3925cb61dbb8f56fe4ee9128a81f9e389252718f
[linux-2.6-block.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include <linux/cpuset.h>
27 #include "internal.h"
28
29 #ifdef CONFIG_COMPACTION
30 /*
31  * Fragmentation score check interval for proactive compaction purposes.
32  */
33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
34
35 static inline void count_compact_event(enum vm_event_item item)
36 {
37         count_vm_event(item);
38 }
39
40 static inline void count_compact_events(enum vm_event_item item, long delta)
41 {
42         count_vm_events(item, delta);
43 }
44
45 /*
46  * order == -1 is expected when compacting proactively via
47  * 1. /proc/sys/vm/compact_memory
48  * 2. /sys/devices/system/node/nodex/compact
49  * 3. /proc/sys/vm/compaction_proactiveness
50  */
51 static inline bool is_via_compact_memory(int order)
52 {
53         return order == -1;
54 }
55
56 #else
57 #define count_compact_event(item) do { } while (0)
58 #define count_compact_events(item, delta) do { } while (0)
59 static inline bool is_via_compact_memory(int order) { return false; }
60 #endif
61
62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/compaction.h>
66
67 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
68 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
69
70 /*
71  * Page order with-respect-to which proactive compaction
72  * calculates external fragmentation, which is used as
73  * the "fragmentation score" of a node/zone.
74  */
75 #if defined CONFIG_TRANSPARENT_HUGEPAGE
76 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
77 #elif defined CONFIG_HUGETLBFS
78 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
79 #else
80 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
81 #endif
82
83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
84 {
85         post_alloc_hook(page, order, __GFP_MOVABLE);
86         set_page_refcounted(page);
87         return page;
88 }
89 #define mark_allocated(...)     alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
90
91 static unsigned long release_free_list(struct list_head *freepages)
92 {
93         int order;
94         unsigned long high_pfn = 0;
95
96         for (order = 0; order < NR_PAGE_ORDERS; order++) {
97                 struct page *page, *next;
98
99                 list_for_each_entry_safe(page, next, &freepages[order], lru) {
100                         unsigned long pfn = page_to_pfn(page);
101
102                         list_del(&page->lru);
103                         /*
104                          * Convert free pages into post allocation pages, so
105                          * that we can free them via __free_page.
106                          */
107                         mark_allocated(page, order, __GFP_MOVABLE);
108                         __free_pages(page, order);
109                         if (pfn > high_pfn)
110                                 high_pfn = pfn;
111                 }
112         }
113         return high_pfn;
114 }
115
116 #ifdef CONFIG_COMPACTION
117 bool PageMovable(struct page *page)
118 {
119         const struct movable_operations *mops;
120
121         VM_BUG_ON_PAGE(!PageLocked(page), page);
122         if (!__PageMovable(page))
123                 return false;
124
125         mops = page_movable_ops(page);
126         if (mops)
127                 return true;
128
129         return false;
130 }
131
132 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
133 {
134         VM_BUG_ON_PAGE(!PageLocked(page), page);
135         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
136         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
137 }
138 EXPORT_SYMBOL(__SetPageMovable);
139
140 void __ClearPageMovable(struct page *page)
141 {
142         VM_BUG_ON_PAGE(!PageMovable(page), page);
143         /*
144          * This page still has the type of a movable page, but it's
145          * actually not movable any more.
146          */
147         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161         zone->compact_considered = 0;
162         zone->compact_defer_shift++;
163
164         if (order < zone->compact_order_failed)
165                 zone->compact_order_failed = order;
166
167         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170         trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178         if (order < zone->compact_order_failed)
179                 return false;
180
181         /* Avoid possible overflow */
182         if (++zone->compact_considered >= defer_limit) {
183                 zone->compact_considered = defer_limit;
184                 return false;
185         }
186
187         trace_mm_compaction_deferred(zone, order);
188
189         return true;
190 }
191
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198                 bool alloc_success)
199 {
200         if (alloc_success) {
201                 zone->compact_considered = 0;
202                 zone->compact_defer_shift = 0;
203         }
204         if (order >= zone->compact_order_failed)
205                 zone->compact_order_failed = order + 1;
206
207         trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213         if (order < zone->compact_order_failed)
214                 return false;
215
216         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222                                         struct page *page)
223 {
224         if (cc->ignore_skip_hint)
225                 return true;
226
227         return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234         zone->compact_cached_free_pfn =
235                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 #ifdef CONFIG_SPARSEMEM
239 /*
240  * If the PFN falls into an offline section, return the start PFN of the
241  * next online section. If the PFN falls into an online section or if
242  * there is no next online section, return 0.
243  */
244 static unsigned long skip_offline_sections(unsigned long start_pfn)
245 {
246         unsigned long start_nr = pfn_to_section_nr(start_pfn);
247
248         if (online_section_nr(start_nr))
249                 return 0;
250
251         while (++start_nr <= __highest_present_section_nr) {
252                 if (online_section_nr(start_nr))
253                         return section_nr_to_pfn(start_nr);
254         }
255
256         return 0;
257 }
258
259 /*
260  * If the PFN falls into an offline section, return the end PFN of the
261  * next online section in reverse. If the PFN falls into an online section
262  * or if there is no next online section in reverse, return 0.
263  */
264 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
265 {
266         unsigned long start_nr = pfn_to_section_nr(start_pfn);
267
268         if (!start_nr || online_section_nr(start_nr))
269                 return 0;
270
271         while (start_nr-- > 0) {
272                 if (online_section_nr(start_nr))
273                         return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
274         }
275
276         return 0;
277 }
278 #else
279 static unsigned long skip_offline_sections(unsigned long start_pfn)
280 {
281         return 0;
282 }
283
284 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
285 {
286         return 0;
287 }
288 #endif
289
290 /*
291  * Compound pages of >= pageblock_order should consistently be skipped until
292  * released. It is always pointless to compact pages of such order (if they are
293  * migratable), and the pageblocks they occupy cannot contain any free pages.
294  */
295 static bool pageblock_skip_persistent(struct page *page)
296 {
297         if (!PageCompound(page))
298                 return false;
299
300         page = compound_head(page);
301
302         if (compound_order(page) >= pageblock_order)
303                 return true;
304
305         return false;
306 }
307
308 static bool
309 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
310                                                         bool check_target)
311 {
312         struct page *page = pfn_to_online_page(pfn);
313         struct page *block_page;
314         struct page *end_page;
315         unsigned long block_pfn;
316
317         if (!page)
318                 return false;
319         if (zone != page_zone(page))
320                 return false;
321         if (pageblock_skip_persistent(page))
322                 return false;
323
324         /*
325          * If skip is already cleared do no further checking once the
326          * restart points have been set.
327          */
328         if (check_source && check_target && !get_pageblock_skip(page))
329                 return true;
330
331         /*
332          * If clearing skip for the target scanner, do not select a
333          * non-movable pageblock as the starting point.
334          */
335         if (!check_source && check_target &&
336             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
337                 return false;
338
339         /* Ensure the start of the pageblock or zone is online and valid */
340         block_pfn = pageblock_start_pfn(pfn);
341         block_pfn = max(block_pfn, zone->zone_start_pfn);
342         block_page = pfn_to_online_page(block_pfn);
343         if (block_page) {
344                 page = block_page;
345                 pfn = block_pfn;
346         }
347
348         /* Ensure the end of the pageblock or zone is online and valid */
349         block_pfn = pageblock_end_pfn(pfn) - 1;
350         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
351         end_page = pfn_to_online_page(block_pfn);
352         if (!end_page)
353                 return false;
354
355         /*
356          * Only clear the hint if a sample indicates there is either a
357          * free page or an LRU page in the block. One or other condition
358          * is necessary for the block to be a migration source/target.
359          */
360         do {
361                 if (check_source && PageLRU(page)) {
362                         clear_pageblock_skip(page);
363                         return true;
364                 }
365
366                 if (check_target && PageBuddy(page)) {
367                         clear_pageblock_skip(page);
368                         return true;
369                 }
370
371                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
372         } while (page <= end_page);
373
374         return false;
375 }
376
377 /*
378  * This function is called to clear all cached information on pageblocks that
379  * should be skipped for page isolation when the migrate and free page scanner
380  * meet.
381  */
382 static void __reset_isolation_suitable(struct zone *zone)
383 {
384         unsigned long migrate_pfn = zone->zone_start_pfn;
385         unsigned long free_pfn = zone_end_pfn(zone) - 1;
386         unsigned long reset_migrate = free_pfn;
387         unsigned long reset_free = migrate_pfn;
388         bool source_set = false;
389         bool free_set = false;
390
391         /* Only flush if a full compaction finished recently */
392         if (!zone->compact_blockskip_flush)
393                 return;
394
395         zone->compact_blockskip_flush = false;
396
397         /*
398          * Walk the zone and update pageblock skip information. Source looks
399          * for PageLRU while target looks for PageBuddy. When the scanner
400          * is found, both PageBuddy and PageLRU are checked as the pageblock
401          * is suitable as both source and target.
402          */
403         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
404                                         free_pfn -= pageblock_nr_pages) {
405                 cond_resched();
406
407                 /* Update the migrate PFN */
408                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
409                     migrate_pfn < reset_migrate) {
410                         source_set = true;
411                         reset_migrate = migrate_pfn;
412                         zone->compact_init_migrate_pfn = reset_migrate;
413                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
414                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
415                 }
416
417                 /* Update the free PFN */
418                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
419                     free_pfn > reset_free) {
420                         free_set = true;
421                         reset_free = free_pfn;
422                         zone->compact_init_free_pfn = reset_free;
423                         zone->compact_cached_free_pfn = reset_free;
424                 }
425         }
426
427         /* Leave no distance if no suitable block was reset */
428         if (reset_migrate >= reset_free) {
429                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
430                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
431                 zone->compact_cached_free_pfn = free_pfn;
432         }
433 }
434
435 void reset_isolation_suitable(pg_data_t *pgdat)
436 {
437         int zoneid;
438
439         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
440                 struct zone *zone = &pgdat->node_zones[zoneid];
441                 if (!populated_zone(zone))
442                         continue;
443
444                 __reset_isolation_suitable(zone);
445         }
446 }
447
448 /*
449  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
450  * locks are not required for read/writers. Returns true if it was already set.
451  */
452 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
453 {
454         bool skip;
455
456         /* Do not update if skip hint is being ignored */
457         if (cc->ignore_skip_hint)
458                 return false;
459
460         skip = get_pageblock_skip(page);
461         if (!skip && !cc->no_set_skip_hint)
462                 set_pageblock_skip(page);
463
464         return skip;
465 }
466
467 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
468 {
469         struct zone *zone = cc->zone;
470
471         /* Set for isolation rather than compaction */
472         if (cc->no_set_skip_hint)
473                 return;
474
475         pfn = pageblock_end_pfn(pfn);
476
477         /* Update where async and sync compaction should restart */
478         if (pfn > zone->compact_cached_migrate_pfn[0])
479                 zone->compact_cached_migrate_pfn[0] = pfn;
480         if (cc->mode != MIGRATE_ASYNC &&
481             pfn > zone->compact_cached_migrate_pfn[1])
482                 zone->compact_cached_migrate_pfn[1] = pfn;
483 }
484
485 /*
486  * If no pages were isolated then mark this pageblock to be skipped in the
487  * future. The information is later cleared by __reset_isolation_suitable().
488  */
489 static void update_pageblock_skip(struct compact_control *cc,
490                         struct page *page, unsigned long pfn)
491 {
492         struct zone *zone = cc->zone;
493
494         if (cc->no_set_skip_hint)
495                 return;
496
497         set_pageblock_skip(page);
498
499         if (pfn < zone->compact_cached_free_pfn)
500                 zone->compact_cached_free_pfn = pfn;
501 }
502 #else
503 static inline bool isolation_suitable(struct compact_control *cc,
504                                         struct page *page)
505 {
506         return true;
507 }
508
509 static inline bool pageblock_skip_persistent(struct page *page)
510 {
511         return false;
512 }
513
514 static inline void update_pageblock_skip(struct compact_control *cc,
515                         struct page *page, unsigned long pfn)
516 {
517 }
518
519 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
520 {
521 }
522
523 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
524 {
525         return false;
526 }
527 #endif /* CONFIG_COMPACTION */
528
529 /*
530  * Compaction requires the taking of some coarse locks that are potentially
531  * very heavily contended. For async compaction, trylock and record if the
532  * lock is contended. The lock will still be acquired but compaction will
533  * abort when the current block is finished regardless of success rate.
534  * Sync compaction acquires the lock.
535  *
536  * Always returns true which makes it easier to track lock state in callers.
537  */
538 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
539                                                 struct compact_control *cc)
540         __acquires(lock)
541 {
542         /* Track if the lock is contended in async mode */
543         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
544                 if (spin_trylock_irqsave(lock, *flags))
545                         return true;
546
547                 cc->contended = true;
548         }
549
550         spin_lock_irqsave(lock, *flags);
551         return true;
552 }
553
554 /*
555  * Compaction requires the taking of some coarse locks that are potentially
556  * very heavily contended. The lock should be periodically unlocked to avoid
557  * having disabled IRQs for a long time, even when there is nobody waiting on
558  * the lock. It might also be that allowing the IRQs will result in
559  * need_resched() becoming true. If scheduling is needed, compaction schedules.
560  * Either compaction type will also abort if a fatal signal is pending.
561  * In either case if the lock was locked, it is dropped and not regained.
562  *
563  * Returns true if compaction should abort due to fatal signal pending.
564  * Returns false when compaction can continue.
565  */
566 static bool compact_unlock_should_abort(spinlock_t *lock,
567                 unsigned long flags, bool *locked, struct compact_control *cc)
568 {
569         if (*locked) {
570                 spin_unlock_irqrestore(lock, flags);
571                 *locked = false;
572         }
573
574         if (fatal_signal_pending(current)) {
575                 cc->contended = true;
576                 return true;
577         }
578
579         cond_resched();
580
581         return false;
582 }
583
584 /*
585  * Isolate free pages onto a private freelist. If @strict is true, will abort
586  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
587  * (even though it may still end up isolating some pages).
588  */
589 static unsigned long isolate_freepages_block(struct compact_control *cc,
590                                 unsigned long *start_pfn,
591                                 unsigned long end_pfn,
592                                 struct list_head *freelist,
593                                 unsigned int stride,
594                                 bool strict)
595 {
596         int nr_scanned = 0, total_isolated = 0;
597         struct page *page;
598         unsigned long flags = 0;
599         bool locked = false;
600         unsigned long blockpfn = *start_pfn;
601         unsigned int order;
602
603         /* Strict mode is for isolation, speed is secondary */
604         if (strict)
605                 stride = 1;
606
607         page = pfn_to_page(blockpfn);
608
609         /* Isolate free pages. */
610         for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
611                 int isolated;
612
613                 /*
614                  * Periodically drop the lock (if held) regardless of its
615                  * contention, to give chance to IRQs. Abort if fatal signal
616                  * pending.
617                  */
618                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
619                     && compact_unlock_should_abort(&cc->zone->lock, flags,
620                                                                 &locked, cc))
621                         break;
622
623                 nr_scanned++;
624
625                 /*
626                  * For compound pages such as THP and hugetlbfs, we can save
627                  * potentially a lot of iterations if we skip them at once.
628                  * The check is racy, but we can consider only valid values
629                  * and the only danger is skipping too much.
630                  */
631                 if (PageCompound(page)) {
632                         const unsigned int order = compound_order(page);
633
634                         if ((order <= MAX_PAGE_ORDER) &&
635                             (blockpfn + (1UL << order) <= end_pfn)) {
636                                 blockpfn += (1UL << order) - 1;
637                                 page += (1UL << order) - 1;
638                                 nr_scanned += (1UL << order) - 1;
639                         }
640
641                         goto isolate_fail;
642                 }
643
644                 if (!PageBuddy(page))
645                         goto isolate_fail;
646
647                 /* If we already hold the lock, we can skip some rechecking. */
648                 if (!locked) {
649                         locked = compact_lock_irqsave(&cc->zone->lock,
650                                                                 &flags, cc);
651
652                         /* Recheck this is a buddy page under lock */
653                         if (!PageBuddy(page))
654                                 goto isolate_fail;
655                 }
656
657                 /* Found a free page, will break it into order-0 pages */
658                 order = buddy_order(page);
659                 isolated = __isolate_free_page(page, order);
660                 if (!isolated)
661                         break;
662                 set_page_private(page, order);
663
664                 nr_scanned += isolated - 1;
665                 total_isolated += isolated;
666                 cc->nr_freepages += isolated;
667                 list_add_tail(&page->lru, &freelist[order]);
668
669                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
670                         blockpfn += isolated;
671                         break;
672                 }
673                 /* Advance to the end of split page */
674                 blockpfn += isolated - 1;
675                 page += isolated - 1;
676                 continue;
677
678 isolate_fail:
679                 if (strict)
680                         break;
681
682         }
683
684         if (locked)
685                 spin_unlock_irqrestore(&cc->zone->lock, flags);
686
687         /*
688          * Be careful to not go outside of the pageblock.
689          */
690         if (unlikely(blockpfn > end_pfn))
691                 blockpfn = end_pfn;
692
693         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
694                                         nr_scanned, total_isolated);
695
696         /* Record how far we have got within the block */
697         *start_pfn = blockpfn;
698
699         /*
700          * If strict isolation is requested by CMA then check that all the
701          * pages requested were isolated. If there were any failures, 0 is
702          * returned and CMA will fail.
703          */
704         if (strict && blockpfn < end_pfn)
705                 total_isolated = 0;
706
707         cc->total_free_scanned += nr_scanned;
708         if (total_isolated)
709                 count_compact_events(COMPACTISOLATED, total_isolated);
710         return total_isolated;
711 }
712
713 /**
714  * isolate_freepages_range() - isolate free pages.
715  * @cc:        Compaction control structure.
716  * @start_pfn: The first PFN to start isolating.
717  * @end_pfn:   The one-past-last PFN.
718  *
719  * Non-free pages, invalid PFNs, or zone boundaries within the
720  * [start_pfn, end_pfn) range are considered errors, cause function to
721  * undo its actions and return zero. cc->freepages[] are empty.
722  *
723  * Otherwise, function returns one-past-the-last PFN of isolated page
724  * (which may be greater then end_pfn if end fell in a middle of
725  * a free page). cc->freepages[] contain free pages isolated.
726  */
727 unsigned long
728 isolate_freepages_range(struct compact_control *cc,
729                         unsigned long start_pfn, unsigned long end_pfn)
730 {
731         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
732         int order;
733
734         for (order = 0; order < NR_PAGE_ORDERS; order++)
735                 INIT_LIST_HEAD(&cc->freepages[order]);
736
737         pfn = start_pfn;
738         block_start_pfn = pageblock_start_pfn(pfn);
739         if (block_start_pfn < cc->zone->zone_start_pfn)
740                 block_start_pfn = cc->zone->zone_start_pfn;
741         block_end_pfn = pageblock_end_pfn(pfn);
742
743         for (; pfn < end_pfn; pfn += isolated,
744                                 block_start_pfn = block_end_pfn,
745                                 block_end_pfn += pageblock_nr_pages) {
746                 /* Protect pfn from changing by isolate_freepages_block */
747                 unsigned long isolate_start_pfn = pfn;
748
749                 /*
750                  * pfn could pass the block_end_pfn if isolated freepage
751                  * is more than pageblock order. In this case, we adjust
752                  * scanning range to right one.
753                  */
754                 if (pfn >= block_end_pfn) {
755                         block_start_pfn = pageblock_start_pfn(pfn);
756                         block_end_pfn = pageblock_end_pfn(pfn);
757                 }
758
759                 block_end_pfn = min(block_end_pfn, end_pfn);
760
761                 if (!pageblock_pfn_to_page(block_start_pfn,
762                                         block_end_pfn, cc->zone))
763                         break;
764
765                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
766                                         block_end_pfn, cc->freepages, 0, true);
767
768                 /*
769                  * In strict mode, isolate_freepages_block() returns 0 if
770                  * there are any holes in the block (ie. invalid PFNs or
771                  * non-free pages).
772                  */
773                 if (!isolated)
774                         break;
775
776                 /*
777                  * If we managed to isolate pages, it is always (1 << n) *
778                  * pageblock_nr_pages for some non-negative n.  (Max order
779                  * page may span two pageblocks).
780                  */
781         }
782
783         if (pfn < end_pfn) {
784                 /* Loop terminated early, cleanup. */
785                 release_free_list(cc->freepages);
786                 return 0;
787         }
788
789         /* We don't use freelists for anything. */
790         return pfn;
791 }
792
793 /* Similar to reclaim, but different enough that they don't share logic */
794 static bool too_many_isolated(struct compact_control *cc)
795 {
796         pg_data_t *pgdat = cc->zone->zone_pgdat;
797         bool too_many;
798
799         unsigned long active, inactive, isolated;
800
801         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
802                         node_page_state(pgdat, NR_INACTIVE_ANON);
803         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
804                         node_page_state(pgdat, NR_ACTIVE_ANON);
805         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
806                         node_page_state(pgdat, NR_ISOLATED_ANON);
807
808         /*
809          * Allow GFP_NOFS to isolate past the limit set for regular
810          * compaction runs. This prevents an ABBA deadlock when other
811          * compactors have already isolated to the limit, but are
812          * blocked on filesystem locks held by the GFP_NOFS thread.
813          */
814         if (cc->gfp_mask & __GFP_FS) {
815                 inactive >>= 3;
816                 active >>= 3;
817         }
818
819         too_many = isolated > (inactive + active) / 2;
820         if (!too_many)
821                 wake_throttle_isolated(pgdat);
822
823         return too_many;
824 }
825
826 /**
827  * skip_isolation_on_order() - determine when to skip folio isolation based on
828  *                             folio order and compaction target order
829  * @order:              to-be-isolated folio order
830  * @target_order:       compaction target order
831  *
832  * This avoids unnecessary folio isolations during compaction.
833  */
834 static bool skip_isolation_on_order(int order, int target_order)
835 {
836         /*
837          * Unless we are performing global compaction (i.e.,
838          * is_via_compact_memory), skip any folios that are larger than the
839          * target order: we wouldn't be here if we'd have a free folio with
840          * the desired target_order, so migrating this folio would likely fail
841          * later.
842          */
843         if (!is_via_compact_memory(target_order) && order >= target_order)
844                 return true;
845         /*
846          * We limit memory compaction to pageblocks and won't try
847          * creating free blocks of memory that are larger than that.
848          */
849         return order >= pageblock_order;
850 }
851
852 /**
853  * isolate_migratepages_block() - isolate all migrate-able pages within
854  *                                a single pageblock
855  * @cc:         Compaction control structure.
856  * @low_pfn:    The first PFN to isolate
857  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
858  * @mode:       Isolation mode to be used.
859  *
860  * Isolate all pages that can be migrated from the range specified by
861  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
862  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
863  * -ENOMEM in case we could not allocate a page, or 0.
864  * cc->migrate_pfn will contain the next pfn to scan.
865  *
866  * The pages are isolated on cc->migratepages list (not required to be empty),
867  * and cc->nr_migratepages is updated accordingly.
868  */
869 static int
870 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
871                         unsigned long end_pfn, isolate_mode_t mode)
872 {
873         pg_data_t *pgdat = cc->zone->zone_pgdat;
874         unsigned long nr_scanned = 0, nr_isolated = 0;
875         struct lruvec *lruvec;
876         unsigned long flags = 0;
877         struct lruvec *locked = NULL;
878         struct folio *folio = NULL;
879         struct page *page = NULL, *valid_page = NULL;
880         struct address_space *mapping;
881         unsigned long start_pfn = low_pfn;
882         bool skip_on_failure = false;
883         unsigned long next_skip_pfn = 0;
884         bool skip_updated = false;
885         int ret = 0;
886
887         cc->migrate_pfn = low_pfn;
888
889         /*
890          * Ensure that there are not too many pages isolated from the LRU
891          * list by either parallel reclaimers or compaction. If there are,
892          * delay for some time until fewer pages are isolated
893          */
894         while (unlikely(too_many_isolated(cc))) {
895                 /* stop isolation if there are still pages not migrated */
896                 if (cc->nr_migratepages)
897                         return -EAGAIN;
898
899                 /* async migration should just abort */
900                 if (cc->mode == MIGRATE_ASYNC)
901                         return -EAGAIN;
902
903                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
904
905                 if (fatal_signal_pending(current))
906                         return -EINTR;
907         }
908
909         cond_resched();
910
911         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
912                 skip_on_failure = true;
913                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
914         }
915
916         /* Time to isolate some pages for migration */
917         for (; low_pfn < end_pfn; low_pfn++) {
918                 bool is_dirty, is_unevictable;
919
920                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
921                         /*
922                          * We have isolated all migration candidates in the
923                          * previous order-aligned block, and did not skip it due
924                          * to failure. We should migrate the pages now and
925                          * hopefully succeed compaction.
926                          */
927                         if (nr_isolated)
928                                 break;
929
930                         /*
931                          * We failed to isolate in the previous order-aligned
932                          * block. Set the new boundary to the end of the
933                          * current block. Note we can't simply increase
934                          * next_skip_pfn by 1 << order, as low_pfn might have
935                          * been incremented by a higher number due to skipping
936                          * a compound or a high-order buddy page in the
937                          * previous loop iteration.
938                          */
939                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
940                 }
941
942                 /*
943                  * Periodically drop the lock (if held) regardless of its
944                  * contention, to give chance to IRQs. Abort completely if
945                  * a fatal signal is pending.
946                  */
947                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
948                         if (locked) {
949                                 unlock_page_lruvec_irqrestore(locked, flags);
950                                 locked = NULL;
951                         }
952
953                         if (fatal_signal_pending(current)) {
954                                 cc->contended = true;
955                                 ret = -EINTR;
956
957                                 goto fatal_pending;
958                         }
959
960                         cond_resched();
961                 }
962
963                 nr_scanned++;
964
965                 page = pfn_to_page(low_pfn);
966
967                 /*
968                  * Check if the pageblock has already been marked skipped.
969                  * Only the first PFN is checked as the caller isolates
970                  * COMPACT_CLUSTER_MAX at a time so the second call must
971                  * not falsely conclude that the block should be skipped.
972                  */
973                 if (!valid_page && (pageblock_aligned(low_pfn) ||
974                                     low_pfn == cc->zone->zone_start_pfn)) {
975                         if (!isolation_suitable(cc, page)) {
976                                 low_pfn = end_pfn;
977                                 folio = NULL;
978                                 goto isolate_abort;
979                         }
980                         valid_page = page;
981                 }
982
983                 if (PageHuge(page)) {
984                         const unsigned int order = compound_order(page);
985                         /*
986                          * skip hugetlbfs if we are not compacting for pages
987                          * bigger than its order. THPs and other compound pages
988                          * are handled below.
989                          */
990                         if (!cc->alloc_contig) {
991
992                                 if (order <= MAX_PAGE_ORDER) {
993                                         low_pfn += (1UL << order) - 1;
994                                         nr_scanned += (1UL << order) - 1;
995                                 }
996                                 goto isolate_fail;
997                         }
998                         /* for alloc_contig case */
999                         if (locked) {
1000                                 unlock_page_lruvec_irqrestore(locked, flags);
1001                                 locked = NULL;
1002                         }
1003
1004                         folio = page_folio(page);
1005                         ret = isolate_or_dissolve_huge_folio(folio, &cc->migratepages);
1006
1007                         /*
1008                          * Fail isolation in case isolate_or_dissolve_huge_folio()
1009                          * reports an error. In case of -ENOMEM, abort right away.
1010                          */
1011                         if (ret < 0) {
1012                                  /* Do not report -EBUSY down the chain */
1013                                 if (ret == -EBUSY)
1014                                         ret = 0;
1015                                 low_pfn += (1UL << order) - 1;
1016                                 nr_scanned += (1UL << order) - 1;
1017                                 goto isolate_fail;
1018                         }
1019
1020                         if (folio_test_hugetlb(folio)) {
1021                                 /*
1022                                  * Hugepage was successfully isolated and placed
1023                                  * on the cc->migratepages list.
1024                                  */
1025                                 low_pfn += folio_nr_pages(folio) - 1;
1026                                 goto isolate_success_no_list;
1027                         }
1028
1029                         /*
1030                          * Ok, the hugepage was dissolved. Now these pages are
1031                          * Buddy and cannot be re-allocated because they are
1032                          * isolated. Fall-through as the check below handles
1033                          * Buddy pages.
1034                          */
1035                 }
1036
1037                 /*
1038                  * Skip if free. We read page order here without zone lock
1039                  * which is generally unsafe, but the race window is small and
1040                  * the worst thing that can happen is that we skip some
1041                  * potential isolation targets.
1042                  */
1043                 if (PageBuddy(page)) {
1044                         unsigned long freepage_order = buddy_order_unsafe(page);
1045
1046                         /*
1047                          * Without lock, we cannot be sure that what we got is
1048                          * a valid page order. Consider only values in the
1049                          * valid order range to prevent low_pfn overflow.
1050                          */
1051                         if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1052                                 low_pfn += (1UL << freepage_order) - 1;
1053                                 nr_scanned += (1UL << freepage_order) - 1;
1054                         }
1055                         continue;
1056                 }
1057
1058                 /*
1059                  * Regardless of being on LRU, compound pages such as THP
1060                  * (hugetlbfs is handled above) are not to be compacted unless
1061                  * we are attempting an allocation larger than the compound
1062                  * page size. We can potentially save a lot of iterations if we
1063                  * skip them at once. The check is racy, but we can consider
1064                  * only valid values and the only danger is skipping too much.
1065                  */
1066                 if (PageCompound(page) && !cc->alloc_contig) {
1067                         const unsigned int order = compound_order(page);
1068
1069                         /* Skip based on page order and compaction target order. */
1070                         if (skip_isolation_on_order(order, cc->order)) {
1071                                 if (order <= MAX_PAGE_ORDER) {
1072                                         low_pfn += (1UL << order) - 1;
1073                                         nr_scanned += (1UL << order) - 1;
1074                                 }
1075                                 goto isolate_fail;
1076                         }
1077                 }
1078
1079                 /*
1080                  * Check may be lockless but that's ok as we recheck later.
1081                  * It's possible to migrate LRU and non-lru movable pages.
1082                  * Skip any other type of page
1083                  */
1084                 if (!PageLRU(page)) {
1085                         /*
1086                          * __PageMovable can return false positive so we need
1087                          * to verify it under page_lock.
1088                          */
1089                         if (unlikely(__PageMovable(page)) &&
1090                                         !PageIsolated(page)) {
1091                                 if (locked) {
1092                                         unlock_page_lruvec_irqrestore(locked, flags);
1093                                         locked = NULL;
1094                                 }
1095
1096                                 if (isolate_movable_page(page, mode)) {
1097                                         folio = page_folio(page);
1098                                         goto isolate_success;
1099                                 }
1100                         }
1101
1102                         goto isolate_fail;
1103                 }
1104
1105                 /*
1106                  * Be careful not to clear PageLRU until after we're
1107                  * sure the page is not being freed elsewhere -- the
1108                  * page release code relies on it.
1109                  */
1110                 folio = folio_get_nontail_page(page);
1111                 if (unlikely(!folio))
1112                         goto isolate_fail;
1113
1114                 /*
1115                  * Migration will fail if an anonymous page is pinned in memory,
1116                  * so avoid taking lru_lock and isolating it unnecessarily in an
1117                  * admittedly racy check.
1118                  */
1119                 mapping = folio_mapping(folio);
1120                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1121                         goto isolate_fail_put;
1122
1123                 /*
1124                  * Only allow to migrate anonymous pages in GFP_NOFS context
1125                  * because those do not depend on fs locks.
1126                  */
1127                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1128                         goto isolate_fail_put;
1129
1130                 /* Only take pages on LRU: a check now makes later tests safe */
1131                 if (!folio_test_lru(folio))
1132                         goto isolate_fail_put;
1133
1134                 is_unevictable = folio_test_unevictable(folio);
1135
1136                 /* Compaction might skip unevictable pages but CMA takes them */
1137                 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1138                         goto isolate_fail_put;
1139
1140                 /*
1141                  * To minimise LRU disruption, the caller can indicate with
1142                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1143                  * it will be able to migrate without blocking - clean pages
1144                  * for the most part.  PageWriteback would require blocking.
1145                  */
1146                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1147                         goto isolate_fail_put;
1148
1149                 is_dirty = folio_test_dirty(folio);
1150
1151                 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1152                     (mapping && is_unevictable)) {
1153                         bool migrate_dirty = true;
1154                         bool is_inaccessible;
1155
1156                         /*
1157                          * Only folios without mappings or that have
1158                          * a ->migrate_folio callback are possible to migrate
1159                          * without blocking.
1160                          *
1161                          * Folios from inaccessible mappings are not migratable.
1162                          *
1163                          * However, we can be racing with truncation, which can
1164                          * free the mapping that we need to check. Truncation
1165                          * holds the folio lock until after the folio is removed
1166                          * from the page so holding it ourselves is sufficient.
1167                          *
1168                          * To avoid locking the folio just to check inaccessible,
1169                          * assume every inaccessible folio is also unevictable,
1170                          * which is a cheaper test.  If our assumption goes
1171                          * wrong, it's not a correctness bug, just potentially
1172                          * wasted cycles.
1173                          */
1174                         if (!folio_trylock(folio))
1175                                 goto isolate_fail_put;
1176
1177                         mapping = folio_mapping(folio);
1178                         if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1179                                 migrate_dirty = !mapping ||
1180                                                 mapping->a_ops->migrate_folio;
1181                         }
1182                         is_inaccessible = mapping && mapping_inaccessible(mapping);
1183                         folio_unlock(folio);
1184                         if (!migrate_dirty || is_inaccessible)
1185                                 goto isolate_fail_put;
1186                 }
1187
1188                 /* Try isolate the folio */
1189                 if (!folio_test_clear_lru(folio))
1190                         goto isolate_fail_put;
1191
1192                 lruvec = folio_lruvec(folio);
1193
1194                 /* If we already hold the lock, we can skip some rechecking */
1195                 if (lruvec != locked) {
1196                         if (locked)
1197                                 unlock_page_lruvec_irqrestore(locked, flags);
1198
1199                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1200                         locked = lruvec;
1201
1202                         lruvec_memcg_debug(lruvec, folio);
1203
1204                         /*
1205                          * Try get exclusive access under lock. If marked for
1206                          * skip, the scan is aborted unless the current context
1207                          * is a rescan to reach the end of the pageblock.
1208                          */
1209                         if (!skip_updated && valid_page) {
1210                                 skip_updated = true;
1211                                 if (test_and_set_skip(cc, valid_page) &&
1212                                     !cc->finish_pageblock) {
1213                                         low_pfn = end_pfn;
1214                                         goto isolate_abort;
1215                                 }
1216                         }
1217
1218                         /*
1219                          * Check LRU folio order under the lock
1220                          */
1221                         if (unlikely(skip_isolation_on_order(folio_order(folio),
1222                                                              cc->order) &&
1223                                      !cc->alloc_contig)) {
1224                                 low_pfn += folio_nr_pages(folio) - 1;
1225                                 nr_scanned += folio_nr_pages(folio) - 1;
1226                                 folio_set_lru(folio);
1227                                 goto isolate_fail_put;
1228                         }
1229                 }
1230
1231                 /* The folio is taken off the LRU */
1232                 if (folio_test_large(folio))
1233                         low_pfn += folio_nr_pages(folio) - 1;
1234
1235                 /* Successfully isolated */
1236                 lruvec_del_folio(lruvec, folio);
1237                 node_stat_mod_folio(folio,
1238                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1239                                 folio_nr_pages(folio));
1240
1241 isolate_success:
1242                 list_add(&folio->lru, &cc->migratepages);
1243 isolate_success_no_list:
1244                 cc->nr_migratepages += folio_nr_pages(folio);
1245                 nr_isolated += folio_nr_pages(folio);
1246                 nr_scanned += folio_nr_pages(folio) - 1;
1247
1248                 /*
1249                  * Avoid isolating too much unless this block is being
1250                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1251                  * or a lock is contended. For contention, isolate quickly to
1252                  * potentially remove one source of contention.
1253                  */
1254                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1255                     !cc->finish_pageblock && !cc->contended) {
1256                         ++low_pfn;
1257                         break;
1258                 }
1259
1260                 continue;
1261
1262 isolate_fail_put:
1263                 /* Avoid potential deadlock in freeing page under lru_lock */
1264                 if (locked) {
1265                         unlock_page_lruvec_irqrestore(locked, flags);
1266                         locked = NULL;
1267                 }
1268                 folio_put(folio);
1269
1270 isolate_fail:
1271                 if (!skip_on_failure && ret != -ENOMEM)
1272                         continue;
1273
1274                 /*
1275                  * We have isolated some pages, but then failed. Release them
1276                  * instead of migrating, as we cannot form the cc->order buddy
1277                  * page anyway.
1278                  */
1279                 if (nr_isolated) {
1280                         if (locked) {
1281                                 unlock_page_lruvec_irqrestore(locked, flags);
1282                                 locked = NULL;
1283                         }
1284                         putback_movable_pages(&cc->migratepages);
1285                         cc->nr_migratepages = 0;
1286                         nr_isolated = 0;
1287                 }
1288
1289                 if (low_pfn < next_skip_pfn) {
1290                         low_pfn = next_skip_pfn - 1;
1291                         /*
1292                          * The check near the loop beginning would have updated
1293                          * next_skip_pfn too, but this is a bit simpler.
1294                          */
1295                         next_skip_pfn += 1UL << cc->order;
1296                 }
1297
1298                 if (ret == -ENOMEM)
1299                         break;
1300         }
1301
1302         /*
1303          * The PageBuddy() check could have potentially brought us outside
1304          * the range to be scanned.
1305          */
1306         if (unlikely(low_pfn > end_pfn))
1307                 low_pfn = end_pfn;
1308
1309         folio = NULL;
1310
1311 isolate_abort:
1312         if (locked)
1313                 unlock_page_lruvec_irqrestore(locked, flags);
1314         if (folio) {
1315                 folio_set_lru(folio);
1316                 folio_put(folio);
1317         }
1318
1319         /*
1320          * Update the cached scanner pfn once the pageblock has been scanned.
1321          * Pages will either be migrated in which case there is no point
1322          * scanning in the near future or migration failed in which case the
1323          * failure reason may persist. The block is marked for skipping if
1324          * there were no pages isolated in the block or if the block is
1325          * rescanned twice in a row.
1326          */
1327         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1328                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1329                         set_pageblock_skip(valid_page);
1330                 update_cached_migrate(cc, low_pfn);
1331         }
1332
1333         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1334                                                 nr_scanned, nr_isolated);
1335
1336 fatal_pending:
1337         cc->total_migrate_scanned += nr_scanned;
1338         if (nr_isolated)
1339                 count_compact_events(COMPACTISOLATED, nr_isolated);
1340
1341         cc->migrate_pfn = low_pfn;
1342
1343         return ret;
1344 }
1345
1346 /**
1347  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1348  * @cc:        Compaction control structure.
1349  * @start_pfn: The first PFN to start isolating.
1350  * @end_pfn:   The one-past-last PFN.
1351  *
1352  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1353  * in case we could not allocate a page, or 0.
1354  */
1355 int
1356 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1357                                                         unsigned long end_pfn)
1358 {
1359         unsigned long pfn, block_start_pfn, block_end_pfn;
1360         int ret = 0;
1361
1362         /* Scan block by block. First and last block may be incomplete */
1363         pfn = start_pfn;
1364         block_start_pfn = pageblock_start_pfn(pfn);
1365         if (block_start_pfn < cc->zone->zone_start_pfn)
1366                 block_start_pfn = cc->zone->zone_start_pfn;
1367         block_end_pfn = pageblock_end_pfn(pfn);
1368
1369         for (; pfn < end_pfn; pfn = block_end_pfn,
1370                                 block_start_pfn = block_end_pfn,
1371                                 block_end_pfn += pageblock_nr_pages) {
1372
1373                 block_end_pfn = min(block_end_pfn, end_pfn);
1374
1375                 if (!pageblock_pfn_to_page(block_start_pfn,
1376                                         block_end_pfn, cc->zone))
1377                         continue;
1378
1379                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1380                                                  ISOLATE_UNEVICTABLE);
1381
1382                 if (ret)
1383                         break;
1384
1385                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1386                         break;
1387         }
1388
1389         return ret;
1390 }
1391
1392 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1393 #ifdef CONFIG_COMPACTION
1394
1395 static bool suitable_migration_source(struct compact_control *cc,
1396                                                         struct page *page)
1397 {
1398         int block_mt;
1399
1400         if (pageblock_skip_persistent(page))
1401                 return false;
1402
1403         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1404                 return true;
1405
1406         block_mt = get_pageblock_migratetype(page);
1407
1408         if (cc->migratetype == MIGRATE_MOVABLE)
1409                 return is_migrate_movable(block_mt);
1410         else
1411                 return block_mt == cc->migratetype;
1412 }
1413
1414 /* Returns true if the page is within a block suitable for migration to */
1415 static bool suitable_migration_target(struct compact_control *cc,
1416                                                         struct page *page)
1417 {
1418         /* If the page is a large free page, then disallow migration */
1419         if (PageBuddy(page)) {
1420                 int order = cc->order > 0 ? cc->order : pageblock_order;
1421
1422                 /*
1423                  * We are checking page_order without zone->lock taken. But
1424                  * the only small danger is that we skip a potentially suitable
1425                  * pageblock, so it's not worth to check order for valid range.
1426                  */
1427                 if (buddy_order_unsafe(page) >= order)
1428                         return false;
1429         }
1430
1431         if (cc->ignore_block_suitable)
1432                 return true;
1433
1434         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1435         if (is_migrate_movable(get_pageblock_migratetype(page)))
1436                 return true;
1437
1438         /* Otherwise skip the block */
1439         return false;
1440 }
1441
1442 static inline unsigned int
1443 freelist_scan_limit(struct compact_control *cc)
1444 {
1445         unsigned short shift = BITS_PER_LONG - 1;
1446
1447         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1448 }
1449
1450 /*
1451  * Test whether the free scanner has reached the same or lower pageblock than
1452  * the migration scanner, and compaction should thus terminate.
1453  */
1454 static inline bool compact_scanners_met(struct compact_control *cc)
1455 {
1456         return (cc->free_pfn >> pageblock_order)
1457                 <= (cc->migrate_pfn >> pageblock_order);
1458 }
1459
1460 /*
1461  * Used when scanning for a suitable migration target which scans freelists
1462  * in reverse. Reorders the list such as the unscanned pages are scanned
1463  * first on the next iteration of the free scanner
1464  */
1465 static void
1466 move_freelist_head(struct list_head *freelist, struct page *freepage)
1467 {
1468         LIST_HEAD(sublist);
1469
1470         if (!list_is_first(&freepage->buddy_list, freelist)) {
1471                 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1472                 list_splice_tail(&sublist, freelist);
1473         }
1474 }
1475
1476 /*
1477  * Similar to move_freelist_head except used by the migration scanner
1478  * when scanning forward. It's possible for these list operations to
1479  * move against each other if they search the free list exactly in
1480  * lockstep.
1481  */
1482 static void
1483 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1484 {
1485         LIST_HEAD(sublist);
1486
1487         if (!list_is_last(&freepage->buddy_list, freelist)) {
1488                 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1489                 list_splice_tail(&sublist, freelist);
1490         }
1491 }
1492
1493 static void
1494 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1495 {
1496         unsigned long start_pfn, end_pfn;
1497         struct page *page;
1498
1499         /* Do not search around if there are enough pages already */
1500         if (cc->nr_freepages >= cc->nr_migratepages)
1501                 return;
1502
1503         /* Minimise scanning during async compaction */
1504         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1505                 return;
1506
1507         /* Pageblock boundaries */
1508         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1509         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1510
1511         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1512         if (!page)
1513                 return;
1514
1515         isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1516
1517         /* Skip this pageblock in the future as it's full or nearly full */
1518         if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1519                 set_pageblock_skip(page);
1520 }
1521
1522 /* Search orders in round-robin fashion */
1523 static int next_search_order(struct compact_control *cc, int order)
1524 {
1525         order--;
1526         if (order < 0)
1527                 order = cc->order - 1;
1528
1529         /* Search wrapped around? */
1530         if (order == cc->search_order) {
1531                 cc->search_order--;
1532                 if (cc->search_order < 0)
1533                         cc->search_order = cc->order - 1;
1534                 return -1;
1535         }
1536
1537         return order;
1538 }
1539
1540 static void fast_isolate_freepages(struct compact_control *cc)
1541 {
1542         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1543         unsigned int nr_scanned = 0, total_isolated = 0;
1544         unsigned long low_pfn, min_pfn, highest = 0;
1545         unsigned long nr_isolated = 0;
1546         unsigned long distance;
1547         struct page *page = NULL;
1548         bool scan_start = false;
1549         int order;
1550
1551         /* Full compaction passes in a negative order */
1552         if (cc->order <= 0)
1553                 return;
1554
1555         /*
1556          * If starting the scan, use a deeper search and use the highest
1557          * PFN found if a suitable one is not found.
1558          */
1559         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1560                 limit = pageblock_nr_pages >> 1;
1561                 scan_start = true;
1562         }
1563
1564         /*
1565          * Preferred point is in the top quarter of the scan space but take
1566          * a pfn from the top half if the search is problematic.
1567          */
1568         distance = (cc->free_pfn - cc->migrate_pfn);
1569         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1570         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1571
1572         if (WARN_ON_ONCE(min_pfn > low_pfn))
1573                 low_pfn = min_pfn;
1574
1575         /*
1576          * Search starts from the last successful isolation order or the next
1577          * order to search after a previous failure
1578          */
1579         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1580
1581         for (order = cc->search_order;
1582              !page && order >= 0;
1583              order = next_search_order(cc, order)) {
1584                 struct free_area *area = &cc->zone->free_area[order];
1585                 struct list_head *freelist;
1586                 struct page *freepage;
1587                 unsigned long flags;
1588                 unsigned int order_scanned = 0;
1589                 unsigned long high_pfn = 0;
1590
1591                 if (!area->nr_free)
1592                         continue;
1593
1594                 spin_lock_irqsave(&cc->zone->lock, flags);
1595                 freelist = &area->free_list[MIGRATE_MOVABLE];
1596                 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1597                         unsigned long pfn;
1598
1599                         order_scanned++;
1600                         nr_scanned++;
1601                         pfn = page_to_pfn(freepage);
1602
1603                         if (pfn >= highest)
1604                                 highest = max(pageblock_start_pfn(pfn),
1605                                               cc->zone->zone_start_pfn);
1606
1607                         if (pfn >= low_pfn) {
1608                                 cc->fast_search_fail = 0;
1609                                 cc->search_order = order;
1610                                 page = freepage;
1611                                 break;
1612                         }
1613
1614                         if (pfn >= min_pfn && pfn > high_pfn) {
1615                                 high_pfn = pfn;
1616
1617                                 /* Shorten the scan if a candidate is found */
1618                                 limit >>= 1;
1619                         }
1620
1621                         if (order_scanned >= limit)
1622                                 break;
1623                 }
1624
1625                 /* Use a maximum candidate pfn if a preferred one was not found */
1626                 if (!page && high_pfn) {
1627                         page = pfn_to_page(high_pfn);
1628
1629                         /* Update freepage for the list reorder below */
1630                         freepage = page;
1631                 }
1632
1633                 /* Reorder to so a future search skips recent pages */
1634                 move_freelist_head(freelist, freepage);
1635
1636                 /* Isolate the page if available */
1637                 if (page) {
1638                         if (__isolate_free_page(page, order)) {
1639                                 set_page_private(page, order);
1640                                 nr_isolated = 1 << order;
1641                                 nr_scanned += nr_isolated - 1;
1642                                 total_isolated += nr_isolated;
1643                                 cc->nr_freepages += nr_isolated;
1644                                 list_add_tail(&page->lru, &cc->freepages[order]);
1645                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1646                         } else {
1647                                 /* If isolation fails, abort the search */
1648                                 order = cc->search_order + 1;
1649                                 page = NULL;
1650                         }
1651                 }
1652
1653                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1654
1655                 /* Skip fast search if enough freepages isolated */
1656                 if (cc->nr_freepages >= cc->nr_migratepages)
1657                         break;
1658
1659                 /*
1660                  * Smaller scan on next order so the total scan is related
1661                  * to freelist_scan_limit.
1662                  */
1663                 if (order_scanned >= limit)
1664                         limit = max(1U, limit >> 1);
1665         }
1666
1667         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1668                                                    nr_scanned, total_isolated);
1669
1670         if (!page) {
1671                 cc->fast_search_fail++;
1672                 if (scan_start) {
1673                         /*
1674                          * Use the highest PFN found above min. If one was
1675                          * not found, be pessimistic for direct compaction
1676                          * and use the min mark.
1677                          */
1678                         if (highest >= min_pfn) {
1679                                 page = pfn_to_page(highest);
1680                                 cc->free_pfn = highest;
1681                         } else {
1682                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1683                                         page = pageblock_pfn_to_page(min_pfn,
1684                                                 min(pageblock_end_pfn(min_pfn),
1685                                                     zone_end_pfn(cc->zone)),
1686                                                 cc->zone);
1687                                         if (page && !suitable_migration_target(cc, page))
1688                                                 page = NULL;
1689
1690                                         cc->free_pfn = min_pfn;
1691                                 }
1692                         }
1693                 }
1694         }
1695
1696         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1697                 highest -= pageblock_nr_pages;
1698                 cc->zone->compact_cached_free_pfn = highest;
1699         }
1700
1701         cc->total_free_scanned += nr_scanned;
1702         if (!page)
1703                 return;
1704
1705         low_pfn = page_to_pfn(page);
1706         fast_isolate_around(cc, low_pfn);
1707 }
1708
1709 /*
1710  * Based on information in the current compact_control, find blocks
1711  * suitable for isolating free pages from and then isolate them.
1712  */
1713 static void isolate_freepages(struct compact_control *cc)
1714 {
1715         struct zone *zone = cc->zone;
1716         struct page *page;
1717         unsigned long block_start_pfn;  /* start of current pageblock */
1718         unsigned long isolate_start_pfn; /* exact pfn we start at */
1719         unsigned long block_end_pfn;    /* end of current pageblock */
1720         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1721         unsigned int stride;
1722
1723         /* Try a small search of the free lists for a candidate */
1724         fast_isolate_freepages(cc);
1725         if (cc->nr_freepages)
1726                 return;
1727
1728         /*
1729          * Initialise the free scanner. The starting point is where we last
1730          * successfully isolated from, zone-cached value, or the end of the
1731          * zone when isolating for the first time. For looping we also need
1732          * this pfn aligned down to the pageblock boundary, because we do
1733          * block_start_pfn -= pageblock_nr_pages in the for loop.
1734          * For ending point, take care when isolating in last pageblock of a
1735          * zone which ends in the middle of a pageblock.
1736          * The low boundary is the end of the pageblock the migration scanner
1737          * is using.
1738          */
1739         isolate_start_pfn = cc->free_pfn;
1740         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1741         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1742                                                 zone_end_pfn(zone));
1743         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1744         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1745
1746         /*
1747          * Isolate free pages until enough are available to migrate the
1748          * pages on cc->migratepages. We stop searching if the migrate
1749          * and free page scanners meet or enough free pages are isolated.
1750          */
1751         for (; block_start_pfn >= low_pfn;
1752                                 block_end_pfn = block_start_pfn,
1753                                 block_start_pfn -= pageblock_nr_pages,
1754                                 isolate_start_pfn = block_start_pfn) {
1755                 unsigned long nr_isolated;
1756
1757                 /*
1758                  * This can iterate a massively long zone without finding any
1759                  * suitable migration targets, so periodically check resched.
1760                  */
1761                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1762                         cond_resched();
1763
1764                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1765                                                                         zone);
1766                 if (!page) {
1767                         unsigned long next_pfn;
1768
1769                         next_pfn = skip_offline_sections_reverse(block_start_pfn);
1770                         if (next_pfn)
1771                                 block_start_pfn = max(next_pfn, low_pfn);
1772
1773                         continue;
1774                 }
1775
1776                 /* Check the block is suitable for migration */
1777                 if (!suitable_migration_target(cc, page))
1778                         continue;
1779
1780                 /* If isolation recently failed, do not retry */
1781                 if (!isolation_suitable(cc, page))
1782                         continue;
1783
1784                 /* Found a block suitable for isolating free pages from. */
1785                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1786                                         block_end_pfn, cc->freepages, stride, false);
1787
1788                 /* Update the skip hint if the full pageblock was scanned */
1789                 if (isolate_start_pfn == block_end_pfn)
1790                         update_pageblock_skip(cc, page, block_start_pfn -
1791                                               pageblock_nr_pages);
1792
1793                 /* Are enough freepages isolated? */
1794                 if (cc->nr_freepages >= cc->nr_migratepages) {
1795                         if (isolate_start_pfn >= block_end_pfn) {
1796                                 /*
1797                                  * Restart at previous pageblock if more
1798                                  * freepages can be isolated next time.
1799                                  */
1800                                 isolate_start_pfn =
1801                                         block_start_pfn - pageblock_nr_pages;
1802                         }
1803                         break;
1804                 } else if (isolate_start_pfn < block_end_pfn) {
1805                         /*
1806                          * If isolation failed early, do not continue
1807                          * needlessly.
1808                          */
1809                         break;
1810                 }
1811
1812                 /* Adjust stride depending on isolation */
1813                 if (nr_isolated) {
1814                         stride = 1;
1815                         continue;
1816                 }
1817                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1818         }
1819
1820         /*
1821          * Record where the free scanner will restart next time. Either we
1822          * broke from the loop and set isolate_start_pfn based on the last
1823          * call to isolate_freepages_block(), or we met the migration scanner
1824          * and the loop terminated due to isolate_start_pfn < low_pfn
1825          */
1826         cc->free_pfn = isolate_start_pfn;
1827 }
1828
1829 /*
1830  * This is a migrate-callback that "allocates" freepages by taking pages
1831  * from the isolated freelists in the block we are migrating to.
1832  */
1833 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1834 {
1835         struct compact_control *cc = (struct compact_control *)data;
1836         struct folio *dst;
1837         int order = folio_order(src);
1838         bool has_isolated_pages = false;
1839         int start_order;
1840         struct page *freepage;
1841         unsigned long size;
1842
1843 again:
1844         for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1845                 if (!list_empty(&cc->freepages[start_order]))
1846                         break;
1847
1848         /* no free pages in the list */
1849         if (start_order == NR_PAGE_ORDERS) {
1850                 if (has_isolated_pages)
1851                         return NULL;
1852                 isolate_freepages(cc);
1853                 has_isolated_pages = true;
1854                 goto again;
1855         }
1856
1857         freepage = list_first_entry(&cc->freepages[start_order], struct page,
1858                                 lru);
1859         size = 1 << start_order;
1860
1861         list_del(&freepage->lru);
1862
1863         while (start_order > order) {
1864                 start_order--;
1865                 size >>= 1;
1866
1867                 list_add(&freepage[size].lru, &cc->freepages[start_order]);
1868                 set_page_private(&freepage[size], start_order);
1869         }
1870         dst = (struct folio *)freepage;
1871
1872         post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1873         set_page_refcounted(&dst->page);
1874         if (order)
1875                 prep_compound_page(&dst->page, order);
1876         cc->nr_freepages -= 1 << order;
1877         cc->nr_migratepages -= 1 << order;
1878         return page_rmappable_folio(&dst->page);
1879 }
1880
1881 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1882 {
1883         return alloc_hooks(compaction_alloc_noprof(src, data));
1884 }
1885
1886 /*
1887  * This is a migrate-callback that "frees" freepages back to the isolated
1888  * freelist.  All pages on the freelist are from the same zone, so there is no
1889  * special handling needed for NUMA.
1890  */
1891 static void compaction_free(struct folio *dst, unsigned long data)
1892 {
1893         struct compact_control *cc = (struct compact_control *)data;
1894         int order = folio_order(dst);
1895         struct page *page = &dst->page;
1896
1897         if (folio_put_testzero(dst)) {
1898                 free_pages_prepare(page, order);
1899                 list_add(&dst->lru, &cc->freepages[order]);
1900                 cc->nr_freepages += 1 << order;
1901         }
1902         cc->nr_migratepages += 1 << order;
1903         /*
1904          * someone else has referenced the page, we cannot take it back to our
1905          * free list.
1906          */
1907 }
1908
1909 /* possible outcome of isolate_migratepages */
1910 typedef enum {
1911         ISOLATE_ABORT,          /* Abort compaction now */
1912         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1913         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1914 } isolate_migrate_t;
1915
1916 /*
1917  * Allow userspace to control policy on scanning the unevictable LRU for
1918  * compactable pages.
1919  */
1920 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1921 /*
1922  * Tunable for proactive compaction. It determines how
1923  * aggressively the kernel should compact memory in the
1924  * background. It takes values in the range [0, 100].
1925  */
1926 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1927 static int sysctl_extfrag_threshold = 500;
1928 static int __read_mostly sysctl_compact_memory;
1929
1930 static inline void
1931 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1932 {
1933         if (cc->fast_start_pfn == ULONG_MAX)
1934                 return;
1935
1936         if (!cc->fast_start_pfn)
1937                 cc->fast_start_pfn = pfn;
1938
1939         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1940 }
1941
1942 static inline unsigned long
1943 reinit_migrate_pfn(struct compact_control *cc)
1944 {
1945         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1946                 return cc->migrate_pfn;
1947
1948         cc->migrate_pfn = cc->fast_start_pfn;
1949         cc->fast_start_pfn = ULONG_MAX;
1950
1951         return cc->migrate_pfn;
1952 }
1953
1954 /*
1955  * Briefly search the free lists for a migration source that already has
1956  * some free pages to reduce the number of pages that need migration
1957  * before a pageblock is free.
1958  */
1959 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1960 {
1961         unsigned int limit = freelist_scan_limit(cc);
1962         unsigned int nr_scanned = 0;
1963         unsigned long distance;
1964         unsigned long pfn = cc->migrate_pfn;
1965         unsigned long high_pfn;
1966         int order;
1967         bool found_block = false;
1968
1969         /* Skip hints are relied on to avoid repeats on the fast search */
1970         if (cc->ignore_skip_hint)
1971                 return pfn;
1972
1973         /*
1974          * If the pageblock should be finished then do not select a different
1975          * pageblock.
1976          */
1977         if (cc->finish_pageblock)
1978                 return pfn;
1979
1980         /*
1981          * If the migrate_pfn is not at the start of a zone or the start
1982          * of a pageblock then assume this is a continuation of a previous
1983          * scan restarted due to COMPACT_CLUSTER_MAX.
1984          */
1985         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1986                 return pfn;
1987
1988         /*
1989          * For smaller orders, just linearly scan as the number of pages
1990          * to migrate should be relatively small and does not necessarily
1991          * justify freeing up a large block for a small allocation.
1992          */
1993         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1994                 return pfn;
1995
1996         /*
1997          * Only allow kcompactd and direct requests for movable pages to
1998          * quickly clear out a MOVABLE pageblock for allocation. This
1999          * reduces the risk that a large movable pageblock is freed for
2000          * an unmovable/reclaimable small allocation.
2001          */
2002         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2003                 return pfn;
2004
2005         /*
2006          * When starting the migration scanner, pick any pageblock within the
2007          * first half of the search space. Otherwise try and pick a pageblock
2008          * within the first eighth to reduce the chances that a migration
2009          * target later becomes a source.
2010          */
2011         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2012         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2013                 distance >>= 2;
2014         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2015
2016         for (order = cc->order - 1;
2017              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2018              order--) {
2019                 struct free_area *area = &cc->zone->free_area[order];
2020                 struct list_head *freelist;
2021                 unsigned long flags;
2022                 struct page *freepage;
2023
2024                 if (!area->nr_free)
2025                         continue;
2026
2027                 spin_lock_irqsave(&cc->zone->lock, flags);
2028                 freelist = &area->free_list[MIGRATE_MOVABLE];
2029                 list_for_each_entry(freepage, freelist, buddy_list) {
2030                         unsigned long free_pfn;
2031
2032                         if (nr_scanned++ >= limit) {
2033                                 move_freelist_tail(freelist, freepage);
2034                                 break;
2035                         }
2036
2037                         free_pfn = page_to_pfn(freepage);
2038                         if (free_pfn < high_pfn) {
2039                                 /*
2040                                  * Avoid if skipped recently. Ideally it would
2041                                  * move to the tail but even safe iteration of
2042                                  * the list assumes an entry is deleted, not
2043                                  * reordered.
2044                                  */
2045                                 if (get_pageblock_skip(freepage))
2046                                         continue;
2047
2048                                 /* Reorder to so a future search skips recent pages */
2049                                 move_freelist_tail(freelist, freepage);
2050
2051                                 update_fast_start_pfn(cc, free_pfn);
2052                                 pfn = pageblock_start_pfn(free_pfn);
2053                                 if (pfn < cc->zone->zone_start_pfn)
2054                                         pfn = cc->zone->zone_start_pfn;
2055                                 cc->fast_search_fail = 0;
2056                                 found_block = true;
2057                                 break;
2058                         }
2059                 }
2060                 spin_unlock_irqrestore(&cc->zone->lock, flags);
2061         }
2062
2063         cc->total_migrate_scanned += nr_scanned;
2064
2065         /*
2066          * If fast scanning failed then use a cached entry for a page block
2067          * that had free pages as the basis for starting a linear scan.
2068          */
2069         if (!found_block) {
2070                 cc->fast_search_fail++;
2071                 pfn = reinit_migrate_pfn(cc);
2072         }
2073         return pfn;
2074 }
2075
2076 /*
2077  * Isolate all pages that can be migrated from the first suitable block,
2078  * starting at the block pointed to by the migrate scanner pfn within
2079  * compact_control.
2080  */
2081 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2082 {
2083         unsigned long block_start_pfn;
2084         unsigned long block_end_pfn;
2085         unsigned long low_pfn;
2086         struct page *page;
2087         const isolate_mode_t isolate_mode =
2088                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2089                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2090         bool fast_find_block;
2091
2092         /*
2093          * Start at where we last stopped, or beginning of the zone as
2094          * initialized by compact_zone(). The first failure will use
2095          * the lowest PFN as the starting point for linear scanning.
2096          */
2097         low_pfn = fast_find_migrateblock(cc);
2098         block_start_pfn = pageblock_start_pfn(low_pfn);
2099         if (block_start_pfn < cc->zone->zone_start_pfn)
2100                 block_start_pfn = cc->zone->zone_start_pfn;
2101
2102         /*
2103          * fast_find_migrateblock() has already ensured the pageblock is not
2104          * set with a skipped flag, so to avoid the isolation_suitable check
2105          * below again, check whether the fast search was successful.
2106          */
2107         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2108
2109         /* Only scan within a pageblock boundary */
2110         block_end_pfn = pageblock_end_pfn(low_pfn);
2111
2112         /*
2113          * Iterate over whole pageblocks until we find the first suitable.
2114          * Do not cross the free scanner.
2115          */
2116         for (; block_end_pfn <= cc->free_pfn;
2117                         fast_find_block = false,
2118                         cc->migrate_pfn = low_pfn = block_end_pfn,
2119                         block_start_pfn = block_end_pfn,
2120                         block_end_pfn += pageblock_nr_pages) {
2121
2122                 /*
2123                  * This can potentially iterate a massively long zone with
2124                  * many pageblocks unsuitable, so periodically check if we
2125                  * need to schedule.
2126                  */
2127                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2128                         cond_resched();
2129
2130                 page = pageblock_pfn_to_page(block_start_pfn,
2131                                                 block_end_pfn, cc->zone);
2132                 if (!page) {
2133                         unsigned long next_pfn;
2134
2135                         next_pfn = skip_offline_sections(block_start_pfn);
2136                         if (next_pfn)
2137                                 block_end_pfn = min(next_pfn, cc->free_pfn);
2138                         continue;
2139                 }
2140
2141                 /*
2142                  * If isolation recently failed, do not retry. Only check the
2143                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2144                  * to be visited multiple times. Assume skip was checked
2145                  * before making it "skip" so other compaction instances do
2146                  * not scan the same block.
2147                  */
2148                 if ((pageblock_aligned(low_pfn) ||
2149                      low_pfn == cc->zone->zone_start_pfn) &&
2150                     !fast_find_block && !isolation_suitable(cc, page))
2151                         continue;
2152
2153                 /*
2154                  * For async direct compaction, only scan the pageblocks of the
2155                  * same migratetype without huge pages. Async direct compaction
2156                  * is optimistic to see if the minimum amount of work satisfies
2157                  * the allocation. The cached PFN is updated as it's possible
2158                  * that all remaining blocks between source and target are
2159                  * unsuitable and the compaction scanners fail to meet.
2160                  */
2161                 if (!suitable_migration_source(cc, page)) {
2162                         update_cached_migrate(cc, block_end_pfn);
2163                         continue;
2164                 }
2165
2166                 /* Perform the isolation */
2167                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2168                                                 isolate_mode))
2169                         return ISOLATE_ABORT;
2170
2171                 /*
2172                  * Either we isolated something and proceed with migration. Or
2173                  * we failed and compact_zone should decide if we should
2174                  * continue or not.
2175                  */
2176                 break;
2177         }
2178
2179         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2180 }
2181
2182 /*
2183  * Determine whether kswapd is (or recently was!) running on this node.
2184  *
2185  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2186  * zero it.
2187  */
2188 static bool kswapd_is_running(pg_data_t *pgdat)
2189 {
2190         bool running;
2191
2192         pgdat_kswapd_lock(pgdat);
2193         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2194         pgdat_kswapd_unlock(pgdat);
2195
2196         return running;
2197 }
2198
2199 /*
2200  * A zone's fragmentation score is the external fragmentation wrt to the
2201  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2202  */
2203 static unsigned int fragmentation_score_zone(struct zone *zone)
2204 {
2205         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2206 }
2207
2208 /*
2209  * A weighted zone's fragmentation score is the external fragmentation
2210  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2211  * returns a value in the range [0, 100].
2212  *
2213  * The scaling factor ensures that proactive compaction focuses on larger
2214  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2215  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2216  * and thus never exceeds the high threshold for proactive compaction.
2217  */
2218 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2219 {
2220         unsigned long score;
2221
2222         score = zone->present_pages * fragmentation_score_zone(zone);
2223         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2224 }
2225
2226 /*
2227  * The per-node proactive (background) compaction process is started by its
2228  * corresponding kcompactd thread when the node's fragmentation score
2229  * exceeds the high threshold. The compaction process remains active till
2230  * the node's score falls below the low threshold, or one of the back-off
2231  * conditions is met.
2232  */
2233 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2234 {
2235         unsigned int score = 0;
2236         int zoneid;
2237
2238         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2239                 struct zone *zone;
2240
2241                 zone = &pgdat->node_zones[zoneid];
2242                 if (!populated_zone(zone))
2243                         continue;
2244                 score += fragmentation_score_zone_weighted(zone);
2245         }
2246
2247         return score;
2248 }
2249
2250 static unsigned int fragmentation_score_wmark(bool low)
2251 {
2252         unsigned int wmark_low, leeway;
2253
2254         wmark_low = 100U - sysctl_compaction_proactiveness;
2255         leeway = min(10U, wmark_low / 2);
2256         return low ? wmark_low : min(wmark_low + leeway, 100U);
2257 }
2258
2259 static bool should_proactive_compact_node(pg_data_t *pgdat)
2260 {
2261         int wmark_high;
2262
2263         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2264                 return false;
2265
2266         wmark_high = fragmentation_score_wmark(false);
2267         return fragmentation_score_node(pgdat) > wmark_high;
2268 }
2269
2270 static enum compact_result __compact_finished(struct compact_control *cc)
2271 {
2272         unsigned int order;
2273         const int migratetype = cc->migratetype;
2274         int ret;
2275
2276         /* Compaction run completes if the migrate and free scanner meet */
2277         if (compact_scanners_met(cc)) {
2278                 /* Let the next compaction start anew. */
2279                 reset_cached_positions(cc->zone);
2280
2281                 /*
2282                  * Mark that the PG_migrate_skip information should be cleared
2283                  * by kswapd when it goes to sleep. kcompactd does not set the
2284                  * flag itself as the decision to be clear should be directly
2285                  * based on an allocation request.
2286                  */
2287                 if (cc->direct_compaction)
2288                         cc->zone->compact_blockskip_flush = true;
2289
2290                 if (cc->whole_zone)
2291                         return COMPACT_COMPLETE;
2292                 else
2293                         return COMPACT_PARTIAL_SKIPPED;
2294         }
2295
2296         if (cc->proactive_compaction) {
2297                 int score, wmark_low;
2298                 pg_data_t *pgdat;
2299
2300                 pgdat = cc->zone->zone_pgdat;
2301                 if (kswapd_is_running(pgdat))
2302                         return COMPACT_PARTIAL_SKIPPED;
2303
2304                 score = fragmentation_score_zone(cc->zone);
2305                 wmark_low = fragmentation_score_wmark(true);
2306
2307                 if (score > wmark_low)
2308                         ret = COMPACT_CONTINUE;
2309                 else
2310                         ret = COMPACT_SUCCESS;
2311
2312                 goto out;
2313         }
2314
2315         if (is_via_compact_memory(cc->order))
2316                 return COMPACT_CONTINUE;
2317
2318         /*
2319          * Always finish scanning a pageblock to reduce the possibility of
2320          * fallbacks in the future. This is particularly important when
2321          * migration source is unmovable/reclaimable but it's not worth
2322          * special casing.
2323          */
2324         if (!pageblock_aligned(cc->migrate_pfn))
2325                 return COMPACT_CONTINUE;
2326
2327         /*
2328          * When defrag_mode is enabled, make kcompactd target
2329          * watermarks in whole pageblocks. Because they can be stolen
2330          * without polluting, no further fallback checks are needed.
2331          */
2332         if (defrag_mode && !cc->direct_compaction) {
2333                 if (__zone_watermark_ok(cc->zone, cc->order,
2334                                         high_wmark_pages(cc->zone),
2335                                         cc->highest_zoneidx, cc->alloc_flags,
2336                                         zone_page_state(cc->zone,
2337                                                         NR_FREE_PAGES_BLOCKS)))
2338                         return COMPACT_SUCCESS;
2339
2340                 return COMPACT_CONTINUE;
2341         }
2342
2343         /* Direct compactor: Is a suitable page free? */
2344         ret = COMPACT_NO_SUITABLE_PAGE;
2345         for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2346                 struct free_area *area = &cc->zone->free_area[order];
2347
2348                 /* Job done if page is free of the right migratetype */
2349                 if (!free_area_empty(area, migratetype))
2350                         return COMPACT_SUCCESS;
2351
2352 #ifdef CONFIG_CMA
2353                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2354                 if (migratetype == MIGRATE_MOVABLE &&
2355                         !free_area_empty(area, MIGRATE_CMA))
2356                         return COMPACT_SUCCESS;
2357 #endif
2358                 /*
2359                  * Job done if allocation would steal freepages from
2360                  * other migratetype buddy lists.
2361                  */
2362                 if (find_suitable_fallback(area, order, migratetype, true) >= 0)
2363                         /*
2364                          * Movable pages are OK in any pageblock. If we are
2365                          * stealing for a non-movable allocation, make sure
2366                          * we finish compacting the current pageblock first
2367                          * (which is assured by the above migrate_pfn align
2368                          * check) so it is as free as possible and we won't
2369                          * have to steal another one soon.
2370                          */
2371                         return COMPACT_SUCCESS;
2372         }
2373
2374 out:
2375         if (cc->contended || fatal_signal_pending(current))
2376                 ret = COMPACT_CONTENDED;
2377
2378         return ret;
2379 }
2380
2381 static enum compact_result compact_finished(struct compact_control *cc)
2382 {
2383         int ret;
2384
2385         ret = __compact_finished(cc);
2386         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2387         if (ret == COMPACT_NO_SUITABLE_PAGE)
2388                 ret = COMPACT_CONTINUE;
2389
2390         return ret;
2391 }
2392
2393 static bool __compaction_suitable(struct zone *zone, int order,
2394                                   unsigned long watermark, int highest_zoneidx,
2395                                   unsigned long free_pages)
2396 {
2397         /*
2398          * Watermarks for order-0 must be met for compaction to be able to
2399          * isolate free pages for migration targets. This means that the
2400          * watermark have to match, or be more pessimistic than the check in
2401          * __isolate_free_page().
2402          *
2403          * For costly orders, we require a higher watermark for compaction to
2404          * proceed to increase its chances.
2405          *
2406          * We use the direct compactor's highest_zoneidx to skip over zones
2407          * where lowmem reserves would prevent allocation even if compaction
2408          * succeeds.
2409          *
2410          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2411          * suitable migration targets.
2412          */
2413         watermark += compact_gap(order);
2414         if (order > PAGE_ALLOC_COSTLY_ORDER)
2415                 watermark += low_wmark_pages(zone) - min_wmark_pages(zone);
2416         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2417                                    ALLOC_CMA, free_pages);
2418 }
2419
2420 /*
2421  * compaction_suitable: Is this suitable to run compaction on this zone now?
2422  */
2423 bool compaction_suitable(struct zone *zone, int order, unsigned long watermark,
2424                          int highest_zoneidx)
2425 {
2426         enum compact_result compact_result;
2427         bool suitable;
2428
2429         suitable = __compaction_suitable(zone, order, watermark, highest_zoneidx,
2430                                          zone_page_state(zone, NR_FREE_PAGES));
2431         /*
2432          * fragmentation index determines if allocation failures are due to
2433          * low memory or external fragmentation
2434          *
2435          * index of -1000 would imply allocations might succeed depending on
2436          * watermarks, but we already failed the high-order watermark check
2437          * index towards 0 implies failure is due to lack of memory
2438          * index towards 1000 implies failure is due to fragmentation
2439          *
2440          * Only compact if a failure would be due to fragmentation. Also
2441          * ignore fragindex for non-costly orders where the alternative to
2442          * a successful reclaim/compaction is OOM. Fragindex and the
2443          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2444          * excessive compaction for costly orders, but it should not be at the
2445          * expense of system stability.
2446          */
2447         if (suitable) {
2448                 compact_result = COMPACT_CONTINUE;
2449                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2450                         int fragindex = fragmentation_index(zone, order);
2451
2452                         if (fragindex >= 0 &&
2453                             fragindex <= sysctl_extfrag_threshold) {
2454                                 suitable = false;
2455                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2456                         }
2457                 }
2458         } else {
2459                 compact_result = COMPACT_SKIPPED;
2460         }
2461
2462         trace_mm_compaction_suitable(zone, order, compact_result);
2463
2464         return suitable;
2465 }
2466
2467 /* Used by direct reclaimers */
2468 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2469                 int alloc_flags)
2470 {
2471         struct zone *zone;
2472         struct zoneref *z;
2473
2474         /*
2475          * Make sure at least one zone would pass __compaction_suitable if we continue
2476          * retrying the reclaim.
2477          */
2478         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2479                                 ac->highest_zoneidx, ac->nodemask) {
2480                 unsigned long available;
2481
2482                 /*
2483                  * Do not consider all the reclaimable memory because we do not
2484                  * want to trash just for a single high order allocation which
2485                  * is even not guaranteed to appear even if __compaction_suitable
2486                  * is happy about the watermark check.
2487                  */
2488                 available = zone_reclaimable_pages(zone) / order;
2489                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2490                 if (__compaction_suitable(zone, order, min_wmark_pages(zone),
2491                                           ac->highest_zoneidx, available))
2492                         return true;
2493         }
2494
2495         return false;
2496 }
2497
2498 /*
2499  * Should we do compaction for target allocation order.
2500  * Return COMPACT_SUCCESS if allocation for target order can be already
2501  * satisfied
2502  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2503  * Return COMPACT_CONTINUE if compaction for target order should be ran
2504  */
2505 static enum compact_result
2506 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2507                                  int highest_zoneidx, unsigned int alloc_flags,
2508                                  bool async, bool kcompactd)
2509 {
2510         unsigned long free_pages;
2511         unsigned long watermark;
2512
2513         if (kcompactd && defrag_mode)
2514                 free_pages = zone_page_state(zone, NR_FREE_PAGES_BLOCKS);
2515         else
2516                 free_pages = zone_page_state(zone, NR_FREE_PAGES);
2517
2518         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2519         if (__zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2520                                 alloc_flags, free_pages))
2521                 return COMPACT_SUCCESS;
2522
2523         /*
2524          * For unmovable allocations (without ALLOC_CMA), check if there is enough
2525          * free memory in the non-CMA pageblocks. Otherwise compaction could form
2526          * the high-order page in CMA pageblocks, which would not help the
2527          * allocation to succeed. However, limit the check to costly order async
2528          * compaction (such as opportunistic THP attempts) because there is the
2529          * possibility that compaction would migrate pages from non-CMA to CMA
2530          * pageblock.
2531          */
2532         if (order > PAGE_ALLOC_COSTLY_ORDER && async &&
2533             !(alloc_flags & ALLOC_CMA)) {
2534                 if (!__zone_watermark_ok(zone, 0, watermark + compact_gap(order),
2535                                          highest_zoneidx, 0,
2536                                          zone_page_state(zone, NR_FREE_PAGES)))
2537                         return COMPACT_SKIPPED;
2538         }
2539
2540         if (!compaction_suitable(zone, order, watermark, highest_zoneidx))
2541                 return COMPACT_SKIPPED;
2542
2543         return COMPACT_CONTINUE;
2544 }
2545
2546 static enum compact_result
2547 compact_zone(struct compact_control *cc, struct capture_control *capc)
2548 {
2549         enum compact_result ret;
2550         unsigned long start_pfn = cc->zone->zone_start_pfn;
2551         unsigned long end_pfn = zone_end_pfn(cc->zone);
2552         unsigned long last_migrated_pfn;
2553         const bool sync = cc->mode != MIGRATE_ASYNC;
2554         bool update_cached;
2555         unsigned int nr_succeeded = 0, nr_migratepages;
2556         int order;
2557
2558         /*
2559          * These counters track activities during zone compaction.  Initialize
2560          * them before compacting a new zone.
2561          */
2562         cc->total_migrate_scanned = 0;
2563         cc->total_free_scanned = 0;
2564         cc->nr_migratepages = 0;
2565         cc->nr_freepages = 0;
2566         for (order = 0; order < NR_PAGE_ORDERS; order++)
2567                 INIT_LIST_HEAD(&cc->freepages[order]);
2568         INIT_LIST_HEAD(&cc->migratepages);
2569
2570         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2571
2572         if (!is_via_compact_memory(cc->order)) {
2573                 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2574                                                        cc->highest_zoneidx,
2575                                                        cc->alloc_flags,
2576                                                        cc->mode == MIGRATE_ASYNC,
2577                                                        !cc->direct_compaction);
2578                 if (ret != COMPACT_CONTINUE)
2579                         return ret;
2580         }
2581
2582         /*
2583          * Clear pageblock skip if there were failures recently and compaction
2584          * is about to be retried after being deferred.
2585          */
2586         if (compaction_restarting(cc->zone, cc->order))
2587                 __reset_isolation_suitable(cc->zone);
2588
2589         /*
2590          * Setup to move all movable pages to the end of the zone. Used cached
2591          * information on where the scanners should start (unless we explicitly
2592          * want to compact the whole zone), but check that it is initialised
2593          * by ensuring the values are within zone boundaries.
2594          */
2595         cc->fast_start_pfn = 0;
2596         if (cc->whole_zone) {
2597                 cc->migrate_pfn = start_pfn;
2598                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2599         } else {
2600                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2601                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2602                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2603                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2604                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2605                 }
2606                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2607                         cc->migrate_pfn = start_pfn;
2608                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2609                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2610                 }
2611
2612                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2613                         cc->whole_zone = true;
2614         }
2615
2616         last_migrated_pfn = 0;
2617
2618         /*
2619          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2620          * the basis that some migrations will fail in ASYNC mode. However,
2621          * if the cached PFNs match and pageblocks are skipped due to having
2622          * no isolation candidates, then the sync state does not matter.
2623          * Until a pageblock with isolation candidates is found, keep the
2624          * cached PFNs in sync to avoid revisiting the same blocks.
2625          */
2626         update_cached = !sync &&
2627                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2628
2629         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2630
2631         /* lru_add_drain_all could be expensive with involving other CPUs */
2632         lru_add_drain();
2633
2634         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2635                 int err;
2636                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2637
2638                 /*
2639                  * Avoid multiple rescans of the same pageblock which can
2640                  * happen if a page cannot be isolated (dirty/writeback in
2641                  * async mode) or if the migrated pages are being allocated
2642                  * before the pageblock is cleared.  The first rescan will
2643                  * capture the entire pageblock for migration. If it fails,
2644                  * it'll be marked skip and scanning will proceed as normal.
2645                  */
2646                 cc->finish_pageblock = false;
2647                 if (pageblock_start_pfn(last_migrated_pfn) ==
2648                     pageblock_start_pfn(iteration_start_pfn)) {
2649                         cc->finish_pageblock = true;
2650                 }
2651
2652 rescan:
2653                 switch (isolate_migratepages(cc)) {
2654                 case ISOLATE_ABORT:
2655                         ret = COMPACT_CONTENDED;
2656                         putback_movable_pages(&cc->migratepages);
2657                         cc->nr_migratepages = 0;
2658                         goto out;
2659                 case ISOLATE_NONE:
2660                         if (update_cached) {
2661                                 cc->zone->compact_cached_migrate_pfn[1] =
2662                                         cc->zone->compact_cached_migrate_pfn[0];
2663                         }
2664
2665                         /*
2666                          * We haven't isolated and migrated anything, but
2667                          * there might still be unflushed migrations from
2668                          * previous cc->order aligned block.
2669                          */
2670                         goto check_drain;
2671                 case ISOLATE_SUCCESS:
2672                         update_cached = false;
2673                         last_migrated_pfn = max(cc->zone->zone_start_pfn,
2674                                 pageblock_start_pfn(cc->migrate_pfn - 1));
2675                 }
2676
2677                 /*
2678                  * Record the number of pages to migrate since the
2679                  * compaction_alloc/free() will update cc->nr_migratepages
2680                  * properly.
2681                  */
2682                 nr_migratepages = cc->nr_migratepages;
2683                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2684                                 compaction_free, (unsigned long)cc, cc->mode,
2685                                 MR_COMPACTION, &nr_succeeded);
2686
2687                 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2688
2689                 /* All pages were either migrated or will be released */
2690                 cc->nr_migratepages = 0;
2691                 if (err) {
2692                         putback_movable_pages(&cc->migratepages);
2693                         /*
2694                          * migrate_pages() may return -ENOMEM when scanners meet
2695                          * and we want compact_finished() to detect it
2696                          */
2697                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2698                                 ret = COMPACT_CONTENDED;
2699                                 goto out;
2700                         }
2701                         /*
2702                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2703                          * within the pageblock_order-aligned block and
2704                          * fast_find_migrateblock may be used then scan the
2705                          * remainder of the pageblock. This will mark the
2706                          * pageblock "skip" to avoid rescanning in the near
2707                          * future. This will isolate more pages than necessary
2708                          * for the request but avoid loops due to
2709                          * fast_find_migrateblock revisiting blocks that were
2710                          * recently partially scanned.
2711                          */
2712                         if (!pageblock_aligned(cc->migrate_pfn) &&
2713                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2714                             (cc->mode < MIGRATE_SYNC)) {
2715                                 cc->finish_pageblock = true;
2716
2717                                 /*
2718                                  * Draining pcplists does not help THP if
2719                                  * any page failed to migrate. Even after
2720                                  * drain, the pageblock will not be free.
2721                                  */
2722                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2723                                         last_migrated_pfn = 0;
2724
2725                                 goto rescan;
2726                         }
2727                 }
2728
2729                 /* Stop if a page has been captured */
2730                 if (capc && capc->page) {
2731                         ret = COMPACT_SUCCESS;
2732                         break;
2733                 }
2734
2735 check_drain:
2736                 /*
2737                  * Has the migration scanner moved away from the previous
2738                  * cc->order aligned block where we migrated from? If yes,
2739                  * flush the pages that were freed, so that they can merge and
2740                  * compact_finished() can detect immediately if allocation
2741                  * would succeed.
2742                  */
2743                 if (cc->order > 0 && last_migrated_pfn) {
2744                         unsigned long current_block_start =
2745                                 block_start_pfn(cc->migrate_pfn, cc->order);
2746
2747                         if (last_migrated_pfn < current_block_start) {
2748                                 lru_add_drain_cpu_zone(cc->zone);
2749                                 /* No more flushing until we migrate again */
2750                                 last_migrated_pfn = 0;
2751                         }
2752                 }
2753         }
2754
2755 out:
2756         /*
2757          * Release free pages and update where the free scanner should restart,
2758          * so we don't leave any returned pages behind in the next attempt.
2759          */
2760         if (cc->nr_freepages > 0) {
2761                 unsigned long free_pfn = release_free_list(cc->freepages);
2762
2763                 cc->nr_freepages = 0;
2764                 VM_BUG_ON(free_pfn == 0);
2765                 /* The cached pfn is always the first in a pageblock */
2766                 free_pfn = pageblock_start_pfn(free_pfn);
2767                 /*
2768                  * Only go back, not forward. The cached pfn might have been
2769                  * already reset to zone end in compact_finished()
2770                  */
2771                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2772                         cc->zone->compact_cached_free_pfn = free_pfn;
2773         }
2774
2775         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2776         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2777
2778         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2779
2780         VM_BUG_ON(!list_empty(&cc->migratepages));
2781
2782         return ret;
2783 }
2784
2785 static enum compact_result compact_zone_order(struct zone *zone, int order,
2786                 gfp_t gfp_mask, enum compact_priority prio,
2787                 unsigned int alloc_flags, int highest_zoneidx,
2788                 struct page **capture)
2789 {
2790         enum compact_result ret;
2791         struct compact_control cc = {
2792                 .order = order,
2793                 .search_order = order,
2794                 .gfp_mask = gfp_mask,
2795                 .zone = zone,
2796                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2797                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2798                 .alloc_flags = alloc_flags,
2799                 .highest_zoneidx = highest_zoneidx,
2800                 .direct_compaction = true,
2801                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2802                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2803                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2804         };
2805         struct capture_control capc = {
2806                 .cc = &cc,
2807                 .page = NULL,
2808         };
2809
2810         /*
2811          * Make sure the structs are really initialized before we expose the
2812          * capture control, in case we are interrupted and the interrupt handler
2813          * frees a page.
2814          */
2815         barrier();
2816         WRITE_ONCE(current->capture_control, &capc);
2817
2818         ret = compact_zone(&cc, &capc);
2819
2820         /*
2821          * Make sure we hide capture control first before we read the captured
2822          * page pointer, otherwise an interrupt could free and capture a page
2823          * and we would leak it.
2824          */
2825         WRITE_ONCE(current->capture_control, NULL);
2826         *capture = READ_ONCE(capc.page);
2827         /*
2828          * Technically, it is also possible that compaction is skipped but
2829          * the page is still captured out of luck(IRQ came and freed the page).
2830          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2831          * the COMPACT[STALL|FAIL] when compaction is skipped.
2832          */
2833         if (*capture)
2834                 ret = COMPACT_SUCCESS;
2835
2836         return ret;
2837 }
2838
2839 /**
2840  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2841  * @gfp_mask: The GFP mask of the current allocation
2842  * @order: The order of the current allocation
2843  * @alloc_flags: The allocation flags of the current allocation
2844  * @ac: The context of current allocation
2845  * @prio: Determines how hard direct compaction should try to succeed
2846  * @capture: Pointer to free page created by compaction will be stored here
2847  *
2848  * This is the main entry point for direct page compaction.
2849  */
2850 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2851                 unsigned int alloc_flags, const struct alloc_context *ac,
2852                 enum compact_priority prio, struct page **capture)
2853 {
2854         struct zoneref *z;
2855         struct zone *zone;
2856         enum compact_result rc = COMPACT_SKIPPED;
2857
2858         if (!gfp_compaction_allowed(gfp_mask))
2859                 return COMPACT_SKIPPED;
2860
2861         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2862
2863         /* Compact each zone in the list */
2864         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2865                                         ac->highest_zoneidx, ac->nodemask) {
2866                 enum compact_result status;
2867
2868                 if (cpusets_enabled() &&
2869                         (alloc_flags & ALLOC_CPUSET) &&
2870                         !__cpuset_zone_allowed(zone, gfp_mask))
2871                                 continue;
2872
2873                 if (prio > MIN_COMPACT_PRIORITY
2874                                         && compaction_deferred(zone, order)) {
2875                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2876                         continue;
2877                 }
2878
2879                 status = compact_zone_order(zone, order, gfp_mask, prio,
2880                                 alloc_flags, ac->highest_zoneidx, capture);
2881                 rc = max(status, rc);
2882
2883                 /* The allocation should succeed, stop compacting */
2884                 if (status == COMPACT_SUCCESS) {
2885                         /*
2886                          * We think the allocation will succeed in this zone,
2887                          * but it is not certain, hence the false. The caller
2888                          * will repeat this with true if allocation indeed
2889                          * succeeds in this zone.
2890                          */
2891                         compaction_defer_reset(zone, order, false);
2892
2893                         break;
2894                 }
2895
2896                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2897                                         status == COMPACT_PARTIAL_SKIPPED))
2898                         /*
2899                          * We think that allocation won't succeed in this zone
2900                          * so we defer compaction there. If it ends up
2901                          * succeeding after all, it will be reset.
2902                          */
2903                         defer_compaction(zone, order);
2904
2905                 /*
2906                  * We might have stopped compacting due to need_resched() in
2907                  * async compaction, or due to a fatal signal detected. In that
2908                  * case do not try further zones
2909                  */
2910                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2911                                         || fatal_signal_pending(current))
2912                         break;
2913         }
2914
2915         return rc;
2916 }
2917
2918 /*
2919  * compact_node() - compact all zones within a node
2920  * @pgdat: The node page data
2921  * @proactive: Whether the compaction is proactive
2922  *
2923  * For proactive compaction, compact till each zone's fragmentation score
2924  * reaches within proactive compaction thresholds (as determined by the
2925  * proactiveness tunable), it is possible that the function returns before
2926  * reaching score targets due to various back-off conditions, such as,
2927  * contention on per-node or per-zone locks.
2928  */
2929 static int compact_node(pg_data_t *pgdat, bool proactive)
2930 {
2931         int zoneid;
2932         struct zone *zone;
2933         struct compact_control cc = {
2934                 .order = -1,
2935                 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2936                 .ignore_skip_hint = true,
2937                 .whole_zone = true,
2938                 .gfp_mask = GFP_KERNEL,
2939                 .proactive_compaction = proactive,
2940         };
2941
2942         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2943                 zone = &pgdat->node_zones[zoneid];
2944                 if (!populated_zone(zone))
2945                         continue;
2946
2947                 if (fatal_signal_pending(current))
2948                         return -EINTR;
2949
2950                 cc.zone = zone;
2951
2952                 compact_zone(&cc, NULL);
2953
2954                 if (proactive) {
2955                         count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2956                                              cc.total_migrate_scanned);
2957                         count_compact_events(KCOMPACTD_FREE_SCANNED,
2958                                              cc.total_free_scanned);
2959                 }
2960         }
2961
2962         return 0;
2963 }
2964
2965 /* Compact all zones of all nodes in the system */
2966 static int compact_nodes(void)
2967 {
2968         int ret, nid;
2969
2970         /* Flush pending updates to the LRU lists */
2971         lru_add_drain_all();
2972
2973         for_each_online_node(nid) {
2974                 ret = compact_node(NODE_DATA(nid), false);
2975                 if (ret)
2976                         return ret;
2977         }
2978
2979         return 0;
2980 }
2981
2982 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2983                 void *buffer, size_t *length, loff_t *ppos)
2984 {
2985         int rc, nid;
2986
2987         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2988         if (rc)
2989                 return rc;
2990
2991         if (write && sysctl_compaction_proactiveness) {
2992                 for_each_online_node(nid) {
2993                         pg_data_t *pgdat = NODE_DATA(nid);
2994
2995                         if (pgdat->proactive_compact_trigger)
2996                                 continue;
2997
2998                         pgdat->proactive_compact_trigger = true;
2999                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
3000                                                              pgdat->nr_zones - 1);
3001                         wake_up_interruptible(&pgdat->kcompactd_wait);
3002                 }
3003         }
3004
3005         return 0;
3006 }
3007
3008 /*
3009  * This is the entry point for compacting all nodes via
3010  * /proc/sys/vm/compact_memory
3011  */
3012 static int sysctl_compaction_handler(const struct ctl_table *table, int write,
3013                         void *buffer, size_t *length, loff_t *ppos)
3014 {
3015         int ret;
3016
3017         ret = proc_dointvec(table, write, buffer, length, ppos);
3018         if (ret)
3019                 return ret;
3020
3021         if (sysctl_compact_memory != 1)
3022                 return -EINVAL;
3023
3024         if (write)
3025                 ret = compact_nodes();
3026
3027         return ret;
3028 }
3029
3030 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
3031 static ssize_t compact_store(struct device *dev,
3032                              struct device_attribute *attr,
3033                              const char *buf, size_t count)
3034 {
3035         int nid = dev->id;
3036
3037         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3038                 /* Flush pending updates to the LRU lists */
3039                 lru_add_drain_all();
3040
3041                 compact_node(NODE_DATA(nid), false);
3042         }
3043
3044         return count;
3045 }
3046 static DEVICE_ATTR_WO(compact);
3047
3048 int compaction_register_node(struct node *node)
3049 {
3050         return device_create_file(&node->dev, &dev_attr_compact);
3051 }
3052
3053 void compaction_unregister_node(struct node *node)
3054 {
3055         device_remove_file(&node->dev, &dev_attr_compact);
3056 }
3057 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3058
3059 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3060 {
3061         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3062                 pgdat->proactive_compact_trigger;
3063 }
3064
3065 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3066 {
3067         int zoneid;
3068         struct zone *zone;
3069         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3070         enum compact_result ret;
3071         unsigned int alloc_flags = defrag_mode ?
3072                 ALLOC_WMARK_HIGH : ALLOC_WMARK_MIN;
3073
3074         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3075                 zone = &pgdat->node_zones[zoneid];
3076
3077                 if (!populated_zone(zone))
3078                         continue;
3079
3080                 ret = compaction_suit_allocation_order(zone,
3081                                 pgdat->kcompactd_max_order,
3082                                 highest_zoneidx, alloc_flags,
3083                                 false, true);
3084                 if (ret == COMPACT_CONTINUE)
3085                         return true;
3086         }
3087
3088         return false;
3089 }
3090
3091 static void kcompactd_do_work(pg_data_t *pgdat)
3092 {
3093         /*
3094          * With no special task, compact all zones so that a page of requested
3095          * order is allocatable.
3096          */
3097         int zoneid;
3098         struct zone *zone;
3099         struct compact_control cc = {
3100                 .order = pgdat->kcompactd_max_order,
3101                 .search_order = pgdat->kcompactd_max_order,
3102                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3103                 .mode = MIGRATE_SYNC_LIGHT,
3104                 .ignore_skip_hint = false,
3105                 .gfp_mask = GFP_KERNEL,
3106                 .alloc_flags = defrag_mode ? ALLOC_WMARK_HIGH : ALLOC_WMARK_MIN,
3107         };
3108         enum compact_result ret;
3109
3110         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3111                                                         cc.highest_zoneidx);
3112         count_compact_event(KCOMPACTD_WAKE);
3113
3114         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3115                 int status;
3116
3117                 zone = &pgdat->node_zones[zoneid];
3118                 if (!populated_zone(zone))
3119                         continue;
3120
3121                 if (compaction_deferred(zone, cc.order))
3122                         continue;
3123
3124                 ret = compaction_suit_allocation_order(zone,
3125                                 cc.order, zoneid, cc.alloc_flags,
3126                                 false, true);
3127                 if (ret != COMPACT_CONTINUE)
3128                         continue;
3129
3130                 if (kthread_should_stop())
3131                         return;
3132
3133                 cc.zone = zone;
3134                 status = compact_zone(&cc, NULL);
3135
3136                 if (status == COMPACT_SUCCESS) {
3137                         compaction_defer_reset(zone, cc.order, false);
3138                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3139                         /*
3140                          * Buddy pages may become stranded on pcps that could
3141                          * otherwise coalesce on the zone's free area for
3142                          * order >= cc.order.  This is ratelimited by the
3143                          * upcoming deferral.
3144                          */
3145                         drain_all_pages(zone);
3146
3147                         /*
3148                          * We use sync migration mode here, so we defer like
3149                          * sync direct compaction does.
3150                          */
3151                         defer_compaction(zone, cc.order);
3152                 }
3153
3154                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3155                                      cc.total_migrate_scanned);
3156                 count_compact_events(KCOMPACTD_FREE_SCANNED,
3157                                      cc.total_free_scanned);
3158         }
3159
3160         /*
3161          * Regardless of success, we are done until woken up next. But remember
3162          * the requested order/highest_zoneidx in case it was higher/tighter
3163          * than our current ones
3164          */
3165         if (pgdat->kcompactd_max_order <= cc.order)
3166                 pgdat->kcompactd_max_order = 0;
3167         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3168                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3169 }
3170
3171 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3172 {
3173         if (!order)
3174                 return;
3175
3176         if (pgdat->kcompactd_max_order < order)
3177                 pgdat->kcompactd_max_order = order;
3178
3179         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3180                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3181
3182         /*
3183          * Pairs with implicit barrier in wait_event_freezable()
3184          * such that wakeups are not missed.
3185          */
3186         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3187                 return;
3188
3189         if (!kcompactd_node_suitable(pgdat))
3190                 return;
3191
3192         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3193                                                         highest_zoneidx);
3194         wake_up_interruptible(&pgdat->kcompactd_wait);
3195 }
3196
3197 /*
3198  * The background compaction daemon, started as a kernel thread
3199  * from the init process.
3200  */
3201 static int kcompactd(void *p)
3202 {
3203         pg_data_t *pgdat = (pg_data_t *)p;
3204         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3205         long timeout = default_timeout;
3206
3207         current->flags |= PF_KCOMPACTD;
3208         set_freezable();
3209
3210         pgdat->kcompactd_max_order = 0;
3211         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3212
3213         while (!kthread_should_stop()) {
3214                 unsigned long pflags;
3215
3216                 /*
3217                  * Avoid the unnecessary wakeup for proactive compaction
3218                  * when it is disabled.
3219                  */
3220                 if (!sysctl_compaction_proactiveness)
3221                         timeout = MAX_SCHEDULE_TIMEOUT;
3222                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3223                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3224                         kcompactd_work_requested(pgdat), timeout) &&
3225                         !pgdat->proactive_compact_trigger) {
3226
3227                         psi_memstall_enter(&pflags);
3228                         kcompactd_do_work(pgdat);
3229                         psi_memstall_leave(&pflags);
3230                         /*
3231                          * Reset the timeout value. The defer timeout from
3232                          * proactive compaction is lost here but that is fine
3233                          * as the condition of the zone changing substantionally
3234                          * then carrying on with the previous defer interval is
3235                          * not useful.
3236                          */
3237                         timeout = default_timeout;
3238                         continue;
3239                 }
3240
3241                 /*
3242                  * Start the proactive work with default timeout. Based
3243                  * on the fragmentation score, this timeout is updated.
3244                  */
3245                 timeout = default_timeout;
3246                 if (should_proactive_compact_node(pgdat)) {
3247                         unsigned int prev_score, score;
3248
3249                         prev_score = fragmentation_score_node(pgdat);
3250                         compact_node(pgdat, true);
3251                         score = fragmentation_score_node(pgdat);
3252                         /*
3253                          * Defer proactive compaction if the fragmentation
3254                          * score did not go down i.e. no progress made.
3255                          */
3256                         if (unlikely(score >= prev_score))
3257                                 timeout =
3258                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3259                 }
3260                 if (unlikely(pgdat->proactive_compact_trigger))
3261                         pgdat->proactive_compact_trigger = false;
3262         }
3263
3264         current->flags &= ~PF_KCOMPACTD;
3265
3266         return 0;
3267 }
3268
3269 /*
3270  * This kcompactd start function will be called by init and node-hot-add.
3271  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3272  */
3273 void __meminit kcompactd_run(int nid)
3274 {
3275         pg_data_t *pgdat = NODE_DATA(nid);
3276
3277         if (pgdat->kcompactd)
3278                 return;
3279
3280         pgdat->kcompactd = kthread_create_on_node(kcompactd, pgdat, nid, "kcompactd%d", nid);
3281         if (IS_ERR(pgdat->kcompactd)) {
3282                 pr_err("Failed to start kcompactd on node %d\n", nid);
3283                 pgdat->kcompactd = NULL;
3284         } else {
3285                 wake_up_process(pgdat->kcompactd);
3286         }
3287 }
3288
3289 /*
3290  * Called by memory hotplug when all memory in a node is offlined. Caller must
3291  * be holding mem_hotplug_begin/done().
3292  */
3293 void __meminit kcompactd_stop(int nid)
3294 {
3295         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3296
3297         if (kcompactd) {
3298                 kthread_stop(kcompactd);
3299                 NODE_DATA(nid)->kcompactd = NULL;
3300         }
3301 }
3302
3303 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3304                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3305 {
3306         int ret, old;
3307
3308         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3309                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3310
3311         old = *(int *)table->data;
3312         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3313         if (ret)
3314                 return ret;
3315         if (old != *(int *)table->data)
3316                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3317                              table->procname, current->comm,
3318                              task_pid_nr(current));
3319         return ret;
3320 }
3321
3322 static const struct ctl_table vm_compaction[] = {
3323         {
3324                 .procname       = "compact_memory",
3325                 .data           = &sysctl_compact_memory,
3326                 .maxlen         = sizeof(int),
3327                 .mode           = 0200,
3328                 .proc_handler   = sysctl_compaction_handler,
3329         },
3330         {
3331                 .procname       = "compaction_proactiveness",
3332                 .data           = &sysctl_compaction_proactiveness,
3333                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3334                 .mode           = 0644,
3335                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3336                 .extra1         = SYSCTL_ZERO,
3337                 .extra2         = SYSCTL_ONE_HUNDRED,
3338         },
3339         {
3340                 .procname       = "extfrag_threshold",
3341                 .data           = &sysctl_extfrag_threshold,
3342                 .maxlen         = sizeof(int),
3343                 .mode           = 0644,
3344                 .proc_handler   = proc_dointvec_minmax,
3345                 .extra1         = SYSCTL_ZERO,
3346                 .extra2         = SYSCTL_ONE_THOUSAND,
3347         },
3348         {
3349                 .procname       = "compact_unevictable_allowed",
3350                 .data           = &sysctl_compact_unevictable_allowed,
3351                 .maxlen         = sizeof(int),
3352                 .mode           = 0644,
3353                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3354                 .extra1         = SYSCTL_ZERO,
3355                 .extra2         = SYSCTL_ONE,
3356         },
3357 };
3358
3359 static int __init kcompactd_init(void)
3360 {
3361         int nid;
3362
3363         for_each_node_state(nid, N_MEMORY)
3364                 kcompactd_run(nid);
3365         register_sysctl_init("vm", vm_compaction);
3366         return 0;
3367 }
3368 subsys_initcall(kcompactd_init)
3369
3370 #endif /* CONFIG_COMPACTION */