Merge tag 'microblaze-v4.19-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[linux-2.6-block.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40
41 /*
42  * struct hmm - HMM per mm struct
43  *
44  * @mm: mm struct this HMM struct is bound to
45  * @lock: lock protecting ranges list
46  * @sequence: we track updates to the CPU page table with a sequence number
47  * @ranges: list of range being snapshotted
48  * @mirrors: list of mirrors for this mm
49  * @mmu_notifier: mmu notifier to track updates to CPU page table
50  * @mirrors_sem: read/write semaphore protecting the mirrors list
51  */
52 struct hmm {
53         struct mm_struct        *mm;
54         spinlock_t              lock;
55         atomic_t                sequence;
56         struct list_head        ranges;
57         struct list_head        mirrors;
58         struct mmu_notifier     mmu_notifier;
59         struct rw_semaphore     mirrors_sem;
60 };
61
62 /*
63  * hmm_register - register HMM against an mm (HMM internal)
64  *
65  * @mm: mm struct to attach to
66  *
67  * This is not intended to be used directly by device drivers. It allocates an
68  * HMM struct if mm does not have one, and initializes it.
69  */
70 static struct hmm *hmm_register(struct mm_struct *mm)
71 {
72         struct hmm *hmm = READ_ONCE(mm->hmm);
73         bool cleanup = false;
74
75         /*
76          * The hmm struct can only be freed once the mm_struct goes away,
77          * hence we should always have pre-allocated an new hmm struct
78          * above.
79          */
80         if (hmm)
81                 return hmm;
82
83         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
84         if (!hmm)
85                 return NULL;
86         INIT_LIST_HEAD(&hmm->mirrors);
87         init_rwsem(&hmm->mirrors_sem);
88         atomic_set(&hmm->sequence, 0);
89         hmm->mmu_notifier.ops = NULL;
90         INIT_LIST_HEAD(&hmm->ranges);
91         spin_lock_init(&hmm->lock);
92         hmm->mm = mm;
93
94         /*
95          * We should only get here if hold the mmap_sem in write mode ie on
96          * registration of first mirror through hmm_mirror_register()
97          */
98         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
99         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
100                 kfree(hmm);
101                 return NULL;
102         }
103
104         spin_lock(&mm->page_table_lock);
105         if (!mm->hmm)
106                 mm->hmm = hmm;
107         else
108                 cleanup = true;
109         spin_unlock(&mm->page_table_lock);
110
111         if (cleanup) {
112                 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
113                 kfree(hmm);
114         }
115
116         return mm->hmm;
117 }
118
119 void hmm_mm_destroy(struct mm_struct *mm)
120 {
121         kfree(mm->hmm);
122 }
123
124 static void hmm_invalidate_range(struct hmm *hmm,
125                                  enum hmm_update_type action,
126                                  unsigned long start,
127                                  unsigned long end)
128 {
129         struct hmm_mirror *mirror;
130         struct hmm_range *range;
131
132         spin_lock(&hmm->lock);
133         list_for_each_entry(range, &hmm->ranges, list) {
134                 unsigned long addr, idx, npages;
135
136                 if (end < range->start || start >= range->end)
137                         continue;
138
139                 range->valid = false;
140                 addr = max(start, range->start);
141                 idx = (addr - range->start) >> PAGE_SHIFT;
142                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
143                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
144         }
145         spin_unlock(&hmm->lock);
146
147         down_read(&hmm->mirrors_sem);
148         list_for_each_entry(mirror, &hmm->mirrors, list)
149                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
150                                                         start, end);
151         up_read(&hmm->mirrors_sem);
152 }
153
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
155 {
156         struct hmm_mirror *mirror;
157         struct hmm *hmm = mm->hmm;
158
159         down_write(&hmm->mirrors_sem);
160         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
161                                           list);
162         while (mirror) {
163                 list_del_init(&mirror->list);
164                 if (mirror->ops->release) {
165                         /*
166                          * Drop mirrors_sem so callback can wait on any pending
167                          * work that might itself trigger mmu_notifier callback
168                          * and thus would deadlock with us.
169                          */
170                         up_write(&hmm->mirrors_sem);
171                         mirror->ops->release(mirror);
172                         down_write(&hmm->mirrors_sem);
173                 }
174                 mirror = list_first_entry_or_null(&hmm->mirrors,
175                                                   struct hmm_mirror, list);
176         }
177         up_write(&hmm->mirrors_sem);
178 }
179
180 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
181                                        struct mm_struct *mm,
182                                        unsigned long start,
183                                        unsigned long end)
184 {
185         struct hmm *hmm = mm->hmm;
186
187         VM_BUG_ON(!hmm);
188
189         atomic_inc(&hmm->sequence);
190 }
191
192 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
193                                      struct mm_struct *mm,
194                                      unsigned long start,
195                                      unsigned long end)
196 {
197         struct hmm *hmm = mm->hmm;
198
199         VM_BUG_ON(!hmm);
200
201         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
202 }
203
204 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
205         .release                = hmm_release,
206         .invalidate_range_start = hmm_invalidate_range_start,
207         .invalidate_range_end   = hmm_invalidate_range_end,
208 };
209
210 /*
211  * hmm_mirror_register() - register a mirror against an mm
212  *
213  * @mirror: new mirror struct to register
214  * @mm: mm to register against
215  *
216  * To start mirroring a process address space, the device driver must register
217  * an HMM mirror struct.
