page cache: Convert page deletion to XArray
[linux-2.6-block.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->i_pages lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->i_pages lock        (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->i_pages lock            (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->i_pages lock            (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->i_pages lock            (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static void page_cache_delete(struct address_space *mapping,
115                                    struct page *page, void *shadow)
116 {
117         XA_STATE(xas, &mapping->i_pages, page->index);
118         unsigned int nr = 1;
119
120         mapping_set_update(&xas, mapping);
121
122         /* hugetlb pages are represented by a single entry in the xarray */
123         if (!PageHuge(page)) {
124                 xas_set_order(&xas, page->index, compound_order(page));
125                 nr = 1U << compound_order(page);
126         }
127
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE(PageTail(page), page);
130         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
131
132         xas_store(&xas, shadow);
133         xas_init_marks(&xas);
134
135         page->mapping = NULL;
136         /* Leave page->index set: truncation lookup relies upon it */
137
138         if (shadow) {
139                 mapping->nrexceptional += nr;
140                 /*
141                  * Make sure the nrexceptional update is committed before
142                  * the nrpages update so that final truncate racing
143                  * with reclaim does not see both counters 0 at the
144                  * same time and miss a shadow entry.
145                  */
146                 smp_wmb();
147         }
148         mapping->nrpages -= nr;
149 }
150
151 static void unaccount_page_cache_page(struct address_space *mapping,
152                                       struct page *page)
153 {
154         int nr;
155
156         /*
157          * if we're uptodate, flush out into the cleancache, otherwise
158          * invalidate any existing cleancache entries.  We can't leave
159          * stale data around in the cleancache once our page is gone
160          */
161         if (PageUptodate(page) && PageMappedToDisk(page))
162                 cleancache_put_page(page);
163         else
164                 cleancache_invalidate_page(mapping, page);
165
166         VM_BUG_ON_PAGE(PageTail(page), page);
167         VM_BUG_ON_PAGE(page_mapped(page), page);
168         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
169                 int mapcount;
170
171                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
172                          current->comm, page_to_pfn(page));
173                 dump_page(page, "still mapped when deleted");
174                 dump_stack();
175                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
176
177                 mapcount = page_mapcount(page);
178                 if (mapping_exiting(mapping) &&
179                     page_count(page) >= mapcount + 2) {
180                         /*
181                          * All vmas have already been torn down, so it's
182                          * a good bet that actually the page is unmapped,
183                          * and we'd prefer not to leak it: if we're wrong,
184                          * some other bad page check should catch it later.
185                          */
186                         page_mapcount_reset(page);
187                         page_ref_sub(page, mapcount);
188                 }
189         }
190
191         /* hugetlb pages do not participate in page cache accounting. */
192         if (PageHuge(page))
193                 return;
194
195         nr = hpage_nr_pages(page);
196
197         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
198         if (PageSwapBacked(page)) {
199                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
200                 if (PageTransHuge(page))
201                         __dec_node_page_state(page, NR_SHMEM_THPS);
202         } else {
203                 VM_BUG_ON_PAGE(PageTransHuge(page), page);
204         }
205
206         /*
207          * At this point page must be either written or cleaned by
208          * truncate.  Dirty page here signals a bug and loss of
209          * unwritten data.
210          *
211          * This fixes dirty accounting after removing the page entirely
212          * but leaves PageDirty set: it has no effect for truncated
213          * page and anyway will be cleared before returning page into
214          * buddy allocator.
215          */
216         if (WARN_ON_ONCE(PageDirty(page)))
217                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
218 }
219
220 /*
221  * Delete a page from the page cache and free it. Caller has to make
222  * sure the page is locked and that nobody else uses it - or that usage
223  * is safe.  The caller must hold the i_pages lock.
224  */
225 void __delete_from_page_cache(struct page *page, void *shadow)
226 {
227         struct address_space *mapping = page->mapping;
228
229         trace_mm_filemap_delete_from_page_cache(page);
230
231         unaccount_page_cache_page(mapping, page);
232         page_cache_delete(mapping, page, shadow);
233 }
234
235 static void page_cache_free_page(struct address_space *mapping,
236                                 struct page *page)
237 {
238         void (*freepage)(struct page *);
239
240         freepage = mapping->a_ops->freepage;
241         if (freepage)
242                 freepage(page);
243
244         if (PageTransHuge(page) && !PageHuge(page)) {
245                 page_ref_sub(page, HPAGE_PMD_NR);
246                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
247         } else {
248                 put_page(page);
249         }
250 }
251
252 /**
253  * delete_from_page_cache - delete page from page cache
254  * @page: the page which the kernel is trying to remove from page cache
255  *
256  * This must be called only on pages that have been verified to be in the page
257  * cache and locked.  It will never put the page into the free list, the caller
258  * has a reference on the page.
259  */
260 void delete_from_page_cache(struct page *page)
261 {
262         struct address_space *mapping = page_mapping(page);
263         unsigned long flags;
264
265         BUG_ON(!PageLocked(page));
266         xa_lock_irqsave(&mapping->i_pages, flags);
267         __delete_from_page_cache(page, NULL);
268         xa_unlock_irqrestore(&mapping->i_pages, flags);
269
270         page_cache_free_page(mapping, page);
271 }
272 EXPORT_SYMBOL(delete_from_page_cache);
273
274 /*
275  * page_cache_tree_delete_batch - delete several pages from page cache
276  * @mapping: the mapping to which pages belong
277  * @pvec: pagevec with pages to delete
278  *
279  * The function walks over mapping->i_pages and removes pages passed in @pvec
280  * from the mapping. The function expects @pvec to be sorted by page index.
281  * It tolerates holes in @pvec (mapping entries at those indices are not
282  * modified). The function expects only THP head pages to be present in the
283  * @pvec and takes care to delete all corresponding tail pages from the
284  * mapping as well.
285  *
286  * The function expects the i_pages lock to be held.
287  */
288 static void
289 page_cache_tree_delete_batch(struct address_space *mapping,
290                              struct pagevec *pvec)
291 {
292         struct radix_tree_iter iter;
293         void **slot;
294         int total_pages = 0;
295         int i = 0, tail_pages = 0;
296         struct page *page;
297         pgoff_t start;
298
299         start = pvec->pages[0]->index;
300         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
301                 if (i >= pagevec_count(pvec) && !tail_pages)
302                         break;
303                 page = radix_tree_deref_slot_protected(slot,
304                                                        &mapping->i_pages.xa_lock);
305                 if (xa_is_value(page))
306                         continue;
307                 if (!tail_pages) {
308                         /*
309                          * Some page got inserted in our range? Skip it. We
310                          * have our pages locked so they are protected from
311                          * being removed.
312                          */
313                         if (page != pvec->pages[i])
314                                 continue;
315                         WARN_ON_ONCE(!PageLocked(page));
316                         if (PageTransHuge(page) && !PageHuge(page))
317                                 tail_pages = HPAGE_PMD_NR - 1;
318                         page->mapping = NULL;
319                         /*
320                          * Leave page->index set: truncation lookup relies
321                          * upon it
322                          */
323                         i++;
324                 } else {
325                         tail_pages--;
326                 }
327                 radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
328                 __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
329                                 workingset_lookup_update(mapping));
330                 total_pages++;
331         }
332         mapping->nrpages -= total_pages;
333 }
334
335 void delete_from_page_cache_batch(struct address_space *mapping,
336                                   struct pagevec *pvec)
337 {
338         int i;
339         unsigned long flags;
340
341         if (!pagevec_count(pvec))
342                 return;
343
344         xa_lock_irqsave(&mapping->i_pages, flags);
345         for (i = 0; i < pagevec_count(pvec); i++) {
346                 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
347
348                 unaccount_page_cache_page(mapping, pvec->pages[i]);
349         }
350         page_cache_tree_delete_batch(mapping, pvec);
351         xa_unlock_irqrestore(&mapping->i_pages, flags);
352
353         for (i = 0; i < pagevec_count(pvec); i++)
354                 page_cache_free_page(mapping, pvec->pages[i]);
355 }
356
357 int filemap_check_errors(struct address_space *mapping)
358 {
359         int ret = 0;
360         /* Check for outstanding write errors */
361         if (test_bit(AS_ENOSPC, &mapping->flags) &&
362             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
363                 ret = -ENOSPC;
364         if (test_bit(AS_EIO, &mapping->flags) &&
365             test_and_clear_bit(AS_EIO, &mapping->flags))
366                 ret = -EIO;
367         return ret;
368 }
369 EXPORT_SYMBOL(filemap_check_errors);
370
371 static int filemap_check_and_keep_errors(struct address_space *mapping)
372 {
373         /* Check for outstanding write errors */
374         if (test_bit(AS_EIO, &mapping->flags))
375                 return -EIO;
376         if (test_bit(AS_ENOSPC, &mapping->flags))
377                 return -ENOSPC;
378         return 0;
379 }
380
381 /**
382  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
383  * @mapping:    address space structure to write
384  * @start:      offset in bytes where the range starts
385  * @end:        offset in bytes where the range ends (inclusive)
386  * @sync_mode:  enable synchronous operation
387  *
388  * Start writeback against all of a mapping's dirty pages that lie
389  * within the byte offsets <start, end> inclusive.
390  *
391  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
392  * opposed to a regular memory cleansing writeback.  The difference between
393  * these two operations is that if a dirty page/buffer is encountered, it must
394  * be waited upon, and not just skipped over.
395  */
396 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
397                                 loff_t end, int sync_mode)
398 {
399         int ret;
400         struct writeback_control wbc = {
401                 .sync_mode = sync_mode,
402                 .nr_to_write = LONG_MAX,
403                 .range_start = start,
404                 .range_end = end,
405         };
406
407         if (!mapping_cap_writeback_dirty(mapping))
408                 return 0;
409
410         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
411         ret = do_writepages(mapping, &wbc);
412         wbc_detach_inode(&wbc);
413         return ret;
414 }
415
416 static inline int __filemap_fdatawrite(struct address_space *mapping,
417         int sync_mode)
418 {
419         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
420 }
421
422 int filemap_fdatawrite(struct address_space *mapping)
423 {
424         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
425 }
426 EXPORT_SYMBOL(filemap_fdatawrite);
427
428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
429                                 loff_t end)
430 {
431         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
432 }
433 EXPORT_SYMBOL(filemap_fdatawrite_range);
434
435 /**
436  * filemap_flush - mostly a non-blocking flush
437  * @mapping:    target address_space
438  *
439  * This is a mostly non-blocking flush.  Not suitable for data-integrity
440  * purposes - I/O may not be started against all dirty pages.
441  */
442 int filemap_flush(struct address_space *mapping)
443 {
444         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
445 }
446 EXPORT_SYMBOL(filemap_flush);
447
448 /**
449  * filemap_range_has_page - check if a page exists in range.
450  * @mapping:           address space within which to check
451  * @start_byte:        offset in bytes where the range starts
452  * @end_byte:          offset in bytes where the range ends (inclusive)
453  *
454  * Find at least one page in the range supplied, usually used to check if
455  * direct writing in this range will trigger a writeback.
456  */
457 bool filemap_range_has_page(struct address_space *mapping,
458                            loff_t start_byte, loff_t end_byte)
459 {
460         pgoff_t index = start_byte >> PAGE_SHIFT;
461         pgoff_t end = end_byte >> PAGE_SHIFT;
462         struct page *page;
463
464         if (end_byte < start_byte)
465                 return false;
466
467         if (mapping->nrpages == 0)
468                 return false;
469
470         if (!find_get_pages_range(mapping, &index, end, 1, &page))
471                 return false;
472         put_page(page);
473         return true;
474 }
475 EXPORT_SYMBOL(filemap_range_has_page);
476
477 static void __filemap_fdatawait_range(struct address_space *mapping,
478                                      loff_t start_byte, loff_t end_byte)
479 {
480         pgoff_t index = start_byte >> PAGE_SHIFT;
481         pgoff_t end = end_byte >> PAGE_SHIFT;
482         struct pagevec pvec;
483         int nr_pages;
484
485         if (end_byte < start_byte)
486                 return;
487
488         pagevec_init(&pvec);
489         while (index <= end) {
490                 unsigned i;
491
492                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
493                                 end, PAGECACHE_TAG_WRITEBACK);
494                 if (!nr_pages)
495                         break;
496
497                 for (i = 0; i < nr_pages; i++) {
498                         struct page *page = pvec.pages[i];
499
500                         wait_on_page_writeback(page);
501                         ClearPageError(page);
502                 }
503                 pagevec_release(&pvec);
504                 cond_resched();
505         }
506 }
507
508 /**
509  * filemap_fdatawait_range - wait for writeback to complete
510  * @mapping:            address space structure to wait for
511  * @start_byte:         offset in bytes where the range starts
512  * @end_byte:           offset in bytes where the range ends (inclusive)
513  *
514  * Walk the list of under-writeback pages of the given address space
515  * in the given range and wait for all of them.  Check error status of
516  * the address space and return it.
