d3e66136e41a317f10dec0a4507249cffd836937
[linux-block.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 #include <linux/pgalloc_tag.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlb.h>
45 #include <asm/pgalloc.h>
46 #include "internal.h"
47 #include "swap.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/thp.h>
51
52 /*
53  * By default, transparent hugepage support is disabled in order to avoid
54  * risking an increased memory footprint for applications that are not
55  * guaranteed to benefit from it. When transparent hugepage support is
56  * enabled, it is for all mappings, and khugepaged scans all mappings.
57  * Defrag is invoked by khugepaged hugepage allocations and by page faults
58  * for all hugepage allocations.
59  */
60 unsigned long transparent_hugepage_flags __read_mostly =
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
62         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
63 #endif
64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
65         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
66 #endif
67         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
68         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
69         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
70
71 static struct shrinker *deferred_split_shrinker;
72 static unsigned long deferred_split_count(struct shrinker *shrink,
73                                           struct shrink_control *sc);
74 static unsigned long deferred_split_scan(struct shrinker *shrink,
75                                          struct shrink_control *sc);
76 static bool split_underused_thp = true;
77
78 static atomic_t huge_zero_refcount;
79 struct folio *huge_zero_folio __read_mostly;
80 unsigned long huge_zero_pfn __read_mostly = ~0UL;
81 unsigned long huge_anon_orders_always __read_mostly;
82 unsigned long huge_anon_orders_madvise __read_mostly;
83 unsigned long huge_anon_orders_inherit __read_mostly;
84 static bool anon_orders_configured __initdata;
85
86 static inline bool file_thp_enabled(struct vm_area_struct *vma)
87 {
88         struct inode *inode;
89
90         if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
91                 return false;
92
93         if (!vma->vm_file)
94                 return false;
95
96         inode = file_inode(vma->vm_file);
97
98         return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
99 }
100
101 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
102                                          unsigned long vm_flags,
103                                          unsigned long tva_flags,
104                                          unsigned long orders)
105 {
106         bool smaps = tva_flags & TVA_SMAPS;
107         bool in_pf = tva_flags & TVA_IN_PF;
108         bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
109         unsigned long supported_orders;
110
111         /* Check the intersection of requested and supported orders. */
112         if (vma_is_anonymous(vma))
113                 supported_orders = THP_ORDERS_ALL_ANON;
114         else if (vma_is_special_huge(vma))
115                 supported_orders = THP_ORDERS_ALL_SPECIAL;
116         else
117                 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
118
119         orders &= supported_orders;
120         if (!orders)
121                 return 0;
122
123         if (!vma->vm_mm)                /* vdso */
124                 return 0;
125
126         if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
127                 return 0;
128
129         /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
130         if (vma_is_dax(vma))
131                 return in_pf ? orders : 0;
132
133         /*
134          * khugepaged special VMA and hugetlb VMA.
135          * Must be checked after dax since some dax mappings may have
136          * VM_MIXEDMAP set.
137          */
138         if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
139                 return 0;
140
141         /*
142          * Check alignment for file vma and size for both file and anon vma by
143          * filtering out the unsuitable orders.
144          *
145          * Skip the check for page fault. Huge fault does the check in fault
146          * handlers.
147          */
148         if (!in_pf) {
149                 int order = highest_order(orders);
150                 unsigned long addr;
151
152                 while (orders) {
153                         addr = vma->vm_end - (PAGE_SIZE << order);
154                         if (thp_vma_suitable_order(vma, addr, order))
155                                 break;
156                         order = next_order(&orders, order);
157                 }
158
159                 if (!orders)
160                         return 0;
161         }
162
163         /*
164          * Enabled via shmem mount options or sysfs settings.
165          * Must be done before hugepage flags check since shmem has its
166          * own flags.
167          */
168         if (!in_pf && shmem_file(vma->vm_file))
169                 return shmem_allowable_huge_orders(file_inode(vma->vm_file),
170                                                    vma, vma->vm_pgoff, 0,
171                                                    !enforce_sysfs);
172
173         if (!vma_is_anonymous(vma)) {
174                 /*
175                  * Enforce sysfs THP requirements as necessary. Anonymous vmas
176                  * were already handled in thp_vma_allowable_orders().
177                  */
178                 if (enforce_sysfs &&
179                     (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
180                                                     !hugepage_global_always())))
181                         return 0;
182
183                 /*
184                  * Trust that ->huge_fault() handlers know what they are doing
185                  * in fault path.
186                  */
187                 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
188                         return orders;
189                 /* Only regular file is valid in collapse path */
190                 if (((!in_pf || smaps)) && file_thp_enabled(vma))
191                         return orders;
192                 return 0;
193         }
194
195         if (vma_is_temporary_stack(vma))
196                 return 0;
197
198         /*
199          * THPeligible bit of smaps should show 1 for proper VMAs even
200          * though anon_vma is not initialized yet.
201          *
202          * Allow page fault since anon_vma may be not initialized until
203          * the first page fault.
204          */
205         if (!vma->anon_vma)
206                 return (smaps || in_pf) ? orders : 0;
207
208         return orders;
209 }
210
211 static bool get_huge_zero_page(void)
212 {
213         struct folio *zero_folio;
214 retry:
215         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216                 return true;
217
218         zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219                         HPAGE_PMD_ORDER);
220         if (!zero_folio) {
221                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222                 return false;
223         }
224         /* Ensure zero folio won't have large_rmappable flag set. */
225         folio_clear_large_rmappable(zero_folio);
226         preempt_disable();
227         if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228                 preempt_enable();
229                 folio_put(zero_folio);
230                 goto retry;
231         }
232         WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233
234         /* We take additional reference here. It will be put back by shrinker */
235         atomic_set(&huge_zero_refcount, 2);
236         preempt_enable();
237         count_vm_event(THP_ZERO_PAGE_ALLOC);
238         return true;
239 }
240
241 static void put_huge_zero_page(void)
242 {
243         /*
244          * Counter should never go to zero here. Only shrinker can put
245          * last reference.
246          */
247         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248 }
249
250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251 {
252         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
253                 return READ_ONCE(huge_zero_folio);
254
255         if (!get_huge_zero_page())
256                 return NULL;
257
258         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
259                 put_huge_zero_page();
260
261         return READ_ONCE(huge_zero_folio);
262 }
263
264 void mm_put_huge_zero_folio(struct mm_struct *mm)
265 {
266         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
267                 put_huge_zero_page();
268 }
269
270 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
271                                         struct shrink_control *sc)
272 {
273         /* we can free zero page only if last reference remains */
274         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
275 }
276
277 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
278                                        struct shrink_control *sc)
279 {
280         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
281                 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
282                 BUG_ON(zero_folio == NULL);
283                 WRITE_ONCE(huge_zero_pfn, ~0UL);
284                 folio_put(zero_folio);
285                 return HPAGE_PMD_NR;
286         }
287
288         return 0;
289 }
290
291 static struct shrinker *huge_zero_page_shrinker;
292
293 #ifdef CONFIG_SYSFS
294 static ssize_t enabled_show(struct kobject *kobj,
295                             struct kobj_attribute *attr, char *buf)
296 {
297         const char *output;
298
299         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
300                 output = "[always] madvise never";
301         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
302                           &transparent_hugepage_flags))
303                 output = "always [madvise] never";
304         else
305                 output = "always madvise [never]";
306
307         return sysfs_emit(buf, "%s\n", output);
308 }
309
310 static ssize_t enabled_store(struct kobject *kobj,
311                              struct kobj_attribute *attr,
312                              const char *buf, size_t count)
313 {
314         ssize_t ret = count;
315
316         if (sysfs_streq(buf, "always")) {
317                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
318                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
319         } else if (sysfs_streq(buf, "madvise")) {
320                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
321                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
322         } else if (sysfs_streq(buf, "never")) {
323                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
324                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
325         } else
326                 ret = -EINVAL;
327
328         if (ret > 0) {
329                 int err = start_stop_khugepaged();
330                 if (err)
331                         ret = err;
332         }
333         return ret;
334 }
335
336 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
337
338 ssize_t single_hugepage_flag_show(struct kobject *kobj,
339                                   struct kobj_attribute *attr, char *buf,
340                                   enum transparent_hugepage_flag flag)
341 {
342         return sysfs_emit(buf, "%d\n",
343                           !!test_bit(flag, &transparent_hugepage_flags));
344 }
345
346 ssize_t single_hugepage_flag_store(struct kobject *kobj,
347                                  struct kobj_attribute *attr,
348                                  const char *buf, size_t count,
349                                  enum transparent_hugepage_flag flag)
350 {
351         unsigned long value;
352         int ret;
353
354         ret = kstrtoul(buf, 10, &value);
355         if (ret < 0)
356                 return ret;
357         if (value > 1)
358                 return -EINVAL;
359
360         if (value)
361                 set_bit(flag, &transparent_hugepage_flags);
362         else
363                 clear_bit(flag, &transparent_hugepage_flags);
364
365         return count;
366 }
367
368 static ssize_t defrag_show(struct kobject *kobj,
369                            struct kobj_attribute *attr, char *buf)
370 {
371         const char *output;
372
373         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
374                      &transparent_hugepage_flags))
375                 output = "[always] defer defer+madvise madvise never";
376         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
377                           &transparent_hugepage_flags))
378                 output = "always [defer] defer+madvise madvise never";
379         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
380                           &transparent_hugepage_flags))
381                 output = "always defer [defer+madvise] madvise never";
382         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
383                           &transparent_hugepage_flags))
384                 output = "always defer defer+madvise [madvise] never";
385         else
386                 output = "always defer defer+madvise madvise [never]";
387
388         return sysfs_emit(buf, "%s\n", output);
389 }
390
391 static ssize_t defrag_store(struct kobject *kobj,
392                             struct kobj_attribute *attr,
393                             const char *buf, size_t count)
394 {
395         if (sysfs_streq(buf, "always")) {
396                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
400         } else if (sysfs_streq(buf, "defer+madvise")) {
401                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
402                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
404                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
405         } else if (sysfs_streq(buf, "defer")) {
406                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
407                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
408                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
409                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
410         } else if (sysfs_streq(buf, "madvise")) {
411                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
412                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
413                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415         } else if (sysfs_streq(buf, "never")) {
416                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
417                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
418                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
419                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
420         } else
421                 return -EINVAL;
422
423         return count;
424 }
425 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
426
427 static ssize_t use_zero_page_show(struct kobject *kobj,
428                                   struct kobj_attribute *attr, char *buf)
429 {
430         return single_hugepage_flag_show(kobj, attr, buf,
431                                          TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
432 }
433 static ssize_t use_zero_page_store(struct kobject *kobj,
434                 struct kobj_attribute *attr, const char *buf, size_t count)
435 {
436         return single_hugepage_flag_store(kobj, attr, buf, count,
437                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438 }
439 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
440
441 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
442                                    struct kobj_attribute *attr, char *buf)
443 {
444         return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
445 }
446 static struct kobj_attribute hpage_pmd_size_attr =
447         __ATTR_RO(hpage_pmd_size);
448
449 static ssize_t split_underused_thp_show(struct kobject *kobj,
450                             struct kobj_attribute *attr, char *buf)
451 {
452         return sysfs_emit(buf, "%d\n", split_underused_thp);
453 }
454
455 static ssize_t split_underused_thp_store(struct kobject *kobj,
456                              struct kobj_attribute *attr,
457                              const char *buf, size_t count)
458 {
459         int err = kstrtobool(buf, &split_underused_thp);
460
461         if (err < 0)
462                 return err;
463
464         return count;
465 }
466
467 static struct kobj_attribute split_underused_thp_attr = __ATTR(
468         shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
469
470 static struct attribute *hugepage_attr[] = {
471         &enabled_attr.attr,
472         &defrag_attr.attr,
473         &use_zero_page_attr.attr,
474         &hpage_pmd_size_attr.attr,
475 #ifdef CONFIG_SHMEM
476         &shmem_enabled_attr.attr,
477 #endif
478         &split_underused_thp_attr.attr,
479         NULL,
480 };
481
482 static const struct attribute_group hugepage_attr_group = {
483         .attrs = hugepage_attr,
484 };
485
486 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
487 static void thpsize_release(struct kobject *kobj);
488 static DEFINE_SPINLOCK(huge_anon_orders_lock);
489 static LIST_HEAD(thpsize_list);
490
491 static ssize_t anon_enabled_show(struct kobject *kobj,
492                                  struct kobj_attribute *attr, char *buf)
493 {
494         int order = to_thpsize(kobj)->order;
495         const char *output;
496
497         if (test_bit(order, &huge_anon_orders_always))
498                 output = "[always] inherit madvise never";
499         else if (test_bit(order, &huge_anon_orders_inherit))
500                 output = "always [inherit] madvise never";
501         else if (test_bit(order, &huge_anon_orders_madvise))
502                 output = "always inherit [madvise] never";
503         else
504                 output = "always inherit madvise [never]";
505
506         return sysfs_emit(buf, "%s\n", output);
507 }
508
509 static ssize_t anon_enabled_store(struct kobject *kobj,
510                                   struct kobj_attribute *attr,
511                                   const char *buf, size_t count)
512 {
513         int order = to_thpsize(kobj)->order;
514         ssize_t ret = count;
515
516         if (sysfs_streq(buf, "always")) {
517                 spin_lock(&huge_anon_orders_lock);
518                 clear_bit(order, &huge_anon_orders_inherit);
519                 clear_bit(order, &huge_anon_orders_madvise);
520                 set_bit(order, &huge_anon_orders_always);
521                 spin_unlock(&huge_anon_orders_lock);
522         } else if (sysfs_streq(buf, "inherit")) {
523                 spin_lock(&huge_anon_orders_lock);
524                 clear_bit(order, &huge_anon_orders_always);
525                 clear_bit(order, &huge_anon_orders_madvise);
526                 set_bit(order, &huge_anon_orders_inherit);
527                 spin_unlock(&huge_anon_orders_lock);
528         } else if (sysfs_streq(buf, "madvise")) {
529                 spin_lock(&huge_anon_orders_lock);
530                 clear_bit(order, &huge_anon_orders_always);
531                 clear_bit(order, &huge_anon_orders_inherit);
532                 set_bit(order, &huge_anon_orders_madvise);
533                 spin_unlock(&huge_anon_orders_lock);
534         } else if (sysfs_streq(buf, "never")) {
535                 spin_lock(&huge_anon_orders_lock);
536                 clear_bit(order, &huge_anon_orders_always);
537                 clear_bit(order, &huge_anon_orders_inherit);
538                 clear_bit(order, &huge_anon_orders_madvise);
539                 spin_unlock(&huge_anon_orders_lock);
540         } else
541                 ret = -EINVAL;
542
543         if (ret > 0) {
544                 int err;
545
546                 err = start_stop_khugepaged();
547                 if (err)
548                         ret = err;
549         }
550         return ret;
551 }
552
553 static struct kobj_attribute anon_enabled_attr =
554         __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
555
556 static struct attribute *anon_ctrl_attrs[] = {
557         &anon_enabled_attr.attr,
558         NULL,
559 };
560
561 static const struct attribute_group anon_ctrl_attr_grp = {
562         .attrs = anon_ctrl_attrs,
563 };
564
565 static struct attribute *file_ctrl_attrs[] = {
566 #ifdef CONFIG_SHMEM
567         &thpsize_shmem_enabled_attr.attr,
568 #endif
569         NULL,
570 };
571
572 static const struct attribute_group file_ctrl_attr_grp = {
573         .attrs = file_ctrl_attrs,
574 };
575
576 static struct attribute *any_ctrl_attrs[] = {
577         NULL,
578 };
579
580 static const struct attribute_group any_ctrl_attr_grp = {
581         .attrs = any_ctrl_attrs,
582 };
583
584 static const struct kobj_type thpsize_ktype = {
585         .release = &thpsize_release,
586         .sysfs_ops = &kobj_sysfs_ops,
587 };
588
589 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
590
591 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
592 {
593         unsigned long sum = 0;
594         int cpu;
595
596         for_each_possible_cpu(cpu) {
597                 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
598
599                 sum += this->stats[order][item];
600         }
601
602         return sum;
603 }
604
605 #define DEFINE_MTHP_STAT_ATTR(_name, _index)                            \
606 static ssize_t _name##_show(struct kobject *kobj,                       \
607                         struct kobj_attribute *attr, char *buf)         \
608 {                                                                       \
609         int order = to_thpsize(kobj)->order;                            \
610                                                                         \
611         return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));  \
612 }                                                                       \
613 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
614
615 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
617 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
618 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
619 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
620 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
621 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
622 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
623 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
624 #ifdef CONFIG_SHMEM
625 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
626 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
627 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
628 #endif
629 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
630 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
631 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
632 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
633 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
634
635 static struct attribute *anon_stats_attrs[] = {
636         &anon_fault_alloc_attr.attr,
637         &anon_fault_fallback_attr.attr,
638         &anon_fault_fallback_charge_attr.attr,
639 #ifndef CONFIG_SHMEM
640         &zswpout_attr.attr,
641         &swpin_attr.attr,
642         &swpin_fallback_attr.attr,
643         &swpin_fallback_charge_attr.attr,
644         &swpout_attr.attr,
645         &swpout_fallback_attr.attr,
646 #endif
647         &split_deferred_attr.attr,
648         &nr_anon_attr.attr,
649         &nr_anon_partially_mapped_attr.attr,
650         NULL,
651 };
652
653 static struct attribute_group anon_stats_attr_grp = {
654         .name = "stats",
655         .attrs = anon_stats_attrs,
656 };
657
658 static struct attribute *file_stats_attrs[] = {
659 #ifdef CONFIG_SHMEM
660         &shmem_alloc_attr.attr,
661         &shmem_fallback_attr.attr,
662         &shmem_fallback_charge_attr.attr,
663 #endif
664         NULL,
665 };
666
667 static struct attribute_group file_stats_attr_grp = {
668         .name = "stats",
669         .attrs = file_stats_attrs,
670 };
671
672 static struct attribute *any_stats_attrs[] = {
673 #ifdef CONFIG_SHMEM
674         &zswpout_attr.attr,
675         &swpin_attr.attr,
676         &swpin_fallback_attr.attr,
677         &swpin_fallback_charge_attr.attr,
678         &swpout_attr.attr,
679         &swpout_fallback_attr.attr,
680 #endif
681         &split_attr.attr,
682         &split_failed_attr.attr,
683         NULL,
684 };
685
686 static struct attribute_group any_stats_attr_grp = {
687         .name = "stats",
688         .attrs = any_stats_attrs,
689 };
690
691 static int sysfs_add_group(struct kobject *kobj,
692                            const struct attribute_group *grp)
693 {
694         int ret = -ENOENT;
695
696         /*
697          * If the group is named, try to merge first, assuming the subdirectory
698          * was already created. This avoids the warning emitted by
699          * sysfs_create_group() if the directory already exists.