218  *
219  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
220  */
221 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
222 {
223         /* Sanity check */
224         if (!mm || !mirror || !mirror->ops)
225                 return -EINVAL;
226
227 again:
228         mirror->hmm = hmm_register(mm);
229         if (!mirror->hmm)
230                 return -ENOMEM;
231
232         down_write(&mirror->hmm->mirrors_sem);
233         if (mirror->hmm->mm == NULL) {
234                 /*
235                  * A racing hmm_mirror_unregister() is about to destroy the hmm
236                  * struct. Try again to allocate a new one.
237                  */
238                 up_write(&mirror->hmm->mirrors_sem);
239                 mirror->hmm = NULL;
240                 goto again;
241         } else {
242                 list_add(&mirror->list, &mirror->hmm->mirrors);
243                 up_write(&mirror->hmm->mirrors_sem);
244         }
245
246         return 0;
247 }
248 EXPORT_SYMBOL(hmm_mirror_register);
249
250 /*
251  * hmm_mirror_unregister() - unregister a mirror
252  *
253  * @mirror: new mirror struct to register
254  *
255  * Stop mirroring a process address space, and cleanup.
256  */
257 void hmm_mirror_unregister(struct hmm_mirror *mirror)
258 {
259         bool should_unregister = false;
260         struct mm_struct *mm;
261         struct hmm *hmm;
262
263         if (mirror->hmm == NULL)
264                 return;
265
266         hmm = mirror->hmm;
267         down_write(&hmm->mirrors_sem);
268         list_del_init(&mirror->list);
269         should_unregister = list_empty(&hmm->mirrors);
270         mirror->hmm = NULL;
271         mm = hmm->mm;
272         hmm->mm = NULL;
273         up_write(&hmm->mirrors_sem);
274
275         if (!should_unregister || mm == NULL)
276                 return;
277
278         spin_lock(&mm->page_table_lock);
279         if (mm->hmm == hmm)
280                 mm->hmm = NULL;
281         spin_unlock(&mm->page_table_lock);
282
283         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
284         kfree(hmm);
285 }
286 EXPORT_SYMBOL(hmm_mirror_unregister);
287
288 struct hmm_vma_walk {
289         struct hmm_range        *range;
290         unsigned long           last;
291         bool                    fault;
292         bool                    block;
293 };
294
295 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
296                             bool write_fault, uint64_t *pfn)
297 {
298         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
299         struct hmm_vma_walk *hmm_vma_walk = walk->private;
300         struct hmm_range *range = hmm_vma_walk->range;
301         struct vm_area_struct *vma = walk->vma;
302         vm_fault_t ret;
303
304         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
305         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
306         ret = handle_mm_fault(vma, addr, flags);
307         if (ret & VM_FAULT_RETRY)
308                 return -EBUSY;
309         if (ret & VM_FAULT_ERROR) {
310                 *pfn = range->values[HMM_PFN_ERROR];
311                 return -EFAULT;
312         }
313
314         return -EAGAIN;
315 }
316
317 static int hmm_pfns_bad(unsigned long addr,
318                         unsigned long end,
319                         struct mm_walk *walk)
320 {
321         struct hmm_vma_walk *hmm_vma_walk = walk->private;
322         struct hmm_range *range = hmm_vma_walk->range;
323         uint64_t *pfns = range->pfns;
324         unsigned long i;
325
326         i = (addr - range->start) >> PAGE_SHIFT;
327         for (; addr < end; addr += PAGE_SIZE, i++)
328                 pfns[i] = range->values[HMM_PFN_ERROR];
329
330         return 0;
331 }
332
333 /*
334  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
335  * @start: range virtual start address (inclusive)
336  * @end: range virtual end address (exclusive)
337  * @fault: should we fault or not ?
338  * @write_fault: write fault ?
339  * @walk: mm_walk structure
340  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
341  *
342  * This function will be called whenever pmd_none() or pte_none() returns true,
343  * or whenever there is no page directory covering the virtual address range.
344  */
345 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
346                               bool fault, bool write_fault,
347                               struct mm_walk *walk)
348 {
349         struct hmm_vma_walk *hmm_vma_walk = walk->private;
350         struct hmm_range *range = hmm_vma_walk->range;
351         uint64_t *pfns = range->pfns;
352         unsigned long i;
353
354         hmm_vma_walk->last = addr;
355         i = (addr - range->start) >> PAGE_SHIFT;
356         for (; addr < end; addr += PAGE_SIZE, i++) {
357                 pfns[i] = range->values[HMM_PFN_NONE];
358                 if (fault || write_fault) {
359                         int ret;
360
361                         ret = hmm_vma_do_fault(walk, addr, write_fault,
362                                                &pfns[i]);
363                         if (ret != -EAGAIN)
364                                 return ret;
365                 }
366         }
367
368         return (fault || write_fault) ? -EAGAIN : 0;
369 }
370
371 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
372                                       uint64_t pfns, uint64_t cpu_flags,
373                                       bool *fault, bool *write_fault)
374 {
375         struct hmm_range *range = hmm_vma_walk->range;
376
377         *fault = *write_fault = false;
378         if (!hmm_vma_walk->fault)
379                 return;
380
381         /* We aren't ask to do anything ... */
382         if (!(pfns & range->flags[HMM_PFN_VALID]))
383                 return;
384         /* If this is device memory than only fault if explicitly requested */
385         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
386                 /* Do we fault on device memory ? */
387                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
388                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
389                         *fault = true;
390                 }
391                 return;
392         }
393
394         /* If CPU page table is not valid then we need to fault */
395         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
396         /* Need to write fault ? */
397         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
398             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
399                 *write_fault = true;
400                 *fault = true;
401         }
402 }
403
404 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
405                                  const uint64_t *pfns, unsigned long npages,
406                                  uint64_t cpu_flags, bool *fault,
407                                  bool *write_fault)
408 {
409         unsigned long i;
410
411         if (!hmm_vma_walk->fault) {
412                 *fault = *write_fault = false;
413                 return;
414         }
415
416         for (i = 0; i < npages; ++i) {
417                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
418                                    fault, write_fault);
419                 if ((*fault) || (*write_fault))
420                         return;
421         }
422 }
423
424 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
425                              struct mm_walk *walk)
426 {
427         struct hmm_vma_walk *hmm_vma_walk = walk->private;
428         struct hmm_range *range = hmm_vma_walk->range;
429         bool fault, write_fault;
430         unsigned long i, npages;
431         uint64_t *pfns;
432
433         i = (addr - range->start) >> PAGE_SHIFT;
434         npages = (end - addr) >> PAGE_SHIFT;
435         pfns = &range->pfns[i];
436         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
437                              0, &fault, &write_fault);
438         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
439 }
440
441 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
442 {
443         if (pmd_protnone(pmd))
444                 return 0;
445         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
446                                 range->flags[HMM_PFN_WRITE] :
447                                 range->flags[HMM_PFN_VALID];
448 }
449
450 static int hmm_vma_handle_pmd(struct mm_walk *walk,
451                               unsigned long addr,
452                               unsigned long end,
453                               uint64_t *pfns,
454                               pmd_t pmd)
455 {
456         struct hmm_vma_walk *hmm_vma_walk = walk->private;
457         struct hmm_range *range = hmm_vma_walk->range;
458         unsigned long pfn, npages, i;
459         bool fault, write_fault;
460         uint64_t cpu_flags;
461
462         npages = (end - addr) >> PAGE_SHIFT;
463         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
464         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
465                              &fault, &write_fault);
466
467         if (pmd_protnone(pmd) || fault || write_fault)
468                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
469
470         pfn = pmd_pfn(pmd) + pte_index(addr);
471         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
472                 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
473         hmm_vma_walk->last = end;
474         return 0;
475 }
476
477 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
478 {
479         if (pte_none(pte) || !pte_present(pte))
480                 return 0;
481         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
482                                 range->flags[HMM_PFN_WRITE] :
483                                 range->flags[HMM_PFN_VALID];
484 }
485
486 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
487                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
488                               uint64_t *pfn)
489 {
490         struct hmm_vma_walk *hmm_vma_walk = walk->private;
491         struct hmm_range *range = hmm_vma_walk->range;
492         struct vm_area_struct *vma = walk->vma;
493         bool fault, write_fault;
494         uint64_t cpu_flags;
495         pte_t pte = *ptep;
496         uint64_t orig_pfn = *pfn;
497
498         *pfn = range->values[HMM_PFN_NONE];
499         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
500         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
501                            &fault, &write_fault);
502
503         if (pte_none(pte)) {
504                 if (fault || write_fault)
505                         goto fault;
506                 return 0;
507         }
508
509         if (!pte_present(pte)) {
510                 swp_entry_t entry = pte_to_swp_entry(pte);
511
512                 if (!non_swap_entry(entry)) {
513                         if (fault || write_fault)
514                                 goto fault;
515                         return 0;
516                 }
517
518                 /*
519                  * This is a special swap entry, ignore migration, use
520                  * device and report anything else as error.
521                  */
522                 if (is_device_private_entry(entry)) {
523                         cpu_flags = range->flags[HMM_PFN_VALID] |
524                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
525                         cpu_flags |= is_write_device_private_entry(entry) ?
526                                 range->flags[HMM_PFN_WRITE] : 0;
527                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
528                                            &fault, &write_fault);
529                         if (fault || write_fault)
530                                 goto fault;
531                         *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
532                         *pfn |= cpu_flags;
533                         return 0;
534                 }
535
536                 if (is_migration_entry(entry)) {
537                         if (fault || write_fault) {
538                                 pte_unmap(ptep);
539                                 hmm_vma_walk->last = addr;
540                                 migration_entry_wait(vma->vm_mm,
541                                                      pmdp, addr);
542                                 return -EAGAIN;
543                         }
544                         return 0;
545                 }
546
547                 /* Report error for everything else */
548                 *pfn = range->values[HMM_PFN_ERROR];
549                 return -EFAULT;
550         }
551
552         if (fault || write_fault)
553                 goto fault;
554
555         *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
556         return 0;
557
558 fault:
559         pte_unmap(ptep);
560         /* Fault any virtual address we were asked to fault */
561         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
562 }
563
564 static int hmm_vma_walk_pmd(pmd_t *pmdp,
565                             unsigned long start,
566                             unsigned long end,
567                             struct mm_walk *walk)
568 {
569         struct hmm_vma_walk *hmm_vma_walk = walk->private;
570         struct hmm_range *range = hmm_vma_walk->range;
571         uint64_t *pfns = range->pfns;
572         unsigned long addr = start, i;
573         pte_t *ptep;
574
575         i = (addr - range->start) >> PAGE_SHIFT;
576
577 again:
578         if (pmd_none(*pmdp))
579                 return hmm_vma_walk_hole(start, end, walk);
580
581         if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
582                 return hmm_pfns_bad(start, end, walk);
583
584         if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
585                 pmd_t pmd;
586
587                 /*
588                  * No need to take pmd_lock here, even if some other threads
589                  * is splitting the huge pmd we will get that event through
590                  * mmu_notifier callback.
591                  *
592                  * So just read pmd value and check again its a transparent
593                  * huge or device mapping one and compute corresponding pfn
594                  * values.
595                  */
596                 pmd = pmd_read_atomic(pmdp);
597                 barrier();
598                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
599                         goto again;
600
601                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
602         }
603
604         if (pmd_bad(*pmdp))
605                 return hmm_pfns_bad(start, end, walk);
606
607         ptep = pte_offset_map(pmdp, addr);
608         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
609                 int r;
610
611                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
612                 if (r) {
613                         /* hmm_vma_handle_pte() did unmap pte directory */
614                         hmm_vma_walk->last = addr;
615                         return r;
616                 }
617         }
618         pte_unmap(ptep - 1);
619
620         hmm_vma_walk->last = addr;
621         return 0;
622 }
623
624 static void hmm_pfns_clear(struct hmm_range *range,
625                            uint64_t *pfns,
626                            unsigned long addr,
627                            unsigned long end)
628 {
629         for (; addr < end; addr += PAGE_SIZE, pfns++)
630                 *pfns = range->values[HMM_PFN_NONE];
631 }
632
633 static void hmm_pfns_special(struct hmm_range *range)
634 {
635         unsigned long addr = range->start, i = 0;
636
637         for (; addr < range->end; addr += PAGE_SIZE, i++)
638                 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
639 }
640
641 /*
642  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
643  * @range: range being snapshotted
644  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
645  *          vma permission, 0 success
646  *
647  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
648  * validity is tracked by range struct. See hmm_vma_range_done() for further
649  * information.
650  *
651  * The range struct is initialized here. It tracks the CPU page table, but only
652  * if the function returns success (0), in which case the caller must then call
653  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
654  *
655  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
656  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
657  */
658 int hmm_vma_get_pfns(struct hmm_range *range)
659 {
660         struct vm_area_struct *vma = range->vma;
661         struct hmm_vma_walk hmm_vma_walk;
662         struct mm_walk mm_walk;
663         struct hmm *hmm;
664
665         /* Sanity check, this really should not happen ! */
666         if (range->start < vma->vm_start || range->start >= vma->vm_end)
667                 return -EINVAL;
668         if (range->end < vma->vm_start || range->end > vma->vm_end)
669                 return -EINVAL;
670
671         hmm = hmm_register(vma->vm_mm);
672         if (!hmm)
673                 return -ENOMEM;
674         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
675         if (!hmm->mmu_notifier.ops)
676                 return -EINVAL;
677
678         /* FIXME support hugetlb fs */
679         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
680                         vma_is_dax(vma)) {
681                 hmm_pfns_special(range);
682                 return -EINVAL;
683         }
684
685         if (!(vma->vm_flags & VM_READ)) {
686                 /*
687                  * If vma do not allow read access, then assume that it does
688                  * not allow write access, either. Architecture that allow
689                  * write without read access are not supported by HMM, because
690                  * operations such has atomic access would not work.
691                  */
692                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
693                 return -EPERM;
694         }
695
696         /* Initialize range to track CPU page table update */
697         spin_lock(&hmm->lock);
698         range->valid = true;
699         list_add_rcu(&range->list, &hmm->ranges);
700         spin_unlock(&hmm->lock);
701
702         hmm_vma_walk.fault = false;
703         hmm_vma_walk.range = range;
704         mm_walk.private = &hmm_vma_walk;
705
706         mm_walk.vma = vma;
707         mm_walk.mm = vma->vm_mm;
708         mm_walk.pte_entry = NULL;
709         mm_walk.test_walk = NULL;
710         mm_walk.hugetlb_entry = NULL;
711         mm_walk.pmd_entry = hmm_vma_walk_pmd;
712         mm_walk.pte_hole = hmm_vma_walk_hole;
713
714         walk_page_range(range->start, range->end, &mm_walk);
715         return 0;
716 }
717 EXPORT_SYMBOL(hmm_vma_get_pfns);
718
719 /*
720  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
721  * @range: range being tracked
722  * Returns: false if range data has been invalidated, true otherwise
723  *
724  * Range struct is used to track updates to the CPU page table after a call to
725  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
726  * using the data,  or wants to lock updates to the data it got from those
727  * functions, it must call the hmm_vma_range_done() function, which will then
728  * stop tracking CPU page table updates.
729  *
730  * Note that device driver must still implement general CPU page table update
731  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
732  * the mmu_notifier API directly.
733  *
734  * CPU page table update tracking done through hmm_range is only temporary and
735  * to be used while trying to duplicate CPU page table contents for a range of
736  * virtual addresses.
737  *
738  * There are two ways to use this :
739  * again:
740  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
741  *   trans = device_build_page_table_update_transaction(pfns);
742  *   device_page_table_lock();
743  *   if (!hmm_vma_range_done(range)) {
744  *     device_page_table_unlock();
745  *     goto again;
746  *   }
747  *   device_commit_transaction(trans);
748  *   device_page_table_unlock();
749  *
750  * Or:
751  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
752  *   device_page_table_lock();
753  *   hmm_vma_range_done(range);
754  *   device_update_page_table(range->pfns);
755  *   device_page_table_unlock();
756  */
757 bool hmm_vma_range_done(struct hmm_range *range)
758 {
759         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
760         struct hmm *hmm;
761
762         if (range->end <= range->start) {
763                 BUG();
764                 return false;
765         }
766
767         hmm = hmm_register(range->vma->vm_mm);
768         if (!hmm) {
769                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
770                 return false;
771         }
772
773         spin_lock(&hmm->lock);
774         list_del_rcu(&range->list);
775         spin_unlock(&hmm->lock);
776
777         return range->valid;
778 }
779 EXPORT_SYMBOL(hmm_vma_range_done);
780
781 /*
782  * hmm_vma_fault() - try to fault some address in a virtual address range
783  * @range: range being faulted
784  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
785  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
786  *
787  * This is similar to a regular CPU page fault except that it will not trigger
788  * any memory migration if the memory being faulted is not accessible by CPUs.
789  *
790  * On error, for one virtual address in the range, the function will mark the
791  * corresponding HMM pfn entry with an error flag.
792  *
793  * Expected use pattern:
794  * retry:
795  *   down_read(&mm->mmap_sem);
796  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
797  *   // array accordingly
798  *   ret = hmm_vma_fault(range, write, block);
799  *   switch (ret) {
800  *   case -EAGAIN:
801  *     hmm_vma_range_done(range);
802  *     // You might want to rate limit or yield to play nicely, you may
803  *     // also commit any valid pfn in the array assuming that you are
804  *     // getting true from hmm_vma_range_monitor_end()
805  *     goto retry;
806  *   case 0:
807  *     break;
808  *   case -ENOMEM:
809  *   case -EINVAL:
810  *   case -EPERM:
811  *   default:
812  *     // Handle error !
813  *     up_read(&mm->mmap_sem)
814  *     return;
815  *   }
816  *   // Take device driver lock that serialize device page table update
817  *   driver_lock_device_page_table_update();
818  *   hmm_vma_range_done(range);
819  *   // Commit pfns we got from hmm_vma_fault()
820  *   driver_unlock_device_page_table_update();
821  *   up_read(&mm->mmap_sem)
822  *
823  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
824  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
825  *
826  * YOU HAVE BEEN WARNED !
827  */
828 int hmm_vma_fault(struct hmm_range *range, bool block)
829 {
830         struct vm_area_struct *vma = range->vma;
831         unsigned long start = range->start;
832         struct hmm_vma_walk hmm_vma_walk;
833         struct mm_walk mm_walk;
834         struct hmm *hmm;
835         int ret;
836
837         /* Sanity check, this really should not happen ! */
838         if (range->start < vma->vm_start || range->start >= vma->vm_end)
839                 return -EINVAL;
840         if (range->end < vma->vm_start || range->end > vma->vm_end)
841                 return -EINVAL;
842
843         hmm = hmm_register(vma->vm_mm);
844         if (!hmm) {
845                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
846                 return -ENOMEM;
847         }
848         /* Caller must have registered a mirror using hmm_mirror_register() */
849         if (!hmm->mmu_notifier.ops)
850                 return -EINVAL;
851
852         /* FIXME support hugetlb fs */
853         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
854                         vma_is_dax(vma)) {
855                 hmm_pfns_special(range);
856                 return -EINVAL;
857         }
858
859         if (!(vma->vm_flags & VM_READ)) {
860                 /*
861                  * If vma do not allow read access, then assume that it does
862                  * not allow write access, either. Architecture that allow
863                  * write without read access are not supported by HMM, because
864                  * operations such has atomic access would not work.