517  *
518  * Since the error status of the address space is cleared by this function,
519  * callers are responsible for checking the return value and handling and/or
520  * reporting the error.
521  */
522 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
523                             loff_t end_byte)
524 {
525         __filemap_fdatawait_range(mapping, start_byte, end_byte);
526         return filemap_check_errors(mapping);
527 }
528 EXPORT_SYMBOL(filemap_fdatawait_range);
529
530 /**
531  * file_fdatawait_range - wait for writeback to complete
532  * @file:               file pointing to address space structure to wait for
533  * @start_byte:         offset in bytes where the range starts
534  * @end_byte:           offset in bytes where the range ends (inclusive)
535  *
536  * Walk the list of under-writeback pages of the address space that file
537  * refers to, in the given range and wait for all of them.  Check error
538  * status of the address space vs. the file->f_wb_err cursor and return it.
539  *
540  * Since the error status of the file is advanced by this function,
541  * callers are responsible for checking the return value and handling and/or
542  * reporting the error.
543  */
544 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
545 {
546         struct address_space *mapping = file->f_mapping;
547
548         __filemap_fdatawait_range(mapping, start_byte, end_byte);
549         return file_check_and_advance_wb_err(file);
550 }
551 EXPORT_SYMBOL(file_fdatawait_range);
552
553 /**
554  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
555  * @mapping: address space structure to wait for
556  *
557  * Walk the list of under-writeback pages of the given address space
558  * and wait for all of them.  Unlike filemap_fdatawait(), this function
559  * does not clear error status of the address space.
560  *
561  * Use this function if callers don't handle errors themselves.  Expected
562  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
563  * fsfreeze(8)
564  */
565 int filemap_fdatawait_keep_errors(struct address_space *mapping)
566 {
567         __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
568         return filemap_check_and_keep_errors(mapping);
569 }
570 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
571
572 static bool mapping_needs_writeback(struct address_space *mapping)
573 {
574         return (!dax_mapping(mapping) && mapping->nrpages) ||
575             (dax_mapping(mapping) && mapping->nrexceptional);
576 }
577
578 int filemap_write_and_wait(struct address_space *mapping)
579 {
580         int err = 0;
581
582         if (mapping_needs_writeback(mapping)) {
583                 err = filemap_fdatawrite(mapping);
584                 /*
585                  * Even if the above returned error, the pages may be
586                  * written partially (e.g. -ENOSPC), so we wait for it.
587                  * But the -EIO is special case, it may indicate the worst
588                  * thing (e.g. bug) happened, so we avoid waiting for it.
589                  */
590                 if (err != -EIO) {
591                         int err2 = filemap_fdatawait(mapping);
592                         if (!err)
593                                 err = err2;
594                 } else {
595                         /* Clear any previously stored errors */
596                         filemap_check_errors(mapping);
597                 }
598         } else {
599                 err = filemap_check_errors(mapping);
600         }
601         return err;
602 }
603 EXPORT_SYMBOL(filemap_write_and_wait);
604
605 /**
606  * filemap_write_and_wait_range - write out & wait on a file range
607  * @mapping:    the address_space for the pages
608  * @lstart:     offset in bytes where the range starts
609  * @lend:       offset in bytes where the range ends (inclusive)
610  *
611  * Write out and wait upon file offsets lstart->lend, inclusive.
612  *
613  * Note that @lend is inclusive (describes the last byte to be written) so
614  * that this function can be used to write to the very end-of-file (end = -1).
615  */
616 int filemap_write_and_wait_range(struct address_space *mapping,
617                                  loff_t lstart, loff_t lend)
618 {
619         int err = 0;
620
621         if (mapping_needs_writeback(mapping)) {
622                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
623                                                  WB_SYNC_ALL);
624                 /* See comment of filemap_write_and_wait() */
625                 if (err != -EIO) {
626                         int err2 = filemap_fdatawait_range(mapping,
627                                                 lstart, lend);
628                         if (!err)
629                                 err = err2;
630                 } else {
631                         /* Clear any previously stored errors */
632                         filemap_check_errors(mapping);
633                 }
634         } else {
635                 err = filemap_check_errors(mapping);
636         }
637         return err;
638 }
639 EXPORT_SYMBOL(filemap_write_and_wait_range);
640
641 void __filemap_set_wb_err(struct address_space *mapping, int err)
642 {
643         errseq_t eseq = errseq_set(&mapping->wb_err, err);
644
645         trace_filemap_set_wb_err(mapping, eseq);
646 }
647 EXPORT_SYMBOL(__filemap_set_wb_err);
648
649 /**
650  * file_check_and_advance_wb_err - report wb error (if any) that was previously
651  *                                 and advance wb_err to current one
652  * @file: struct file on which the error is being reported
653  *
654  * When userland calls fsync (or something like nfsd does the equivalent), we
655  * want to report any writeback errors that occurred since the last fsync (or
656  * since the file was opened if there haven't been any).
657  *
658  * Grab the wb_err from the mapping. If it matches what we have in the file,
659  * then just quickly return 0. The file is all caught up.
660  *
661  * If it doesn't match, then take the mapping value, set the "seen" flag in
662  * it and try to swap it into place. If it works, or another task beat us
663  * to it with the new value, then update the f_wb_err and return the error
664  * portion. The error at this point must be reported via proper channels
665  * (a'la fsync, or NFS COMMIT operation, etc.).
666  *
667  * While we handle mapping->wb_err with atomic operations, the f_wb_err
668  * value is protected by the f_lock since we must ensure that it reflects
669  * the latest value swapped in for this file descriptor.
670  */
671 int file_check_and_advance_wb_err(struct file *file)
672 {
673         int err = 0;
674         errseq_t old = READ_ONCE(file->f_wb_err);
675         struct address_space *mapping = file->f_mapping;
676
677         /* Locklessly handle the common case where nothing has changed */
678         if (errseq_check(&mapping->wb_err, old)) {
679                 /* Something changed, must use slow path */
680                 spin_lock(&file->f_lock);
681                 old = file->f_wb_err;
682                 err = errseq_check_and_advance(&mapping->wb_err,
683                                                 &file->f_wb_err);
684                 trace_file_check_and_advance_wb_err(file, old);
685                 spin_unlock(&file->f_lock);
686         }
687
688         /*
689          * We're mostly using this function as a drop in replacement for
690          * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
691          * that the legacy code would have had on these flags.
692          */
693         clear_bit(AS_EIO, &mapping->flags);
694         clear_bit(AS_ENOSPC, &mapping->flags);
695         return err;
696 }
697 EXPORT_SYMBOL(file_check_and_advance_wb_err);
698
699 /**
700  * file_write_and_wait_range - write out & wait on a file range
701  * @file:       file pointing to address_space with pages
702  * @lstart:     offset in bytes where the range starts
703  * @lend:       offset in bytes where the range ends (inclusive)
704  *
705  * Write out and wait upon file offsets lstart->lend, inclusive.
706  *
707  * Note that @lend is inclusive (describes the last byte to be written) so
708  * that this function can be used to write to the very end-of-file (end = -1).
709  *
710  * After writing out and waiting on the data, we check and advance the
711  * f_wb_err cursor to the latest value, and return any errors detected there.
712  */
713 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
714 {
715         int err = 0, err2;
716         struct address_space *mapping = file->f_mapping;
717
718         if (mapping_needs_writeback(mapping)) {
719                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
720                                                  WB_SYNC_ALL);
721                 /* See comment of filemap_write_and_wait() */
722                 if (err != -EIO)
723                         __filemap_fdatawait_range(mapping, lstart, lend);
724         }
725         err2 = file_check_and_advance_wb_err(file);
726         if (!err)
727                 err = err2;
728         return err;
729 }
730 EXPORT_SYMBOL(file_write_and_wait_range);
731
732 /**
733  * replace_page_cache_page - replace a pagecache page with a new one
734  * @old:        page to be replaced
735  * @new:        page to replace with
736  * @gfp_mask:   allocation mode
737  *
738  * This function replaces a page in the pagecache with a new one.  On
739  * success it acquires the pagecache reference for the new page and
740  * drops it for the old page.  Both the old and new pages must be
741  * locked.  This function does not add the new page to the LRU, the
742  * caller must do that.
743  *
744  * The remove + add is atomic.  This function cannot fail.
745  */
746 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
747 {
748         struct address_space *mapping = old->mapping;
749         void (*freepage)(struct page *) = mapping->a_ops->freepage;
750         pgoff_t offset = old->index;
751         XA_STATE(xas, &mapping->i_pages, offset);
752         unsigned long flags;
753
754         VM_BUG_ON_PAGE(!PageLocked(old), old);
755         VM_BUG_ON_PAGE(!PageLocked(new), new);
756         VM_BUG_ON_PAGE(new->mapping, new);
757
758         get_page(new);
759         new->mapping = mapping;
760         new->index = offset;
761
762         xas_lock_irqsave(&xas, flags);
763         xas_store(&xas, new);
764
765         old->mapping = NULL;
766         /* hugetlb pages do not participate in page cache accounting. */
767         if (!PageHuge(old))
768                 __dec_node_page_state(new, NR_FILE_PAGES);
769         if (!PageHuge(new))
770                 __inc_node_page_state(new, NR_FILE_PAGES);
771         if (PageSwapBacked(old))
772                 __dec_node_page_state(new, NR_SHMEM);
773         if (PageSwapBacked(new))
774                 __inc_node_page_state(new, NR_SHMEM);
775         xas_unlock_irqrestore(&xas, flags);
776         mem_cgroup_migrate(old, new);
777         if (freepage)
778                 freepage(old);
779         put_page(old);
780
781         return 0;
782 }
783 EXPORT_SYMBOL_GPL(replace_page_cache_page);
784
785 static int __add_to_page_cache_locked(struct page *page,
786                                       struct address_space *mapping,
787                                       pgoff_t offset, gfp_t gfp_mask,
788                                       void **shadowp)
789 {
790         XA_STATE(xas, &mapping->i_pages, offset);
791         int huge = PageHuge(page);
792         struct mem_cgroup *memcg;
793         int error;
794         void *old;
795
796         VM_BUG_ON_PAGE(!PageLocked(page), page);
797         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
798         mapping_set_update(&xas, mapping);
799
800         if (!huge) {
801                 error = mem_cgroup_try_charge(page, current->mm,
802                                               gfp_mask, &memcg, false);
803                 if (error)
804                         return error;
805         }
806
807         get_page(page);
808         page->mapping = mapping;
809         page->index = offset;
810
811         do {
812                 xas_lock_irq(&xas);
813                 old = xas_load(&xas);
814                 if (old && !xa_is_value(old))
815                         xas_set_err(&xas, -EEXIST);
816                 xas_store(&xas, page);
817                 if (xas_error(&xas))
818                         goto unlock;
819
820                 if (xa_is_value(old)) {
821                         mapping->nrexceptional--;
822                         if (shadowp)
823                                 *shadowp = old;
824                 }
825                 mapping->nrpages++;
826
827                 /* hugetlb pages do not participate in page cache accounting */
828                 if (!huge)
829                         __inc_node_page_state(page, NR_FILE_PAGES);
830 unlock:
831                 xas_unlock_irq(&xas);
832         } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
833
834         if (xas_error(&xas))
835                 goto error;
836
837         if (!huge)
838                 mem_cgroup_commit_charge(page, memcg, false, false);
839         trace_mm_filemap_add_to_page_cache(page);
840         return 0;
841 error:
842         page->mapping = NULL;
843         /* Leave page->index set: truncation relies upon it */
844         if (!huge)
845                 mem_cgroup_cancel_charge(page, memcg, false);
846         put_page(page);
847         return xas_error(&xas);
848 }
849
850 /**
851  * add_to_page_cache_locked - add a locked page to the pagecache
852  * @page:       page to add
853  * @mapping:    the page's address_space
854  * @offset:     page index
855  * @gfp_mask:   page allocation mode
856  *
857  * This function is used to add a page to the pagecache. It must be locked.
858  * This function does not add the page to the LRU.  The caller must do that.
859  */
860 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
861                 pgoff_t offset, gfp_t gfp_mask)
862 {
863         return __add_to_page_cache_locked(page, mapping, offset,
864                                           gfp_mask, NULL);
865 }
866 EXPORT_SYMBOL(add_to_page_cache_locked);
867
868 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
869                                 pgoff_t offset, gfp_t gfp_mask)
870 {
871         void *shadow = NULL;
872         int ret;
873
874         __SetPageLocked(page);
875         ret = __add_to_page_cache_locked(page, mapping, offset,
876                                          gfp_mask, &shadow);
877         if (unlikely(ret))
878                 __ClearPageLocked(page);
879         else {
880                 /*
881                  * The page might have been evicted from cache only
882                  * recently, in which case it should be activated like
883                  * any other repeatedly accessed page.
884                  * The exception is pages getting rewritten; evicting other
885                  * data from the working set, only to cache data that will
886                  * get overwritten with something else, is a waste of memory.
887                  */
888                 if (!(gfp_mask & __GFP_WRITE) &&
889                     shadow && workingset_refault(shadow)) {
890                         SetPageActive(page);
891                         workingset_activation(page);
892                 } else
893                         ClearPageActive(page);
894                 lru_cache_add(page);
895         }
896         return ret;
897 }
898 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
899
900 #ifdef CONFIG_NUMA
901 struct page *__page_cache_alloc(gfp_t gfp)
902 {
903         int n;
904         struct page *page;
905
906         if (cpuset_do_page_mem_spread()) {
907                 unsigned int cpuset_mems_cookie;
908                 do {
909                         cpuset_mems_cookie = read_mems_allowed_begin();
910                         n = cpuset_mem_spread_node();
911                         page = __alloc_pages_node(n, gfp, 0);
912                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
913
914                 return page;
915         }
916         return alloc_pages(gfp, 0);
917 }
918 EXPORT_SYMBOL(__page_cache_alloc);
919 #endif
920
921 /*
922  * In order to wait for pages to become available there must be
923  * waitqueues associated with pages. By using a hash table of
924  * waitqueues where the bucket discipline is to maintain all
925  * waiters on the same queue and wake all when any of the pages
926  * become available, and for the woken contexts to check to be
927  * sure the appropriate page became available, this saves space
928  * at a cost of "thundering herd" phenomena during rare hash
929  * collisions.
930  */
931 #define PAGE_WAIT_TABLE_BITS 8
932 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
933 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
934
935 static wait_queue_head_t *page_waitqueue(struct page *page)
936 {
937         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
938 }
939
940 void __init pagecache_init(void)
941 {
942         int i;
943
944         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
945                 init_waitqueue_head(&page_wait_table[i]);
946
947         page_writeback_init();
948 }
949
950 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
951 struct wait_page_key {
952         struct page *page;
953         int bit_nr;
954         int page_match;
955 };
956
957 struct wait_page_queue {
958         struct page *page;
959         int bit_nr;
960         wait_queue_entry_t wait;
961 };
962
963 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
964 {
965         struct wait_page_key *key = arg;
966         struct wait_page_queue *wait_page
967                 = container_of(wait, struct wait_page_queue, wait);
968
969         if (wait_page->page != key->page)
970                return 0;
971         key->page_match = 1;
972
973         if (wait_page->bit_nr != key->bit_nr)
974                 return 0;
975
976         /* Stop walking if it's locked */
977         if (test_bit(key->bit_nr, &key->page->flags))
978                 return -1;
979
980         return autoremove_wake_function(wait, mode, sync, key);
981 }
982
983 static void wake_up_page_bit(struct page *page, int bit_nr)
984 {
985         wait_queue_head_t *q = page_waitqueue(page);
986         struct wait_page_key key;
987         unsigned long flags;
988         wait_queue_entry_t bookmark;
989
990         key.page = page;
991         key.bit_nr = bit_nr;
992         key.page_match = 0;
993
994         bookmark.flags = 0;
995         bookmark.private = NULL;
996         bookmark.func = NULL;
997         INIT_LIST_HEAD(&bookmark.entry);
998
999         spin_lock_irqsave(&q->lock, flags);
1000         __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1001
1002         while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1003                 /*
1004                  * Take a breather from holding the lock,
1005                  * allow pages that finish wake up asynchronously
1006                  * to acquire the lock and remove themselves
1007                  * from wait queue
1008                  */
1009                 spin_unlock_irqrestore(&q->lock, flags);
1010                 cpu_relax();
1011                 spin_lock_irqsave(&q->lock, flags);
1012                 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1013         }
1014
1015         /*
1016          * It is possible for other pages to have collided on the waitqueue
1017          * hash, so in that case check for a page match. That prevents a long-
1018          * term waiter
1019          *
1020          * It is still possible to miss a case here, when we woke page waiters
1021          * and removed them from the waitqueue, but there are still other
1022          * page waiters.
1023          */
1024         if (!waitqueue_active(q) || !key.page_match) {
1025                 ClearPageWaiters(page);
1026                 /*
1027                  * It's possible to miss clearing Waiters here, when we woke
1028                  * our page waiters, but the hashed waitqueue has waiters for
1029                  * other pages on it.
1030                  *
1031                  * That's okay, it's a rare case. The next waker will clear it.
1032                  */
1033         }
1034         spin_unlock_irqrestore(&q->lock, flags);
1035 }
1036
1037 static void wake_up_page(struct page *page, int bit)
1038 {
1039         if (!PageWaiters(page))
1040                 return;
1041         wake_up_page_bit(page, bit);
1042 }
1043
1044 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1045                 struct page *page, int bit_nr, int state, bool lock)
1046 {
1047         struct wait_page_queue wait_page;
1048         wait_queue_entry_t *wait = &wait_page.wait;
1049         int ret = 0;
1050
1051         init_wait(wait);
1052         wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1053         wait->func = wake_page_function;
1054         wait_page.page = page;
1055         wait_page.bit_nr = bit_nr;
1056
1057         for (;;) {
1058                 spin_lock_irq(&q->lock);
1059
1060                 if (likely(list_empty(&wait->entry))) {
1061                         __add_wait_queue_entry_tail(q, wait);
1062                         SetPageWaiters(page);
1063                 }
1064
1065                 set_current_state(state);
1066
1067                 spin_unlock_irq(&q->lock);
1068
1069                 if (likely(test_bit(bit_nr, &page->flags))) {
1070                         io_schedule();
1071                 }
1072
1073                 if (lock) {
1074                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
1075                                 break;
1076                 } else {
1077                         if (!test_bit(bit_nr, &page->flags))
1078                                 break;
1079                 }
1080
1081                 if (unlikely(signal_pending_state(state, current))) {
1082                         ret = -EINTR;
1083                         break;
1084                 }
1085         }
1086
1087         finish_wait(q, wait);
1088
1089         /*
1090          * A signal could leave PageWaiters set. Clearing it here if
1091          * !waitqueue_active would be possible (by open-coding finish_wait),
1092          * but still fail to catch it in the case of wait hash collision. We
1093          * already can fail to clear wait hash collision cases, so don't
1094          * bother with signals either.
1095          */
1096
1097         return ret;
1098 }
1099
1100 void wait_on_page_bit(struct page *page, int bit_nr)
1101 {
1102         wait_queue_head_t *q = page_waitqueue(page);
1103         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1104 }
1105 EXPORT_SYMBOL(wait_on_page_bit);
1106
1107 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1108 {
1109         wait_queue_head_t *q = page_waitqueue(page);
1110         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1111 }
1112 EXPORT_SYMBOL(wait_on_page_bit_killable);
1113
1114 /**
1115  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1116  * @page: Page defining the wait queue of interest
1117  * @waiter: Waiter to add to the queue
1118  *
1119  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1120  */
1121 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1122 {
1123         wait_queue_head_t *q = page_waitqueue(page);
1124         unsigned long flags;
1125
1126         spin_lock_irqsave(&q->lock, flags);
1127         __add_wait_queue_entry_tail(q, waiter);
1128         SetPageWaiters(page);
1129         spin_unlock_irqrestore(&q->lock, flags);
1130 }
1131 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1132
1133 #ifndef clear_bit_unlock_is_negative_byte
1134
1135 /*
1136  * PG_waiters is the high bit in the same byte as PG_lock.
1137  *
1138  * On x86 (and on many other architectures), we can clear PG_lock and
1139  * test the sign bit at the same time. But if the architecture does
1140  * not support that special operation, we just do this all by hand
1141  * instead.
1142  *
1143  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1144  * being cleared, but a memory barrier should be unneccssary since it is
1145  * in the same byte as PG_locked.
1146  */
1147 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1148 {
1149         clear_bit_unlock(nr, mem);
1150         /* smp_mb__after_atomic(); */
1151         return test_bit(PG_waiters, mem);
1152 }
1153
1154 #endif
1155
1156 /**
1157  * unlock_page - unlock a locked page
1158  * @page: the page
1159  *
1160  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1161  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1162  * mechanism between PageLocked pages and PageWriteback pages is shared.
1163  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1164  *
1165  * Note that this depends on PG_waiters being the sign bit in the byte
1166  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1167  * clear the PG_locked bit and test PG_waiters at the same time fairly
1168  * portably (architectures that do LL/SC can test any bit, while x86 can
1169  * test the sign bit).
1170  */
1171 void unlock_page(struct page *page)
1172 {
1173         BUILD_BUG_ON(PG_waiters != 7);
1174         page = compound_head(page);
1175         VM_BUG_ON_PAGE(!PageLocked(page), page);
1176         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1177                 wake_up_page_bit(page, PG_locked);
1178 }
1179 EXPORT_SYMBOL(unlock_page);
1180
1181 /**
1182  * end_page_writeback - end writeback against a page
1183  * @page: the page
1184  */
1185 void end_page_writeback(struct page *page)
1186 {
1187         /*
1188          * TestClearPageReclaim could be used here but it is an atomic
1189          * operation and overkill in this particular case. Failing to
1190          * shuffle a page marked for immediate reclaim is too mild to
1191          * justify taking an atomic operation penalty at the end of
1192          * ever page writeback.
1193          */
1194         if (PageReclaim(page)) {
1195                 ClearPageReclaim(page);
1196                 rotate_reclaimable_page(page);
1197         }
1198
1199         if (!test_clear_page_writeback(page))
1200                 BUG();
1201
1202         smp_mb__after_atomic();
1203         wake_up_page(page, PG_writeback);
1204 }
1205 EXPORT_SYMBOL(end_page_writeback);
1206
1207 /*
1208  * After completing I/O on a page, call this routine to update the page
1209  * flags appropriately
1210  */
1211 void page_endio(struct page *page, bool is_write, int err)
1212 {
1213         if (!is_write) {
1214                 if (!err) {
1215                         SetPageUptodate(page);
1216                 } else {
1217                         ClearPageUptodate(page);
1218                         SetPageError(page);
1219                 }
1220                 unlock_page(page);
1221         } else {
1222                 if (err) {
1223                         struct address_space *mapping;
1224
1225                         SetPageError(page);
1226                         mapping = page_mapping(page);
1227                         if (mapping)
1228                                 mapping_set_error(mapping, err);
1229                 }
1230                 end_page_writeback(page);
1231         }
1232 }
1233 EXPORT_SYMBOL_GPL(page_endio);
1234
1235 /**
1236  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1237  * @__page: the page to lock
1238  */
1239 void __lock_page(struct page *__page)
1240 {
1241         struct page *page = compound_head(__page);
1242         wait_queue_head_t *q = page_waitqueue(page);
1243         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1244 }
1245 EXPORT_SYMBOL(__lock_page);
1246
1247 int __lock_page_killable(struct page *__page)
1248 {
1249         struct page *page = compound_head(__page);
1250         wait_queue_head_t *q = page_waitqueue(page);
1251         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1252 }
1253 EXPORT_SYMBOL_GPL(__lock_page_killable);
1254
1255 /*
1256  * Return values:
1257  * 1 - page is locked; mmap_sem is still held.
1258  * 0 - page is not locked.
1259  *     mmap_sem has been released (up_read()), unless flags had both
1260  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1261  *     which case mmap_sem is still held.
1262  *
1263  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1264  * with the page locked and the mmap_sem unperturbed.
1265  */
1266 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1267                          unsigned int flags)
1268 {
1269         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1270                 /*
1271                  * CAUTION! In this case, mmap_sem is not released
1272                  * even though return 0.
1273                  */
1274                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1275                         return 0;
1276
1277                 up_read(&mm->mmap_sem);
1278                 if (flags & FAULT_FLAG_KILLABLE)
1279                         wait_on_page_locked_killable(page);
1280                 else
1281                         wait_on_page_locked(page);
1282                 return 0;
1283         } else {
1284                 if (flags & FAULT_FLAG_KILLABLE) {
1285                         int ret;
1286
1287                         ret = __lock_page_killable(page);
1288                         if (ret) {
1289                                 up_read(&mm->mmap_sem);
1290                                 return 0;
1291                         }
1292                 } else
1293                         __lock_page(page);
1294                 return 1;
1295         }
1296 }
1297
1298 /**
1299  * page_cache_next_miss() - Find the next gap in the page cache.
1300  * @mapping: Mapping.
1301  * @index: Index.
1302  * @max_scan: Maximum range to search.
1303  *
1304  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1305  * gap with the lowest index.
1306  *
1307  * This function may be called under the rcu_read_lock.  However, this will
1308  * not atomically search a snapshot of the cache at a single point in time.
1309  * For example, if a gap is created at index 5, then subsequently a gap is
1310  * created at index 10, page_cache_next_miss covering both indices may
1311  * return 10 if called under the rcu_read_lock.
1312  *
1313  * Return: The index of the gap if found, otherwise an index outside the
1314  * range specified (in which case 'return - index >= max_scan' will be true).
1315  * In the rare case of index wrap-around, 0 will be returned.
1316  */
1317 pgoff_t page_cache_next_miss(struct address_space *mapping,
1318                              pgoff_t index, unsigned long max_scan)
1319 {
1320         XA_STATE(xas, &mapping->i_pages, index);
1321
1322         while (max_scan--) {
1323                 void *entry = xas_next(&xas);
1324                 if (!entry || xa_is_value(entry))
1325                         break;
1326                 if (xas.xa_index == 0)
1327                         break;
1328         }
1329
1330         return xas.xa_index;
1331 }
1332 EXPORT_SYMBOL(page_cache_next_miss);
1333
1334 /**
1335  * page_cache_prev_miss() - Find the next gap in the page cache.
1336  * @mapping: Mapping.
1337  * @index: Index.
1338  * @max_scan: Maximum range to search.
1339  *
1340  * Search the range [max(index - max_scan + 1, 0), index] for the
1341  * gap with the highest index.
1342  *
1343  * This function may be called under the rcu_read_lock.  However, this will
1344  * not atomically search a snapshot of the cache at a single point in time.
1345  * For example, if a gap is created at index 10, then subsequently a gap is
1346  * created at index 5, page_cache_prev_miss() covering both indices may
1347  * return 5 if called under the rcu_read_lock.
1348  *
1349  * Return: The index of the gap if found, otherwise an index outside the
1350  * range specified (in which case 'index - return >= max_scan' will be true).
1351  * In the rare case of wrap-around, ULONG_MAX will be returned.
1352  */
1353 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1354                              pgoff_t index, unsigned long max_scan)
1355 {
1356         XA_STATE(xas, &mapping->i_pages, index);
1357
1358         while (max_scan--) {
1359                 void *entry = xas_prev(&xas);
1360                 if (!entry || xa_is_value(entry))
1361                         break;
1362                 if (xas.xa_index == ULONG_MAX)
1363                         break;
1364         }
1365
1366         return xas.xa_index;
1367 }
1368 EXPORT_SYMBOL(page_cache_prev_miss);
1369
1370 /**
1371  * find_get_entry - find and get a page cache entry
1372  * @mapping: the address_space to search
1373  * @offset: the page cache index
1374  *
1375  * Looks up the page cache slot at @mapping & @offset.  If there is a
1376  * page cache page, it is returned with an increased refcount.
1377  *
1378  * If the slot holds a shadow entry of a previously evicted page, or a
1379  * swap entry from shmem/tmpfs, it is returned.
1380  *
1381  * Otherwise, %NULL is returned.
1382  */
1383 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1384 {
1385         void **pagep;
1386         struct page *head, *page;
1387
1388         rcu_read_lock();
1389 repeat:
1390         page = NULL;
1391         pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1392         if (pagep) {
1393                 page = radix_tree_deref_slot(pagep);
1394                 if (unlikely(!page))
1395                         goto out;
1396                 if (radix_tree_exception(page)) {
1397                         if (radix_tree_deref_retry(page))
1398                                 goto repeat;
1399                         /*
1400                          * A shadow entry of a recently evicted page,
1401                          * or a swap entry from shmem/tmpfs.  Return
1402                          * it without attempting to raise page count.
1403                          */
1404                         goto out;
1405                 }
1406
1407                 head = compound_head(page);
1408                 if (!page_cache_get_speculative(head))
1409                         goto repeat;
1410
1411                 /* The page was split under us? */
1412                 if (compound_head(page) != head) {
1413                         put_page(head);
1414                         goto repeat;
1415                 }
1416
1417                 /*
1418                  * Has the page moved?
1419                  * This is part of the lockless pagecache protocol. See
1420                  * include/linux/pagemap.h for details.
1421                  */
1422                 if (unlikely(page != *pagep)) {
1423                         put_page(head);
1424                         goto repeat;
1425                 }
1426         }
1427 out:
1428         rcu_read_unlock();
1429
1430         return page;
1431 }
1432 EXPORT_SYMBOL(find_get_entry);
1433
1434 /**
1435  * find_lock_entry - locate, pin and lock a page cache entry
1436  * @mapping: the address_space to search
1437  * @offset: the page cache index
1438  *
1439  * Looks up the page cache slot at @mapping & @offset.  If there is a
1440  * page cache page, it is returned locked and with an increased
1441  * refcount.
1442  *
1443  * If the slot holds a shadow entry of a previously evicted page, or a
1444  * swap entry from shmem/tmpfs, it is returned.
1445  *
1446  * Otherwise, %NULL is returned.
1447  *
1448  * find_lock_entry() may sleep.
1449  */
1450 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1451 {
1452         struct page *page;
1453
1454 repeat:
1455         page = find_get_entry(mapping, offset);
1456         if (page && !radix_tree_exception(page)) {
1457                 lock_page(page);
1458                 /* Has the page been truncated? */
1459                 if (unlikely(page_mapping(page) != mapping)) {
1460                         unlock_page(page);
1461                         put_page(page);
1462                         goto repeat;
1463                 }
1464                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1465         }
1466         return page;
1467 }
1468 EXPORT_SYMBOL(find_lock_entry);
1469
1470 /**
1471  * pagecache_get_page - find and get a page reference
1472  * @mapping: the address_space to search
1473  * @offset: the page index
1474  * @fgp_flags: PCG flags
1475  * @gfp_mask: gfp mask to use for the page cache data page allocation
1476  *
1477  * Looks up the page cache slot at @mapping & @offset.
1478  *
1479  * PCG flags modify how the page is returned.
1480  *
1481  * @fgp_flags can be:
1482  *
1483  * - FGP_ACCESSED: the page will be marked accessed
1484  * - FGP_LOCK: Page is return locked
1485  * - FGP_CREAT: If page is not present then a new page is allocated using
1486  *   @gfp_mask and added to the page cache and the VM's LRU
1487  *   list. The page is returned locked and with an increased
1488  *   refcount. Otherwise, NULL is returned.
1489  *
1490  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1491  * if the GFP flags specified for FGP_CREAT are atomic.
1492  *
1493  * If there is a page cache page, it is returned with an increased refcount.
1494  */
1495 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1496         int fgp_flags, gfp_t gfp_mask)
1497 {
1498         struct page *page;
1499
1500 repeat:
1501         page = find_get_entry(mapping, offset);
1502         if (xa_is_value(page))
1503                 page = NULL;
1504         if (!page)
1505                 goto no_page;
1506
1507         if (fgp_flags & FGP_LOCK) {
1508                 if (fgp_flags & FGP_NOWAIT) {
1509                         if (!trylock_page(page)) {
1510                                 put_page(page);
1511                                 return NULL;
1512                         }
1513                 } else {
1514                         lock_page(page);
1515                 }
1516
1517                 /* Has the page been truncated? */
1518                 if (unlikely(page->mapping != mapping)) {
1519                         unlock_page(page);
1520                         put_page(page);
1521                         goto repeat;
1522                 }
1523                 VM_BUG_ON_PAGE(page->index != offset, page);
1524         }
1525
1526         if (page && (fgp_flags & FGP_ACCESSED))
1527                 mark_page_accessed(page);
1528
1529 no_page:
1530         if (!page && (fgp_flags & FGP_CREAT)) {
1531                 int err;
1532                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1533                         gfp_mask |= __GFP_WRITE;
1534                 if (fgp_flags & FGP_NOFS)
1535                         gfp_mask &= ~__GFP_FS;
1536
1537                 page = __page_cache_alloc(gfp_mask);
1538                 if (!page)
1539                         return NULL;
1540
1541                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1542                         fgp_flags |= FGP_LOCK;
1543
1544                 /* Init accessed so avoid atomic mark_page_accessed later */
1545                 if (fgp_flags & FGP_ACCESSED)
1546                         __SetPageReferenced(page);
1547
1548                 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1549                 if (unlikely(err)) {
1550                         put_page(page);
1551                         page = NULL;
1552                         if (err == -EEXIST)
1553                                 goto repeat;
1554                 }
1555         }
1556
1557         return page;
1558 }
1559 EXPORT_SYMBOL(pagecache_get_page);
1560
1561 /**
1562  * find_get_entries - gang pagecache lookup
1563  * @mapping:    The address_space to search
1564  * @start:      The starting page cache index
1565  * @nr_entries: The maximum number of entries
1566  * @entries:    Where the resulting entries are placed
1567  * @indices:    The cache indices corresponding to the entries in @entries
1568  *
1569  * find_get_entries() will search for and return a group of up to
1570  * @nr_entries entries in the mapping.  The entries are placed at
1571  * @entries.  find_get_entries() takes a reference against any actual
1572  * pages it returns.
1573  *
1574  * The search returns a group of mapping-contiguous page cache entries
1575  * with ascending indexes.  There may be holes in the indices due to
1576  * not-present pages.
1577  *
1578  * Any shadow entries of evicted pages, or swap entries from
1579  * shmem/tmpfs, are included in the returned array.
1580  *
1581  * find_get_entries() returns the number of pages and shadow entries
1582  * which were found.
1583  */
1584 unsigned find_get_entries(struct address_space *mapping,
1585                           pgoff_t start, unsigned int nr_entries,
1586                           struct page **entries, pgoff_t *indices)
1587 {
1588         void **slot;
1589         unsigned int ret = 0;
1590         struct radix_tree_iter iter;
1591
1592         if (!nr_entries)
1593                 return 0;
1594
1595         rcu_read_lock();
1596         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1597                 struct page *head, *page;
1598 repeat:
1599                 page = radix_tree_deref_slot(slot);
1600                 if (unlikely(!page))
1601                         continue;
1602                 if (radix_tree_exception(page)) {
1603                         if (radix_tree_deref_retry(page)) {
1604                                 slot = radix_tree_iter_retry(&iter);
1605                                 continue;
1606                         }
1607                         /*
1608                          * A shadow entry of a recently evicted page, a swap
1609                          * entry from shmem/tmpfs or a DAX entry.  Return it
1610                          * without attempting to raise page count.
1611                          */
1612                         goto export;
1613                 }
1614
1615                 head = compound_head(page);
1616                 if (!page_cache_get_speculative(head))
1617                         goto repeat;
1618
1619                 /* The page was split under us? */
1620                 if (compound_head(page) != head) {
1621                         put_page(head);
1622                         goto repeat;
1623                 }
1624
1625                 /* Has the page moved? */
1626                 if (unlikely(page != *slot)) {
1627                         put_page(head);
1628                         goto repeat;
1629                 }
1630 export:
1631                 indices[ret] = iter.index;
1632                 entries[ret] = page;
1633                 if (++ret == nr_entries)
1634                         break;
1635         }
1636         rcu_read_unlock();
1637         return ret;
1638 }
1639
1640 /**
1641  * find_get_pages_range - gang pagecache lookup
1642  * @mapping:    The address_space to search
1643  * @start:      The starting page index
1644  * @end:        The final page index (inclusive)
1645  * @nr_pages:   The maximum number of pages
1646  * @pages:      Where the resulting pages are placed
1647  *
1648  * find_get_pages_range() will search for and return a group of up to @nr_pages
1649  * pages in the mapping starting at index @start and up to index @end
1650  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1651  * a reference against the returned pages.
1652  *
1653  * The search returns a group of mapping-contiguous pages with ascending
1654  * indexes.  There may be holes in the indices due to not-present pages.
1655  * We also update @start to index the next page for the traversal.
1656  *
1657  * find_get_pages_range() returns the number of pages which were found. If this
1658  * number is smaller than @nr_pages, the end of specified range has been
1659  * reached.
1660  */
1661 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1662                               pgoff_t end, unsigned int nr_pages,
1663                               struct page **pages)
1664 {
1665         struct radix_tree_iter iter;
1666         void **slot;
1667         unsigned ret = 0;
1668
1669         if (unlikely(!nr_pages))
1670                 return 0;
1671
1672         rcu_read_lock();
1673         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1674                 struct page *head, *page;
1675
1676                 if (iter.index > end)
1677                         break;
1678 repeat:
1679                 page = radix_tree_deref_slot(slot);
1680                 if (unlikely(!page))
1681                         continue;
1682
1683                 if (radix_tree_exception(page)) {
1684                         if (radix_tree_deref_retry(page)) {
1685                                 slot = radix_tree_iter_retry(&iter);
1686                                 continue;
1687                         }
1688                         /*
1689                          * A shadow entry of a recently evicted page,
1690                          * or a swap entry from shmem/tmpfs.  Skip
1691                          * over it.
1692                          */
1693                         continue;
1694                 }
1695
1696                 head = compound_head(page);
1697                 if (!page_cache_get_speculative(head))
1698                         goto repeat;
1699
1700                 /* The page was split under us? */
1701                 if (compound_head(page) != head) {
1702                         put_page(head);
1703                         goto repeat;
1704                 }
1705
1706                 /* Has the page moved? */
1707                 if (unlikely(page != *slot)) {
1708                         put_page(head);
1709                         goto repeat;
1710                 }
1711
1712                 pages[ret] = page;
1713                 if (++ret == nr_pages) {
1714                         *start = pages[ret - 1]->index + 1;
1715                         goto out;
1716                 }
1717         }
1718
1719         /*
1720          * We come here when there is no page beyond @end. We take care to not
1721          * overflow the index @start as it confuses some of the callers. This
1722          * breaks the iteration when there is page at index -1 but that is
1723          * already broken anyway.
1724          */
1725         if (end == (pgoff_t)-1)
1726                 *start = (pgoff_t)-1;
1727         else
1728                 *start = end + 1;
1729 out:
1730         rcu_read_unlock();
1731
1732         return ret;
1733 }
1734
1735 /**
1736  * find_get_pages_contig - gang contiguous pagecache lookup
1737  * @mapping:    The address_space to search
1738  * @index:      The starting page index
1739  * @nr_pages:   The maximum number of pages
1740  * @pages:      Where the resulting pages are placed
1741  *
1742  * find_get_pages_contig() works exactly like find_get_pages(), except
1743  * that the returned number of pages are guaranteed to be contiguous.
1744  *
1745  * find_get_pages_contig() returns the number of pages which were found.
1746  */
1747 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1748                                unsigned int nr_pages, struct page **pages)
1749 {
1750         struct radix_tree_iter iter;
1751         void **slot;
1752         unsigned int ret = 0;
1753
1754         if (unlikely(!nr_pages))
1755                 return 0;
1756
1757         rcu_read_lock();
1758         radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1759                 struct page *head, *page;
1760 repeat:
1761                 page = radix_tree_deref_slot(slot);
1762                 /* The hole, there no reason to continue */
1763                 if (unlikely(!page))
1764                         break;
1765
1766                 if (radix_tree_exception(page)) {
1767                         if (radix_tree_deref_retry(page)) {
1768                                 slot = radix_tree_iter_retry(&iter);
1769                                 continue;
1770                         }
1771                         /*
1772                          * A shadow entry of a recently evicted page,
1773                          * or a swap entry from shmem/tmpfs.  Stop
1774                          * looking for contiguous pages.
1775                          */
1776                         break;
1777                 }
1778
1779                 head = compound_head(page);
1780                 if (!page_cache_get_speculative(head))
1781                         goto repeat;
1782
1783                 /* The page was split under us? */
1784                 if (compound_head(page) != head) {
1785                         put_page(head);
1786                         goto repeat;
1787                 }
1788
1789                 /* Has the page moved? */
1790                 if (unlikely(page != *slot)) {
1791                         put_page(head);
1792                         goto repeat;
1793                 }
1794
1795                 /*
1796                  * must check mapping and index after taking the ref.
1797                  * otherwise we can get both false positives and false
1798                  * negatives, which is just confusing to the caller.
1799                  */
1800                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1801                         put_page(page);
1802                         break;
1803                 }
1804
1805                 pages[ret] = page;
1806                 if (++ret == nr_pages)
1807                         break;
1808         }
1809         rcu_read_unlock();
1810         return ret;
1811 }
1812 EXPORT_SYMBOL(find_get_pages_contig);
1813
1814 /**
1815  * find_get_pages_range_tag - find and return pages in given range matching @tag
1816  * @mapping:    the address_space to search
1817  * @index:      the starting page index
1818  * @end:        The final page index (inclusive)
1819  * @tag:        the tag index
1820  * @nr_pages:   the maximum number of pages
1821  * @pages:      where the resulting pages are placed
1822  *
1823  * Like find_get_pages, except we only return pages which are tagged with
1824  * @tag.   We update @index to index the next page for the traversal.
1825  */
1826 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1827                         pgoff_t end, int tag, unsigned int nr_pages,
1828                         struct page **pages)
1829 {
1830         struct radix_tree_iter iter;
1831         void **slot;
1832         unsigned ret = 0;
1833
1834         if (unlikely(!nr_pages))
1835                 return 0;
1836
1837         rcu_read_lock();
1838         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1839                 struct page *head, *page;
1840
1841                 if (iter.index > end)
1842                         break;
1843 repeat:
1844                 page = radix_tree_deref_slot(slot);
1845                 if (unlikely(!page))
1846                         continue;
1847
1848                 if (radix_tree_exception(page)) {
1849                         if (radix_tree_deref_retry(page)) {
1850                                 slot = radix_tree_iter_retry(&iter);
1851                                 continue;
1852                         }
1853                         /*
1854                          * A shadow entry of a recently evicted page.
1855                          *
1856                          * Those entries should never be tagged, but
1857                          * this tree walk is lockless and the tags are
1858                          * looked up in bulk, one radix tree node at a
1859                          * time, so there is a sizable window for page
1860                          * reclaim to evict a page we saw tagged.
1861                          *
1862                          * Skip over it.
1863                          */
1864                         continue;
1865                 }
1866
1867                 head = compound_head(page);
1868                 if (!page_cache_get_speculative(head))
1869                         goto repeat;
1870
1871                 /* The page was split under us? */
1872                 if (compound_head(page) != head) {
1873                         put_page(head);
1874                         goto repeat;
1875                 }
1876
1877                 /* Has the page moved? */
1878                 if (unlikely(page != *slot)) {
1879                         put_page(head);
1880                         goto repeat;
1881                 }
1882
1883                 pages[ret] = page;
1884                 if (++ret == nr_pages) {
1885                         *index = pages[ret - 1]->index + 1;
1886                         goto out;
1887                 }
1888         }
1889
1890         /*
1891          * We come here when we got at @end. We take care to not overflow the
1892          * index @index as it confuses some of the callers. This breaks the
1893          * iteration when there is page at index -1 but that is already broken
1894          * anyway.
1895          */
1896         if (end == (pgoff_t)-1)
1897                 *index = (pgoff_t)-1;
1898         else
1899                 *index = end + 1;
1900 out:
1901         rcu_read_unlock();
1902
1903         return ret;
1904 }
1905 EXPORT_SYMBOL(find_get_pages_range_tag);
1906
1907 /**
1908  * find_get_entries_tag - find and return entries that match @tag
1909  * @mapping:    the address_space to search
1910  * @start:      the starting page cache index
1911  * @tag:        the tag index
1912  * @nr_entries: the maximum number of entries
1913  * @entries:    where the resulting entries are placed
1914  * @indices:    the cache indices corresponding to the entries in @entries
1915  *
1916  * Like find_get_entries, except we only return entries which are tagged with
1917  * @tag.
1918  */
1919 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1920                         int tag, unsigned int nr_entries,
1921                         struct page **entries, pgoff_t *indices)
1922 {
1923         void **slot;
1924         unsigned int ret = 0;
1925         struct radix_tree_iter iter;
1926
1927         if (!nr_entries)
1928                 return 0;
1929
1930         rcu_read_lock();
1931         radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1932                 struct page *head, *page;
1933 repeat:
1934                 page = radix_tree_deref_slot(slot);
1935                 if (unlikely(!page))
1936                         continue;
1937                 if (radix_tree_exception(page)) {
1938                         if (radix_tree_deref_retry(page)) {
1939                                 slot = radix_tree_iter_retry(&iter);
1940                                 continue;
1941                         }
1942
1943                         /*
1944                          * A shadow entry of a recently evicted page, a swap
1945                          * entry from shmem/tmpfs or a DAX entry.  Return it
1946                          * without attempting to raise page count.
1947                          */
1948                         goto export;
1949                 }
1950
1951                 head = compound_head(page);
1952                 if (!page_cache_get_speculative(head))
1953                         goto repeat;
1954
1955                 /* The page was split under us? */
1956                 if (compound_head(page) != head) {
1957                         put_page(head);
1958                         goto repeat;
1959                 }
1960
1961                 /* Has the page moved? */
1962                 if (unlikely(page != *slot)) {
1963                         put_page(head);
1964                         goto repeat;
1965                 }
1966 export:
1967                 indices[ret] = iter.index;
1968                 entries[ret] = page;
1969                 if (++ret == nr_entries)
1970                         break;
1971         }
1972         rcu_read_unlock();
1973         return ret;
1974 }
1975 EXPORT_SYMBOL(find_get_entries_tag);
1976
1977 /*
1978  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1979  * a _large_ part of the i/o request. Imagine the worst scenario:
1980  *
1981  *      ---R__________________________________________B__________
1982  *         ^ reading here                             ^ bad block(assume 4k)
1983  *
1984  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1985  * => failing the whole request => read(R) => read(R+1) =>
1986  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1987  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1988  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1989  *
1990  * It is going insane. Fix it by quickly scaling down the readahead size.
1991  */
1992 static void shrink_readahead_size_eio(struct file *filp,
1993                                         struct file_ra_state *ra)
1994 {
1995         ra->ra_pages /= 4;
1996 }
1997
1998 /**
1999  * generic_file_buffered_read - generic file read routine
2000  * @iocb:       the iocb to read
2001  * @iter:       data destination
2002  * @written:    already copied
2003  *
2004  * This is a generic file read routine, and uses the
2005  * mapping->a_ops->readpage() function for the actual low-level stuff.
2006  *
2007  * This is really ugly. But the goto's actually try to clarify some
2008  * of the logic when it comes to error handling etc.
2009  */
2010 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2011                 struct iov_iter *iter, ssize_t written)
2012 {
2013         struct file *filp = iocb->ki_filp;
2014         struct address_space *mapping = filp->f_mapping;
2015         struct inode *inode = mapping->host;
2016         struct file_ra_state *ra = &filp->f_ra;
2017         loff_t *ppos = &iocb->ki_pos;
2018         pgoff_t index;
2019         pgoff_t last_index;
2020         pgoff_t prev_index;
2021         unsigned long offset;      /* offset into pagecache page */
2022         unsigned int prev_offset;
2023         int error = 0;
2024
2025         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2026                 return 0;
2027         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2028
2029         index = *ppos >> PAGE_SHIFT;
2030         prev_index = ra->prev_pos >> PAGE_SHIFT;
2031         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2032         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2033         offset = *ppos & ~PAGE_MASK;
2034
2035         for (;;) {
2036                 struct page *page;
2037                 pgoff_t end_index;
2038                 loff_t isize;
2039                 unsigned long nr, ret;
2040
2041                 cond_resched();
2042 find_page:
2043                 if (fatal_signal_pending(current)) {
2044                         error = -EINTR;
2045                         goto out;
2046                 }
2047
2048                 page = find_get_page(mapping, index);
2049                 if (!page) {
2050                         if (iocb->ki_flags & IOCB_NOWAIT)
2051                                 goto would_block;
2052                         page_cache_sync_readahead(mapping,
2053                                         ra, filp,
2054                                         index, last_index - index);
2055                         page = find_get_page(mapping, index);
2056                         if (unlikely(page == NULL))
2057                                 goto no_cached_page;
2058                 }
2059                 if (PageReadahead(page)) {
2060                         page_cache_async_readahead(mapping,
2061                                         ra, filp, page,
2062                                         index, last_index - index);
2063                 }
2064                 if (!PageUptodate(page)) {
2065                         if (iocb->ki_flags & IOCB_NOWAIT) {
2066                                 put_page(page);
2067                                 goto would_block;
2068                         }
2069
2070                         /*
2071                          * See comment in do_read_cache_page on why
2072                          * wait_on_page_locked is used to avoid unnecessarily
2073                          * serialisations and why it's safe.
2074                          */
2075                         error = wait_on_page_locked_killable(page);
2076                         if (unlikely(error))
2077                                 goto readpage_error;
2078                         if (PageUptodate(page))
2079                                 goto page_ok;
2080
2081                         if (inode->i_blkbits == PAGE_SHIFT ||
2082                                         !mapping->a_ops->is_partially_uptodate)
2083                                 goto page_not_up_to_date;
2084                         /* pipes can't handle partially uptodate pages */
2085                         if (unlikely(iter->type & ITER_PIPE))
2086                                 goto page_not_up_to_date;
2087                         if (!trylock_page(page))
2088                                 goto page_not_up_to_date;
2089                         /* Did it get truncated before we got the lock? */
2090                         if (!page->mapping)
2091                                 goto page_not_up_to_date_locked;
2092                         if (!mapping->a_ops->is_partially_uptodate(page,
2093                                                         offset, iter->count))
2094                                 goto page_not_up_to_date_locked;
2095                         unlock_page(page);
2096                 }
2097 page_ok:
2098                 /*
2099                  * i_size must be checked after we know the page is Uptodate.
2100                  *
2101                  * Checking i_size after the check allows us to calculate
2102                  * the correct value for "nr", which means the zero-filled
2103                  * part of the page is not copied back to userspace (unless
2104                  * another truncate extends the file - this is desired though).
2105                  */
2106
2107                 isize = i_size_read(inode);
2108                 end_index = (isize - 1) >> PAGE_SHIFT;
2109                 if (unlikely(!isize || index > end_index)) {
2110                         put_page(page);
2111                         goto out;
2112                 }
2113
2114                 /* nr is the maximum number of bytes to copy from this page */
2115                 nr = PAGE_SIZE;
2116                 if (index == end_index) {
2117                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2118                         if (nr <= offset) {
2119                                 put_page(page);
2120                                 goto out;
2121                         }
2122                 }
2123                 nr = nr - offset;
2124
2125                 /* If users can be writing to this page using arbitrary
2126                  * virtual addresses, take care about potential aliasing
2127                  * before reading the page on the kernel side.
2128                  */
2129                 if (mapping_writably_mapped(mapping))
2130                         flush_dcache_page(page);
2131
2132                 /*
2133                  * When a sequential read accesses a page several times,
2134                  * only mark it as accessed the first time.
2135                  */
2136                 if (prev_index != index || offset != prev_offset)
2137                         mark_page_accessed(page);
2138                 prev_index = index;
2139
2140                 /*
2141                  * Ok, we have the page, and it's up-to-date, so
2142                  * now we can copy it to user space...
2143                  */
2144
2145                 ret = copy_page_to_iter(page, offset, nr, iter);
2146                 offset += ret;
2147                 index += offset >> PAGE_SHIFT;
2148                 offset &= ~PAGE_MASK;
2149                 prev_offset = offset;
2150
2151                 put_page(page);
2152                 written += ret;
2153                 if (!iov_iter_count(iter))
2154                         goto out;
2155                 if (ret < nr) {
2156                         error = -EFAULT;
2157                         goto out;
2158                 }
2159                 continue;
2160
2161 page_not_up_to_date:
2162                 /* Get exclusive access to the page ... */
2163                 error = lock_page_killable(page);
2164                 if (unlikely(error))
2165                         goto readpage_error;
2166
2167 page_not_up_to_date_locked:
2168                 /* Did it get truncated before we got the lock? */
2169                 if (!page->mapping) {
2170                         unlock_page(page);
2171                         put_page(page);
2172                         continue;
2173                 }
2174
2175                 /* Did somebody else fill it already? */
2176                 if (PageUptodate(page)) {
2177                         unlock_page(page);
2178                         goto page_ok;
2179                 }
2180
2181 readpage:
2182                 /*
2183                  * A previous I/O error may have been due to temporary
2184                  * failures, eg. multipath errors.
2185                  * PG_error will be set again if readpage fails.
2186                  */
2187                 ClearPageError(page);
2188                 /* Start the actual read. The read will unlock the page. */
2189                 error = mapping->a_ops->readpage(filp, page);
2190
2191                 if (unlikely(error)) {
2192                         if (error == AOP_TRUNCATED_PAGE) {
2193                                 put_page(page);
2194                                 error = 0;
2195                                 goto find_page;
2196                         }
2197                         goto readpage_error;
2198                 }
2199
2200                 if (!PageUptodate(page)) {
2201                         error = lock_page_killable(page);
2202                         if (unlikely(error))
2203                                 goto readpage_error;
2204                         if (!PageUptodate(page)) {
2205                                 if (page->mapping == NULL) {
2206                                         /*
2207                                          * invalidate_mapping_pages got it
2208                                          */
2209                                         unlock_page(page);
2210                                         put_page(page);
2211                                         goto find_page;
2212                                 }
2213                                 unlock_page(page);
2214                                 shrink_readahead_size_eio(filp, ra);
2215                                 error = -EIO;
2216                                 goto readpage_error;
2217                         }
2218                         unlock_page(page);
2219                 }
2220
2221                 goto page_ok;
2222
2223 readpage_error:
2224                 /* UHHUH! A synchronous read error occurred. Report it */
2225                 put_page(page);
2226                 goto out;
2227
2228 no_cached_page:
2229                 /*
2230                  * Ok, it wasn't cached, so we need to create a new
2231                  * page..
2232                  */
2233                 page = page_cache_alloc(mapping);
2234                 if (!page) {
2235                         error = -ENOMEM;
2236                         goto out;
2237                 }
2238                 error = add_to_page_cache_lru(page, mapping, index,
2239                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2240                 if (error) {
2241                         put_page(page);
2242                         if (error == -EEXIST) {
2243                                 error = 0;
2244                                 goto find_page;
2245                         }
2246                         goto out;
2247                 }
2248                 goto readpage;
2249         }
2250
2251 would_block:
2252         error = -EAGAIN;
2253 out:
2254         ra->prev_pos = prev_index;
2255         ra->prev_pos <<= PAGE_SHIFT;
2256         ra->prev_pos |= prev_offset;
2257
2258         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2259         file_accessed(filp);
2260         return written ? written : error;
2261 }
2262
2263 /**
2264  * generic_file_read_iter - generic filesystem read routine
2265  * @iocb:       kernel I/O control block
2266  * @iter:       destination for the data read
2267  *
2268  * This is the "read_iter()" routine for all filesystems
2269  * that can use the page cache directly.
2270  */
2271 ssize_t
2272 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2273 {
2274         size_t count = iov_iter_count(iter);
2275         ssize_t retval = 0;
2276
2277         if (!count)
2278                 goto out; /* skip atime */
2279
2280         if (iocb->ki_flags & IOCB_DIRECT) {
2281                 struct file *file = iocb->ki_filp;
2282                 struct address_space *mapping = file->f_mapping;
2283                 struct inode *inode = mapping->host;
2284                 loff_t size;
2285
2286                 size = i_size_read(inode);
2287                 if (iocb->ki_flags & IOCB_NOWAIT) {
2288                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2289                                                    iocb->ki_pos + count - 1))
2290                                 return -EAGAIN;
2291                 } else {
2292                         retval = filemap_write_and_wait_range(mapping,
2293                                                 iocb->ki_pos,
2294                                                 iocb->ki_pos + count - 1);
2295                         if (retval < 0)
2296                                 goto out;
2297                 }
2298
2299                 file_accessed(file);
2300
2301                 retval = mapping->a_ops->direct_IO(iocb, iter);
2302                 if (retval >= 0) {
2303                         iocb->ki_pos += retval;
2304                         count -= retval;
2305                 }
2306                 iov_iter_revert(iter, count - iov_iter_count(iter));
2307
2308                 /*
2309                  * Btrfs can have a short DIO read if we encounter
2310                  * compressed extents, so if there was an error, or if
2311                  * we've already read everything we wanted to, or if
2312                  * there was a short read because we hit EOF, go ahead
2313                  * and return.  Otherwise fallthrough to buffered io for
2314                  * the rest of the read.  Buffered reads will not work for
2315                  * DAX files, so don't bother trying.
2316                  */
2317                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2318                     IS_DAX(inode))
2319                         goto out;
2320         }
2321
2322         retval = generic_file_buffered_read(iocb, iter, retval);
2323 out:
2324         return retval;
2325 }
2326 EXPORT_SYMBOL(generic_file_read_iter);
2327
2328 #ifdef CONFIG_MMU
2329 /**
2330  * page_cache_read - adds requested page to the page cache if not already there
2331  * @file:       file to read
2332  * @offset:     page index
2333  * @gfp_mask:   memory allocation flags
2334  *
2335  * This adds the requested page to the page cache if it isn't already there,
2336  * and schedules an I/O to read in its contents from disk.
2337  */
2338 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2339 {
2340         struct address_space *mapping = file->f_mapping;
2341         struct page *page;
2342         int ret;
2343
2344         do {
2345                 page = __page_cache_alloc(gfp_mask);
2346                 if (!page)
2347                         return -ENOMEM;
2348
2349                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2350                 if (ret == 0)
2351                         ret = mapping->a_ops->readpage(file, page);
2352                 else if (ret == -EEXIST)
2353                         ret = 0; /* losing race to add is OK */
2354
2355                 put_page(page);
2356
2357         } while (ret == AOP_TRUNCATED_PAGE);
2358
2359         return ret;
2360 }
2361
2362 #define MMAP_LOTSAMISS  (100)
2363
2364 /*
2365  * Synchronous readahead happens when we don't even find
2366  * a page in the page cache at all.
2367  */
2368 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2369                                    struct file_ra_state *ra,
2370                                    struct file *file,
2371                                    pgoff_t offset)
2372 {
2373         struct address_space *mapping = file->f_mapping;
2374
2375         /* If we don't want any read-ahead, don't bother */
2376         if (vma->vm_flags & VM_RAND_READ)
2377                 return;
2378         if (!ra->ra_pages)
2379                 return;
2380
2381         if (vma->vm_flags & VM_SEQ_READ) {
2382                 page_cache_sync_readahead(mapping, ra, file, offset,
2383                                           ra->ra_pages);
2384                 return;
2385         }
2386
2387         /* Avoid banging the cache line if not needed */
2388         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2389                 ra->mmap_miss++;
2390
2391         /*
2392          * Do we miss much more than hit in this file? If so,
2393          * stop bothering with read-ahead. It will only hurt.
2394          */
2395         if (ra->mmap_miss > MMAP_LOTSAMISS)
2396                 return;
2397
2398         /*
2399          * mmap read-around
2400          */
2401         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2402         ra->size = ra->ra_pages;
2403         ra->async_size = ra->ra_pages / 4;
2404         ra_submit(ra, mapping, file);
2405 }
2406
2407 /*
2408  * Asynchronous readahead happens when we find the page and PG_readahead,
2409  * so we want to possibly extend the readahead further..
2410  */
2411 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2412                                     struct file_ra_state *ra,
2413                                     struct file *file,
2414                                     struct page *page,
2415                                     pgoff_t offset)
2416 {
2417         struct address_space *mapping = file->f_mapping;
2418
2419         /* If we don't want any read-ahead, don't bother */
2420         if (vma->vm_flags & VM_RAND_READ)
2421                 return;
2422         if (ra->mmap_miss > 0)
2423                 ra->mmap_miss--;
2424         if (PageReadahead(page))
2425                 page_cache_async_readahead(mapping, ra, file,
2426                                            page, offset, ra->ra_pages);
2427 }
2428
2429 /**
2430  * filemap_fault - read in file data for page fault handling
2431  * @vmf:        struct vm_fault containing details of the fault
2432  *
2433  * filemap_fault() is invoked via the vma operations vector for a
2434  * mapped memory region to read in file data during a page fault.
2435  *
2436  * The goto's are kind of ugly, but this streamlines the normal case of having
2437  * it in the page cache, and handles the special cases reasonably without
2438  * having a lot of duplicated code.
2439  *
2440  * vma->vm_mm->mmap_sem must be held on entry.
2441  *
2442  * If our return value has VM_FAULT_RETRY set, it's because
2443  * lock_page_or_retry() returned 0.
2444  * The mmap_sem has usually been released in this case.
2445  * See __lock_page_or_retry() for the exception.
2446  *
2447  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2448  * has not been released.
2449  *
2450  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2451  */
2452 vm_fault_t filemap_fault(struct vm_fault *vmf)
2453 {
2454         int error;
2455         struct file *file = vmf->vma->vm_file;
2456         struct address_space *mapping = file->f_mapping;
2457         struct file_ra_state *ra = &file->f_ra;
2458         struct inode *inode = mapping->host;
2459         pgoff_t offset = vmf->pgoff;
2460         pgoff_t max_off;
2461         struct page *page;
2462         vm_fault_t ret = 0;
2463
2464         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2465         if (unlikely(offset >= max_off))
2466                 return VM_FAULT_SIGBUS;
2467
2468         /*
2469          * Do we have something in the page cache already?
2470          */
2471         page = find_get_page(mapping, offset);
2472         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2473                 /*
2474                  * We found the page, so try async readahead before
2475                  * waiting for the lock.
2476                  */
2477                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2478         } else if (!page) {
2479                 /* No page in the page cache at all */
2480                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2481                 count_vm_event(PGMAJFAULT);
2482                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2483                 ret = VM_FAULT_MAJOR;
2484 retry_find:
2485                 page = find_get_page(mapping, offset);
2486                 if (!page)
2487                         goto no_cached_page;
2488         }
2489
2490         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2491                 put_page(page);
2492                 return ret | VM_FAULT_RETRY;
2493         }
2494
2495         /* Did it get truncated? */
2496         if (unlikely(page->mapping != mapping)) {
2497                 unlock_page(page);
2498                 put_page(page);
2499                 goto retry_find;
2500         }
2501         VM_BUG_ON_PAGE(page->index != offset, page);
2502
2503         /*
2504          * We have a locked page in the page cache, now we need to check
2505          * that it's up-to-date. If not, it is going to be due to an error.
2506          */
2507         if (unlikely(!PageUptodate(page)))
2508                 goto page_not_uptodate;
2509
2510         /*
2511          * Found the page and have a reference on it.
2512          * We must recheck i_size under page lock.
2513          */
2514         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2515         if (unlikely(offset >= max_off)) {
2516                 unlock_page(page);
2517                 put_page(page);
2518                 return VM_FAULT_SIGBUS;
2519         }
2520
2521         vmf->page = page;
2522         return ret | VM_FAULT_LOCKED;
2523
2524 no_cached_page:
2525         /*
2526          * We're only likely to ever get here if MADV_RANDOM is in
2527          * effect.
2528          */
2529         error = page_cache_read(file, offset, vmf->gfp_mask);
2530
2531         /*
2532          * The page we want has now been added to the page cache.
2533          * In the unlikely event that someone removed it in the
2534          * meantime, we'll just come back here and read it again.
2535          */
2536         if (error >= 0)
2537                 goto retry_find;
2538
2539         /*
2540          * An error return from page_cache_read can result if the
2541          * system is low on memory, or a problem occurs while trying
2542          * to schedule I/O.
2543          */
2544         if (error == -ENOMEM)
2545                 return VM_FAULT_OOM;
2546         return VM_FAULT_SIGBUS;
2547
2548 page_not_uptodate:
2549         /*
2550          * Umm, take care of errors if the page isn't up-to-date.
2551          * Try to re-read it _once_. We do this synchronously,
2552          * because there really aren't any performance issues here
2553          * and we need to check for errors.
2554          */
2555         ClearPageError(page);
2556         error = mapping->a_ops->readpage(file, page);
2557         if (!error) {
2558                 wait_on_page_locked(page);
2559                 if (!PageUptodate(page))
2560                         error = -EIO;
2561         }
2562         put_page(page);
2563
2564         if (!error || error == AOP_TRUNCATED_PAGE)
2565                 goto retry_find;
2566
2567         /* Things didn't work out. Return zero to tell the mm layer so. */
2568         shrink_readahead_size_eio(file, ra);
2569         return VM_FAULT_SIGBUS;
2570 }
2571 EXPORT_SYMBOL(filemap_fault);
2572
2573 void filemap_map_pages(struct vm_fault *vmf,
2574                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2575 {
2576         struct radix_tree_iter iter;
2577         void **slot;
2578         struct file *file = vmf->vma->vm_file;
2579         struct address_space *mapping = file->f_mapping;
2580         pgoff_t last_pgoff = start_pgoff;
2581         unsigned long max_idx;
2582         struct page *head, *page;
2583
2584         rcu_read_lock();
2585         radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2586                 if (iter.index > end_pgoff)
2587                         break;
2588 repeat:
2589                 page = radix_tree_deref_slot(slot);
2590                 if (unlikely(!page))
2591                         goto next;
2592                 if (radix_tree_exception(page)) {
2593                         if (radix_tree_deref_retry(page)) {
2594                                 slot = radix_tree_iter_retry(&iter);
2595                                 continue;
2596                         }
2597                         goto next;
2598                 }
2599
2600                 head = compound_head(page);
2601                 if (!page_cache_get_speculative(head))
2602                         goto repeat;
2603
2604                 /* The page was split under us? */
2605                 if (compound_head(page) != head) {
2606                         put_page(head);
2607                         goto repeat;
2608                 }
2609
2610                 /* Has the page moved? */
2611                 if (unlikely(page != *slot)) {
2612                         put_page(head);
2613                         goto repeat;
2614                 }
2615
2616                 if (!PageUptodate(page) ||
2617                                 PageReadahead(page) ||
2618                                 PageHWPoison(page))
2619                         goto skip;
2620                 if (!trylock_page(page))
2621                         goto skip;
2622
2623                 if (page->mapping != mapping || !PageUptodate(page))
2624                         goto unlock;
2625
2626                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2627                 if (page->index >= max_idx)
2628                         goto unlock;
2629
2630                 if (file->f_ra.mmap_miss > 0)
2631                         file->f_ra.mmap_miss--;
2632
2633                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2634                 if (vmf->pte)
2635                         vmf->pte += iter.index - last_pgoff;
2636                 last_pgoff = iter.index;
2637                 if (alloc_set_pte(vmf, NULL, page))
2638                         goto unlock;
2639                 unlock_page(page);
2640                 goto next;
2641 unlock:
2642                 unlock_page(page);
2643 skip:
2644                 put_page(page);
2645 next:
2646                 /* Huge page is mapped? No need to proceed. */
2647                 if (pmd_trans_huge(*vmf->pmd))
2648                         break;
2649                 if (iter.index == end_pgoff)
2650                         break;
2651         }
2652         rcu_read_unlock();
2653 }
2654 EXPORT_SYMBOL(filemap_map_pages);
2655
2656 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2657 {
2658         struct page *page = vmf->page;
2659         struct inode *inode = file_inode(vmf->vma->vm_file);
2660         vm_fault_t ret = VM_FAULT_LOCKED;
2661
2662         sb_start_pagefault(inode->i_sb);
2663         file_update_time(vmf->vma->vm_file);
2664         lock_page(page);
2665         if (page->mapping != inode->i_mapping) {
2666                 unlock_page(page);
2667                 ret = VM_FAULT_NOPAGE;
2668                 goto out;
2669         }
2670         /*
2671          * We mark the page dirty already here so that when freeze is in
2672          * progress, we are guaranteed that writeback during freezing will
2673          * see the dirty page and writeprotect it again.
2674          */
2675         set_page_dirty(page);
2676         wait_for_stable_page(page);
2677 out:
2678         sb_end_pagefault(inode->i_sb);
2679         return ret;
2680 }
2681
2682 const struct vm_operations_struct generic_file_vm_ops = {
2683         .fault          = filemap_fault,
2684         .map_pages      = filemap_map_pages,
2685         .page_mkwrite   = filemap_page_mkwrite,
2686 };
2687
2688 /* This is used for a general mmap of a disk file */
2689
2690 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2691 {
2692         struct address_space *mapping = file->f_mapping;
2693
2694         if (!mapping->a_ops->readpage)
2695                 return -ENOEXEC;
2696         file_accessed(file);
2697         vma->vm_ops = &generic_file_vm_ops;
2698         return 0;
2699 }
2700
2701 /*
2702  * This is for filesystems which do not implement ->writepage.
2703  */
2704 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2705 {
2706         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2707                 return -EINVAL;
2708         return generic_file_mmap(file, vma);
2709 }
2710 #else
2711 int filemap_page_mkwrite(struct vm_fault *vmf)
2712 {
2713         return -ENOSYS;
2714 }
2715 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2716 {
2717         return -ENOSYS;
2718 }
2719 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2720 {
2721         return -ENOSYS;
2722 }
2723 #endif /* CONFIG_MMU */
2724
2725 EXPORT_SYMBOL(filemap_page_mkwrite);
2726 EXPORT_SYMBOL(generic_file_mmap);
2727 EXPORT_SYMBOL(generic_file_readonly_mmap);
2728
2729 static struct page *wait_on_page_read(struct page *page)
2730 {
2731         if (!IS_ERR(page)) {
2732                 wait_on_page_locked(page);
2733                 if (!PageUptodate(page)) {
2734                         put_page(page);
2735                         page = ERR_PTR(-EIO);
2736                 }
2737         }
2738         return page;
2739 }
2740
2741 static struct page *do_read_cache_page(struct address_space *mapping,
2742                                 pgoff_t index,
2743                                 int (*filler)(void *, struct page *),
2744                                 void *data,
2745                                 gfp_t gfp)
2746 {
2747         struct page *page;
2748         int err;
2749 repeat:
2750         page = find_get_page(mapping, index);
2751         if (!page) {
2752                 page = __page_cache_alloc(gfp);
2753                 if (!page)
2754                         return ERR_PTR(-ENOMEM);
2755                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2756                 if (unlikely(err)) {
2757                         put_page(page);
2758                         if (err == -EEXIST)
2759                                 goto repeat;
2760                         /* Presumably ENOMEM for radix tree node */
2761                         return ERR_PTR(err);
2762                 }
2763
2764 filler:
2765                 err = filler(data, page);
2766                 if (err < 0) {
2767                         put_page(page);
2768                         return ERR_PTR(err);
2769                 }
2770
2771                 page = wait_on_page_read(page);
2772                 if (IS_ERR(page))
2773                         return page;
2774                 goto out;
2775         }
2776         if (PageUptodate(page))
2777                 goto out;
2778
2779         /*
2780          * Page is not up to date and may be locked due one of the following
2781          * case a: Page is being filled and the page lock is held
2782          * case b: Read/write error clearing the page uptodate status
2783          * case c: Truncation in progress (page locked)
2784          * case d: Reclaim in progress
2785          *
2786          * Case a, the page will be up to date when the page is unlocked.
2787          *    There is no need to serialise on the page lock here as the page
2788          *    is pinned so the lock gives no additional protection. Even if the
2789          *    the page is truncated, the data is still valid if PageUptodate as
2790          *    it's a race vs truncate race.
2791          * Case b, the page will not be up to date
2792          * Case c, the page may be truncated but in itself, the data may still
2793          *    be valid after IO completes as it's a read vs truncate race. The
2794          *    operation must restart if the page is not uptodate on unlock but
2795          *    otherwise serialising on page lock to stabilise the mapping gives
2796          *    no additional guarantees to the caller as the page lock is
2797          *    released before return.
2798          * Case d, similar to truncation. If reclaim holds the page lock, it
2799          *    will be a race with remove_mapping that determines if the mapping
2800          *    is valid on unlock but otherwise the data is valid and there is
2801          *    no need to serialise with page lock.
2802          *
2803          * As the page lock gives no additional guarantee, we optimistically
2804          * wait on the page to be unlocked and check if it's up to date and
2805          * use the page if it is. Otherwise, the page lock is required to
2806          * distinguish between the different cases. The motivation is that we
2807          * avoid spurious serialisations and wakeups when multiple processes
2808          * wait on the same page for IO to complete.
2809          */
2810         wait_on_page_locked(page);
2811         if (PageUptodate(page))
2812                 goto out;
2813
2814         /* Distinguish between all the cases under the safety of the lock */
2815         lock_page(page);
2816
2817         /* Case c or d, restart the operation */
2818         if (!page->mapping) {
2819                 unlock_page(page);
2820                 put_page(page);
2821                 goto repeat;
2822         }
2823
2824         /* Someone else locked and filled the page in a very small window */
2825         if (PageUptodate(page)) {
2826                 unlock_page(page);
2827                 goto out;
2828         }
2829         goto filler;
2830
2831 out:
2832         mark_page_accessed(page);
2833         return page;
2834 }
2835
2836 /**
2837  * read_cache_page - read into page cache, fill it if needed
2838  * @mapping:    the page's address_space
2839  * @index:      the page index
2840  * @filler:     function to perform the read
2841  * @data:       first arg to filler(data, page) function, often left as NULL
2842  *
2843  * Read into the page cache. If a page already exists, and PageUptodate() is
2844  * not set, try to fill the page and wait for it to become unlocked.
2845  *
2846  * If the page does not get brought uptodate, return -EIO.
2847  */
2848 struct page *read_cache_page(struct address_space *mapping,
2849                                 pgoff_t index,
2850                                 int (*filler)(void *, struct page *),
2851                                 void *data)
2852 {
2853         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2854 }
2855 EXPORT_SYMBOL(read_cache_page);
2856
2857 /**
2858  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2859  * @mapping:    the page's address_space
2860  * @index:      the page index
2861  * @gfp:        the page allocator flags to use if allocating
2862  *
2863  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2864  * any new page allocations done using the specified allocation flags.
2865  *
2866  * If the page does not get brought uptodate, return -EIO.
2867  */
2868 struct page *read_cache_page_gfp(struct address_space *mapping,
2869                                 pgoff_t index,
2870                                 gfp_t gfp)
2871 {
2872         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2873
2874         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2875 }
2876 EXPORT_SYMBOL(read_cache_page_gfp);
2877
2878 /*
2879  * Performs necessary checks before doing a write
2880  *
2881  * Can adjust writing position or amount of bytes to write.
2882  * Returns appropriate error code that caller should return or
2883  * zero in case that write should be allowed.
2884  */
2885 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2886 {
2887         struct file *file = iocb->ki_filp;
2888         struct inode *inode = file->f_mapping->host;
2889         unsigned long limit = rlimit(RLIMIT_FSIZE);
2890         loff_t pos;
2891
2892         if (!iov_iter_count(from))
2893                 return 0;
2894
2895         /* FIXME: this is for backwards compatibility with 2.4 */
2896         if (iocb->ki_flags & IOCB_APPEND)
2897                 iocb->ki_pos = i_size_read(inode);
2898
2899         pos = iocb->ki_pos;
2900
2901         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2902                 return -EINVAL;
2903
2904         if (limit != RLIM_INFINITY) {
2905                 if (iocb->ki_pos >= limit) {
2906                         send_sig(SIGXFSZ, current, 0);
2907                         return -EFBIG;
2908                 }
2909                 iov_iter_truncate(from, limit - (unsigned long)pos);
2910         }
2911
2912         /*
2913          * LFS rule
2914          */
2915         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2916                                 !(file->f_flags & O_LARGEFILE))) {
2917                 if (pos >= MAX_NON_LFS)
2918                         return -EFBIG;
2919                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2920         }
2921
2922         /*
2923          * Are we about to exceed the fs block limit ?
2924          *
2925          * If we have written data it becomes a short write.  If we have
2926          * exceeded without writing data we send a signal and return EFBIG.
2927          * Linus frestrict idea will clean these up nicely..
2928          */
2929         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2930                 return -EFBIG;
2931
2932         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2933         return iov_iter_count(from);
2934 }
2935 EXPORT_SYMBOL(generic_write_checks);
2936
2937 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2938                                 loff_t pos, unsigned len, unsigned flags,
2939                                 struct page **pagep, void **fsdata)
2940 {
2941         const struct address_space_operations *aops = mapping->a_ops;
2942
2943         return aops->write_begin(file, mapping, pos, len, flags,
2944                                                         pagep, fsdata);
2945 }
2946 EXPORT_SYMBOL(pagecache_write_begin);
2947
2948 int pagecache_write_end(struct file *file, struct address_space *mapping,
2949                                 loff_t pos, unsigned len, unsigned copied,
2950                                 struct page *page, void *fsdata)
2951 {
2952         const struct address_space_operations *aops = mapping->a_ops;
2953
2954         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2955 }
2956 EXPORT_SYMBOL(pagecache_write_end);
2957
2958 ssize_t
2959 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2960 {
2961         struct file     *file = iocb->ki_filp;
2962         struct address_space *mapping = file->f_mapping;
2963         struct inode    *inode = mapping->host;
2964         loff_t          pos = iocb->ki_pos;
2965         ssize_t         written;
2966         size_t          write_len;
2967         pgoff_t         end;
2968
2969         write_len = iov_iter_count(from);
2970         end = (pos + write_len - 1) >> PAGE_SHIFT;
2971
2972         if (iocb->ki_flags & IOCB_NOWAIT) {
2973                 /* If there are pages to writeback, return */
2974                 if (filemap_range_has_page(inode->i_mapping, pos,
2975                                            pos + iov_iter_count(from)))
2976                         return -EAGAIN;
2977         } else {
2978                 written = filemap_write_and_wait_range(mapping, pos,
2979                                                         pos + write_len - 1);
2980                 if (written)
2981                         goto out;
2982         }
2983
2984         /*
2985          * After a write we want buffered reads to be sure to go to disk to get
2986          * the new data.  We invalidate clean cached page from the region we're
2987          * about to write.  We do this *before* the write so that we can return
2988          * without clobbering -EIOCBQUEUED from ->direct_IO().
2989          */
2990         written = invalidate_inode_pages2_range(mapping,
2991                                         pos >> PAGE_SHIFT, end);
2992         /*
2993          * If a page can not be invalidated, return 0 to fall back
2994          * to buffered write.
2995          */
2996         if (written) {
2997                 if (written == -EBUSY)
2998                         return 0;
2999                 goto out;
3000         }
3001
3002         written = mapping->a_ops->direct_IO(iocb, from);
3003
3004         /*
3005          * Finally, try again to invalidate clean pages which might have been
3006          * cached by non-direct readahead, or faulted in by get_user_pages()
3007          * if the source of the write was an mmap'ed region of the file
3008          * we're writing.  Either one is a pretty crazy thing to do,
3009          * so we don't support it 100%.  If this invalidation
3010          * fails, tough, the write still worked...
3011          *
3012          * Most of the time we do not need this since dio_complete() will do
3013          * the invalidation for us. However there are some file systems that
3014          * do not end up with dio_complete() being called, so let's not break
3015          * them by removing it completely
3016          */
3017         if (mapping->nrpages)
3018                 invalidate_inode_pages2_range(mapping,
3019                                         pos >> PAGE_SHIFT, end);
3020
3021         if (written > 0) {
3022                 pos += written;
3023                 write_len -= written;
3024                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3025                         i_size_write(inode, pos);
3026                         mark_inode_dirty(inode);
3027                 }
3028                 iocb->ki_pos = pos;
3029         }
3030         iov_iter_revert(from, write_len - iov_iter_count(from));
3031 out:
3032         return written;
3033 }
3034 EXPORT_SYMBOL(generic_file_direct_write);
3035
3036 /*
3037  * Find or create a page at the given pagecache position. Return the locked
3038  * page. This function is specifically for buffered writes.
3039  */
3040 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3041                                         pgoff_t index, unsigned flags)
3042 {
3043         struct page *page;
3044         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3045
3046         if (flags & AOP_FLAG_NOFS)
3047                 fgp_flags |= FGP_NOFS;
3048
3049         page = pagecache_get_page(mapping, index, fgp_flags,
3050                         mapping_gfp_mask(mapping));
3051         if (page)
3052                 wait_for_stable_page(page);
3053
3054         return page;
3055 }
3056 EXPORT_SYMBOL(grab_cache_page_write_begin);
3057
3058 ssize_t generic_perform_write(struct file *file,
3059                                 struct iov_iter *i, loff_t pos)
3060 {
3061         struct address_space *mapping = file->f_mapping;
3062         const struct address_space_operations *a_ops = mapping->a_ops;
3063         long status = 0;
3064         ssize_t written = 0;
3065         unsigned int flags = 0;
3066
3067         do {
3068                 struct page *page;
3069                 unsigned long offset;   /* Offset into pagecache page */
3070                 unsigned long bytes;    /* Bytes to write to page */
3071                 size_t copied;          /* Bytes copied from user */
3072                 void *fsdata;
3073
3074                 offset = (pos & (PAGE_SIZE - 1));
3075                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3076                                                 iov_iter_count(i));
3077
3078 again:
3079                 /*
3080                  * Bring in the user page that we will copy from _first_.
3081                  * Otherwise there's a nasty deadlock on copying from the
3082                  * same page as we're writing to, without it being marked
3083                  * up-to-date.
3084                  *
3085                  * Not only is this an optimisation, but it is also required
3086                  * to check that the address is actually valid, when atomic
3087                  * usercopies are used, below.
3088                  */
3089                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3090                         status = -EFAULT;
3091                         break;
3092                 }
3093
3094                 if (fatal_signal_pending(current)) {
3095                         status = -EINTR;
3096                         break;
3097                 }
3098
3099                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3100                                                 &page, &fsdata);
3101                 if (unlikely(status < 0))
3102                         break;
3103
3104                 if (mapping_writably_mapped(mapping))
3105                         flush_dcache_page(page);
3106
3107                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3108                 flush_dcache_page(page);
3109
3110                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3111                                                 page, fsdata);
3112                 if (unlikely(status < 0))
3113                         break;
3114                 copied = status;
3115
3116                 cond_resched();
3117
3118                 iov_iter_advance(i, copied);
3119                 if (unlikely(copied == 0)) {
3120                         /*
3121                          * If we were unable to copy any data at all, we must
3122                          * fall back to a single segment length write.
3123                          *
3124                          * If we didn't fallback here, we could livelock
3125                          * because not all segments in the iov can be copied at
3126                          * once without a pagefault.
3127                          */
3128                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3129                                                 iov_iter_single_seg_count(i));
3130                         goto again;
3131                 }
3132                 pos += copied;
3133                 written += copied;
3134
3135                 balance_dirty_pages_ratelimited(mapping);
3136         } while (iov_iter_count(i));
3137
3138         return written ? written : status;
3139 }
3140 EXPORT_SYMBOL(generic_perform_write);
3141
3142 /**
3143  * __generic_file_write_iter - write data to a file
3144  * @iocb:       IO state structure (file, offset, etc.)
3145  * @from:       iov_iter with data to write
3146  *
3147  * This function does all the work needed for actually writing data to a
3148  * file. It does all basic checks, removes SUID from the file, updates
3149  * modification times and calls proper subroutines depending on whether we
3150  * do direct IO or a standard buffered write.
3151  *
3152  * It expects i_mutex to be grabbed unless we work on a block device or similar
3153  * object which does not need locking at all.
3154  *
3155  * This function does *not* take care of syncing data in case of O_SYNC write.
3156  * A caller has to handle it. This is mainly due to the fact that we want to
3157  * avoid syncing under i_mutex.
3158  */
3159 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3160 {
3161         struct file *file = iocb->ki_filp;
3162         struct address_space * mapping = file->f_mapping;
3163         struct inode    *inode = mapping->host;
3164         ssize_t         written = 0;
3165         ssize_t         err;
3166         ssize_t         status;
3167
3168         /* We can write back this queue in page reclaim */
3169         current->backing_dev_info = inode_to_bdi(inode);
3170         err = file_remove_privs(file);
3171         if (err)
3172                 goto out;
3173
3174         err = file_update_time(file);
3175         if (err)
3176                 goto out;
3177
3178         if (iocb->ki_flags & IOCB_DIRECT) {
3179                 loff_t pos, endbyte;
3180
3181                 written = generic_file_direct_write(iocb, from);
3182                 /*
3183                  * If the write stopped short of completing, fall back to
3184                  * buffered writes.  Some filesystems do this for writes to
3185                  * holes, for example.  For DAX files, a buffered write will
3186                  * not succeed (even if it did, DAX does not handle dirty
3187                  * page-cache pages correctly).
3188                  */
3189                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3190                         goto out;
3191
3192                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3193                 /*
3194                  * If generic_perform_write() returned a synchronous error
3195                  * then we want to return the number of bytes which were
3196                  * direct-written, or the error code if that was zero.  Note
3197                  * that this differs from normal direct-io semantics, which
3198                  * will return -EFOO even if some bytes were written.
3199                  */
3200                 if (unlikely(status < 0)) {
3201                         err = status;
3202                         goto out;
3203                 }
3204                 /*
3205                  * We need to ensure that the page cache pages are written to
3206                  * disk and invalidated to preserve the expected O_DIRECT
3207                  * semantics.
3208                  */
3209                 endbyte = pos + status - 1;
3210                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3211                 if (err == 0) {
3212                         iocb->ki_pos = endbyte + 1;
3213                         written += status;
3214                         invalidate_mapping_pages(mapping,
3215                                                  pos >> PAGE_SHIFT,
3216                                                  endbyte >> PAGE_SHIFT);
3217                 } else {
3218                         /*
3219                          * We don't know how much we wrote, so just return
3220                          * the number of bytes which were direct-written
3221                          */
3222                 }
3223         } else {
3224                 written = generic_perform_write(file, from, iocb->ki_pos);
3225                 if (likely(written > 0))
3226                         iocb->ki_pos += written;
3227         }
3228 out:
3229         current->backing_dev_info = NULL;
3230         return written ? written : err;
3231 }
3232 EXPORT_SYMBOL(__generic_file_write_iter);
3233
3234 /**
3235  * generic_file_write_iter - write data to a file
3236  * @iocb:       IO state structure
3237  * @from:       iov_iter with data to write
3238  *
3239  * This is a wrapper around __generic_file_write_iter() to be used by most
3240  * filesystems. It takes care of syncing the file in case of O_SYNC file
3241  * and acquires i_mutex as needed.
3242  */
3243 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3244 {
3245         struct file *file = iocb->ki_filp;
3246         struct inode *inode = file->f_mapping->host;
3247         ssize_t ret;
3248
3249         inode_lock(inode);
3250         ret = generic_write_checks(iocb, from);
3251         if (ret > 0)
3252                 ret = __generic_file_write_iter(iocb, from);
3253         inode_unlock(inode);
3254
3255         if (ret > 0)
3256                 ret = generic_write_sync(iocb, ret);
3257         return ret;
3258 }
3259 EXPORT_SYMBOL(generic_file_write_iter);
3260
3261 /**
3262  * try_to_release_page() - release old fs-specific metadata on a page
3263  *
3264  * @page: the page which the kernel is trying to free
3265  * @gfp_mask: memory allocation flags (and I/O mode)
3266  *
3267  * The address_space is to try to release any data against the page
3268  * (presumably at page->private).  If the release was successful, return '1'.
3269  * Otherwise return zero.
3270  *
3271  * This may also be called if PG_fscache is set on a page, indicating that the
3272  * page is known to the local caching routines.
3273  *
3274  * The @gfp_mask argument specifies whether I/O may be performed to release
3275  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3276  *
3277  */
3278 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3279 {
3280         struct address_space * const mapping = page->mapping;
3281
3282         BUG_ON(!PageLocked(page));
3283         if (PageWriteback(page))
3284                 return 0;
3285
3286         if (mapping && mapping->a_ops->releasepage)
3287                 return mapping->a_ops->releasepage(page, gfp_mask);
3288         return try_to_free_buffers(page);
3289 }
3290
3291 EXPORT_SYMBOL(try_to_release_page);