mm/hmm: check the device private page owner in hmm_range_fault()
[linux-block.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 struct hmm_vma_walk {
30         struct hmm_range        *range;
31         struct dev_pagemap      *pgmap;
32         unsigned long           last;
33         unsigned int            flags;
34 };
35
36 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
37                 struct hmm_range *range, enum hmm_pfn_value_e value)
38 {
39         uint64_t *pfns = range->pfns;
40         unsigned long i;
41
42         i = (addr - range->start) >> PAGE_SHIFT;
43         for (; addr < end; addr += PAGE_SIZE, i++)
44                 pfns[i] = range->values[value];
45
46         return 0;
47 }
48
49 /*
50  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
51  * @addr: range virtual start address (inclusive)
52  * @end: range virtual end address (exclusive)
53  * @fault: should we fault or not ?
54  * @write_fault: write fault ?
55  * @walk: mm_walk structure
56  * Return: -EBUSY after page fault, or page fault error
57  *
58  * This function will be called whenever pmd_none() or pte_none() returns true,
59  * or whenever there is no page directory covering the virtual address range.
60  */
61 static int hmm_vma_fault(unsigned long addr, unsigned long end,
62                               bool fault, bool write_fault,
63                               struct mm_walk *walk)
64 {
65         struct hmm_vma_walk *hmm_vma_walk = walk->private;
66         struct hmm_range *range = hmm_vma_walk->range;
67         struct vm_area_struct *vma = walk->vma;
68         uint64_t *pfns = range->pfns;
69         unsigned long i = (addr - range->start) >> PAGE_SHIFT;
70         unsigned int fault_flags = FAULT_FLAG_REMOTE;
71
72         WARN_ON_ONCE(!fault && !write_fault);
73         hmm_vma_walk->last = addr;
74
75         if (!vma)
76                 goto out_error;
77
78         if (write_fault) {
79                 if (!(vma->vm_flags & VM_WRITE))
80                         return -EPERM;
81                 fault_flags |= FAULT_FLAG_WRITE;
82         }
83
84         for (; addr < end; addr += PAGE_SIZE, i++)
85                 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
86                         goto out_error;
87
88         return -EBUSY;
89
90 out_error:
91         pfns[i] = range->values[HMM_PFN_ERROR];
92         return -EFAULT;
93 }
94
95 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
96                                       uint64_t pfns, uint64_t cpu_flags,
97                                       bool *fault, bool *write_fault)
98 {
99         struct hmm_range *range = hmm_vma_walk->range;
100
101         if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
102                 return;
103
104         /*
105          * So we not only consider the individual per page request we also
106          * consider the default flags requested for the range. The API can
107          * be used 2 ways. The first one where the HMM user coalesces
108          * multiple page faults into one request and sets flags per pfn for
109          * those faults. The second one where the HMM user wants to pre-
110          * fault a range with specific flags. For the latter one it is a
111          * waste to have the user pre-fill the pfn arrays with a default
112          * flags value.
113          */
114         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
115
116         /* We aren't ask to do anything ... */
117         if (!(pfns & range->flags[HMM_PFN_VALID]))
118                 return;
119
120         /* If CPU page table is not valid then we need to fault */
121         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
122         /* Need to write fault ? */
123         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
124             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
125                 *write_fault = true;
126                 *fault = true;
127         }
128 }
129
130 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
131                                  const uint64_t *pfns, unsigned long npages,
132                                  uint64_t cpu_flags, bool *fault,
133                                  bool *write_fault)
134 {
135         unsigned long i;
136
137         if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
138                 *fault = *write_fault = false;
139                 return;
140         }
141
142         *fault = *write_fault = false;
143         for (i = 0; i < npages; ++i) {
144                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
145                                    fault, write_fault);
146                 if ((*write_fault))
147                         return;
148         }
149 }
150
151 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
152                              __always_unused int depth, struct mm_walk *walk)
153 {
154         struct hmm_vma_walk *hmm_vma_walk = walk->private;
155         struct hmm_range *range = hmm_vma_walk->range;
156         bool fault, write_fault;
157         unsigned long i, npages;
158         uint64_t *pfns;
159
160         i = (addr - range->start) >> PAGE_SHIFT;
161         npages = (end - addr) >> PAGE_SHIFT;
162         pfns = &range->pfns[i];
163         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
164                              0, &fault, &write_fault);
165         if (fault || write_fault)
166                 return hmm_vma_fault(addr, end, fault, write_fault, walk);
167         hmm_vma_walk->last = addr;
168         return hmm_pfns_fill(addr, end, range, HMM_PFN_NONE);
169 }
170
171 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
172 {
173         if (pmd_protnone(pmd))
174                 return 0;
175         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
176                                 range->flags[HMM_PFN_WRITE] :
177                                 range->flags[HMM_PFN_VALID];
178 }
179
180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
181 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
182                 unsigned long end, uint64_t *pfns, pmd_t pmd)
183 {
184         struct hmm_vma_walk *hmm_vma_walk = walk->private;
185         struct hmm_range *range = hmm_vma_walk->range;
186         unsigned long pfn, npages, i;
187         bool fault, write_fault;
188         uint64_t cpu_flags;
189
190         npages = (end - addr) >> PAGE_SHIFT;
191         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
192         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
193                              &fault, &write_fault);
194
195         if (fault || write_fault)
196                 return hmm_vma_fault(addr, end, fault, write_fault, walk);
197
198         pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
199         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
200                 if (pmd_devmap(pmd)) {
201                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
202                                               hmm_vma_walk->pgmap);
203                         if (unlikely(!hmm_vma_walk->pgmap))
204                                 return -EBUSY;
205                 }
206                 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
207         }
208         if (hmm_vma_walk->pgmap) {
209                 put_dev_pagemap(hmm_vma_walk->pgmap);
210                 hmm_vma_walk->pgmap = NULL;
211         }
212         hmm_vma_walk->last = end;
213         return 0;
214 }
215 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
216 /* stub to allow the code below to compile */
217 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
218                 unsigned long end, uint64_t *pfns, pmd_t pmd);
219 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
220
221 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
222                 swp_entry_t entry)
223 {
224         return is_device_private_entry(entry) &&
225                 device_private_entry_to_page(entry)->pgmap->owner ==
226                 range->dev_private_owner;
227 }
228
229 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
230 {
231         if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
232                 return 0;
233         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
234                                 range->flags[HMM_PFN_WRITE] :
235                                 range->flags[HMM_PFN_VALID];
236 }
237
238 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
239                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
240                               uint64_t *pfn)
241 {
242         struct hmm_vma_walk *hmm_vma_walk = walk->private;
243         struct hmm_range *range = hmm_vma_walk->range;
244         bool fault, write_fault;
245         uint64_t cpu_flags;
246         pte_t pte = *ptep;
247         uint64_t orig_pfn = *pfn;
248
249         *pfn = range->values[HMM_PFN_NONE];
250         fault = write_fault = false;
251
252         if (pte_none(pte)) {
253                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
254                                    &fault, &write_fault);
255                 if (fault || write_fault)
256                         goto fault;
257                 return 0;
258         }
259
260         if (!pte_present(pte)) {
261                 swp_entry_t entry = pte_to_swp_entry(pte);
262
263                 /*
264                  * Never fault in device private pages pages, but just report
265                  * the PFN even if not present.
266                  */
267                 if (hmm_is_device_private_entry(range, entry)) {
268                         *pfn = hmm_device_entry_from_pfn(range,
269                                             swp_offset(entry));
270                         *pfn |= range->flags[HMM_PFN_VALID];
271                         if (is_write_device_private_entry(entry))
272                                 *pfn |= range->flags[HMM_PFN_WRITE];
273                         return 0;
274                 }
275
276                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault,
277                                    &write_fault);
278                 if (!fault && !write_fault)
279                         return 0;
280
281                 if (!non_swap_entry(entry))
282                         goto fault;
283
284                 if (is_migration_entry(entry)) {
285                         pte_unmap(ptep);
286                         hmm_vma_walk->last = addr;
287                         migration_entry_wait(walk->mm, pmdp, addr);
288                         return -EBUSY;
289                 }
290
291                 /* Report error for everything else */
292                 pte_unmap(ptep);
293                 *pfn = range->values[HMM_PFN_ERROR];
294                 return -EFAULT;
295         }
296
297         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
298         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, &fault,
299                            &write_fault);
300         if (fault || write_fault)
301                 goto fault;
302
303         if (pte_devmap(pte)) {
304                 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
305                                               hmm_vma_walk->pgmap);
306                 if (unlikely(!hmm_vma_walk->pgmap)) {
307                         pte_unmap(ptep);
308                         return -EBUSY;
309                 }
310         }
311
312         /*
313          * Since each architecture defines a struct page for the zero page, just
314          * fall through and treat it like a normal page.
315          */
316         if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
317                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, &fault,
318                                    &write_fault);
319                 if (fault || write_fault) {
320                         pte_unmap(ptep);
321                         return -EFAULT;
322                 }
323                 *pfn = range->values[HMM_PFN_SPECIAL];
324                 return 0;
325         }
326
327         *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
328         return 0;
329
330 fault:
331         if (hmm_vma_walk->pgmap) {
332                 put_dev_pagemap(hmm_vma_walk->pgmap);
333                 hmm_vma_walk->pgmap = NULL;
334         }
335         pte_unmap(ptep);
336         /* Fault any virtual address we were asked to fault */
337         return hmm_vma_fault(addr, end, fault, write_fault, walk);
338 }
339
340 static int hmm_vma_walk_pmd(pmd_t *pmdp,
341                             unsigned long start,
342                             unsigned long end,
343                             struct mm_walk *walk)
344 {
345         struct hmm_vma_walk *hmm_vma_walk = walk->private;
346         struct hmm_range *range = hmm_vma_walk->range;
347         uint64_t *pfns = &range->pfns[(start - range->start) >> PAGE_SHIFT];
348         unsigned long npages = (end - start) >> PAGE_SHIFT;
349         unsigned long addr = start;
350         bool fault, write_fault;
351         pte_t *ptep;
352         pmd_t pmd;
353
354 again:
355         pmd = READ_ONCE(*pmdp);
356         if (pmd_none(pmd))
357                 return hmm_vma_walk_hole(start, end, -1, walk);
358
359         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
360                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
361                                      0, &fault, &write_fault);
362                 if (fault || write_fault) {
363                         hmm_vma_walk->last = addr;
364                         pmd_migration_entry_wait(walk->mm, pmdp);
365                         return -EBUSY;
366                 }
367                 return hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
368         }
369
370         if (!pmd_present(pmd)) {
371                 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault,
372                                      &write_fault);
373                 if (fault || write_fault)
374                         return -EFAULT;
375                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
376         }
377
378         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
379                 /*
380                  * No need to take pmd_lock here, even if some other thread
381                  * is splitting the huge pmd we will get that event through
382                  * mmu_notifier callback.
383                  *
384                  * So just read pmd value and check again it's a transparent
385                  * huge or device mapping one and compute corresponding pfn
386                  * values.
387                  */
388                 pmd = pmd_read_atomic(pmdp);
389                 barrier();
390                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
391                         goto again;
392
393                 return hmm_vma_handle_pmd(walk, addr, end, pfns, pmd);
394         }
395
396         /*
397          * We have handled all the valid cases above ie either none, migration,
398          * huge or transparent huge. At this point either it is a valid pmd
399          * entry pointing to pte directory or it is a bad pmd that will not
400          * recover.
401          */
402         if (pmd_bad(pmd)) {
403                 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0, &fault,
404                                      &write_fault);
405                 if (fault || write_fault)
406                         return -EFAULT;
407                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
408         }
409
410         ptep = pte_offset_map(pmdp, addr);
411         for (; addr < end; addr += PAGE_SIZE, ptep++, pfns++) {
412                 int r;
413
414                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, pfns);
415                 if (r) {
416                         /* hmm_vma_handle_pte() did pte_unmap() */
417                         hmm_vma_walk->last = addr;
418                         return r;
419                 }
420         }
421         if (hmm_vma_walk->pgmap) {
422                 /*
423                  * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
424                  * so that we can leverage get_dev_pagemap() optimization which
425                  * will not re-take a reference on a pgmap if we already have
426                  * one.
427                  */
428                 put_dev_pagemap(hmm_vma_walk->pgmap);
429                 hmm_vma_walk->pgmap = NULL;
430         }
431         pte_unmap(ptep - 1);
432
433         hmm_vma_walk->last = addr;
434         return 0;
435 }
436
437 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
438     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
439 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
440 {
441         if (!pud_present(pud))
442                 return 0;
443         return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
444                                 range->flags[HMM_PFN_WRITE] :
445                                 range->flags[HMM_PFN_VALID];
446 }
447
448 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
449                 struct mm_walk *walk)
450 {
451         struct hmm_vma_walk *hmm_vma_walk = walk->private;
452         struct hmm_range *range = hmm_vma_walk->range;
453         unsigned long addr = start;
454         pud_t pud;
455         int ret = 0;
456         spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
457
458         if (!ptl)
459                 return 0;
460
461         /* Normally we don't want to split the huge page */
462         walk->action = ACTION_CONTINUE;
463
464         pud = READ_ONCE(*pudp);
465         if (pud_none(pud)) {
466                 spin_unlock(ptl);
467                 return hmm_vma_walk_hole(start, end, -1, walk);
468         }
469
470         if (pud_huge(pud) && pud_devmap(pud)) {
471                 unsigned long i, npages, pfn;
472                 uint64_t *pfns, cpu_flags;
473                 bool fault, write_fault;
474
475                 if (!pud_present(pud)) {
476                         spin_unlock(ptl);
477                         return hmm_vma_walk_hole(start, end, -1, walk);
478                 }
479
480                 i = (addr - range->start) >> PAGE_SHIFT;
481                 npages = (end - addr) >> PAGE_SHIFT;
482                 pfns = &range->pfns[i];
483
484                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
485                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
486                                      cpu_flags, &fault, &write_fault);
487                 if (fault || write_fault) {
488                         spin_unlock(ptl);
489                         return hmm_vma_fault(addr, end, fault, write_fault,
490                                                   walk);
491                 }
492
493                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
494                 for (i = 0; i < npages; ++i, ++pfn) {
495                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
496                                               hmm_vma_walk->pgmap);
497                         if (unlikely(!hmm_vma_walk->pgmap)) {
498                                 ret = -EBUSY;
499                                 goto out_unlock;
500                         }
501                         pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
502                                   cpu_flags;
503                 }
504                 if (hmm_vma_walk->pgmap) {
505                         put_dev_pagemap(hmm_vma_walk->pgmap);
506                         hmm_vma_walk->pgmap = NULL;
507                 }
508                 hmm_vma_walk->last = end;
509                 goto out_unlock;
510         }
511
512         /* Ask for the PUD to be split */
513         walk->action = ACTION_SUBTREE;
514
515 out_unlock:
516         spin_unlock(ptl);
517         return ret;
518 }
519 #else
520 #define hmm_vma_walk_pud        NULL
521 #endif
522
523 #ifdef CONFIG_HUGETLB_PAGE
524 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
525                                       unsigned long start, unsigned long end,
526                                       struct mm_walk *walk)
527 {
528         unsigned long addr = start, i, pfn;
529         struct hmm_vma_walk *hmm_vma_walk = walk->private;
530         struct hmm_range *range = hmm_vma_walk->range;
531         struct vm_area_struct *vma = walk->vma;
532         uint64_t orig_pfn, cpu_flags;
533         bool fault, write_fault;
534         spinlock_t *ptl;
535         pte_t entry;
536
537         ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
538         entry = huge_ptep_get(pte);
539
540         i = (start - range->start) >> PAGE_SHIFT;
541         orig_pfn = range->pfns[i];
542         range->pfns[i] = range->values[HMM_PFN_NONE];
543         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
544         fault = write_fault = false;
545         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
546                            &fault, &write_fault);
547         if (fault || write_fault) {
548                 spin_unlock(ptl);
549                 return hmm_vma_fault(addr, end, fault, write_fault, walk);
550         }
551
552         pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
553         for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
554                 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
555                                  cpu_flags;
556         hmm_vma_walk->last = end;
557         spin_unlock(ptl);
558         return 0;
559 }
560 #else
561 #define hmm_vma_walk_hugetlb_entry NULL
562 #endif /* CONFIG_HUGETLB_PAGE */
563
564 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
565                              struct mm_walk *walk)
566 {
567         struct hmm_vma_walk *hmm_vma_walk = walk->private;
568         struct hmm_range *range = hmm_vma_walk->range;
569         struct vm_area_struct *vma = walk->vma;
570
571         /*
572          * Skip vma ranges that don't have struct page backing them or map I/O
573          * devices directly.
574          *
575          * If the vma does not allow read access, then assume that it does not
576          * allow write access either. HMM does not support architectures that
577          * allow write without read.
578          */
579         if ((vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) ||
580             !(vma->vm_flags & VM_READ)) {
581                 bool fault, write_fault;
582
583                 /*
584                  * Check to see if a fault is requested for any page in the
585                  * range.
586                  */
587                 hmm_range_need_fault(hmm_vma_walk, range->pfns +
588                                         ((start - range->start) >> PAGE_SHIFT),
589                                         (end - start) >> PAGE_SHIFT,
590                                         0, &fault, &write_fault);
591                 if (fault || write_fault)
592                         return -EFAULT;
593
594                 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
595                 hmm_vma_walk->last = end;
596
597                 /* Skip this vma and continue processing the next vma. */
598                 return 1;
599         }
600
601         return 0;
602 }
603
604 static const struct mm_walk_ops hmm_walk_ops = {
605         .pud_entry      = hmm_vma_walk_pud,
606         .pmd_entry      = hmm_vma_walk_pmd,
607         .pte_hole       = hmm_vma_walk_hole,
608         .hugetlb_entry  = hmm_vma_walk_hugetlb_entry,
609         .test_walk      = hmm_vma_walk_test,
610 };
611
612 /**
613  * hmm_range_fault - try to fault some address in a virtual address range
614  * @range:      range being faulted
615  * @flags:      HMM_FAULT_* flags
616  *
617  * Return: the number of valid pages in range->pfns[] (from range start
618  * address), which may be zero.  On error one of the following status codes
619  * can be returned:
620  *
621  * -EINVAL:     Invalid arguments or mm or virtual address is in an invalid vma
622  *              (e.g., device file vma).
623  * -ENOMEM:     Out of memory.
624  * -EPERM:      Invalid permission (e.g., asking for write and range is read
625  *              only).
626  * -EBUSY:      The range has been invalidated and the caller needs to wait for
627  *              the invalidation to finish.
628  * -EFAULT:     Invalid (i.e., either no valid vma or it is illegal to access
629  *              that range) number of valid pages in range->pfns[] (from
630  *              range start address).
631  *
632  * This is similar to a regular CPU page fault except that it will not trigger
633  * any memory migration if the memory being faulted is not accessible by CPUs
634  * and caller does not ask for migration.
635  *
636  * On error, for one virtual address in the range, the function will mark the
637  * corresponding HMM pfn entry with an error flag.
638  */
639 long hmm_range_fault(struct hmm_range *range, unsigned int flags)
640 {
641         struct hmm_vma_walk hmm_vma_walk = {
642                 .range = range,
643                 .last = range->start,
644                 .flags = flags,
645         };
646         struct mm_struct *mm = range->notifier->mm;
647         int ret;
648
649         lockdep_assert_held(&mm->mmap_sem);
650
651         do {
652                 /* If range is no longer valid force retry. */
653                 if (mmu_interval_check_retry(range->notifier,
654                                              range->notifier_seq))
655                         return -EBUSY;
656                 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
657                                       &hmm_walk_ops, &hmm_vma_walk);
658         } while (ret == -EBUSY);
659
660         if (ret)
661                 return ret;
662         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
663 }
664 EXPORT_SYMBOL(hmm_range_fault);