865                  */
866                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
867                 return -EPERM;
868         }
869
870         /* Initialize range to track CPU page table update */
871         spin_lock(&hmm->lock);
872         range->valid = true;
873         list_add_rcu(&range->list, &hmm->ranges);
874         spin_unlock(&hmm->lock);
875
876         hmm_vma_walk.fault = true;
877         hmm_vma_walk.block = block;
878         hmm_vma_walk.range = range;
879         mm_walk.private = &hmm_vma_walk;
880         hmm_vma_walk.last = range->start;
881
882         mm_walk.vma = vma;
883         mm_walk.mm = vma->vm_mm;
884         mm_walk.pte_entry = NULL;
885         mm_walk.test_walk = NULL;
886         mm_walk.hugetlb_entry = NULL;
887         mm_walk.pmd_entry = hmm_vma_walk_pmd;
888         mm_walk.pte_hole = hmm_vma_walk_hole;
889
890         do {
891                 ret = walk_page_range(start, range->end, &mm_walk);
892                 start = hmm_vma_walk.last;
893         } while (ret == -EAGAIN);
894
895         if (ret) {
896                 unsigned long i;
897
898                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
899                 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
900                                range->end);
901                 hmm_vma_range_done(range);
902         }
903         return ret;
904 }
905 EXPORT_SYMBOL(hmm_vma_fault);
906 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
907
908
909 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
910 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
911                                        unsigned long addr)
912 {
913         struct page *page;
914
915         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
916         if (!page)
917                 return NULL;
918         lock_page(page);
919         return page;
920 }
921 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
922
923
924 static void hmm_devmem_ref_release(struct percpu_ref *ref)
925 {
926         struct hmm_devmem *devmem;
927
928         devmem = container_of(ref, struct hmm_devmem, ref);
929         complete(&devmem->completion);
930 }
931
932 static void hmm_devmem_ref_exit(void *data)
933 {
934         struct percpu_ref *ref = data;
935         struct hmm_devmem *devmem;
936
937         devmem = container_of(ref, struct hmm_devmem, ref);
938         percpu_ref_exit(ref);
939         devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
940 }
941
942 static void hmm_devmem_ref_kill(void *data)
943 {
944         struct percpu_ref *ref = data;
945         struct hmm_devmem *devmem;
946
947         devmem = container_of(ref, struct hmm_devmem, ref);
948         percpu_ref_kill(ref);
949         wait_for_completion(&devmem->completion);
950         devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
951 }
952
953 static int hmm_devmem_fault(struct vm_area_struct *vma,
954                             unsigned long addr,
955                             const struct page *page,
956                             unsigned int flags,
957                             pmd_t *pmdp)
958 {
959         struct hmm_devmem *devmem = page->pgmap->data;
960
961         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
962 }
963
964 static void hmm_devmem_free(struct page *page, void *data)
965 {
966         struct hmm_devmem *devmem = data;
967
968         devmem->ops->free(devmem, page);
969 }
970
971 static DEFINE_MUTEX(hmm_devmem_lock);
972 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
973
974 static void hmm_devmem_radix_release(struct resource *resource)
975 {
976         resource_size_t key;
977
978         mutex_lock(&hmm_devmem_lock);
979         for (key = resource->start;
980              key <= resource->end;
981              key += PA_SECTION_SIZE)
982                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
983         mutex_unlock(&hmm_devmem_lock);
984 }
985
986 static void hmm_devmem_release(struct device *dev, void *data)
987 {
988         struct hmm_devmem *devmem = data;
989         struct resource *resource = devmem->resource;
990         unsigned long start_pfn, npages;
991         struct zone *zone;
992         struct page *page;
993
994         if (percpu_ref_tryget_live(&devmem->ref)) {
995                 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
996                 percpu_ref_put(&devmem->ref);
997         }
998
999         /* pages are dead and unused, undo the arch mapping */
1000         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1001         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1002
1003         page = pfn_to_page(start_pfn);
1004         zone = page_zone(page);
1005
1006         mem_hotplug_begin();
1007         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1008                 __remove_pages(zone, start_pfn, npages, NULL);
1009         else
1010                 arch_remove_memory(start_pfn << PAGE_SHIFT,
1011                                    npages << PAGE_SHIFT, NULL);
1012         mem_hotplug_done();
1013
1014         hmm_devmem_radix_release(resource);
1015 }
1016
1017 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1018 {
1019         resource_size_t key, align_start, align_size, align_end;
1020         struct device *device = devmem->device;
1021         int ret, nid, is_ram;
1022         unsigned long pfn;
1023
1024         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1025         align_size = ALIGN(devmem->resource->start +
1026                            resource_size(devmem->resource),
1027                            PA_SECTION_SIZE) - align_start;
1028
1029         is_ram = region_intersects(align_start, align_size,
1030                                    IORESOURCE_SYSTEM_RAM,
1031                                    IORES_DESC_NONE);
1032         if (is_ram == REGION_MIXED) {
1033                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1034                                 __func__, devmem->resource);
1035                 return -ENXIO;
1036         }
1037         if (is_ram == REGION_INTERSECTS)
1038                 return -ENXIO;
1039
1040         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1041                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1042         else
1043                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1044
1045         devmem->pagemap.res = *devmem->resource;
1046         devmem->pagemap.page_fault = hmm_devmem_fault;
1047         devmem->pagemap.page_free = hmm_devmem_free;
1048         devmem->pagemap.dev = devmem->device;
1049         devmem->pagemap.ref = &devmem->ref;
1050         devmem->pagemap.data = devmem;
1051
1052         mutex_lock(&hmm_devmem_lock);
1053         align_end = align_start + align_size - 1;
1054         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1055                 struct hmm_devmem *dup;
1056
1057                 dup = radix_tree_lookup(&hmm_devmem_radix,
1058                                         key >> PA_SECTION_SHIFT);
1059                 if (dup) {
1060                         dev_err(device, "%s: collides with mapping for %s\n",
1061                                 __func__, dev_name(dup->device));
1062                         mutex_unlock(&hmm_devmem_lock);
1063                         ret = -EBUSY;
1064                         goto error;
1065                 }
1066                 ret = radix_tree_insert(&hmm_devmem_radix,
1067                                         key >> PA_SECTION_SHIFT,
1068                                         devmem);
1069                 if (ret) {
1070                         dev_err(device, "%s: failed: %d\n", __func__, ret);
1071                         mutex_unlock(&hmm_devmem_lock);
1072                         goto error_radix;
1073                 }
1074         }
1075         mutex_unlock(&hmm_devmem_lock);
1076
1077         nid = dev_to_node(device);
1078         if (nid < 0)
1079                 nid = numa_mem_id();
1080
1081         mem_hotplug_begin();
1082         /*
1083          * For device private memory we call add_pages() as we only need to
1084          * allocate and initialize struct page for the device memory. More-
1085          * over the device memory is un-accessible thus we do not want to
1086          * create a linear mapping for the memory like arch_add_memory()
1087          * would do.
1088          *
1089          * For device public memory, which is accesible by the CPU, we do
1090          * want the linear mapping and thus use arch_add_memory().
1091          */
1092         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1093                 ret = arch_add_memory(nid, align_start, align_size, NULL,
1094                                 false);
1095         else
1096                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
1097                                 align_size >> PAGE_SHIFT, NULL, false);
1098         if (ret) {
1099                 mem_hotplug_done();
1100                 goto error_add_memory;
1101         }
1102         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1103                                 align_start >> PAGE_SHIFT,
1104                                 align_size >> PAGE_SHIFT, NULL);
1105         mem_hotplug_done();
1106
1107         for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1108                 struct page *page = pfn_to_page(pfn);
1109
1110                 page->pgmap = &devmem->pagemap;
1111         }
1112         return 0;
1113
1114 error_add_memory:
1115         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1116 error_radix:
1117         hmm_devmem_radix_release(devmem->resource);
1118 error:
1119         return ret;
1120 }
1121
1122 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1123 {
1124         struct hmm_devmem *devmem = data;
1125
1126         return devmem->resource == match_data;
1127 }
1128
1129 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1130 {
1131         devres_release(devmem->device, &hmm_devmem_release,
1132                        &hmm_devmem_match, devmem->resource);
1133 }
1134
1135 /*
1136  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1137  *
1138  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1139  * @device: device struct to bind the resource too
1140  * @size: size in bytes of the device memory to add
1141  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1142  *
1143  * This function first finds an empty range of physical address big enough to
1144  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1145  * in turn allocates struct pages. It does not do anything beyond that; all
1146  * events affecting the memory will go through the various callbacks provided
1147  * by hmm_devmem_ops struct.
1148  *
1149  * Device driver should call this function during device initialization and
1150  * is then responsible of memory management. HMM only provides helpers.
1151  */
1152 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1153                                   struct device *device,
1154                                   unsigned long size)
1155 {
1156         struct hmm_devmem *devmem;
1157         resource_size_t addr;
1158         int ret;
1159
1160         dev_pagemap_get_ops();
1161
1162         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1163                                    GFP_KERNEL, dev_to_node(device));
1164         if (!devmem)
1165                 return ERR_PTR(-ENOMEM);
1166
1167         init_completion(&devmem->completion);
1168         devmem->pfn_first = -1UL;
1169         devmem->pfn_last = -1UL;
1170         devmem->resource = NULL;
1171         devmem->device = device;
1172         devmem->ops = ops;
1173
1174         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1175                               0, GFP_KERNEL);
1176         if (ret)
1177                 goto error_percpu_ref;
1178
1179         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1180         if (ret)
1181                 goto error_devm_add_action;
1182
1183         size = ALIGN(size, PA_SECTION_SIZE);
1184         addr = min((unsigned long)iomem_resource.end,
1185                    (1UL << MAX_PHYSMEM_BITS) - 1);
1186         addr = addr - size + 1UL;
1187
1188         /*
1189          * FIXME add a new helper to quickly walk resource tree and find free
1190          * range
1191          *
1192          * FIXME what about ioport_resource resource ?
1193          */
1194         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1195                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1196                 if (ret != REGION_DISJOINT)
1197                         continue;
1198
1199                 devmem->resource = devm_request_mem_region(device, addr, size,
1200                                                            dev_name(device));
1201                 if (!devmem->resource) {
1202                         ret = -ENOMEM;
1203                         goto error_no_resource;
1204                 }
1205                 break;
1206         }
1207         if (!devmem->resource) {
1208                 ret = -ERANGE;
1209                 goto error_no_resource;
1210         }
1211
1212         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1213         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1214         devmem->pfn_last = devmem->pfn_first +
1215                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1216
1217         ret = hmm_devmem_pages_create(devmem);
1218         if (ret)
1219                 goto error_pages;
1220
1221         devres_add(device, devmem);
1222
1223         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1224         if (ret) {
1225                 hmm_devmem_remove(devmem);
1226                 return ERR_PTR(ret);
1227         }
1228
1229         return devmem;
1230
1231 error_pages:
1232         devm_release_mem_region(device, devmem->resource->start,
1233                                 resource_size(devmem->resource));
1234 error_no_resource:
1235 error_devm_add_action:
1236         hmm_devmem_ref_kill(&devmem->ref);
1237         hmm_devmem_ref_exit(&devmem->ref);
1238 error_percpu_ref:
1239         devres_free(devmem);
1240         return ERR_PTR(ret);
1241 }
1242 EXPORT_SYMBOL(hmm_devmem_add);
1243
1244 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1245                                            struct device *device,
1246                                            struct resource *res)
1247 {
1248         struct hmm_devmem *devmem;
1249         int ret;
1250
1251         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1252                 return ERR_PTR(-EINVAL);
1253
1254         dev_pagemap_get_ops();
1255
1256         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1257                                    GFP_KERNEL, dev_to_node(device));
1258         if (!devmem)
1259                 return ERR_PTR(-ENOMEM);
1260
1261         init_completion(&devmem->completion);
1262         devmem->pfn_first = -1UL;
1263         devmem->pfn_last = -1UL;
1264         devmem->resource = res;
1265         devmem->device = device;
1266         devmem->ops = ops;
1267
1268         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1269                               0, GFP_KERNEL);
1270         if (ret)
1271                 goto error_percpu_ref;
1272
1273         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1274         if (ret)
1275                 goto error_devm_add_action;
1276
1277
1278         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1279         devmem->pfn_last = devmem->pfn_first +
1280                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1281
1282         ret = hmm_devmem_pages_create(devmem);
1283         if (ret)
1284                 goto error_devm_add_action;
1285
1286         devres_add(device, devmem);
1287
1288         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1289         if (ret) {
1290                 hmm_devmem_remove(devmem);
1291                 return ERR_PTR(ret);
1292         }
1293
1294         return devmem;
1295
1296 error_devm_add_action:
1297         hmm_devmem_ref_kill(&devmem->ref);
1298         hmm_devmem_ref_exit(&devmem->ref);
1299 error_percpu_ref:
1300         devres_free(devmem);
1301         return ERR_PTR(ret);
1302 }
1303 EXPORT_SYMBOL(hmm_devmem_add_resource);
1304
1305 /*
1306  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1307  *
1308  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1309  *
1310  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1311  * of the device driver. It will free struct page and remove the resource that
1312  * reserved the physical address range for this device memory.
1313  */
1314 void hmm_devmem_remove(struct hmm_devmem *devmem)
1315 {
1316         resource_size_t start, size;
1317         struct device *device;
1318         bool cdm = false;
1319
1320         if (!devmem)
1321                 return;
1322
1323         device = devmem->device;
1324         start = devmem->resource->start;
1325         size = resource_size(devmem->resource);
1326
1327         cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1328         hmm_devmem_ref_kill(&devmem->ref);
1329         hmm_devmem_ref_exit(&devmem->ref);
1330         hmm_devmem_pages_remove(devmem);
1331
1332         if (!cdm)
1333                 devm_release_mem_region(device, start, size);
1334 }
1335 EXPORT_SYMBOL(hmm_devmem_remove);
1336
1337 /*
1338  * A device driver that wants to handle multiple devices memory through a
1339  * single fake device can use hmm_device to do so. This is purely a helper
1340  * and it is not needed to make use of any HMM functionality.
1341  */
1342 #define HMM_DEVICE_MAX 256
1343
1344 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1345 static DEFINE_SPINLOCK(hmm_device_lock);
1346 static struct class *hmm_device_class;
1347 static dev_t hmm_device_devt;
1348
1349 static void hmm_device_release(struct device *device)
1350 {
1351         struct hmm_device *hmm_device;
1352
1353         hmm_device = container_of(device, struct hmm_device, device);
1354         spin_lock(&hmm_device_lock);
1355         clear_bit(hmm_device->minor, hmm_device_mask);
1356         spin_unlock(&hmm_device_lock);
1357
1358         kfree(hmm_device);
1359 }
1360
1361 struct hmm_device *hmm_device_new(void *drvdata)
1362 {
1363         struct hmm_device *hmm_device;
1364
1365         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1366         if (!hmm_device)
1367                 return ERR_PTR(-ENOMEM);
1368
1369         spin_lock(&hmm_device_lock);
1370         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1371         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1372                 spin_unlock(&hmm_device_lock);
1373                 kfree(hmm_device);
1374                 return ERR_PTR(-EBUSY);
1375         }
1376         set_bit(hmm_device->minor, hmm_device_mask);
1377         spin_unlock(&hmm_device_lock);
1378
1379         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1380         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1381                                         hmm_device->minor);
1382         hmm_device->device.release = hmm_device_release;
1383         dev_set_drvdata(&hmm_device->device, drvdata);
1384         hmm_device->device.class = hmm_device_class;
1385         device_initialize(&hmm_device->device);
1386
1387         return hmm_device;
1388 }
1389 EXPORT_SYMBOL(hmm_device_new);
1390
1391 void hmm_device_put(struct hmm_device *hmm_device)
1392 {
1393         put_device(&hmm_device->device);
1394 }
1395 EXPORT_SYMBOL(hmm_device_put);
1396
1397 static int __init hmm_init(void)
1398 {
1399         int ret;
1400
1401         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1402                                   HMM_DEVICE_MAX,
1403                                   "hmm_device");
1404         if (ret)
1405                 return ret;
1406
1407         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1408         if (IS_ERR(hmm_device_class)) {
1409                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1410                 return PTR_ERR(hmm_device_class);
1411         }
1412         return 0;
1413 }
1414
1415 device_initcall(hmm_init);
1416 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */