mm/hmm: properly handle migration pmd
[linux-2.6-block.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40
41 /*
42  * struct hmm - HMM per mm struct
43  *
44  * @mm: mm struct this HMM struct is bound to
45  * @lock: lock protecting ranges list
46  * @sequence: we track updates to the CPU page table with a sequence number
47  * @ranges: list of range being snapshotted
48  * @mirrors: list of mirrors for this mm
49  * @mmu_notifier: mmu notifier to track updates to CPU page table
50  * @mirrors_sem: read/write semaphore protecting the mirrors list
51  */
52 struct hmm {
53         struct mm_struct        *mm;
54         spinlock_t              lock;
55         atomic_t                sequence;
56         struct list_head        ranges;
57         struct list_head        mirrors;
58         struct mmu_notifier     mmu_notifier;
59         struct rw_semaphore     mirrors_sem;
60 };
61
62 /*
63  * hmm_register - register HMM against an mm (HMM internal)
64  *
65  * @mm: mm struct to attach to
66  *
67  * This is not intended to be used directly by device drivers. It allocates an
68  * HMM struct if mm does not have one, and initializes it.
69  */
70 static struct hmm *hmm_register(struct mm_struct *mm)
71 {
72         struct hmm *hmm = READ_ONCE(mm->hmm);
73         bool cleanup = false;
74
75         /*
76          * The hmm struct can only be freed once the mm_struct goes away,
77          * hence we should always have pre-allocated an new hmm struct
78          * above.
79          */
80         if (hmm)
81                 return hmm;
82
83         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
84         if (!hmm)
85                 return NULL;
86         INIT_LIST_HEAD(&hmm->mirrors);
87         init_rwsem(&hmm->mirrors_sem);
88         atomic_set(&hmm->sequence, 0);
89         hmm->mmu_notifier.ops = NULL;
90         INIT_LIST_HEAD(&hmm->ranges);
91         spin_lock_init(&hmm->lock);
92         hmm->mm = mm;
93
94         spin_lock(&mm->page_table_lock);
95         if (!mm->hmm)
96                 mm->hmm = hmm;
97         else
98                 cleanup = true;
99         spin_unlock(&mm->page_table_lock);
100
101         if (cleanup)
102                 goto error;
103
104         /*
105          * We should only get here if hold the mmap_sem in write mode ie on
106          * registration of first mirror through hmm_mirror_register()
107          */
108         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
109         if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
110                 goto error_mm;
111
112         return mm->hmm;
113
114 error_mm:
115         spin_lock(&mm->page_table_lock);
116         if (mm->hmm == hmm)
117                 mm->hmm = NULL;
118         spin_unlock(&mm->page_table_lock);
119 error:
120         kfree(hmm);
121         return NULL;
122 }
123
124 void hmm_mm_destroy(struct mm_struct *mm)
125 {
126         kfree(mm->hmm);
127 }
128
129 static void hmm_invalidate_range(struct hmm *hmm,
130                                  enum hmm_update_type action,
131                                  unsigned long start,
132                                  unsigned long end)
133 {
134         struct hmm_mirror *mirror;
135         struct hmm_range *range;
136
137         spin_lock(&hmm->lock);
138         list_for_each_entry(range, &hmm->ranges, list) {
139                 unsigned long addr, idx, npages;
140
141                 if (end < range->start || start >= range->end)
142                         continue;
143
144                 range->valid = false;
145                 addr = max(start, range->start);
146                 idx = (addr - range->start) >> PAGE_SHIFT;
147                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
148                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
149         }
150         spin_unlock(&hmm->lock);
151
152         down_read(&hmm->mirrors_sem);
153         list_for_each_entry(mirror, &hmm->mirrors, list)
154                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
155                                                         start, end);
156         up_read(&hmm->mirrors_sem);
157 }
158
159 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
160 {
161         struct hmm_mirror *mirror;
162         struct hmm *hmm = mm->hmm;
163
164         down_write(&hmm->mirrors_sem);
165         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
166                                           list);
167         while (mirror) {
168                 list_del_init(&mirror->list);
169                 if (mirror->ops->release) {
170                         /*
171                          * Drop mirrors_sem so callback can wait on any pending
172                          * work that might itself trigger mmu_notifier callback
173                          * and thus would deadlock with us.
174                          */
175                         up_write(&hmm->mirrors_sem);
176                         mirror->ops->release(mirror);
177                         down_write(&hmm->mirrors_sem);
178                 }
179                 mirror = list_first_entry_or_null(&hmm->mirrors,
180                                                   struct hmm_mirror, list);
181         }
182         up_write(&hmm->mirrors_sem);
183 }
184
185 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
186                                        struct mm_struct *mm,
187                                        unsigned long start,
188                                        unsigned long end,
189                                        bool blockable)
190 {
191         struct hmm *hmm = mm->hmm;
192
193         VM_BUG_ON(!hmm);
194
195         atomic_inc(&hmm->sequence);
196
197         return 0;
198 }
199
200 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
201                                      struct mm_struct *mm,
202                                      unsigned long start,
203                                      unsigned long end)
204 {
205         struct hmm *hmm = mm->hmm;
206
207         VM_BUG_ON(!hmm);
208
209         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
210 }
211
212 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
213         .release                = hmm_release,
214         .invalidate_range_start = hmm_invalidate_range_start,
215         .invalidate_range_end   = hmm_invalidate_range_end,
216 };
217
218 /*
219  * hmm_mirror_register() - register a mirror against an mm
220  *
221  * @mirror: new mirror struct to register
222  * @mm: mm to register against
223  *
224  * To start mirroring a process address space, the device driver must register
225  * an HMM mirror struct.
226  *
227  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
228  */
229 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
230 {
231         /* Sanity check */
232         if (!mm || !mirror || !mirror->ops)
233                 return -EINVAL;
234
235 again:
236         mirror->hmm = hmm_register(mm);
237         if (!mirror->hmm)
238                 return -ENOMEM;
239
240         down_write(&mirror->hmm->mirrors_sem);
241         if (mirror->hmm->mm == NULL) {
242                 /*
243                  * A racing hmm_mirror_unregister() is about to destroy the hmm
244                  * struct. Try again to allocate a new one.
245                  */
246                 up_write(&mirror->hmm->mirrors_sem);
247                 mirror->hmm = NULL;
248                 goto again;
249         } else {
250                 list_add(&mirror->list, &mirror->hmm->mirrors);
251                 up_write(&mirror->hmm->mirrors_sem);
252         }
253
254         return 0;
255 }
256 EXPORT_SYMBOL(hmm_mirror_register);
257
258 /*
259  * hmm_mirror_unregister() - unregister a mirror
260  *
261  * @mirror: new mirror struct to register
262  *
263  * Stop mirroring a process address space, and cleanup.
264  */
265 void hmm_mirror_unregister(struct hmm_mirror *mirror)
266 {
267         bool should_unregister = false;
268         struct mm_struct *mm;
269         struct hmm *hmm;
270
271         if (mirror->hmm == NULL)
272                 return;
273
274         hmm = mirror->hmm;
275         down_write(&hmm->mirrors_sem);
276         list_del_init(&mirror->list);
277         should_unregister = list_empty(&hmm->mirrors);
278         mirror->hmm = NULL;
279         mm = hmm->mm;
280         hmm->mm = NULL;
281         up_write(&hmm->mirrors_sem);
282
283         if (!should_unregister || mm == NULL)
284                 return;
285
286         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
287
288         spin_lock(&mm->page_table_lock);
289         if (mm->hmm == hmm)
290                 mm->hmm = NULL;
291         spin_unlock(&mm->page_table_lock);
292
293         kfree(hmm);
294 }
295 EXPORT_SYMBOL(hmm_mirror_unregister);
296
297 struct hmm_vma_walk {
298         struct hmm_range        *range;
299         unsigned long           last;
300         bool                    fault;
301         bool                    block;
302 };
303
304 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
305                             bool write_fault, uint64_t *pfn)
306 {
307         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
308         struct hmm_vma_walk *hmm_vma_walk = walk->private;
309         struct hmm_range *range = hmm_vma_walk->range;
310         struct vm_area_struct *vma = walk->vma;
311         vm_fault_t ret;
312
313         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
314         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
315         ret = handle_mm_fault(vma, addr, flags);
316         if (ret & VM_FAULT_RETRY)
317                 return -EBUSY;
318         if (ret & VM_FAULT_ERROR) {
319                 *pfn = range->values[HMM_PFN_ERROR];
320                 return -EFAULT;
321         }
322
323         return -EAGAIN;
324 }
325
326 static int hmm_pfns_bad(unsigned long addr,
327                         unsigned long end,
328                         struct mm_walk *walk)
329 {
330         struct hmm_vma_walk *hmm_vma_walk = walk->private;
331         struct hmm_range *range = hmm_vma_walk->range;
332         uint64_t *pfns = range->pfns;
333         unsigned long i;
334
335         i = (addr - range->start) >> PAGE_SHIFT;
336         for (; addr < end; addr += PAGE_SIZE, i++)
337                 pfns[i] = range->values[HMM_PFN_ERROR];
338
339         return 0;
340 }
341
342 /*
343  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
344  * @start: range virtual start address (inclusive)
345  * @end: range virtual end address (exclusive)
346  * @fault: should we fault or not ?
347  * @write_fault: write fault ?
348  * @walk: mm_walk structure
349  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
350  *
351  * This function will be called whenever pmd_none() or pte_none() returns true,
352  * or whenever there is no page directory covering the virtual address range.
353  */
354 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
355                               bool fault, bool write_fault,
356                               struct mm_walk *walk)
357 {
358         struct hmm_vma_walk *hmm_vma_walk = walk->private;
359         struct hmm_range *range = hmm_vma_walk->range;
360         uint64_t *pfns = range->pfns;
361         unsigned long i;
362
363         hmm_vma_walk->last = addr;
364         i = (addr - range->start) >> PAGE_SHIFT;
365         for (; addr < end; addr += PAGE_SIZE, i++) {
366                 pfns[i] = range->values[HMM_PFN_NONE];
367                 if (fault || write_fault) {
368                         int ret;
369
370                         ret = hmm_vma_do_fault(walk, addr, write_fault,
371                                                &pfns[i]);
372                         if (ret != -EAGAIN)
373                                 return ret;
374                 }
375         }
376
377         return (fault || write_fault) ? -EAGAIN : 0;
378 }
379
380 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
381                                       uint64_t pfns, uint64_t cpu_flags,
382                                       bool *fault, bool *write_fault)
383 {
384         struct hmm_range *range = hmm_vma_walk->range;
385
386         *fault = *write_fault = false;
387         if (!hmm_vma_walk->fault)
388                 return;
389
390         /* We aren't ask to do anything ... */
391         if (!(pfns & range->flags[HMM_PFN_VALID]))
392                 return;
393         /* If this is device memory than only fault if explicitly requested */
394         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
395                 /* Do we fault on device memory ? */
396                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
397                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
398                         *fault = true;
399                 }
400                 return;
401         }
402
403         /* If CPU page table is not valid then we need to fault */
404         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
405         /* Need to write fault ? */
406         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
407             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
408                 *write_fault = true;
409                 *fault = true;
410         }
411 }
412
413 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
414                                  const uint64_t *pfns, unsigned long npages,
415                                  uint64_t cpu_flags, bool *fault,
416                                  bool *write_fault)
417 {
418         unsigned long i;
419
420         if (!hmm_vma_walk->fault) {
421                 *fault = *write_fault = false;
422                 return;
423         }
424
425         for (i = 0; i < npages; ++i) {
426                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
427                                    fault, write_fault);
428                 if ((*fault) || (*write_fault))
429                         return;
430         }
431 }
432
433 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
434                              struct mm_walk *walk)
435 {
436         struct hmm_vma_walk *hmm_vma_walk = walk->private;
437         struct hmm_range *range = hmm_vma_walk->range;
438         bool fault, write_fault;
439         unsigned long i, npages;
440         uint64_t *pfns;
441
442         i = (addr - range->start) >> PAGE_SHIFT;
443         npages = (end - addr) >> PAGE_SHIFT;
444         pfns = &range->pfns[i];
445         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
446                              0, &fault, &write_fault);
447         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
448 }
449
450 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
451 {
452         if (pmd_protnone(pmd))
453                 return 0;
454         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
455                                 range->flags[HMM_PFN_WRITE] :
456                                 range->flags[HMM_PFN_VALID];
457 }
458
459 static int hmm_vma_handle_pmd(struct mm_walk *walk,
460                               unsigned long addr,
461                               unsigned long end,
462                               uint64_t *pfns,
463                               pmd_t pmd)
464 {
465         struct hmm_vma_walk *hmm_vma_walk = walk->private;
466         struct hmm_range *range = hmm_vma_walk->range;
467         unsigned long pfn, npages, i;
468         bool fault, write_fault;
469         uint64_t cpu_flags;
470
471         npages = (end - addr) >> PAGE_SHIFT;
472         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
473         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
474                              &fault, &write_fault);
475
476         if (pmd_protnone(pmd) || fault || write_fault)
477                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
478
479         pfn = pmd_pfn(pmd) + pte_index(addr);
480         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
481                 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
482         hmm_vma_walk->last = end;
483         return 0;
484 }
485
486 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
487 {
488         if (pte_none(pte) || !pte_present(pte))
489                 return 0;
490         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
491                                 range->flags[HMM_PFN_WRITE] :
492                                 range->flags[HMM_PFN_VALID];
493 }
494
495 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
496                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
497                               uint64_t *pfn)
498 {
499         struct hmm_vma_walk *hmm_vma_walk = walk->private;
500         struct hmm_range *range = hmm_vma_walk->range;
501         struct vm_area_struct *vma = walk->vma;
502         bool fault, write_fault;
503         uint64_t cpu_flags;
504         pte_t pte = *ptep;
505         uint64_t orig_pfn = *pfn;
506
507         *pfn = range->values[HMM_PFN_NONE];
508         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
509         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
510                            &fault, &write_fault);
511
512         if (pte_none(pte)) {
513                 if (fault || write_fault)
514                         goto fault;
515                 return 0;
516         }
517
518         if (!pte_present(pte)) {
519                 swp_entry_t entry = pte_to_swp_entry(pte);
520
521                 if (!non_swap_entry(entry)) {
522                         if (fault || write_fault)
523                                 goto fault;
524                         return 0;
525                 }
526
527                 /*
528                  * This is a special swap entry, ignore migration, use
529                  * device and report anything else as error.
530                  */
531                 if (is_device_private_entry(entry)) {
532                         cpu_flags = range->flags[HMM_PFN_VALID] |
533                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
534                         cpu_flags |= is_write_device_private_entry(entry) ?
535                                 range->flags[HMM_PFN_WRITE] : 0;
536                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
537                                            &fault, &write_fault);
538                         if (fault || write_fault)
539                                 goto fault;
540                         *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
541                         *pfn |= cpu_flags;
542                         return 0;
543                 }
544
545                 if (is_migration_entry(entry)) {
546                         if (fault || write_fault) {
547                                 pte_unmap(ptep);
548                                 hmm_vma_walk->last = addr;
549                                 migration_entry_wait(vma->vm_mm,
550                                                      pmdp, addr);
551                                 return -EAGAIN;
552                         }
553                         return 0;
554                 }
555
556                 /* Report error for everything else */
557                 *pfn = range->values[HMM_PFN_ERROR];
558                 return -EFAULT;
559         }
560
561         if (fault || write_fault)
562                 goto fault;
563
564         *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
565         return 0;
566
567 fault:
568         pte_unmap(ptep);
569         /* Fault any virtual address we were asked to fault */
570         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
571 }
572
573 static int hmm_vma_walk_pmd(pmd_t *pmdp,
574                             unsigned long start,
575                             unsigned long end,
576                             struct mm_walk *walk)
577 {
578         struct hmm_vma_walk *hmm_vma_walk = walk->private;
579         struct hmm_range *range = hmm_vma_walk->range;
580         struct vm_area_struct *vma = walk->vma;
581         uint64_t *pfns = range->pfns;
582         unsigned long addr = start, i;
583         pte_t *ptep;
584         pmd_t pmd;
585
586
587 again:
588         pmd = READ_ONCE(*pmdp);
589         if (pmd_none(pmd))
590                 return hmm_vma_walk_hole(start, end, walk);
591
592         if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
593                 return hmm_pfns_bad(start, end, walk);
594
595         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
596                 bool fault, write_fault;
597                 unsigned long npages;
598                 uint64_t *pfns;
599
600                 i = (addr - range->start) >> PAGE_SHIFT;
601                 npages = (end - addr) >> PAGE_SHIFT;
602                 pfns = &range->pfns[i];
603
604                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
605                                      0, &fault, &write_fault);
606                 if (fault || write_fault) {
607                         hmm_vma_walk->last = addr;
608                         pmd_migration_entry_wait(vma->vm_mm, pmdp);
609                         return -EAGAIN;
610                 }
611                 return 0;
612         } else if (!pmd_present(pmd))
613                 return hmm_pfns_bad(start, end, walk);
614
615         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
616                 /*
617                  * No need to take pmd_lock here, even if some other threads
618                  * is splitting the huge pmd we will get that event through
619                  * mmu_notifier callback.
620                  *
621                  * So just read pmd value and check again its a transparent
622                  * huge or device mapping one and compute corresponding pfn
623                  * values.
624                  */
625                 pmd = pmd_read_atomic(pmdp);
626                 barrier();
627                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
628                         goto again;
629
630                 i = (addr - range->start) >> PAGE_SHIFT;
631                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
632         }
633
634         /*
635          * We have handled all the valid case above ie either none, migration,
636          * huge or transparent huge. At this point either it is a valid pmd
637          * entry pointing to pte directory or it is a bad pmd that will not
638          * recover.
639          */
640         if (pmd_bad(pmd))
641                 return hmm_pfns_bad(start, end, walk);
642
643         ptep = pte_offset_map(pmdp, addr);
644         i = (addr - range->start) >> PAGE_SHIFT;
645         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
646                 int r;
647
648                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
649                 if (r) {
650                         /* hmm_vma_handle_pte() did unmap pte directory */
651                         hmm_vma_walk->last = addr;
652                         return r;
653                 }
654         }
655         pte_unmap(ptep - 1);
656
657         hmm_vma_walk->last = addr;
658         return 0;
659 }
660
661 static void hmm_pfns_clear(struct hmm_range *range,
662                            uint64_t *pfns,
663                            unsigned long addr,
664                            unsigned long end)
665 {
666         for (; addr < end; addr += PAGE_SIZE, pfns++)
667                 *pfns = range->values[HMM_PFN_NONE];
668 }
669
670 static void hmm_pfns_special(struct hmm_range *range)
671 {
672         unsigned long addr = range->start, i = 0;
673
674         for (; addr < range->end; addr += PAGE_SIZE, i++)
675                 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
676 }
677
678 /*
679  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
680  * @range: range being snapshotted
681  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
682  *          vma permission, 0 success
683  *
684  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
685  * validity is tracked by range struct. See hmm_vma_range_done() for further
686  * information.
687  *
688  * The range struct is initialized here. It tracks the CPU page table, but only
689  * if the function returns success (0), in which case the caller must then call
690  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
691  *
692  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
693  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
694  */
695 int hmm_vma_get_pfns(struct hmm_range *range)
696 {
697         struct vm_area_struct *vma = range->vma;
698         struct hmm_vma_walk hmm_vma_walk;
699         struct mm_walk mm_walk;
700         struct hmm *hmm;
701
702         /* Sanity check, this really should not happen ! */
703         if (range->start < vma->vm_start || range->start >= vma->vm_end)
704                 return -EINVAL;
705         if (range->end < vma->vm_start || range->end > vma->vm_end)
706                 return -EINVAL;
707
708         hmm = hmm_register(vma->vm_mm);
709         if (!hmm)
710                 return -ENOMEM;
711         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
712         if (!hmm->mmu_notifier.ops)
713                 return -EINVAL;
714
715         /* FIXME support hugetlb fs */
716         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
717                         vma_is_dax(vma)) {
718                 hmm_pfns_special(range);
719                 return -EINVAL;
720         }
721
722         if (!(vma->vm_flags & VM_READ)) {
723                 /*
724                  * If vma do not allow read access, then assume that it does
725                  * not allow write access, either. Architecture that allow
726                  * write without read access are not supported by HMM, because
727                  * operations such has atomic access would not work.
728                  */
729                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
730                 return -EPERM;
731         }
732
733         /* Initialize range to track CPU page table update */
734         spin_lock(&hmm->lock);
735         range->valid = true;
736         list_add_rcu(&range->list, &hmm->ranges);
737         spin_unlock(&hmm->lock);
738
739         hmm_vma_walk.fault = false;
740         hmm_vma_walk.range = range;
741         mm_walk.private = &hmm_vma_walk;
742
743         mm_walk.vma = vma;
744         mm_walk.mm = vma->vm_mm;
745         mm_walk.pte_entry = NULL;
746         mm_walk.test_walk = NULL;
747         mm_walk.hugetlb_entry = NULL;
748         mm_walk.pmd_entry = hmm_vma_walk_pmd;
749         mm_walk.pte_hole = hmm_vma_walk_hole;
750
751         walk_page_range(range->start, range->end, &mm_walk);
752         return 0;
753 }
754 EXPORT_SYMBOL(hmm_vma_get_pfns);
755
756 /*
757  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
758  * @range: range being tracked
759  * Returns: false if range data has been invalidated, true otherwise
760  *
761  * Range struct is used to track updates to the CPU page table after a call to
762  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
763  * using the data,  or wants to lock updates to the data it got from those
764  * functions, it must call the hmm_vma_range_done() function, which will then
765  * stop tracking CPU page table updates.
766  *
767  * Note that device driver must still implement general CPU page table update
768  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
769  * the mmu_notifier API directly.
770  *
771  * CPU page table update tracking done through hmm_range is only temporary and
772  * to be used while trying to duplicate CPU page table contents for a range of
773  * virtual addresses.
774  *
775  * There are two ways to use this :
776  * again:
777  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
778  *   trans = device_build_page_table_update_transaction(pfns);
779  *   device_page_table_lock();
780  *   if (!hmm_vma_range_done(range)) {
781  *     device_page_table_unlock();
782  *     goto again;
783  *   }
784  *   device_commit_transaction(trans);
785  *   device_page_table_unlock();
786  *
787  * Or:
788  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
789  *   device_page_table_lock();
790  *   hmm_vma_range_done(range);
791  *   device_update_page_table(range->pfns);
792  *   device_page_table_unlock();
793  */
794 bool hmm_vma_range_done(struct hmm_range *range)
795 {
796         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
797         struct hmm *hmm;
798
799         if (range->end <= range->start) {
800                 BUG();
801                 return false;
802         }
803
804         hmm = hmm_register(range->vma->vm_mm);
805         if (!hmm) {
806                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
807                 return false;
808         }
809
810         spin_lock(&hmm->lock);
811         list_del_rcu(&range->list);
812         spin_unlock(&hmm->lock);
813
814         return range->valid;
815 }
816 EXPORT_SYMBOL(hmm_vma_range_done);
817
818 /*
819  * hmm_vma_fault() - try to fault some address in a virtual address range
820  * @range: range being faulted
821  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
822  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
823  *
824  * This is similar to a regular CPU page fault except that it will not trigger
825  * any memory migration if the memory being faulted is not accessible by CPUs.
826  *
827  * On error, for one virtual address in the range, the function will mark the
828  * corresponding HMM pfn entry with an error flag.
829  *
830  * Expected use pattern:
831  * retry:
832  *   down_read(&mm->mmap_sem);
833  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
834  *   // array accordingly
835  *   ret = hmm_vma_fault(range, write, block);
836  *   switch (ret) {
837  *   case -EAGAIN:
838  *     hmm_vma_range_done(range);
839  *     // You might want to rate limit or yield to play nicely, you may
840  *     // also commit any valid pfn in the array assuming that you are
841  *     // getting true from hmm_vma_range_monitor_end()
842  *     goto retry;
843  *   case 0:
844  *     break;
845  *   case -ENOMEM:
846  *   case -EINVAL:
847  *   case -EPERM:
848  *   default:
849  *     // Handle error !
850  *     up_read(&mm->mmap_sem)
851  *     return;
852  *   }
853  *   // Take device driver lock that serialize device page table update
854  *   driver_lock_device_page_table_update();
855  *   hmm_vma_range_done(range);
856  *   // Commit pfns we got from hmm_vma_fault()
857  *   driver_unlock_device_page_table_update();
858  *   up_read(&mm->mmap_sem)
859  *
860  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
861  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
862  *
863  * YOU HAVE BEEN WARNED !
864  */
865 int hmm_vma_fault(struct hmm_range *range, bool block)
866 {
867         struct vm_area_struct *vma = range->vma;
868         unsigned long start = range->start;
869         struct hmm_vma_walk hmm_vma_walk;
870         struct mm_walk mm_walk;
871         struct hmm *hmm;
872         int ret;
873
874         /* Sanity check, this really should not happen ! */
875         if (range->start < vma->vm_start || range->start >= vma->vm_end)
876                 return -EINVAL;
877         if (range->end < vma->vm_start || range->end > vma->vm_end)
878                 return -EINVAL;
879
880         hmm = hmm_register(vma->vm_mm);
881         if (!hmm) {
882                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
883                 return -ENOMEM;
884         }
885         /* Caller must have registered a mirror using hmm_mirror_register() */
886         if (!hmm->mmu_notifier.ops)
887                 return -EINVAL;
888
889         /* FIXME support hugetlb fs */
890         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
891                         vma_is_dax(vma)) {
892                 hmm_pfns_special(range);
893                 return -EINVAL;
894         }
895
896         if (!(vma->vm_flags & VM_READ)) {
897                 /*
898                  * If vma do not allow read access, then assume that it does
899                  * not allow write access, either. Architecture that allow
900                  * write without read access are not supported by HMM, because
901                  * operations such has atomic access would not work.
902                  */
903                 hmm_pfns_clear(range, range->pfns, range->start, range->end);
904                 return -EPERM;
905         }
906
907         /* Initialize range to track CPU page table update */
908         spin_lock(&hmm->lock);
909         range->valid = true;
910         list_add_rcu(&range->list, &hmm->ranges);
911         spin_unlock(&hmm->lock);
912
913         hmm_vma_walk.fault = true;
914         hmm_vma_walk.block = block;
915         hmm_vma_walk.range = range;
916         mm_walk.private = &hmm_vma_walk;
917         hmm_vma_walk.last = range->start;
918
919         mm_walk.vma = vma;
920         mm_walk.mm = vma->vm_mm;
921         mm_walk.pte_entry = NULL;
922         mm_walk.test_walk = NULL;
923         mm_walk.hugetlb_entry = NULL;
924         mm_walk.pmd_entry = hmm_vma_walk_pmd;
925         mm_walk.pte_hole = hmm_vma_walk_hole;
926
927         do {
928                 ret = walk_page_range(start, range->end, &mm_walk);
929                 start = hmm_vma_walk.last;
930         } while (ret == -EAGAIN);
931
932         if (ret) {
933                 unsigned long i;
934
935                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
936                 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
937                                range->end);
938                 hmm_vma_range_done(range);
939         }
940         return ret;
941 }
942 EXPORT_SYMBOL(hmm_vma_fault);
943 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
944
945
946 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
947 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
948                                        unsigned long addr)
949 {
950         struct page *page;
951
952         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
953         if (!page)
954                 return NULL;
955         lock_page(page);
956         return page;
957 }
958 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
959
960
961 static void hmm_devmem_ref_release(struct percpu_ref *ref)
962 {
963         struct hmm_devmem *devmem;
964
965         devmem = container_of(ref, struct hmm_devmem, ref);
966         complete(&devmem->completion);
967 }
968
969 static void hmm_devmem_ref_exit(void *data)
970 {
971         struct percpu_ref *ref = data;
972         struct hmm_devmem *devmem;
973
974         devmem = container_of(ref, struct hmm_devmem, ref);
975         percpu_ref_exit(ref);
976         devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
977 }
978
979 static void hmm_devmem_ref_kill(void *data)
980 {
981         struct percpu_ref *ref = data;
982         struct hmm_devmem *devmem;
983
984         devmem = container_of(ref, struct hmm_devmem, ref);
985         percpu_ref_kill(ref);
986         wait_for_completion(&devmem->completion);
987         devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
988 }
989
990 static int hmm_devmem_fault(struct vm_area_struct *vma,
991                             unsigned long addr,
992                             const struct page *page,
993                             unsigned int flags,
994                             pmd_t *pmdp)
995 {
996         struct hmm_devmem *devmem = page->pgmap->data;
997
998         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
999 }
1000
1001 static void hmm_devmem_free(struct page *page, void *data)
1002 {
1003         struct hmm_devmem *devmem = data;
1004
1005         page->mapping = NULL;
1006
1007         devmem->ops->free(devmem, page);
1008 }
1009
1010 static DEFINE_MUTEX(hmm_devmem_lock);
1011 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
1012
1013 static void hmm_devmem_radix_release(struct resource *resource)
1014 {
1015         resource_size_t key;
1016
1017         mutex_lock(&hmm_devmem_lock);
1018         for (key = resource->start;
1019              key <= resource->end;
1020              key += PA_SECTION_SIZE)
1021                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
1022         mutex_unlock(&hmm_devmem_lock);
1023 }
1024
1025 static void hmm_devmem_release(struct device *dev, void *data)
1026 {
1027         struct hmm_devmem *devmem = data;
1028         struct resource *resource = devmem->resource;
1029         unsigned long start_pfn, npages;
1030         struct zone *zone;
1031         struct page *page;
1032
1033         if (percpu_ref_tryget_live(&devmem->ref)) {
1034                 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1035                 percpu_ref_put(&devmem->ref);
1036         }
1037
1038         /* pages are dead and unused, undo the arch mapping */
1039         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1040         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1041
1042         page = pfn_to_page(start_pfn);
1043         zone = page_zone(page);
1044
1045         mem_hotplug_begin();
1046         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1047                 __remove_pages(zone, start_pfn, npages, NULL);
1048         else
1049                 arch_remove_memory(start_pfn << PAGE_SHIFT,
1050                                    npages << PAGE_SHIFT, NULL);
1051         mem_hotplug_done();
1052
1053         hmm_devmem_radix_release(resource);
1054 }
1055
1056 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1057 {
1058         resource_size_t key, align_start, align_size, align_end;
1059         struct device *device = devmem->device;
1060         int ret, nid, is_ram;
1061
1062         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1063         align_size = ALIGN(devmem->resource->start +
1064                            resource_size(devmem->resource),
1065                            PA_SECTION_SIZE) - align_start;
1066
1067         is_ram = region_intersects(align_start, align_size,
1068                                    IORESOURCE_SYSTEM_RAM,
1069                                    IORES_DESC_NONE);
1070         if (is_ram == REGION_MIXED) {
1071                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1072                                 __func__, devmem->resource);
1073                 return -ENXIO;
1074         }
1075         if (is_ram == REGION_INTERSECTS)
1076                 return -ENXIO;
1077
1078         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1079                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1080         else
1081                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1082
1083         devmem->pagemap.res = *devmem->resource;
1084         devmem->pagemap.page_fault = hmm_devmem_fault;
1085         devmem->pagemap.page_free = hmm_devmem_free;
1086         devmem->pagemap.dev = devmem->device;
1087         devmem->pagemap.ref = &devmem->ref;
1088         devmem->pagemap.data = devmem;
1089
1090         mutex_lock(&hmm_devmem_lock);
1091         align_end = align_start + align_size - 1;
1092         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1093                 struct hmm_devmem *dup;
1094
1095                 dup = radix_tree_lookup(&hmm_devmem_radix,
1096                                         key >> PA_SECTION_SHIFT);
1097                 if (dup) {
1098                         dev_err(device, "%s: collides with mapping for %s\n",
1099                                 __func__, dev_name(dup->device));
1100                         mutex_unlock(&hmm_devmem_lock);
1101                         ret = -EBUSY;
1102                         goto error;
1103                 }
1104                 ret = radix_tree_insert(&hmm_devmem_radix,
1105                                         key >> PA_SECTION_SHIFT,
1106                                         devmem);
1107                 if (ret) {
1108                         dev_err(device, "%s: failed: %d\n", __func__, ret);
1109                         mutex_unlock(&hmm_devmem_lock);
1110                         goto error_radix;
1111                 }
1112         }
1113         mutex_unlock(&hmm_devmem_lock);
1114
1115         nid = dev_to_node(device);
1116         if (nid < 0)
1117                 nid = numa_mem_id();
1118
1119         mem_hotplug_begin();
1120         /*
1121          * For device private memory we call add_pages() as we only need to
1122          * allocate and initialize struct page for the device memory. More-
1123          * over the device memory is un-accessible thus we do not want to
1124          * create a linear mapping for the memory like arch_add_memory()
1125          * would do.
1126          *
1127          * For device public memory, which is accesible by the CPU, we do
1128          * want the linear mapping and thus use arch_add_memory().
1129          */
1130         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1131                 ret = arch_add_memory(nid, align_start, align_size, NULL,
1132                                 false);
1133         else
1134                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
1135                                 align_size >> PAGE_SHIFT, NULL, false);
1136         if (ret) {
1137                 mem_hotplug_done();
1138                 goto error_add_memory;
1139         }
1140         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1141                                 align_start >> PAGE_SHIFT,
1142                                 align_size >> PAGE_SHIFT, NULL);
1143         mem_hotplug_done();
1144
1145         /*
1146          * Initialization of the pages has been deferred until now in order
1147          * to allow us to do the work while not holding the hotplug lock.
1148          */
1149         memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1150                                 align_start >> PAGE_SHIFT,
1151                                 align_size >> PAGE_SHIFT, &devmem->pagemap);
1152
1153         return 0;
1154
1155 error_add_memory:
1156         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1157 error_radix:
1158         hmm_devmem_radix_release(devmem->resource);
1159 error:
1160         return ret;
1161 }
1162
1163 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1164 {
1165         struct hmm_devmem *devmem = data;
1166
1167         return devmem->resource == match_data;
1168 }
1169
1170 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1171 {
1172         devres_release(devmem->device, &hmm_devmem_release,
1173                        &hmm_devmem_match, devmem->resource);
1174 }
1175
1176 /*
1177  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1178  *
1179  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1180  * @device: device struct to bind the resource too
1181  * @size: size in bytes of the device memory to add
1182  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1183  *
1184  * This function first finds an empty range of physical address big enough to
1185  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1186  * in turn allocates struct pages. It does not do anything beyond that; all
1187  * events affecting the memory will go through the various callbacks provided
1188  * by hmm_devmem_ops struct.
1189  *
1190  * Device driver should call this function during device initialization and
1191  * is then responsible of memory management. HMM only provides helpers.
1192  */
1193 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1194                                   struct device *device,
1195                                   unsigned long size)
1196 {
1197         struct hmm_devmem *devmem;
1198         resource_size_t addr;
1199         int ret;
1200
1201         dev_pagemap_get_ops();
1202
1203         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1204                                    GFP_KERNEL, dev_to_node(device));
1205         if (!devmem)
1206                 return ERR_PTR(-ENOMEM);
1207
1208         init_completion(&devmem->completion);
1209         devmem->pfn_first = -1UL;
1210         devmem->pfn_last = -1UL;
1211         devmem->resource = NULL;
1212         devmem->device = device;
1213         devmem->ops = ops;
1214
1215         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1216                               0, GFP_KERNEL);
1217         if (ret)
1218                 goto error_percpu_ref;
1219
1220         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1221         if (ret)
1222                 goto error_devm_add_action;
1223
1224         size = ALIGN(size, PA_SECTION_SIZE);
1225         addr = min((unsigned long)iomem_resource.end,
1226                    (1UL << MAX_PHYSMEM_BITS) - 1);
1227         addr = addr - size + 1UL;
1228
1229         /*
1230          * FIXME add a new helper to quickly walk resource tree and find free
1231          * range
1232          *
1233          * FIXME what about ioport_resource resource ?
1234          */
1235         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1236                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1237                 if (ret != REGION_DISJOINT)
1238                         continue;
1239
1240                 devmem->resource = devm_request_mem_region(device, addr, size,
1241                                                            dev_name(device));
1242                 if (!devmem->resource) {
1243                         ret = -ENOMEM;
1244                         goto error_no_resource;
1245                 }
1246                 break;
1247         }
1248         if (!devmem->resource) {
1249                 ret = -ERANGE;
1250                 goto error_no_resource;
1251         }
1252
1253         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1254         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1255         devmem->pfn_last = devmem->pfn_first +
1256                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1257
1258         ret = hmm_devmem_pages_create(devmem);
1259         if (ret)
1260                 goto error_pages;
1261
1262         devres_add(device, devmem);
1263
1264         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1265         if (ret) {
1266                 hmm_devmem_remove(devmem);
1267                 return ERR_PTR(ret);
1268         }
1269
1270         return devmem;
1271
1272 error_pages:
1273         devm_release_mem_region(device, devmem->resource->start,
1274                                 resource_size(devmem->resource));
1275 error_no_resource:
1276 error_devm_add_action:
1277         hmm_devmem_ref_kill(&devmem->ref);
1278         hmm_devmem_ref_exit(&devmem->ref);
1279 error_percpu_ref:
1280         devres_free(devmem);
1281         return ERR_PTR(ret);
1282 }
1283 EXPORT_SYMBOL(hmm_devmem_add);
1284
1285 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1286                                            struct device *device,
1287                                            struct resource *res)
1288 {
1289         struct hmm_devmem *devmem;
1290         int ret;
1291
1292         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1293                 return ERR_PTR(-EINVAL);
1294
1295         dev_pagemap_get_ops();
1296
1297         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1298                                    GFP_KERNEL, dev_to_node(device));
1299         if (!devmem)
1300                 return ERR_PTR(-ENOMEM);
1301
1302         init_completion(&devmem->completion);
1303         devmem->pfn_first = -1UL;
1304         devmem->pfn_last = -1UL;
1305         devmem->resource = res;
1306         devmem->device = device;
1307         devmem->ops = ops;
1308
1309         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1310                               0, GFP_KERNEL);
1311         if (ret)
1312                 goto error_percpu_ref;
1313
1314         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1315         if (ret)
1316                 goto error_devm_add_action;
1317
1318
1319         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1320         devmem->pfn_last = devmem->pfn_first +
1321                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1322
1323         ret = hmm_devmem_pages_create(devmem);
1324         if (ret)
1325                 goto error_devm_add_action;
1326
1327         devres_add(device, devmem);
1328
1329         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1330         if (ret) {
1331                 hmm_devmem_remove(devmem);
1332                 return ERR_PTR(ret);
1333         }
1334
1335         return devmem;
1336
1337 error_devm_add_action:
1338         hmm_devmem_ref_kill(&devmem->ref);
1339         hmm_devmem_ref_exit(&devmem->ref);
1340 error_percpu_ref:
1341         devres_free(devmem);
1342         return ERR_PTR(ret);
1343 }
1344 EXPORT_SYMBOL(hmm_devmem_add_resource);
1345
1346 /*
1347  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1348  *
1349  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1350  *
1351  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1352  * of the device driver. It will free struct page and remove the resource that
1353  * reserved the physical address range for this device memory.
1354  */
1355 void hmm_devmem_remove(struct hmm_devmem *devmem)
1356 {
1357         resource_size_t start, size;
1358         struct device *device;
1359         bool cdm = false;
1360
1361         if (!devmem)
1362                 return;
1363
1364         device = devmem->device;
1365         start = devmem->resource->start;
1366         size = resource_size(devmem->resource);
1367
1368         cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1369         hmm_devmem_ref_kill(&devmem->ref);
1370         hmm_devmem_ref_exit(&devmem->ref);
1371         hmm_devmem_pages_remove(devmem);
1372
1373         if (!cdm)
1374                 devm_release_mem_region(device, start, size);
1375 }
1376 EXPORT_SYMBOL(hmm_devmem_remove);
1377
1378 /*
1379  * A device driver that wants to handle multiple devices memory through a
1380  * single fake device can use hmm_device to do so. This is purely a helper
1381  * and it is not needed to make use of any HMM functionality.
1382  */
1383 #define HMM_DEVICE_MAX 256
1384
1385 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1386 static DEFINE_SPINLOCK(hmm_device_lock);
1387 static struct class *hmm_device_class;
1388 static dev_t hmm_device_devt;
1389
1390 static void hmm_device_release(struct device *device)
1391 {
1392         struct hmm_device *hmm_device;
1393
1394         hmm_device = container_of(device, struct hmm_device, device);
1395         spin_lock(&hmm_device_lock);
1396         clear_bit(hmm_device->minor, hmm_device_mask);
1397         spin_unlock(&hmm_device_lock);
1398
1399         kfree(hmm_device);
1400 }
1401
1402 struct hmm_device *hmm_device_new(void *drvdata)
1403 {
1404         struct hmm_device *hmm_device;
1405
1406         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1407         if (!hmm_device)
1408                 return ERR_PTR(-ENOMEM);
1409
1410         spin_lock(&hmm_device_lock);
1411         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1412         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1413                 spin_unlock(&hmm_device_lock);
1414                 kfree(hmm_device);
1415                 return ERR_PTR(-EBUSY);
1416         }
1417         set_bit(hmm_device->minor, hmm_device_mask);
1418         spin_unlock(&hmm_device_lock);
1419
1420         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1421         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1422                                         hmm_device->minor);
1423         hmm_device->device.release = hmm_device_release;
1424         dev_set_drvdata(&hmm_device->device, drvdata);
1425         hmm_device->device.class = hmm_device_class;
1426         device_initialize(&hmm_device->device);
1427
1428         return hmm_device;
1429 }
1430 EXPORT_SYMBOL(hmm_device_new);
1431
1432 void hmm_device_put(struct hmm_device *hmm_device)
1433 {
1434         put_device(&hmm_device->device);
1435 }
1436 EXPORT_SYMBOL(hmm_device_put);
1437
1438 static int __init hmm_init(void)
1439 {
1440         int ret;
1441
1442         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1443                                   HMM_DEVICE_MAX,
1444                                   "hmm_device");
1445         if (ret)
1446                 return ret;
1447
1448         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1449         if (IS_ERR(hmm_device_class)) {
1450                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1451                 return PTR_ERR(hmm_device_class);
1452         }
1453         return 0;
1454 }
1455
1456 device_initcall(hmm_init);
1457 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */