1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
31 struct follow_page_context {
32 struct dev_pagemap *pgmap;
33 unsigned int page_mask;
36 static inline void sanity_check_pinned_pages(struct page **pages,
39 if (!IS_ENABLED(CONFIG_DEBUG_VM))
43 * We only pin anonymous pages if they are exclusive. Once pinned, we
44 * can no longer turn them possibly shared and PageAnonExclusive() will
45 * stick around until the page is freed.
47 * We'd like to verify that our pinned anonymous pages are still mapped
48 * exclusively. The issue with anon THP is that we don't know how
49 * they are/were mapped when pinning them. However, for anon
50 * THP we can assume that either the given page (PTE-mapped THP) or
51 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
52 * neither is the case, there is certainly something wrong.
54 for (; npages; npages--, pages++) {
55 struct page *page = *pages;
61 folio = page_folio(page);
63 if (is_zero_page(page) ||
64 !folio_test_anon(folio))
66 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
67 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
69 /* Either a PTE-mapped or a PMD-mapped THP. */
70 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
71 !PageAnonExclusive(page), page);
76 * Return the folio with ref appropriately incremented,
77 * or NULL if that failed.
79 static inline struct folio *try_get_folio(struct page *page, int refs)
84 folio = page_folio(page);
85 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
87 if (unlikely(!folio_ref_try_add(folio, refs)))
91 * At this point we have a stable reference to the folio; but it
92 * could be that between calling page_folio() and the refcount
93 * increment, the folio was split, in which case we'd end up
94 * holding a reference on a folio that has nothing to do with the page
95 * we were given anymore.
96 * So now that the folio is stable, recheck that the page still
97 * belongs to this folio.
99 if (unlikely(page_folio(page) != folio)) {
100 folio_put_refs(folio, refs);
107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
109 if (flags & FOLL_PIN) {
110 if (is_zero_folio(folio))
112 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 if (folio_has_pincount(folio))
114 atomic_sub(refs, &folio->_pincount);
116 refs *= GUP_PIN_COUNTING_BIAS;
119 folio_put_refs(folio, refs);
123 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
124 * @folio: pointer to folio to be grabbed
125 * @refs: the value to (effectively) add to the folio's refcount
126 * @flags: gup flags: these are the FOLL_* flag values
128 * This might not do anything at all, depending on the flags argument.
130 * "grab" names in this file mean, "look at flags to decide whether to use
131 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
133 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
136 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
137 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
139 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
142 * It is called when we have a stable reference for the folio, typically in
145 int __must_check try_grab_folio(struct folio *folio, int refs,
148 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
151 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
154 if (flags & FOLL_GET)
155 folio_ref_add(folio, refs);
156 else if (flags & FOLL_PIN) {
158 * Don't take a pin on the zero page - it's not going anywhere
159 * and it is used in a *lot* of places.
161 if (is_zero_folio(folio))
165 * Increment the normal page refcount field at least once,
166 * so that the page really is pinned.
168 if (folio_has_pincount(folio)) {
169 folio_ref_add(folio, refs);
170 atomic_add(refs, &folio->_pincount);
172 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
175 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
182 * unpin_user_page() - release a dma-pinned page
183 * @page: pointer to page to be released
185 * Pages that were pinned via pin_user_pages*() must be released via either
186 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
187 * that such pages can be separately tracked and uniquely handled. In
188 * particular, interactions with RDMA and filesystems need special handling.
190 void unpin_user_page(struct page *page)
192 sanity_check_pinned_pages(&page, 1);
193 gup_put_folio(page_folio(page), 1, FOLL_PIN);
195 EXPORT_SYMBOL(unpin_user_page);
198 * unpin_folio() - release a dma-pinned folio
199 * @folio: pointer to folio to be released
201 * Folios that were pinned via memfd_pin_folios() or other similar routines
202 * must be released either using unpin_folio() or unpin_folios().
204 void unpin_folio(struct folio *folio)
206 gup_put_folio(folio, 1, FOLL_PIN);
208 EXPORT_SYMBOL_GPL(unpin_folio);
211 * folio_add_pin - Try to get an additional pin on a pinned folio
212 * @folio: The folio to be pinned
214 * Get an additional pin on a folio we already have a pin on. Makes no change
215 * if the folio is a zero_page.
217 void folio_add_pin(struct folio *folio)
219 if (is_zero_folio(folio))
223 * Similar to try_grab_folio(): be sure to *also* increment the normal
224 * page refcount field at least once, so that the page really is
227 if (folio_has_pincount(folio)) {
228 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
229 folio_ref_inc(folio);
230 atomic_inc(&folio->_pincount);
232 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
233 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
237 static inline struct folio *gup_folio_range_next(struct page *start,
238 unsigned long npages, unsigned long i, unsigned int *ntails)
240 struct page *next = nth_page(start, i);
241 struct folio *folio = page_folio(next);
244 if (folio_test_large(folio))
245 nr = min_t(unsigned int, npages - i,
246 folio_nr_pages(folio) - folio_page_idx(folio, next));
252 static inline struct folio *gup_folio_next(struct page **list,
253 unsigned long npages, unsigned long i, unsigned int *ntails)
255 struct folio *folio = page_folio(list[i]);
258 for (nr = i + 1; nr < npages; nr++) {
259 if (page_folio(list[nr]) != folio)
268 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
269 * @pages: array of pages to be maybe marked dirty, and definitely released.
270 * @npages: number of pages in the @pages array.
271 * @make_dirty: whether to mark the pages dirty
273 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
274 * variants called on that page.
276 * For each page in the @pages array, make that page (or its head page, if a
277 * compound page) dirty, if @make_dirty is true, and if the page was previously
278 * listed as clean. In any case, releases all pages using unpin_user_page(),
279 * possibly via unpin_user_pages(), for the non-dirty case.
281 * Please see the unpin_user_page() documentation for details.
283 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
284 * required, then the caller should a) verify that this is really correct,
285 * because _lock() is usually required, and b) hand code it:
286 * set_page_dirty_lock(), unpin_user_page().
289 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
297 unpin_user_pages(pages, npages);
301 sanity_check_pinned_pages(pages, npages);
302 for (i = 0; i < npages; i += nr) {
303 folio = gup_folio_next(pages, npages, i, &nr);
305 * Checking PageDirty at this point may race with
306 * clear_page_dirty_for_io(), but that's OK. Two key
309 * 1) This code sees the page as already dirty, so it
310 * skips the call to set_page_dirty(). That could happen
311 * because clear_page_dirty_for_io() called
312 * folio_mkclean(), followed by set_page_dirty().
313 * However, now the page is going to get written back,
314 * which meets the original intention of setting it
315 * dirty, so all is well: clear_page_dirty_for_io() goes
316 * on to call TestClearPageDirty(), and write the page
319 * 2) This code sees the page as clean, so it calls
320 * set_page_dirty(). The page stays dirty, despite being
321 * written back, so it gets written back again in the
322 * next writeback cycle. This is harmless.
324 if (!folio_test_dirty(folio)) {
326 folio_mark_dirty(folio);
329 gup_put_folio(folio, nr, FOLL_PIN);
332 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
335 * unpin_user_page_range_dirty_lock() - release and optionally dirty
336 * gup-pinned page range
338 * @page: the starting page of a range maybe marked dirty, and definitely released.
339 * @npages: number of consecutive pages to release.
340 * @make_dirty: whether to mark the pages dirty
342 * "gup-pinned page range" refers to a range of pages that has had one of the
343 * pin_user_pages() variants called on that page.
345 * For the page ranges defined by [page .. page+npages], make that range (or
346 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
347 * page range was previously listed as clean.
349 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
350 * required, then the caller should a) verify that this is really correct,
351 * because _lock() is usually required, and b) hand code it:
352 * set_page_dirty_lock(), unpin_user_page().
355 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
362 for (i = 0; i < npages; i += nr) {
363 folio = gup_folio_range_next(page, npages, i, &nr);
364 if (make_dirty && !folio_test_dirty(folio)) {
366 folio_mark_dirty(folio);
369 gup_put_folio(folio, nr, FOLL_PIN);
372 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
374 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
381 * Don't perform any sanity checks because we might have raced with
382 * fork() and some anonymous pages might now actually be shared --
383 * which is why we're unpinning after all.
385 for (i = 0; i < npages; i += nr) {
386 folio = gup_folio_next(pages, npages, i, &nr);
387 gup_put_folio(folio, nr, FOLL_PIN);
392 * unpin_user_pages() - release an array of gup-pinned pages.
393 * @pages: array of pages to be marked dirty and released.
394 * @npages: number of pages in the @pages array.
396 * For each page in the @pages array, release the page using unpin_user_page().
398 * Please see the unpin_user_page() documentation for details.
400 void unpin_user_pages(struct page **pages, unsigned long npages)
407 * If this WARN_ON() fires, then the system *might* be leaking pages (by
408 * leaving them pinned), but probably not. More likely, gup/pup returned
409 * a hard -ERRNO error to the caller, who erroneously passed it here.
411 if (WARN_ON(IS_ERR_VALUE(npages)))
414 sanity_check_pinned_pages(pages, npages);
415 for (i = 0; i < npages; i += nr) {
420 folio = gup_folio_next(pages, npages, i, &nr);
421 gup_put_folio(folio, nr, FOLL_PIN);
424 EXPORT_SYMBOL(unpin_user_pages);
427 * unpin_user_folio() - release pages of a folio
428 * @folio: pointer to folio to be released
429 * @npages: number of pages of same folio
431 * Release npages of the folio
433 void unpin_user_folio(struct folio *folio, unsigned long npages)
435 gup_put_folio(folio, npages, FOLL_PIN);
437 EXPORT_SYMBOL(unpin_user_folio);
440 * unpin_folios() - release an array of gup-pinned folios.
441 * @folios: array of folios to be marked dirty and released.
442 * @nfolios: number of folios in the @folios array.
444 * For each folio in the @folios array, release the folio using gup_put_folio.
446 * Please see the unpin_folio() documentation for details.
448 void unpin_folios(struct folio **folios, unsigned long nfolios)
450 unsigned long i = 0, j;
453 * If this WARN_ON() fires, then the system *might* be leaking folios
454 * (by leaving them pinned), but probably not. More likely, gup/pup
455 * returned a hard -ERRNO error to the caller, who erroneously passed
458 if (WARN_ON(IS_ERR_VALUE(nfolios)))
461 while (i < nfolios) {
462 for (j = i + 1; j < nfolios; j++)
463 if (folios[i] != folios[j])
467 gup_put_folio(folios[i], j - i, FOLL_PIN);
471 EXPORT_SYMBOL_GPL(unpin_folios);
474 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
475 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
476 * cache bouncing on large SMP machines for concurrent pinned gups.
478 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
480 if (!test_bit(MMF_HAS_PINNED, mm_flags))
481 set_bit(MMF_HAS_PINNED, mm_flags);
486 #ifdef CONFIG_HAVE_GUP_FAST
487 static int record_subpages(struct page *page, unsigned long sz,
488 unsigned long addr, unsigned long end,
491 struct page *start_page;
494 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
495 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
496 pages[nr] = nth_page(start_page, nr);
502 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
503 * @page: pointer to page to be grabbed
504 * @refs: the value to (effectively) add to the folio's refcount
505 * @flags: gup flags: these are the FOLL_* flag values.
507 * "grab" names in this file mean, "look at flags to decide whether to use
508 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
510 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
511 * same time. (That's true throughout the get_user_pages*() and
512 * pin_user_pages*() APIs.) Cases:
514 * FOLL_GET: folio's refcount will be incremented by @refs.
516 * FOLL_PIN on large folios: folio's refcount will be incremented by
517 * @refs, and its pincount will be incremented by @refs.
519 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
520 * @refs * GUP_PIN_COUNTING_BIAS.
522 * Return: The folio containing @page (with refcount appropriately
523 * incremented) for success, or NULL upon failure. If neither FOLL_GET
524 * nor FOLL_PIN was set, that's considered failure, and furthermore,
525 * a likely bug in the caller, so a warning is also emitted.
527 * It uses add ref unless zero to elevate the folio refcount and must be called
530 static struct folio *try_grab_folio_fast(struct page *page, int refs,
535 /* Raise warn if it is not called in fast GUP */
536 VM_WARN_ON_ONCE(!irqs_disabled());
538 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
541 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
544 if (flags & FOLL_GET)
545 return try_get_folio(page, refs);
547 /* FOLL_PIN is set */
550 * Don't take a pin on the zero page - it's not going anywhere
551 * and it is used in a *lot* of places.
553 if (is_zero_page(page))
554 return page_folio(page);
556 folio = try_get_folio(page, refs);
561 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
562 * right zone, so fail and let the caller fall back to the slow
565 if (unlikely((flags & FOLL_LONGTERM) &&
566 !folio_is_longterm_pinnable(folio))) {
567 folio_put_refs(folio, refs);
572 * When pinning a large folio, use an exact count to track it.
574 * However, be sure to *also* increment the normal folio
575 * refcount field at least once, so that the folio really
576 * is pinned. That's why the refcount from the earlier
577 * try_get_folio() is left intact.
579 if (folio_has_pincount(folio))
580 atomic_add(refs, &folio->_pincount);
583 refs * (GUP_PIN_COUNTING_BIAS - 1));
585 * Adjust the pincount before re-checking the PTE for changes.
586 * This is essentially a smp_mb() and is paired with a memory
587 * barrier in folio_try_share_anon_rmap_*().
589 smp_mb__after_atomic();
591 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
595 #endif /* CONFIG_HAVE_GUP_FAST */
597 /* Common code for can_follow_write_* */
598 static inline bool can_follow_write_common(struct page *page,
599 struct vm_area_struct *vma, unsigned int flags)
601 /* Maybe FOLL_FORCE is set to override it? */
602 if (!(flags & FOLL_FORCE))
605 /* But FOLL_FORCE has no effect on shared mappings */
606 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
609 /* ... or read-only private ones */
610 if (!(vma->vm_flags & VM_MAYWRITE))
613 /* ... or already writable ones that just need to take a write fault */
614 if (vma->vm_flags & VM_WRITE)
618 * See can_change_pte_writable(): we broke COW and could map the page
619 * writable if we have an exclusive anonymous page ...
621 return page && PageAnon(page) && PageAnonExclusive(page);
624 static struct page *no_page_table(struct vm_area_struct *vma,
625 unsigned int flags, unsigned long address)
627 if (!(flags & FOLL_DUMP))
631 * When core dumping, we don't want to allocate unnecessary pages or
632 * page tables. Return error instead of NULL to skip handle_mm_fault,
633 * then get_dump_page() will return NULL to leave a hole in the dump.
634 * But we can only make this optimization where a hole would surely
635 * be zero-filled if handle_mm_fault() actually did handle it.
637 if (is_vm_hugetlb_page(vma)) {
638 struct hstate *h = hstate_vma(vma);
640 if (!hugetlbfs_pagecache_present(h, vma, address))
641 return ERR_PTR(-EFAULT);
642 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
643 return ERR_PTR(-EFAULT);
649 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
650 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */
651 static inline bool can_follow_write_pud(pud_t pud, struct page *page,
652 struct vm_area_struct *vma,
655 /* If the pud is writable, we can write to the page. */
659 return can_follow_write_common(page, vma, flags);
662 static struct page *follow_huge_pud(struct vm_area_struct *vma,
663 unsigned long addr, pud_t *pudp,
664 int flags, struct follow_page_context *ctx)
666 struct mm_struct *mm = vma->vm_mm;
669 unsigned long pfn = pud_pfn(pud);
672 assert_spin_locked(pud_lockptr(mm, pudp));
674 if (!pud_present(pud))
677 if ((flags & FOLL_WRITE) &&
678 !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags))
681 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
683 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
686 * device mapped pages can only be returned if the caller
687 * will manage the page reference count.
689 * At least one of FOLL_GET | FOLL_PIN must be set, so
692 if (!(flags & (FOLL_GET | FOLL_PIN)))
693 return ERR_PTR(-EEXIST);
695 if (flags & FOLL_TOUCH)
696 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
698 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
700 return ERR_PTR(-EFAULT);
703 page = pfn_to_page(pfn);
705 if (!pud_devmap(pud) && !pud_write(pud) &&
706 gup_must_unshare(vma, flags, page))
707 return ERR_PTR(-EMLINK);
709 ret = try_grab_folio(page_folio(page), 1, flags);
713 ctx->page_mask = HPAGE_PUD_NR - 1;
718 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
719 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
720 struct vm_area_struct *vma,
723 /* If the pmd is writable, we can write to the page. */
727 if (!can_follow_write_common(page, vma, flags))
730 /* ... and a write-fault isn't required for other reasons. */
731 if (pmd_needs_soft_dirty_wp(vma, pmd))
733 return !userfaultfd_huge_pmd_wp(vma, pmd);
736 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
737 unsigned long addr, pmd_t *pmd,
739 struct follow_page_context *ctx)
741 struct mm_struct *mm = vma->vm_mm;
746 assert_spin_locked(pmd_lockptr(mm, pmd));
748 page = pmd_page(pmdval);
749 if ((flags & FOLL_WRITE) &&
750 !can_follow_write_pmd(pmdval, page, vma, flags))
753 /* Avoid dumping huge zero page */
754 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
755 return ERR_PTR(-EFAULT);
757 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
760 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
761 return ERR_PTR(-EMLINK);
763 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
764 !PageAnonExclusive(page), page);
766 ret = try_grab_folio(page_folio(page), 1, flags);
770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
771 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
772 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
773 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
775 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
776 ctx->page_mask = HPAGE_PMD_NR - 1;
781 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
782 static struct page *follow_huge_pud(struct vm_area_struct *vma,
783 unsigned long addr, pud_t *pudp,
784 int flags, struct follow_page_context *ctx)
789 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
790 unsigned long addr, pmd_t *pmd,
792 struct follow_page_context *ctx)
796 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
798 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
799 pte_t *pte, unsigned int flags)
801 if (flags & FOLL_TOUCH) {
802 pte_t orig_entry = ptep_get(pte);
803 pte_t entry = orig_entry;
805 if (flags & FOLL_WRITE)
806 entry = pte_mkdirty(entry);
807 entry = pte_mkyoung(entry);
809 if (!pte_same(orig_entry, entry)) {
810 set_pte_at(vma->vm_mm, address, pte, entry);
811 update_mmu_cache(vma, address, pte);
815 /* Proper page table entry exists, but no corresponding struct page */
819 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
820 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
821 struct vm_area_struct *vma,
824 /* If the pte is writable, we can write to the page. */
828 if (!can_follow_write_common(page, vma, flags))
831 /* ... and a write-fault isn't required for other reasons. */
832 if (pte_needs_soft_dirty_wp(vma, pte))
834 return !userfaultfd_pte_wp(vma, pte);
837 static struct page *follow_page_pte(struct vm_area_struct *vma,
838 unsigned long address, pmd_t *pmd, unsigned int flags,
839 struct dev_pagemap **pgmap)
841 struct mm_struct *mm = vma->vm_mm;
848 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
850 return no_page_table(vma, flags, address);
851 pte = ptep_get(ptep);
852 if (!pte_present(pte))
854 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
857 page = vm_normal_page(vma, address, pte);
860 * We only care about anon pages in can_follow_write_pte() and don't
861 * have to worry about pte_devmap() because they are never anon.
863 if ((flags & FOLL_WRITE) &&
864 !can_follow_write_pte(pte, page, vma, flags)) {
869 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
871 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
872 * case since they are only valid while holding the pgmap
875 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
877 page = pte_page(pte);
880 } else if (unlikely(!page)) {
881 if (flags & FOLL_DUMP) {
882 /* Avoid special (like zero) pages in core dumps */
883 page = ERR_PTR(-EFAULT);
887 if (is_zero_pfn(pte_pfn(pte))) {
888 page = pte_page(pte);
890 ret = follow_pfn_pte(vma, address, ptep, flags);
895 folio = page_folio(page);
897 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
898 page = ERR_PTR(-EMLINK);
902 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
903 !PageAnonExclusive(page), page);
905 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
906 ret = try_grab_folio(folio, 1, flags);
913 * We need to make the page accessible if and only if we are going
914 * to access its content (the FOLL_PIN case). Please see
915 * Documentation/core-api/pin_user_pages.rst for details.
917 if (flags & FOLL_PIN) {
918 ret = arch_make_folio_accessible(folio);
920 unpin_user_page(page);
925 if (flags & FOLL_TOUCH) {
926 if ((flags & FOLL_WRITE) &&
927 !pte_dirty(pte) && !folio_test_dirty(folio))
928 folio_mark_dirty(folio);
930 * pte_mkyoung() would be more correct here, but atomic care
931 * is needed to avoid losing the dirty bit: it is easier to use
932 * folio_mark_accessed().
934 folio_mark_accessed(folio);
937 pte_unmap_unlock(ptep, ptl);
940 pte_unmap_unlock(ptep, ptl);
943 return no_page_table(vma, flags, address);
946 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
947 unsigned long address, pud_t *pudp,
949 struct follow_page_context *ctx)
954 struct mm_struct *mm = vma->vm_mm;
956 pmd = pmd_offset(pudp, address);
957 pmdval = pmdp_get_lockless(pmd);
958 if (pmd_none(pmdval))
959 return no_page_table(vma, flags, address);
960 if (!pmd_present(pmdval))
961 return no_page_table(vma, flags, address);
962 if (pmd_devmap(pmdval)) {
963 ptl = pmd_lock(mm, pmd);
964 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
968 return no_page_table(vma, flags, address);
970 if (likely(!pmd_leaf(pmdval)))
971 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
973 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
974 return no_page_table(vma, flags, address);
976 ptl = pmd_lock(mm, pmd);
978 if (unlikely(!pmd_present(pmdval))) {
980 return no_page_table(vma, flags, address);
982 if (unlikely(!pmd_leaf(pmdval))) {
984 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
986 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
988 split_huge_pmd(vma, pmd, address);
989 /* If pmd was left empty, stuff a page table in there quickly */
990 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
991 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
993 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
998 static struct page *follow_pud_mask(struct vm_area_struct *vma,
999 unsigned long address, p4d_t *p4dp,
1001 struct follow_page_context *ctx)
1006 struct mm_struct *mm = vma->vm_mm;
1008 pudp = pud_offset(p4dp, address);
1009 pud = READ_ONCE(*pudp);
1010 if (!pud_present(pud))
1011 return no_page_table(vma, flags, address);
1012 if (pud_leaf(pud)) {
1013 ptl = pud_lock(mm, pudp);
1014 page = follow_huge_pud(vma, address, pudp, flags, ctx);
1018 return no_page_table(vma, flags, address);
1020 if (unlikely(pud_bad(pud)))
1021 return no_page_table(vma, flags, address);
1023 return follow_pmd_mask(vma, address, pudp, flags, ctx);
1026 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1027 unsigned long address, pgd_t *pgdp,
1029 struct follow_page_context *ctx)
1033 p4dp = p4d_offset(pgdp, address);
1034 p4d = READ_ONCE(*p4dp);
1035 BUILD_BUG_ON(p4d_leaf(p4d));
1037 if (!p4d_present(p4d) || p4d_bad(p4d))
1038 return no_page_table(vma, flags, address);
1040 return follow_pud_mask(vma, address, p4dp, flags, ctx);
1044 * follow_page_mask - look up a page descriptor from a user-virtual address
1045 * @vma: vm_area_struct mapping @address
1046 * @address: virtual address to look up
1047 * @flags: flags modifying lookup behaviour
1048 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1049 * pointer to output page_mask
1051 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1053 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1054 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1056 * When getting an anonymous page and the caller has to trigger unsharing
1057 * of a shared anonymous page first, -EMLINK is returned. The caller should
1058 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1059 * relevant with FOLL_PIN and !FOLL_WRITE.
1061 * On output, the @ctx->page_mask is set according to the size of the page.
1063 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1064 * an error pointer if there is a mapping to something not represented
1065 * by a page descriptor (see also vm_normal_page()).
1067 static struct page *follow_page_mask(struct vm_area_struct *vma,
1068 unsigned long address, unsigned int flags,
1069 struct follow_page_context *ctx)
1072 struct mm_struct *mm = vma->vm_mm;
1075 vma_pgtable_walk_begin(vma);
1078 pgd = pgd_offset(mm, address);
1080 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1081 page = no_page_table(vma, flags, address);
1083 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1085 vma_pgtable_walk_end(vma);
1090 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1091 unsigned int gup_flags, struct vm_area_struct **vma,
1102 /* user gate pages are read-only */
1103 if (gup_flags & FOLL_WRITE)
1105 pgd = pgd_offset(mm, address);
1108 p4d = p4d_offset(pgd, address);
1111 pud = pud_offset(p4d, address);
1114 pmd = pmd_offset(pud, address);
1115 if (!pmd_present(*pmd))
1117 pte = pte_offset_map(pmd, address);
1120 entry = ptep_get(pte);
1121 if (pte_none(entry))
1123 *vma = get_gate_vma(mm);
1126 *page = vm_normal_page(*vma, address, entry);
1128 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1130 *page = pte_page(entry);
1132 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1143 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1144 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1145 * to 0 and -EBUSY returned.
1147 static int faultin_page(struct vm_area_struct *vma,
1148 unsigned long address, unsigned int flags, bool unshare,
1151 unsigned int fault_flags = 0;
1154 if (flags & FOLL_NOFAULT)
1156 if (flags & FOLL_WRITE)
1157 fault_flags |= FAULT_FLAG_WRITE;
1158 if (flags & FOLL_REMOTE)
1159 fault_flags |= FAULT_FLAG_REMOTE;
1160 if (flags & FOLL_UNLOCKABLE) {
1161 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1163 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1164 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1165 * That's because some callers may not be prepared to
1166 * handle early exits caused by non-fatal signals.
1168 if (flags & FOLL_INTERRUPTIBLE)
1169 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1171 if (flags & FOLL_NOWAIT)
1172 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1173 if (flags & FOLL_TRIED) {
1175 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1178 fault_flags |= FAULT_FLAG_TRIED;
1181 fault_flags |= FAULT_FLAG_UNSHARE;
1182 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1183 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1186 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1188 if (ret & VM_FAULT_COMPLETED) {
1190 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1191 * mmap lock in the page fault handler. Sanity check this.
1193 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1197 * We should do the same as VM_FAULT_RETRY, but let's not
1198 * return -EBUSY since that's not reflecting the reality of
1199 * what has happened - we've just fully completed a page
1200 * fault, with the mmap lock released. Use -EAGAIN to show
1201 * that we want to take the mmap lock _again_.
1206 if (ret & VM_FAULT_ERROR) {
1207 int err = vm_fault_to_errno(ret, flags);
1214 if (ret & VM_FAULT_RETRY) {
1215 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1224 * Writing to file-backed mappings which require folio dirty tracking using GUP
1225 * is a fundamentally broken operation, as kernel write access to GUP mappings
1226 * do not adhere to the semantics expected by a file system.
1228 * Consider the following scenario:-
1230 * 1. A folio is written to via GUP which write-faults the memory, notifying
1231 * the file system and dirtying the folio.
1232 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1233 * the PTE being marked read-only.
1234 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1236 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1237 * (though it does not have to).
1239 * This results in both data being written to a folio without writenotify, and
1240 * the folio being dirtied unexpectedly (if the caller decides to do so).
1242 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1243 unsigned long gup_flags)
1246 * If we aren't pinning then no problematic write can occur. A long term
1247 * pin is the most egregious case so this is the case we disallow.
1249 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1250 (FOLL_PIN | FOLL_LONGTERM))
1254 * If the VMA does not require dirty tracking then no problematic write
1257 return !vma_needs_dirty_tracking(vma);
1260 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1262 vm_flags_t vm_flags = vma->vm_flags;
1263 int write = (gup_flags & FOLL_WRITE);
1264 int foreign = (gup_flags & FOLL_REMOTE);
1265 bool vma_anon = vma_is_anonymous(vma);
1267 if (vm_flags & (VM_IO | VM_PFNMAP))
1270 if ((gup_flags & FOLL_ANON) && !vma_anon)
1273 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1276 if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1279 if (vma_is_secretmem(vma))
1284 !writable_file_mapping_allowed(vma, gup_flags))
1287 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1288 if (!(gup_flags & FOLL_FORCE))
1291 * We used to let the write,force case do COW in a
1292 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1293 * set a breakpoint in a read-only mapping of an
1294 * executable, without corrupting the file (yet only
1295 * when that file had been opened for writing!).
1296 * Anon pages in shared mappings are surprising: now
1299 if (!is_cow_mapping(vm_flags))
1302 } else if (!(vm_flags & VM_READ)) {
1303 if (!(gup_flags & FOLL_FORCE))
1306 * Is there actually any vma we can reach here which does not
1307 * have VM_MAYREAD set?
1309 if (!(vm_flags & VM_MAYREAD))
1313 * gups are always data accesses, not instruction
1314 * fetches, so execute=false here
1316 if (!arch_vma_access_permitted(vma, write, false, foreign))
1322 * This is "vma_lookup()", but with a warning if we would have
1323 * historically expanded the stack in the GUP code.
1325 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1328 #ifdef CONFIG_STACK_GROWSUP
1329 return vma_lookup(mm, addr);
1331 static volatile unsigned long next_warn;
1332 struct vm_area_struct *vma;
1333 unsigned long now, next;
1335 vma = find_vma(mm, addr);
1336 if (!vma || (addr >= vma->vm_start))
1339 /* Only warn for half-way relevant accesses */
1340 if (!(vma->vm_flags & VM_GROWSDOWN))
1342 if (vma->vm_start - addr > 65536)
1345 /* Let's not warn more than once an hour.. */
1346 now = jiffies; next = next_warn;
1347 if (next && time_before(now, next))
1349 next_warn = now + 60*60*HZ;
1351 /* Let people know things may have changed. */
1352 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1353 current->comm, task_pid_nr(current),
1354 vma->vm_start, vma->vm_end, addr);
1361 * __get_user_pages() - pin user pages in memory
1362 * @mm: mm_struct of target mm
1363 * @start: starting user address
1364 * @nr_pages: number of pages from start to pin
1365 * @gup_flags: flags modifying pin behaviour
1366 * @pages: array that receives pointers to the pages pinned.
1367 * Should be at least nr_pages long. Or NULL, if caller
1368 * only intends to ensure the pages are faulted in.
1369 * @locked: whether we're still with the mmap_lock held
1371 * Returns either number of pages pinned (which may be less than the
1372 * number requested), or an error. Details about the return value:
1374 * -- If nr_pages is 0, returns 0.
1375 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1376 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1377 * pages pinned. Again, this may be less than nr_pages.
1378 * -- 0 return value is possible when the fault would need to be retried.
1380 * The caller is responsible for releasing returned @pages, via put_page().
1382 * Must be called with mmap_lock held. It may be released. See below.
1384 * __get_user_pages walks a process's page tables and takes a reference to
1385 * each struct page that each user address corresponds to at a given
1386 * instant. That is, it takes the page that would be accessed if a user
1387 * thread accesses the given user virtual address at that instant.
1389 * This does not guarantee that the page exists in the user mappings when
1390 * __get_user_pages returns, and there may even be a completely different
1391 * page there in some cases (eg. if mmapped pagecache has been invalidated
1392 * and subsequently re-faulted). However it does guarantee that the page
1393 * won't be freed completely. And mostly callers simply care that the page
1394 * contains data that was valid *at some point in time*. Typically, an IO
1395 * or similar operation cannot guarantee anything stronger anyway because
1396 * locks can't be held over the syscall boundary.
1398 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1399 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1400 * appropriate) must be called after the page is finished with, and
1401 * before put_page is called.
1403 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1404 * be released. If this happens *@locked will be set to 0 on return.
1406 * A caller using such a combination of @gup_flags must therefore hold the
1407 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1408 * it must be held for either reading or writing and will not be released.
1410 * In most cases, get_user_pages or get_user_pages_fast should be used
1411 * instead of __get_user_pages. __get_user_pages should be used only if
1412 * you need some special @gup_flags.
1414 static long __get_user_pages(struct mm_struct *mm,
1415 unsigned long start, unsigned long nr_pages,
1416 unsigned int gup_flags, struct page **pages,
1419 long ret = 0, i = 0;
1420 struct vm_area_struct *vma = NULL;
1421 struct follow_page_context ctx = { NULL };
1426 start = untagged_addr_remote(mm, start);
1428 VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1430 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1431 VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
1432 (FOLL_PIN | FOLL_GET));
1436 unsigned int page_increm;
1438 /* first iteration or cross vma bound */
1439 if (!vma || start >= vma->vm_end) {
1441 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1442 * lookups+error reporting differently.
1444 if (gup_flags & FOLL_MADV_POPULATE) {
1445 vma = vma_lookup(mm, start);
1450 if (check_vma_flags(vma, gup_flags)) {
1456 vma = gup_vma_lookup(mm, start);
1457 if (!vma && in_gate_area(mm, start)) {
1458 ret = get_gate_page(mm, start & PAGE_MASK,
1460 pages ? &page : NULL);
1471 ret = check_vma_flags(vma, gup_flags);
1477 * If we have a pending SIGKILL, don't keep faulting pages and
1478 * potentially allocating memory.
1480 if (fatal_signal_pending(current)) {
1486 page = follow_page_mask(vma, start, gup_flags, &ctx);
1487 if (!page || PTR_ERR(page) == -EMLINK) {
1488 ret = faultin_page(vma, start, gup_flags,
1489 PTR_ERR(page) == -EMLINK, locked);
1503 } else if (PTR_ERR(page) == -EEXIST) {
1505 * Proper page table entry exists, but no corresponding
1506 * struct page. If the caller expects **pages to be
1507 * filled in, bail out now, because that can't be done
1511 ret = PTR_ERR(page);
1514 } else if (IS_ERR(page)) {
1515 ret = PTR_ERR(page);
1519 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1520 if (page_increm > nr_pages)
1521 page_increm = nr_pages;
1524 struct page *subpage;
1528 * This must be a large folio (and doesn't need to
1529 * be the whole folio; it can be part of it), do
1530 * the refcount work for all the subpages too.
1532 * NOTE: here the page may not be the head page
1533 * e.g. when start addr is not thp-size aligned.
1534 * try_grab_folio() should have taken care of tail
1537 if (page_increm > 1) {
1538 struct folio *folio = page_folio(page);
1541 * Since we already hold refcount on the
1542 * large folio, this should never fail.
1544 if (try_grab_folio(folio, page_increm - 1,
1547 * Release the 1st page ref if the
1548 * folio is problematic, fail hard.
1550 gup_put_folio(folio, 1, gup_flags);
1556 for (j = 0; j < page_increm; j++) {
1557 subpage = nth_page(page, j);
1558 pages[i + j] = subpage;
1559 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1560 flush_dcache_page(subpage);
1565 start += page_increm * PAGE_SIZE;
1566 nr_pages -= page_increm;
1570 put_dev_pagemap(ctx.pgmap);
1574 static bool vma_permits_fault(struct vm_area_struct *vma,
1575 unsigned int fault_flags)
1577 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1578 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1579 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1581 if (!(vm_flags & vma->vm_flags))
1585 * The architecture might have a hardware protection
1586 * mechanism other than read/write that can deny access.
1588 * gup always represents data access, not instruction
1589 * fetches, so execute=false here:
1591 if (!arch_vma_access_permitted(vma, write, false, foreign))
1598 * fixup_user_fault() - manually resolve a user page fault
1599 * @mm: mm_struct of target mm
1600 * @address: user address
1601 * @fault_flags:flags to pass down to handle_mm_fault()
1602 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1603 * does not allow retry. If NULL, the caller must guarantee
1604 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1606 * This is meant to be called in the specific scenario where for locking reasons
1607 * we try to access user memory in atomic context (within a pagefault_disable()
1608 * section), this returns -EFAULT, and we want to resolve the user fault before
1611 * Typically this is meant to be used by the futex code.
1613 * The main difference with get_user_pages() is that this function will
1614 * unconditionally call handle_mm_fault() which will in turn perform all the
1615 * necessary SW fixup of the dirty and young bits in the PTE, while
1616 * get_user_pages() only guarantees to update these in the struct page.
1618 * This is important for some architectures where those bits also gate the
1619 * access permission to the page because they are maintained in software. On
1620 * such architectures, gup() will not be enough to make a subsequent access
1623 * This function will not return with an unlocked mmap_lock. So it has not the
1624 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1626 int fixup_user_fault(struct mm_struct *mm,
1627 unsigned long address, unsigned int fault_flags,
1630 struct vm_area_struct *vma;
1633 address = untagged_addr_remote(mm, address);
1636 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1639 vma = gup_vma_lookup(mm, address);
1643 if (!vma_permits_fault(vma, fault_flags))
1646 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1647 fatal_signal_pending(current))
1650 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1652 if (ret & VM_FAULT_COMPLETED) {
1654 * NOTE: it's a pity that we need to retake the lock here
1655 * to pair with the unlock() in the callers. Ideally we
1656 * could tell the callers so they do not need to unlock.
1663 if (ret & VM_FAULT_ERROR) {
1664 int err = vm_fault_to_errno(ret, 0);
1671 if (ret & VM_FAULT_RETRY) {
1674 fault_flags |= FAULT_FLAG_TRIED;
1680 EXPORT_SYMBOL_GPL(fixup_user_fault);
1683 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1684 * specified, it'll also respond to generic signals. The caller of GUP
1685 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1687 static bool gup_signal_pending(unsigned int flags)
1689 if (fatal_signal_pending(current))
1692 if (!(flags & FOLL_INTERRUPTIBLE))
1695 return signal_pending(current);
1699 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1700 * the caller. This function may drop the mmap_lock. If it does so, then it will
1701 * set (*locked = 0).
1703 * (*locked == 0) means that the caller expects this function to acquire and
1704 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1705 * the function returns, even though it may have changed temporarily during
1706 * function execution.
1708 * Please note that this function, unlike __get_user_pages(), will not return 0
1709 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1711 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1712 unsigned long start,
1713 unsigned long nr_pages,
1714 struct page **pages,
1718 long ret, pages_done;
1719 bool must_unlock = false;
1725 * The internal caller expects GUP to manage the lock internally and the
1726 * lock must be released when this returns.
1729 if (mmap_read_lock_killable(mm))
1735 mmap_assert_locked(mm);
1737 if (flags & FOLL_PIN)
1738 mm_set_has_pinned_flag(&mm->flags);
1741 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1742 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1743 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1744 * for FOLL_GET, not for the newer FOLL_PIN.
1746 * FOLL_PIN always expects pages to be non-null, but no need to assert
1747 * that here, as any failures will be obvious enough.
1749 if (pages && !(flags & FOLL_PIN))
1754 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1756 if (!(flags & FOLL_UNLOCKABLE)) {
1757 /* VM_FAULT_RETRY couldn't trigger, bypass */
1762 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1765 BUG_ON(ret >= nr_pages);
1776 * VM_FAULT_RETRY didn't trigger or it was a
1784 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1785 * For the prefault case (!pages) we only update counts.
1789 start += ret << PAGE_SHIFT;
1791 /* The lock was temporarily dropped, so we must unlock later */
1796 * Repeat on the address that fired VM_FAULT_RETRY
1797 * with both FAULT_FLAG_ALLOW_RETRY and
1798 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1799 * by fatal signals of even common signals, depending on
1800 * the caller's request. So we need to check it before we
1801 * start trying again otherwise it can loop forever.
1803 if (gup_signal_pending(flags)) {
1805 pages_done = -EINTR;
1809 ret = mmap_read_lock_killable(mm);
1818 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1821 /* Continue to retry until we succeeded */
1839 if (must_unlock && *locked) {
1841 * We either temporarily dropped the lock, or the caller
1842 * requested that we both acquire and drop the lock. Either way,
1843 * we must now unlock, and notify the caller of that state.
1845 mmap_read_unlock(mm);
1850 * Failing to pin anything implies something has gone wrong (except when
1851 * FOLL_NOWAIT is specified).
1853 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1860 * populate_vma_page_range() - populate a range of pages in the vma.
1862 * @start: start address
1864 * @locked: whether the mmap_lock is still held
1866 * This takes care of mlocking the pages too if VM_LOCKED is set.
1868 * Return either number of pages pinned in the vma, or a negative error
1871 * vma->vm_mm->mmap_lock must be held.
1873 * If @locked is NULL, it may be held for read or write and will
1876 * If @locked is non-NULL, it must held for read only and may be
1877 * released. If it's released, *@locked will be set to 0.
1879 long populate_vma_page_range(struct vm_area_struct *vma,
1880 unsigned long start, unsigned long end, int *locked)
1882 struct mm_struct *mm = vma->vm_mm;
1883 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1884 int local_locked = 1;
1888 VM_BUG_ON(!PAGE_ALIGNED(start));
1889 VM_BUG_ON(!PAGE_ALIGNED(end));
1890 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1891 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1892 mmap_assert_locked(mm);
1895 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1896 * faultin_page() to break COW, so it has no work to do here.
1898 if (vma->vm_flags & VM_LOCKONFAULT)
1901 /* ... similarly, we've never faulted in PROT_NONE pages */
1902 if (!vma_is_accessible(vma))
1905 gup_flags = FOLL_TOUCH;
1907 * We want to touch writable mappings with a write fault in order
1908 * to break COW, except for shared mappings because these don't COW
1909 * and we would not want to dirty them for nothing.
1911 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1912 * readable (ie write-only or executable).
1914 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1915 gup_flags |= FOLL_WRITE;
1917 gup_flags |= FOLL_FORCE;
1920 gup_flags |= FOLL_UNLOCKABLE;
1923 * We made sure addr is within a VMA, so the following will
1924 * not result in a stack expansion that recurses back here.
1926 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1927 NULL, locked ? locked : &local_locked);
1933 * faultin_page_range() - populate (prefault) page tables inside the
1934 * given range readable/writable
1936 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1938 * @mm: the mm to populate page tables in
1939 * @start: start address
1941 * @write: whether to prefault readable or writable
1942 * @locked: whether the mmap_lock is still held
1944 * Returns either number of processed pages in the MM, or a negative error
1945 * code on error (see __get_user_pages()). Note that this function reports
1946 * errors related to VMAs, such as incompatible mappings, as expected by
1947 * MADV_POPULATE_(READ|WRITE).
1949 * The range must be page-aligned.
1951 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1953 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1954 unsigned long end, bool write, int *locked)
1956 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1960 VM_BUG_ON(!PAGE_ALIGNED(start));
1961 VM_BUG_ON(!PAGE_ALIGNED(end));
1962 mmap_assert_locked(mm);
1965 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1966 * the page dirty with FOLL_WRITE -- which doesn't make a
1967 * difference with !FOLL_FORCE, because the page is writable
1968 * in the page table.
1969 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1971 * !FOLL_FORCE: Require proper access permissions.
1973 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1976 gup_flags |= FOLL_WRITE;
1978 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1985 * __mm_populate - populate and/or mlock pages within a range of address space.
1987 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1988 * flags. VMAs must be already marked with the desired vm_flags, and
1989 * mmap_lock must not be held.
1991 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1993 struct mm_struct *mm = current->mm;
1994 unsigned long end, nstart, nend;
1995 struct vm_area_struct *vma = NULL;
2001 for (nstart = start; nstart < end; nstart = nend) {
2003 * We want to fault in pages for [nstart; end) address range.
2004 * Find first corresponding VMA.
2009 vma = find_vma_intersection(mm, nstart, end);
2010 } else if (nstart >= vma->vm_end)
2011 vma = find_vma_intersection(mm, vma->vm_end, end);
2016 * Set [nstart; nend) to intersection of desired address
2017 * range with the first VMA. Also, skip undesirable VMA types.
2019 nend = min(end, vma->vm_end);
2020 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2022 if (nstart < vma->vm_start)
2023 nstart = vma->vm_start;
2025 * Now fault in a range of pages. populate_vma_page_range()
2026 * double checks the vma flags, so that it won't mlock pages
2027 * if the vma was already munlocked.
2029 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2031 if (ignore_errors) {
2033 continue; /* continue at next VMA */
2037 nend = nstart + ret * PAGE_SIZE;
2041 mmap_read_unlock(mm);
2042 return ret; /* 0 or negative error code */
2044 #else /* CONFIG_MMU */
2045 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2046 unsigned long nr_pages, struct page **pages,
2047 int *locked, unsigned int foll_flags)
2049 struct vm_area_struct *vma;
2050 bool must_unlock = false;
2051 unsigned long vm_flags;
2058 * The internal caller expects GUP to manage the lock internally and the
2059 * lock must be released when this returns.
2062 if (mmap_read_lock_killable(mm))
2068 /* calculate required read or write permissions.
2069 * If FOLL_FORCE is set, we only require the "MAY" flags.
2071 vm_flags = (foll_flags & FOLL_WRITE) ?
2072 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2073 vm_flags &= (foll_flags & FOLL_FORCE) ?
2074 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2076 for (i = 0; i < nr_pages; i++) {
2077 vma = find_vma(mm, start);
2081 /* protect what we can, including chardevs */
2082 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2083 !(vm_flags & vma->vm_flags))
2087 pages[i] = virt_to_page((void *)start);
2092 start = (start + PAGE_SIZE) & PAGE_MASK;
2095 if (must_unlock && *locked) {
2096 mmap_read_unlock(mm);
2100 return i ? : -EFAULT;
2102 #endif /* !CONFIG_MMU */
2105 * fault_in_writeable - fault in userspace address range for writing
2106 * @uaddr: start of address range
2107 * @size: size of address range
2109 * Returns the number of bytes not faulted in (like copy_to_user() and
2110 * copy_from_user()).
2112 size_t fault_in_writeable(char __user *uaddr, size_t size)
2114 const unsigned long start = (unsigned long)uaddr;
2115 const unsigned long end = start + size;
2118 if (unlikely(size == 0))
2120 if (!user_write_access_begin(uaddr, size))
2123 /* Stop once we overflow to 0. */
2124 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2125 unsafe_put_user(0, (char __user *)cur, out);
2127 user_write_access_end();
2128 if (size > cur - start)
2129 return size - (cur - start);
2132 EXPORT_SYMBOL(fault_in_writeable);
2135 * fault_in_subpage_writeable - fault in an address range for writing
2136 * @uaddr: start of address range
2137 * @size: size of address range
2139 * Fault in a user address range for writing while checking for permissions at
2140 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2141 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2143 * Returns the number of bytes not faulted in (like copy_to_user() and
2144 * copy_from_user()).
2146 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2151 * Attempt faulting in at page granularity first for page table
2152 * permission checking. The arch-specific probe_subpage_writeable()
2153 * functions may not check for this.
2155 faulted_in = size - fault_in_writeable(uaddr, size);
2157 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2159 return size - faulted_in;
2161 EXPORT_SYMBOL(fault_in_subpage_writeable);
2164 * fault_in_safe_writeable - fault in an address range for writing
2165 * @uaddr: start of address range
2166 * @size: length of address range
2168 * Faults in an address range for writing. This is primarily useful when we
2169 * already know that some or all of the pages in the address range aren't in
2172 * Unlike fault_in_writeable(), this function is non-destructive.
2174 * Note that we don't pin or otherwise hold the pages referenced that we fault
2175 * in. There's no guarantee that they'll stay in memory for any duration of
2178 * Returns the number of bytes not faulted in, like copy_to_user() and
2181 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2183 const unsigned long start = (unsigned long)uaddr;
2184 const unsigned long end = start + size;
2186 struct mm_struct *mm = current->mm;
2187 bool unlocked = false;
2189 if (unlikely(size == 0))
2193 /* Stop once we overflow to 0. */
2194 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2195 if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked))
2197 mmap_read_unlock(mm);
2199 if (size > cur - start)
2200 return size - (cur - start);
2203 EXPORT_SYMBOL(fault_in_safe_writeable);
2206 * fault_in_readable - fault in userspace address range for reading
2207 * @uaddr: start of user address range
2208 * @size: size of user address range
2210 * Returns the number of bytes not faulted in (like copy_to_user() and
2211 * copy_from_user()).
2213 size_t fault_in_readable(const char __user *uaddr, size_t size)
2215 const unsigned long start = (unsigned long)uaddr;
2216 const unsigned long end = start + size;
2220 if (unlikely(size == 0))
2222 if (!user_read_access_begin(uaddr, size))
2225 /* Stop once we overflow to 0. */
2226 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE))
2227 unsafe_get_user(c, (const char __user *)cur, out);
2229 user_read_access_end();
2231 if (size > cur - start)
2232 return size - (cur - start);
2235 EXPORT_SYMBOL(fault_in_readable);
2238 * get_dump_page() - pin user page in memory while writing it to core dump
2239 * @addr: user address
2240 * @locked: a pointer to an int denoting whether the mmap sem is held
2242 * Returns struct page pointer of user page pinned for dump,
2243 * to be freed afterwards by put_page().
2245 * Returns NULL on any kind of failure - a hole must then be inserted into
2246 * the corefile, to preserve alignment with its headers; and also returns
2247 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2248 * allowing a hole to be left in the corefile to save disk space.
2250 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2252 #ifdef CONFIG_ELF_CORE
2253 struct page *get_dump_page(unsigned long addr, int *locked)
2258 ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked,
2259 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2260 return (ret == 1) ? page : NULL;
2262 #endif /* CONFIG_ELF_CORE */
2264 #ifdef CONFIG_MIGRATION
2267 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2268 * avoid this complication, by simply interpreting a list of folios as a list of
2269 * pages, that approach won't work in the longer term, because eventually the
2270 * layouts of struct page and struct folio will become completely different.
2271 * Furthermore, this pof approach avoids excessive page_folio() calls.
2273 struct pages_or_folios {
2275 struct page **pages;
2276 struct folio **folios;
2283 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2285 if (pofs->has_folios)
2286 return pofs->folios[i];
2287 return page_folio(pofs->pages[i]);
2290 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2292 pofs->entries[i] = NULL;
2295 static void pofs_unpin(struct pages_or_folios *pofs)
2297 if (pofs->has_folios)
2298 unpin_folios(pofs->folios, pofs->nr_entries);
2300 unpin_user_pages(pofs->pages, pofs->nr_entries);
2304 * Returns the number of collected folios. Return value is always >= 0.
2306 static unsigned long collect_longterm_unpinnable_folios(
2307 struct list_head *movable_folio_list,
2308 struct pages_or_folios *pofs)
2310 unsigned long i, collected = 0;
2311 struct folio *prev_folio = NULL;
2312 bool drain_allow = true;
2314 for (i = 0; i < pofs->nr_entries; i++) {
2315 struct folio *folio = pofs_get_folio(pofs, i);
2317 if (folio == prev_folio)
2321 if (folio_is_longterm_pinnable(folio))
2326 if (folio_is_device_coherent(folio))
2329 if (folio_test_hugetlb(folio)) {
2330 folio_isolate_hugetlb(folio, movable_folio_list);
2334 if (!folio_test_lru(folio) && drain_allow) {
2335 lru_add_drain_all();
2336 drain_allow = false;
2339 if (!folio_isolate_lru(folio))
2342 list_add_tail(&folio->lru, movable_folio_list);
2343 node_stat_mod_folio(folio,
2344 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2345 folio_nr_pages(folio));
2352 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2353 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2354 * failure (or partial success).
2357 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2358 struct pages_or_folios *pofs)
2363 for (i = 0; i < pofs->nr_entries; i++) {
2364 struct folio *folio = pofs_get_folio(pofs, i);
2366 if (folio_is_device_coherent(folio)) {
2368 * Migration will fail if the folio is pinned, so
2369 * convert the pin on the source folio to a normal
2372 pofs_clear_entry(pofs, i);
2374 gup_put_folio(folio, 1, FOLL_PIN);
2376 if (migrate_device_coherent_folio(folio)) {
2385 * We can't migrate folios with unexpected references, so drop
2386 * the reference obtained by __get_user_pages_locked().
2387 * Migrating folios have been added to movable_folio_list after
2388 * calling folio_isolate_lru() which takes a reference so the
2389 * folio won't be freed if it's migrating.
2392 pofs_clear_entry(pofs, i);
2395 if (!list_empty(movable_folio_list)) {
2396 struct migration_target_control mtc = {
2397 .nid = NUMA_NO_NODE,
2398 .gfp_mask = GFP_USER | __GFP_NOWARN,
2399 .reason = MR_LONGTERM_PIN,
2402 if (migrate_pages(movable_folio_list, alloc_migration_target,
2403 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2404 MR_LONGTERM_PIN, NULL)) {
2410 putback_movable_pages(movable_folio_list);
2416 putback_movable_pages(movable_folio_list);
2422 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2424 LIST_HEAD(movable_folio_list);
2425 unsigned long collected;
2427 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2432 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2436 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2437 * Rather confusingly, all folios in the range are required to be pinned via
2438 * FOLL_PIN, before calling this routine.
2442 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2443 * then this routine leaves all folios pinned and returns zero for success.
2445 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2446 * routine will migrate those folios away, unpin all the folios in the range. If
2447 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2448 * caller should re-pin the entire range with FOLL_PIN and then call this
2451 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2452 * indicates a migration failure. The caller should give up, and propagate the
2453 * error back up the call stack. The caller does not need to unpin any folios in
2454 * that case, because this routine will do the unpinning.
2456 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2457 struct folio **folios)
2459 struct pages_or_folios pofs = {
2462 .nr_entries = nr_folios,
2465 return check_and_migrate_movable_pages_or_folios(&pofs);
2469 * Return values and behavior are the same as those for
2470 * check_and_migrate_movable_folios().
2472 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2473 struct page **pages)
2475 struct pages_or_folios pofs = {
2477 .has_folios = false,
2478 .nr_entries = nr_pages,
2481 return check_and_migrate_movable_pages_or_folios(&pofs);
2484 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2485 struct page **pages)
2490 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2491 struct folio **folios)
2495 #endif /* CONFIG_MIGRATION */
2498 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2499 * allows us to process the FOLL_LONGTERM flag.
2501 static long __gup_longterm_locked(struct mm_struct *mm,
2502 unsigned long start,
2503 unsigned long nr_pages,
2504 struct page **pages,
2506 unsigned int gup_flags)
2509 long rc, nr_pinned_pages;
2511 if (!(gup_flags & FOLL_LONGTERM))
2512 return __get_user_pages_locked(mm, start, nr_pages, pages,
2515 flags = memalloc_pin_save();
2517 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2520 if (nr_pinned_pages <= 0) {
2521 rc = nr_pinned_pages;
2525 /* FOLL_LONGTERM implies FOLL_PIN */
2526 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2527 } while (rc == -EAGAIN);
2528 memalloc_pin_restore(flags);
2529 return rc ? rc : nr_pinned_pages;
2533 * Check that the given flags are valid for the exported gup/pup interface, and
2534 * update them with the required flags that the caller must have set.
2536 static bool is_valid_gup_args(struct page **pages, int *locked,
2537 unsigned int *gup_flags_p, unsigned int to_set)
2539 unsigned int gup_flags = *gup_flags_p;
2542 * These flags not allowed to be specified externally to the gup
2544 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2545 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2546 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2548 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2551 gup_flags |= to_set;
2553 /* At the external interface locked must be set */
2554 if (WARN_ON_ONCE(*locked != 1))
2557 gup_flags |= FOLL_UNLOCKABLE;
2560 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2561 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2562 (FOLL_PIN | FOLL_GET)))
2565 /* LONGTERM can only be specified when pinning */
2566 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2569 /* Pages input must be given if using GET/PIN */
2570 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2573 /* We want to allow the pgmap to be hot-unplugged at all times */
2574 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2575 (gup_flags & FOLL_PCI_P2PDMA)))
2578 *gup_flags_p = gup_flags;
2584 * get_user_pages_remote() - pin user pages in memory
2585 * @mm: mm_struct of target mm
2586 * @start: starting user address
2587 * @nr_pages: number of pages from start to pin
2588 * @gup_flags: flags modifying lookup behaviour
2589 * @pages: array that receives pointers to the pages pinned.
2590 * Should be at least nr_pages long. Or NULL, if caller
2591 * only intends to ensure the pages are faulted in.
2592 * @locked: pointer to lock flag indicating whether lock is held and
2593 * subsequently whether VM_FAULT_RETRY functionality can be
2594 * utilised. Lock must initially be held.
2596 * Returns either number of pages pinned (which may be less than the
2597 * number requested), or an error. Details about the return value:
2599 * -- If nr_pages is 0, returns 0.
2600 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2601 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2602 * pages pinned. Again, this may be less than nr_pages.
2604 * The caller is responsible for releasing returned @pages, via put_page().
2606 * Must be called with mmap_lock held for read or write.
2608 * get_user_pages_remote walks a process's page tables and takes a reference
2609 * to each struct page that each user address corresponds to at a given
2610 * instant. That is, it takes the page that would be accessed if a user
2611 * thread accesses the given user virtual address at that instant.
2613 * This does not guarantee that the page exists in the user mappings when
2614 * get_user_pages_remote returns, and there may even be a completely different
2615 * page there in some cases (eg. if mmapped pagecache has been invalidated
2616 * and subsequently re-faulted). However it does guarantee that the page
2617 * won't be freed completely. And mostly callers simply care that the page
2618 * contains data that was valid *at some point in time*. Typically, an IO
2619 * or similar operation cannot guarantee anything stronger anyway because
2620 * locks can't be held over the syscall boundary.
2622 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2623 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2624 * be called after the page is finished with, and before put_page is called.
2626 * get_user_pages_remote is typically used for fewer-copy IO operations,
2627 * to get a handle on the memory by some means other than accesses
2628 * via the user virtual addresses. The pages may be submitted for
2629 * DMA to devices or accessed via their kernel linear mapping (via the
2630 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2632 * See also get_user_pages_fast, for performance critical applications.
2634 * get_user_pages_remote should be phased out in favor of
2635 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2636 * should use get_user_pages_remote because it cannot pass
2637 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2639 long get_user_pages_remote(struct mm_struct *mm,
2640 unsigned long start, unsigned long nr_pages,
2641 unsigned int gup_flags, struct page **pages,
2644 int local_locked = 1;
2646 if (!is_valid_gup_args(pages, locked, &gup_flags,
2647 FOLL_TOUCH | FOLL_REMOTE))
2650 return __get_user_pages_locked(mm, start, nr_pages, pages,
2651 locked ? locked : &local_locked,
2654 EXPORT_SYMBOL(get_user_pages_remote);
2656 #else /* CONFIG_MMU */
2657 long get_user_pages_remote(struct mm_struct *mm,
2658 unsigned long start, unsigned long nr_pages,
2659 unsigned int gup_flags, struct page **pages,
2664 #endif /* !CONFIG_MMU */
2667 * get_user_pages() - pin user pages in memory
2668 * @start: starting user address
2669 * @nr_pages: number of pages from start to pin
2670 * @gup_flags: flags modifying lookup behaviour
2671 * @pages: array that receives pointers to the pages pinned.
2672 * Should be at least nr_pages long. Or NULL, if caller
2673 * only intends to ensure the pages are faulted in.
2675 * This is the same as get_user_pages_remote(), just with a less-flexible
2676 * calling convention where we assume that the mm being operated on belongs to
2677 * the current task, and doesn't allow passing of a locked parameter. We also
2678 * obviously don't pass FOLL_REMOTE in here.
2680 long get_user_pages(unsigned long start, unsigned long nr_pages,
2681 unsigned int gup_flags, struct page **pages)
2685 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2688 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2689 &locked, gup_flags);
2691 EXPORT_SYMBOL(get_user_pages);
2694 * get_user_pages_unlocked() is suitable to replace the form:
2696 * mmap_read_lock(mm);
2697 * get_user_pages(mm, ..., pages, NULL);
2698 * mmap_read_unlock(mm);
2702 * get_user_pages_unlocked(mm, ..., pages);
2704 * It is functionally equivalent to get_user_pages_fast so
2705 * get_user_pages_fast should be used instead if specific gup_flags
2706 * (e.g. FOLL_FORCE) are not required.
2708 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2709 struct page **pages, unsigned int gup_flags)
2713 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2714 FOLL_TOUCH | FOLL_UNLOCKABLE))
2717 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2718 &locked, gup_flags);
2720 EXPORT_SYMBOL(get_user_pages_unlocked);
2725 * get_user_pages_fast attempts to pin user pages by walking the page
2726 * tables directly and avoids taking locks. Thus the walker needs to be
2727 * protected from page table pages being freed from under it, and should
2728 * block any THP splits.
2730 * One way to achieve this is to have the walker disable interrupts, and
2731 * rely on IPIs from the TLB flushing code blocking before the page table
2732 * pages are freed. This is unsuitable for architectures that do not need
2733 * to broadcast an IPI when invalidating TLBs.
2735 * Another way to achieve this is to batch up page table containing pages
2736 * belonging to more than one mm_user, then rcu_sched a callback to free those
2737 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2738 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2739 * (which is a relatively rare event). The code below adopts this strategy.
2741 * Before activating this code, please be aware that the following assumptions
2742 * are currently made:
2744 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2745 * free pages containing page tables or TLB flushing requires IPI broadcast.
2747 * *) ptes can be read atomically by the architecture.
2749 * *) valid user addesses are below TASK_MAX_SIZE
2751 * The last two assumptions can be relaxed by the addition of helper functions.
2753 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2755 #ifdef CONFIG_HAVE_GUP_FAST
2757 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2760 * This call assumes the caller has pinned the folio, that the lowest page table
2761 * level still points to this folio, and that interrupts have been disabled.
2763 * GUP-fast must reject all secretmem folios.
2765 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2766 * (see comment describing the writable_file_mapping_allowed() function). We
2767 * therefore try to avoid the most egregious case of a long-term mapping doing
2770 * This function cannot be as thorough as that one as the VMA is not available
2771 * in the fast path, so instead we whitelist known good cases and if in doubt,
2772 * fall back to the slow path.
2774 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2776 bool reject_file_backed = false;
2777 struct address_space *mapping;
2778 bool check_secretmem = false;
2779 unsigned long mapping_flags;
2782 * If we aren't pinning then no problematic write can occur. A long term
2783 * pin is the most egregious case so this is the one we disallow.
2785 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2786 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2787 reject_file_backed = true;
2789 /* We hold a folio reference, so we can safely access folio fields. */
2791 /* secretmem folios are always order-0 folios. */
2792 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2793 check_secretmem = true;
2795 if (!reject_file_backed && !check_secretmem)
2798 if (WARN_ON_ONCE(folio_test_slab(folio)))
2801 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2802 if (folio_test_hugetlb(folio))
2806 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2807 * cannot proceed, which means no actions performed under RCU can
2810 * inodes and thus their mappings are freed under RCU, which means the
2811 * mapping cannot be freed beneath us and thus we can safely dereference
2814 lockdep_assert_irqs_disabled();
2817 * However, there may be operations which _alter_ the mapping, so ensure
2818 * we read it once and only once.
2820 mapping = READ_ONCE(folio->mapping);
2823 * The mapping may have been truncated, in any case we cannot determine
2824 * if this mapping is safe - fall back to slow path to determine how to
2830 /* Anonymous folios pose no problem. */
2831 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2833 return mapping_flags & PAGE_MAPPING_ANON;
2836 * At this point, we know the mapping is non-null and points to an
2837 * address_space object.
2839 if (check_secretmem && secretmem_mapping(mapping))
2841 /* The only remaining allowed file system is shmem. */
2842 return !reject_file_backed || shmem_mapping(mapping);
2845 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2846 unsigned int flags, struct page **pages)
2848 while ((*nr) - nr_start) {
2849 struct folio *folio = page_folio(pages[--(*nr)]);
2851 folio_clear_referenced(folio);
2852 gup_put_folio(folio, 1, flags);
2856 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2858 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2861 * To pin the page, GUP-fast needs to do below in order:
2862 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2864 * For the rest of pgtable operations where pgtable updates can be racy
2865 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2868 * Above will work for all pte-level operations, including THP split.
2870 * For THP collapse, it's a bit more complicated because GUP-fast may be
2871 * walking a pgtable page that is being freed (pte is still valid but pmd
2872 * can be cleared already). To avoid race in such condition, we need to
2873 * also check pmd here to make sure pmd doesn't change (corresponds to
2874 * pmdp_collapse_flush() in the THP collapse code path).
2876 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2877 unsigned long end, unsigned int flags, struct page **pages,
2880 struct dev_pagemap *pgmap = NULL;
2881 int nr_start = *nr, ret = 0;
2884 ptem = ptep = pte_offset_map(&pmd, addr);
2888 pte_t pte = ptep_get_lockless(ptep);
2890 struct folio *folio;
2893 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2894 * pte_access_permitted() better should reject these pages
2895 * either way: otherwise, GUP-fast might succeed in
2896 * cases where ordinary GUP would fail due to VMA access
2899 if (pte_protnone(pte))
2902 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2905 if (pte_devmap(pte)) {
2906 if (unlikely(flags & FOLL_LONGTERM))
2909 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2910 if (unlikely(!pgmap)) {
2911 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2914 } else if (pte_special(pte))
2917 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2918 page = pte_page(pte);
2920 folio = try_grab_folio_fast(page, 1, flags);
2924 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2925 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2926 gup_put_folio(folio, 1, flags);
2930 if (!gup_fast_folio_allowed(folio, flags)) {
2931 gup_put_folio(folio, 1, flags);
2935 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2936 gup_put_folio(folio, 1, flags);
2941 * We need to make the page accessible if and only if we are
2942 * going to access its content (the FOLL_PIN case). Please
2943 * see Documentation/core-api/pin_user_pages.rst for
2946 if (flags & FOLL_PIN) {
2947 ret = arch_make_folio_accessible(folio);
2949 gup_put_folio(folio, 1, flags);
2953 folio_set_referenced(folio);
2956 } while (ptep++, addr += PAGE_SIZE, addr != end);
2962 put_dev_pagemap(pgmap);
2969 * If we can't determine whether or not a pte is special, then fail immediately
2970 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2973 * For a futex to be placed on a THP tail page, get_futex_key requires a
2974 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2975 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2977 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2978 unsigned long end, unsigned int flags, struct page **pages,
2983 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2985 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2986 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2987 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2990 struct dev_pagemap *pgmap = NULL;
2993 struct folio *folio;
2994 struct page *page = pfn_to_page(pfn);
2996 pgmap = get_dev_pagemap(pfn, pgmap);
2997 if (unlikely(!pgmap)) {
2998 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3002 folio = try_grab_folio_fast(page, 1, flags);
3004 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3007 folio_set_referenced(folio);
3011 } while (addr += PAGE_SIZE, addr != end);
3013 put_dev_pagemap(pgmap);
3017 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3018 unsigned long end, unsigned int flags, struct page **pages,
3021 unsigned long fault_pfn;
3024 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3025 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3028 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3029 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3035 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3036 unsigned long end, unsigned int flags, struct page **pages,
3039 unsigned long fault_pfn;
3042 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3043 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3046 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3047 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3053 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3054 unsigned long end, unsigned int flags, struct page **pages,
3061 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3062 unsigned long end, unsigned int flags, struct page **pages,
3070 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3071 unsigned long end, unsigned int flags, struct page **pages,
3075 struct folio *folio;
3078 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3081 if (pmd_special(orig))
3084 if (pmd_devmap(orig)) {
3085 if (unlikely(flags & FOLL_LONGTERM))
3087 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3091 page = pmd_page(orig);
3092 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3094 folio = try_grab_folio_fast(page, refs, flags);
3098 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3099 gup_put_folio(folio, refs, flags);
3103 if (!gup_fast_folio_allowed(folio, flags)) {
3104 gup_put_folio(folio, refs, flags);
3107 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3108 gup_put_folio(folio, refs, flags);
3113 folio_set_referenced(folio);
3117 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3118 unsigned long end, unsigned int flags, struct page **pages,
3122 struct folio *folio;
3125 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3128 if (pud_special(orig))
3131 if (pud_devmap(orig)) {
3132 if (unlikely(flags & FOLL_LONGTERM))
3134 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3138 page = pud_page(orig);
3139 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3141 folio = try_grab_folio_fast(page, refs, flags);
3145 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3146 gup_put_folio(folio, refs, flags);
3150 if (!gup_fast_folio_allowed(folio, flags)) {
3151 gup_put_folio(folio, refs, flags);
3155 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3156 gup_put_folio(folio, refs, flags);
3161 folio_set_referenced(folio);
3165 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3166 unsigned long end, unsigned int flags, struct page **pages,
3172 pmdp = pmd_offset_lockless(pudp, pud, addr);
3174 pmd_t pmd = pmdp_get_lockless(pmdp);
3176 next = pmd_addr_end(addr, end);
3177 if (!pmd_present(pmd))
3180 if (unlikely(pmd_leaf(pmd))) {
3181 /* See gup_fast_pte_range() */
3182 if (pmd_protnone(pmd))
3185 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3189 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3192 } while (pmdp++, addr = next, addr != end);
3197 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3198 unsigned long end, unsigned int flags, struct page **pages,
3204 pudp = pud_offset_lockless(p4dp, p4d, addr);
3206 pud_t pud = READ_ONCE(*pudp);
3208 next = pud_addr_end(addr, end);
3209 if (unlikely(!pud_present(pud)))
3211 if (unlikely(pud_leaf(pud))) {
3212 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3215 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3218 } while (pudp++, addr = next, addr != end);
3223 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3224 unsigned long end, unsigned int flags, struct page **pages,
3230 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3232 p4d_t p4d = READ_ONCE(*p4dp);
3234 next = p4d_addr_end(addr, end);
3235 if (!p4d_present(p4d))
3237 BUILD_BUG_ON(p4d_leaf(p4d));
3238 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3241 } while (p4dp++, addr = next, addr != end);
3246 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3247 unsigned int flags, struct page **pages, int *nr)
3252 pgdp = pgd_offset(current->mm, addr);
3254 pgd_t pgd = READ_ONCE(*pgdp);
3256 next = pgd_addr_end(addr, end);
3259 BUILD_BUG_ON(pgd_leaf(pgd));
3260 if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3263 } while (pgdp++, addr = next, addr != end);
3266 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3267 unsigned int flags, struct page **pages, int *nr)
3270 #endif /* CONFIG_HAVE_GUP_FAST */
3272 #ifndef gup_fast_permitted
3274 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3275 * we need to fall back to the slow version:
3277 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3283 static unsigned long gup_fast(unsigned long start, unsigned long end,
3284 unsigned int gup_flags, struct page **pages)
3286 unsigned long flags;
3290 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3291 !gup_fast_permitted(start, end))
3294 if (gup_flags & FOLL_PIN) {
3295 if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq))
3300 * Disable interrupts. The nested form is used, in order to allow full,
3301 * general purpose use of this routine.
3303 * With interrupts disabled, we block page table pages from being freed
3304 * from under us. See struct mmu_table_batch comments in
3305 * include/asm-generic/tlb.h for more details.
3307 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3308 * that come from callers of tlb_remove_table_sync_one().
3310 local_irq_save(flags);
3311 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3312 local_irq_restore(flags);
3315 * When pinning pages for DMA there could be a concurrent write protect
3316 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3318 if (gup_flags & FOLL_PIN) {
3319 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3320 gup_fast_unpin_user_pages(pages, nr_pinned);
3323 sanity_check_pinned_pages(pages, nr_pinned);
3329 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3330 unsigned int gup_flags, struct page **pages)
3332 unsigned long len, end;
3333 unsigned long nr_pinned;
3337 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3338 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3339 FOLL_FAST_ONLY | FOLL_NOFAULT |
3340 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3343 if (gup_flags & FOLL_PIN)
3344 mm_set_has_pinned_flag(¤t->mm->flags);
3346 if (!(gup_flags & FOLL_FAST_ONLY))
3347 might_lock_read(¤t->mm->mmap_lock);
3349 start = untagged_addr(start) & PAGE_MASK;
3350 len = nr_pages << PAGE_SHIFT;
3351 if (check_add_overflow(start, len, &end))
3353 if (end > TASK_SIZE_MAX)
3356 nr_pinned = gup_fast(start, end, gup_flags, pages);
3357 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3360 /* Slow path: try to get the remaining pages with get_user_pages */
3361 start += nr_pinned << PAGE_SHIFT;
3363 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3365 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3368 * The caller has to unpin the pages we already pinned so
3369 * returning -errno is not an option
3375 return ret + nr_pinned;
3379 * get_user_pages_fast_only() - pin user pages in memory
3380 * @start: starting user address
3381 * @nr_pages: number of pages from start to pin
3382 * @gup_flags: flags modifying pin behaviour
3383 * @pages: array that receives pointers to the pages pinned.
3384 * Should be at least nr_pages long.
3386 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3389 * If the architecture does not support this function, simply return with no
3392 * Careful, careful! COW breaking can go either way, so a non-write
3393 * access can get ambiguous page results. If you call this function without
3394 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3396 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3397 unsigned int gup_flags, struct page **pages)
3400 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3401 * because gup fast is always a "pin with a +1 page refcount" request.
3403 * FOLL_FAST_ONLY is required in order to match the API description of
3404 * this routine: no fall back to regular ("slow") GUP.
3406 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3407 FOLL_GET | FOLL_FAST_ONLY))
3410 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3412 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3415 * get_user_pages_fast() - pin user pages in memory
3416 * @start: starting user address
3417 * @nr_pages: number of pages from start to pin
3418 * @gup_flags: flags modifying pin behaviour
3419 * @pages: array that receives pointers to the pages pinned.
3420 * Should be at least nr_pages long.
3422 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3423 * If not successful, it will fall back to taking the lock and
3424 * calling get_user_pages().
3426 * Returns number of pages pinned. This may be fewer than the number requested.
3427 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3430 int get_user_pages_fast(unsigned long start, int nr_pages,
3431 unsigned int gup_flags, struct page **pages)
3434 * The caller may or may not have explicitly set FOLL_GET; either way is
3435 * OK. However, internally (within mm/gup.c), gup fast variants must set
3436 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3439 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3441 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3443 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3446 * pin_user_pages_fast() - pin user pages in memory without taking locks
3448 * @start: starting user address
3449 * @nr_pages: number of pages from start to pin
3450 * @gup_flags: flags modifying pin behaviour
3451 * @pages: array that receives pointers to the pages pinned.
3452 * Should be at least nr_pages long.
3454 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3455 * get_user_pages_fast() for documentation on the function arguments, because
3456 * the arguments here are identical.
3458 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3459 * see Documentation/core-api/pin_user_pages.rst for further details.
3461 * Note that if a zero_page is amongst the returned pages, it will not have
3462 * pins in it and unpin_user_page() will not remove pins from it.
3464 int pin_user_pages_fast(unsigned long start, int nr_pages,
3465 unsigned int gup_flags, struct page **pages)
3467 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3469 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3471 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3474 * pin_user_pages_remote() - pin pages of a remote process
3476 * @mm: mm_struct of target mm
3477 * @start: starting user address
3478 * @nr_pages: number of pages from start to pin
3479 * @gup_flags: flags modifying lookup behaviour
3480 * @pages: array that receives pointers to the pages pinned.
3481 * Should be at least nr_pages long.
3482 * @locked: pointer to lock flag indicating whether lock is held and
3483 * subsequently whether VM_FAULT_RETRY functionality can be
3484 * utilised. Lock must initially be held.
3486 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3487 * get_user_pages_remote() for documentation on the function arguments, because
3488 * the arguments here are identical.
3490 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3491 * see Documentation/core-api/pin_user_pages.rst for details.
3493 * Note that if a zero_page is amongst the returned pages, it will not have
3494 * pins in it and unpin_user_page*() will not remove pins from it.
3496 long pin_user_pages_remote(struct mm_struct *mm,
3497 unsigned long start, unsigned long nr_pages,
3498 unsigned int gup_flags, struct page **pages,
3501 int local_locked = 1;
3503 if (!is_valid_gup_args(pages, locked, &gup_flags,
3504 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3506 return __gup_longterm_locked(mm, start, nr_pages, pages,
3507 locked ? locked : &local_locked,
3510 EXPORT_SYMBOL(pin_user_pages_remote);
3513 * pin_user_pages() - pin user pages in memory for use by other devices
3515 * @start: starting user address
3516 * @nr_pages: number of pages from start to pin
3517 * @gup_flags: flags modifying lookup behaviour
3518 * @pages: array that receives pointers to the pages pinned.
3519 * Should be at least nr_pages long.
3521 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3524 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3525 * see Documentation/core-api/pin_user_pages.rst for details.
3527 * Note that if a zero_page is amongst the returned pages, it will not have
3528 * pins in it and unpin_user_page*() will not remove pins from it.
3530 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3531 unsigned int gup_flags, struct page **pages)
3535 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3537 return __gup_longterm_locked(current->mm, start, nr_pages,
3538 pages, &locked, gup_flags);
3540 EXPORT_SYMBOL(pin_user_pages);
3543 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3544 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3545 * FOLL_PIN and rejects FOLL_GET.
3547 * Note that if a zero_page is amongst the returned pages, it will not have
3548 * pins in it and unpin_user_page*() will not remove pins from it.
3550 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3551 struct page **pages, unsigned int gup_flags)
3555 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3556 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3559 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3560 &locked, gup_flags);
3562 EXPORT_SYMBOL(pin_user_pages_unlocked);
3565 * memfd_pin_folios() - pin folios associated with a memfd
3566 * @memfd: the memfd whose folios are to be pinned
3567 * @start: the first memfd offset
3568 * @end: the last memfd offset (inclusive)
3569 * @folios: array that receives pointers to the folios pinned
3570 * @max_folios: maximum number of entries in @folios
3571 * @offset: the offset into the first folio
3573 * Attempt to pin folios associated with a memfd in the contiguous range
3574 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3575 * the folios can either be found in the page cache or need to be allocated
3576 * if necessary. Once the folios are located, they are all pinned via
3577 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3578 * And, eventually, these pinned folios must be released either using
3579 * unpin_folios() or unpin_folio().
3581 * It must be noted that the folios may be pinned for an indefinite amount
3582 * of time. And, in most cases, the duration of time they may stay pinned
3583 * would be controlled by the userspace. This behavior is effectively the
3584 * same as using FOLL_LONGTERM with other GUP APIs.
3586 * Returns number of folios pinned, which could be less than @max_folios
3587 * as it depends on the folio sizes that cover the range [start, end].
3588 * If no folios were pinned, it returns -errno.
3590 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3591 struct folio **folios, unsigned int max_folios,
3594 unsigned int flags, nr_folios, nr_found;
3595 unsigned int i, pgshift = PAGE_SHIFT;
3596 pgoff_t start_idx, end_idx;
3597 struct folio *folio = NULL;
3598 struct folio_batch fbatch;
3602 if (start < 0 || start > end || !max_folios)
3608 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3611 if (end >= i_size_read(file_inode(memfd)))
3614 if (is_file_hugepages(memfd)) {
3615 h = hstate_file(memfd);
3616 pgshift = huge_page_shift(h);
3619 flags = memalloc_pin_save();
3622 start_idx = start >> pgshift;
3623 end_idx = end >> pgshift;
3624 if (is_file_hugepages(memfd)) {
3625 start_idx <<= huge_page_order(h);
3626 end_idx <<= huge_page_order(h);
3629 folio_batch_init(&fbatch);
3630 while (start_idx <= end_idx && nr_folios < max_folios) {
3632 * In most cases, we should be able to find the folios
3633 * in the page cache. If we cannot find them for some
3634 * reason, we try to allocate them and add them to the
3637 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3646 for (i = 0; i < nr_found; i++) {
3647 folio = fbatch.folios[i];
3649 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3650 folio_batch_release(&fbatch);
3656 *offset = offset_in_folio(folio, start);
3658 folios[nr_folios] = folio;
3659 if (++nr_folios == max_folios)
3664 folio_batch_release(&fbatch);
3666 folio = memfd_alloc_folio(memfd, start_idx);
3667 if (IS_ERR(folio)) {
3668 ret = PTR_ERR(folio);
3676 ret = check_and_migrate_movable_folios(nr_folios, folios);
3677 } while (ret == -EAGAIN);
3679 memalloc_pin_restore(flags);
3680 return ret ? ret : nr_folios;
3682 memalloc_pin_restore(flags);
3683 unpin_folios(folios, nr_folios);
3687 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3690 * folio_add_pins() - add pins to an already-pinned folio
3691 * @folio: the folio to add more pins to
3692 * @pins: number of pins to add
3694 * Try to add more pins to an already-pinned folio. The semantics
3695 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3698 * This function is helpful when having obtained a pin on a large folio
3699 * using memfd_pin_folios(), but wanting to logically unpin parts
3700 * (e.g., individual pages) of the folio later, for example, using
3701 * unpin_user_page_range_dirty_lock().
3703 * This is not the right interface to initially pin a folio.
3705 int folio_add_pins(struct folio *folio, unsigned int pins)
3707 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio));
3709 return try_grab_folio(folio, pins, FOLL_PIN);
3711 EXPORT_SYMBOL_GPL(folio_add_pins);