700          */
701         if (grp->name)
702                 ret = sysfs_merge_group(kobj, grp);
703         if (ret)
704                 ret = sysfs_create_group(kobj, grp);
705
706         return ret;
707 }
708
709 static struct thpsize *thpsize_create(int order, struct kobject *parent)
710 {
711         unsigned long size = (PAGE_SIZE << order) / SZ_1K;
712         struct thpsize *thpsize;
713         int ret = -ENOMEM;
714
715         thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
716         if (!thpsize)
717                 goto err;
718
719         thpsize->order = order;
720
721         ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
722                                    "hugepages-%lukB", size);
723         if (ret) {
724                 kfree(thpsize);
725                 goto err;
726         }
727
728
729         ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
730         if (ret)
731                 goto err_put;
732
733         ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
734         if (ret)
735                 goto err_put;
736
737         if (BIT(order) & THP_ORDERS_ALL_ANON) {
738                 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
739                 if (ret)
740                         goto err_put;
741
742                 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
743                 if (ret)
744                         goto err_put;
745         }
746
747         if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
748                 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
749                 if (ret)
750                         goto err_put;
751
752                 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
753                 if (ret)
754                         goto err_put;
755         }
756
757         return thpsize;
758 err_put:
759         kobject_put(&thpsize->kobj);
760 err:
761         return ERR_PTR(ret);
762 }
763
764 static void thpsize_release(struct kobject *kobj)
765 {
766         kfree(to_thpsize(kobj));
767 }
768
769 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
770 {
771         int err;
772         struct thpsize *thpsize;
773         unsigned long orders;
774         int order;
775
776         /*
777          * Default to setting PMD-sized THP to inherit the global setting and
778          * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
779          * constant so we have to do this here.
780          */
781         if (!anon_orders_configured)
782                 huge_anon_orders_inherit = BIT(PMD_ORDER);
783
784         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
785         if (unlikely(!*hugepage_kobj)) {
786                 pr_err("failed to create transparent hugepage kobject\n");
787                 return -ENOMEM;
788         }
789
790         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
791         if (err) {
792                 pr_err("failed to register transparent hugepage group\n");
793                 goto delete_obj;
794         }
795
796         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
797         if (err) {
798                 pr_err("failed to register transparent hugepage group\n");
799                 goto remove_hp_group;
800         }
801
802         orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
803         order = highest_order(orders);
804         while (orders) {
805                 thpsize = thpsize_create(order, *hugepage_kobj);
806                 if (IS_ERR(thpsize)) {
807                         pr_err("failed to create thpsize for order %d\n", order);
808                         err = PTR_ERR(thpsize);
809                         goto remove_all;
810                 }
811                 list_add(&thpsize->node, &thpsize_list);
812                 order = next_order(&orders, order);
813         }
814
815         return 0;
816
817 remove_all:
818         hugepage_exit_sysfs(*hugepage_kobj);
819         return err;
820 remove_hp_group:
821         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
822 delete_obj:
823         kobject_put(*hugepage_kobj);
824         return err;
825 }
826
827 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
828 {
829         struct thpsize *thpsize, *tmp;
830
831         list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
832                 list_del(&thpsize->node);
833                 kobject_put(&thpsize->kobj);
834         }
835
836         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
837         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
838         kobject_put(hugepage_kobj);
839 }
840 #else
841 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
842 {
843         return 0;
844 }
845
846 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
847 {
848 }
849 #endif /* CONFIG_SYSFS */
850
851 static int __init thp_shrinker_init(void)
852 {
853         huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
854         if (!huge_zero_page_shrinker)
855                 return -ENOMEM;
856
857         deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
858                                                  SHRINKER_MEMCG_AWARE |
859                                                  SHRINKER_NONSLAB,
860                                                  "thp-deferred_split");
861         if (!deferred_split_shrinker) {
862                 shrinker_free(huge_zero_page_shrinker);
863                 return -ENOMEM;
864         }
865
866         huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
867         huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
868         shrinker_register(huge_zero_page_shrinker);
869
870         deferred_split_shrinker->count_objects = deferred_split_count;
871         deferred_split_shrinker->scan_objects = deferred_split_scan;
872         shrinker_register(deferred_split_shrinker);
873
874         return 0;
875 }
876
877 static void __init thp_shrinker_exit(void)
878 {
879         shrinker_free(huge_zero_page_shrinker);
880         shrinker_free(deferred_split_shrinker);
881 }
882
883 static int __init hugepage_init(void)
884 {
885         int err;
886         struct kobject *hugepage_kobj;
887
888         if (!has_transparent_hugepage()) {
889                 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
890                 return -EINVAL;
891         }
892
893         /*
894          * hugepages can't be allocated by the buddy allocator
895          */
896         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
897
898         err = hugepage_init_sysfs(&hugepage_kobj);
899         if (err)
900                 goto err_sysfs;
901
902         err = khugepaged_init();
903         if (err)
904                 goto err_slab;
905
906         err = thp_shrinker_init();
907         if (err)
908                 goto err_shrinker;
909
910         /*
911          * By default disable transparent hugepages on smaller systems,
912          * where the extra memory used could hurt more than TLB overhead
913          * is likely to save.  The admin can still enable it through /sys.
914          */
915         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
916                 transparent_hugepage_flags = 0;
917                 return 0;
918         }
919
920         err = start_stop_khugepaged();
921         if (err)
922                 goto err_khugepaged;
923
924         return 0;
925 err_khugepaged:
926         thp_shrinker_exit();
927 err_shrinker:
928         khugepaged_destroy();
929 err_slab:
930         hugepage_exit_sysfs(hugepage_kobj);
931 err_sysfs:
932         return err;
933 }
934 subsys_initcall(hugepage_init);
935
936 static int __init setup_transparent_hugepage(char *str)
937 {
938         int ret = 0;
939         if (!str)
940                 goto out;
941         if (!strcmp(str, "always")) {
942                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
943                         &transparent_hugepage_flags);
944                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
945                           &transparent_hugepage_flags);
946                 ret = 1;
947         } else if (!strcmp(str, "madvise")) {
948                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
949                           &transparent_hugepage_flags);
950                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
951                         &transparent_hugepage_flags);
952                 ret = 1;
953         } else if (!strcmp(str, "never")) {
954                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
955                           &transparent_hugepage_flags);
956                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
957                           &transparent_hugepage_flags);
958                 ret = 1;
959         }
960 out:
961         if (!ret)
962                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
963         return ret;
964 }
965 __setup("transparent_hugepage=", setup_transparent_hugepage);
966
967 static char str_dup[PAGE_SIZE] __initdata;
968 static int __init setup_thp_anon(char *str)
969 {
970         char *token, *range, *policy, *subtoken;
971         unsigned long always, inherit, madvise;
972         char *start_size, *end_size;
973         int start, end, nr;
974         char *p;
975
976         if (!str || strlen(str) + 1 > PAGE_SIZE)
977                 goto err;
978         strscpy(str_dup, str);
979
980         always = huge_anon_orders_always;
981         madvise = huge_anon_orders_madvise;
982         inherit = huge_anon_orders_inherit;
983         p = str_dup;
984         while ((token = strsep(&p, ";")) != NULL) {
985                 range = strsep(&token, ":");
986                 policy = token;
987
988                 if (!policy)
989                         goto err;
990
991                 while ((subtoken = strsep(&range, ",")) != NULL) {
992                         if (strchr(subtoken, '-')) {
993                                 start_size = strsep(&subtoken, "-");
994                                 end_size = subtoken;
995
996                                 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
997                                 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
998                         } else {
999                                 start_size = end_size = subtoken;
1000                                 start = end = get_order_from_str(subtoken,
1001                                                                  THP_ORDERS_ALL_ANON);
1002                         }
1003
1004                         if (start == -EINVAL) {
1005                                 pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1006                                 goto err;
1007                         }
1008
1009                         if (end == -EINVAL) {
1010                                 pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1011                                 goto err;
1012                         }
1013
1014                         if (start < 0 || end < 0 || start > end)
1015                                 goto err;
1016
1017                         nr = end - start + 1;
1018                         if (!strcmp(policy, "always")) {
1019                                 bitmap_set(&always, start, nr);
1020                                 bitmap_clear(&inherit, start, nr);
1021                                 bitmap_clear(&madvise, start, nr);
1022                         } else if (!strcmp(policy, "madvise")) {
1023                                 bitmap_set(&madvise, start, nr);
1024                                 bitmap_clear(&inherit, start, nr);
1025                                 bitmap_clear(&always, start, nr);
1026                         } else if (!strcmp(policy, "inherit")) {
1027                                 bitmap_set(&inherit, start, nr);
1028                                 bitmap_clear(&madvise, start, nr);
1029                                 bitmap_clear(&always, start, nr);
1030                         } else if (!strcmp(policy, "never")) {
1031                                 bitmap_clear(&inherit, start, nr);
1032                                 bitmap_clear(&madvise, start, nr);
1033                                 bitmap_clear(&always, start, nr);
1034                         } else {
1035                                 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1036                                 goto err;
1037                         }
1038                 }
1039         }
1040
1041         huge_anon_orders_always = always;
1042         huge_anon_orders_madvise = madvise;
1043         huge_anon_orders_inherit = inherit;
1044         anon_orders_configured = true;
1045         return 1;
1046
1047 err:
1048         pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1049         return 0;
1050 }
1051 __setup("thp_anon=", setup_thp_anon);
1052
1053 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1054 {
1055         if (likely(vma->vm_flags & VM_WRITE))
1056                 pmd = pmd_mkwrite(pmd, vma);
1057         return pmd;
1058 }
1059
1060 #ifdef CONFIG_MEMCG
1061 static inline
1062 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1063 {
1064         struct mem_cgroup *memcg = folio_memcg(folio);
1065         struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1066
1067         if (memcg)
1068                 return &memcg->deferred_split_queue;
1069         else
1070                 return &pgdat->deferred_split_queue;
1071 }
1072 #else
1073 static inline
1074 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1075 {
1076         struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1077
1078         return &pgdat->deferred_split_queue;
1079 }
1080 #endif
1081
1082 static inline bool is_transparent_hugepage(const struct folio *folio)
1083 {
1084         if (!folio_test_large(folio))
1085                 return false;
1086
1087         return is_huge_zero_folio(folio) ||
1088                 folio_test_large_rmappable(folio);
1089 }
1090
1091 static unsigned long __thp_get_unmapped_area(struct file *filp,
1092                 unsigned long addr, unsigned long len,
1093                 loff_t off, unsigned long flags, unsigned long size,
1094                 vm_flags_t vm_flags)
1095 {
1096         loff_t off_end = off + len;
1097         loff_t off_align = round_up(off, size);
1098         unsigned long len_pad, ret, off_sub;
1099
1100         if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1101                 return 0;
1102
1103         if (off_end <= off_align || (off_end - off_align) < size)
1104                 return 0;
1105
1106         len_pad = len + size;
1107         if (len_pad < len || (off + len_pad) < off)
1108                 return 0;
1109
1110         ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1111                                            off >> PAGE_SHIFT, flags, vm_flags);
1112
1113         /*
1114          * The failure might be due to length padding. The caller will retry
1115          * without the padding.
1116          */
1117         if (IS_ERR_VALUE(ret))
1118                 return 0;
1119
1120         /*
1121          * Do not try to align to THP boundary if allocation at the address
1122          * hint succeeds.
1123          */
1124         if (ret == addr)
1125                 return addr;
1126
1127         off_sub = (off - ret) & (size - 1);
1128
1129         if (test_bit(MMF_TOPDOWN, &current->mm->flags) && !off_sub)
1130                 return ret + size;
1131
1132         ret += off_sub;
1133         return ret;
1134 }
1135
1136 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1137                 unsigned long len, unsigned long pgoff, unsigned long flags,
1138                 vm_flags_t vm_flags)
1139 {
1140         unsigned long ret;
1141         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1142
1143         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1144         if (ret)
1145                 return ret;
1146
1147         return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1148                                             vm_flags);
1149 }
1150
1151 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1152                 unsigned long len, unsigned long pgoff, unsigned long flags)
1153 {
1154         return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1155 }
1156 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1157
1158 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1159                 unsigned long addr)
1160 {
1161         gfp_t gfp = vma_thp_gfp_mask(vma);
1162         const int order = HPAGE_PMD_ORDER;
1163         struct folio *folio;
1164
1165         folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1166
1167         if (unlikely(!folio)) {
1168                 count_vm_event(THP_FAULT_FALLBACK);
1169                 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1170                 return NULL;
1171         }
1172
1173         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1174         if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1175                 folio_put(folio);
1176                 count_vm_event(THP_FAULT_FALLBACK);
1177                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1178                 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1179                 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1180                 return NULL;
1181         }
1182         folio_throttle_swaprate(folio, gfp);
1183
1184        /*
1185         * When a folio is not zeroed during allocation (__GFP_ZERO not used)
1186         * or user folios require special handling, folio_zero_user() is used to
1187         * make sure that the page corresponding to the faulting address will be
1188         * hot in the cache after zeroing.
1189         */
1190         if (user_alloc_needs_zeroing())
1191                 folio_zero_user(folio, addr);
1192         /*
1193          * The memory barrier inside __folio_mark_uptodate makes sure that
1194          * folio_zero_user writes become visible before the set_pmd_at()
1195          * write.
1196          */
1197         __folio_mark_uptodate(folio);
1198         return folio;
1199 }
1200
1201 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1202                 struct vm_area_struct *vma, unsigned long haddr)
1203 {
1204         pmd_t entry;
1205
1206         entry = folio_mk_pmd(folio, vma->vm_page_prot);
1207         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1208         folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1209         folio_add_lru_vma(folio, vma);
1210         set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1211         update_mmu_cache_pmd(vma, haddr, pmd);
1212         add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1213         count_vm_event(THP_FAULT_ALLOC);
1214         count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1215         count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1216 }
1217
1218 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1219 {
1220         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1221         struct vm_area_struct *vma = vmf->vma;
1222         struct folio *folio;
1223         pgtable_t pgtable;
1224         vm_fault_t ret = 0;
1225
1226         folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1227         if (unlikely(!folio))
1228                 return VM_FAULT_FALLBACK;
1229
1230         pgtable = pte_alloc_one(vma->vm_mm);
1231         if (unlikely(!pgtable)) {
1232                 ret = VM_FAULT_OOM;
1233                 goto release;
1234         }
1235
1236         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1237         if (unlikely(!pmd_none(*vmf->pmd))) {
1238                 goto unlock_release;
1239         } else {
1240                 ret = check_stable_address_space(vma->vm_mm);
1241                 if (ret)
1242                         goto unlock_release;
1243
1244                 /* Deliver the page fault to userland */
1245                 if (userfaultfd_missing(vma)) {
1246                         spin_unlock(vmf->ptl);
1247                         folio_put(folio);
1248                         pte_free(vma->vm_mm, pgtable);
1249                         ret = handle_userfault(vmf, VM_UFFD_MISSING);
1250                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1251                         return ret;
1252                 }
1253                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1254                 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1255                 mm_inc_nr_ptes(vma->vm_mm);
1256                 deferred_split_folio(folio, false);
1257                 spin_unlock(vmf->ptl);
1258         }
1259
1260         return 0;
1261 unlock_release:
1262         spin_unlock(vmf->ptl);
1263 release:
1264         if (pgtable)
1265                 pte_free(vma->vm_mm, pgtable);
1266         folio_put(folio);
1267         return ret;
1268
1269 }
1270
1271 /*
1272  * always: directly stall for all thp allocations
1273  * defer: wake kswapd and fail if not immediately available
1274  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1275  *                fail if not immediately available
1276  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1277  *          available
1278  * never: never stall for any thp allocation
1279  */
1280 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1281 {
1282         const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1283
1284         /* Always do synchronous compaction */
1285         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1286                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1287
1288         /* Kick kcompactd and fail quickly */
1289         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1290                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1291
1292         /* Synchronous compaction if madvised, otherwise kick kcompactd */
1293         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1294                 return GFP_TRANSHUGE_LIGHT |
1295                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
1296                                         __GFP_KSWAPD_RECLAIM);
1297
1298         /* Only do synchronous compaction if madvised */
1299         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1300                 return GFP_TRANSHUGE_LIGHT |
1301                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1302
1303         return GFP_TRANSHUGE_LIGHT;
1304 }
1305
1306 /* Caller must hold page table lock. */
1307 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1308                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1309                 struct folio *zero_folio)
1310 {
1311         pmd_t entry;
1312         entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1313         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1314         set_pmd_at(mm, haddr, pmd, entry);
1315         mm_inc_nr_ptes(mm);
1316 }
1317
1318 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1319 {
1320         struct vm_area_struct *vma = vmf->vma;
1321         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1322         vm_fault_t ret;
1323
1324         if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1325                 return VM_FAULT_FALLBACK;
1326         ret = vmf_anon_prepare(vmf);
1327         if (ret)
1328                 return ret;
1329         khugepaged_enter_vma(vma, vma->vm_flags);
1330
1331         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1332                         !mm_forbids_zeropage(vma->vm_mm) &&
1333                         transparent_hugepage_use_zero_page()) {
1334                 pgtable_t pgtable;
1335                 struct folio *zero_folio;
1336                 vm_fault_t ret;
1337
1338                 pgtable = pte_alloc_one(vma->vm_mm);
1339                 if (unlikely(!pgtable))
1340                         return VM_FAULT_OOM;
1341                 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1342                 if (unlikely(!zero_folio)) {
1343                         pte_free(vma->vm_mm, pgtable);
1344                         count_vm_event(THP_FAULT_FALLBACK);
1345                         return VM_FAULT_FALLBACK;
1346                 }
1347                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1348                 ret = 0;
1349                 if (pmd_none(*vmf->pmd)) {
1350                         ret = check_stable_address_space(vma->vm_mm);
1351                         if (ret) {
1352                                 spin_unlock(vmf->ptl);
1353                                 pte_free(vma->vm_mm, pgtable);
1354                         } else if (userfaultfd_missing(vma)) {
1355                                 spin_unlock(vmf->ptl);
1356                                 pte_free(vma->vm_mm, pgtable);
1357                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1358                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1359                         } else {
1360                                 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1361                                                    haddr, vmf->pmd, zero_folio);
1362                                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1363                                 spin_unlock(vmf->ptl);
1364                         }
1365                 } else {
1366                         spin_unlock(vmf->ptl);
1367                         pte_free(vma->vm_mm, pgtable);
1368                 }
1369                 return ret;
1370         }
1371
1372         return __do_huge_pmd_anonymous_page(vmf);
1373 }
1374
1375 static int insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1376                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1377                 pgtable_t pgtable)
1378 {
1379         struct mm_struct *mm = vma->vm_mm;
1380         pmd_t entry;
1381
1382         lockdep_assert_held(pmd_lockptr(mm, pmd));
1383
1384         if (!pmd_none(*pmd)) {
1385                 if (write) {
1386                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1387                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1388                                 return -EEXIST;
1389                         }
1390                         entry = pmd_mkyoung(*pmd);
1391                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1392                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1393                                 update_mmu_cache_pmd(vma, addr, pmd);
1394                 }
1395
1396                 return -EEXIST;
1397         }
1398
1399         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1400         if (pfn_t_devmap(pfn))
1401                 entry = pmd_mkdevmap(entry);
1402         else
1403                 entry = pmd_mkspecial(entry);
1404         if (write) {
1405                 entry = pmd_mkyoung(pmd_mkdirty(entry));
1406                 entry = maybe_pmd_mkwrite(entry, vma);
1407         }
1408
1409         if (pgtable) {
1410                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1411                 mm_inc_nr_ptes(mm);
1412         }
1413
1414         set_pmd_at(mm, addr, pmd, entry);
1415         update_mmu_cache_pmd(vma, addr, pmd);
1416         return 0;
1417 }
1418
1419 /**
1420  * vmf_insert_pfn_pmd - insert a pmd size pfn
1421  * @vmf: Structure describing the fault
1422  * @pfn: pfn to insert
1423  * @write: whether it's a write fault
1424  *
1425  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1426  *
1427  * Return: vm_fault_t value.
1428  */
1429 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1430 {
1431         unsigned long addr = vmf->address & PMD_MASK;
1432         struct vm_area_struct *vma = vmf->vma;
1433         pgprot_t pgprot = vma->vm_page_prot;
1434         pgtable_t pgtable = NULL;
1435         spinlock_t *ptl;
1436         int error;
1437
1438         /*
1439          * If we had pmd_special, we could avoid all these restrictions,
1440          * but we need to be consistent with PTEs and architectures that
1441          * can't support a 'special' bit.
1442          */
1443         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1444                         !pfn_t_devmap(pfn));
1445         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1446                                                 (VM_PFNMAP|VM_MIXEDMAP));
1447         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1448
1449         if (addr < vma->vm_start || addr >= vma->vm_end)
1450                 return VM_FAULT_SIGBUS;
1451
1452         if (arch_needs_pgtable_deposit()) {
1453                 pgtable = pte_alloc_one(vma->vm_mm);
1454                 if (!pgtable)
1455                         return VM_FAULT_OOM;
1456         }
1457
1458         pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot);
1459
1460         ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1461         error = insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write,
1462                         pgtable);
1463         spin_unlock(ptl);
1464         if (error && pgtable)
1465                 pte_free(vma->vm_mm, pgtable);
1466
1467         return VM_FAULT_NOPAGE;
1468 }
1469 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1470
1471 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1472                                 bool write)
1473 {
1474         struct vm_area_struct *vma = vmf->vma;
1475         unsigned long addr = vmf->address & PMD_MASK;
1476         struct mm_struct *mm = vma->vm_mm;
1477         spinlock_t *ptl;
1478         pgtable_t pgtable = NULL;
1479         int error;
1480
1481         if (addr < vma->vm_start || addr >= vma->vm_end)
1482                 return VM_FAULT_SIGBUS;
1483
1484         if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1485                 return VM_FAULT_SIGBUS;
1486
1487         if (arch_needs_pgtable_deposit()) {
1488                 pgtable = pte_alloc_one(vma->vm_mm);
1489                 if (!pgtable)
1490                         return VM_FAULT_OOM;
1491         }
1492
1493         ptl = pmd_lock(mm, vmf->pmd);
1494         if (pmd_none(*vmf->pmd)) {
1495                 folio_get(folio);
1496                 folio_add_file_rmap_pmd(folio, &folio->page, vma);
1497                 add_mm_counter(mm, mm_counter_file(folio), HPAGE_PMD_NR);
1498         }
1499         error = insert_pfn_pmd(vma, addr, vmf->pmd,
1500                         pfn_to_pfn_t(folio_pfn(folio)), vma->vm_page_prot,
1501                         write, pgtable);
1502         spin_unlock(ptl);
1503         if (error && pgtable)
1504                 pte_free(mm, pgtable);
1505
1506         return VM_FAULT_NOPAGE;
1507 }
1508 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1509
1510 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1511 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1512 {
1513         if (likely(vma->vm_flags & VM_WRITE))
1514                 pud = pud_mkwrite(pud);
1515         return pud;
1516 }
1517
1518 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1519                 pud_t *pud, pfn_t pfn, bool write)
1520 {
1521         struct mm_struct *mm = vma->vm_mm;
1522         pgprot_t prot = vma->vm_page_prot;
1523         pud_t entry;
1524
1525         if (!pud_none(*pud)) {
1526                 if (write) {
1527                         if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1528                                 return;
1529                         entry = pud_mkyoung(*pud);
1530                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1531                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1532                                 update_mmu_cache_pud(vma, addr, pud);
1533                 }
1534                 return;
1535         }
1536
1537         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1538         if (pfn_t_devmap(pfn))
1539                 entry = pud_mkdevmap(entry);
1540         else
1541                 entry = pud_mkspecial(entry);
1542         if (write) {
1543                 entry = pud_mkyoung(pud_mkdirty(entry));
1544                 entry = maybe_pud_mkwrite(entry, vma);
1545         }
1546         set_pud_at(mm, addr, pud, entry);
1547         update_mmu_cache_pud(vma, addr, pud);
1548 }
1549
1550 /**
1551  * vmf_insert_pfn_pud - insert a pud size pfn
1552  * @vmf: Structure describing the fault
1553  * @pfn: pfn to insert
1554  * @write: whether it's a write fault
1555  *
1556  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1557  *
1558  * Return: vm_fault_t value.
1559  */
1560 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1561 {
1562         unsigned long addr = vmf->address & PUD_MASK;
1563         struct vm_area_struct *vma = vmf->vma;
1564         pgprot_t pgprot = vma->vm_page_prot;
1565         spinlock_t *ptl;
1566
1567         /*
1568          * If we had pud_special, we could avoid all these restrictions,
1569          * but we need to be consistent with PTEs and architectures that
1570          * can't support a 'special' bit.
1571          */
1572         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1573                         !pfn_t_devmap(pfn));
1574         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1575                                                 (VM_PFNMAP|VM_MIXEDMAP));
1576         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1577
1578         if (addr < vma->vm_start || addr >= vma->vm_end)
1579                 return VM_FAULT_SIGBUS;
1580
1581         pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot);
1582
1583         ptl = pud_lock(vma->vm_mm, vmf->pud);
1584         insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1585         spin_unlock(ptl);
1586
1587         return VM_FAULT_NOPAGE;
1588 }
1589 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1590
1591 /**
1592  * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1593  * @vmf: Structure describing the fault
1594  * @folio: folio to insert
1595  * @write: whether it's a write fault
1596  *
1597  * Return: vm_fault_t value.
1598  */
1599 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1600                                 bool write)
1601 {
1602         struct vm_area_struct *vma = vmf->vma;
1603         unsigned long addr = vmf->address & PUD_MASK;
1604         pud_t *pud = vmf->pud;
1605         struct mm_struct *mm = vma->vm_mm;
1606         spinlock_t *ptl;
1607
1608         if (addr < vma->vm_start || addr >= vma->vm_end)
1609                 return VM_FAULT_SIGBUS;
1610
1611         if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1612                 return VM_FAULT_SIGBUS;
1613
1614         ptl = pud_lock(mm, pud);
1615
1616         /*
1617          * If there is already an entry present we assume the folio is
1618          * already mapped, hence no need to take another reference. We
1619          * still call insert_pfn_pud() though in case the mapping needs
1620          * upgrading to writeable.
1621          */
1622         if (pud_none(*vmf->pud)) {
1623                 folio_get(folio);
1624                 folio_add_file_rmap_pud(folio, &folio->page, vma);
1625                 add_mm_counter(mm, mm_counter_file(folio), HPAGE_PUD_NR);
1626         }
1627         insert_pfn_pud(vma, addr, vmf->pud, pfn_to_pfn_t(folio_pfn(folio)),
1628                 write);
1629         spin_unlock(ptl);
1630
1631         return VM_FAULT_NOPAGE;
1632 }
1633 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1634 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1635
1636 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1637                pmd_t *pmd, bool write)
1638 {
1639         pmd_t _pmd;
1640
1641         _pmd = pmd_mkyoung(*pmd);
1642         if (write)
1643                 _pmd = pmd_mkdirty(_pmd);
1644         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1645                                   pmd, _pmd, write))
1646                 update_mmu_cache_pmd(vma, addr, pmd);
1647 }
1648
1649 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1650                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1651 {
1652         unsigned long pfn = pmd_pfn(*pmd);
1653         struct mm_struct *mm = vma->vm_mm;
1654         struct page *page;
1655         int ret;
1656
1657         assert_spin_locked(pmd_lockptr(mm, pmd));
1658
1659         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1660                 return NULL;
1661
1662         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1663                 /* pass */;
1664         else
1665                 return NULL;
1666
1667         if (flags & FOLL_TOUCH)
1668                 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1669
1670         /*
1671          * device mapped pages can only be returned if the
1672          * caller will manage the page reference count.
1673          */
1674         if (!(flags & (FOLL_GET | FOLL_PIN)))
1675                 return ERR_PTR(-EEXIST);
1676
1677         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1678         *pgmap = get_dev_pagemap(pfn, *pgmap);
1679         if (!*pgmap)
1680                 return ERR_PTR(-EFAULT);
1681         page = pfn_to_page(pfn);
1682         ret = try_grab_folio(page_folio(page), 1, flags);
1683         if (ret)
1684                 page = ERR_PTR(ret);
1685
1686         return page;
1687 }
1688
1689 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1690                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1691                   struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1692 {
1693         spinlock_t *dst_ptl, *src_ptl;
1694         struct page *src_page;
1695         struct folio *src_folio;
1696         pmd_t pmd;
1697         pgtable_t pgtable = NULL;
1698         int ret = -ENOMEM;
1699
1700         pmd = pmdp_get_lockless(src_pmd);
1701         if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1702                 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1703                 src_ptl = pmd_lockptr(src_mm, src_pmd);
1704                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1705                 /*
1706                  * No need to recheck the pmd, it can't change with write
1707                  * mmap lock held here.
1708                  *
1709                  * Meanwhile, making sure it's not a CoW VMA with writable
1710                  * mapping, otherwise it means either the anon page wrongly
1711                  * applied special bit, or we made the PRIVATE mapping be
1712                  * able to wrongly write to the backend MMIO.
1713                  */
1714                 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1715                 goto set_pmd;
1716         }
1717
1718         /* Skip if can be re-fill on fault */
1719         if (!vma_is_anonymous(dst_vma))
1720                 return 0;
1721
1722         pgtable = pte_alloc_one(dst_mm);
1723         if (unlikely(!pgtable))
1724                 goto out;
1725
1726         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1727         src_ptl = pmd_lockptr(src_mm, src_pmd);
1728         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1729
1730         ret = -EAGAIN;
1731         pmd = *src_pmd;
1732
1733 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1734         if (unlikely(is_swap_pmd(pmd))) {
1735                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1736
1737                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1738                 if (!is_readable_migration_entry(entry)) {
1739                         entry = make_readable_migration_entry(
1740                                                         swp_offset(entry));
1741                         pmd = swp_entry_to_pmd(entry);
1742                         if (pmd_swp_soft_dirty(*src_pmd))
1743                                 pmd = pmd_swp_mksoft_dirty(pmd);
1744                         if (pmd_swp_uffd_wp(*src_pmd))
1745                                 pmd = pmd_swp_mkuffd_wp(pmd);
1746                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1747                 }
1748                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1749                 mm_inc_nr_ptes(dst_mm);
1750                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1751                 if (!userfaultfd_wp(dst_vma))
1752                         pmd = pmd_swp_clear_uffd_wp(pmd);
1753                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1754                 ret = 0;
1755                 goto out_unlock;
1756         }
1757 #endif
1758
1759         if (unlikely(!pmd_trans_huge(pmd))) {
1760                 pte_free(dst_mm, pgtable);
1761                 goto out_unlock;
1762         }
1763         /*
1764          * When page table lock is held, the huge zero pmd should not be
1765          * under splitting since we don't split the page itself, only pmd to
1766          * a page table.
1767          */
1768         if (is_huge_zero_pmd(pmd)) {
1769                 /*
1770                  * mm_get_huge_zero_folio() will never allocate a new
1771                  * folio here, since we already have a zero page to
1772                  * copy. It just takes a reference.
1773                  */
1774                 mm_get_huge_zero_folio(dst_mm);
1775                 goto out_zero_page;
1776         }
1777
1778         src_page = pmd_page(pmd);
1779         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1780         src_folio = page_folio(src_page);
1781
1782         folio_get(src_folio);
1783         if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1784                 /* Page maybe pinned: split and retry the fault on PTEs. */
1785                 folio_put(src_folio);
1786                 pte_free(dst_mm, pgtable);
1787                 spin_unlock(src_ptl);
1788                 spin_unlock(dst_ptl);
1789                 __split_huge_pmd(src_vma, src_pmd, addr, false);
1790                 return -EAGAIN;
1791         }
1792         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1793 out_zero_page:
1794         mm_inc_nr_ptes(dst_mm);
1795         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1796         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1797         if (!userfaultfd_wp(dst_vma))
1798                 pmd = pmd_clear_uffd_wp(pmd);
1799         pmd = pmd_wrprotect(pmd);
1800 set_pmd:
1801         pmd = pmd_mkold(pmd);
1802         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1803
1804         ret = 0;
1805 out_unlock:
1806         spin_unlock(src_ptl);
1807         spin_unlock(dst_ptl);
1808 out:
1809         return ret;
1810 }
1811
1812 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1813 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1814                pud_t *pud, bool write)
1815 {
1816         pud_t _pud;
1817
1818         _pud = pud_mkyoung(*pud);
1819         if (write)
1820                 _pud = pud_mkdirty(_pud);
1821         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1822                                   pud, _pud, write))
1823                 update_mmu_cache_pud(vma, addr, pud);
1824 }
1825
1826 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1827                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1828                   struct vm_area_struct *vma)
1829 {
1830         spinlock_t *dst_ptl, *src_ptl;
1831         pud_t pud;
1832         int ret;
1833
1834         dst_ptl = pud_lock(dst_mm, dst_pud);
1835         src_ptl = pud_lockptr(src_mm, src_pud);
1836         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1837
1838         ret = -EAGAIN;
1839         pud = *src_pud;
1840         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1841                 goto out_unlock;
1842
1843         /*
1844          * TODO: once we support anonymous pages, use
1845          * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1846          */
1847         if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1848                 pudp_set_wrprotect(src_mm, addr, src_pud);
1849                 pud = pud_wrprotect(pud);
1850         }
1851         pud = pud_mkold(pud);
1852         set_pud_at(dst_mm, addr, dst_pud, pud);
1853
1854         ret = 0;
1855 out_unlock:
1856         spin_unlock(src_ptl);
1857         spin_unlock(dst_ptl);
1858         return ret;
1859 }
1860
1861 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1862 {
1863         bool write = vmf->flags & FAULT_FLAG_WRITE;
1864
1865         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1866         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1867                 goto unlock;
1868
1869         touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1870 unlock:
1871         spin_unlock(vmf->ptl);
1872 }
1873 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1874
1875 void huge_pmd_set_accessed(struct vm_fault *vmf)
1876 {
1877         bool write = vmf->flags & FAULT_FLAG_WRITE;
1878
1879         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1880         if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1881                 goto unlock;
1882
1883         touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1884
1885 unlock:
1886         spin_unlock(vmf->ptl);
1887 }
1888
1889 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1890 {
1891         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1892         struct vm_area_struct *vma = vmf->vma;
1893         struct mmu_notifier_range range;
1894         struct folio *folio;
1895         vm_fault_t ret = 0;
1896
1897         folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1898         if (unlikely(!folio))
1899                 return VM_FAULT_FALLBACK;
1900
1901         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1902                                 haddr + HPAGE_PMD_SIZE);
1903         mmu_notifier_invalidate_range_start(&range);
1904         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1905         if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1906                 goto release;
1907         ret = check_stable_address_space(vma->vm_mm);
1908         if (ret)
1909                 goto release;
1910         (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1911         map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1912         goto unlock;
1913 release:
1914         folio_put(folio);
1915 unlock:
1916         spin_unlock(vmf->ptl);
1917         mmu_notifier_invalidate_range_end(&range);
1918         return ret;
1919 }
1920
1921 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1922 {
1923         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1924         struct vm_area_struct *vma = vmf->vma;
1925         struct folio *folio;
1926         struct page *page;
1927         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1928         pmd_t orig_pmd = vmf->orig_pmd;
1929
1930         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1931         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1932
1933         if (is_huge_zero_pmd(orig_pmd)) {
1934                 vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1935
1936                 if (!(ret & VM_FAULT_FALLBACK))
1937                         return ret;
1938
1939                 /* Fallback to splitting PMD if THP cannot be allocated */
1940                 goto fallback;
1941         }
1942
1943         spin_lock(vmf->ptl);
1944
1945         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1946                 spin_unlock(vmf->ptl);
1947                 return 0;
1948         }
1949
1950         page = pmd_page(orig_pmd);
1951         folio = page_folio(page);
1952         VM_BUG_ON_PAGE(!PageHead(page), page);
1953
1954         /* Early check when only holding the PT lock. */
1955         if (PageAnonExclusive(page))
1956                 goto reuse;
1957
1958         if (!folio_trylock(folio)) {
1959                 folio_get(folio);
1960                 spin_unlock(vmf->ptl);
1961                 folio_lock(folio);
1962                 spin_lock(vmf->ptl);
1963                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1964                         spin_unlock(vmf->ptl);
1965                         folio_unlock(folio);
1966                         folio_put(folio);
1967                         return 0;
1968                 }
1969                 folio_put(folio);
1970         }
1971
1972         /* Recheck after temporarily dropping the PT lock. */
1973         if (PageAnonExclusive(page)) {
1974                 folio_unlock(folio);
1975                 goto reuse;
1976         }
1977
1978         /*
1979          * See do_wp_page(): we can only reuse the folio exclusively if
1980          * there are no additional references. Note that we always drain
1981          * the LRU cache immediately after adding a THP.
