208                 INIT_LIST_HEAD(&nrg->link);
209                 list_add(&nrg->link, rg->link.prev);
210
211                 return t - f;
212         }
213
214         /* Round our left edge to the current segment if it encloses us. */
215         if (f > rg->from)
216                 f = rg->from;
217         chg = t - f;
218
219         /* Check for and consume any regions we now overlap with. */
220         list_for_each_entry(rg, rg->link.prev, link) {
221                 if (&rg->link == head)
222                         break;
223                 if (rg->from > t)
224                         return chg;
225
226                 /* We overlap with this area, if it extends further than
227                  * us then we must extend ourselves.  Account for its
228                  * existing reservation. */
229                 if (rg->to > t) {
230                         chg += rg->to - t;
231                         t = rg->to;
232                 }
233                 chg -= rg->to - rg->from;
234         }
235         return chg;
236 }
237
238 static long region_truncate(struct list_head *head, long end)
239 {
240         struct file_region *rg, *trg;
241         long chg = 0;
242
243         /* Locate the region we are either in or before. */
244         list_for_each_entry(rg, head, link)
245                 if (end <= rg->to)
246                         break;
247         if (&rg->link == head)
248                 return 0;
249
250         /* If we are in the middle of a region then adjust it. */
251         if (end > rg->from) {
252                 chg = rg->to - end;
253                 rg->to = end;
254                 rg = list_entry(rg->link.next, typeof(*rg), link);
255         }
256
257         /* Drop any remaining regions. */
258         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259                 if (&rg->link == head)
260                         break;
261                 chg += rg->to - rg->from;
262                 list_del(&rg->link);
263                 kfree(rg);
264         }
265         return chg;
266 }
267
268 static long region_count(struct list_head *head, long f, long t)
269 {
270         struct file_region *rg;
271         long chg = 0;
272
273         /* Locate each segment we overlap with, and count that overlap. */
274         list_for_each_entry(rg, head, link) {
275                 long seg_from;
276                 long seg_to;
277
278                 if (rg->to <= f)
279                         continue;
280                 if (rg->from >= t)
281                         break;
282
283                 seg_from = max(rg->from, f);
284                 seg_to = min(rg->to, t);
285
286                 chg += seg_to - seg_from;
287         }
288
289         return chg;
290 }
291
292 /*
293  * Convert the address within this vma to the page offset within
294  * the mapping, in pagecache page units; huge pages here.
295  */
296 static pgoff_t vma_hugecache_offset(struct hstate *h,
297                         struct vm_area_struct *vma, unsigned long address)
298 {
299         return ((address - vma->vm_start) >> huge_page_shift(h)) +
300                         (vma->vm_pgoff >> huge_page_order(h));
301 }
302
303 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304                                      unsigned long address)
305 {
306         return vma_hugecache_offset(hstate_vma(vma), vma, address);
307 }
308
309 /*
310  * Return the size of the pages allocated when backing a VMA. In the majority
311  * cases this will be same size as used by the page table entries.
312  */
313 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314 {
315         struct hstate *hstate;
316
317         if (!is_vm_hugetlb_page(vma))
318                 return PAGE_SIZE;
319
320         hstate = hstate_vma(vma);
321
322         return 1UL << huge_page_shift(hstate);
323 }
324 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325
326 /*
327  * Return the page size being used by the MMU to back a VMA. In the majority
328  * of cases, the page size used by the kernel matches the MMU size. On
329  * architectures where it differs, an architecture-specific version of this
330  * function is required.
331  */
332 #ifndef vma_mmu_pagesize
333 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334 {
335         return vma_kernel_pagesize(vma);
336 }
337 #endif
338
339 /*
340  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
341  * bits of the reservation map pointer, which are always clear due to
342  * alignment.
343  */
344 #define HPAGE_RESV_OWNER    (1UL << 0)
345 #define HPAGE_RESV_UNMAPPED (1UL << 1)
346 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347
348 /*
349  * These helpers are used to track how many pages are reserved for
350  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351  * is guaranteed to have their future faults succeed.
352  *
353  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354  * the reserve counters are updated with the hugetlb_lock held. It is safe
355  * to reset the VMA at fork() time as it is not in use yet and there is no
356  * chance of the global counters getting corrupted as a result of the values.
357  *
358  * The private mapping reservation is represented in a subtly different
359  * manner to a shared mapping.  A shared mapping has a region map associated
360  * with the underlying file, this region map represents the backing file
361  * pages which have ever had a reservation assigned which this persists even
362  * after the page is instantiated.  A private mapping has a region map
363  * associated with the original mmap which is attached to all VMAs which
364  * reference it, this region map represents those offsets which have consumed
365  * reservation ie. where pages have been instantiated.
366  */
367 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368 {
369         return (unsigned long)vma->vm_private_data;
370 }
371
372 static void set_vma_private_data(struct vm_area_struct *vma,
373                                                         unsigned long value)
374 {
375         vma->vm_private_data = (void *)value;
376 }
377
378 struct resv_map {
379         struct kref refs;
380         struct list_head regions;
381 };
382
383 static struct resv_map *resv_map_alloc(void)
384 {
385         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386         if (!resv_map)
387                 return NULL;
388
389         kref_init(&resv_map->refs);
390         INIT_LIST_HEAD(&resv_map->regions);
391
392         return resv_map;
393 }
394
395 static void resv_map_release(struct kref *ref)
396 {
397         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399         /* Clear out any active regions before we release the map. */
400         region_truncate(&resv_map->regions, 0);
401         kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406         VM_BUG_ON(!is_vm_hugetlb_page(vma));
407         if (!(vma->vm_flags & VM_MAYSHARE))
408                 return (struct resv_map *)(get_vma_private_data(vma) &
409                                                         ~HPAGE_RESV_MASK);
410         return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415         VM_BUG_ON(!is_vm_hugetlb_page(vma));
416         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418         set_vma_private_data(vma, (get_vma_private_data(vma) &
419                                 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424         VM_BUG_ON(!is_vm_hugetlb_page(vma));
425         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432         VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434         return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440         VM_BUG_ON(!is_vm_hugetlb_page(vma));
441         if (!(vma->vm_flags & VM_MAYSHARE))
442                 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448         if (vma->vm_flags & VM_NORESERVE) {
449                 /*
450                  * This address is already reserved by other process(chg == 0),
451                  * so, we should decrement reserved count. Without decrementing,
452                  * reserve count remains after releasing inode, because this
453                  * allocated page will go into page cache and is regarded as
454                  * coming from reserved pool in releasing step.  Currently, we
455                  * don't have any other solution to deal with this situation
456                  * properly, so add work-around here.
457                  */
458                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459                         return 1;
460                 else
461                         return 0;
462         }
463
464         /* Shared mappings always use reserves */
465         if (vma->vm_flags & VM_MAYSHARE)
466                 return 1;
467
468         /*
469          * Only the process that called mmap() has reserves for
470          * private mappings.
471          */
472         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473                 return 1;
474
475         return 0;
476 }
477
478 static void copy_gigantic_page(struct page *dst, struct page *src)
479 {
480         int i;
481         struct hstate *h = page_hstate(src);
482         struct page *dst_base = dst;
483         struct page *src_base = src;
484
485         for (i = 0; i < pages_per_huge_page(h); ) {
486                 cond_resched();
487                 copy_highpage(dst, src);
488
489                 i++;
490                 dst = mem_map_next(dst, dst_base, i);
491                 src = mem_map_next(src, src_base, i);
492         }
493 }
494
495 void copy_huge_page(struct page *dst, struct page *src)
496 {
497         int i;
498         struct hstate *h = page_hstate(src);
499
500         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501                 copy_gigantic_page(dst, src);
502                 return;
503         }
504
505         might_sleep();
506         for (i = 0; i < pages_per_huge_page(h); i++) {
507                 cond_resched();
508                 copy_highpage(dst + i, src + i);
509         }
510 }
511
512 static void enqueue_huge_page(struct hstate *h, struct page *page)
513 {
514         int nid = page_to_nid(page);
515         list_move(&page->lru, &h->hugepage_freelists[nid]);
516         h->free_huge_pages++;
517         h->free_huge_pages_node[nid]++;
518 }
519
520 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521 {
522         struct page *page;
523
524         if (list_empty(&h->hugepage_freelists[nid]))
525                 return NULL;
526         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
527         list_move(&page->lru, &h->hugepage_activelist);
528         set_page_refcounted(page);
529         h->free_huge_pages--;
530         h->free_huge_pages_node[nid]--;
531         return page;
532 }
533
534 static struct page *dequeue_huge_page_vma(struct hstate *h,
535                                 struct vm_area_struct *vma,
536                                 unsigned long address, int avoid_reserve,
537                                 long chg)
538 {
539         struct page *page = NULL;
540         struct mempolicy *mpol;
541         nodemask_t *nodemask;
542         struct zonelist *zonelist;
543         struct zone *zone;
544         struct zoneref *z;
545         unsigned int cpuset_mems_cookie;
546
547         /*
548          * A child process with MAP_PRIVATE mappings created by their parent
549          * have no page reserves. This check ensures that reservations are
550          * not "stolen". The child may still get SIGKILLed
551          */
552         if (!vma_has_reserves(vma, chg) &&
553                         h->free_huge_pages - h->resv_huge_pages == 0)
554                 goto err;
555
556         /* If reserves cannot be used, ensure enough pages are in the pool */
557         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558                 goto err;
559
560 retry_cpuset:
561         cpuset_mems_cookie = get_mems_allowed();
562         zonelist = huge_zonelist(vma, address,
563                                         htlb_alloc_mask, &mpol, &nodemask);
564
565         for_each_zone_zonelist_nodemask(zone, z, zonelist,
566                                                 MAX_NR_ZONES - 1, nodemask) {
567                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
568                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
569                         if (page) {
570                                 if (avoid_reserve)
571                                         break;
572                                 if (!vma_has_reserves(vma, chg))
573                                         break;
574
575                                 SetPagePrivate(page);
576                                 h->resv_huge_pages--;
577                                 break;
578                         }
579                 }
580         }
581
582         mpol_cond_put(mpol);
583         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
584                 goto retry_cpuset;
585         return page;
586
587 err:
588         return NULL;
589 }
590
591 static void update_and_free_page(struct hstate *h, struct page *page)
592 {
593         int i;
594
595         VM_BUG_ON(h->order >= MAX_ORDER);
596
597         h->nr_huge_pages--;
598         h->nr_huge_pages_node[page_to_nid(page)]--;
599         for (i = 0; i < pages_per_huge_page(h); i++) {
600                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
601                                 1 << PG_referenced | 1 << PG_dirty |
602                                 1 << PG_active | 1 << PG_reserved |
603                                 1 << PG_private | 1 << PG_writeback);
604         }
605         VM_BUG_ON(hugetlb_cgroup_from_page(page));
606         set_compound_page_dtor(page, NULL);
607         set_page_refcounted(page);
608         arch_release_hugepage(page);
609         __free_pages(page, huge_page_order(h));
610 }
611
612 struct hstate *size_to_hstate(unsigned long size)
613 {
614         struct hstate *h;
615
616         for_each_hstate(h) {
617                 if (huge_page_size(h) == size)
618                         return h;
619         }
620         return NULL;
621 }
622
623 static void free_huge_page(struct page *page)
624 {
625         /*
626          * Can't pass hstate in here because it is called from the
627          * compound page destructor.
628          */
629         struct hstate *h = page_hstate(page);
630         int nid = page_to_nid(page);
631         struct hugepage_subpool *spool =
632                 (struct hugepage_subpool *)page_private(page);
633         bool restore_reserve;
634
635         set_page_private(page, 0);
636         page->mapping = NULL;
637         BUG_ON(page_count(page));
638         BUG_ON(page_mapcount(page));
639         restore_reserve = PagePrivate(page);
640
641         spin_lock(&hugetlb_lock);
642         hugetlb_cgroup_uncharge_page(hstate_index(h),
643                                      pages_per_huge_page(h), page);
644         if (restore_reserve)
645                 h->resv_huge_pages++;
646
647         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
648                 /* remove the page from active list */
649                 list_del(&page->lru);
650                 update_and_free_page(h, page);
651                 h->surplus_huge_pages--;
652                 h->surplus_huge_pages_node[nid]--;
653         } else {
654                 arch_clear_hugepage_flags(page);
655                 enqueue_huge_page(h, page);
656         }
657         spin_unlock(&hugetlb_lock);
658         hugepage_subpool_put_pages(spool, 1);
659 }
660
661 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
662 {
663         INIT_LIST_HEAD(&page->lru);
664         set_compound_page_dtor(page, free_huge_page);
665         spin_lock(&hugetlb_lock);
666         set_hugetlb_cgroup(page, NULL);
667         h->nr_huge_pages++;
668         h->nr_huge_pages_node[nid]++;
669         spin_unlock(&hugetlb_lock);
670         put_page(page); /* free it into the hugepage allocator */
671 }
672
673 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
674 {
675         int i;
676         int nr_pages = 1 << order;
677         struct page *p = page + 1;
678
679         /* we rely on prep_new_huge_page to set the destructor */
680         set_compound_order(page, order);
681         __SetPageHead(page);
682         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
683                 __SetPageTail(p);
684                 set_page_count(p, 0);
685                 p->first_page = page;
686         }
687 }
688
689 /*
690  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
691  * transparent huge pages.  See the PageTransHuge() documentation for more
692  * details.
693  */
694 int PageHuge(struct page *page)
695 {
696         compound_page_dtor *dtor;
697
698         if (!PageCompound(page))
699                 return 0;
700
701         page = compound_head(page);
702         dtor = get_compound_page_dtor(page);
703
704         return dtor == free_huge_page;
705 }
706 EXPORT_SYMBOL_GPL(PageHuge);
707
708 pgoff_t __basepage_index(struct page *page)
709 {
710         struct page *page_head = compound_head(page);
711         pgoff_t index = page_index(page_head);
712         unsigned long compound_idx;
713
714         if (!PageHuge(page_head))
715                 return page_index(page);
716
717         if (compound_order(page_head) >= MAX_ORDER)
718                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
719         else
720                 compound_idx = page - page_head;
721
722         return (index << compound_order(page_head)) + compound_idx;
723 }
724
725 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
726 {
727         struct page *page;
728
729         if (h->order >= MAX_ORDER)
730                 return NULL;
731
732         page = alloc_pages_exact_node(nid,
733                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
734                                                 __GFP_REPEAT|__GFP_NOWARN,
735                 huge_page_order(h));
736         if (page) {
737                 if (arch_prepare_hugepage(page)) {
738                         __free_pages(page, huge_page_order(h));
739                         return NULL;
740                 }
741                 prep_new_huge_page(h, page, nid);
742         }
743
744         return page;
745 }
746
747 /*
748  * common helper functions for hstate_next_node_to_{alloc|free}.
749  * We may have allocated or freed a huge page based on a different
750  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
751  * be outside of *nodes_allowed.  Ensure that we use an allowed
752  * node for alloc or free.
753  */
754 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
755 {
756         nid = next_node(nid, *nodes_allowed);
757         if (nid == MAX_NUMNODES)
758                 nid = first_node(*nodes_allowed);
759         VM_BUG_ON(nid >= MAX_NUMNODES);
760
761         return nid;
762 }
763
764 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
765 {
766         if (!node_isset(nid, *nodes_allowed))
767                 nid = next_node_allowed(nid, nodes_allowed);
768         return nid;
769 }
770
771 /*
772  * returns the previously saved node ["this node"] from which to
773  * allocate a persistent huge page for the pool and advance the
774  * next node from which to allocate, handling wrap at end of node
775  * mask.
776  */
777 static int hstate_next_node_to_alloc(struct hstate *h,
778                                         nodemask_t *nodes_allowed)
779 {
780         int nid;
781
782         VM_BUG_ON(!nodes_allowed);
783
784         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
785         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
786
787         return nid;
788 }
789
790 /*
791  * helper for free_pool_huge_page() - return the previously saved
792  * node ["this node"] from which to free a huge page.  Advance the
793  * next node id whether or not we find a free huge page to free so
794  * that the next attempt to free addresses the next node.
795  */
796 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
797 {
798         int nid;
799
800         VM_BUG_ON(!nodes_allowed);
801
802         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
803         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
804
805         return nid;
806 }
807
808 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
809         for (nr_nodes = nodes_weight(*mask);                            \
810                 nr_nodes > 0 &&                                         \
811                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
812                 nr_nodes--)
813
814 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
815         for (nr_nodes = nodes_weight(*mask);                            \
816                 nr_nodes > 0 &&                                         \
817                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
818                 nr_nodes--)
819
820 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
821 {
822         struct page *page;
823         int nr_nodes, node;
824         int ret = 0;
825
826         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
827                 page = alloc_fresh_huge_page_node(h, node);
828                 if (page) {
829                         ret = 1;
830                         break;
831                 }
832         }
833
834         if (ret)
835                 count_vm_event(HTLB_BUDDY_PGALLOC);
836         else
837                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
838
839         return ret;
840 }
841
842 /*
843  * Free huge page from pool from next node to free.
844  * Attempt to keep persistent huge pages more or less
845  * balanced over allowed nodes.
846  * Called with hugetlb_lock locked.
847  */
848 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
849                                                          bool acct_surplus)
850 {
851         int nr_nodes, node;
852         int ret = 0;
853
854         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
855                 /*
856                  * If we're returning unused surplus pages, only examine
857                  * nodes with surplus pages.
858                  */
859                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
860                     !list_empty(&h->hugepage_freelists[node])) {
861                         struct page *page =
862                                 list_entry(h->hugepage_freelists[node].next,
863                                           struct page, lru);
864                         list_del(&page->lru);
865                         h->free_huge_pages--;
866                         h->free_huge_pages_node[node]--;
867                         if (acct_surplus) {
868                                 h->surplus_huge_pages--;
869                                 h->surplus_huge_pages_node[node]--;
870                         }
871                         update_and_free_page(h, page);
872                         ret = 1;
873                         break;
874                 }
875         }
876
877         return ret;
878 }
879
880 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
881 {
882         struct page *page;
883         unsigned int r_nid;
884
885         if (h->order >= MAX_ORDER)
886                 return NULL;
887
888         /*
889          * Assume we will successfully allocate the surplus page to
890          * prevent racing processes from causing the surplus to exceed
891          * overcommit
892          *
893          * This however introduces a different race, where a process B
894          * tries to grow the static hugepage pool while alloc_pages() is
895          * called by process A. B will only examine the per-node
896          * counters in determining if surplus huge pages can be
897          * converted to normal huge pages in adjust_pool_surplus(). A
898          * won't be able to increment the per-node counter, until the
899          * lock is dropped by B, but B doesn't drop hugetlb_lock until
900          * no more huge pages can be converted from surplus to normal
901          * state (and doesn't try to convert again). Thus, we have a
902          * case where a surplus huge page exists, the pool is grown, and
903          * the surplus huge page still exists after, even though it
904          * should just have been converted to a normal huge page. This
905          * does not leak memory, though, as the hugepage will be freed
906          * once it is out of use. It also does not allow the counters to
907          * go out of whack in adjust_pool_surplus() as we don't modify
908          * the node values until we've gotten the hugepage and only the
909          * per-node value is checked there.
910          */
911         spin_lock(&hugetlb_lock);
912         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
913                 spin_unlock(&hugetlb_lock);
914                 return NULL;
915         } else {
916                 h->nr_huge_pages++;
917                 h->surplus_huge_pages++;
918         }
919         spin_unlock(&hugetlb_lock);
920
921         if (nid == NUMA_NO_NODE)
922                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
923                                    __GFP_REPEAT|__GFP_NOWARN,
924                                    huge_page_order(h));
925         else
926                 page = alloc_pages_exact_node(nid,
927                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
928                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
929
930         if (page && arch_prepare_hugepage(page)) {
931                 __free_pages(page, huge_page_order(h));
932                 page = NULL;
933         }
934
935         spin_lock(&hugetlb_lock);
936         if (page) {
937                 INIT_LIST_HEAD(&page->lru);
938                 r_nid = page_to_nid(page);
939                 set_compound_page_dtor(page, free_huge_page);
940                 set_hugetlb_cgroup(page, NULL);
941                 /*
942                  * We incremented the global counters already
943                  */
944                 h->nr_huge_pages_node[r_nid]++;
945                 h->surplus_huge_pages_node[r_nid]++;
946                 __count_vm_event(HTLB_BUDDY_PGALLOC);
947         } else {
948                 h->nr_huge_pages--;
949                 h->surplus_huge_pages--;
950                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
951         }
952         spin_unlock(&hugetlb_lock);
953
954         return page;
955 }
956
957 /*
958  * This allocation function is useful in the context where vma is irrelevant.
959  * E.g. soft-offlining uses this function because it only cares physical
960  * address of error page.
961  */
962 struct page *alloc_huge_page_node(struct hstate *h, int nid)
963 {
964         struct page *page = NULL;
965
966         spin_lock(&hugetlb_lock);
967         if (h->free_huge_pages - h->resv_huge_pages > 0)
968                 page = dequeue_huge_page_node(h, nid);
969         spin_unlock(&hugetlb_lock);
970
971         if (!page)
972                 page = alloc_buddy_huge_page(h, nid);
973
974         return page;
975 }
976
977 /*
978  * Increase the hugetlb pool such that it can accommodate a reservation
979  * of size 'delta'.
980  */
981 static int gather_surplus_pages(struct hstate *h, int delta)
982 {
983         struct list_head surplus_list;
984         struct page *page, *tmp;
985         int ret, i;
986         int needed, allocated;
987         bool alloc_ok = true;
988
989         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
990         if (needed <= 0) {
991                 h->resv_huge_pages += delta;
992                 return 0;
993         }
994
995         allocated = 0;
996         INIT_LIST_HEAD(&surplus_list);
997
998         ret = -ENOMEM;
999 retry:
1000         spin_unlock(&hugetlb_lock);
1001         for (i = 0; i < needed; i++) {
1002                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1003                 if (!page) {
1004                         alloc_ok = false;
1005                         break;
1006                 }
1007                 list_add(&page->lru, &surplus_list);
1008         }
1009         allocated += i;
1010
1011         /*
1012          * After retaking hugetlb_lock, we need to recalculate 'needed'
1013          * because either resv_huge_pages or free_huge_pages may have changed.
1014          */
1015         spin_lock(&hugetlb_lock);
1016         needed = (h->resv_huge_pages + delta) -
1017                         (h->free_huge_pages + allocated);
1018         if (needed > 0) {
1019                 if (alloc_ok)
1020                         goto retry;
1021                 /*
1022                  * We were not able to allocate enough pages to
1023                  * satisfy the entire reservation so we free what
1024                  * we've allocated so far.
1025                  */
1026                 goto free;
1027         }
1028         /*
1029          * The surplus_list now contains _at_least_ the number of extra pages
1030          * needed to accommodate the reservation.  Add the appropriate number
1031          * of pages to the hugetlb pool and free the extras back to the buddy
1032          * allocator.  Commit the entire reservation here to prevent another
1033          * process from stealing the pages as they are added to the pool but
1034          * before they are reserved.
1035          */
1036         needed += allocated;
1037         h->resv_huge_pages += delta;
1038         ret = 0;
1039
1040         /* Free the needed pages to the hugetlb pool */
1041         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1042                 if ((--needed) < 0)
1043                         break;
1044                 /*
1045                  * This page is now managed by the hugetlb allocator and has
1046                  * no users -- drop the buddy allocator's reference.
1047                  */
1048                 put_page_testzero(page);
1049                 VM_BUG_ON(page_count(page));
1050                 enqueue_huge_page(h, page);
1051         }
1052 free:
1053         spin_unlock(&hugetlb_lock);
1054
1055         /* Free unnecessary surplus pages to the buddy allocator */
1056         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1057                 put_page(page);
1058         spin_lock(&hugetlb_lock);
1059
1060         return ret;
1061 }
1062
1063 /*
1064  * When releasing a hugetlb pool reservation, any surplus pages that were
1065  * allocated to satisfy the reservation must be explicitly freed if they were
1066  * never used.
1067  * Called with hugetlb_lock held.
1068  */
1069 static void return_unused_surplus_pages(struct hstate *h,
1070                                         unsigned long unused_resv_pages)
1071 {
1072         unsigned long nr_pages;
1073
1074         /* Uncommit the reservation */
1075         h->resv_huge_pages -= unused_resv_pages;
1076
1077         /* Cannot return gigantic pages currently */
1078         if (h->order >= MAX_ORDER)
1079                 return;
1080
1081         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1082
1083         /*
1084          * We want to release as many surplus pages as possible, spread
1085          * evenly across all nodes with memory. Iterate across these nodes
1086          * until we can no longer free unreserved surplus pages. This occurs
1087          * when the nodes with surplus pages have no free pages.
1088          * free_pool_huge_page() will balance the the freed pages across the
1089          * on-line nodes with memory and will handle the hstate accounting.
1090          */
1091         while (nr_pages--) {
1092                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1093                         break;
1094         }
1095 }
1096
1097 /*
1098  * Determine if the huge page at addr within the vma has an associated
1099  * reservation.  Where it does not we will need to logically increase
1100  * reservation and actually increase subpool usage before an allocation
1101  * can occur.  Where any new reservation would be required the
1102  * reservation change is prepared, but not committed.  Once the page
1103  * has been allocated from the subpool and instantiated the change should
1104  * be committed via vma_commit_reservation.  No action is required on
1105  * failure.
1106  */
1107 static long vma_needs_reservation(struct hstate *h,
1108                         struct vm_area_struct *vma, unsigned long addr)
1109 {
1110         struct address_space *mapping = vma->vm_file->f_mapping;
1111         struct inode *inode = mapping->host;
1112
1113         if (vma->vm_flags & VM_MAYSHARE) {
1114                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1115                 return region_chg(&inode->i_mapping->private_list,
1116                                                         idx, idx + 1);
1117
1118         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1119                 return 1;
1120
1121         } else  {
1122                 long err;
1123                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1124                 struct resv_map *resv = vma_resv_map(vma);
1125
1126                 err = region_chg(&resv->regions, idx, idx + 1);
1127                 if (err < 0)
1128                         return err;
1129                 return 0;
1130         }
1131 }
1132 static void vma_commit_reservation(struct hstate *h,
1133                         struct vm_area_struct *vma, unsigned long addr)
1134 {
1135         struct address_space *mapping = vma->vm_file->f_mapping;
1136         struct inode *inode = mapping->host;
1137
1138         if (vma->vm_flags & VM_MAYSHARE) {
1139                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1140                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1141
1142         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1143                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1144                 struct resv_map *resv = vma_resv_map(vma);
1145
1146                 /* Mark this page used in the map. */
1147                 region_add(&resv->regions, idx, idx + 1);
1148         }
1149 }
1150
1151 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1152                                     unsigned long addr, int avoid_reserve)
1153 {
1154         struct hugepage_subpool *spool = subpool_vma(vma);
1155         struct hstate *h = hstate_vma(vma);
1156         struct page *page;
1157         long chg;
1158         int ret, idx;
1159         struct hugetlb_cgroup *h_cg;
1160
1161         idx = hstate_index(h);
1162         /*
1163          * Processes that did not create the mapping will have no
1164          * reserves and will not have accounted against subpool
1165          * limit. Check that the subpool limit can be made before
1166          * satisfying the allocation MAP_NORESERVE mappings may also
1167          * need pages and subpool limit allocated allocated if no reserve
1168          * mapping overlaps.
1169          */
1170         chg = vma_needs_reservation(h, vma, addr);
1171         if (chg < 0)
1172                 return ERR_PTR(-ENOMEM);
1173         if (chg || avoid_reserve)
1174                 if (hugepage_subpool_get_pages(spool, 1))
1175                         return ERR_PTR(-ENOSPC);
1176
1177         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1178         if (ret) {
1179                 if (chg || avoid_reserve)
1180                         hugepage_subpool_put_pages(spool, 1);
1181                 return ERR_PTR(-ENOSPC);
1182         }
1183         spin_lock(&hugetlb_lock);
1184         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1185         if (!page) {
1186                 spin_unlock(&hugetlb_lock);
1187                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1188                 if (!page) {
1189                         hugetlb_cgroup_uncharge_cgroup(idx,
1190                                                        pages_per_huge_page(h),
1191                                                        h_cg);
1192                         if (chg || avoid_reserve)
1193                                 hugepage_subpool_put_pages(spool, 1);
1194                         return ERR_PTR(-ENOSPC);
1195                 }
1196                 spin_lock(&hugetlb_lock);
1197                 list_move(&page->lru, &h->hugepage_activelist);
1198                 /* Fall through */
1199         }
1200         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1201         spin_unlock(&hugetlb_lock);
1202
1203         set_page_private(page, (unsigned long)spool);
1204
1205         vma_commit_reservation(h, vma, addr);
1206         return page;
1207 }
1208
1209 int __weak alloc_bootmem_huge_page(struct hstate *h)
1210 {
1211         struct huge_bootmem_page *m;
1212         int nr_nodes, node;
1213
1214         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1215                 void *addr;
1216
1217                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1218                                 huge_page_size(h), huge_page_size(h), 0);
1219
1220                 if (addr) {
1221                         /*
1222                          * Use the beginning of the huge page to store the
1223                          * huge_bootmem_page struct (until gather_bootmem
1224                          * puts them into the mem_map).
1225                          */
1226                         m = addr;
1227                         goto found;
1228                 }
1229         }
1230         return 0;
1231
1232 found:
1233         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1234         /* Put them into a private list first because mem_map is not up yet */
1235         list_add(&m->list, &huge_boot_pages);
1236         m->hstate = h;
1237         return 1;
1238 }
1239
1240 static void prep_compound_huge_page(struct page *page, int order)
1241 {
1242         if (unlikely(order > (MAX_ORDER - 1)))
1243                 prep_compound_gigantic_page(page, order);
1244         else
1245                 prep_compound_page(page, order);
1246 }
1247
1248 /* Put bootmem huge pages into the standard lists after mem_map is up */
1249 static void __init gather_bootmem_prealloc(void)
1250 {
1251         struct huge_bootmem_page *m;
1252
1253         list_for_each_entry(m, &huge_boot_pages, list) {
1254                 struct hstate *h = m->hstate;
1255                 struct page *page;
1256
1257 #ifdef CONFIG_HIGHMEM
1258                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1259                 free_bootmem_late((unsigned long)m,
1260                                   sizeof(struct huge_bootmem_page));
1261 #else
1262                 page = virt_to_page(m);
1263 #endif
1264                 __ClearPageReserved(page);
1265                 WARN_ON(page_count(page) != 1);
1266                 prep_compound_huge_page(page, h->order);
1267                 prep_new_huge_page(h, page, page_to_nid(page));
1268                 /*
1269                  * If we had gigantic hugepages allocated at boot time, we need
1270                  * to restore the 'stolen' pages to totalram_pages in order to
1271                  * fix confusing memory reports from free(1) and another
1272                  * side-effects, like CommitLimit going negative.
1273                  */
1274                 if (h->order > (MAX_ORDER - 1))
1275                         adjust_managed_page_count(page, 1 << h->order);
1276         }
1277 }
1278
1279 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1280 {
1281         unsigned long i;
1282
1283         for (i = 0; i < h->max_huge_pages; ++i) {
1284                 if (h->order >= MAX_ORDER) {
1285                         if (!alloc_bootmem_huge_page(h))
1286                                 break;
1287                 } else if (!alloc_fresh_huge_page(h,
1288                                          &node_states[N_MEMORY]))
1289                         break;
1290         }
1291         h->max_huge_pages = i;
1292 }
1293
1294 static void __init hugetlb_init_hstates(void)
1295 {
1296         struct hstate *h;
1297
1298         for_each_hstate(h) {
1299                 /* oversize hugepages were init'ed in early boot */
1300                 if (h->order < MAX_ORDER)
1301                         hugetlb_hstate_alloc_pages(h);
1302         }
1303 }
1304
1305 static char * __init memfmt(char *buf, unsigned long n)
1306 {
1307         if (n >= (1UL << 30))
1308                 sprintf(buf, "%lu GB", n >> 30);
1309         else if (n >= (1UL << 20))
1310                 sprintf(buf, "%lu MB", n >> 20);
1311         else
1312                 sprintf(buf, "%lu KB", n >> 10);
1313         return buf;
1314 }
1315
1316 static void __init report_hugepages(void)
1317 {
1318         struct hstate *h;
1319
1320         for_each_hstate(h) {
1321                 char buf[32];
1322                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1323                         memfmt(buf, huge_page_size(h)),
1324                         h->free_huge_pages);
1325         }
1326 }
1327
1328 #ifdef CONFIG_HIGHMEM
1329 static void try_to_free_low(struct hstate *h, unsigned long count,
1330                                                 nodemask_t *nodes_allowed)
1331 {
1332         int i;
1333
1334         if (h->order >= MAX_ORDER)
1335                 return;
1336
1337         for_each_node_mask(i, *nodes_allowed) {
1338                 struct page *page, *next;
1339                 struct list_head *freel = &h->hugepage_freelists[i];
1340                 list_for_each_entry_safe(page, next, freel, lru) {
1341                         if (count >= h->nr_huge_pages)
1342                                 return;
1343                         if (PageHighMem(page))
1344                                 continue;
1345                         list_del(&page->lru);
1346                         update_and_free_page(h, page);
1347                         h->free_huge_pages--;
1348                         h->free_huge_pages_node[page_to_nid(page)]--;
1349                 }
1350         }
1351 }
1352 #else
1353 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1354                                                 nodemask_t *nodes_allowed)
1355 {
1356 }
1357 #endif
1358
1359 /*
1360  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1361  * balanced by operating on them in a round-robin fashion.
1362  * Returns 1 if an adjustment was made.
1363  */
1364 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1365                                 int delta)
1366 {
1367         int nr_nodes, node;
1368
1369         VM_BUG_ON(delta != -1 && delta != 1);
1370
1371         if (delta < 0) {
1372                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1373                         if (h->surplus_huge_pages_node[node])
1374                                 goto found;
1375                 }
1376         } else {
1377                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1378                         if (h->surplus_huge_pages_node[node] <
1379                                         h->nr_huge_pages_node[node])
1380                                 goto found;
1381                 }
1382         }
1383         return 0;
1384
1385 found:
1386         h->surplus_huge_pages += delta;
1387         h->surplus_huge_pages_node[node] += delta;
1388         return 1;
1389 }
1390
1391 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1392 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1393                                                 nodemask_t *nodes_allowed)
1394 {
1395         unsigned long min_count, ret;
1396
1397         if (h->order >= MAX_ORDER)
1398                 return h->max_huge_pages;
1399
1400         /*
1401          * Increase the pool size
1402          * First take pages out of surplus state.  Then make up the
1403          * remaining difference by allocating fresh huge pages.
1404          *
1405          * We might race with alloc_buddy_huge_page() here and be unable
1406          * to convert a surplus huge page to a normal huge page. That is
1407          * not critical, though, it just means the overall size of the
1408          * pool might be one hugepage larger than it needs to be, but
1409          * within all the constraints specified by the sysctls.
1410          */
1411         spin_lock(&hugetlb_lock);
1412         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1413                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1414                         break;
1415         }
1416
1417         while (count > persistent_huge_pages(h)) {
1418                 /*
1419                  * If this allocation races such that we no longer need the
1420                  * page, free_huge_page will handle it by freeing the page
1421                  * and reducing the surplus.
1422                  */
1423                 spin_unlock(&hugetlb_lock);
1424                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1425                 spin_lock(&hugetlb_lock);
1426                 if (!ret)
1427                         goto out;
1428
1429                 /* Bail for signals. Probably ctrl-c from user */
1430                 if (signal_pending(current))
1431                         goto out;
1432         }
1433
1434         /*
1435          * Decrease the pool size
1436          * First return free pages to the buddy allocator (being careful
1437          * to keep enough around to satisfy reservations).  Then place
1438          * pages into surplus state as needed so the pool will shrink
1439          * to the desired size as pages become free.
1440          *
1441          * By placing pages into the surplus state independent of the
1442          * overcommit value, we are allowing the surplus pool size to
1443          * exceed overcommit. There are few sane options here. Since
1444          * alloc_buddy_huge_page() is checking the global counter,
1445          * though, we'll note that we're not allowed to exceed surplus
1446          * and won't grow the pool anywhere else. Not until one of the
1447          * sysctls are changed, or the surplus pages go out of use.
1448          */
1449         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1450         min_count = max(count, min_count);
1451         try_to_free_low(h, min_count, nodes_allowed);
1452         while (min_count < persistent_huge_pages(h)) {
1453                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1454                         break;
1455         }
1456         while (count < persistent_huge_pages(h)) {
1457                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1458                         break;
1459         }
1460 out:
1461         ret = persistent_huge_pages(h);
1462         spin_unlock(&hugetlb_lock);
1463         return ret;
1464 }
1465
1466 #define HSTATE_ATTR_RO(_name) \
1467         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1468
1469 #define HSTATE_ATTR(_name) \
1470         static struct kobj_attribute _name##_attr = \
1471                 __ATTR(_name, 0644, _name##_show, _name##_store)
1472
1473 static struct kobject *hugepages_kobj;
1474 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1475
1476 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1477
1478 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1479 {
1480         int i;
1481
1482         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1483                 if (hstate_kobjs[i] == kobj) {
1484                         if (nidp)
1485                                 *nidp = NUMA_NO_NODE;
1486                         return &hstates[i];
1487                 }
1488
1489         return kobj_to_node_hstate(kobj, nidp);
1490 }
1491
1492 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1493                                         struct kobj_attribute *attr, char *buf)
1494 {
1495         struct hstate *h;
1496         unsigned long nr_huge_pages;
1497         int nid;
1498
1499         h = kobj_to_hstate(kobj, &nid);
1500         if (nid == NUMA_NO_NODE)
1501                 nr_huge_pages = h->nr_huge_pages;
1502         else
1503                 nr_huge_pages = h->nr_huge_pages_node[nid];
1504
1505         return sprintf(buf, "%lu\n", nr_huge_pages);
1506 }
1507
1508 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1509                         struct kobject *kobj, struct kobj_attribute *attr,
1510                         const char *buf, size_t len)
1511 {
1512         int err;
1513         int nid;
1514         unsigned long count;
1515         struct hstate *h;
1516         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1517
1518         err = kstrtoul(buf, 10, &count);
1519         if (err)
1520                 goto out;
1521
1522         h = kobj_to_hstate(kobj, &nid);
1523         if (h->order >= MAX_ORDER) {
1524                 err = -EINVAL;
1525                 goto out;
1526         }
1527
1528         if (nid == NUMA_NO_NODE) {
1529                 /*
1530                  * global hstate attribute
1531                  */
1532                 if (!(obey_mempolicy &&
1533                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1534                         NODEMASK_FREE(nodes_allowed);
1535                         nodes_allowed = &node_states[N_MEMORY];
1536                 }
1537         } else if (nodes_allowed) {
1538                 /*
1539                  * per node hstate attribute: adjust count to global,
1540                  * but restrict alloc/free to the specified node.
1541                  */
1542                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1543                 init_nodemask_of_node(nodes_allowed, nid);
1544         } else
1545                 nodes_allowed = &node_states[N_MEMORY];
1546
1547         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1548
1549         if (nodes_allowed != &node_states[N_MEMORY])
1550                 NODEMASK_FREE(nodes_allowed);
1551
1552         return len;
1553 out:
1554         NODEMASK_FREE(nodes_allowed);
1555         return err;
1556 }
1557
1558 static ssize_t nr_hugepages_show(struct kobject *kobj,
1559                                        struct kobj_attribute *attr, char *buf)
1560 {
1561         return nr_hugepages_show_common(kobj, attr, buf);
1562 }
1563
1564 static ssize_t nr_hugepages_store(struct kobject *kobj,
1565                struct kobj_attribute *attr, const char *buf, size_t len)
1566 {
1567         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1568 }
1569 HSTATE_ATTR(nr_hugepages);
1570
1571 #ifdef CONFIG_NUMA
1572
1573 /*
1574  * hstate attribute for optionally mempolicy-based constraint on persistent
1575  * huge page alloc/free.
1576  */
1577 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1578                                        struct kobj_attribute *attr, char *buf)
1579 {
1580         return nr_hugepages_show_common(kobj, attr, buf);
1581 }
1582
1583 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1584                struct kobj_attribute *attr, const char *buf, size_t len)
1585 {
1586         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1587 }
1588 HSTATE_ATTR(nr_hugepages_mempolicy);
1589 #endif
1590
1591
1592 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1593                                         struct kobj_attribute *attr, char *buf)
1594 {
1595         struct hstate *h = kobj_to_hstate(kobj, NULL);
1596         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1597 }
1598
1599 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1600                 struct kobj_attribute *attr, const char *buf, size_t count)
1601 {
1602         int err;
1603         unsigned long input;
1604         struct hstate *h = kobj_to_hstate(kobj, NULL);
1605
1606         if (h->order >= MAX_ORDER)
1607                 return -EINVAL;
1608
1609         err = kstrtoul(buf, 10, &input);
1610         if (err)
1611                 return err;
1612
1613         spin_lock(&hugetlb_lock);
1614         h->nr_overcommit_huge_pages = input;
1615         spin_unlock(&hugetlb_lock);
1616
1617         return count;
1618 }
1619 HSTATE_ATTR(nr_overcommit_hugepages);
1620
1621 static ssize_t free_hugepages_show(struct kobject *kobj,
1622                                         struct kobj_attribute *attr, char *buf)
1623 {
1624         struct hstate *h;
1625         unsigned long free_huge_pages;
1626         int nid;
1627
1628         h = kobj_to_hstate(kobj, &nid);
1629         if (nid == NUMA_NO_NODE)
1630                 free_huge_pages = h->free_huge_pages;
1631         else
1632                 free_huge_pages = h->free_huge_pages_node[nid];
1633
1634         return sprintf(buf, "%lu\n", free_huge_pages);
1635 }
1636 HSTATE_ATTR_RO(free_hugepages);
1637
1638 static ssize_t resv_hugepages_show(struct kobject *kobj,
1639                                         struct kobj_attribute *attr, char *buf)
1640 {
1641         struct hstate *h = kobj_to_hstate(kobj, NULL);
1642         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1643 }
1644 HSTATE_ATTR_RO(resv_hugepages);
1645
1646 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1647                                         struct kobj_attribute *attr, char *buf)
1648 {
1649         struct hstate *h;
1650         unsigned long surplus_huge_pages;
1651         int nid;
1652
1653         h = kobj_to_hstate(kobj, &nid);
1654         if (nid == NUMA_NO_NODE)
1655                 surplus_huge_pages = h->surplus_huge_pages;
1656         else
1657                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1658
1659         return sprintf(buf, "%lu\n", surplus_huge_pages);
1660 }
1661 HSTATE_ATTR_RO(surplus_hugepages);
1662
1663 static struct attribute *hstate_attrs[] = {
1664         &nr_hugepages_attr.attr,
1665         &nr_overcommit_hugepages_attr.attr,
1666         &free_hugepages_attr.attr,
1667         &resv_hugepages_attr.attr,
1668         &surplus_hugepages_attr.attr,
1669 #ifdef CONFIG_NUMA
1670         &nr_hugepages_mempolicy_attr.attr,
1671 #endif
1672         NULL,
1673 };
1674
1675 static struct attribute_group hstate_attr_group = {
1676         .attrs = hstate_attrs,
1677 };
1678
1679 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1680                                     struct kobject **hstate_kobjs,
1681                                     struct attribute_group *hstate_attr_group)
1682 {
1683         int retval;
1684         int hi = hstate_index(h);
1685
1686         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1687         if (!hstate_kobjs[hi])
1688                 return -ENOMEM;
1689
1690         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1691         if (retval)
1692                 kobject_put(hstate_kobjs[hi]);
1693
1694         return retval;
1695 }
1696
1697 static void __init hugetlb_sysfs_init(void)
1698 {
1699         struct hstate *h;
1700         int err;
1701
1702         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1703         if (!hugepages_kobj)
1704                 return;
1705
1706         for_each_hstate(h) {
1707                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1708                                          hstate_kobjs, &hstate_attr_group);
1709                 if (err)
1710                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1711         }
1712 }
1713
1714 #ifdef CONFIG_NUMA
1715
1716 /*
1717  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1718  * with node devices in node_devices[] using a parallel array.  The array
1719  * index of a node device or _hstate == node id.
1720  * This is here to avoid any static dependency of the node device driver, in
1721  * the base kernel, on the hugetlb module.
1722  */
1723 struct node_hstate {
1724         struct kobject          *hugepages_kobj;
1725         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1726 };
1727 struct node_hstate node_hstates[MAX_NUMNODES];
1728
1729 /*
1730  * A subset of global hstate attributes for node devices
1731  */
1732 static struct attribute *per_node_hstate_attrs[] = {
1733         &nr_hugepages_attr.attr,
1734         &free_hugepages_attr.attr,
1735         &surplus_hugepages_attr.attr,
1736         NULL,
1737 };
1738
1739 static struct attribute_group per_node_hstate_attr_group = {
1740         .attrs = per_node_hstate_attrs,
1741 };
1742
1743 /*
1744  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1745  * Returns node id via non-NULL nidp.
1746  */
1747 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1748 {
1749         int nid;
1750
1751         for (nid = 0; nid < nr_node_ids; nid++) {
1752                 struct node_hstate *nhs = &node_hstates[nid];
1753                 int i;
1754                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1755                         if (nhs->hstate_kobjs[i] == kobj) {
1756                                 if (nidp)
1757                                         *nidp = nid;
1758                                 return &hstates[i];
1759                         }
1760         }
1761
1762         BUG();
1763         return NULL;
1764 }
1765
1766 /*
1767  * Unregister hstate attributes from a single node device.
1768  * No-op if no hstate attributes attached.
1769  */
1770 static void hugetlb_unregister_node(struct node *node)
1771 {
1772         struct hstate *h;
1773         struct node_hstate *nhs = &node_hstates[node->dev.id];
1774
1775         if (!nhs->hugepages_kobj)
1776                 return;         /* no hstate attributes */
1777
1778         for_each_hstate(h) {
1779                 int idx = hstate_index(h);
1780                 if (nhs->hstate_kobjs[idx]) {
1781                         kobject_put(nhs->hstate_kobjs[idx]);
1782                         nhs->hstate_kobjs[idx] = NULL;
1783                 }
1784         }
1785
1786         kobject_put(nhs->hugepages_kobj);
1787         nhs->hugepages_kobj = NULL;
1788 }
1789
1790 /*
1791  * hugetlb module exit:  unregister hstate attributes from node devices
1792  * that have them.
1793  */
1794 static void hugetlb_unregister_all_nodes(void)
1795 {
1796         int nid;
1797
1798         /*
1799          * disable node device registrations.
1800          */
1801         register_hugetlbfs_with_node(NULL, NULL);
1802
1803         /*
1804          * remove hstate attributes from any nodes that have them.
1805          */
1806         for (nid = 0; nid < nr_node_ids; nid++)
1807                 hugetlb_unregister_node(node_devices[nid]);
1808 }
1809
1810 /*
1811  * Register hstate attributes for a single node device.
1812  * No-op if attributes already registered.
1813  */
1814 static void hugetlb_register_node(struct node *node)
1815 {
1816         struct hstate *h;
1817         struct node_hstate *nhs = &node_hstates[node->dev.id];
1818         int err;
1819
1820         if (nhs->hugepages_kobj)
1821                 return;         /* already allocated */
1822
1823         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1824                                                         &node->dev.kobj);
1825         if (!nhs->hugepages_kobj)
1826                 return;
1827
1828         for_each_hstate(h) {
1829                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1830                                                 nhs->hstate_kobjs,
1831                                                 &per_node_hstate_attr_group);
1832                 if (err) {
1833                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1834                                 h->name, node->dev.id);
1835                         hugetlb_unregister_node(node);
1836                         break;
1837                 }
1838         }
1839 }
1840
1841 /*
1842  * hugetlb init time:  register hstate attributes for all registered node
1843  * devices of nodes that have memory.  All on-line nodes should have
1844  * registered their associated device by this time.
1845  */
1846 static void hugetlb_register_all_nodes(void)
1847 {
1848         int nid;
1849
1850         for_each_node_state(nid, N_MEMORY) {
1851                 struct node *node = node_devices[nid];
1852                 if (node->dev.id == nid)
1853                         hugetlb_register_node(node);
1854         }
1855
1856         /*
1857          * Let the node device driver know we're here so it can
1858          * [un]register hstate attributes on node hotplug.
1859          */
1860         register_hugetlbfs_with_node(hugetlb_register_node,
1861                                      hugetlb_unregister_node);
1862 }
1863 #else   /* !CONFIG_NUMA */
1864
1865 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1866 {
1867         BUG();
1868         if (nidp)
1869                 *nidp = -1;
1870         return NULL;
1871 }
1872
1873 static void hugetlb_unregister_all_nodes(void) { }
1874
1875 static void hugetlb_register_all_nodes(void) { }
1876
1877 #endif
1878
1879 static void __exit hugetlb_exit(void)
1880 {
1881         struct hstate *h;
1882
1883         hugetlb_unregister_all_nodes();
1884
1885         for_each_hstate(h) {
1886                 kobject_put(hstate_kobjs[hstate_index(h)]);
1887         }
1888
1889         kobject_put(hugepages_kobj);
1890 }
1891 module_exit(hugetlb_exit);
1892
1893 static int __init hugetlb_init(void)
1894 {
1895         /* Some platform decide whether they support huge pages at boot
1896          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1897          * there is no such support
1898          */
1899         if (HPAGE_SHIFT == 0)
1900                 return 0;
1901
1902         if (!size_to_hstate(default_hstate_size)) {
1903                 default_hstate_size = HPAGE_SIZE;
1904                 if (!size_to_hstate(default_hstate_size))
1905                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1906         }
1907         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1908         if (default_hstate_max_huge_pages)
1909                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1910
1911         hugetlb_init_hstates();
1912         gather_bootmem_prealloc();
1913         report_hugepages();
1914
1915         hugetlb_sysfs_init();
1916         hugetlb_register_all_nodes();
1917         hugetlb_cgroup_file_init();
1918
1919         return 0;
1920 }
1921 module_init(hugetlb_init);
1922
1923 /* Should be called on processing a hugepagesz=... option */
1924 void __init hugetlb_add_hstate(unsigned order)
1925 {
1926         struct hstate *h;
1927         unsigned long i;
1928
1929         if (size_to_hstate(PAGE_SIZE << order)) {
1930                 pr_warning("hugepagesz= specified twice, ignoring\n");
1931                 return;
1932         }
1933         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1934         BUG_ON(order == 0);
1935         h = &hstates[hugetlb_max_hstate++];
1936         h->order = order;
1937         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1938         h->nr_huge_pages = 0;
1939         h->free_huge_pages = 0;
1940         for (i = 0; i < MAX_NUMNODES; ++i)
1941                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1942         INIT_LIST_HEAD(&h->hugepage_activelist);
1943         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1944         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1945         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1946                                         huge_page_size(h)/1024);
1947
1948         parsed_hstate = h;
1949 }
1950
1951 static int __init hugetlb_nrpages_setup(char *s)
1952 {
1953         unsigned long *mhp;
1954         static unsigned long *last_mhp;
1955
1956         /*
1957          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1958          * so this hugepages= parameter goes to the "default hstate".
1959          */
1960         if (!hugetlb_max_hstate)
1961                 mhp = &default_hstate_max_huge_pages;
1962         else
1963                 mhp = &parsed_hstate->max_huge_pages;
1964
1965         if (mhp == last_mhp) {
1966                 pr_warning("hugepages= specified twice without "
1967                            "interleaving hugepagesz=, ignoring\n");
1968                 return 1;
1969         }
1970
1971         if (sscanf(s, "%lu", mhp) <= 0)
1972                 *mhp = 0;
1973
1974         /*
1975          * Global state is always initialized later in hugetlb_init.
1976          * But we need to allocate >= MAX_ORDER hstates here early to still
1977          * use the bootmem allocator.
1978          */
1979         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1980                 hugetlb_hstate_alloc_pages(parsed_hstate);
1981
1982         last_mhp = mhp;
1983
1984         return 1;
1985 }
1986 __setup("hugepages=", hugetlb_nrpages_setup);
1987
1988 static int __init hugetlb_default_setup(char *s)
1989 {
1990         default_hstate_size = memparse(s, &s);
1991         return 1;
1992 }
1993 __setup("default_hugepagesz=", hugetlb_default_setup);
1994
1995 static unsigned int cpuset_mems_nr(unsigned int *array)
1996 {
1997         int node;
1998         unsigned int nr = 0;
1999
2000         for_each_node_mask(node, cpuset_current_mems_allowed)
2001                 nr += array[node];
2002
2003         return nr;
2004 }
2005
2006 #ifdef CONFIG_SYSCTL
2007 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2008                          struct ctl_table *table, int write,
2009                          void __user *buffer, size_t *length, loff_t *ppos)
2010 {
2011         struct hstate *h = &default_hstate;
2012         unsigned long tmp;
2013         int ret;
2014
2015         tmp = h->max_huge_pages;
2016
2017         if (write && h->order >= MAX_ORDER)
2018                 return -EINVAL;
2019
2020         table->data = &tmp;
2021         table->maxlen = sizeof(unsigned long);
2022         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2023         if (ret)
2024                 goto out;
2025
2026         if (write) {
2027                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2028                                                 GFP_KERNEL | __GFP_NORETRY);
2029                 if (!(obey_mempolicy &&
2030                                init_nodemask_of_mempolicy(nodes_allowed))) {
2031                         NODEMASK_FREE(nodes_allowed);
2032                         nodes_allowed = &node_states[N_MEMORY];
2033                 }
2034                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2035
2036                 if (nodes_allowed != &node_states[N_MEMORY])
2037                         NODEMASK_FREE(nodes_allowed);
2038         }
2039 out:
2040         return ret;
2041 }
2042
2043 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2044                           void __user *buffer, size_t *length, loff_t *ppos)
2045 {
2046
2047         return hugetlb_sysctl_handler_common(false, table, write,
2048                                                         buffer, length, ppos);
2049 }
2050
2051 #ifdef CONFIG_NUMA
2052 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2053                           void __user *buffer, size_t *length, loff_t *ppos)
2054 {
2055         return hugetlb_sysctl_handler_common(true, table, write,
2056                                                         buffer, length, ppos);
2057 }
2058 #endif /* CONFIG_NUMA */
2059
2060 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2061                         void __user *buffer,
2062                         size_t *length, loff_t *ppos)
2063 {
2064         proc_dointvec(table, write, buffer, length, ppos);
2065         if (hugepages_treat_as_movable)
2066                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2067         else
2068                 htlb_alloc_mask = GFP_HIGHUSER;
2069         return 0;
2070 }
2071
2072 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2073                         void __user *buffer,
2074                         size_t *length, loff_t *ppos)
2075 {
2076         struct hstate *h = &default_hstate;
2077         unsigned long tmp;
2078         int ret;
2079
2080         tmp = h->nr_overcommit_huge_pages;
2081
2082         if (write && h->order >= MAX_ORDER)
2083                 return -EINVAL;
2084
2085         table->data = &tmp;
2086         table->maxlen = sizeof(unsigned long);
2087         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2088         if (ret)
2089                 goto out;
2090
2091         if (write) {
2092                 spin_lock(&hugetlb_lock);
2093                 h->nr_overcommit_huge_pages = tmp;
2094                 spin_unlock(&hugetlb_lock);
2095         }
2096 out:
2097         return ret;
2098 }
2099
2100 #endif /* CONFIG_SYSCTL */
2101
2102 void hugetlb_report_meminfo(struct seq_file *m)
2103 {
2104         struct hstate *h = &default_hstate;
2105         seq_printf(m,
2106                         "HugePages_Total:   %5lu\n"
2107                         "HugePages_Free:    %5lu\n"
2108                         "HugePages_Rsvd:    %5lu\n"
2109                         "HugePages_Surp:    %5lu\n"
2110                         "Hugepagesize:   %8lu kB\n",
2111                         h->nr_huge_pages,
2112                         h->free_huge_pages,
2113                         h->resv_huge_pages,
2114                         h->surplus_huge_pages,
2115                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2116 }
2117
2118 int hugetlb_report_node_meminfo(int nid, char *buf)
2119 {
2120         struct hstate *h = &default_hstate;
2121         return sprintf(buf,
2122                 "Node %d HugePages_Total: %5u\n"
2123                 "Node %d HugePages_Free:  %5u\n"
2124                 "Node %d HugePages_Surp:  %5u\n",
2125                 nid, h->nr_huge_pages_node[nid],
2126                 nid, h->free_huge_pages_node[nid],
2127                 nid, h->surplus_huge_pages_node[nid]);
2128 }
2129
2130 void hugetlb_show_meminfo(void)
2131 {
2132         struct hstate *h;
2133         int nid;
2134
2135         for_each_node_state(nid, N_MEMORY)
2136                 for_each_hstate(h)
2137                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2138                                 nid,
2139                                 h->nr_huge_pages_node[nid],
2140                                 h->free_huge_pages_node[nid],
2141                                 h->surplus_huge_pages_node[nid],
2142                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2143 }
2144
2145 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2146 unsigned long hugetlb_total_pages(void)
2147 {
2148         struct hstate *h;
2149         unsigned long nr_total_pages = 0;
2150
2151         for_each_hstate(h)
2152                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2153         return nr_total_pages;
2154 }
2155
2156 static int hugetlb_acct_memory(struct hstate *h, long delta)
2157 {
2158         int ret = -ENOMEM;
2159
2160         spin_lock(&hugetlb_lock);
2161         /*
2162          * When cpuset is configured, it breaks the strict hugetlb page
2163          * reservation as the accounting is done on a global variable. Such
2164          * reservation is completely rubbish in the presence of cpuset because
2165          * the reservation is not checked against page availability for the
2166          * current cpuset. Application can still potentially OOM'ed by kernel
2167          * with lack of free htlb page in cpuset that the task is in.
2168          * Attempt to enforce strict accounting with cpuset is almost
2169          * impossible (or too ugly) because cpuset is too fluid that
2170          * task or memory node can be dynamically moved between cpusets.
2171          *
2172          * The change of semantics for shared hugetlb mapping with cpuset is
2173          * undesirable. However, in order to preserve some of the semantics,
2174          * we fall back to check against current free page availability as
2175          * a best attempt and hopefully to minimize the impact of changing
2176          * semantics that cpuset has.
2177          */
2178         if (delta > 0) {
2179                 if (gather_surplus_pages(h, delta) < 0)
2180                         goto out;
2181
2182                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2183                         return_unused_surplus_pages(h, delta);
2184                         goto out;
2185                 }
2186         }
2187
2188         ret = 0;
2189         if (delta < 0)
2190                 return_unused_surplus_pages(h, (unsigned long) -delta);
2191
2192 out:
2193         spin_unlock(&hugetlb_lock);
2194         return ret;
2195 }
2196
2197 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2198 {
2199         struct resv_map *resv = vma_resv_map(vma);
2200
2201         /*
2202          * This new VMA should share its siblings reservation map if present.
2203          * The VMA will only ever have a valid reservation map pointer where
2204          * it is being copied for another still existing VMA.  As that VMA
2205          * has a reference to the reservation map it cannot disappear until
2206          * after this open call completes.  It is therefore safe to take a
2207          * new reference here without additional locking.
2208          */
2209         if (resv)
2210                 kref_get(&resv->refs);
2211 }
2212
2213 static void resv_map_put(struct vm_area_struct *vma)
2214 {
2215         struct resv_map *resv = vma_resv_map(vma);
2216
2217         if (!resv)
2218                 return;
2219         kref_put(&resv->refs, resv_map_release);
2220 }
2221
2222 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2223 {
2224         struct hstate *h = hstate_vma(vma);
2225         struct resv_map *resv = vma_resv_map(vma);
2226         struct hugepage_subpool *spool = subpool_vma(vma);
2227         unsigned long reserve;
2228         unsigned long start;
2229         unsigned long end;
2230
2231         if (resv) {
2232                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2233                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2234
2235                 reserve = (end - start) -
2236                         region_count(&resv->regions, start, end);
2237
2238                 resv_map_put(vma);
2239
2240                 if (reserve) {
2241                         hugetlb_acct_memory(h, -reserve);
2242                         hugepage_subpool_put_pages(spool, reserve);
2243                 }
2244         }
2245 }
2246
2247 /*
2248  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2249  * handle_mm_fault() to try to instantiate regular-sized pages in the
2250  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2251  * this far.
2252  */
2253 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2254 {
2255         BUG();
2256         return 0;
2257 }
2258
2259 const struct vm_operations_struct hugetlb_vm_ops = {
2260         .fault = hugetlb_vm_op_fault,
2261         .open = hugetlb_vm_op_open,
2262         .close = hugetlb_vm_op_close,
2263 };
2264
2265 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2266                                 int writable)
2267 {
2268         pte_t entry;
2269
2270         if (writable) {
2271                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2272                                          vma->vm_page_prot)));
2273         } else {
2274                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2275                                            vma->vm_page_prot));
2276         }
2277         entry = pte_mkyoung(entry);
2278         entry = pte_mkhuge(entry);
2279         entry = arch_make_huge_pte(entry, vma, page, writable);
2280
2281         return entry;
2282 }
2283
2284 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2285                                    unsigned long address, pte_t *ptep)
2286 {
2287         pte_t entry;
2288
2289         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2290         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2291                 update_mmu_cache(vma, address, ptep);
2292 }
2293
2294
2295 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2296                             struct vm_area_struct *vma)
2297 {
2298         pte_t *src_pte, *dst_pte, entry;
2299         struct page *ptepage;
2300         unsigned long addr;
2301         int cow;
2302         struct hstate *h = hstate_vma(vma);
2303         unsigned long sz = huge_page_size(h);
2304
2305         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2306
2307         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2308                 src_pte = huge_pte_offset(src, addr);
2309                 if (!src_pte)
2310                         continue;
2311                 dst_pte = huge_pte_alloc(dst, addr, sz);
2312                 if (!dst_pte)
2313                         goto nomem;
2314
2315                 /* If the pagetables are shared don't copy or take references */
2316                 if (dst_pte == src_pte)
2317                         continue;
2318
2319                 spin_lock(&dst->page_table_lock);
2320                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2321                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2322                         if (cow)
2323                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2324                         entry = huge_ptep_get(src_pte);
2325                         ptepage = pte_page(entry);
2326                         get_page(ptepage);
2327                         page_dup_rmap(ptepage);
2328                         set_huge_pte_at(dst, addr, dst_pte, entry);
2329                 }
2330                 spin_unlock(&src->page_table_lock);
2331                 spin_unlock(&dst->page_table_lock);
2332         }
2333         return 0;
2334
2335 nomem:
2336         return -ENOMEM;
2337 }
2338
2339 static int is_hugetlb_entry_migration(pte_t pte)
2340 {
2341         swp_entry_t swp;
2342
2343         if (huge_pte_none(pte) || pte_present(pte))
2344                 return 0;
2345         swp = pte_to_swp_entry(pte);
2346         if (non_swap_entry(swp) && is_migration_entry(swp))
2347                 return 1;
2348         else
2349                 return 0;
2350 }
2351
2352 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2353 {
2354         swp_entry_t swp;
2355
2356         if (huge_pte_none(pte) || pte_present(pte))
2357                 return 0;
2358         swp = pte_to_swp_entry(pte);
2359         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2360                 return 1;
2361         else
2362                 return 0;
2363 }
2364
2365 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2366                             unsigned long start, unsigned long end,
2367                             struct page *ref_page)
2368 {
2369         int force_flush = 0;
2370         struct mm_struct *mm = vma->vm_mm;
2371         unsigned long address;
2372         pte_t *ptep;
2373         pte_t pte;
2374         struct page *page;
2375         struct hstate *h = hstate_vma(vma);
2376         unsigned long sz = huge_page_size(h);
2377         const unsigned long mmun_start = start; /* For mmu_notifiers */
2378         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2379
2380         WARN_ON(!is_vm_hugetlb_page(vma));
2381         BUG_ON(start & ~huge_page_mask(h));
2382         BUG_ON(end & ~huge_page_mask(h));
2383
2384         tlb_start_vma(tlb, vma);
2385         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2386 again:
2387         spin_lock(&mm->page_table_lock);
2388         for (address = start; address < end; address += sz) {
2389                 ptep = huge_pte_offset(mm, address);
2390                 if (!ptep)
2391                         continue;
2392
2393                 if (huge_pmd_unshare(mm, &address, ptep))
2394                         continue;
2395
2396                 pte = huge_ptep_get(ptep);
2397                 if (huge_pte_none(pte))
2398                         continue;
2399
2400                 /*
2401                  * HWPoisoned hugepage is already unmapped and dropped reference
2402                  */
2403                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2404                         huge_pte_clear(mm, address, ptep);
2405                         continue;
2406                 }
2407
2408                 page = pte_page(pte);
2409                 /*
2410                  * If a reference page is supplied, it is because a specific
2411                  * page is being unmapped, not a range. Ensure the page we
2412                  * are about to unmap is the actual page of interest.
2413                  */
2414                 if (ref_page) {
2415                         if (page != ref_page)
2416                                 continue;
2417
2418                         /*
2419                          * Mark the VMA as having unmapped its page so that
2420                          * future faults in this VMA will fail rather than
2421                          * looking like data was lost
2422                          */
2423                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2424                 }
2425
2426                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2427                 tlb_remove_tlb_entry(tlb, ptep, address);
2428                 if (huge_pte_dirty(pte))
2429                         set_page_dirty(page);
2430
2431                 page_remove_rmap(page);
2432                 force_flush = !__tlb_remove_page(tlb, page);
2433                 if (force_flush)
2434                         break;
2435                 /* Bail out after unmapping reference page if supplied */
2436                 if (ref_page)
2437                         break;
2438         }
2439         spin_unlock(&mm->page_table_lock);
2440         /*
2441          * mmu_gather ran out of room to batch pages, we break out of
2442          * the PTE lock to avoid doing the potential expensive TLB invalidate
2443          * and page-free while holding it.
2444          */
2445         if (force_flush) {
2446                 force_flush = 0;
2447                 tlb_flush_mmu(tlb);
2448                 if (address < end && !ref_page)
2449                         goto again;
2450         }
2451         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2452         tlb_end_vma(tlb, vma);
2453 }
2454
2455 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2456                           struct vm_area_struct *vma, unsigned long start,
2457                           unsigned long end, struct page *ref_page)
2458 {
2459         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2460
2461         /*
2462          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2463          * test will fail on a vma being torn down, and not grab a page table
2464          * on its way out.  We're lucky that the flag has such an appropriate
2465          * name, and can in fact be safely cleared here. We could clear it
2466          * before the __unmap_hugepage_range above, but all that's necessary
2467          * is to clear it before releasing the i_mmap_mutex. This works
2468          * because in the context this is called, the VMA is about to be
2469          * destroyed and the i_mmap_mutex is held.
2470          */
2471         vma->vm_flags &= ~VM_MAYSHARE;
2472 }
2473
2474 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2475                           unsigned long end, struct page *ref_page)
2476 {
2477         struct mm_struct *mm;
2478         struct mmu_gather tlb;
2479
2480         mm = vma->vm_mm;
2481
2482         tlb_gather_mmu(&tlb, mm, start, end);
2483         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2484         tlb_finish_mmu(&tlb, start, end);
2485 }
2486
2487 /*
2488  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2489  * mappping it owns the reserve page for. The intention is to unmap the page
2490  * from other VMAs and let the children be SIGKILLed if they are faulting the
2491  * same region.
2492  */
2493 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2494                                 struct page *page, unsigned long address)
2495 {
2496         struct hstate *h = hstate_vma(vma);
2497         struct vm_area_struct *iter_vma;
2498         struct address_space *mapping;
2499         pgoff_t pgoff;
2500
2501         /*
2502          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2503          * from page cache lookup which is in HPAGE_SIZE units.
2504          */
2505         address = address & huge_page_mask(h);
2506         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2507                         vma->vm_pgoff;
2508         mapping = file_inode(vma->vm_file)->i_mapping;
2509
2510         /*
2511          * Take the mapping lock for the duration of the table walk. As
2512          * this mapping should be shared between all the VMAs,
2513          * __unmap_hugepage_range() is called as the lock is already held
2514          */
2515         mutex_lock(&mapping->i_mmap_mutex);
2516         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2517                 /* Do not unmap the current VMA */
2518                 if (iter_vma == vma)
2519                         continue;
2520
2521                 /*
2522                  * Unmap the page from other VMAs without their own reserves.
2523                  * They get marked to be SIGKILLed if they fault in these
2524                  * areas. This is because a future no-page fault on this VMA
2525                  * could insert a zeroed page instead of the data existing
2526                  * from the time of fork. This would look like data corruption
2527                  */
2528                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2529                         unmap_hugepage_range(iter_vma, address,
2530                                              address + huge_page_size(h), page);
2531         }
2532         mutex_unlock(&mapping->i_mmap_mutex);
2533
2534         return 1;
2535 }
2536
2537 /*
2538  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2539  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2540  * cannot race with other handlers or page migration.
2541  * Keep the pte_same checks anyway to make transition from the mutex easier.
2542  */
2543 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2544                         unsigned long address, pte_t *ptep, pte_t pte,
2545                         struct page *pagecache_page)
2546 {
2547         struct hstate *h = hstate_vma(vma);
2548         struct page *old_page, *new_page;
2549         int outside_reserve = 0;
2550         unsigned long mmun_start;       /* For mmu_notifiers */
2551         unsigned long mmun_end;         /* For mmu_notifiers */
2552
2553         old_page = pte_page(pte);
2554
2555 retry_avoidcopy:
2556         /* If no-one else is actually using this page, avoid the copy
2557          * and just make the page writable */
2558         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2559                 page_move_anon_rmap(old_page, vma, address);
2560                 set_huge_ptep_writable(vma, address, ptep);
2561                 return 0;
2562         }
2563
2564         /*
2565          * If the process that created a MAP_PRIVATE mapping is about to
2566          * perform a COW due to a shared page count, attempt to satisfy
2567          * the allocation without using the existing reserves. The pagecache
2568          * page is used to determine if the reserve at this address was
2569          * consumed or not. If reserves were used, a partial faulted mapping
2570          * at the time of fork() could consume its reserves on COW instead
2571          * of the full address range.
2572          */
2573         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2574                         old_page != pagecache_page)
2575                 outside_reserve = 1;
2576
2577         page_cache_get(old_page);
2578
2579         /* Drop page_table_lock as buddy allocator may be called */
2580         spin_unlock(&mm->page_table_lock);
2581         new_page = alloc_huge_page(vma, address, outside_reserve);
2582
2583         if (IS_ERR(new_page)) {
2584                 long err = PTR_ERR(new_page);
2585                 page_cache_release(old_page);
2586
2587                 /*
2588                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2589                  * it is due to references held by a child and an insufficient
2590                  * huge page pool. To guarantee the original mappers
2591                  * reliability, unmap the page from child processes. The child
2592                  * may get SIGKILLed if it later faults.
2593                  */
2594                 if (outside_reserve) {
2595                         BUG_ON(huge_pte_none(pte));
2596                         if (unmap_ref_private(mm, vma, old_page, address)) {
2597                                 BUG_ON(huge_pte_none(pte));
2598                                 spin_lock(&mm->page_table_lock);
2599                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2600                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2601                                         goto retry_avoidcopy;
2602                                 /*
2603                                  * race occurs while re-acquiring page_table_lock, and
2604                                  * our job is done.
2605                                  */
2606                                 return 0;
2607                         }
2608                         WARN_ON_ONCE(1);
2609                 }
2610
2611                 /* Caller expects lock to be held */
2612                 spin_lock(&mm->page_table_lock);
2613                 if (err == -ENOMEM)
2614                         return VM_FAULT_OOM;
2615                 else
2616                         return VM_FAULT_SIGBUS;
2617         }
2618
2619         /*
2620          * When the original hugepage is shared one, it does not have
2621          * anon_vma prepared.
2622          */
2623         if (unlikely(anon_vma_prepare(vma))) {
2624                 page_cache_release(new_page);
2625                 page_cache_release(old_page);
2626                 /* Caller expects lock to be held */
2627                 spin_lock(&mm->page_table_lock);
2628                 return VM_FAULT_OOM;
2629         }
2630
2631         copy_user_huge_page(new_page, old_page, address, vma,
2632                             pages_per_huge_page(h));
2633         __SetPageUptodate(new_page);
2634
2635         mmun_start = address & huge_page_mask(h);
2636         mmun_end = mmun_start + huge_page_size(h);
2637         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2638         /*
2639          * Retake the page_table_lock to check for racing updates
2640          * before the page tables are altered
2641          */
2642         spin_lock(&mm->page_table_lock);
2643         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2644         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2645                 ClearPagePrivate(new_page);
2646
2647                 /* Break COW */
2648                 huge_ptep_clear_flush(vma, address, ptep);
2649                 set_huge_pte_at(mm, address, ptep,
2650                                 make_huge_pte(vma, new_page, 1));
2651                 page_remove_rmap(old_page);
2652                 hugepage_add_new_anon_rmap(new_page, vma, address);
2653                 /* Make the old page be freed below */
2654                 new_page = old_page;
2655         }
2656         spin_unlock(&mm->page_table_lock);
2657         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2658         page_cache_release(new_page);
2659         page_cache_release(old_page);
2660
2661         /* Caller expects lock to be held */
2662         spin_lock(&mm->page_table_lock);
2663         return 0;
2664 }
2665
2666 /* Return the pagecache page at a given address within a VMA */
2667 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2668                         struct vm_area_struct *vma, unsigned long address)
2669 {
2670         struct address_space *mapping;
2671         pgoff_t idx;
2672
2673         mapping = vma->vm_file->f_mapping;
2674         idx = vma_hugecache_offset(h, vma, address);
2675
2676         return find_lock_page(mapping, idx);
2677 }
2678
2679 /*
2680  * Return whether there is a pagecache page to back given address within VMA.
2681  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2682  */
2683 static bool hugetlbfs_pagecache_present(struct hstate *h,
2684                         struct vm_area_struct *vma, unsigned long address)
2685 {
2686         struct address_space *mapping;
2687         pgoff_t idx;
2688         struct page *page;
2689
2690         mapping = vma->vm_file->f_mapping;
2691         idx = vma_hugecache_offset(h, vma, address);
2692
2693         page = find_get_page(mapping, idx);
2694         if (page)
2695                 put_page(page);
2696         return page != NULL;
2697 }
2698
2699 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2700                         unsigned long address, pte_t *ptep, unsigned int flags)
2701 {
2702         struct hstate *h = hstate_vma(vma);
2703         int ret = VM_FAULT_SIGBUS;
2704         int anon_rmap = 0;
2705         pgoff_t idx;
2706         unsigned long size;
2707         struct page *page;
2708         struct address_space *mapping;
2709         pte_t new_pte;
2710
2711         /*
2712          * Currently, we are forced to kill the process in the event the
2713          * original mapper has unmapped pages from the child due to a failed
2714          * COW. Warn that such a situation has occurred as it may not be obvious
2715          */
2716         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2717                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2718                            current->pid);
2719                 return ret;
2720         }
2721
2722         mapping = vma->vm_file->f_mapping;
2723         idx = vma_hugecache_offset(h, vma, address);
2724
2725         /*
2726          * Use page lock to guard against racing truncation
2727          * before we get page_table_lock.
2728          */
2729 retry:
2730         page = find_lock_page(mapping, idx);
2731         if (!page) {
2732                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2733                 if (idx >= size)
2734                         goto out;
2735                 page = alloc_huge_page(vma, address, 0);
2736                 if (IS_ERR(page)) {
2737                         ret = PTR_ERR(page);
2738                         if (ret == -ENOMEM)
2739                                 ret = VM_FAULT_OOM;
2740                         else
2741                                 ret = VM_FAULT_SIGBUS;
2742                         goto out;
2743                 }
2744                 clear_huge_page(page, address, pages_per_huge_page(h));
2745                 __SetPageUptodate(page);
2746
2747                 if (vma->vm_flags & VM_MAYSHARE) {
2748                         int err;
2749                         struct inode *inode = mapping->host;
2750
2751                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2752                         if (err) {
2753                                 put_page(page);
2754                                 if (err == -EEXIST)
2755                                         goto retry;
2756                                 goto out;
2757                         }
2758                         ClearPagePrivate(page);
2759
2760                         spin_lock(&inode->i_lock);
2761                         inode->i_blocks += blocks_per_huge_page(h);
2762                         spin_unlock(&inode->i_lock);
2763                 } else {
2764                         lock_page(page);
2765                         if (unlikely(anon_vma_prepare(vma))) {
2766                                 ret = VM_FAULT_OOM;
2767                                 goto backout_unlocked;
2768                         }
2769                         anon_rmap = 1;
2770                 }
2771         } else {
2772                 /*
2773                  * If memory error occurs between mmap() and fault, some process
2774                  * don't have hwpoisoned swap entry for errored virtual address.
2775                  * So we need to block hugepage fault by PG_hwpoison bit check.
2776                  */
2777                 if (unlikely(PageHWPoison(page))) {
2778                         ret = VM_FAULT_HWPOISON |
2779                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2780                         goto backout_unlocked;
2781                 }
2782         }
2783
2784         /*
2785          * If we are going to COW a private mapping later, we examine the
2786          * pending reservations for this page now. This will ensure that
2787          * any allocations necessary to record that reservation occur outside
2788          * the spinlock.
2789          */
2790         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2791                 if (vma_needs_reservation(h, vma, address) < 0) {
2792                         ret = VM_FAULT_OOM;
2793                         goto backout_unlocked;
2794                 }
2795
2796         spin_lock(&mm->page_table_lock);
2797         size = i_size_read(mapping->host) >> huge_page_shift(h);
2798         if (idx >= size)
2799                 goto backout;
2800
2801         ret = 0;
2802         if (!huge_pte_none(huge_ptep_get(ptep)))
2803                 goto backout;
2804
2805         if (anon_rmap) {
2806                 ClearPagePrivate(page);
2807                 hugepage_add_new_anon_rmap(page, vma, address);
2808         }
2809         else
2810                 page_dup_rmap(page);
2811         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2812                                 && (vma->vm_flags & VM_SHARED)));
2813         set_huge_pte_at(mm, address, ptep, new_pte);
2814
2815         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2816                 /* Optimization, do the COW without a second fault */
2817                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2818         }
2819
2820         spin_unlock(&mm->page_table_lock);
2821         unlock_page(page);
2822 out:
2823         return ret;
2824
2825 backout:
2826         spin_unlock(&mm->page_table_lock);
2827 backout_unlocked:
2828         unlock_page(page);
2829         put_page(page);
2830         goto out;
2831 }
2832
2833 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2834                         unsigned long address, unsigned int flags)
2835 {
2836         pte_t *ptep;
2837         pte_t entry;
2838         int ret;
2839         struct page *page = NULL;
2840         struct page *pagecache_page = NULL;
2841         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2842         struct hstate *h = hstate_vma(vma);
2843
2844         address &= huge_page_mask(h);
2845
2846         ptep = huge_pte_offset(mm, address);
2847         if (ptep) {
2848                 entry = huge_ptep_get(ptep);
2849                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2850                         migration_entry_wait_huge(mm, ptep);
2851                         return 0;
2852                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2853                         return VM_FAULT_HWPOISON_LARGE |
2854                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2855         }
2856
2857         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2858         if (!ptep)
2859                 return VM_FAULT_OOM;
2860
2861         /*
2862          * Serialize hugepage allocation and instantiation, so that we don't
2863          * get spurious allocation failures if two CPUs race to instantiate
2864          * the same page in the page cache.
2865          */
2866         mutex_lock(&hugetlb_instantiation_mutex);
2867         entry = huge_ptep_get(ptep);
2868         if (huge_pte_none(entry)) {
2869                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2870                 goto out_mutex;
2871         }
2872
2873         ret = 0;
2874
2875         /*
2876          * If we are going to COW the mapping later, we examine the pending
2877          * reservations for this page now. This will ensure that any
2878          * allocations necessary to record that reservation occur outside the
2879          * spinlock. For private mappings, we also lookup the pagecache
2880          * page now as it is used to determine if a reservation has been
2881          * consumed.
2882          */
2883         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2884                 if (vma_needs_reservation(h, vma, address) < 0) {
2885                         ret = VM_FAULT_OOM;
2886                         goto out_mutex;
2887                 }
2888
2889                 if (!(vma->vm_flags & VM_MAYSHARE))
2890                         pagecache_page = hugetlbfs_pagecache_page(h,
2891                                                                 vma, address);
2892         }
2893
2894         /*
2895          * hugetlb_cow() requires page locks of pte_page(entry) and
2896          * pagecache_page, so here we need take the former one
2897          * when page != pagecache_page or !pagecache_page.
2898          * Note that locking order is always pagecache_page -> page,
2899          * so no worry about deadlock.
2900          */
2901         page = pte_page(entry);
2902         get_page(page);
2903         if (page != pagecache_page)
2904                 lock_page(page);
2905
2906         spin_lock(&mm->page_table_lock);
2907         /* Check for a racing update before calling hugetlb_cow */
2908         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2909                 goto out_page_table_lock;
2910
2911
2912         if (flags & FAULT_FLAG_WRITE) {
2913                 if (!huge_pte_write(entry)) {
2914                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2915                                                         pagecache_page);
2916                         goto out_page_table_lock;
2917                 }
2918                 entry = huge_pte_mkdirty(entry);
2919         }
2920         entry = pte_mkyoung(entry);
2921         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2922                                                 flags & FAULT_FLAG_WRITE))
2923                 update_mmu_cache(vma, address, ptep);
2924
2925 out_page_table_lock:
2926         spin_unlock(&mm->page_table_lock);
2927
2928         if (pagecache_page) {
2929                 unlock_page(pagecache_page);
2930                 put_page(pagecache_page);
2931         }
2932         if (page != pagecache_page)
2933                 unlock_page(page);
2934         put_page(page);
2935
2936 out_mutex:
2937         mutex_unlock(&hugetlb_instantiation_mutex);
2938
2939         return ret;
2940 }
2941
2942 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2943                          struct page **pages, struct vm_area_struct **vmas,
2944                          unsigned long *position, unsigned long *nr_pages,
2945                          long i, unsigned int flags)
2946 {
2947         unsigned long pfn_offset;
2948         unsigned long vaddr = *position;
2949         unsigned long remainder = *nr_pages;
2950         struct hstate *h = hstate_vma(vma);
2951
2952         spin_lock(&mm->page_table_lock);
2953         while (vaddr < vma->vm_end && remainder) {
2954                 pte_t *pte;
2955                 int absent;
2956                 struct page *page;
2957
2958                 /*
2959                  * Some archs (sparc64, sh*) have multiple pte_ts to
2960                  * each hugepage.  We have to make sure we get the
2961                  * first, for the page indexing below to work.
2962                  */
2963                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2964                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2965
2966                 /*
2967                  * When coredumping, it suits get_dump_page if we just return
2968                  * an error where there's an empty slot with no huge pagecache
2969                  * to back it.  This way, we avoid allocating a hugepage, and
2970                  * the sparse dumpfile avoids allocating disk blocks, but its
2971                  * huge holes still show up with zeroes where they need to be.
2972                  */
2973                 if (absent && (flags & FOLL_DUMP) &&
2974                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2975                         remainder = 0;
2976                         break;
2977                 }
2978
2979                 /*
2980                  * We need call hugetlb_fault for both hugepages under migration
2981                  * (in which case hugetlb_fault waits for the migration,) and
2982                  * hwpoisoned hugepages (in which case we need to prevent the
2983                  * caller from accessing to them.) In order to do this, we use
2984                  * here is_swap_pte instead of is_hugetlb_entry_migration and
2985                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2986                  * both cases, and because we can't follow correct pages
2987                  * directly from any kind of swap entries.
2988                  */
2989                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2990                     ((flags & FOLL_WRITE) &&
2991                       !huge_pte_write(huge_ptep_get(pte)))) {
2992                         int ret;
2993
2994                         spin_unlock(&mm->page_table_lock);
2995                         ret = hugetlb_fault(mm, vma, vaddr,
2996                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2997                         spin_lock(&mm->page_table_lock);
2998                         if (!(ret & VM_FAULT_ERROR))
2999                                 continue;
3000
3001                         remainder = 0;
3002                         break;
3003                 }
3004
3005                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3006                 page = pte_page(huge_ptep_get(pte));
3007 same_page:
3008                 if (pages) {
3009                         pages[i] = mem_map_offset(page, pfn_offset);
3010                         get_page(pages[i]);
3011                 }
3012
3013                 if (vmas)
3014                         vmas[i] = vma;
3015
3016                 vaddr += PAGE_SIZE;
3017                 ++pfn_offset;
3018                 --remainder;
3019                 ++i;
3020                 if (vaddr < vma->vm_end && remainder &&
3021                                 pfn_offset < pages_per_huge_page(h)) {
3022                         /*
3023                          * We use pfn_offset to avoid touching the pageframes
3024                          * of this compound page.
3025                          */
3026                         goto same_page;
3027                 }
3028         }
3029         spin_unlock(&mm->page_table_lock);
3030         *nr_pages = remainder;
3031         *position = vaddr;
3032
3033         return i ? i : -EFAULT;
3034 }
3035
3036 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3037                 unsigned long address, unsigned long end, pgprot_t newprot)
3038 {
3039         struct mm_struct *mm = vma->vm_mm;
3040         unsigned long start = address;
3041         pte_t *ptep;
3042         pte_t pte;
3043         struct hstate *h = hstate_vma(vma);
3044         unsigned long pages = 0;
3045
3046         BUG_ON(address >= end);
3047         flush_cache_range(vma, address, end);
3048
3049         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3050         spin_lock(&mm->page_table_lock);
3051         for (; address < end; address += huge_page_size(h)) {
3052                 ptep = huge_pte_offset(mm, address);
3053                 if (!ptep)
3054                         continue;
3055                 if (huge_pmd_unshare(mm, &address, ptep)) {
3056                         pages++;
3057                         continue;
3058                 }
3059                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3060                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3061                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3062                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3063                         set_huge_pte_at(mm, address, ptep, pte);
3064                         pages++;
3065                 }
3066         }
3067         spin_unlock(&mm->page_table_lock);
3068         /*
3069          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3070          * may have cleared our pud entry and done put_page on the page table:
3071          * once we release i_mmap_mutex, another task can do the final put_page
3072          * and that page table be reused and filled with junk.
3073          */
3074         flush_tlb_range(vma, start, end);
3075         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3076
3077         return pages << h->order;
3078 }
3079
3080 int hugetlb_reserve_pages(struct inode *inode,
3081                                         long from, long to,
3082                                         struct vm_area_struct *vma,
3083                                         vm_flags_t vm_flags)
3084 {
3085         long ret, chg;
3086         struct hstate *h = hstate_inode(inode);
3087         struct hugepage_subpool *spool = subpool_inode(inode);
3088
3089         /*
3090          * Only apply hugepage reservation if asked. At fault time, an
3091          * attempt will be made for VM_NORESERVE to allocate a page
3092          * without using reserves
3093          */
3094         if (vm_flags & VM_NORESERVE)
3095                 return 0;
3096
3097         /*
3098          * Shared mappings base their reservation on the number of pages that
3099          * are already allocated on behalf of the file. Private mappings need
3100          * to reserve the full area even if read-only as mprotect() may be
3101          * called to make the mapping read-write. Assume !vma is a shm mapping
3102          */
3103         if (!vma || vma->vm_flags & VM_MAYSHARE)
3104                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3105         else {
3106                 struct resv_map *resv_map = resv_map_alloc();
3107                 if (!resv_map)
3108                         return -ENOMEM;
3109
3110                 chg = to - from;
3111
3112                 set_vma_resv_map(vma, resv_map);
3113                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3114         }
3115
3116         if (chg < 0) {
3117                 ret = chg;
3118                 goto out_err;
3119         }
3120
3121         /* There must be enough pages in the subpool for the mapping */
3122         if (hugepage_subpool_get_pages(spool, chg)) {
3123                 ret = -ENOSPC;
3124                 goto out_err;
3125         }
3126
3127         /*
3128          * Check enough hugepages are available for the reservation.
3129          * Hand the pages back to the subpool if there are not
3130          */
3131         ret = hugetlb_acct_memory(h, chg);
3132         if (ret < 0) {
3133                 hugepage_subpool_put_pages(spool, chg);
3134                 goto out_err;
3135         }
3136
3137         /*
3138          * Account for the reservations made. Shared mappings record regions
3139          * that have reservations as they are shared by multiple VMAs.
3140          * When the last VMA disappears, the region map says how much
3141          * the reservation was and the page cache tells how much of
3142          * the reservation was consumed. Private mappings are per-VMA and
3143          * only the consumed reservations are tracked. When the VMA
3144          * disappears, the original reservation is the VMA size and the
3145          * consumed reservations are stored in the map. Hence, nothing
3146          * else has to be done for private mappings here
3147          */
3148         if (!vma || vma->vm_flags & VM_MAYSHARE)
3149                 region_add(&inode->i_mapping->private_list, from, to);
3150         return 0;
3151 out_err:
3152         if (vma)
3153                 resv_map_put(vma);
3154         return ret;
3155 }
3156
3157 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3158 {
3159         struct hstate *h = hstate_inode(inode);
3160         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3161         struct hugepage_subpool *spool = subpool_inode(inode);
3162
3163         spin_lock(&inode->i_lock);
3164         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3165         spin_unlock(&inode->i_lock);
3166
3167         hugepage_subpool_put_pages(spool, (chg - freed));
3168         hugetlb_acct_memory(h, -(chg - freed));
3169 }
3170
3171 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3172 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3173                                 struct vm_area_struct *vma,
3174                                 unsigned long addr, pgoff_t idx)
3175 {
3176         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3177                                 svma->vm_start;
3178         unsigned long sbase = saddr & PUD_MASK;
3179         unsigned long s_end = sbase + PUD_SIZE;
3180
3181         /* Allow segments to share if only one is marked locked */
3182         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3183         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3184
3185         /*
3186          * match the virtual addresses, permission and the alignment of the
3187          * page table page.
3188          */
3189         if (pmd_index(addr) != pmd_index(saddr) ||
3190             vm_flags != svm_flags ||
3191             sbase < svma->vm_start || svma->vm_end < s_end)
3192                 return 0;
3193
3194         return saddr;
3195 }
3196
3197 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3198 {
3199         unsigned long base = addr & PUD_MASK;
3200         unsigned long end = base + PUD_SIZE;
3201
3202         /*
3203          * check on proper vm_flags and page table alignment
3204          */
3205         if (vma->vm_flags & VM_MAYSHARE &&
3206             vma->vm_start <= base && end <= vma->vm_end)
3207                 return 1;
3208         return 0;
3209 }
3210
3211 /*
3212  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3213  * and returns the corresponding pte. While this is not necessary for the
3214  * !shared pmd case because we can allocate the pmd later as well, it makes the
3215  * code much cleaner. pmd allocation is essential for the shared case because
3216  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3217  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3218  * bad pmd for sharing.
3219  */
3220 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3221 {
3222         struct vm_area_struct *vma = find_vma(mm, addr);
3223         struct address_space *mapping = vma->vm_file->f_mapping;
3224         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3225                         vma->vm_pgoff;
3226         struct vm_area_struct *svma;
3227         unsigned long saddr;
3228         pte_t *spte = NULL;
3229         pte_t *pte;
3230
3231         if (!vma_shareable(vma, addr))
3232                 return (pte_t *)pmd_alloc(mm, pud, addr);
3233
3234         mutex_lock(&mapping->i_mmap_mutex);
3235         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3236                 if (svma == vma)
3237                         continue;
3238
3239                 saddr = page_table_shareable(svma, vma, addr, idx);
3240                 if (saddr) {
3241                         spte = huge_pte_offset(svma->vm_mm, saddr);
3242                         if (spte) {
3243                                 get_page(virt_to_page(spte));
3244                                 break;
3245                         }
3246                 }
3247         }
3248
3249         if (!spte)
3250                 goto out;
3251
3252         spin_lock(&mm->page_table_lock);
3253         if (pud_none(*pud))
3254                 pud_populate(mm, pud,
3255                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3256         else
3257                 put_page(virt_to_page(spte));
3258         spin_unlock(&mm->page_table_lock);
3259 out:
3260         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3261         mutex_unlock(&mapping->i_mmap_mutex);
3262         return pte;
3263 }
3264
3265 /*
3266  * unmap huge page backed by shared pte.
3267  *
3268  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3269  * indicated by page_count > 1, unmap is achieved by clearing pud and
3270  * decrementing the ref count. If count == 1, the pte page is not shared.
3271  *
3272  * called with vma->vm_mm->page_table_lock held.
3273  *
3274  * returns: 1 successfully unmapped a shared pte page
3275  *          0 the underlying pte page is not shared, or it is the last user
3276  */
3277 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3278 {
3279         pgd_t *pgd = pgd_offset(mm, *addr);
3280         pud_t *pud = pud_offset(pgd, *addr);
3281
3282         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3283         if (page_count(virt_to_page(ptep)) == 1)
3284                 return 0;
3285
3286         pud_clear(pud);
3287         put_page(virt_to_page(ptep));
3288         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3289         return 1;
3290 }
3291 #define want_pmd_share()        (1)
3292 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3293 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3294 {
3295         return NULL;
3296 }
3297 #define want_pmd_share()        (0)
3298 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3299
3300 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3301 pte_t *huge_pte_alloc(struct mm_struct *mm,
3302                         unsigned long addr, unsigned long sz)
3303 {
3304         pgd_t *pgd;
3305         pud_t *pud;
3306         pte_t *pte = NULL;
3307
3308         pgd = pgd_offset(mm, addr);
3309         pud = pud_alloc(mm, pgd, addr);
3310         if (pud) {
3311                 if (sz == PUD_SIZE) {
3312                         pte = (pte_t *)pud;
3313                 } else {
3314                         BUG_ON(sz != PMD_SIZE);
3315                         if (want_pmd_share() && pud_none(*pud))
3316                                 pte = huge_pmd_share(mm, addr, pud);
3317                         else
3318                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3319                 }
3320         }
3321         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3322
3323         return pte;
3324 }
3325
3326 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3327 {
3328         pgd_t *pgd;
3329         pud_t *pud;
3330         pmd_t *pmd = NULL;
3331
3332         pgd = pgd_offset(mm, addr);
3333         if (pgd_present(*pgd)) {
3334                 pud = pud_offset(pgd, addr);
3335                 if (pud_present(*pud)) {
3336                         if (pud_huge(*pud))
3337                                 return (pte_t *)pud;
3338                         pmd = pmd_offset(pud, addr);
3339                 }
3340         }
3341         return (pte_t *) pmd;
3342 }
3343
3344 struct page *
3345 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3346                 pmd_t *pmd, int write)
3347 {
3348         struct page *page;
3349
3350         page = pte_page(*(pte_t *)pmd);
3351         if (page)
3352                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3353         return page;
3354 }
3355
3356 struct page *
3357 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3358                 pud_t *pud, int write)
3359 {
3360         struct page *page;
3361
3362         page = pte_page(*(pte_t *)pud);
3363         if (page)
3364                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3365         return page;
3366 }
3367
3368 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3369
3370 /* Can be overriden by architectures */
3371 __attribute__((weak)) struct page *
3372 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3373                pud_t *pud, int write)
3374 {
3375         BUG();
3376         return NULL;
3377 }
3378
3379 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3380
3381 #ifdef CONFIG_MEMORY_FAILURE
3382
3383 /* Should be called in hugetlb_lock */
3384 static int is_hugepage_on_freelist(struct page *hpage)
3385 {
3386         struct page *page;
3387         struct page *tmp;
3388         struct hstate *h = page_hstate(hpage);
3389         int nid = page_to_nid(hpage);
3390
3391         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3392                 if (page == hpage)
3393                         return 1;
3394         return 0;
3395 }
3396
3397 /*
3398  * This function is called from memory failure code.
3399  * Assume the caller holds page lock of the head page.
3400  */
3401 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3402 {
3403         struct hstate *h = page_hstate(hpage);
3404         int nid = page_to_nid(hpage);
3405         int ret = -EBUSY;
3406
3407         spin_lock(&hugetlb_lock);
3408         if (is_hugepage_on_freelist(hpage)) {
3409                 /*
3410                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3411                  * but dangling hpage->lru can trigger list-debug warnings
3412                  * (this happens when we call unpoison_memory() on it),
3413                  * so let it point to itself with list_del_init().
3414                  */
3415                 list_del_init(&hpage->lru);
3416                 set_page_refcounted(hpage);
3417                 h->free_huge_pages--;
3418                 h->free_huge_pages_node[nid]--;
3419                 ret = 0;
3420         }
3421         spin_unlock(&hugetlb_lock);
3422         return ret;
3423 }
3424 #endif