mm/hmm: do not check pmd_protnone twice in hmm_vma_handle_pmd()
[linux-block.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 struct hmm_vma_walk {
30         struct hmm_range        *range;
31         struct dev_pagemap      *pgmap;
32         unsigned long           last;
33         unsigned int            flags;
34 };
35
36 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
37                             bool write_fault, uint64_t *pfn)
38 {
39         unsigned int flags = FAULT_FLAG_REMOTE;
40         struct hmm_vma_walk *hmm_vma_walk = walk->private;
41         struct hmm_range *range = hmm_vma_walk->range;
42         struct vm_area_struct *vma = walk->vma;
43         vm_fault_t ret;
44
45         if (!vma)
46                 goto err;
47
48         if (hmm_vma_walk->flags & HMM_FAULT_ALLOW_RETRY)
49                 flags |= FAULT_FLAG_ALLOW_RETRY;
50         if (write_fault)
51                 flags |= FAULT_FLAG_WRITE;
52
53         ret = handle_mm_fault(vma, addr, flags);
54         if (ret & VM_FAULT_RETRY) {
55                 /* Note, handle_mm_fault did up_read(&mm->mmap_sem)) */
56                 return -EAGAIN;
57         }
58         if (ret & VM_FAULT_ERROR)
59                 goto err;
60
61         return -EBUSY;
62
63 err:
64         *pfn = range->values[HMM_PFN_ERROR];
65         return -EFAULT;
66 }
67
68 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
69                 struct hmm_range *range, enum hmm_pfn_value_e value)
70 {
71         uint64_t *pfns = range->pfns;
72         unsigned long i;
73
74         i = (addr - range->start) >> PAGE_SHIFT;
75         for (; addr < end; addr += PAGE_SIZE, i++)
76                 pfns[i] = range->values[value];
77
78         return 0;
79 }
80
81 /*
82  * hmm_vma_walk_hole_() - handle a range lacking valid pmd or pte(s)
83  * @addr: range virtual start address (inclusive)
84  * @end: range virtual end address (exclusive)
85  * @fault: should we fault or not ?
86  * @write_fault: write fault ?
87  * @walk: mm_walk structure
88  * Return: 0 on success, -EBUSY after page fault, or page fault error
89  *
90  * This function will be called whenever pmd_none() or pte_none() returns true,
91  * or whenever there is no page directory covering the virtual address range.
92  */
93 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
94                               bool fault, bool write_fault,
95                               struct mm_walk *walk)
96 {
97         struct hmm_vma_walk *hmm_vma_walk = walk->private;
98         struct hmm_range *range = hmm_vma_walk->range;
99         uint64_t *pfns = range->pfns;
100         unsigned long i;
101
102         hmm_vma_walk->last = addr;
103         i = (addr - range->start) >> PAGE_SHIFT;
104
105         if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE))
106                 return -EPERM;
107
108         for (; addr < end; addr += PAGE_SIZE, i++) {
109                 pfns[i] = range->values[HMM_PFN_NONE];
110                 if (fault || write_fault) {
111                         int ret;
112
113                         ret = hmm_vma_do_fault(walk, addr, write_fault,
114                                                &pfns[i]);
115                         if (ret != -EBUSY)
116                                 return ret;
117                 }
118         }
119
120         return (fault || write_fault) ? -EBUSY : 0;
121 }
122
123 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
124                                       uint64_t pfns, uint64_t cpu_flags,
125                                       bool *fault, bool *write_fault)
126 {
127         struct hmm_range *range = hmm_vma_walk->range;
128
129         if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
130                 return;
131
132         /*
133          * So we not only consider the individual per page request we also
134          * consider the default flags requested for the range. The API can
135          * be used 2 ways. The first one where the HMM user coalesces
136          * multiple page faults into one request and sets flags per pfn for
137          * those faults. The second one where the HMM user wants to pre-
138          * fault a range with specific flags. For the latter one it is a
139          * waste to have the user pre-fill the pfn arrays with a default
140          * flags value.
141          */
142         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
143
144         /* We aren't ask to do anything ... */
145         if (!(pfns & range->flags[HMM_PFN_VALID]))
146                 return;
147         /* If this is device memory then only fault if explicitly requested */
148         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
149                 /* Do we fault on device memory ? */
150                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
151                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
152                         *fault = true;
153                 }
154                 return;
155         }
156
157         /* If CPU page table is not valid then we need to fault */
158         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
159         /* Need to write fault ? */
160         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
161             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
162                 *write_fault = true;
163                 *fault = true;
164         }
165 }
166
167 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
168                                  const uint64_t *pfns, unsigned long npages,
169                                  uint64_t cpu_flags, bool *fault,
170                                  bool *write_fault)
171 {
172         unsigned long i;
173
174         if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
175                 *fault = *write_fault = false;
176                 return;
177         }
178
179         *fault = *write_fault = false;
180         for (i = 0; i < npages; ++i) {
181                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
182                                    fault, write_fault);
183                 if ((*write_fault))
184                         return;
185         }
186 }
187
188 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
189                              __always_unused int depth, struct mm_walk *walk)
190 {
191         struct hmm_vma_walk *hmm_vma_walk = walk->private;
192         struct hmm_range *range = hmm_vma_walk->range;
193         bool fault, write_fault;
194         unsigned long i, npages;
195         uint64_t *pfns;
196
197         i = (addr - range->start) >> PAGE_SHIFT;
198         npages = (end - addr) >> PAGE_SHIFT;
199         pfns = &range->pfns[i];
200         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
201                              0, &fault, &write_fault);
202         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
203 }
204
205 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
206 {
207         if (pmd_protnone(pmd))
208                 return 0;
209         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
210                                 range->flags[HMM_PFN_WRITE] :
211                                 range->flags[HMM_PFN_VALID];
212 }
213
214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
215 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
216                 unsigned long end, uint64_t *pfns, pmd_t pmd)
217 {
218         struct hmm_vma_walk *hmm_vma_walk = walk->private;
219         struct hmm_range *range = hmm_vma_walk->range;
220         unsigned long pfn, npages, i;
221         bool fault, write_fault;
222         uint64_t cpu_flags;
223
224         npages = (end - addr) >> PAGE_SHIFT;
225         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
226         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
227                              &fault, &write_fault);
228
229         if (fault || write_fault)
230                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
231
232         pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
233         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
234                 if (pmd_devmap(pmd)) {
235                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
236                                               hmm_vma_walk->pgmap);
237                         if (unlikely(!hmm_vma_walk->pgmap))
238                                 return -EBUSY;
239                 }
240                 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
241         }
242         if (hmm_vma_walk->pgmap) {
243                 put_dev_pagemap(hmm_vma_walk->pgmap);
244                 hmm_vma_walk->pgmap = NULL;
245         }
246         hmm_vma_walk->last = end;
247         return 0;
248 }
249 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
250 /* stub to allow the code below to compile */
251 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
252                 unsigned long end, uint64_t *pfns, pmd_t pmd);
253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
254
255 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
256 {
257         if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
258                 return 0;
259         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
260                                 range->flags[HMM_PFN_WRITE] :
261                                 range->flags[HMM_PFN_VALID];
262 }
263
264 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
265                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
266                               uint64_t *pfn)
267 {
268         struct hmm_vma_walk *hmm_vma_walk = walk->private;
269         struct hmm_range *range = hmm_vma_walk->range;
270         bool fault, write_fault;
271         uint64_t cpu_flags;
272         pte_t pte = *ptep;
273         uint64_t orig_pfn = *pfn;
274
275         *pfn = range->values[HMM_PFN_NONE];
276         fault = write_fault = false;
277
278         if (pte_none(pte)) {
279                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
280                                    &fault, &write_fault);
281                 if (fault || write_fault)
282                         goto fault;
283                 return 0;
284         }
285
286         if (!pte_present(pte)) {
287                 swp_entry_t entry = pte_to_swp_entry(pte);
288
289                 /*
290                  * This is a special swap entry, ignore migration, use
291                  * device and report anything else as error.
292                  */
293                 if (is_device_private_entry(entry)) {
294                         cpu_flags = range->flags[HMM_PFN_VALID] |
295                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
296                         cpu_flags |= is_write_device_private_entry(entry) ?
297                                 range->flags[HMM_PFN_WRITE] : 0;
298                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
299                                            &fault, &write_fault);
300                         if (fault || write_fault)
301                                 goto fault;
302                         *pfn = hmm_device_entry_from_pfn(range,
303                                             swp_offset(entry));
304                         *pfn |= cpu_flags;
305                         return 0;
306                 }
307
308                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault,
309                                    &write_fault);
310                 if (!fault && !write_fault)
311                         return 0;
312
313                 if (!non_swap_entry(entry))
314                         goto fault;
315
316                 if (is_migration_entry(entry)) {
317                         pte_unmap(ptep);
318                         hmm_vma_walk->last = addr;
319                         migration_entry_wait(walk->mm, pmdp, addr);
320                         return -EBUSY;
321                 }
322
323                 /* Report error for everything else */
324                 pte_unmap(ptep);
325                 *pfn = range->values[HMM_PFN_ERROR];
326                 return -EFAULT;
327         }
328
329         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
330         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault,
331                            &write_fault);
332         if (fault || write_fault)
333                 goto fault;
334
335         if (pte_devmap(pte)) {
336                 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
337                                               hmm_vma_walk->pgmap);
338                 if (unlikely(!hmm_vma_walk->pgmap)) {
339                         pte_unmap(ptep);
340                         return -EBUSY;
341                 }
342         }
343
344         /*
345          * Since each architecture defines a struct page for the zero page, just
346          * fall through and treat it like a normal page.
347          */
348         if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
349                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault,
350                                    &write_fault);
351                 if (fault || write_fault) {
352                         pte_unmap(ptep);
353                         return -EFAULT;
354                 }
355                 *pfn = range->values[HMM_PFN_SPECIAL];
356                 return 0;
357         }
358
359         *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
360         return 0;
361
362 fault:
363         if (hmm_vma_walk->pgmap) {
364                 put_dev_pagemap(hmm_vma_walk->pgmap);
365                 hmm_vma_walk->pgmap = NULL;
366         }
367         pte_unmap(ptep);
368         /* Fault any virtual address we were asked to fault */
369         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
370 }
371
372 static int hmm_vma_walk_pmd(pmd_t *pmdp,
373                             unsigned long start,
374                             unsigned long end,
375                             struct mm_walk *walk)
376 {
377         struct hmm_vma_walk *hmm_vma_walk = walk->private;
378         struct hmm_range *range = hmm_vma_walk->range;
379         uint64_t *pfns = &range->pfns[(start - range->start) >> PAGE_SHIFT];
380         unsigned long npages = (end - start) >> PAGE_SHIFT;
381         unsigned long addr = start;
382         bool fault, write_fault;
383         pte_t *ptep;
384         pmd_t pmd;
385
386 again:
387         pmd = READ_ONCE(*pmdp);
388         if (pmd_none(pmd))
389                 return hmm_vma_walk_hole(start, end, -1, walk);
390
391         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
392                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
393                                      0, &fault, &write_fault);
394                 if (fault || write_fault) {
395                         hmm_vma_walk->last = addr;
396                         pmd_migration_entry_wait(walk->mm, pmdp);
397                         return -EBUSY;
398                 }
399                 return hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
400         }
401
402         if (!pmd_present(pmd)) {
403                 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault,
404                                      &write_fault);
405                 if (fault || write_fault)
406                         return -EFAULT;
407                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
408         }
409
410         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
411                 /*
412                  * No need to take pmd_lock here, even if some other thread
413                  * is splitting the huge pmd we will get that event through
414                  * mmu_notifier callback.
415                  *
416                  * So just read pmd value and check again it's a transparent
417                  * huge or device mapping one and compute corresponding pfn
418                  * values.
419                  */
420                 pmd = pmd_read_atomic(pmdp);
421                 barrier();
422                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
423                         goto again;
424
425                 return hmm_vma_handle_pmd(walk, addr, end, pfns, pmd);
426         }
427
428         /*
429          * We have handled all the valid cases above ie either none, migration,
430          * huge or transparent huge. At this point either it is a valid pmd
431          * entry pointing to pte directory or it is a bad pmd that will not
432          * recover.
433          */
434         if (pmd_bad(pmd)) {
435                 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault,
436                                      &write_fault);
437                 if (fault || write_fault)
438                         return -EFAULT;
439                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
440         }
441
442         ptep = pte_offset_map(pmdp, addr);
443         for (; addr < end; addr += PAGE_SIZE, ptep++, pfns++) {
444                 int r;
445
446                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, pfns);
447                 if (r) {
448                         /* hmm_vma_handle_pte() did pte_unmap() */
449                         hmm_vma_walk->last = addr;
450                         return r;
451                 }
452         }
453         if (hmm_vma_walk->pgmap) {
454                 /*
455                  * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
456                  * so that we can leverage get_dev_pagemap() optimization which
457                  * will not re-take a reference on a pgmap if we already have
458                  * one.
459                  */
460                 put_dev_pagemap(hmm_vma_walk->pgmap);
461                 hmm_vma_walk->pgmap = NULL;
462         }
463         pte_unmap(ptep - 1);
464
465         hmm_vma_walk->last = addr;
466         return 0;
467 }
468
469 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
470     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
471 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
472 {
473         if (!pud_present(pud))
474                 return 0;
475         return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
476                                 range->flags[HMM_PFN_WRITE] :
477                                 range->flags[HMM_PFN_VALID];
478 }
479
480 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
481                 struct mm_walk *walk)
482 {
483         struct hmm_vma_walk *hmm_vma_walk = walk->private;
484         struct hmm_range *range = hmm_vma_walk->range;
485         unsigned long addr = start;
486         pud_t pud;
487         int ret = 0;
488         spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
489
490         if (!ptl)
491                 return 0;
492
493         /* Normally we don't want to split the huge page */
494         walk->action = ACTION_CONTINUE;
495
496         pud = READ_ONCE(*pudp);
497         if (pud_none(pud)) {
498                 spin_unlock(ptl);
499                 return hmm_vma_walk_hole(start, end, -1, walk);
500         }
501
502         if (pud_huge(pud) && pud_devmap(pud)) {
503                 unsigned long i, npages, pfn;
504                 uint64_t *pfns, cpu_flags;
505                 bool fault, write_fault;
506
507                 if (!pud_present(pud)) {
508                         spin_unlock(ptl);
509                         return hmm_vma_walk_hole(start, end, -1, walk);
510                 }
511
512                 i = (addr - range->start) >> PAGE_SHIFT;
513                 npages = (end - addr) >> PAGE_SHIFT;
514                 pfns = &range->pfns[i];
515
516                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
517                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
518                                      cpu_flags, &fault, &write_fault);
519                 if (fault || write_fault) {
520                         spin_unlock(ptl);
521                         return hmm_vma_walk_hole_(addr, end, fault, write_fault,
522                                                   walk);
523                 }
524
525                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
526                 for (i = 0; i < npages; ++i, ++pfn) {
527                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
528                                               hmm_vma_walk->pgmap);
529                         if (unlikely(!hmm_vma_walk->pgmap)) {
530                                 ret = -EBUSY;
531                                 goto out_unlock;
532                         }
533                         pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
534                                   cpu_flags;
535                 }
536                 if (hmm_vma_walk->pgmap) {
537                         put_dev_pagemap(hmm_vma_walk->pgmap);
538                         hmm_vma_walk->pgmap = NULL;
539                 }
540                 hmm_vma_walk->last = end;
541                 goto out_unlock;
542         }
543
544         /* Ask for the PUD to be split */
545         walk->action = ACTION_SUBTREE;
546
547 out_unlock:
548         spin_unlock(ptl);
549         return ret;
550 }
551 #else
552 #define hmm_vma_walk_pud        NULL
553 #endif
554
555 #ifdef CONFIG_HUGETLB_PAGE
556 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
557                                       unsigned long start, unsigned long end,
558                                       struct mm_walk *walk)
559 {
560         unsigned long addr = start, i, pfn;
561         struct hmm_vma_walk *hmm_vma_walk = walk->private;
562         struct hmm_range *range = hmm_vma_walk->range;
563         struct vm_area_struct *vma = walk->vma;
564         uint64_t orig_pfn, cpu_flags;
565         bool fault, write_fault;
566         spinlock_t *ptl;
567         pte_t entry;
568         int ret = 0;
569
570         ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
571         entry = huge_ptep_get(pte);
572
573         i = (start - range->start) >> PAGE_SHIFT;
574         orig_pfn = range->pfns[i];
575         range->pfns[i] = range->values[HMM_PFN_NONE];
576         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
577         fault = write_fault = false;
578         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
579                            &fault, &write_fault);
580         if (fault || write_fault) {
581                 ret = -ENOENT;
582                 goto unlock;
583         }
584
585         pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
586         for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
587                 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
588                                  cpu_flags;
589         hmm_vma_walk->last = end;
590
591 unlock:
592         spin_unlock(ptl);
593
594         if (ret == -ENOENT)
595                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
596
597         return ret;
598 }
599 #else
600 #define hmm_vma_walk_hugetlb_entry NULL
601 #endif /* CONFIG_HUGETLB_PAGE */
602
603 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
604                              struct mm_walk *walk)
605 {
606         struct hmm_vma_walk *hmm_vma_walk = walk->private;
607         struct hmm_range *range = hmm_vma_walk->range;
608         struct vm_area_struct *vma = walk->vma;
609
610         /*
611          * Skip vma ranges that don't have struct page backing them or map I/O
612          * devices directly.
613          *
614          * If the vma does not allow read access, then assume that it does not
615          * allow write access either. HMM does not support architectures that
616          * allow write without read.
617          */
618         if ((vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) ||
619             !(vma->vm_flags & VM_READ)) {
620                 bool fault, write_fault;
621
622                 /*
623                  * Check to see if a fault is requested for any page in the
624                  * range.
625                  */
626                 hmm_range_need_fault(hmm_vma_walk, range->pfns +
627                                         ((start - range->start) >> PAGE_SHIFT),
628                                         (end - start) >> PAGE_SHIFT,
629                                         0, &fault, &write_fault);
630                 if (fault || write_fault)
631                         return -EFAULT;
632
633                 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
634                 hmm_vma_walk->last = end;
635
636                 /* Skip this vma and continue processing the next vma. */
637                 return 1;
638         }
639
640         return 0;
641 }
642
643 static const struct mm_walk_ops hmm_walk_ops = {
644         .pud_entry      = hmm_vma_walk_pud,
645         .pmd_entry      = hmm_vma_walk_pmd,
646         .pte_hole       = hmm_vma_walk_hole,
647         .hugetlb_entry  = hmm_vma_walk_hugetlb_entry,
648         .test_walk      = hmm_vma_walk_test,
649 };
650
651 /**
652  * hmm_range_fault - try to fault some address in a virtual address range
653  * @range:      range being faulted
654  * @flags:      HMM_FAULT_* flags
655  *
656  * Return: the number of valid pages in range->pfns[] (from range start
657  * address), which may be zero.  On error one of the following status codes
658  * can be returned:
659  *
660  * -EINVAL:     Invalid arguments or mm or virtual address is in an invalid vma
661  *              (e.g., device file vma).
662  * -ENOMEM:     Out of memory.
663  * -EPERM:      Invalid permission (e.g., asking for write and range is read
664  *              only).
665  * -EAGAIN:     A page fault needs to be retried and mmap_sem was dropped.
666  * -EBUSY:      The range has been invalidated and the caller needs to wait for
667  *              the invalidation to finish.
668  * -EFAULT:     Invalid (i.e., either no valid vma or it is illegal to access
669  *              that range) number of valid pages in range->pfns[] (from
670  *              range start address).
671  *
672  * This is similar to a regular CPU page fault except that it will not trigger
673  * any memory migration if the memory being faulted is not accessible by CPUs
674  * and caller does not ask for migration.
675  *
676  * On error, for one virtual address in the range, the function will mark the
677  * corresponding HMM pfn entry with an error flag.
678  */
679 long hmm_range_fault(struct hmm_range *range, unsigned int flags)
680 {
681         struct hmm_vma_walk hmm_vma_walk = {
682                 .range = range,
683                 .last = range->start,
684                 .flags = flags,
685         };
686         struct mm_struct *mm = range->notifier->mm;
687         int ret;
688
689         lockdep_assert_held(&mm->mmap_sem);
690
691         do {
692                 /* If range is no longer valid force retry. */
693                 if (mmu_interval_check_retry(range->notifier,
694                                              range->notifier_seq))
695                         return -EBUSY;
696                 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
697                                       &hmm_walk_ops, &hmm_vma_walk);
698         } while (ret == -EBUSY);
699
700         if (ret)
701                 return ret;
702         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
703 }
704 EXPORT_SYMBOL(hmm_range_fault);