1982          */
1983         if (folio_ref_count(folio) >
1984                         1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1985                 goto unlock_fallback;
1986         if (folio_test_swapcache(folio))
1987                 folio_free_swap(folio);
1988         if (folio_ref_count(folio) == 1) {
1989                 pmd_t entry;
1990
1991                 folio_move_anon_rmap(folio, vma);
1992                 SetPageAnonExclusive(page);
1993                 folio_unlock(folio);
1994 reuse:
1995                 if (unlikely(unshare)) {
1996                         spin_unlock(vmf->ptl);
1997                         return 0;
1998                 }
1999                 entry = pmd_mkyoung(orig_pmd);
2000                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2001                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
2002                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2003                 spin_unlock(vmf->ptl);
2004                 return 0;
2005         }
2006
2007 unlock_fallback:
2008         folio_unlock(folio);
2009         spin_unlock(vmf->ptl);
2010 fallback:
2011         __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
2012         return VM_FAULT_FALLBACK;
2013 }
2014
2015 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
2016                                            unsigned long addr, pmd_t pmd)
2017 {
2018         struct page *page;
2019
2020         if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
2021                 return false;
2022
2023         /* Don't touch entries that are not even readable (NUMA hinting). */
2024         if (pmd_protnone(pmd))
2025                 return false;
2026
2027         /* Do we need write faults for softdirty tracking? */
2028         if (pmd_needs_soft_dirty_wp(vma, pmd))
2029                 return false;
2030
2031         /* Do we need write faults for uffd-wp tracking? */
2032         if (userfaultfd_huge_pmd_wp(vma, pmd))
2033                 return false;
2034
2035         if (!(vma->vm_flags & VM_SHARED)) {
2036                 /* See can_change_pte_writable(). */
2037                 page = vm_normal_page_pmd(vma, addr, pmd);
2038                 return page && PageAnon(page) && PageAnonExclusive(page);
2039         }
2040
2041         /* See can_change_pte_writable(). */
2042         return pmd_dirty(pmd);
2043 }
2044
2045 /* NUMA hinting page fault entry point for trans huge pmds */
2046 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2047 {
2048         struct vm_area_struct *vma = vmf->vma;
2049         struct folio *folio;
2050         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2051         int nid = NUMA_NO_NODE;
2052         int target_nid, last_cpupid;
2053         pmd_t pmd, old_pmd;
2054         bool writable = false;
2055         int flags = 0;
2056
2057         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2058         old_pmd = pmdp_get(vmf->pmd);
2059
2060         if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2061                 spin_unlock(vmf->ptl);
2062                 return 0;
2063         }
2064
2065         pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2066
2067         /*
2068          * Detect now whether the PMD could be writable; this information
2069          * is only valid while holding the PT lock.
2070          */
2071         writable = pmd_write(pmd);
2072         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2073             can_change_pmd_writable(vma, vmf->address, pmd))
2074                 writable = true;
2075
2076         folio = vm_normal_folio_pmd(vma, haddr, pmd);
2077         if (!folio)
2078                 goto out_map;
2079
2080         nid = folio_nid(folio);
2081
2082         target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2083                                         &last_cpupid);
2084         if (target_nid == NUMA_NO_NODE)
2085                 goto out_map;
2086         if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2087                 flags |= TNF_MIGRATE_FAIL;
2088                 goto out_map;
2089         }
2090         /* The folio is isolated and isolation code holds a folio reference. */
2091         spin_unlock(vmf->ptl);
2092         writable = false;
2093
2094         if (!migrate_misplaced_folio(folio, target_nid)) {
2095                 flags |= TNF_MIGRATED;
2096                 nid = target_nid;
2097                 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2098                 return 0;
2099         }
2100
2101         flags |= TNF_MIGRATE_FAIL;
2102         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2103         if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2104                 spin_unlock(vmf->ptl);
2105                 return 0;
2106         }
2107 out_map:
2108         /* Restore the PMD */
2109         pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2110         pmd = pmd_mkyoung(pmd);
2111         if (writable)
2112                 pmd = pmd_mkwrite(pmd, vma);
2113         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2114         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2115         spin_unlock(vmf->ptl);
2116
2117         if (nid != NUMA_NO_NODE)
2118                 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2119         return 0;
2120 }
2121
2122 /*
2123  * Return true if we do MADV_FREE successfully on entire pmd page.
2124  * Otherwise, return false.
2125  */
2126 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2127                 pmd_t *pmd, unsigned long addr, unsigned long next)
2128 {
2129         spinlock_t *ptl;
2130         pmd_t orig_pmd;
2131         struct folio *folio;
2132         struct mm_struct *mm = tlb->mm;
2133         bool ret = false;
2134
2135         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2136
2137         ptl = pmd_trans_huge_lock(pmd, vma);
2138         if (!ptl)
2139                 goto out_unlocked;
2140
2141         orig_pmd = *pmd;
2142         if (is_huge_zero_pmd(orig_pmd))
2143                 goto out;
2144
2145         if (unlikely(!pmd_present(orig_pmd))) {
2146                 VM_BUG_ON(thp_migration_supported() &&
2147                                   !is_pmd_migration_entry(orig_pmd));
2148                 goto out;
2149         }
2150
2151         folio = pmd_folio(orig_pmd);
2152         /*
2153          * If other processes are mapping this folio, we couldn't discard
2154          * the folio unless they all do MADV_FREE so let's skip the folio.
2155          */
2156         if (folio_maybe_mapped_shared(folio))
2157                 goto out;
2158
2159         if (!folio_trylock(folio))
2160                 goto out;
2161
2162         /*
2163          * If user want to discard part-pages of THP, split it so MADV_FREE
2164          * will deactivate only them.
2165          */
2166         if (next - addr != HPAGE_PMD_SIZE) {
2167                 folio_get(folio);
2168                 spin_unlock(ptl);
2169                 split_folio(folio);
2170                 folio_unlock(folio);
2171                 folio_put(folio);
2172                 goto out_unlocked;
2173         }
2174
2175         if (folio_test_dirty(folio))
2176                 folio_clear_dirty(folio);
2177         folio_unlock(folio);
2178
2179         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2180                 pmdp_invalidate(vma, addr, pmd);
2181                 orig_pmd = pmd_mkold(orig_pmd);
2182                 orig_pmd = pmd_mkclean(orig_pmd);
2183
2184                 set_pmd_at(mm, addr, pmd, orig_pmd);
2185                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2186         }
2187
2188         folio_mark_lazyfree(folio);
2189         ret = true;
2190 out:
2191         spin_unlock(ptl);
2192 out_unlocked:
2193         return ret;
2194 }
2195
2196 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2197 {
2198         pgtable_t pgtable;
2199
2200         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2201         pte_free(mm, pgtable);
2202         mm_dec_nr_ptes(mm);
2203 }
2204
2205 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2206                  pmd_t *pmd, unsigned long addr)
2207 {
2208         pmd_t orig_pmd;
2209         spinlock_t *ptl;
2210
2211         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2212
2213         ptl = __pmd_trans_huge_lock(pmd, vma);
2214         if (!ptl)
2215                 return 0;
2216         /*
2217          * For architectures like ppc64 we look at deposited pgtable
2218          * when calling pmdp_huge_get_and_clear. So do the
2219          * pgtable_trans_huge_withdraw after finishing pmdp related
2220          * operations.
2221          */
2222         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2223                                                 tlb->fullmm);
2224         arch_check_zapped_pmd(vma, orig_pmd);
2225         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2226         if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2227                 if (arch_needs_pgtable_deposit())
2228                         zap_deposited_table(tlb->mm, pmd);
2229                 spin_unlock(ptl);
2230         } else if (is_huge_zero_pmd(orig_pmd)) {
2231                 if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2232                         zap_deposited_table(tlb->mm, pmd);
2233                 spin_unlock(ptl);
2234         } else {
2235                 struct folio *folio = NULL;
2236                 int flush_needed = 1;
2237
2238                 if (pmd_present(orig_pmd)) {
2239                         struct page *page = pmd_page(orig_pmd);
2240
2241                         folio = page_folio(page);
2242                         folio_remove_rmap_pmd(folio, page, vma);
2243                         WARN_ON_ONCE(folio_mapcount(folio) < 0);
2244                         VM_BUG_ON_PAGE(!PageHead(page), page);
2245                 } else if (thp_migration_supported()) {
2246                         swp_entry_t entry;
2247
2248                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2249                         entry = pmd_to_swp_entry(orig_pmd);
2250                         folio = pfn_swap_entry_folio(entry);
2251                         flush_needed = 0;
2252                 } else
2253                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2254
2255                 if (folio_test_anon(folio)) {
2256                         zap_deposited_table(tlb->mm, pmd);
2257                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2258                 } else {
2259                         if (arch_needs_pgtable_deposit())
2260                                 zap_deposited_table(tlb->mm, pmd);
2261                         add_mm_counter(tlb->mm, mm_counter_file(folio),
2262                                        -HPAGE_PMD_NR);
2263
2264                         /*
2265                          * Use flush_needed to indicate whether the PMD entry
2266                          * is present, instead of checking pmd_present() again.
2267                          */
2268                         if (flush_needed && pmd_young(orig_pmd) &&
2269                             likely(vma_has_recency(vma)))
2270                                 folio_mark_accessed(folio);
2271                 }
2272
2273                 spin_unlock(ptl);
2274                 if (flush_needed)
2275                         tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2276         }
2277         return 1;
2278 }
2279
2280 #ifndef pmd_move_must_withdraw
2281 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2282                                          spinlock_t *old_pmd_ptl,
2283                                          struct vm_area_struct *vma)
2284 {
2285         /*
2286          * With split pmd lock we also need to move preallocated
2287          * PTE page table if new_pmd is on different PMD page table.
2288          *
2289          * We also don't deposit and withdraw tables for file pages.
2290          */
2291         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2292 }
2293 #endif
2294
2295 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2296 {
2297 #ifdef CONFIG_MEM_SOFT_DIRTY
2298         if (unlikely(is_pmd_migration_entry(pmd)))
2299                 pmd = pmd_swp_mksoft_dirty(pmd);
2300         else if (pmd_present(pmd))
2301                 pmd = pmd_mksoft_dirty(pmd);
2302 #endif
2303         return pmd;
2304 }
2305
2306 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2307 {
2308         if (pmd_present(pmd))
2309                 pmd = pmd_clear_uffd_wp(pmd);
2310         else if (is_swap_pmd(pmd))
2311                 pmd = pmd_swp_clear_uffd_wp(pmd);
2312
2313         return pmd;
2314 }
2315
2316 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2317                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2318 {
2319         spinlock_t *old_ptl, *new_ptl;
2320         pmd_t pmd;
2321         struct mm_struct *mm = vma->vm_mm;
2322         bool force_flush = false;
2323
2324         /*
2325          * The destination pmd shouldn't be established, free_pgtables()
2326          * should have released it; but move_page_tables() might have already
2327          * inserted a page table, if racing against shmem/file collapse.
2328          */
2329         if (!pmd_none(*new_pmd)) {
2330                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2331                 return false;
2332         }
2333
2334         /*
2335          * We don't have to worry about the ordering of src and dst
2336          * ptlocks because exclusive mmap_lock prevents deadlock.
2337          */
2338         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2339         if (old_ptl) {
2340                 new_ptl = pmd_lockptr(mm, new_pmd);
2341                 if (new_ptl != old_ptl)
2342                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2343                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2344                 if (pmd_present(pmd))
2345                         force_flush = true;
2346                 VM_BUG_ON(!pmd_none(*new_pmd));
2347
2348                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2349                         pgtable_t pgtable;
2350                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2351                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2352                 }
2353                 pmd = move_soft_dirty_pmd(pmd);
2354                 if (vma_has_uffd_without_event_remap(vma))
2355                         pmd = clear_uffd_wp_pmd(pmd);
2356                 set_pmd_at(mm, new_addr, new_pmd, pmd);
2357                 if (force_flush)
2358                         flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2359                 if (new_ptl != old_ptl)
2360                         spin_unlock(new_ptl);
2361                 spin_unlock(old_ptl);
2362                 return true;
2363         }
2364         return false;
2365 }
2366
2367 /*
2368  * Returns
2369  *  - 0 if PMD could not be locked
2370  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2371  *      or if prot_numa but THP migration is not supported
2372  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2373  */
2374 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2375                     pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2376                     unsigned long cp_flags)
2377 {
2378         struct mm_struct *mm = vma->vm_mm;
2379         spinlock_t *ptl;
2380         pmd_t oldpmd, entry;
2381         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2382         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2383         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2384         int ret = 1;
2385
2386         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2387
2388         if (prot_numa && !thp_migration_supported())
2389                 return 1;
2390
2391         ptl = __pmd_trans_huge_lock(pmd, vma);
2392         if (!ptl)
2393                 return 0;
2394
2395 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2396         if (is_swap_pmd(*pmd)) {
2397                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2398                 struct folio *folio = pfn_swap_entry_folio(entry);
2399                 pmd_t newpmd;
2400
2401                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2402                 if (is_writable_migration_entry(entry)) {
2403                         /*
2404                          * A protection check is difficult so
2405                          * just be safe and disable write
2406                          */
2407                         if (folio_test_anon(folio))
2408                                 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2409                         else
2410                                 entry = make_readable_migration_entry(swp_offset(entry));
2411                         newpmd = swp_entry_to_pmd(entry);
2412                         if (pmd_swp_soft_dirty(*pmd))
2413                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
2414                 } else {
2415                         newpmd = *pmd;
2416                 }
2417
2418                 if (uffd_wp)
2419                         newpmd = pmd_swp_mkuffd_wp(newpmd);
2420                 else if (uffd_wp_resolve)
2421                         newpmd = pmd_swp_clear_uffd_wp(newpmd);
2422                 if (!pmd_same(*pmd, newpmd))
2423                         set_pmd_at(mm, addr, pmd, newpmd);
2424                 goto unlock;
2425         }
2426 #endif
2427
2428         if (prot_numa) {
2429                 struct folio *folio;
2430                 bool toptier;
2431                 /*
2432                  * Avoid trapping faults against the zero page. The read-only
2433                  * data is likely to be read-cached on the local CPU and
2434                  * local/remote hits to the zero page are not interesting.
2435                  */
2436                 if (is_huge_zero_pmd(*pmd))
2437                         goto unlock;
2438
2439                 if (pmd_protnone(*pmd))
2440                         goto unlock;
2441
2442                 folio = pmd_folio(*pmd);
2443                 toptier = node_is_toptier(folio_nid(folio));
2444                 /*
2445                  * Skip scanning top tier node if normal numa
2446                  * balancing is disabled
2447                  */
2448                 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2449                     toptier)
2450                         goto unlock;
2451
2452                 if (folio_use_access_time(folio))
2453                         folio_xchg_access_time(folio,
2454                                                jiffies_to_msecs(jiffies));
2455         }
2456         /*
2457          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2458          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2459          * which is also under mmap_read_lock(mm):
2460          *
2461          *      CPU0:                           CPU1:
2462          *                              change_huge_pmd(prot_numa=1)
2463          *                               pmdp_huge_get_and_clear_notify()
2464          * madvise_dontneed()
2465          *  zap_pmd_range()
2466          *   pmd_trans_huge(*pmd) == 0 (without ptl)
2467          *   // skip the pmd
2468          *                               set_pmd_at();
2469          *                               // pmd is re-established
2470          *
2471          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2472          * which may break userspace.
2473          *
2474          * pmdp_invalidate_ad() is required to make sure we don't miss
2475          * dirty/young flags set by hardware.
2476          */
2477         oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2478
2479         entry = pmd_modify(oldpmd, newprot);
2480         if (uffd_wp)
2481                 entry = pmd_mkuffd_wp(entry);
2482         else if (uffd_wp_resolve)
2483                 /*
2484                  * Leave the write bit to be handled by PF interrupt
2485                  * handler, then things like COW could be properly
2486                  * handled.
2487                  */
2488                 entry = pmd_clear_uffd_wp(entry);
2489
2490         /* See change_pte_range(). */
2491         if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2492             can_change_pmd_writable(vma, addr, entry))
2493                 entry = pmd_mkwrite(entry, vma);
2494
2495         ret = HPAGE_PMD_NR;
2496         set_pmd_at(mm, addr, pmd, entry);
2497
2498         if (huge_pmd_needs_flush(oldpmd, entry))
2499                 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2500 unlock:
2501         spin_unlock(ptl);
2502         return ret;
2503 }
2504
2505 /*
2506  * Returns:
2507  *
2508  * - 0: if pud leaf changed from under us
2509  * - 1: if pud can be skipped
2510  * - HPAGE_PUD_NR: if pud was successfully processed
2511  */
2512 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2513 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2514                     pud_t *pudp, unsigned long addr, pgprot_t newprot,
2515                     unsigned long cp_flags)
2516 {
2517         struct mm_struct *mm = vma->vm_mm;
2518         pud_t oldpud, entry;
2519         spinlock_t *ptl;
2520
2521         tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2522
2523         /* NUMA balancing doesn't apply to dax */
2524         if (cp_flags & MM_CP_PROT_NUMA)
2525                 return 1;
2526
2527         /*
2528          * Huge entries on userfault-wp only works with anonymous, while we
2529          * don't have anonymous PUDs yet.
2530          */
2531         if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2532                 return 1;
2533
2534         ptl = __pud_trans_huge_lock(pudp, vma);
2535         if (!ptl)
2536                 return 0;
2537
2538         /*
2539          * Can't clear PUD or it can race with concurrent zapping.  See
2540          * change_huge_pmd().
2541          */
2542         oldpud = pudp_invalidate(vma, addr, pudp);
2543         entry = pud_modify(oldpud, newprot);
2544         set_pud_at(mm, addr, pudp, entry);
2545         tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2546
2547         spin_unlock(ptl);
2548         return HPAGE_PUD_NR;
2549 }
2550 #endif
2551
2552 #ifdef CONFIG_USERFAULTFD
2553 /*
2554  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2555  * the caller, but it must return after releasing the page_table_lock.
2556  * Just move the page from src_pmd to dst_pmd if possible.
2557  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2558  * repeated by the caller, or other errors in case of failure.
2559  */
2560 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2561                         struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2562                         unsigned long dst_addr, unsigned long src_addr)
2563 {
2564         pmd_t _dst_pmd, src_pmdval;
2565         struct page *src_page;
2566         struct folio *src_folio;
2567         struct anon_vma *src_anon_vma;
2568         spinlock_t *src_ptl, *dst_ptl;
2569         pgtable_t src_pgtable;
2570         struct mmu_notifier_range range;
2571         int err = 0;
2572
2573         src_pmdval = *src_pmd;
2574         src_ptl = pmd_lockptr(mm, src_pmd);
2575
2576         lockdep_assert_held(src_ptl);
2577         vma_assert_locked(src_vma);
2578         vma_assert_locked(dst_vma);
2579
2580         /* Sanity checks before the operation */
2581         if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2582             WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2583                 spin_unlock(src_ptl);
2584                 return -EINVAL;
2585         }
2586
2587         if (!pmd_trans_huge(src_pmdval)) {
2588                 spin_unlock(src_ptl);
2589                 if (is_pmd_migration_entry(src_pmdval)) {
2590                         pmd_migration_entry_wait(mm, &src_pmdval);
2591                         return -EAGAIN;
2592                 }
2593                 return -ENOENT;
2594         }
2595
2596         src_page = pmd_page(src_pmdval);
2597
2598         if (!is_huge_zero_pmd(src_pmdval)) {
2599                 if (unlikely(!PageAnonExclusive(src_page))) {
2600                         spin_unlock(src_ptl);
2601                         return -EBUSY;
2602                 }
2603
2604                 src_folio = page_folio(src_page);
2605                 folio_get(src_folio);
2606         } else
2607                 src_folio = NULL;
2608
2609         spin_unlock(src_ptl);
2610
2611         flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2612         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2613                                 src_addr + HPAGE_PMD_SIZE);
2614         mmu_notifier_invalidate_range_start(&range);
2615
2616         if (src_folio) {
2617                 folio_lock(src_folio);
2618
2619                 /*
2620                  * split_huge_page walks the anon_vma chain without the page
2621                  * lock. Serialize against it with the anon_vma lock, the page
2622                  * lock is not enough.
2623                  */
2624                 src_anon_vma = folio_get_anon_vma(src_folio);
2625                 if (!src_anon_vma) {
2626                         err = -EAGAIN;
2627                         goto unlock_folio;
2628                 }
2629                 anon_vma_lock_write(src_anon_vma);
2630         } else
2631                 src_anon_vma = NULL;
2632
2633         dst_ptl = pmd_lockptr(mm, dst_pmd);
2634         double_pt_lock(src_ptl, dst_ptl);
2635         if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2636                      !pmd_same(*dst_pmd, dst_pmdval))) {
2637                 err = -EAGAIN;
2638                 goto unlock_ptls;
2639         }
2640         if (src_folio) {
2641                 if (folio_maybe_dma_pinned(src_folio) ||
2642                     !PageAnonExclusive(&src_folio->page)) {
2643                         err = -EBUSY;
2644                         goto unlock_ptls;
2645                 }
2646
2647                 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2648                     WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2649                         err = -EBUSY;
2650                         goto unlock_ptls;
2651                 }
2652
2653                 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2654                 /* Folio got pinned from under us. Put it back and fail the move. */
2655                 if (folio_maybe_dma_pinned(src_folio)) {
2656                         set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2657                         err = -EBUSY;
2658                         goto unlock_ptls;
2659                 }
2660
2661                 folio_move_anon_rmap(src_folio, dst_vma);
2662                 src_folio->index = linear_page_index(dst_vma, dst_addr);
2663
2664                 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2665                 /* Follow mremap() behavior and treat the entry dirty after the move */
2666                 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2667         } else {
2668                 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2669                 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2670         }
2671         set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2672
2673         src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2674         pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2675 unlock_ptls:
2676         double_pt_unlock(src_ptl, dst_ptl);
2677         if (src_anon_vma) {
2678                 anon_vma_unlock_write(src_anon_vma);
2679                 put_anon_vma(src_anon_vma);
2680         }
2681 unlock_folio:
2682         /* unblock rmap walks */
2683         if (src_folio)
2684                 folio_unlock(src_folio);
2685         mmu_notifier_invalidate_range_end(&range);
2686         if (src_folio)
2687                 folio_put(src_folio);
2688         return err;
2689 }
2690 #endif /* CONFIG_USERFAULTFD */
2691
2692 /*
2693  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2694  *
2695  * Note that if it returns page table lock pointer, this routine returns without
2696  * unlocking page table lock. So callers must unlock it.
2697  */
2698 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2699 {
2700         spinlock_t *ptl;
2701         ptl = pmd_lock(vma->vm_mm, pmd);
2702         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2703                         pmd_devmap(*pmd)))
2704                 return ptl;
2705         spin_unlock(ptl);
2706         return NULL;
2707 }
2708
2709 /*
2710  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2711  *
2712  * Note that if it returns page table lock pointer, this routine returns without
2713  * unlocking page table lock. So callers must unlock it.
2714  */
2715 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2716 {
2717         spinlock_t *ptl;
2718
2719         ptl = pud_lock(vma->vm_mm, pud);
2720         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2721                 return ptl;
2722         spin_unlock(ptl);
2723         return NULL;
2724 }
2725
2726 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2727 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2728                  pud_t *pud, unsigned long addr)
2729 {
2730         spinlock_t *ptl;
2731         pud_t orig_pud;
2732
2733         ptl = __pud_trans_huge_lock(pud, vma);
2734         if (!ptl)
2735                 return 0;
2736
2737         orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2738         arch_check_zapped_pud(vma, orig_pud);
2739         tlb_remove_pud_tlb_entry(tlb, pud, addr);
2740         if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2741                 spin_unlock(ptl);
2742                 /* No zero page support yet */
2743         } else {
2744                 struct page *page = NULL;
2745                 struct folio *folio;
2746
2747                 /* No support for anonymous PUD pages or migration yet */
2748                 VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2749                                 !pud_present(orig_pud));
2750
2751                 page = pud_page(orig_pud);
2752                 folio = page_folio(page);
2753                 folio_remove_rmap_pud(folio, page, vma);
2754                 add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2755
2756                 spin_unlock(ptl);
2757                 tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2758         }
2759         return 1;
2760 }
2761
2762 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2763                 unsigned long haddr)
2764 {
2765         struct folio *folio;
2766         struct page *page;
2767         pud_t old_pud;
2768
2769         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2770         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2771         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2772         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2773
2774         count_vm_event(THP_SPLIT_PUD);
2775
2776         old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2777
2778         if (!vma_is_dax(vma))
2779                 return;
2780
2781         page = pud_page(old_pud);
2782         folio = page_folio(page);
2783
2784         if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2785                 folio_mark_dirty(folio);
2786         if (!folio_test_referenced(folio) && pud_young(old_pud))
2787                 folio_set_referenced(folio);
2788         folio_remove_rmap_pud(folio, page, vma);
2789         folio_put(folio);
2790         add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2791                 -HPAGE_PUD_NR);
2792 }
2793
2794 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2795                 unsigned long address)
2796 {
2797         spinlock_t *ptl;
2798         struct mmu_notifier_range range;
2799
2800         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2801                                 address & HPAGE_PUD_MASK,
2802                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2803         mmu_notifier_invalidate_range_start(&range);
2804         ptl = pud_lock(vma->vm_mm, pud);
2805         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2806                 goto out;
2807         __split_huge_pud_locked(vma, pud, range.start);
2808
2809 out:
2810         spin_unlock(ptl);
2811         mmu_notifier_invalidate_range_end(&range);
2812 }
2813 #else
2814 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2815                 unsigned long address)
2816 {
2817 }
2818 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2819
2820 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2821                 unsigned long haddr, pmd_t *pmd)
2822 {
2823         struct mm_struct *mm = vma->vm_mm;
2824         pgtable_t pgtable;
2825         pmd_t _pmd, old_pmd;
2826         unsigned long addr;
2827         pte_t *pte;
2828         int i;
2829
2830         /*
2831          * Leave pmd empty until pte is filled note that it is fine to delay
2832          * notification until mmu_notifier_invalidate_range_end() as we are
2833          * replacing a zero pmd write protected page with a zero pte write
2834          * protected page.
2835          *
2836          * See Documentation/mm/mmu_notifier.rst
2837          */
2838         old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2839
2840         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2841         pmd_populate(mm, &_pmd, pgtable);
2842
2843         pte = pte_offset_map(&_pmd, haddr);
2844         VM_BUG_ON(!pte);
2845         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2846                 pte_t entry;
2847
2848                 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2849                 entry = pte_mkspecial(entry);
2850                 if (pmd_uffd_wp(old_pmd))
2851                         entry = pte_mkuffd_wp(entry);
2852                 VM_BUG_ON(!pte_none(ptep_get(pte)));
2853                 set_pte_at(mm, addr, pte, entry);
2854                 pte++;
2855         }
2856         pte_unmap(pte - 1);
2857         smp_wmb(); /* make pte visible before pmd */
2858         pmd_populate(mm, pmd, pgtable);
2859 }
2860
2861 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2862                 unsigned long haddr, bool freeze)
2863 {
2864         struct mm_struct *mm = vma->vm_mm;
2865         struct folio *folio;
2866         struct page *page;
2867         pgtable_t pgtable;
2868         pmd_t old_pmd, _pmd;
2869         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2870         bool anon_exclusive = false, dirty = false;
2871         unsigned long addr;
2872         pte_t *pte;
2873         int i;
2874
2875         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2876         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2877         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2878         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2879                                 && !pmd_devmap(*pmd));
2880
2881         count_vm_event(THP_SPLIT_PMD);
2882
2883         if (!vma_is_anonymous(vma)) {
2884                 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2885                 /*
2886                  * We are going to unmap this huge page. So
2887                  * just go ahead and zap it
2888                  */
2889                 if (arch_needs_pgtable_deposit())
2890                         zap_deposited_table(mm, pmd);
2891                 if (!vma_is_dax(vma) && vma_is_special_huge(vma))
2892                         return;
2893                 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2894                         swp_entry_t entry;
2895
2896                         entry = pmd_to_swp_entry(old_pmd);
2897                         folio = pfn_swap_entry_folio(entry);
2898                 } else if (is_huge_zero_pmd(old_pmd)) {
2899                         return;
2900                 } else {
2901                         page = pmd_page(old_pmd);
2902                         folio = page_folio(page);
2903                         if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2904                                 folio_mark_dirty(folio);
2905                         if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2906                                 folio_set_referenced(folio);
2907                         folio_remove_rmap_pmd(folio, page, vma);
2908                         folio_put(folio);
2909                 }
2910                 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2911                 return;
2912         }
2913
2914         if (is_huge_zero_pmd(*pmd)) {
2915                 /*
2916                  * FIXME: Do we want to invalidate secondary mmu by calling
2917                  * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2918                  * inside __split_huge_pmd() ?
2919                  *
2920                  * We are going from a zero huge page write protected to zero
2921                  * small page also write protected so it does not seems useful
2922                  * to invalidate secondary mmu at this time.
2923                  */
2924                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2925         }
2926
2927         pmd_migration = is_pmd_migration_entry(*pmd);
2928         if (unlikely(pmd_migration)) {
2929                 swp_entry_t entry;
2930
2931                 old_pmd = *pmd;
2932                 entry = pmd_to_swp_entry(old_pmd);
2933                 page = pfn_swap_entry_to_page(entry);
2934                 write = is_writable_migration_entry(entry);
2935                 if (PageAnon(page))
2936                         anon_exclusive = is_readable_exclusive_migration_entry(entry);
2937                 young = is_migration_entry_young(entry);
2938                 dirty = is_migration_entry_dirty(entry);
2939                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2940                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2941         } else {
2942                 /*
2943                  * Up to this point the pmd is present and huge and userland has
2944                  * the whole access to the hugepage during the split (which
2945                  * happens in place). If we overwrite the pmd with the not-huge
2946                  * version pointing to the pte here (which of course we could if
2947                  * all CPUs were bug free), userland could trigger a small page
2948                  * size TLB miss on the small sized TLB while the hugepage TLB
2949                  * entry is still established in the huge TLB. Some CPU doesn't
2950                  * like that. See
2951                  * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2952                  * 383 on page 105. Intel should be safe but is also warns that
2953                  * it's only safe if the permission and cache attributes of the
2954                  * two entries loaded in the two TLB is identical (which should
2955                  * be the case here). But it is generally safer to never allow
2956                  * small and huge TLB entries for the same virtual address to be
2957                  * loaded simultaneously. So instead of doing "pmd_populate();
2958                  * flush_pmd_tlb_range();" we first mark the current pmd
2959                  * notpresent (atomically because here the pmd_trans_huge must
2960                  * remain set at all times on the pmd until the split is
2961                  * complete for this pmd), then we flush the SMP TLB and finally
2962                  * we write the non-huge version of the pmd entry with
2963                  * pmd_populate.
2964                  */
2965                 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2966                 page = pmd_page(old_pmd);
2967                 folio = page_folio(page);
2968                 if (pmd_dirty(old_pmd)) {
2969                         dirty = true;
2970                         folio_set_dirty(folio);
2971                 }
2972                 write = pmd_write(old_pmd);
2973                 young = pmd_young(old_pmd);
2974                 soft_dirty = pmd_soft_dirty(old_pmd);
2975                 uffd_wp = pmd_uffd_wp(old_pmd);
2976
2977                 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2978                 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2979
2980                 /*
2981                  * Without "freeze", we'll simply split the PMD, propagating the
2982                  * PageAnonExclusive() flag for each PTE by setting it for
2983                  * each subpage -- no need to (temporarily) clear.
2984                  *
2985                  * With "freeze" we want to replace mapped pages by
2986                  * migration entries right away. This is only possible if we
2987                  * managed to clear PageAnonExclusive() -- see
2988                  * set_pmd_migration_entry().
2989                  *
2990                  * In case we cannot clear PageAnonExclusive(), split the PMD
2991                  * only and let try_to_migrate_one() fail later.
2992                  *
2993                  * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2994                  */
2995                 anon_exclusive = PageAnonExclusive(page);
2996                 if (freeze && anon_exclusive &&
2997                     folio_try_share_anon_rmap_pmd(folio, page))
2998                         freeze = false;
2999                 if (!freeze) {
3000                         rmap_t rmap_flags = RMAP_NONE;
3001
3002                         folio_ref_add(folio, HPAGE_PMD_NR - 1);
3003                         if (anon_exclusive)
3004                                 rmap_flags |= RMAP_EXCLUSIVE;
3005                         folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
3006                                                  vma, haddr, rmap_flags);
3007                 }
3008         }
3009
3010         /*
3011          * Withdraw the table only after we mark the pmd entry invalid.
3012          * This's critical for some architectures (Power).
3013          */
3014         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3015         pmd_populate(mm, &_pmd, pgtable);
3016
3017         pte = pte_offset_map(&_pmd, haddr);
3018         VM_BUG_ON(!pte);
3019
3020         /*
3021          * Note that NUMA hinting access restrictions are not transferred to
3022          * avoid any possibility of altering permissions across VMAs.
3023          */
3024         if (freeze || pmd_migration) {
3025                 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3026                         pte_t entry;
3027                         swp_entry_t swp_entry;
3028
3029                         if (write)
3030                                 swp_entry = make_writable_migration_entry(
3031                                                         page_to_pfn(page + i));
3032                         else if (anon_exclusive)
3033                                 swp_entry = make_readable_exclusive_migration_entry(
3034                                                         page_to_pfn(page + i));
3035                         else
3036                                 swp_entry = make_readable_migration_entry(
3037                                                         page_to_pfn(page + i));
3038                         if (young)
3039                                 swp_entry = make_migration_entry_young(swp_entry);
3040                         if (dirty)
3041                                 swp_entry = make_migration_entry_dirty(swp_entry);
3042                         entry = swp_entry_to_pte(swp_entry);
3043                         if (soft_dirty)
3044                                 entry = pte_swp_mksoft_dirty(entry);
3045                         if (uffd_wp)
3046                                 entry = pte_swp_mkuffd_wp(entry);
3047
3048                         VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3049                         set_pte_at(mm, addr, pte + i, entry);
3050                 }
3051         } else {
3052                 pte_t entry;
3053
3054                 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3055                 if (write)
3056                         entry = pte_mkwrite(entry, vma);
3057                 if (!young)
3058                         entry = pte_mkold(entry);
3059                 /* NOTE: this may set soft-dirty too on some archs */
3060                 if (dirty)
3061                         entry = pte_mkdirty(entry);
3062                 if (soft_dirty)
3063                         entry = pte_mksoft_dirty(entry);
3064                 if (uffd_wp)
3065                         entry = pte_mkuffd_wp(entry);
3066
3067                 for (i = 0; i < HPAGE_PMD_NR; i++)
3068                         VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3069
3070                 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3071         }
3072         pte_unmap(pte);
3073
3074         if (!pmd_migration)
3075                 folio_remove_rmap_pmd(folio, page, vma);
3076         if (freeze)
3077                 put_page(page);
3078
3079         smp_wmb(); /* make pte visible before pmd */
3080         pmd_populate(mm, pmd, pgtable);
3081 }
3082
3083 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3084                            pmd_t *pmd, bool freeze)
3085 {
3086         VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3087         if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
3088             is_pmd_migration_entry(*pmd))
3089                 __split_huge_pmd_locked(vma, pmd, address, freeze);
3090 }
3091
3092 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3093                 unsigned long address, bool freeze)
3094 {
3095         spinlock_t *ptl;
3096         struct mmu_notifier_range range;
3097
3098         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3099                                 address & HPAGE_PMD_MASK,
3100                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3101         mmu_notifier_invalidate_range_start(&range);
3102         ptl = pmd_lock(vma->vm_mm, pmd);
3103         split_huge_pmd_locked(vma, range.start, pmd, freeze);
3104         spin_unlock(ptl);
3105         mmu_notifier_invalidate_range_end(&range);
3106 }
3107
3108 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3109                 bool freeze)
3110 {
3111         pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3112
3113         if (!pmd)
3114                 return;
3115
3116         __split_huge_pmd(vma, pmd, address, freeze);
3117 }
3118
3119 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3120 {
3121         /*
3122          * If the new address isn't hpage aligned and it could previously
3123          * contain an hugepage: check if we need to split an huge pmd.
3124          */
3125         if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3126             range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3127                          ALIGN(address, HPAGE_PMD_SIZE)))
3128                 split_huge_pmd_address(vma, address, false);
3129 }
3130
3131 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3132                            unsigned long start,
3133                            unsigned long end,
3134                            struct vm_area_struct *next)
3135 {
3136         /* Check if we need to split start first. */
3137         split_huge_pmd_if_needed(vma, start);
3138
3139         /* Check if we need to split end next. */
3140         split_huge_pmd_if_needed(vma, end);
3141
3142         /* If we're incrementing next->vm_start, we might need to split it. */
3143         if (next)
3144                 split_huge_pmd_if_needed(next, end);
3145 }
3146
3147 static void unmap_folio(struct folio *folio)
3148 {
3149         enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3150                 TTU_BATCH_FLUSH;
3151
3152         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3153
3154         if (folio_test_pmd_mappable(folio))
3155                 ttu_flags |= TTU_SPLIT_HUGE_PMD;
3156
3157         /*
3158          * Anon pages need migration entries to preserve them, but file
3159          * pages can simply be left unmapped, then faulted back on demand.
3160          * If that is ever changed (perhaps for mlock), update remap_page().
3161          */
3162         if (folio_test_anon(folio))
3163                 try_to_migrate(folio, ttu_flags);
3164         else
3165                 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3166
3167         try_to_unmap_flush();
3168 }
3169
3170 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3171                                             unsigned long addr, pmd_t *pmdp,
3172                                             struct folio *folio)
3173 {
3174         struct mm_struct *mm = vma->vm_mm;
3175         int ref_count, map_count;
3176         pmd_t orig_pmd = *pmdp;
3177
3178         if (pmd_dirty(orig_pmd))
3179                 folio_set_dirty(folio);
3180         if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3181                 folio_set_swapbacked(folio);
3182                 return false;
3183         }
3184
3185         orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3186
3187         /*
3188          * Syncing against concurrent GUP-fast:
3189          * - clear PMD; barrier; read refcount
3190          * - inc refcount; barrier; read PMD
3191          */
3192         smp_mb();
3193
3194         ref_count = folio_ref_count(folio);
3195         map_count = folio_mapcount(folio);
3196
3197         /*
3198          * Order reads for folio refcount and dirty flag
3199          * (see comments in __remove_mapping()).
3200          */
3201         smp_rmb();
3202
3203         /*
3204          * If the folio or its PMD is redirtied at this point, or if there
3205          * are unexpected references, we will give up to discard this folio
3206          * and remap it.
3207          *
3208          * The only folio refs must be one from isolation plus the rmap(s).
3209          */
3210         if (pmd_dirty(orig_pmd))
3211                 folio_set_dirty(folio);
3212         if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3213                 folio_set_swapbacked(folio);
3214                 set_pmd_at(mm, addr, pmdp, orig_pmd);
3215                 return false;
3216         }
3217
3218         if (ref_count != map_count + 1) {
3219                 set_pmd_at(mm, addr, pmdp, orig_pmd);
3220                 return false;
3221         }
3222
3223         folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3224         zap_deposited_table(mm, pmdp);
3225         add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3226         if (vma->vm_flags & VM_LOCKED)
3227                 mlock_drain_local();
3228         folio_put(folio);
3229
3230         return true;
3231 }
3232
3233 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3234                            pmd_t *pmdp, struct folio *folio)
3235 {
3236         VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3237         VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3238         VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3239         VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3240         VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3241
3242         return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3243 }
3244
3245 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3246 {
3247         int i = 0;
3248
3249         /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3250         if (!folio_test_anon(folio))
3251                 return;
3252         for (;;) {
3253                 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3254                 i += folio_nr_pages(folio);
3255                 if (i >= nr)
3256                         break;
3257                 folio = folio_next(folio);
3258         }
3259 }
3260
3261 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3262                 struct lruvec *lruvec, struct list_head *list)
3263 {
3264         VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3265         lockdep_assert_held(&lruvec->lru_lock);
3266
3267         if (list) {
3268                 /* page reclaim is reclaiming a huge page */
3269                 VM_WARN_ON(folio_test_lru(folio));
3270                 folio_get(new_folio);
3271                 list_add_tail(&new_folio->lru, list);
3272         } else {
3273                 /* head is still on lru (and we have it frozen) */
3274                 VM_WARN_ON(!folio_test_lru(folio));
3275                 if (folio_test_unevictable(folio))
3276                         new_folio->mlock_count = 0;
3277                 else
3278                         list_add_tail(&new_folio->lru, &folio->lru);
3279                 folio_set_lru(new_folio);
3280         }
3281 }
3282
3283 /* Racy check whether the huge page can be split */
3284 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3285 {
3286         int extra_pins;
3287
3288         /* Additional pins from page cache */
3289         if (folio_test_anon(folio))
3290                 extra_pins = folio_test_swapcache(folio) ?
3291                                 folio_nr_pages(folio) : 0;
3292         else
3293                 extra_pins = folio_nr_pages(folio);
3294         if (pextra_pins)
3295                 *pextra_pins = extra_pins;
3296         return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3297                                         caller_pins;
3298 }
3299
3300 /*
3301  * It splits @folio into @new_order folios and copies the @folio metadata to
3302  * all the resulting folios.
3303  */
3304 static void __split_folio_to_order(struct folio *folio, int old_order,
3305                 int new_order)
3306 {
3307         long new_nr_pages = 1 << new_order;
3308         long nr_pages = 1 << old_order;
3309         long i;
3310
3311         /*
3312          * Skip the first new_nr_pages, since the new folio from them have all
3313          * the flags from the original folio.
3314          */
3315         for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3316                 struct page *new_head = &folio->page + i;
3317
3318                 /*
3319                  * Careful: new_folio is not a "real" folio before we cleared PageTail.
3320                  * Don't pass it around before clear_compound_head().
3321                  */
3322                 struct folio *new_folio = (struct folio *)new_head;
3323
3324                 VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3325
3326                 /*
3327                  * Clone page flags before unfreezing refcount.
3328                  *
3329                  * After successful get_page_unless_zero() might follow flags change,
3330                  * for example lock_page() which set PG_waiters.
3331                  *
3332                  * Note that for mapped sub-pages of an anonymous THP,
3333                  * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3334                  * the migration entry instead from where remap_page() will restore it.
3335                  * We can still have PG_anon_exclusive set on effectively unmapped and
3336                  * unreferenced sub-pages of an anonymous THP: we can simply drop
3337                  * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3338                  */
3339                 new_folio->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3340                 new_folio->flags |= (folio->flags &
3341                                 ((1L << PG_referenced) |
3342                                  (1L << PG_swapbacked) |
3343                                  (1L << PG_swapcache) |
3344                                  (1L << PG_mlocked) |
3345                                  (1L << PG_uptodate) |
3346                                  (1L << PG_active) |
3347                                  (1L << PG_workingset) |
3348                                  (1L << PG_locked) |
3349                                  (1L << PG_unevictable) |
3350 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3351                                  (1L << PG_arch_2) |
3352 #endif
3353 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3354                                  (1L << PG_arch_3) |
3355 #endif
3356                                  (1L << PG_dirty) |
3357                                  LRU_GEN_MASK | LRU_REFS_MASK));
3358
3359                 new_folio->mapping = folio->mapping;
3360                 new_folio->index = folio->index + i;
3361
3362                 /*
3363                  * page->private should not be set in tail pages. Fix up and warn once
3364                  * if private is unexpectedly set.
3365                  */
3366                 if (unlikely(new_folio->private)) {
3367                         VM_WARN_ON_ONCE_PAGE(true, new_head);
3368                         new_folio->private = NULL;
3369                 }
3370
3371                 if (folio_test_swapcache(folio))
3372                         new_folio->swap.val = folio->swap.val + i;
3373
3374                 /* Page flags must be visible before we make the page non-compound. */
3375                 smp_wmb();
3376
3377                 /*
3378                  * Clear PageTail before unfreezing page refcount.
3379                  *
3380                  * After successful get_page_unless_zero() might follow put_page()
3381                  * which needs correct compound_head().
3382                  */
3383                 clear_compound_head(new_head);
3384                 if (new_order) {
3385                         prep_compound_page(new_head, new_order);
3386                         folio_set_large_rmappable(new_folio);
3387                 }
3388
3389                 if (folio_test_young(folio))
3390                         folio_set_young(new_folio);
3391                 if (folio_test_idle(folio))
3392                         folio_set_idle(new_folio);
3393 #ifdef CONFIG_MEMCG
3394                 new_folio->memcg_data = folio->memcg_data;
3395 #endif
3396
3397                 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3398         }
3399
3400         if (new_order)
3401                 folio_set_order(folio, new_order);
3402         else
3403                 ClearPageCompound(&folio->page);
3404 }
3405
3406 /*
3407  * It splits an unmapped @folio to lower order smaller folios in two ways.
3408  * @folio: the to-be-split folio
3409  * @new_order: the smallest order of the after split folios (since buddy
3410  *             allocator like split generates folios with orders from @folio's
3411  *             order - 1 to new_order).
3412  * @split_at: in buddy allocator like split, the folio containing @split_at
3413  *            will be split until its order becomes @new_order.
3414  * @lock_at: the folio containing @lock_at is left locked for caller.
3415  * @list: the after split folios will be added to @list if it is not NULL,
3416  *        otherwise to LRU lists.
3417  * @end: the end of the file @folio maps to. -1 if @folio is anonymous memory.
3418  * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3419  * @mapping: @folio->mapping
3420  * @uniform_split: if the split is uniform or not (buddy allocator like split)
3421  *
3422  *
3423  * 1. uniform split: the given @folio into multiple @new_order small folios,
3424  *    where all small folios have the same order. This is done when
3425  *    uniform_split is true.
3426  * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3427  *    half and one of the half (containing the given page) is split into half
3428  *    until the given @page's order becomes @new_order. This is done when
3429  *    uniform_split is false.
3430  *
3431  * The high level flow for these two methods are:
3432  * 1. uniform split: a single __split_folio_to_order() is called to split the
3433  *    @folio into @new_order, then we traverse all the resulting folios one by
3434  *    one in PFN ascending order and perform stats, unfreeze, adding to list,
3435  *    and file mapping index operations.
3436  * 2. non-uniform split: in general, folio_order - @new_order calls to
3437  *    __split_folio_to_order() are made in a for loop to split the @folio
3438  *    to one lower order at a time. The resulting small folios are processed
3439  *    like what is done during the traversal in 1, except the one containing
3440  *    @page, which is split in next for loop.
3441  *
3442  * After splitting, the caller's folio reference will be transferred to the
3443  * folio containing @page. The other folios may be freed if they are not mapped.
3444  *
3445  * In terms of locking, after splitting,
3446  * 1. uniform split leaves @page (or the folio contains it) locked;
3447  * 2. buddy allocator like (non-uniform) split leaves @folio locked.
3448  *
3449  *
3450  * For !uniform_split, when -ENOMEM is returned, the original folio might be
3451  * split. The caller needs to check the input folio.
3452  */
3453 static int __split_unmapped_folio(struct folio *folio, int new_order,
3454                 struct page *split_at, struct page *lock_at,
3455                 struct list_head *list, pgoff_t end,
3456                 struct xa_state *xas, struct address_space *mapping,
3457                 bool uniform_split)
3458 {
3459         struct lruvec *lruvec;
3460         struct address_space *swap_cache = NULL;
3461         struct folio *origin_folio = folio;
3462         struct folio *next_folio = folio_next(folio);
3463         struct folio *new_folio;
3464         struct folio *next;
3465         int order = folio_order(folio);
3466         int split_order;
3467         int start_order = uniform_split ? new_order : order - 1;
3468         int nr_dropped = 0;
3469         int ret = 0;
3470         bool stop_split = false;
3471
3472         if (folio_test_swapcache(folio)) {
3473                 VM_BUG_ON(mapping);
3474
3475                 /* a swapcache folio can only be uniformly split to order-0 */
3476                 if (!uniform_split || new_order != 0)
3477                         return -EINVAL;
3478
3479                 swap_cache = swap_address_space(folio->swap);
3480                 xa_lock(&swap_cache->i_pages);
3481         }
3482
3483         if (folio_test_anon(folio))
3484                 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3485
3486         /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3487         lruvec = folio_lruvec_lock(folio);
3488
3489         folio_clear_has_hwpoisoned(folio);
3490
3491         /*
3492          * split to new_order one order at a time. For uniform split,
3493          * folio is split to new_order directly.
3494          */
3495         for (split_order = start_order;
3496              split_order >= new_order && !stop_split;
3497              split_order--) {
3498                 int old_order = folio_order(folio);
3499                 struct folio *release;
3500                 struct folio *end_folio = folio_next(folio);
3501
3502                 /* order-1 anonymous folio is not supported */
3503                 if (folio_test_anon(folio) && split_order == 1)
3504                         continue;
3505                 if (uniform_split && split_order != new_order)
3506                         continue;
3507
3508                 if (mapping) {
3509                         /*
3510                          * uniform split has xas_split_alloc() called before
3511                          * irq is disabled to allocate enough memory, whereas
3512                          * non-uniform split can handle ENOMEM.
3513                          */
3514                         if (uniform_split)
3515                                 xas_split(xas, folio, old_order);
3516                         else {
3517                                 xas_set_order(xas, folio->index, split_order);
3518                                 xas_try_split(xas, folio, old_order);
3519                                 if (xas_error(xas)) {
3520                                         ret = xas_error(xas);
3521                                         stop_split = true;
3522                                         goto after_split;
3523                                 }
3524                         }
3525                 }
3526
3527                 folio_split_memcg_refs(folio, old_order, split_order);
3528                 split_page_owner(&folio->page, old_order, split_order);
3529                 pgalloc_tag_split(folio, old_order, split_order);
3530
3531                 __split_folio_to_order(folio, old_order, split_order);
3532
3533 after_split:
3534                 /*
3535                  * Iterate through after-split folios and perform related
3536                  * operations. But in buddy allocator like split, the folio
3537                  * containing the specified page is skipped until its order
3538                  * is new_order, since the folio will be worked on in next
3539                  * iteration.
3540                  */
3541                 for (release = folio; release != end_folio; release = next) {
3542                         next = folio_next(release);
3543                         /*
3544                          * for buddy allocator like split, the folio containing
3545                          * page will be split next and should not be released,
3546                          * until the folio's order is new_order or stop_split
3547                          * is set to true by the above xas_split() failure.
3548                          */
3549                         if (release == page_folio(split_at)) {
3550                                 folio = release;
3551                                 if (split_order != new_order && !stop_split)
3552                                         continue;
3553                         }
3554                         if (folio_test_anon(release)) {
3555                                 mod_mthp_stat(folio_order(release),
3556                                                 MTHP_STAT_NR_ANON, 1);
3557                         }
3558
3559                         /*
3560                          * origin_folio should be kept frozon until page cache
3561                          * entries are updated with all the other after-split
3562                          * folios to prevent others seeing stale page cache
3563                          * entries.
3564                          */
3565                         if (release == origin_folio)
3566                                 continue;
3567
3568                         folio_ref_unfreeze(release, 1 +
3569                                         ((mapping || swap_cache) ?
3570                                                 folio_nr_pages(release) : 0));
3571
3572                         lru_add_split_folio(origin_folio, release, lruvec,
3573                                         list);
3574
3575                         /* Some pages can be beyond EOF: drop them from cache */
3576                         if (release->index >= end) {
3577                                 if (shmem_mapping(mapping))
3578                                         nr_dropped += folio_nr_pages(release);
3579                                 else if (folio_test_clear_dirty(release))
3580                                         folio_account_cleaned(release,
3581                                                 inode_to_wb(mapping->host));
3582                                 __filemap_remove_folio(release, NULL);
3583                                 folio_put_refs(release, folio_nr_pages(release));
3584                         } else if (mapping) {
3585                                 __xa_store(&mapping->i_pages,
3586                                                 release->index, release, 0);
3587                         } else if (swap_cache) {
3588                                 __xa_store(&swap_cache->i_pages,
3589                                                 swap_cache_index(release->swap),
3590                                                 release, 0);
3591                         }
3592                 }
3593         }
3594
3595         /*
3596          * Unfreeze origin_folio only after all page cache entries, which used
3597          * to point to it, have been updated with new folios. Otherwise,
3598          * a parallel folio_try_get() can grab origin_folio and its caller can
3599          * see stale page cache entries.
3600          */
3601         folio_ref_unfreeze(origin_folio, 1 +
3602                 ((mapping || swap_cache) ? folio_nr_pages(origin_folio) : 0));
3603
3604         unlock_page_lruvec(lruvec);
3605
3606         if (swap_cache)
3607                 xa_unlock(&swap_cache->i_pages);
3608         if (mapping)
3609                 xa_unlock(&mapping->i_pages);
3610
3611         /* Caller disabled irqs, so they are still disabled here */
3612         local_irq_enable();
3613
3614         if (nr_dropped)
3615                 shmem_uncharge(mapping->host, nr_dropped);
3616
3617         remap_page(origin_folio, 1 << order,
3618                         folio_test_anon(origin_folio) ?
3619                                 RMP_USE_SHARED_ZEROPAGE : 0);
3620
3621         /*
3622          * At this point, folio should contain the specified page.
3623          * For uniform split, it is left for caller to unlock.
3624          * For buddy allocator like split, the first after-split folio is left
3625          * for caller to unlock.
3626          */
3627         for (new_folio = origin_folio; new_folio != next_folio; new_folio = next) {
3628                 next = folio_next(new_folio);
3629                 if (new_folio == page_folio(lock_at))
3630                         continue;
3631
3632                 folio_unlock(new_folio);
3633                 /*
3634                  * Subpages may be freed if there wasn't any mapping
3635                  * like if add_to_swap() is running on a lru page that
3636                  * had its mapping zapped. And freeing these pages
3637                  * requires taking the lru_lock so we do the put_page
3638                  * of the tail pages after the split is complete.
3639                  */
3640                 free_folio_and_swap_cache(new_folio);
3641         }
3642         return ret;
3643 }
3644
3645 bool non_uniform_split_supported(struct folio *folio, unsigned int new_order,
3646                 bool warns)
3647 {
3648         if (folio_test_anon(folio)) {
3649                 /* order-1 is not supported for anonymous THP. */
3650                 VM_WARN_ONCE(warns && new_order == 1,
3651                                 "Cannot split to order-1 folio");
3652                 return new_order != 1;
3653         } else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3654             !mapping_large_folio_support(folio->mapping)) {
3655                 /*
3656                  * No split if the file system does not support large folio.
3657                  * Note that we might still have THPs in such mappings due to
3658                  * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3659                  * does not actually support large folios properly.
3660                  */
3661                 VM_WARN_ONCE(warns,
3662                         "Cannot split file folio to non-0 order");
3663                 return false;
3664         }
3665
3666         /* Only swapping a whole PMD-mapped folio is supported */
3667         if (folio_test_swapcache(folio)) {
3668                 VM_WARN_ONCE(warns,
3669                         "Cannot split swapcache folio to non-0 order");
3670                 return false;
3671         }
3672
3673         return true;
3674 }
3675
3676 /* See comments in non_uniform_split_supported() */
3677 bool uniform_split_supported(struct folio *folio, unsigned int new_order,
3678                 bool warns)
3679 {
3680         if (folio_test_anon(folio)) {
3681                 VM_WARN_ONCE(warns && new_order == 1,
3682                                 "Cannot split to order-1 folio");
3683                 return new_order != 1;
3684         } else  if (new_order) {
3685                 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3686                     !mapping_large_folio_support(folio->mapping)) {
3687                         VM_WARN_ONCE(warns,
3688                                 "Cannot split file folio to non-0 order");
3689                         return false;
3690                 }
3691         }
3692
3693         if (new_order && folio_test_swapcache(folio)) {
3694                 VM_WARN_ONCE(warns,
3695                         "Cannot split swapcache folio to non-0 order");
3696                 return false;
3697         }
3698
3699         return true;
3700 }
3701
3702 /*
3703  * __folio_split: split a folio at @split_at to a @new_order folio
3704  * @folio: folio to split
3705  * @new_order: the order of the new folio
3706  * @split_at: a page within the new folio
3707  * @lock_at: a page within @folio to be left locked to caller
3708  * @list: after-split folios will be put on it if non NULL
3709  * @uniform_split: perform uniform split or not (non-uniform split)
3710  *
3711  * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3712  * It is in charge of checking whether the split is supported or not and
3713  * preparing @folio for __split_unmapped_folio().
3714  *
3715  * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3716  * split but not to @new_order, the caller needs to check)
3717  */
3718 static int __folio_split(struct folio *folio, unsigned int new_order,
3719                 struct page *split_at, struct page *lock_at,
3720                 struct list_head *list, bool uniform_split)
3721 {
3722         struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3723         XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3724         bool is_anon = folio_test_anon(folio);
3725         struct address_space *mapping = NULL;
3726         struct anon_vma *anon_vma = NULL;
3727         int order = folio_order(folio);
3728         int extra_pins, ret;
3729         pgoff_t end;
3730         bool is_hzp;
3731
3732         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3733         VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3734
3735         if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3736                 return -EINVAL;
3737
3738         if (new_order >= folio_order(folio))
3739                 return -EINVAL;
3740
3741         if (uniform_split && !uniform_split_supported(folio, new_order, true))
3742                 return -EINVAL;
3743
3744         if (!uniform_split &&
3745             !non_uniform_split_supported(folio, new_order, true))
3746                 return -EINVAL;
3747
3748         is_hzp = is_huge_zero_folio(folio);
3749         if (is_hzp) {
3750                 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3751                 return -EBUSY;
3752         }
3753
3754         if (folio_test_writeback(folio))
3755                 return -EBUSY;
3756
3757         if (is_anon) {
3758                 /*
3759                  * The caller does not necessarily hold an mmap_lock that would
3760                  * prevent the anon_vma disappearing so we first we take a
3761                  * reference to it and then lock the anon_vma for write. This
3762                  * is similar to folio_lock_anon_vma_read except the write lock
3763                  * is taken to serialise against parallel split or collapse
3764                  * operations.
3765                  */
3766                 anon_vma = folio_get_anon_vma(folio);
3767                 if (!anon_vma) {
3768                         ret = -EBUSY;
3769                         goto out;
3770                 }
3771                 end = -1;
3772                 mapping = NULL;
3773                 anon_vma_lock_write(anon_vma);
3774         } else {
3775                 unsigned int min_order;
3776                 gfp_t gfp;
3777
3778                 mapping = folio->mapping;
3779
3780                 /* Truncated ? */
3781                 /*
3782                  * TODO: add support for large shmem folio in swap cache.
3783                  * When shmem is in swap cache, mapping is NULL and
3784                  * folio_test_swapcache() is true.
3785                  */
3786                 if (!mapping) {
3787                         ret = -EBUSY;
3788                         goto out;
3789                 }
3790
3791                 min_order = mapping_min_folio_order(folio->mapping);
3792                 if (new_order < min_order) {
3793                         VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3794                                      min_order);
3795                         ret = -EINVAL;
3796                         goto out;
3797                 }
3798
3799                 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3800                                                         GFP_RECLAIM_MASK);
3801
3802                 if (!filemap_release_folio(folio, gfp)) {
3803                         ret = -EBUSY;
3804                         goto out;
3805                 }
3806
3807                 if (uniform_split) {
3808                         xas_set_order(&xas, folio->index, new_order);
3809                         xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3810                         if (xas_error(&xas)) {
3811                                 ret = xas_error(&xas);
3812                                 goto out;
3813                         }
3814                 }
3815
3816                 anon_vma = NULL;
3817                 i_mmap_lock_read(mapping);
3818
3819                 /*
3820                  *__split_unmapped_folio() may need to trim off pages beyond
3821                  * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
3822                  * seqlock, which cannot be nested inside the page tree lock.
3823                  * So note end now: i_size itself may be changed at any moment,
3824                  * but folio lock is good enough to serialize the trimming.
3825                  */
3826                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3827                 if (shmem_mapping(mapping))
3828                         end = shmem_fallocend(mapping->host, end);
3829         }
3830
3831         /*
3832          * Racy check if we can split the page, before unmap_folio() will
3833          * split PMDs
3834          */
3835         if (!can_split_folio(folio, 1, &extra_pins)) {
3836                 ret = -EAGAIN;
3837                 goto out_unlock;
3838         }
3839
3840         unmap_folio(folio);
3841
3842         /* block interrupt reentry in xa_lock and spinlock */
3843         local_irq_disable();
3844         if (mapping) {
3845                 /*
3846                  * Check if the folio is present in page cache.
3847                  * We assume all tail are present too, if folio is there.
3848                  */
3849                 xas_lock(&xas);
3850                 xas_reset(&xas);
3851                 if (xas_load(&xas) != folio)
3852                         goto fail;
3853         }
3854
3855         /* Prevent deferred_split_scan() touching ->_refcount */
3856         spin_lock(&ds_queue->split_queue_lock);
3857         if (folio_ref_freeze(folio, 1 + extra_pins)) {
3858                 if (folio_order(folio) > 1 &&
3859                     !list_empty(&folio->_deferred_list)) {
3860                         ds_queue->split_queue_len--;
3861                         if (folio_test_partially_mapped(folio)) {
3862                                 folio_clear_partially_mapped(folio);
3863                                 mod_mthp_stat(folio_order(folio),
3864                                               MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3865                         }
3866                         /*
3867                          * Reinitialize page_deferred_list after removing the
3868                          * page from the split_queue, otherwise a subsequent
3869                          * split will see list corruption when checking the
3870                          * page_deferred_list.
3871                          */
3872                         list_del_init(&folio->_deferred_list);
3873                 }
3874                 spin_unlock(&ds_queue->split_queue_lock);
3875                 if (mapping) {
3876                         int nr = folio_nr_pages(folio);
3877
3878                         if (folio_test_pmd_mappable(folio) &&
3879                             new_order < HPAGE_PMD_ORDER) {
3880                                 if (folio_test_swapbacked(folio)) {
3881                                         __lruvec_stat_mod_folio(folio,
3882                                                         NR_SHMEM_THPS, -nr);
3883                                 } else {
3884                                         __lruvec_stat_mod_folio(folio,
3885                                                         NR_FILE_THPS, -nr);
3886                                         filemap_nr_thps_dec(mapping);
3887                                 }
3888                         }
3889                 }
3890
3891                 ret = __split_unmapped_folio(folio, new_order,
3892                                 split_at, lock_at, list, end, &xas, mapping,
3893                                 uniform_split);
3894         } else {
3895                 spin_unlock(&ds_queue->split_queue_lock);
3896 fail:
3897                 if (mapping)
3898                         xas_unlock(&xas);
3899                 local_irq_enable();
3900                 remap_page(folio, folio_nr_pages(folio), 0);
3901                 ret = -EAGAIN;
3902         }
3903
3904 out_unlock:
3905         if (anon_vma) {
3906                 anon_vma_unlock_write(anon_vma);
3907                 put_anon_vma(anon_vma);
3908         }
3909         if (mapping)
3910                 i_mmap_unlock_read(mapping);
3911 out:
3912         xas_destroy(&xas);
3913         if (order == HPAGE_PMD_ORDER)
3914                 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3915         count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3916         return ret;
3917 }
3918
3919 /*
3920  * This function splits a large folio into smaller folios of order @new_order.
3921  * @page can point to any page of the large folio to split. The split operation
3922  * does not change the position of @page.
3923  *
3924  * Prerequisites:
3925  *
3926  * 1) The caller must hold a reference on the @page's owning folio, also known
3927  *    as the large folio.
3928  *
3929  * 2) The large folio must be locked.
3930  *
3931  * 3) The folio must not be pinned. Any unexpected folio references, including
3932  *    GUP pins, will result in the folio not getting split; instead, the caller
3933  *    will receive an -EAGAIN.
3934  *
3935  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3936  *    supported for non-file-backed folios, because folio->_deferred_list, which
3937  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
3938  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3939  *    since they do not use _deferred_list.
3940  *
3941  * After splitting, the caller's folio reference will be transferred to @page,
3942  * resulting in a raised refcount of @page after this call. The other pages may
3943  * be freed if they are not mapped.
3944  *
3945  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3946  *
3947  * Pages in @new_order will inherit the mapping, flags, and so on from the
3948  * huge page.
3949  *
3950  * Returns 0 if the huge page was split successfully.
3951  *
3952  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3953  * the folio was concurrently removed from the page cache.
3954  *
3955  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3956  * under writeback, if fs-specific folio metadata cannot currently be
3957  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3958  * truncation).
3959  *
3960  * Callers should ensure that the order respects the address space mapping
3961  * min-order if one is set for non-anonymous folios.
3962  *
3963  * Returns -EINVAL when trying to split to an order that is incompatible
3964  * with the folio. Splitting to order 0 is compatible with all folios.
3965  */
3966 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3967                                      unsigned int new_order)
3968 {
3969         struct folio *folio = page_folio(page);
3970
3971         return __folio_split(folio, new_order, &folio->page, page, list, true);
3972 }
3973
3974 /*
3975  * folio_split: split a folio at @split_at to a @new_order folio
3976  * @folio: folio to split
3977  * @new_order: the order of the new folio
3978  * @split_at: a page within the new folio
3979  *
3980  * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3981  * split but not to @new_order, the caller needs to check)
3982  *
3983  * It has the same prerequisites and returns as
3984  * split_huge_page_to_list_to_order().
3985  *
3986  * Split a folio at @split_at to a new_order folio, leave the
3987  * remaining subpages of the original folio as large as possible. For example,
3988  * in the case of splitting an order-9 folio at its third order-3 subpages to
3989  * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
3990  * After the split, there will be a group of folios with different orders and
3991  * the new folio containing @split_at is marked in bracket:
3992  * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
3993  *
3994  * After split, folio is left locked for caller.
3995  */
3996 int folio_split(struct folio *folio, unsigned int new_order,
3997                 struct page *split_at, struct list_head *list)
3998 {
3999         return __folio_split(folio, new_order, split_at, &folio->page, list,
4000                         false);
4001 }
4002
4003 int min_order_for_split(struct folio *folio)
4004 {
4005         if (folio_test_anon(folio))
4006                 return 0;
4007
4008         if (!folio->mapping) {
4009                 if (folio_test_pmd_mappable(folio))
4010                         count_vm_event(THP_SPLIT_PAGE_FAILED);
4011                 return -EBUSY;
4012         }
4013
4014         return mapping_min_folio_order(folio->mapping);
4015 }
4016
4017 int split_folio_to_list(struct folio *folio, struct list_head *list)
4018 {
4019         int ret = min_order_for_split(folio);
4020
4021         if (ret < 0)
4022                 return ret;
4023
4024         return split_huge_page_to_list_to_order(&folio->page, list, ret);
4025 }
4026
4027 /*
4028  * __folio_unqueue_deferred_split() is not to be called directly:
4029  * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4030  * limits its calls to those folios which may have a _deferred_list for
4031  * queueing THP splits, and that list is (racily observed to be) non-empty.
4032  *
4033  * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4034  * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4035  * might be in use on deferred_split_scan()'s unlocked on-stack list.
4036  *
4037  * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4038  * therefore important to unqueue deferred split before changing folio memcg.
4039  */
4040 bool __folio_unqueue_deferred_split(struct folio *folio)
4041 {
4042         struct deferred_split *ds_queue;
4043         unsigned long flags;
4044         bool unqueued = false;
4045
4046         WARN_ON_ONCE(folio_ref_count(folio));
4047         WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
4048
4049         ds_queue = get_deferred_split_queue(folio);
4050         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4051         if (!list_empty(&folio->_deferred_list)) {
4052                 ds_queue->split_queue_len--;
4053                 if (folio_test_partially_mapped(folio)) {
4054                         folio_clear_partially_mapped(folio);
4055                         mod_mthp_stat(folio_order(folio),
4056                                       MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4057                 }
4058                 list_del_init(&folio->_deferred_list);
4059                 unqueued = true;
4060         }
4061         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4062
4063         return unqueued;        /* useful for debug warnings */
4064 }
4065
4066 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
4067 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4068 {
4069         struct deferred_split *ds_queue = get_deferred_split_queue(folio);
4070 #ifdef CONFIG_MEMCG
4071         struct mem_cgroup *memcg = folio_memcg(folio);
4072 #endif
4073         unsigned long flags;
4074
4075         /*
4076          * Order 1 folios have no space for a deferred list, but we also
4077          * won't waste much memory by not adding them to the deferred list.
4078          */
4079         if (folio_order(folio) <= 1)
4080                 return;
4081
4082         if (!partially_mapped && !split_underused_thp)
4083                 return;
4084
4085         /*
4086          * Exclude swapcache: originally to avoid a corrupt deferred split
4087          * queue. Nowadays that is fully prevented by memcg1_swapout();
4088          * but if page reclaim is already handling the same folio, it is
4089          * unnecessary to handle it again in the shrinker, so excluding
4090          * swapcache here may still be a useful optimization.
4091          */
4092         if (folio_test_swapcache(folio))
4093                 return;
4094
4095         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4096         if (partially_mapped) {
4097                 if (!folio_test_partially_mapped(folio)) {
4098                         folio_set_partially_mapped(folio);
4099                         if (folio_test_pmd_mappable(folio))
4100                                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4101                         count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4102                         mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4103
4104                 }
4105         } else {
4106                 /* partially mapped folios cannot become non-partially mapped */
4107                 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4108         }
4109         if (list_empty(&folio->_deferred_list)) {
4110                 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4111                 ds_queue->split_queue_len++;
4112 #ifdef CONFIG_MEMCG
4113                 if (memcg)
4114                         set_shrinker_bit(memcg, folio_nid(folio),
4115                                          deferred_split_shrinker->id);
4116 #endif
4117         }
4118         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4119 }
4120
4121 static unsigned long deferred_split_count(struct shrinker *shrink,
4122                 struct shrink_control *sc)
4123 {
4124         struct pglist_data *pgdata = NODE_DATA(sc->nid);
4125         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4126
4127 #ifdef CONFIG_MEMCG
4128         if (sc->memcg)
4129                 ds_queue = &sc->memcg->deferred_split_queue;
4130 #endif
4131         return READ_ONCE(ds_queue->split_queue_len);
4132 }
4133
4134 static bool thp_underused(struct folio *folio)
4135 {
4136         int num_zero_pages = 0, num_filled_pages = 0;
4137         void *kaddr;
4138         int i;
4139
4140         if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4141                 return false;
4142
4143         for (i = 0; i < folio_nr_pages(folio); i++) {
4144                 kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
4145                 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
4146                         num_zero_pages++;
4147                         if (num_zero_pages > khugepaged_max_ptes_none) {
4148                                 kunmap_local(kaddr);
4149                                 return true;
4150                         }
4151                 } else {
4152                         /*
4153                          * Another path for early exit once the number
4154                          * of non-zero filled pages exceeds threshold.
4155                          */
4156                         num_filled_pages++;
4157                         if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
4158                                 kunmap_local(kaddr);
4159                                 return false;
4160                         }
4161                 }
4162                 kunmap_local(kaddr);
4163         }
4164         return false;
4165 }
4166
4167 static unsigned long deferred_split_scan(struct shrinker *shrink,
4168                 struct shrink_control *sc)
4169 {
4170         struct pglist_data *pgdata = NODE_DATA(sc->nid);
4171         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4172         unsigned long flags;
4173         LIST_HEAD(list);
4174         struct folio *folio, *next, *prev = NULL;
4175         int split = 0, removed = 0;
4176
4177 #ifdef CONFIG_MEMCG
4178         if (sc->memcg)
4179                 ds_queue = &sc->memcg->deferred_split_queue;
4180 #endif
4181
4182         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4183         /* Take pin on all head pages to avoid freeing them under us */
4184         list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4185                                                         _deferred_list) {
4186                 if (folio_try_get(folio)) {
4187                         list_move(&folio->_deferred_list, &list);
4188                 } else {
4189                         /* We lost race with folio_put() */
4190                         if (folio_test_partially_mapped(folio)) {
4191                                 folio_clear_partially_mapped(folio);
4192                                 mod_mthp_stat(folio_order(folio),
4193                                               MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4194                         }
4195                         list_del_init(&folio->_deferred_list);
4196                         ds_queue->split_queue_len--;
4197                 }
4198                 if (!--sc->nr_to_scan)
4199                         break;
4200         }
4201         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4202
4203         list_for_each_entry_safe(folio, next, &list, _deferred_list) {
4204                 bool did_split = false;
4205                 bool underused = false;
4206
4207                 if (!folio_test_partially_mapped(folio)) {
4208                         underused = thp_underused(folio);
4209                         if (!underused)
4210                                 goto next;
4211                 }
4212                 if (!folio_trylock(folio))
4213                         goto next;
4214                 if (!split_folio(folio)) {
4215                         did_split = true;
4216                         if (underused)
4217                                 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4218                         split++;
4219                 }
4220                 folio_unlock(folio);
4221 next:
4222                 /*
4223                  * split_folio() removes folio from list on success.
4224                  * Only add back to the queue if folio is partially mapped.
4225                  * If thp_underused returns false, or if split_folio fails
4226                  * in the case it was underused, then consider it used and
4227                  * don't add it back to split_queue.
4228                  */
4229                 if (did_split) {
4230                         ; /* folio already removed from list */
4231                 } else if (!folio_test_partially_mapped(folio)) {
4232                         list_del_init(&folio->_deferred_list);
4233                         removed++;
4234                 } else {
4235                         /*
4236                          * That unlocked list_del_init() above would be unsafe,
4237                          * unless its folio is separated from any earlier folios
4238                          * left on the list (which may be concurrently unqueued)
4239                          * by one safe folio with refcount still raised.
4240                          */
4241                         swap(folio, prev);
4242                 }
4243                 if (folio)
4244                         folio_put(folio);
4245         }
4246
4247         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4248         list_splice_tail(&list, &ds_queue->split_queue);
4249         ds_queue->split_queue_len -= removed;
4250         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4251
4252         if (prev)
4253                 folio_put(prev);
4254
4255         /*
4256          * Stop shrinker if we didn't split any page, but the queue is empty.
4257          * This can happen if pages were freed under us.
4258          */
4259         if (!split && list_empty(&ds_queue->split_queue))
4260                 return SHRINK_STOP;
4261         return split;
4262 }
4263
4264 #ifdef CONFIG_DEBUG_FS
4265 static void split_huge_pages_all(void)
4266 {
4267         struct zone *zone;
4268         struct page *page;
4269         struct folio *folio;
4270         unsigned long pfn, max_zone_pfn;
4271         unsigned long total = 0, split = 0;
4272
4273         pr_debug("Split all THPs\n");
4274         for_each_zone(zone) {
4275                 if (!managed_zone(zone))
4276                         continue;
4277                 max_zone_pfn = zone_end_pfn(zone);
4278                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4279                         int nr_pages;
4280
4281                         page = pfn_to_online_page(pfn);
4282                         if (!page || PageTail(page))
4283                                 continue;
4284                         folio = page_folio(page);
4285                         if (!folio_try_get(folio))
4286                                 continue;
4287
4288                         if (unlikely(page_folio(page) != folio))
4289                                 goto next;
4290
4291                         if (zone != folio_zone(folio))
4292                                 goto next;
4293
4294                         if (!folio_test_large(folio)
4295                                 || folio_test_hugetlb(folio)
4296                                 || !folio_test_lru(folio))
4297                                 goto next;
4298
4299                         total++;
4300                         folio_lock(folio);
4301                         nr_pages = folio_nr_pages(folio);
4302                         if (!split_folio(folio))
4303                                 split++;
4304                         pfn += nr_pages - 1;
4305                         folio_unlock(folio);
4306 next:
4307                         folio_put(folio);
4308                         cond_resched();
4309                 }
4310         }
4311
4312         pr_debug("%lu of %lu THP split\n", split, total);
4313 }
4314
4315 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4316 {
4317         return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4318                     is_vm_hugetlb_page(vma);
4319 }
4320
4321 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4322                                 unsigned long vaddr_end, unsigned int new_order,
4323                                 long in_folio_offset)
4324 {
4325         int ret = 0;
4326         struct task_struct *task;
4327         struct mm_struct *mm;
4328         unsigned long total = 0, split = 0;
4329         unsigned long addr;
4330
4331         vaddr_start &= PAGE_MASK;
4332         vaddr_end &= PAGE_MASK;
4333
4334         task = find_get_task_by_vpid(pid);
4335         if (!task) {
4336                 ret = -ESRCH;
4337                 goto out;
4338         }
4339
4340         /* Find the mm_struct */
4341         mm = get_task_mm(task);
4342         put_task_struct(task);
4343
4344         if (!mm) {
4345                 ret = -EINVAL;
4346                 goto out;
4347         }
4348
4349         pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
4350                  pid, vaddr_start, vaddr_end);
4351
4352         mmap_read_lock(mm);
4353         /*
4354          * always increase addr by PAGE_SIZE, since we could have a PTE page
4355          * table filled with PTE-mapped THPs, each of which is distinct.
4356          */
4357         for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4358                 struct vm_area_struct *vma = vma_lookup(mm, addr);
4359                 struct folio_walk fw;
4360                 struct folio *folio;
4361                 struct address_space *mapping;
4362                 unsigned int target_order = new_order;
4363
4364                 if (!vma)
4365                         break;
4366
4367                 /* skip special VMA and hugetlb VMA */
4368                 if (vma_not_suitable_for_thp_split(vma)) {
4369                         addr = vma->vm_end;
4370                         continue;
4371                 }
4372
4373                 folio = folio_walk_start(&fw, vma, addr, 0);
4374                 if (!folio)
4375                         continue;
4376
4377                 if (!is_transparent_hugepage(folio))
4378                         goto next;
4379
4380                 if (!folio_test_anon(folio)) {
4381                         mapping = folio->mapping;
4382                         target_order = max(new_order,
4383                                            mapping_min_folio_order(mapping));
4384                 }
4385
4386                 if (target_order >= folio_order(folio))
4387                         goto next;
4388
4389                 total++;
4390                 /*
4391                  * For folios with private, split_huge_page_to_list_to_order()
4392                  * will try to drop it before split and then check if the folio
4393                  * can be split or not. So skip the check here.
4394                  */
4395                 if (!folio_test_private(folio) &&
4396                     !can_split_folio(folio, 0, NULL))
4397                         goto next;
4398
4399                 if (!folio_trylock(folio))
4400                         goto next;
4401                 folio_get(folio);
4402                 folio_walk_end(&fw, vma);
4403
4404                 if (!folio_test_anon(folio) && folio->mapping != mapping)
4405                         goto unlock;
4406
4407                 if (in_folio_offset < 0 ||
4408                     in_folio_offset >= folio_nr_pages(folio)) {
4409                         if (!split_folio_to_order(folio, target_order))
4410                                 split++;
4411                 } else {
4412                         struct page *split_at = folio_page(folio,
4413                                                            in_folio_offset);
4414                         if (!folio_split(folio, target_order, split_at, NULL))
4415                                 split++;
4416                 }
4417
4418 unlock:
4419
4420                 folio_unlock(folio);
4421                 folio_put(folio);
4422
4423                 cond_resched();
4424                 continue;
4425 next:
4426                 folio_walk_end(&fw, vma);
4427                 cond_resched();
4428         }
4429         mmap_read_unlock(mm);
4430         mmput(mm);
4431
4432         pr_debug("%lu of %lu THP split\n", split, total);
4433
4434 out:
4435         return ret;
4436 }
4437
4438 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4439                                 pgoff_t off_end, unsigned int new_order,
4440                                 long in_folio_offset)
4441 {
4442         struct filename *file;
4443         struct file *candidate;
4444         struct address_space *mapping;
4445         int ret = -EINVAL;
4446         pgoff_t index;
4447         int nr_pages = 1;
4448         unsigned long total = 0, split = 0;
4449         unsigned int min_order;
4450         unsigned int target_order;
4451
4452         file = getname_kernel(file_path);
4453         if (IS_ERR(file))
4454                 return ret;
4455
4456         candidate = file_open_name(file, O_RDONLY, 0);
4457         if (IS_ERR(candidate))
4458                 goto out;
4459
4460         pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4461                  file_path, off_start, off_end);
4462
4463         mapping = candidate->f_mapping;
4464         min_order = mapping_min_folio_order(mapping);
4465         target_order = max(new_order, min_order);
4466
4467         for (index = off_start; index < off_end; index += nr_pages) {
4468                 struct folio *folio = filemap_get_folio(mapping, index);
4469
4470                 nr_pages = 1;
4471                 if (IS_ERR(folio))
4472                         continue;
4473
4474                 if (!folio_test_large(folio))
4475                         goto next;
4476
4477                 total++;
4478                 nr_pages = folio_nr_pages(folio);
4479
4480                 if (target_order >= folio_order(folio))
4481                         goto next;
4482
4483                 if (!folio_trylock(folio))
4484                         goto next;
4485
4486                 if (folio->mapping != mapping)
4487                         goto unlock;
4488
4489                 if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4490                         if (!split_folio_to_order(folio, target_order))
4491                                 split++;
4492                 } else {
4493                         struct page *split_at = folio_page(folio,
4494                                                            in_folio_offset);
4495                         if (!folio_split(folio, target_order, split_at, NULL))
4496                                 split++;
4497                 }
4498
4499 unlock:
4500                 folio_unlock(folio);
4501 next:
4502                 folio_put(folio);
4503                 cond_resched();
4504         }
4505
4506         filp_close(candidate, NULL);
4507         ret = 0;
4508
4509         pr_debug("%lu of %lu file-backed THP split\n", split, total);
4510 out:
4511         putname(file);
4512         return ret;
4513 }
4514
4515 #define MAX_INPUT_BUF_SZ 255
4516
4517 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4518                                 size_t count, loff_t *ppops)
4519 {
4520         static DEFINE_MUTEX(split_debug_mutex);
4521         ssize_t ret;
4522         /*
4523          * hold pid, start_vaddr, end_vaddr, new_order or
4524          * file_path, off_start, off_end, new_order
4525          */
4526         char input_buf[MAX_INPUT_BUF_SZ];
4527         int pid;
4528         unsigned long vaddr_start, vaddr_end;
4529         unsigned int new_order = 0;
4530         long in_folio_offset = -1;
4531
4532         ret = mutex_lock_interruptible(&split_debug_mutex);
4533         if (ret)
4534                 return ret;
4535
4536         ret = -EFAULT;
4537
4538         memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4539         if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4540                 goto out;
4541
4542         input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4543
4544         if (input_buf[0] == '/') {
4545                 char *tok;
4546                 char *tok_buf = input_buf;
4547                 char file_path[MAX_INPUT_BUF_SZ];
4548                 pgoff_t off_start = 0, off_end = 0;
4549                 size_t input_len = strlen(input_buf);
4550
4551                 tok = strsep(&tok_buf, ",");
4552                 if (tok && tok_buf) {
4553                         strscpy(file_path, tok);
4554                 } else {
4555                         ret = -EINVAL;
4556                         goto out;
4557                 }
4558
4559                 ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4560                                 &new_order, &in_folio_offset);
4561                 if (ret != 2 && ret != 3 && ret != 4) {
4562                         ret = -EINVAL;
4563                         goto out;
4564                 }
4565                 ret = split_huge_pages_in_file(file_path, off_start, off_end,
4566                                 new_order, in_folio_offset);
4567                 if (!ret)
4568                         ret = input_len;
4569
4570                 goto out;
4571         }
4572
4573         ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4574                         &vaddr_end, &new_order, &in_folio_offset);
4575         if (ret == 1 && pid == 1) {
4576                 split_huge_pages_all();
4577                 ret = strlen(input_buf);
4578                 goto out;
4579         } else if (ret != 3 && ret != 4 && ret != 5) {
4580                 ret = -EINVAL;
4581                 goto out;
4582         }
4583
4584         ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4585                         in_folio_offset);
4586         if (!ret)
4587                 ret = strlen(input_buf);
4588 out:
4589         mutex_unlock(&split_debug_mutex);
4590         return ret;
4591
4592 }
4593
4594 static const struct file_operations split_huge_pages_fops = {
4595         .owner   = THIS_MODULE,
4596         .write   = split_huge_pages_write,
4597 };
4598
4599 static int __init split_huge_pages_debugfs(void)
4600 {
4601         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4602                             &split_huge_pages_fops);
4603         return 0;
4604 }
4605 late_initcall(split_huge_pages_debugfs);
4606 #endif
4607
4608 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4609 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4610                 struct page *page)
4611 {
4612         struct folio *folio = page_folio(page);
4613         struct vm_area_struct *vma = pvmw->vma;
4614         struct mm_struct *mm = vma->vm_mm;
4615         unsigned long address = pvmw->address;
4616         bool anon_exclusive;
4617         pmd_t pmdval;
4618         swp_entry_t entry;
4619         pmd_t pmdswp;
4620
4621         if (!(pvmw->pmd && !pvmw->pte))
4622                 return 0;
4623
4624         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4625         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4626
4627         /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4628         anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4629         if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4630                 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4631                 return -EBUSY;
4632         }
4633
4634         if (pmd_dirty(pmdval))
4635                 folio_mark_dirty(folio);
4636         if (pmd_write(pmdval))
4637                 entry = make_writable_migration_entry(page_to_pfn(page));
4638         else if (anon_exclusive)
4639                 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4640         else
4641                 entry = make_readable_migration_entry(page_to_pfn(page));
4642         if (pmd_young(pmdval))
4643                 entry = make_migration_entry_young(entry);
4644         if (pmd_dirty(pmdval))
4645                 entry = make_migration_entry_dirty(entry);
4646         pmdswp = swp_entry_to_pmd(entry);
4647         if (pmd_soft_dirty(pmdval))
4648                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4649         if (pmd_uffd_wp(pmdval))
4650                 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4651         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4652         folio_remove_rmap_pmd(folio, page, vma);
4653         folio_put(folio);
4654         trace_set_migration_pmd(address, pmd_val(pmdswp));
4655
4656         return 0;
4657 }
4658
4659 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4660 {
4661         struct folio *folio = page_folio(new);
4662         struct vm_area_struct *vma = pvmw->vma;
4663         struct mm_struct *mm = vma->vm_mm;
4664         unsigned long address = pvmw->address;
4665         unsigned long haddr = address & HPAGE_PMD_MASK;
4666         pmd_t pmde;
4667         swp_entry_t entry;
4668
4669         if (!(pvmw->pmd && !pvmw->pte))
4670                 return;
4671
4672         entry = pmd_to_swp_entry(*pvmw->pmd);
4673         folio_get(folio);
4674         pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4675         if (pmd_swp_soft_dirty(*pvmw->pmd))
4676                 pmde = pmd_mksoft_dirty(pmde);
4677         if (is_writable_migration_entry(entry))
4678                 pmde = pmd_mkwrite(pmde, vma);
4679         if (pmd_swp_uffd_wp(*pvmw->pmd))
4680                 pmde = pmd_mkuffd_wp(pmde);
4681         if (!is_migration_entry_young(entry))
4682                 pmde = pmd_mkold(pmde);
4683         /* NOTE: this may contain setting soft-dirty on some archs */
4684         if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4685                 pmde = pmd_mkdirty(pmde);
4686
4687         if (folio_test_anon(folio)) {
4688                 rmap_t rmap_flags = RMAP_NONE;
4689
4690                 if (!is_readable_migration_entry(entry))
4691                         rmap_flags |= RMAP_EXCLUSIVE;
4692
4693                 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4694         } else {
4695                 folio_add_file_rmap_pmd(folio, new, vma);
4696         }
4697         VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4698         set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4699
4700         /* No need to invalidate - it was non-present before */
4701         update_mmu_cache_pmd(vma, address, pvmw->pmd);
4702         trace_remove_migration_pmd(address, pmd_val(pmde));
4703 }
4704 #endif