Merge tag 'xfs-6.10-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-block.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43
44 /*
45  * order == -1 is expected when compacting proactively via
46  * 1. /proc/sys/vm/compact_memory
47  * 2. /sys/devices/system/node/nodex/compact
48  * 3. /proc/sys/vm/compaction_proactiveness
49  */
50 static inline bool is_via_compact_memory(int order)
51 {
52         return order == -1;
53 }
54
55 #else
56 #define count_compact_event(item) do { } while (0)
57 #define count_compact_events(item, delta) do { } while (0)
58 static inline bool is_via_compact_memory(int order) { return false; }
59 #endif
60
61 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/compaction.h>
65
66 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
67 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
68
69 /*
70  * Page order with-respect-to which proactive compaction
71  * calculates external fragmentation, which is used as
72  * the "fragmentation score" of a node/zone.
73  */
74 #if defined CONFIG_TRANSPARENT_HUGEPAGE
75 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
76 #elif defined CONFIG_HUGETLBFS
77 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
78 #else
79 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
80 #endif
81
82 static void split_map_pages(struct list_head *freepages)
83 {
84         unsigned int i, order;
85         struct page *page, *next;
86         LIST_HEAD(tmp_list);
87
88         for (order = 0; order < NR_PAGE_ORDERS; order++) {
89                 list_for_each_entry_safe(page, next, &freepages[order], lru) {
90                         unsigned int nr_pages;
91
92                         list_del(&page->lru);
93
94                         nr_pages = 1 << order;
95
96                         post_alloc_hook(page, order, __GFP_MOVABLE);
97                         if (order)
98                                 split_page(page, order);
99
100                         for (i = 0; i < nr_pages; i++) {
101                                 list_add(&page->lru, &tmp_list);
102                                 page++;
103                         }
104                 }
105                 list_splice_init(&tmp_list, &freepages[0]);
106         }
107 }
108
109 static unsigned long release_free_list(struct list_head *freepages)
110 {
111         int order;
112         unsigned long high_pfn = 0;
113
114         for (order = 0; order < NR_PAGE_ORDERS; order++) {
115                 struct page *page, *next;
116
117                 list_for_each_entry_safe(page, next, &freepages[order], lru) {
118                         unsigned long pfn = page_to_pfn(page);
119
120                         list_del(&page->lru);
121                         /*
122                          * Convert free pages into post allocation pages, so
123                          * that we can free them via __free_page.
124                          */
125                         post_alloc_hook(page, order, __GFP_MOVABLE);
126                         __free_pages(page, order);
127                         if (pfn > high_pfn)
128                                 high_pfn = pfn;
129                 }
130         }
131         return high_pfn;
132 }
133
134 #ifdef CONFIG_COMPACTION
135 bool PageMovable(struct page *page)
136 {
137         const struct movable_operations *mops;
138
139         VM_BUG_ON_PAGE(!PageLocked(page), page);
140         if (!__PageMovable(page))
141                 return false;
142
143         mops = page_movable_ops(page);
144         if (mops)
145                 return true;
146
147         return false;
148 }
149
150 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
151 {
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
154         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
155 }
156 EXPORT_SYMBOL(__SetPageMovable);
157
158 void __ClearPageMovable(struct page *page)
159 {
160         VM_BUG_ON_PAGE(!PageMovable(page), page);
161         /*
162          * This page still has the type of a movable page, but it's
163          * actually not movable any more.
164          */
165         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
166 }
167 EXPORT_SYMBOL(__ClearPageMovable);
168
169 /* Do not skip compaction more than 64 times */
170 #define COMPACT_MAX_DEFER_SHIFT 6
171
172 /*
173  * Compaction is deferred when compaction fails to result in a page
174  * allocation success. 1 << compact_defer_shift, compactions are skipped up
175  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
176  */
177 static void defer_compaction(struct zone *zone, int order)
178 {
179         zone->compact_considered = 0;
180         zone->compact_defer_shift++;
181
182         if (order < zone->compact_order_failed)
183                 zone->compact_order_failed = order;
184
185         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
186                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
187
188         trace_mm_compaction_defer_compaction(zone, order);
189 }
190
191 /* Returns true if compaction should be skipped this time */
192 static bool compaction_deferred(struct zone *zone, int order)
193 {
194         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
195
196         if (order < zone->compact_order_failed)
197                 return false;
198
199         /* Avoid possible overflow */
200         if (++zone->compact_considered >= defer_limit) {
201                 zone->compact_considered = defer_limit;
202                 return false;
203         }
204
205         trace_mm_compaction_deferred(zone, order);
206
207         return true;
208 }
209
210 /*
211  * Update defer tracking counters after successful compaction of given order,
212  * which means an allocation either succeeded (alloc_success == true) or is
213  * expected to succeed.
214  */
215 void compaction_defer_reset(struct zone *zone, int order,
216                 bool alloc_success)
217 {
218         if (alloc_success) {
219                 zone->compact_considered = 0;
220                 zone->compact_defer_shift = 0;
221         }
222         if (order >= zone->compact_order_failed)
223                 zone->compact_order_failed = order + 1;
224
225         trace_mm_compaction_defer_reset(zone, order);
226 }
227
228 /* Returns true if restarting compaction after many failures */
229 static bool compaction_restarting(struct zone *zone, int order)
230 {
231         if (order < zone->compact_order_failed)
232                 return false;
233
234         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
235                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
236 }
237
238 /* Returns true if the pageblock should be scanned for pages to isolate. */
239 static inline bool isolation_suitable(struct compact_control *cc,
240                                         struct page *page)
241 {
242         if (cc->ignore_skip_hint)
243                 return true;
244
245         return !get_pageblock_skip(page);
246 }
247
248 static void reset_cached_positions(struct zone *zone)
249 {
250         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
251         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
252         zone->compact_cached_free_pfn =
253                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
254 }
255
256 #ifdef CONFIG_SPARSEMEM
257 /*
258  * If the PFN falls into an offline section, return the start PFN of the
259  * next online section. If the PFN falls into an online section or if
260  * there is no next online section, return 0.
261  */
262 static unsigned long skip_offline_sections(unsigned long start_pfn)
263 {
264         unsigned long start_nr = pfn_to_section_nr(start_pfn);
265
266         if (online_section_nr(start_nr))
267                 return 0;
268
269         while (++start_nr <= __highest_present_section_nr) {
270                 if (online_section_nr(start_nr))
271                         return section_nr_to_pfn(start_nr);
272         }
273
274         return 0;
275 }
276
277 /*
278  * If the PFN falls into an offline section, return the end PFN of the
279  * next online section in reverse. If the PFN falls into an online section
280  * or if there is no next online section in reverse, return 0.
281  */
282 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
283 {
284         unsigned long start_nr = pfn_to_section_nr(start_pfn);
285
286         if (!start_nr || online_section_nr(start_nr))
287                 return 0;
288
289         while (start_nr-- > 0) {
290                 if (online_section_nr(start_nr))
291                         return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
292         }
293
294         return 0;
295 }
296 #else
297 static unsigned long skip_offline_sections(unsigned long start_pfn)
298 {
299         return 0;
300 }
301
302 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
303 {
304         return 0;
305 }
306 #endif
307
308 /*
309  * Compound pages of >= pageblock_order should consistently be skipped until
310  * released. It is always pointless to compact pages of such order (if they are
311  * migratable), and the pageblocks they occupy cannot contain any free pages.
312  */
313 static bool pageblock_skip_persistent(struct page *page)
314 {
315         if (!PageCompound(page))
316                 return false;
317
318         page = compound_head(page);
319
320         if (compound_order(page) >= pageblock_order)
321                 return true;
322
323         return false;
324 }
325
326 static bool
327 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
328                                                         bool check_target)
329 {
330         struct page *page = pfn_to_online_page(pfn);
331         struct page *block_page;
332         struct page *end_page;
333         unsigned long block_pfn;
334
335         if (!page)
336                 return false;
337         if (zone != page_zone(page))
338                 return false;
339         if (pageblock_skip_persistent(page))
340                 return false;
341
342         /*
343          * If skip is already cleared do no further checking once the
344          * restart points have been set.
345          */
346         if (check_source && check_target && !get_pageblock_skip(page))
347                 return true;
348
349         /*
350          * If clearing skip for the target scanner, do not select a
351          * non-movable pageblock as the starting point.
352          */
353         if (!check_source && check_target &&
354             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
355                 return false;
356
357         /* Ensure the start of the pageblock or zone is online and valid */
358         block_pfn = pageblock_start_pfn(pfn);
359         block_pfn = max(block_pfn, zone->zone_start_pfn);
360         block_page = pfn_to_online_page(block_pfn);
361         if (block_page) {
362                 page = block_page;
363                 pfn = block_pfn;
364         }
365
366         /* Ensure the end of the pageblock or zone is online and valid */
367         block_pfn = pageblock_end_pfn(pfn) - 1;
368         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
369         end_page = pfn_to_online_page(block_pfn);
370         if (!end_page)
371                 return false;
372
373         /*
374          * Only clear the hint if a sample indicates there is either a
375          * free page or an LRU page in the block. One or other condition
376          * is necessary for the block to be a migration source/target.
377          */
378         do {
379                 if (check_source && PageLRU(page)) {
380                         clear_pageblock_skip(page);
381                         return true;
382                 }
383
384                 if (check_target && PageBuddy(page)) {
385                         clear_pageblock_skip(page);
386                         return true;
387                 }
388
389                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
390         } while (page <= end_page);
391
392         return false;
393 }
394
395 /*
396  * This function is called to clear all cached information on pageblocks that
397  * should be skipped for page isolation when the migrate and free page scanner
398  * meet.
399  */
400 static void __reset_isolation_suitable(struct zone *zone)
401 {
402         unsigned long migrate_pfn = zone->zone_start_pfn;
403         unsigned long free_pfn = zone_end_pfn(zone) - 1;
404         unsigned long reset_migrate = free_pfn;
405         unsigned long reset_free = migrate_pfn;
406         bool source_set = false;
407         bool free_set = false;
408
409         /* Only flush if a full compaction finished recently */
410         if (!zone->compact_blockskip_flush)
411                 return;
412
413         zone->compact_blockskip_flush = false;
414
415         /*
416          * Walk the zone and update pageblock skip information. Source looks
417          * for PageLRU while target looks for PageBuddy. When the scanner
418          * is found, both PageBuddy and PageLRU are checked as the pageblock
419          * is suitable as both source and target.
420          */
421         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
422                                         free_pfn -= pageblock_nr_pages) {
423                 cond_resched();
424
425                 /* Update the migrate PFN */
426                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
427                     migrate_pfn < reset_migrate) {
428                         source_set = true;
429                         reset_migrate = migrate_pfn;
430                         zone->compact_init_migrate_pfn = reset_migrate;
431                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
432                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
433                 }
434
435                 /* Update the free PFN */
436                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
437                     free_pfn > reset_free) {
438                         free_set = true;
439                         reset_free = free_pfn;
440                         zone->compact_init_free_pfn = reset_free;
441                         zone->compact_cached_free_pfn = reset_free;
442                 }
443         }
444
445         /* Leave no distance if no suitable block was reset */
446         if (reset_migrate >= reset_free) {
447                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
448                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
449                 zone->compact_cached_free_pfn = free_pfn;
450         }
451 }
452
453 void reset_isolation_suitable(pg_data_t *pgdat)
454 {
455         int zoneid;
456
457         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
458                 struct zone *zone = &pgdat->node_zones[zoneid];
459                 if (!populated_zone(zone))
460                         continue;
461
462                 __reset_isolation_suitable(zone);
463         }
464 }
465
466 /*
467  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
468  * locks are not required for read/writers. Returns true if it was already set.
469  */
470 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
471 {
472         bool skip;
473
474         /* Do not update if skip hint is being ignored */
475         if (cc->ignore_skip_hint)
476                 return false;
477
478         skip = get_pageblock_skip(page);
479         if (!skip && !cc->no_set_skip_hint)
480                 set_pageblock_skip(page);
481
482         return skip;
483 }
484
485 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
486 {
487         struct zone *zone = cc->zone;
488
489         /* Set for isolation rather than compaction */
490         if (cc->no_set_skip_hint)
491                 return;
492
493         pfn = pageblock_end_pfn(pfn);
494
495         /* Update where async and sync compaction should restart */
496         if (pfn > zone->compact_cached_migrate_pfn[0])
497                 zone->compact_cached_migrate_pfn[0] = pfn;
498         if (cc->mode != MIGRATE_ASYNC &&
499             pfn > zone->compact_cached_migrate_pfn[1])
500                 zone->compact_cached_migrate_pfn[1] = pfn;
501 }
502
503 /*
504  * If no pages were isolated then mark this pageblock to be skipped in the
505  * future. The information is later cleared by __reset_isolation_suitable().
506  */
507 static void update_pageblock_skip(struct compact_control *cc,
508                         struct page *page, unsigned long pfn)
509 {
510         struct zone *zone = cc->zone;
511
512         if (cc->no_set_skip_hint)
513                 return;
514
515         set_pageblock_skip(page);
516
517         if (pfn < zone->compact_cached_free_pfn)
518                 zone->compact_cached_free_pfn = pfn;
519 }
520 #else
521 static inline bool isolation_suitable(struct compact_control *cc,
522                                         struct page *page)
523 {
524         return true;
525 }
526
527 static inline bool pageblock_skip_persistent(struct page *page)
528 {
529         return false;
530 }
531
532 static inline void update_pageblock_skip(struct compact_control *cc,
533                         struct page *page, unsigned long pfn)
534 {
535 }
536
537 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
538 {
539 }
540
541 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
542 {
543         return false;
544 }
545 #endif /* CONFIG_COMPACTION */
546
547 /*
548  * Compaction requires the taking of some coarse locks that are potentially
549  * very heavily contended. For async compaction, trylock and record if the
550  * lock is contended. The lock will still be acquired but compaction will
551  * abort when the current block is finished regardless of success rate.
552  * Sync compaction acquires the lock.
553  *
554  * Always returns true which makes it easier to track lock state in callers.
555  */
556 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
557                                                 struct compact_control *cc)
558         __acquires(lock)
559 {
560         /* Track if the lock is contended in async mode */
561         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
562                 if (spin_trylock_irqsave(lock, *flags))
563                         return true;
564
565                 cc->contended = true;
566         }
567
568         spin_lock_irqsave(lock, *flags);
569         return true;
570 }
571
572 /*
573  * Compaction requires the taking of some coarse locks that are potentially
574  * very heavily contended. The lock should be periodically unlocked to avoid
575  * having disabled IRQs for a long time, even when there is nobody waiting on
576  * the lock. It might also be that allowing the IRQs will result in
577  * need_resched() becoming true. If scheduling is needed, compaction schedules.
578  * Either compaction type will also abort if a fatal signal is pending.
579  * In either case if the lock was locked, it is dropped and not regained.
580  *
581  * Returns true if compaction should abort due to fatal signal pending.
582  * Returns false when compaction can continue.
583  */
584 static bool compact_unlock_should_abort(spinlock_t *lock,
585                 unsigned long flags, bool *locked, struct compact_control *cc)
586 {
587         if (*locked) {
588                 spin_unlock_irqrestore(lock, flags);
589                 *locked = false;
590         }
591
592         if (fatal_signal_pending(current)) {
593                 cc->contended = true;
594                 return true;
595         }
596
597         cond_resched();
598
599         return false;
600 }
601
602 /*
603  * Isolate free pages onto a private freelist. If @strict is true, will abort
604  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
605  * (even though it may still end up isolating some pages).
606  */
607 static unsigned long isolate_freepages_block(struct compact_control *cc,
608                                 unsigned long *start_pfn,
609                                 unsigned long end_pfn,
610                                 struct list_head *freelist,
611                                 unsigned int stride,
612                                 bool strict)
613 {
614         int nr_scanned = 0, total_isolated = 0;
615         struct page *page;
616         unsigned long flags = 0;
617         bool locked = false;
618         unsigned long blockpfn = *start_pfn;
619         unsigned int order;
620
621         /* Strict mode is for isolation, speed is secondary */
622         if (strict)
623                 stride = 1;
624
625         page = pfn_to_page(blockpfn);
626
627         /* Isolate free pages. */
628         for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
629                 int isolated;
630
631                 /*
632                  * Periodically drop the lock (if held) regardless of its
633                  * contention, to give chance to IRQs. Abort if fatal signal
634                  * pending.
635                  */
636                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
637                     && compact_unlock_should_abort(&cc->zone->lock, flags,
638                                                                 &locked, cc))
639                         break;
640
641                 nr_scanned++;
642
643                 /*
644                  * For compound pages such as THP and hugetlbfs, we can save
645                  * potentially a lot of iterations if we skip them at once.
646                  * The check is racy, but we can consider only valid values
647                  * and the only danger is skipping too much.
648                  */
649                 if (PageCompound(page)) {
650                         const unsigned int order = compound_order(page);
651
652                         if (blockpfn + (1UL << order) <= end_pfn) {
653                                 blockpfn += (1UL << order) - 1;
654                                 page += (1UL << order) - 1;
655                                 nr_scanned += (1UL << order) - 1;
656                         }
657
658                         goto isolate_fail;
659                 }
660
661                 if (!PageBuddy(page))
662                         goto isolate_fail;
663
664                 /* If we already hold the lock, we can skip some rechecking. */
665                 if (!locked) {
666                         locked = compact_lock_irqsave(&cc->zone->lock,
667                                                                 &flags, cc);
668
669                         /* Recheck this is a buddy page under lock */
670                         if (!PageBuddy(page))
671                                 goto isolate_fail;
672                 }
673
674                 /* Found a free page, will break it into order-0 pages */
675                 order = buddy_order(page);
676                 isolated = __isolate_free_page(page, order);
677                 if (!isolated)
678                         break;
679                 set_page_private(page, order);
680
681                 nr_scanned += isolated - 1;
682                 total_isolated += isolated;
683                 cc->nr_freepages += isolated;
684                 list_add_tail(&page->lru, &freelist[order]);
685
686                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
687                         blockpfn += isolated;
688                         break;
689                 }
690                 /* Advance to the end of split page */
691                 blockpfn += isolated - 1;
692                 page += isolated - 1;
693                 continue;
694
695 isolate_fail:
696                 if (strict)
697                         break;
698
699         }
700
701         if (locked)
702                 spin_unlock_irqrestore(&cc->zone->lock, flags);
703
704         /*
705          * Be careful to not go outside of the pageblock.
706          */
707         if (unlikely(blockpfn > end_pfn))
708                 blockpfn = end_pfn;
709
710         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
711                                         nr_scanned, total_isolated);
712
713         /* Record how far we have got within the block */
714         *start_pfn = blockpfn;
715
716         /*
717          * If strict isolation is requested by CMA then check that all the
718          * pages requested were isolated. If there were any failures, 0 is
719          * returned and CMA will fail.
720          */
721         if (strict && blockpfn < end_pfn)
722                 total_isolated = 0;
723
724         cc->total_free_scanned += nr_scanned;
725         if (total_isolated)
726                 count_compact_events(COMPACTISOLATED, total_isolated);
727         return total_isolated;
728 }
729
730 /**
731  * isolate_freepages_range() - isolate free pages.
732  * @cc:        Compaction control structure.
733  * @start_pfn: The first PFN to start isolating.
734  * @end_pfn:   The one-past-last PFN.
735  *
736  * Non-free pages, invalid PFNs, or zone boundaries within the
737  * [start_pfn, end_pfn) range are considered errors, cause function to
738  * undo its actions and return zero.
739  *
740  * Otherwise, function returns one-past-the-last PFN of isolated page
741  * (which may be greater then end_pfn if end fell in a middle of
742  * a free page).
743  */
744 unsigned long
745 isolate_freepages_range(struct compact_control *cc,
746                         unsigned long start_pfn, unsigned long end_pfn)
747 {
748         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
749         int order;
750         struct list_head tmp_freepages[NR_PAGE_ORDERS];
751
752         for (order = 0; order < NR_PAGE_ORDERS; order++)
753                 INIT_LIST_HEAD(&tmp_freepages[order]);
754
755         pfn = start_pfn;
756         block_start_pfn = pageblock_start_pfn(pfn);
757         if (block_start_pfn < cc->zone->zone_start_pfn)
758                 block_start_pfn = cc->zone->zone_start_pfn;
759         block_end_pfn = pageblock_end_pfn(pfn);
760
761         for (; pfn < end_pfn; pfn += isolated,
762                                 block_start_pfn = block_end_pfn,
763                                 block_end_pfn += pageblock_nr_pages) {
764                 /* Protect pfn from changing by isolate_freepages_block */
765                 unsigned long isolate_start_pfn = pfn;
766
767                 /*
768                  * pfn could pass the block_end_pfn if isolated freepage
769                  * is more than pageblock order. In this case, we adjust
770                  * scanning range to right one.
771                  */
772                 if (pfn >= block_end_pfn) {
773                         block_start_pfn = pageblock_start_pfn(pfn);
774                         block_end_pfn = pageblock_end_pfn(pfn);
775                 }
776
777                 block_end_pfn = min(block_end_pfn, end_pfn);
778
779                 if (!pageblock_pfn_to_page(block_start_pfn,
780                                         block_end_pfn, cc->zone))
781                         break;
782
783                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
784                                         block_end_pfn, tmp_freepages, 0, true);
785
786                 /*
787                  * In strict mode, isolate_freepages_block() returns 0 if
788                  * there are any holes in the block (ie. invalid PFNs or
789                  * non-free pages).
790                  */
791                 if (!isolated)
792                         break;
793
794                 /*
795                  * If we managed to isolate pages, it is always (1 << n) *
796                  * pageblock_nr_pages for some non-negative n.  (Max order
797                  * page may span two pageblocks).
798                  */
799         }
800
801         if (pfn < end_pfn) {
802                 /* Loop terminated early, cleanup. */
803                 release_free_list(tmp_freepages);
804                 return 0;
805         }
806
807         /* __isolate_free_page() does not map the pages */
808         split_map_pages(tmp_freepages);
809
810         /* We don't use freelists for anything. */
811         return pfn;
812 }
813
814 /* Similar to reclaim, but different enough that they don't share logic */
815 static bool too_many_isolated(struct compact_control *cc)
816 {
817         pg_data_t *pgdat = cc->zone->zone_pgdat;
818         bool too_many;
819
820         unsigned long active, inactive, isolated;
821
822         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
823                         node_page_state(pgdat, NR_INACTIVE_ANON);
824         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
825                         node_page_state(pgdat, NR_ACTIVE_ANON);
826         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
827                         node_page_state(pgdat, NR_ISOLATED_ANON);
828
829         /*
830          * Allow GFP_NOFS to isolate past the limit set for regular
831          * compaction runs. This prevents an ABBA deadlock when other
832          * compactors have already isolated to the limit, but are
833          * blocked on filesystem locks held by the GFP_NOFS thread.
834          */
835         if (cc->gfp_mask & __GFP_FS) {
836                 inactive >>= 3;
837                 active >>= 3;
838         }
839
840         too_many = isolated > (inactive + active) / 2;
841         if (!too_many)
842                 wake_throttle_isolated(pgdat);
843
844         return too_many;
845 }
846
847 /**
848  * skip_isolation_on_order() - determine when to skip folio isolation based on
849  *                             folio order and compaction target order
850  * @order:              to-be-isolated folio order
851  * @target_order:       compaction target order
852  *
853  * This avoids unnecessary folio isolations during compaction.
854  */
855 static bool skip_isolation_on_order(int order, int target_order)
856 {
857         /*
858          * Unless we are performing global compaction (i.e.,
859          * is_via_compact_memory), skip any folios that are larger than the
860          * target order: we wouldn't be here if we'd have a free folio with
861          * the desired target_order, so migrating this folio would likely fail
862          * later.
863          */
864         if (!is_via_compact_memory(target_order) && order >= target_order)
865                 return true;
866         /*
867          * We limit memory compaction to pageblocks and won't try
868          * creating free blocks of memory that are larger than that.
869          */
870         return order >= pageblock_order;
871 }
872
873 /**
874  * isolate_migratepages_block() - isolate all migrate-able pages within
875  *                                a single pageblock
876  * @cc:         Compaction control structure.
877  * @low_pfn:    The first PFN to isolate
878  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
879  * @mode:       Isolation mode to be used.
880  *
881  * Isolate all pages that can be migrated from the range specified by
882  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
883  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
884  * -ENOMEM in case we could not allocate a page, or 0.
885  * cc->migrate_pfn will contain the next pfn to scan.
886  *
887  * The pages are isolated on cc->migratepages list (not required to be empty),
888  * and cc->nr_migratepages is updated accordingly.
889  */
890 static int
891 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
892                         unsigned long end_pfn, isolate_mode_t mode)
893 {
894         pg_data_t *pgdat = cc->zone->zone_pgdat;
895         unsigned long nr_scanned = 0, nr_isolated = 0;
896         struct lruvec *lruvec;
897         unsigned long flags = 0;
898         struct lruvec *locked = NULL;
899         struct folio *folio = NULL;
900         struct page *page = NULL, *valid_page = NULL;
901         struct address_space *mapping;
902         unsigned long start_pfn = low_pfn;
903         bool skip_on_failure = false;
904         unsigned long next_skip_pfn = 0;
905         bool skip_updated = false;
906         int ret = 0;
907
908         cc->migrate_pfn = low_pfn;
909
910         /*
911          * Ensure that there are not too many pages isolated from the LRU
912          * list by either parallel reclaimers or compaction. If there are,
913          * delay for some time until fewer pages are isolated
914          */
915         while (unlikely(too_many_isolated(cc))) {
916                 /* stop isolation if there are still pages not migrated */
917                 if (cc->nr_migratepages)
918                         return -EAGAIN;
919
920                 /* async migration should just abort */
921                 if (cc->mode == MIGRATE_ASYNC)
922                         return -EAGAIN;
923
924                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
925
926                 if (fatal_signal_pending(current))
927                         return -EINTR;
928         }
929
930         cond_resched();
931
932         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
933                 skip_on_failure = true;
934                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
935         }
936
937         /* Time to isolate some pages for migration */
938         for (; low_pfn < end_pfn; low_pfn++) {
939                 bool is_dirty, is_unevictable;
940
941                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
942                         /*
943                          * We have isolated all migration candidates in the
944                          * previous order-aligned block, and did not skip it due
945                          * to failure. We should migrate the pages now and
946                          * hopefully succeed compaction.
947                          */
948                         if (nr_isolated)
949                                 break;
950
951                         /*
952                          * We failed to isolate in the previous order-aligned
953                          * block. Set the new boundary to the end of the
954                          * current block. Note we can't simply increase
955                          * next_skip_pfn by 1 << order, as low_pfn might have
956                          * been incremented by a higher number due to skipping
957                          * a compound or a high-order buddy page in the
958                          * previous loop iteration.
959                          */
960                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
961                 }
962
963                 /*
964                  * Periodically drop the lock (if held) regardless of its
965                  * contention, to give chance to IRQs. Abort completely if
966                  * a fatal signal is pending.
967                  */
968                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
969                         if (locked) {
970                                 unlock_page_lruvec_irqrestore(locked, flags);
971                                 locked = NULL;
972                         }
973
974                         if (fatal_signal_pending(current)) {
975                                 cc->contended = true;
976                                 ret = -EINTR;
977
978                                 goto fatal_pending;
979                         }
980
981                         cond_resched();
982                 }
983
984                 nr_scanned++;
985
986                 page = pfn_to_page(low_pfn);
987
988                 /*
989                  * Check if the pageblock has already been marked skipped.
990                  * Only the first PFN is checked as the caller isolates
991                  * COMPACT_CLUSTER_MAX at a time so the second call must
992                  * not falsely conclude that the block should be skipped.
993                  */
994                 if (!valid_page && (pageblock_aligned(low_pfn) ||
995                                     low_pfn == cc->zone->zone_start_pfn)) {
996                         if (!isolation_suitable(cc, page)) {
997                                 low_pfn = end_pfn;
998                                 folio = NULL;
999                                 goto isolate_abort;
1000                         }
1001                         valid_page = page;
1002                 }
1003
1004                 if (PageHuge(page)) {
1005                         /*
1006                          * skip hugetlbfs if we are not compacting for pages
1007                          * bigger than its order. THPs and other compound pages
1008                          * are handled below.
1009                          */
1010                         if (!cc->alloc_contig) {
1011                                 const unsigned int order = compound_order(page);
1012
1013                                 if (order <= MAX_PAGE_ORDER) {
1014                                         low_pfn += (1UL << order) - 1;
1015                                         nr_scanned += (1UL << order) - 1;
1016                                 }
1017                                 goto isolate_fail;
1018                         }
1019                         /* for alloc_contig case */
1020                         if (locked) {
1021                                 unlock_page_lruvec_irqrestore(locked, flags);
1022                                 locked = NULL;
1023                         }
1024
1025                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1026
1027                         /*
1028                          * Fail isolation in case isolate_or_dissolve_huge_page()
1029                          * reports an error. In case of -ENOMEM, abort right away.
1030                          */
1031                         if (ret < 0) {
1032                                  /* Do not report -EBUSY down the chain */
1033                                 if (ret == -EBUSY)
1034                                         ret = 0;
1035                                 low_pfn += compound_nr(page) - 1;
1036                                 nr_scanned += compound_nr(page) - 1;
1037                                 goto isolate_fail;
1038                         }
1039
1040                         if (PageHuge(page)) {
1041                                 /*
1042                                  * Hugepage was successfully isolated and placed
1043                                  * on the cc->migratepages list.
1044                                  */
1045                                 folio = page_folio(page);
1046                                 low_pfn += folio_nr_pages(folio) - 1;
1047                                 goto isolate_success_no_list;
1048                         }
1049
1050                         /*
1051                          * Ok, the hugepage was dissolved. Now these pages are
1052                          * Buddy and cannot be re-allocated because they are
1053                          * isolated. Fall-through as the check below handles
1054                          * Buddy pages.
1055                          */
1056                 }
1057
1058                 /*
1059                  * Skip if free. We read page order here without zone lock
1060                  * which is generally unsafe, but the race window is small and
1061                  * the worst thing that can happen is that we skip some
1062                  * potential isolation targets.
1063                  */
1064                 if (PageBuddy(page)) {
1065                         unsigned long freepage_order = buddy_order_unsafe(page);
1066
1067                         /*
1068                          * Without lock, we cannot be sure that what we got is
1069                          * a valid page order. Consider only values in the
1070                          * valid order range to prevent low_pfn overflow.
1071                          */
1072                         if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1073                                 low_pfn += (1UL << freepage_order) - 1;
1074                                 nr_scanned += (1UL << freepage_order) - 1;
1075                         }
1076                         continue;
1077                 }
1078
1079                 /*
1080                  * Regardless of being on LRU, compound pages such as THP
1081                  * (hugetlbfs is handled above) are not to be compacted unless
1082                  * we are attempting an allocation larger than the compound
1083                  * page size. We can potentially save a lot of iterations if we
1084                  * skip them at once. The check is racy, but we can consider
1085                  * only valid values and the only danger is skipping too much.
1086                  */
1087                 if (PageCompound(page) && !cc->alloc_contig) {
1088                         const unsigned int order = compound_order(page);
1089
1090                         /* Skip based on page order and compaction target order. */
1091                         if (skip_isolation_on_order(order, cc->order)) {
1092                                 if (order <= MAX_PAGE_ORDER) {
1093                                         low_pfn += (1UL << order) - 1;
1094                                         nr_scanned += (1UL << order) - 1;
1095                                 }
1096                                 goto isolate_fail;
1097                         }
1098                 }
1099
1100                 /*
1101                  * Check may be lockless but that's ok as we recheck later.
1102                  * It's possible to migrate LRU and non-lru movable pages.
1103                  * Skip any other type of page
1104                  */
1105                 if (!PageLRU(page)) {
1106                         /*
1107                          * __PageMovable can return false positive so we need
1108                          * to verify it under page_lock.
1109                          */
1110                         if (unlikely(__PageMovable(page)) &&
1111                                         !PageIsolated(page)) {
1112                                 if (locked) {
1113                                         unlock_page_lruvec_irqrestore(locked, flags);
1114                                         locked = NULL;
1115                                 }
1116
1117                                 if (isolate_movable_page(page, mode)) {
1118                                         folio = page_folio(page);
1119                                         goto isolate_success;
1120                                 }
1121                         }
1122
1123                         goto isolate_fail;
1124                 }
1125
1126                 /*
1127                  * Be careful not to clear PageLRU until after we're
1128                  * sure the page is not being freed elsewhere -- the
1129                  * page release code relies on it.
1130                  */
1131                 folio = folio_get_nontail_page(page);
1132                 if (unlikely(!folio))
1133                         goto isolate_fail;
1134
1135                 /*
1136                  * Migration will fail if an anonymous page is pinned in memory,
1137                  * so avoid taking lru_lock and isolating it unnecessarily in an
1138                  * admittedly racy check.
1139                  */
1140                 mapping = folio_mapping(folio);
1141                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1142                         goto isolate_fail_put;
1143
1144                 /*
1145                  * Only allow to migrate anonymous pages in GFP_NOFS context
1146                  * because those do not depend on fs locks.
1147                  */
1148                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1149                         goto isolate_fail_put;
1150
1151                 /* Only take pages on LRU: a check now makes later tests safe */
1152                 if (!folio_test_lru(folio))
1153                         goto isolate_fail_put;
1154
1155                 is_unevictable = folio_test_unevictable(folio);
1156
1157                 /* Compaction might skip unevictable pages but CMA takes them */
1158                 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1159                         goto isolate_fail_put;
1160
1161                 /*
1162                  * To minimise LRU disruption, the caller can indicate with
1163                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1164                  * it will be able to migrate without blocking - clean pages
1165                  * for the most part.  PageWriteback would require blocking.
1166                  */
1167                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1168                         goto isolate_fail_put;
1169
1170                 is_dirty = folio_test_dirty(folio);
1171
1172                 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1173                     (mapping && is_unevictable)) {
1174                         bool migrate_dirty = true;
1175                         bool is_unmovable;
1176
1177                         /*
1178                          * Only folios without mappings or that have
1179                          * a ->migrate_folio callback are possible to migrate
1180                          * without blocking.
1181                          *
1182                          * Folios from unmovable mappings are not migratable.
1183                          *
1184                          * However, we can be racing with truncation, which can
1185                          * free the mapping that we need to check. Truncation
1186                          * holds the folio lock until after the folio is removed
1187                          * from the page so holding it ourselves is sufficient.
1188                          *
1189                          * To avoid locking the folio just to check unmovable,
1190                          * assume every unmovable folio is also unevictable,
1191                          * which is a cheaper test.  If our assumption goes
1192                          * wrong, it's not a correctness bug, just potentially
1193                          * wasted cycles.
1194                          */
1195                         if (!folio_trylock(folio))
1196                                 goto isolate_fail_put;
1197
1198                         mapping = folio_mapping(folio);
1199                         if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1200                                 migrate_dirty = !mapping ||
1201                                                 mapping->a_ops->migrate_folio;
1202                         }
1203                         is_unmovable = mapping && mapping_unmovable(mapping);
1204                         folio_unlock(folio);
1205                         if (!migrate_dirty || is_unmovable)
1206                                 goto isolate_fail_put;
1207                 }
1208
1209                 /* Try isolate the folio */
1210                 if (!folio_test_clear_lru(folio))
1211                         goto isolate_fail_put;
1212
1213                 lruvec = folio_lruvec(folio);
1214
1215                 /* If we already hold the lock, we can skip some rechecking */
1216                 if (lruvec != locked) {
1217                         if (locked)
1218                                 unlock_page_lruvec_irqrestore(locked, flags);
1219
1220                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1221                         locked = lruvec;
1222
1223                         lruvec_memcg_debug(lruvec, folio);
1224
1225                         /*
1226                          * Try get exclusive access under lock. If marked for
1227                          * skip, the scan is aborted unless the current context
1228                          * is a rescan to reach the end of the pageblock.
1229                          */
1230                         if (!skip_updated && valid_page) {
1231                                 skip_updated = true;
1232                                 if (test_and_set_skip(cc, valid_page) &&
1233                                     !cc->finish_pageblock) {
1234                                         low_pfn = end_pfn;
1235                                         goto isolate_abort;
1236                                 }
1237                         }
1238
1239                         /*
1240                          * Check LRU folio order under the lock
1241                          */
1242                         if (unlikely(skip_isolation_on_order(folio_order(folio),
1243                                                              cc->order) &&
1244                                      !cc->alloc_contig)) {
1245                                 low_pfn += folio_nr_pages(folio) - 1;
1246                                 nr_scanned += folio_nr_pages(folio) - 1;
1247                                 folio_set_lru(folio);
1248                                 goto isolate_fail_put;
1249                         }
1250                 }
1251
1252                 /* The folio is taken off the LRU */
1253                 if (folio_test_large(folio))
1254                         low_pfn += folio_nr_pages(folio) - 1;
1255
1256                 /* Successfully isolated */
1257                 lruvec_del_folio(lruvec, folio);
1258                 node_stat_mod_folio(folio,
1259                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1260                                 folio_nr_pages(folio));
1261
1262 isolate_success:
1263                 list_add(&folio->lru, &cc->migratepages);
1264 isolate_success_no_list:
1265                 cc->nr_migratepages += folio_nr_pages(folio);
1266                 nr_isolated += folio_nr_pages(folio);
1267                 nr_scanned += folio_nr_pages(folio) - 1;
1268
1269                 /*
1270                  * Avoid isolating too much unless this block is being
1271                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1272                  * or a lock is contended. For contention, isolate quickly to
1273                  * potentially remove one source of contention.
1274                  */
1275                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1276                     !cc->finish_pageblock && !cc->contended) {
1277                         ++low_pfn;
1278                         break;
1279                 }
1280
1281                 continue;
1282
1283 isolate_fail_put:
1284                 /* Avoid potential deadlock in freeing page under lru_lock */
1285                 if (locked) {
1286                         unlock_page_lruvec_irqrestore(locked, flags);
1287                         locked = NULL;
1288                 }
1289                 folio_put(folio);
1290
1291 isolate_fail:
1292                 if (!skip_on_failure && ret != -ENOMEM)
1293                         continue;
1294
1295                 /*
1296                  * We have isolated some pages, but then failed. Release them
1297                  * instead of migrating, as we cannot form the cc->order buddy
1298                  * page anyway.
1299                  */
1300                 if (nr_isolated) {
1301                         if (locked) {
1302                                 unlock_page_lruvec_irqrestore(locked, flags);
1303                                 locked = NULL;
1304                         }
1305                         putback_movable_pages(&cc->migratepages);
1306                         cc->nr_migratepages = 0;
1307                         nr_isolated = 0;
1308                 }
1309
1310                 if (low_pfn < next_skip_pfn) {
1311                         low_pfn = next_skip_pfn - 1;
1312                         /*
1313                          * The check near the loop beginning would have updated
1314                          * next_skip_pfn too, but this is a bit simpler.
1315                          */
1316                         next_skip_pfn += 1UL << cc->order;
1317                 }
1318
1319                 if (ret == -ENOMEM)
1320                         break;
1321         }
1322
1323         /*
1324          * The PageBuddy() check could have potentially brought us outside
1325          * the range to be scanned.
1326          */
1327         if (unlikely(low_pfn > end_pfn))
1328                 low_pfn = end_pfn;
1329
1330         folio = NULL;
1331
1332 isolate_abort:
1333         if (locked)
1334                 unlock_page_lruvec_irqrestore(locked, flags);
1335         if (folio) {
1336                 folio_set_lru(folio);
1337                 folio_put(folio);
1338         }
1339
1340         /*
1341          * Update the cached scanner pfn once the pageblock has been scanned.
1342          * Pages will either be migrated in which case there is no point
1343          * scanning in the near future or migration failed in which case the
1344          * failure reason may persist. The block is marked for skipping if
1345          * there were no pages isolated in the block or if the block is
1346          * rescanned twice in a row.
1347          */
1348         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1349                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1350                         set_pageblock_skip(valid_page);
1351                 update_cached_migrate(cc, low_pfn);
1352         }
1353
1354         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1355                                                 nr_scanned, nr_isolated);
1356
1357 fatal_pending:
1358         cc->total_migrate_scanned += nr_scanned;
1359         if (nr_isolated)
1360                 count_compact_events(COMPACTISOLATED, nr_isolated);
1361
1362         cc->migrate_pfn = low_pfn;
1363
1364         return ret;
1365 }
1366
1367 /**
1368  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1369  * @cc:        Compaction control structure.
1370  * @start_pfn: The first PFN to start isolating.
1371  * @end_pfn:   The one-past-last PFN.
1372  *
1373  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1374  * in case we could not allocate a page, or 0.
1375  */
1376 int
1377 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1378                                                         unsigned long end_pfn)
1379 {
1380         unsigned long pfn, block_start_pfn, block_end_pfn;
1381         int ret = 0;
1382
1383         /* Scan block by block. First and last block may be incomplete */
1384         pfn = start_pfn;
1385         block_start_pfn = pageblock_start_pfn(pfn);
1386         if (block_start_pfn < cc->zone->zone_start_pfn)
1387                 block_start_pfn = cc->zone->zone_start_pfn;
1388         block_end_pfn = pageblock_end_pfn(pfn);
1389
1390         for (; pfn < end_pfn; pfn = block_end_pfn,
1391                                 block_start_pfn = block_end_pfn,
1392                                 block_end_pfn += pageblock_nr_pages) {
1393
1394                 block_end_pfn = min(block_end_pfn, end_pfn);
1395
1396                 if (!pageblock_pfn_to_page(block_start_pfn,
1397                                         block_end_pfn, cc->zone))
1398                         continue;
1399
1400                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1401                                                  ISOLATE_UNEVICTABLE);
1402
1403                 if (ret)
1404                         break;
1405
1406                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1407                         break;
1408         }
1409
1410         return ret;
1411 }
1412
1413 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1414 #ifdef CONFIG_COMPACTION
1415
1416 static bool suitable_migration_source(struct compact_control *cc,
1417                                                         struct page *page)
1418 {
1419         int block_mt;
1420
1421         if (pageblock_skip_persistent(page))
1422                 return false;
1423
1424         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1425                 return true;
1426
1427         block_mt = get_pageblock_migratetype(page);
1428
1429         if (cc->migratetype == MIGRATE_MOVABLE)
1430                 return is_migrate_movable(block_mt);
1431         else
1432                 return block_mt == cc->migratetype;
1433 }
1434
1435 /* Returns true if the page is within a block suitable for migration to */
1436 static bool suitable_migration_target(struct compact_control *cc,
1437                                                         struct page *page)
1438 {
1439         /* If the page is a large free page, then disallow migration */
1440         if (PageBuddy(page)) {
1441                 int order = cc->order > 0 ? cc->order : pageblock_order;
1442
1443                 /*
1444                  * We are checking page_order without zone->lock taken. But
1445                  * the only small danger is that we skip a potentially suitable
1446                  * pageblock, so it's not worth to check order for valid range.
1447                  */
1448                 if (buddy_order_unsafe(page) >= order)
1449                         return false;
1450         }
1451
1452         if (cc->ignore_block_suitable)
1453                 return true;
1454
1455         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1456         if (is_migrate_movable(get_pageblock_migratetype(page)))
1457                 return true;
1458
1459         /* Otherwise skip the block */
1460         return false;
1461 }
1462
1463 static inline unsigned int
1464 freelist_scan_limit(struct compact_control *cc)
1465 {
1466         unsigned short shift = BITS_PER_LONG - 1;
1467
1468         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1469 }
1470
1471 /*
1472  * Test whether the free scanner has reached the same or lower pageblock than
1473  * the migration scanner, and compaction should thus terminate.
1474  */
1475 static inline bool compact_scanners_met(struct compact_control *cc)
1476 {
1477         return (cc->free_pfn >> pageblock_order)
1478                 <= (cc->migrate_pfn >> pageblock_order);
1479 }
1480
1481 /*
1482  * Used when scanning for a suitable migration target which scans freelists
1483  * in reverse. Reorders the list such as the unscanned pages are scanned
1484  * first on the next iteration of the free scanner
1485  */
1486 static void
1487 move_freelist_head(struct list_head *freelist, struct page *freepage)
1488 {
1489         LIST_HEAD(sublist);
1490
1491         if (!list_is_first(&freepage->buddy_list, freelist)) {
1492                 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1493                 list_splice_tail(&sublist, freelist);
1494         }
1495 }
1496
1497 /*
1498  * Similar to move_freelist_head except used by the migration scanner
1499  * when scanning forward. It's possible for these list operations to
1500  * move against each other if they search the free list exactly in
1501  * lockstep.
1502  */
1503 static void
1504 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1505 {
1506         LIST_HEAD(sublist);
1507
1508         if (!list_is_last(&freepage->buddy_list, freelist)) {
1509                 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1510                 list_splice_tail(&sublist, freelist);
1511         }
1512 }
1513
1514 static void
1515 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1516 {
1517         unsigned long start_pfn, end_pfn;
1518         struct page *page;
1519
1520         /* Do not search around if there are enough pages already */
1521         if (cc->nr_freepages >= cc->nr_migratepages)
1522                 return;
1523
1524         /* Minimise scanning during async compaction */
1525         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1526                 return;
1527
1528         /* Pageblock boundaries */
1529         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1530         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1531
1532         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1533         if (!page)
1534                 return;
1535
1536         isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1537
1538         /* Skip this pageblock in the future as it's full or nearly full */
1539         if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1540                 set_pageblock_skip(page);
1541 }
1542
1543 /* Search orders in round-robin fashion */
1544 static int next_search_order(struct compact_control *cc, int order)
1545 {
1546         order--;
1547         if (order < 0)
1548                 order = cc->order - 1;
1549
1550         /* Search wrapped around? */
1551         if (order == cc->search_order) {
1552                 cc->search_order--;
1553                 if (cc->search_order < 0)
1554                         cc->search_order = cc->order - 1;
1555                 return -1;
1556         }
1557
1558         return order;
1559 }
1560
1561 static void fast_isolate_freepages(struct compact_control *cc)
1562 {
1563         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1564         unsigned int nr_scanned = 0, total_isolated = 0;
1565         unsigned long low_pfn, min_pfn, highest = 0;
1566         unsigned long nr_isolated = 0;
1567         unsigned long distance;
1568         struct page *page = NULL;
1569         bool scan_start = false;
1570         int order;
1571
1572         /* Full compaction passes in a negative order */
1573         if (cc->order <= 0)
1574                 return;
1575
1576         /*
1577          * If starting the scan, use a deeper search and use the highest
1578          * PFN found if a suitable one is not found.
1579          */
1580         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1581                 limit = pageblock_nr_pages >> 1;
1582                 scan_start = true;
1583         }
1584
1585         /*
1586          * Preferred point is in the top quarter of the scan space but take
1587          * a pfn from the top half if the search is problematic.
1588          */
1589         distance = (cc->free_pfn - cc->migrate_pfn);
1590         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1591         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1592
1593         if (WARN_ON_ONCE(min_pfn > low_pfn))
1594                 low_pfn = min_pfn;
1595
1596         /*
1597          * Search starts from the last successful isolation order or the next
1598          * order to search after a previous failure
1599          */
1600         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1601
1602         for (order = cc->search_order;
1603              !page && order >= 0;
1604              order = next_search_order(cc, order)) {
1605                 struct free_area *area = &cc->zone->free_area[order];
1606                 struct list_head *freelist;
1607                 struct page *freepage;
1608                 unsigned long flags;
1609                 unsigned int order_scanned = 0;
1610                 unsigned long high_pfn = 0;
1611
1612                 if (!area->nr_free)
1613                         continue;
1614
1615                 spin_lock_irqsave(&cc->zone->lock, flags);
1616                 freelist = &area->free_list[MIGRATE_MOVABLE];
1617                 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1618                         unsigned long pfn;
1619
1620                         order_scanned++;
1621                         nr_scanned++;
1622                         pfn = page_to_pfn(freepage);
1623
1624                         if (pfn >= highest)
1625                                 highest = max(pageblock_start_pfn(pfn),
1626                                               cc->zone->zone_start_pfn);
1627
1628                         if (pfn >= low_pfn) {
1629                                 cc->fast_search_fail = 0;
1630                                 cc->search_order = order;
1631                                 page = freepage;
1632                                 break;
1633                         }
1634
1635                         if (pfn >= min_pfn && pfn > high_pfn) {
1636                                 high_pfn = pfn;
1637
1638                                 /* Shorten the scan if a candidate is found */
1639                                 limit >>= 1;
1640                         }
1641
1642                         if (order_scanned >= limit)
1643                                 break;
1644                 }
1645
1646                 /* Use a maximum candidate pfn if a preferred one was not found */
1647                 if (!page && high_pfn) {
1648                         page = pfn_to_page(high_pfn);
1649
1650                         /* Update freepage for the list reorder below */
1651                         freepage = page;
1652                 }
1653
1654                 /* Reorder to so a future search skips recent pages */
1655                 move_freelist_head(freelist, freepage);
1656
1657                 /* Isolate the page if available */
1658                 if (page) {
1659                         if (__isolate_free_page(page, order)) {
1660                                 set_page_private(page, order);
1661                                 nr_isolated = 1 << order;
1662                                 nr_scanned += nr_isolated - 1;
1663                                 total_isolated += nr_isolated;
1664                                 cc->nr_freepages += nr_isolated;
1665                                 list_add_tail(&page->lru, &cc->freepages[order]);
1666                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1667                         } else {
1668                                 /* If isolation fails, abort the search */
1669                                 order = cc->search_order + 1;
1670                                 page = NULL;
1671                         }
1672                 }
1673
1674                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1675
1676                 /* Skip fast search if enough freepages isolated */
1677                 if (cc->nr_freepages >= cc->nr_migratepages)
1678                         break;
1679
1680                 /*
1681                  * Smaller scan on next order so the total scan is related
1682                  * to freelist_scan_limit.
1683                  */
1684                 if (order_scanned >= limit)
1685                         limit = max(1U, limit >> 1);
1686         }
1687
1688         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1689                                                    nr_scanned, total_isolated);
1690
1691         if (!page) {
1692                 cc->fast_search_fail++;
1693                 if (scan_start) {
1694                         /*
1695                          * Use the highest PFN found above min. If one was
1696                          * not found, be pessimistic for direct compaction
1697                          * and use the min mark.
1698                          */
1699                         if (highest >= min_pfn) {
1700                                 page = pfn_to_page(highest);
1701                                 cc->free_pfn = highest;
1702                         } else {
1703                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1704                                         page = pageblock_pfn_to_page(min_pfn,
1705                                                 min(pageblock_end_pfn(min_pfn),
1706                                                     zone_end_pfn(cc->zone)),
1707                                                 cc->zone);
1708                                         if (page && !suitable_migration_target(cc, page))
1709                                                 page = NULL;
1710
1711                                         cc->free_pfn = min_pfn;
1712                                 }
1713                         }
1714                 }
1715         }
1716
1717         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1718                 highest -= pageblock_nr_pages;
1719                 cc->zone->compact_cached_free_pfn = highest;
1720         }
1721
1722         cc->total_free_scanned += nr_scanned;
1723         if (!page)
1724                 return;
1725
1726         low_pfn = page_to_pfn(page);
1727         fast_isolate_around(cc, low_pfn);
1728 }
1729
1730 /*
1731  * Based on information in the current compact_control, find blocks
1732  * suitable for isolating free pages from and then isolate them.
1733  */
1734 static void isolate_freepages(struct compact_control *cc)
1735 {
1736         struct zone *zone = cc->zone;
1737         struct page *page;
1738         unsigned long block_start_pfn;  /* start of current pageblock */
1739         unsigned long isolate_start_pfn; /* exact pfn we start at */
1740         unsigned long block_end_pfn;    /* end of current pageblock */
1741         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1742         unsigned int stride;
1743
1744         /* Try a small search of the free lists for a candidate */
1745         fast_isolate_freepages(cc);
1746         if (cc->nr_freepages)
1747                 return;
1748
1749         /*
1750          * Initialise the free scanner. The starting point is where we last
1751          * successfully isolated from, zone-cached value, or the end of the
1752          * zone when isolating for the first time. For looping we also need
1753          * this pfn aligned down to the pageblock boundary, because we do
1754          * block_start_pfn -= pageblock_nr_pages in the for loop.
1755          * For ending point, take care when isolating in last pageblock of a
1756          * zone which ends in the middle of a pageblock.
1757          * The low boundary is the end of the pageblock the migration scanner
1758          * is using.
1759          */
1760         isolate_start_pfn = cc->free_pfn;
1761         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1762         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1763                                                 zone_end_pfn(zone));
1764         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1765         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1766
1767         /*
1768          * Isolate free pages until enough are available to migrate the
1769          * pages on cc->migratepages. We stop searching if the migrate
1770          * and free page scanners meet or enough free pages are isolated.
1771          */
1772         for (; block_start_pfn >= low_pfn;
1773                                 block_end_pfn = block_start_pfn,
1774                                 block_start_pfn -= pageblock_nr_pages,
1775                                 isolate_start_pfn = block_start_pfn) {
1776                 unsigned long nr_isolated;
1777
1778                 /*
1779                  * This can iterate a massively long zone without finding any
1780                  * suitable migration targets, so periodically check resched.
1781                  */
1782                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1783                         cond_resched();
1784
1785                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1786                                                                         zone);
1787                 if (!page) {
1788                         unsigned long next_pfn;
1789
1790                         next_pfn = skip_offline_sections_reverse(block_start_pfn);
1791                         if (next_pfn)
1792                                 block_start_pfn = max(next_pfn, low_pfn);
1793
1794                         continue;
1795                 }
1796
1797                 /* Check the block is suitable for migration */
1798                 if (!suitable_migration_target(cc, page))
1799                         continue;
1800
1801                 /* If isolation recently failed, do not retry */
1802                 if (!isolation_suitable(cc, page))
1803                         continue;
1804
1805                 /* Found a block suitable for isolating free pages from. */
1806                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1807                                         block_end_pfn, cc->freepages, stride, false);
1808
1809                 /* Update the skip hint if the full pageblock was scanned */
1810                 if (isolate_start_pfn == block_end_pfn)
1811                         update_pageblock_skip(cc, page, block_start_pfn -
1812                                               pageblock_nr_pages);
1813
1814                 /* Are enough freepages isolated? */
1815                 if (cc->nr_freepages >= cc->nr_migratepages) {
1816                         if (isolate_start_pfn >= block_end_pfn) {
1817                                 /*
1818                                  * Restart at previous pageblock if more
1819                                  * freepages can be isolated next time.
1820                                  */
1821                                 isolate_start_pfn =
1822                                         block_start_pfn - pageblock_nr_pages;
1823                         }
1824                         break;
1825                 } else if (isolate_start_pfn < block_end_pfn) {
1826                         /*
1827                          * If isolation failed early, do not continue
1828                          * needlessly.
1829                          */
1830                         break;
1831                 }
1832
1833                 /* Adjust stride depending on isolation */
1834                 if (nr_isolated) {
1835                         stride = 1;
1836                         continue;
1837                 }
1838                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1839         }
1840
1841         /*
1842          * Record where the free scanner will restart next time. Either we
1843          * broke from the loop and set isolate_start_pfn based on the last
1844          * call to isolate_freepages_block(), or we met the migration scanner
1845          * and the loop terminated due to isolate_start_pfn < low_pfn
1846          */
1847         cc->free_pfn = isolate_start_pfn;
1848 }
1849
1850 /*
1851  * This is a migrate-callback that "allocates" freepages by taking pages
1852  * from the isolated freelists in the block we are migrating to.
1853  */
1854 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1855 {
1856         struct compact_control *cc = (struct compact_control *)data;
1857         struct folio *dst;
1858         int order = folio_order(src);
1859         bool has_isolated_pages = false;
1860         int start_order;
1861         struct page *freepage;
1862         unsigned long size;
1863
1864 again:
1865         for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1866                 if (!list_empty(&cc->freepages[start_order]))
1867                         break;
1868
1869         /* no free pages in the list */
1870         if (start_order == NR_PAGE_ORDERS) {
1871                 if (has_isolated_pages)
1872                         return NULL;
1873                 isolate_freepages(cc);
1874                 has_isolated_pages = true;
1875                 goto again;
1876         }
1877
1878         freepage = list_first_entry(&cc->freepages[start_order], struct page,
1879                                 lru);
1880         size = 1 << start_order;
1881
1882         list_del(&freepage->lru);
1883
1884         while (start_order > order) {
1885                 start_order--;
1886                 size >>= 1;
1887
1888                 list_add(&freepage[size].lru, &cc->freepages[start_order]);
1889                 set_page_private(&freepage[size], start_order);
1890         }
1891         dst = (struct folio *)freepage;
1892
1893         post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1894         if (order)
1895                 prep_compound_page(&dst->page, order);
1896         cc->nr_freepages -= 1 << order;
1897         cc->nr_migratepages -= 1 << order;
1898         return page_rmappable_folio(&dst->page);
1899 }
1900
1901 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1902 {
1903         return alloc_hooks(compaction_alloc_noprof(src, data));
1904 }
1905
1906 /*
1907  * This is a migrate-callback that "frees" freepages back to the isolated
1908  * freelist.  All pages on the freelist are from the same zone, so there is no
1909  * special handling needed for NUMA.
1910  */
1911 static void compaction_free(struct folio *dst, unsigned long data)
1912 {
1913         struct compact_control *cc = (struct compact_control *)data;
1914         int order = folio_order(dst);
1915         struct page *page = &dst->page;
1916
1917         if (folio_put_testzero(dst)) {
1918                 free_pages_prepare(page, order);
1919                 list_add(&dst->lru, &cc->freepages[order]);
1920                 cc->nr_freepages += 1 << order;
1921         }
1922         cc->nr_migratepages += 1 << order;
1923         /*
1924          * someone else has referenced the page, we cannot take it back to our
1925          * free list.
1926          */
1927 }
1928
1929 /* possible outcome of isolate_migratepages */
1930 typedef enum {
1931         ISOLATE_ABORT,          /* Abort compaction now */
1932         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1933         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1934 } isolate_migrate_t;
1935
1936 /*
1937  * Allow userspace to control policy on scanning the unevictable LRU for
1938  * compactable pages.
1939  */
1940 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1941 /*
1942  * Tunable for proactive compaction. It determines how
1943  * aggressively the kernel should compact memory in the
1944  * background. It takes values in the range [0, 100].
1945  */
1946 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1947 static int sysctl_extfrag_threshold = 500;
1948 static int __read_mostly sysctl_compact_memory;
1949
1950 static inline void
1951 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1952 {
1953         if (cc->fast_start_pfn == ULONG_MAX)
1954                 return;
1955
1956         if (!cc->fast_start_pfn)
1957                 cc->fast_start_pfn = pfn;
1958
1959         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1960 }
1961
1962 static inline unsigned long
1963 reinit_migrate_pfn(struct compact_control *cc)
1964 {
1965         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1966                 return cc->migrate_pfn;
1967
1968         cc->migrate_pfn = cc->fast_start_pfn;
1969         cc->fast_start_pfn = ULONG_MAX;
1970
1971         return cc->migrate_pfn;
1972 }
1973
1974 /*
1975  * Briefly search the free lists for a migration source that already has
1976  * some free pages to reduce the number of pages that need migration
1977  * before a pageblock is free.
1978  */
1979 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1980 {
1981         unsigned int limit = freelist_scan_limit(cc);
1982         unsigned int nr_scanned = 0;
1983         unsigned long distance;
1984         unsigned long pfn = cc->migrate_pfn;
1985         unsigned long high_pfn;
1986         int order;
1987         bool found_block = false;
1988
1989         /* Skip hints are relied on to avoid repeats on the fast search */
1990         if (cc->ignore_skip_hint)
1991                 return pfn;
1992
1993         /*
1994          * If the pageblock should be finished then do not select a different
1995          * pageblock.
1996          */
1997         if (cc->finish_pageblock)
1998                 return pfn;
1999
2000         /*
2001          * If the migrate_pfn is not at the start of a zone or the start
2002          * of a pageblock then assume this is a continuation of a previous
2003          * scan restarted due to COMPACT_CLUSTER_MAX.
2004          */
2005         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
2006                 return pfn;
2007
2008         /*
2009          * For smaller orders, just linearly scan as the number of pages
2010          * to migrate should be relatively small and does not necessarily
2011          * justify freeing up a large block for a small allocation.
2012          */
2013         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
2014                 return pfn;
2015
2016         /*
2017          * Only allow kcompactd and direct requests for movable pages to
2018          * quickly clear out a MOVABLE pageblock for allocation. This
2019          * reduces the risk that a large movable pageblock is freed for
2020          * an unmovable/reclaimable small allocation.
2021          */
2022         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2023                 return pfn;
2024
2025         /*
2026          * When starting the migration scanner, pick any pageblock within the
2027          * first half of the search space. Otherwise try and pick a pageblock
2028          * within the first eighth to reduce the chances that a migration
2029          * target later becomes a source.
2030          */
2031         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2032         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2033                 distance >>= 2;
2034         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2035
2036         for (order = cc->order - 1;
2037              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2038              order--) {
2039                 struct free_area *area = &cc->zone->free_area[order];
2040                 struct list_head *freelist;
2041                 unsigned long flags;
2042                 struct page *freepage;
2043
2044                 if (!area->nr_free)
2045                         continue;
2046
2047                 spin_lock_irqsave(&cc->zone->lock, flags);
2048                 freelist = &area->free_list[MIGRATE_MOVABLE];
2049                 list_for_each_entry(freepage, freelist, buddy_list) {
2050                         unsigned long free_pfn;
2051
2052                         if (nr_scanned++ >= limit) {
2053                                 move_freelist_tail(freelist, freepage);
2054                                 break;
2055                         }
2056
2057                         free_pfn = page_to_pfn(freepage);
2058                         if (free_pfn < high_pfn) {
2059                                 /*
2060                                  * Avoid if skipped recently. Ideally it would
2061                                  * move to the tail but even safe iteration of
2062                                  * the list assumes an entry is deleted, not
2063                                  * reordered.
2064                                  */
2065                                 if (get_pageblock_skip(freepage))
2066                                         continue;
2067
2068                                 /* Reorder to so a future search skips recent pages */
2069                                 move_freelist_tail(freelist, freepage);
2070
2071                                 update_fast_start_pfn(cc, free_pfn);
2072                                 pfn = pageblock_start_pfn(free_pfn);
2073                                 if (pfn < cc->zone->zone_start_pfn)
2074                                         pfn = cc->zone->zone_start_pfn;
2075                                 cc->fast_search_fail = 0;
2076                                 found_block = true;
2077                                 break;
2078                         }
2079                 }
2080                 spin_unlock_irqrestore(&cc->zone->lock, flags);
2081         }
2082
2083         cc->total_migrate_scanned += nr_scanned;
2084
2085         /*
2086          * If fast scanning failed then use a cached entry for a page block
2087          * that had free pages as the basis for starting a linear scan.
2088          */
2089         if (!found_block) {
2090                 cc->fast_search_fail++;
2091                 pfn = reinit_migrate_pfn(cc);
2092         }
2093         return pfn;
2094 }
2095
2096 /*
2097  * Isolate all pages that can be migrated from the first suitable block,
2098  * starting at the block pointed to by the migrate scanner pfn within
2099  * compact_control.
2100  */
2101 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2102 {
2103         unsigned long block_start_pfn;
2104         unsigned long block_end_pfn;
2105         unsigned long low_pfn;
2106         struct page *page;
2107         const isolate_mode_t isolate_mode =
2108                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2109                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2110         bool fast_find_block;
2111
2112         /*
2113          * Start at where we last stopped, or beginning of the zone as
2114          * initialized by compact_zone(). The first failure will use
2115          * the lowest PFN as the starting point for linear scanning.
2116          */
2117         low_pfn = fast_find_migrateblock(cc);
2118         block_start_pfn = pageblock_start_pfn(low_pfn);
2119         if (block_start_pfn < cc->zone->zone_start_pfn)
2120                 block_start_pfn = cc->zone->zone_start_pfn;
2121
2122         /*
2123          * fast_find_migrateblock() has already ensured the pageblock is not
2124          * set with a skipped flag, so to avoid the isolation_suitable check
2125          * below again, check whether the fast search was successful.
2126          */
2127         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2128
2129         /* Only scan within a pageblock boundary */
2130         block_end_pfn = pageblock_end_pfn(low_pfn);
2131
2132         /*
2133          * Iterate over whole pageblocks until we find the first suitable.
2134          * Do not cross the free scanner.
2135          */
2136         for (; block_end_pfn <= cc->free_pfn;
2137                         fast_find_block = false,
2138                         cc->migrate_pfn = low_pfn = block_end_pfn,
2139                         block_start_pfn = block_end_pfn,
2140                         block_end_pfn += pageblock_nr_pages) {
2141
2142                 /*
2143                  * This can potentially iterate a massively long zone with
2144                  * many pageblocks unsuitable, so periodically check if we
2145                  * need to schedule.
2146                  */
2147                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2148                         cond_resched();
2149
2150                 page = pageblock_pfn_to_page(block_start_pfn,
2151                                                 block_end_pfn, cc->zone);
2152                 if (!page) {
2153                         unsigned long next_pfn;
2154
2155                         next_pfn = skip_offline_sections(block_start_pfn);
2156                         if (next_pfn)
2157                                 block_end_pfn = min(next_pfn, cc->free_pfn);
2158                         continue;
2159                 }
2160
2161                 /*
2162                  * If isolation recently failed, do not retry. Only check the
2163                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2164                  * to be visited multiple times. Assume skip was checked
2165                  * before making it "skip" so other compaction instances do
2166                  * not scan the same block.
2167                  */
2168                 if ((pageblock_aligned(low_pfn) ||
2169                      low_pfn == cc->zone->zone_start_pfn) &&
2170                     !fast_find_block && !isolation_suitable(cc, page))
2171                         continue;
2172
2173                 /*
2174                  * For async direct compaction, only scan the pageblocks of the
2175                  * same migratetype without huge pages. Async direct compaction
2176                  * is optimistic to see if the minimum amount of work satisfies
2177                  * the allocation. The cached PFN is updated as it's possible
2178                  * that all remaining blocks between source and target are
2179                  * unsuitable and the compaction scanners fail to meet.
2180                  */
2181                 if (!suitable_migration_source(cc, page)) {
2182                         update_cached_migrate(cc, block_end_pfn);
2183                         continue;
2184                 }
2185
2186                 /* Perform the isolation */
2187                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2188                                                 isolate_mode))
2189                         return ISOLATE_ABORT;
2190
2191                 /*
2192                  * Either we isolated something and proceed with migration. Or
2193                  * we failed and compact_zone should decide if we should
2194                  * continue or not.
2195                  */
2196                 break;
2197         }
2198
2199         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2200 }
2201
2202 /*
2203  * Determine whether kswapd is (or recently was!) running on this node.
2204  *
2205  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2206  * zero it.
2207  */
2208 static bool kswapd_is_running(pg_data_t *pgdat)
2209 {
2210         bool running;
2211
2212         pgdat_kswapd_lock(pgdat);
2213         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2214         pgdat_kswapd_unlock(pgdat);
2215
2216         return running;
2217 }
2218
2219 /*
2220  * A zone's fragmentation score is the external fragmentation wrt to the
2221  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2222  */
2223 static unsigned int fragmentation_score_zone(struct zone *zone)
2224 {
2225         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2226 }
2227
2228 /*
2229  * A weighted zone's fragmentation score is the external fragmentation
2230  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2231  * returns a value in the range [0, 100].
2232  *
2233  * The scaling factor ensures that proactive compaction focuses on larger
2234  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2235  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2236  * and thus never exceeds the high threshold for proactive compaction.
2237  */
2238 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2239 {
2240         unsigned long score;
2241
2242         score = zone->present_pages * fragmentation_score_zone(zone);
2243         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2244 }
2245
2246 /*
2247  * The per-node proactive (background) compaction process is started by its
2248  * corresponding kcompactd thread when the node's fragmentation score
2249  * exceeds the high threshold. The compaction process remains active till
2250  * the node's score falls below the low threshold, or one of the back-off
2251  * conditions is met.
2252  */
2253 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2254 {
2255         unsigned int score = 0;
2256         int zoneid;
2257
2258         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2259                 struct zone *zone;
2260
2261                 zone = &pgdat->node_zones[zoneid];
2262                 if (!populated_zone(zone))
2263                         continue;
2264                 score += fragmentation_score_zone_weighted(zone);
2265         }
2266
2267         return score;
2268 }
2269
2270 static unsigned int fragmentation_score_wmark(bool low)
2271 {
2272         unsigned int wmark_low;
2273
2274         /*
2275          * Cap the low watermark to avoid excessive compaction
2276          * activity in case a user sets the proactiveness tunable
2277          * close to 100 (maximum).
2278          */
2279         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2280         return low ? wmark_low : min(wmark_low + 10, 100U);
2281 }
2282
2283 static bool should_proactive_compact_node(pg_data_t *pgdat)
2284 {
2285         int wmark_high;
2286
2287         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2288                 return false;
2289
2290         wmark_high = fragmentation_score_wmark(false);
2291         return fragmentation_score_node(pgdat) > wmark_high;
2292 }
2293
2294 static enum compact_result __compact_finished(struct compact_control *cc)
2295 {
2296         unsigned int order;
2297         const int migratetype = cc->migratetype;
2298         int ret;
2299
2300         /* Compaction run completes if the migrate and free scanner meet */
2301         if (compact_scanners_met(cc)) {
2302                 /* Let the next compaction start anew. */
2303                 reset_cached_positions(cc->zone);
2304
2305                 /*
2306                  * Mark that the PG_migrate_skip information should be cleared
2307                  * by kswapd when it goes to sleep. kcompactd does not set the
2308                  * flag itself as the decision to be clear should be directly
2309                  * based on an allocation request.
2310                  */
2311                 if (cc->direct_compaction)
2312                         cc->zone->compact_blockskip_flush = true;
2313
2314                 if (cc->whole_zone)
2315                         return COMPACT_COMPLETE;
2316                 else
2317                         return COMPACT_PARTIAL_SKIPPED;
2318         }
2319
2320         if (cc->proactive_compaction) {
2321                 int score, wmark_low;
2322                 pg_data_t *pgdat;
2323
2324                 pgdat = cc->zone->zone_pgdat;
2325                 if (kswapd_is_running(pgdat))
2326                         return COMPACT_PARTIAL_SKIPPED;
2327
2328                 score = fragmentation_score_zone(cc->zone);
2329                 wmark_low = fragmentation_score_wmark(true);
2330
2331                 if (score > wmark_low)
2332                         ret = COMPACT_CONTINUE;
2333                 else
2334                         ret = COMPACT_SUCCESS;
2335
2336                 goto out;
2337         }
2338
2339         if (is_via_compact_memory(cc->order))
2340                 return COMPACT_CONTINUE;
2341
2342         /*
2343          * Always finish scanning a pageblock to reduce the possibility of
2344          * fallbacks in the future. This is particularly important when
2345          * migration source is unmovable/reclaimable but it's not worth
2346          * special casing.
2347          */
2348         if (!pageblock_aligned(cc->migrate_pfn))
2349                 return COMPACT_CONTINUE;
2350
2351         /* Direct compactor: Is a suitable page free? */
2352         ret = COMPACT_NO_SUITABLE_PAGE;
2353         for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2354                 struct free_area *area = &cc->zone->free_area[order];
2355                 bool can_steal;
2356
2357                 /* Job done if page is free of the right migratetype */
2358                 if (!free_area_empty(area, migratetype))
2359                         return COMPACT_SUCCESS;
2360
2361 #ifdef CONFIG_CMA
2362                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2363                 if (migratetype == MIGRATE_MOVABLE &&
2364                         !free_area_empty(area, MIGRATE_CMA))
2365                         return COMPACT_SUCCESS;
2366 #endif
2367                 /*
2368                  * Job done if allocation would steal freepages from
2369                  * other migratetype buddy lists.
2370                  */
2371                 if (find_suitable_fallback(area, order, migratetype,
2372                                                 true, &can_steal) != -1)
2373                         /*
2374                          * Movable pages are OK in any pageblock. If we are
2375                          * stealing for a non-movable allocation, make sure
2376                          * we finish compacting the current pageblock first
2377                          * (which is assured by the above migrate_pfn align
2378                          * check) so it is as free as possible and we won't
2379                          * have to steal another one soon.
2380                          */
2381                         return COMPACT_SUCCESS;
2382         }
2383
2384 out:
2385         if (cc->contended || fatal_signal_pending(current))
2386                 ret = COMPACT_CONTENDED;
2387
2388         return ret;
2389 }
2390
2391 static enum compact_result compact_finished(struct compact_control *cc)
2392 {
2393         int ret;
2394
2395         ret = __compact_finished(cc);
2396         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2397         if (ret == COMPACT_NO_SUITABLE_PAGE)
2398                 ret = COMPACT_CONTINUE;
2399
2400         return ret;
2401 }
2402
2403 static bool __compaction_suitable(struct zone *zone, int order,
2404                                   int highest_zoneidx,
2405                                   unsigned long wmark_target)
2406 {
2407         unsigned long watermark;
2408         /*
2409          * Watermarks for order-0 must be met for compaction to be able to
2410          * isolate free pages for migration targets. This means that the
2411          * watermark and alloc_flags have to match, or be more pessimistic than
2412          * the check in __isolate_free_page(). We don't use the direct
2413          * compactor's alloc_flags, as they are not relevant for freepage
2414          * isolation. We however do use the direct compactor's highest_zoneidx
2415          * to skip over zones where lowmem reserves would prevent allocation
2416          * even if compaction succeeds.
2417          * For costly orders, we require low watermark instead of min for
2418          * compaction to proceed to increase its chances.
2419          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2420          * suitable migration targets
2421          */
2422         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2423                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2424         watermark += compact_gap(order);
2425         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2426                                    ALLOC_CMA, wmark_target);
2427 }
2428
2429 /*
2430  * compaction_suitable: Is this suitable to run compaction on this zone now?
2431  */
2432 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2433 {
2434         enum compact_result compact_result;
2435         bool suitable;
2436
2437         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2438                                          zone_page_state(zone, NR_FREE_PAGES));
2439         /*
2440          * fragmentation index determines if allocation failures are due to
2441          * low memory or external fragmentation
2442          *
2443          * index of -1000 would imply allocations might succeed depending on
2444          * watermarks, but we already failed the high-order watermark check
2445          * index towards 0 implies failure is due to lack of memory
2446          * index towards 1000 implies failure is due to fragmentation
2447          *
2448          * Only compact if a failure would be due to fragmentation. Also
2449          * ignore fragindex for non-costly orders where the alternative to
2450          * a successful reclaim/compaction is OOM. Fragindex and the
2451          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2452          * excessive compaction for costly orders, but it should not be at the
2453          * expense of system stability.
2454          */
2455         if (suitable) {
2456                 compact_result = COMPACT_CONTINUE;
2457                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2458                         int fragindex = fragmentation_index(zone, order);
2459
2460                         if (fragindex >= 0 &&
2461                             fragindex <= sysctl_extfrag_threshold) {
2462                                 suitable = false;
2463                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2464                         }
2465                 }
2466         } else {
2467                 compact_result = COMPACT_SKIPPED;
2468         }
2469
2470         trace_mm_compaction_suitable(zone, order, compact_result);
2471
2472         return suitable;
2473 }
2474
2475 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2476                 int alloc_flags)
2477 {
2478         struct zone *zone;
2479         struct zoneref *z;
2480
2481         /*
2482          * Make sure at least one zone would pass __compaction_suitable if we continue
2483          * retrying the reclaim.
2484          */
2485         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2486                                 ac->highest_zoneidx, ac->nodemask) {
2487                 unsigned long available;
2488
2489                 /*
2490                  * Do not consider all the reclaimable memory because we do not
2491                  * want to trash just for a single high order allocation which
2492                  * is even not guaranteed to appear even if __compaction_suitable
2493                  * is happy about the watermark check.
2494                  */
2495                 available = zone_reclaimable_pages(zone) / order;
2496                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2497                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2498                                           available))
2499                         return true;
2500         }
2501
2502         return false;
2503 }
2504
2505 /*
2506  * Should we do compaction for target allocation order.
2507  * Return COMPACT_SUCCESS if allocation for target order can be already
2508  * satisfied
2509  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2510  * Return COMPACT_CONTINUE if compaction for target order should be ran
2511  */
2512 static enum compact_result
2513 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2514                                  int highest_zoneidx, unsigned int alloc_flags)
2515 {
2516         unsigned long watermark;
2517
2518         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2519         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2520                               alloc_flags))
2521                 return COMPACT_SUCCESS;
2522
2523         if (!compaction_suitable(zone, order, highest_zoneidx))
2524                 return COMPACT_SKIPPED;
2525
2526         return COMPACT_CONTINUE;
2527 }
2528
2529 static enum compact_result
2530 compact_zone(struct compact_control *cc, struct capture_control *capc)
2531 {
2532         enum compact_result ret;
2533         unsigned long start_pfn = cc->zone->zone_start_pfn;
2534         unsigned long end_pfn = zone_end_pfn(cc->zone);
2535         unsigned long last_migrated_pfn;
2536         const bool sync = cc->mode != MIGRATE_ASYNC;
2537         bool update_cached;
2538         unsigned int nr_succeeded = 0, nr_migratepages;
2539         int order;
2540
2541         /*
2542          * These counters track activities during zone compaction.  Initialize
2543          * them before compacting a new zone.
2544          */
2545         cc->total_migrate_scanned = 0;
2546         cc->total_free_scanned = 0;
2547         cc->nr_migratepages = 0;
2548         cc->nr_freepages = 0;
2549         for (order = 0; order < NR_PAGE_ORDERS; order++)
2550                 INIT_LIST_HEAD(&cc->freepages[order]);
2551         INIT_LIST_HEAD(&cc->migratepages);
2552
2553         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2554
2555         if (!is_via_compact_memory(cc->order)) {
2556                 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2557                                                        cc->highest_zoneidx,
2558                                                        cc->alloc_flags);
2559                 if (ret != COMPACT_CONTINUE)
2560                         return ret;
2561         }
2562
2563         /*
2564          * Clear pageblock skip if there were failures recently and compaction
2565          * is about to be retried after being deferred.
2566          */
2567         if (compaction_restarting(cc->zone, cc->order))
2568                 __reset_isolation_suitable(cc->zone);
2569
2570         /*
2571          * Setup to move all movable pages to the end of the zone. Used cached
2572          * information on where the scanners should start (unless we explicitly
2573          * want to compact the whole zone), but check that it is initialised
2574          * by ensuring the values are within zone boundaries.
2575          */
2576         cc->fast_start_pfn = 0;
2577         if (cc->whole_zone) {
2578                 cc->migrate_pfn = start_pfn;
2579                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2580         } else {
2581                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2582                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2583                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2584                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2585                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2586                 }
2587                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2588                         cc->migrate_pfn = start_pfn;
2589                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2590                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2591                 }
2592
2593                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2594                         cc->whole_zone = true;
2595         }
2596
2597         last_migrated_pfn = 0;
2598
2599         /*
2600          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2601          * the basis that some migrations will fail in ASYNC mode. However,
2602          * if the cached PFNs match and pageblocks are skipped due to having
2603          * no isolation candidates, then the sync state does not matter.
2604          * Until a pageblock with isolation candidates is found, keep the
2605          * cached PFNs in sync to avoid revisiting the same blocks.
2606          */
2607         update_cached = !sync &&
2608                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2609
2610         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2611
2612         /* lru_add_drain_all could be expensive with involving other CPUs */
2613         lru_add_drain();
2614
2615         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2616                 int err;
2617                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2618
2619                 /*
2620                  * Avoid multiple rescans of the same pageblock which can
2621                  * happen if a page cannot be isolated (dirty/writeback in
2622                  * async mode) or if the migrated pages are being allocated
2623                  * before the pageblock is cleared.  The first rescan will
2624                  * capture the entire pageblock for migration. If it fails,
2625                  * it'll be marked skip and scanning will proceed as normal.
2626                  */
2627                 cc->finish_pageblock = false;
2628                 if (pageblock_start_pfn(last_migrated_pfn) ==
2629                     pageblock_start_pfn(iteration_start_pfn)) {
2630                         cc->finish_pageblock = true;
2631                 }
2632
2633 rescan:
2634                 switch (isolate_migratepages(cc)) {
2635                 case ISOLATE_ABORT:
2636                         ret = COMPACT_CONTENDED;
2637                         putback_movable_pages(&cc->migratepages);
2638                         cc->nr_migratepages = 0;
2639                         goto out;
2640                 case ISOLATE_NONE:
2641                         if (update_cached) {
2642                                 cc->zone->compact_cached_migrate_pfn[1] =
2643                                         cc->zone->compact_cached_migrate_pfn[0];
2644                         }
2645
2646                         /*
2647                          * We haven't isolated and migrated anything, but
2648                          * there might still be unflushed migrations from
2649                          * previous cc->order aligned block.
2650                          */
2651                         goto check_drain;
2652                 case ISOLATE_SUCCESS:
2653                         update_cached = false;
2654                         last_migrated_pfn = max(cc->zone->zone_start_pfn,
2655                                 pageblock_start_pfn(cc->migrate_pfn - 1));
2656                 }
2657
2658                 /*
2659                  * Record the number of pages to migrate since the
2660                  * compaction_alloc/free() will update cc->nr_migratepages
2661                  * properly.
2662                  */
2663                 nr_migratepages = cc->nr_migratepages;
2664                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2665                                 compaction_free, (unsigned long)cc, cc->mode,
2666                                 MR_COMPACTION, &nr_succeeded);
2667
2668                 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2669
2670                 /* All pages were either migrated or will be released */
2671                 cc->nr_migratepages = 0;
2672                 if (err) {
2673                         putback_movable_pages(&cc->migratepages);
2674                         /*
2675                          * migrate_pages() may return -ENOMEM when scanners meet
2676                          * and we want compact_finished() to detect it
2677                          */
2678                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2679                                 ret = COMPACT_CONTENDED;
2680                                 goto out;
2681                         }
2682                         /*
2683                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2684                          * within the pageblock_order-aligned block and
2685                          * fast_find_migrateblock may be used then scan the
2686                          * remainder of the pageblock. This will mark the
2687                          * pageblock "skip" to avoid rescanning in the near
2688                          * future. This will isolate more pages than necessary
2689                          * for the request but avoid loops due to
2690                          * fast_find_migrateblock revisiting blocks that were
2691                          * recently partially scanned.
2692                          */
2693                         if (!pageblock_aligned(cc->migrate_pfn) &&
2694                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2695                             (cc->mode < MIGRATE_SYNC)) {
2696                                 cc->finish_pageblock = true;
2697
2698                                 /*
2699                                  * Draining pcplists does not help THP if
2700                                  * any page failed to migrate. Even after
2701                                  * drain, the pageblock will not be free.
2702                                  */
2703                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2704                                         last_migrated_pfn = 0;
2705
2706                                 goto rescan;
2707                         }
2708                 }
2709
2710                 /* Stop if a page has been captured */
2711                 if (capc && capc->page) {
2712                         ret = COMPACT_SUCCESS;
2713                         break;
2714                 }
2715
2716 check_drain:
2717                 /*
2718                  * Has the migration scanner moved away from the previous
2719                  * cc->order aligned block where we migrated from? If yes,
2720                  * flush the pages that were freed, so that they can merge and
2721                  * compact_finished() can detect immediately if allocation
2722                  * would succeed.
2723                  */
2724                 if (cc->order > 0 && last_migrated_pfn) {
2725                         unsigned long current_block_start =
2726                                 block_start_pfn(cc->migrate_pfn, cc->order);
2727
2728                         if (last_migrated_pfn < current_block_start) {
2729                                 lru_add_drain_cpu_zone(cc->zone);
2730                                 /* No more flushing until we migrate again */
2731                                 last_migrated_pfn = 0;
2732                         }
2733                 }
2734         }
2735
2736 out:
2737         /*
2738          * Release free pages and update where the free scanner should restart,
2739          * so we don't leave any returned pages behind in the next attempt.
2740          */
2741         if (cc->nr_freepages > 0) {
2742                 unsigned long free_pfn = release_free_list(cc->freepages);
2743
2744                 cc->nr_freepages = 0;
2745                 VM_BUG_ON(free_pfn == 0);
2746                 /* The cached pfn is always the first in a pageblock */
2747                 free_pfn = pageblock_start_pfn(free_pfn);
2748                 /*
2749                  * Only go back, not forward. The cached pfn might have been
2750                  * already reset to zone end in compact_finished()
2751                  */
2752                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2753                         cc->zone->compact_cached_free_pfn = free_pfn;
2754         }
2755
2756         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2757         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2758
2759         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2760
2761         VM_BUG_ON(!list_empty(&cc->migratepages));
2762
2763         return ret;
2764 }
2765
2766 static enum compact_result compact_zone_order(struct zone *zone, int order,
2767                 gfp_t gfp_mask, enum compact_priority prio,
2768                 unsigned int alloc_flags, int highest_zoneidx,
2769                 struct page **capture)
2770 {
2771         enum compact_result ret;
2772         struct compact_control cc = {
2773                 .order = order,
2774                 .search_order = order,
2775                 .gfp_mask = gfp_mask,
2776                 .zone = zone,
2777                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2778                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2779                 .alloc_flags = alloc_flags,
2780                 .highest_zoneidx = highest_zoneidx,
2781                 .direct_compaction = true,
2782                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2783                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2784                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2785         };
2786         struct capture_control capc = {
2787                 .cc = &cc,
2788                 .page = NULL,
2789         };
2790
2791         /*
2792          * Make sure the structs are really initialized before we expose the
2793          * capture control, in case we are interrupted and the interrupt handler
2794          * frees a page.
2795          */
2796         barrier();
2797         WRITE_ONCE(current->capture_control, &capc);
2798
2799         ret = compact_zone(&cc, &capc);
2800
2801         /*
2802          * Make sure we hide capture control first before we read the captured
2803          * page pointer, otherwise an interrupt could free and capture a page
2804          * and we would leak it.
2805          */
2806         WRITE_ONCE(current->capture_control, NULL);
2807         *capture = READ_ONCE(capc.page);
2808         /*
2809          * Technically, it is also possible that compaction is skipped but
2810          * the page is still captured out of luck(IRQ came and freed the page).
2811          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2812          * the COMPACT[STALL|FAIL] when compaction is skipped.
2813          */
2814         if (*capture)
2815                 ret = COMPACT_SUCCESS;
2816
2817         return ret;
2818 }
2819
2820 /**
2821  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2822  * @gfp_mask: The GFP mask of the current allocation
2823  * @order: The order of the current allocation
2824  * @alloc_flags: The allocation flags of the current allocation
2825  * @ac: The context of current allocation
2826  * @prio: Determines how hard direct compaction should try to succeed
2827  * @capture: Pointer to free page created by compaction will be stored here
2828  *
2829  * This is the main entry point for direct page compaction.
2830  */
2831 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2832                 unsigned int alloc_flags, const struct alloc_context *ac,
2833                 enum compact_priority prio, struct page **capture)
2834 {
2835         struct zoneref *z;
2836         struct zone *zone;
2837         enum compact_result rc = COMPACT_SKIPPED;
2838
2839         if (!gfp_compaction_allowed(gfp_mask))
2840                 return COMPACT_SKIPPED;
2841
2842         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2843
2844         /* Compact each zone in the list */
2845         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2846                                         ac->highest_zoneidx, ac->nodemask) {
2847                 enum compact_result status;
2848
2849                 if (prio > MIN_COMPACT_PRIORITY
2850                                         && compaction_deferred(zone, order)) {
2851                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2852                         continue;
2853                 }
2854
2855                 status = compact_zone_order(zone, order, gfp_mask, prio,
2856                                 alloc_flags, ac->highest_zoneidx, capture);
2857                 rc = max(status, rc);
2858
2859                 /* The allocation should succeed, stop compacting */
2860                 if (status == COMPACT_SUCCESS) {
2861                         /*
2862                          * We think the allocation will succeed in this zone,
2863                          * but it is not certain, hence the false. The caller
2864                          * will repeat this with true if allocation indeed
2865                          * succeeds in this zone.
2866                          */
2867                         compaction_defer_reset(zone, order, false);
2868
2869                         break;
2870                 }
2871
2872                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2873                                         status == COMPACT_PARTIAL_SKIPPED))
2874                         /*
2875                          * We think that allocation won't succeed in this zone
2876                          * so we defer compaction there. If it ends up
2877                          * succeeding after all, it will be reset.
2878                          */
2879                         defer_compaction(zone, order);
2880
2881                 /*
2882                  * We might have stopped compacting due to need_resched() in
2883                  * async compaction, or due to a fatal signal detected. In that
2884                  * case do not try further zones
2885                  */
2886                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2887                                         || fatal_signal_pending(current))
2888                         break;
2889         }
2890
2891         return rc;
2892 }
2893
2894 /*
2895  * compact_node() - compact all zones within a node
2896  * @pgdat: The node page data
2897  * @proactive: Whether the compaction is proactive
2898  *
2899  * For proactive compaction, compact till each zone's fragmentation score
2900  * reaches within proactive compaction thresholds (as determined by the
2901  * proactiveness tunable), it is possible that the function returns before
2902  * reaching score targets due to various back-off conditions, such as,
2903  * contention on per-node or per-zone locks.
2904  */
2905 static int compact_node(pg_data_t *pgdat, bool proactive)
2906 {
2907         int zoneid;
2908         struct zone *zone;
2909         struct compact_control cc = {
2910                 .order = -1,
2911                 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2912                 .ignore_skip_hint = true,
2913                 .whole_zone = true,
2914                 .gfp_mask = GFP_KERNEL,
2915                 .proactive_compaction = proactive,
2916         };
2917
2918         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2919                 zone = &pgdat->node_zones[zoneid];
2920                 if (!populated_zone(zone))
2921                         continue;
2922
2923                 if (fatal_signal_pending(current))
2924                         return -EINTR;
2925
2926                 cc.zone = zone;
2927
2928                 compact_zone(&cc, NULL);
2929
2930                 if (proactive) {
2931                         count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2932                                              cc.total_migrate_scanned);
2933                         count_compact_events(KCOMPACTD_FREE_SCANNED,
2934                                              cc.total_free_scanned);
2935                 }
2936         }
2937
2938         return 0;
2939 }
2940
2941 /* Compact all zones of all nodes in the system */
2942 static int compact_nodes(void)
2943 {
2944         int ret, nid;
2945
2946         /* Flush pending updates to the LRU lists */
2947         lru_add_drain_all();
2948
2949         for_each_online_node(nid) {
2950                 ret = compact_node(NODE_DATA(nid), false);
2951                 if (ret)
2952                         return ret;
2953         }
2954
2955         return 0;
2956 }
2957
2958 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2959                 void *buffer, size_t *length, loff_t *ppos)
2960 {
2961         int rc, nid;
2962
2963         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2964         if (rc)
2965                 return rc;
2966
2967         if (write && sysctl_compaction_proactiveness) {
2968                 for_each_online_node(nid) {
2969                         pg_data_t *pgdat = NODE_DATA(nid);
2970
2971                         if (pgdat->proactive_compact_trigger)
2972                                 continue;
2973
2974                         pgdat->proactive_compact_trigger = true;
2975                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2976                                                              pgdat->nr_zones - 1);
2977                         wake_up_interruptible(&pgdat->kcompactd_wait);
2978                 }
2979         }
2980
2981         return 0;
2982 }
2983
2984 /*
2985  * This is the entry point for compacting all nodes via
2986  * /proc/sys/vm/compact_memory
2987  */
2988 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2989                         void *buffer, size_t *length, loff_t *ppos)
2990 {
2991         int ret;
2992
2993         ret = proc_dointvec(table, write, buffer, length, ppos);
2994         if (ret)
2995                 return ret;
2996
2997         if (sysctl_compact_memory != 1)
2998                 return -EINVAL;
2999
3000         if (write)
3001                 ret = compact_nodes();
3002
3003         return ret;
3004 }
3005
3006 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
3007 static ssize_t compact_store(struct device *dev,
3008                              struct device_attribute *attr,
3009                              const char *buf, size_t count)
3010 {
3011         int nid = dev->id;
3012
3013         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3014                 /* Flush pending updates to the LRU lists */
3015                 lru_add_drain_all();
3016
3017                 compact_node(NODE_DATA(nid), false);
3018         }
3019
3020         return count;
3021 }
3022 static DEVICE_ATTR_WO(compact);
3023
3024 int compaction_register_node(struct node *node)
3025 {
3026         return device_create_file(&node->dev, &dev_attr_compact);
3027 }
3028
3029 void compaction_unregister_node(struct node *node)
3030 {
3031         device_remove_file(&node->dev, &dev_attr_compact);
3032 }
3033 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3034
3035 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3036 {
3037         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3038                 pgdat->proactive_compact_trigger;
3039 }
3040
3041 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3042 {
3043         int zoneid;
3044         struct zone *zone;
3045         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3046         enum compact_result ret;
3047
3048         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3049                 zone = &pgdat->node_zones[zoneid];
3050
3051                 if (!populated_zone(zone))
3052                         continue;
3053
3054                 ret = compaction_suit_allocation_order(zone,
3055                                 pgdat->kcompactd_max_order,
3056                                 highest_zoneidx, ALLOC_WMARK_MIN);
3057                 if (ret == COMPACT_CONTINUE)
3058                         return true;
3059         }
3060
3061         return false;
3062 }
3063
3064 static void kcompactd_do_work(pg_data_t *pgdat)
3065 {
3066         /*
3067          * With no special task, compact all zones so that a page of requested
3068          * order is allocatable.
3069          */
3070         int zoneid;
3071         struct zone *zone;
3072         struct compact_control cc = {
3073                 .order = pgdat->kcompactd_max_order,
3074                 .search_order = pgdat->kcompactd_max_order,
3075                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3076                 .mode = MIGRATE_SYNC_LIGHT,
3077                 .ignore_skip_hint = false,
3078                 .gfp_mask = GFP_KERNEL,
3079         };
3080         enum compact_result ret;
3081
3082         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3083                                                         cc.highest_zoneidx);
3084         count_compact_event(KCOMPACTD_WAKE);
3085
3086         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3087                 int status;
3088
3089                 zone = &pgdat->node_zones[zoneid];
3090                 if (!populated_zone(zone))
3091                         continue;
3092
3093                 if (compaction_deferred(zone, cc.order))
3094                         continue;
3095
3096                 ret = compaction_suit_allocation_order(zone,
3097                                 cc.order, zoneid, ALLOC_WMARK_MIN);
3098                 if (ret != COMPACT_CONTINUE)
3099                         continue;
3100
3101                 if (kthread_should_stop())
3102                         return;
3103
3104                 cc.zone = zone;
3105                 status = compact_zone(&cc, NULL);
3106
3107                 if (status == COMPACT_SUCCESS) {
3108                         compaction_defer_reset(zone, cc.order, false);
3109                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3110                         /*
3111                          * Buddy pages may become stranded on pcps that could
3112                          * otherwise coalesce on the zone's free area for
3113                          * order >= cc.order.  This is ratelimited by the
3114                          * upcoming deferral.
3115                          */
3116                         drain_all_pages(zone);
3117
3118                         /*
3119                          * We use sync migration mode here, so we defer like
3120                          * sync direct compaction does.
3121                          */
3122                         defer_compaction(zone, cc.order);
3123                 }
3124
3125                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3126                                      cc.total_migrate_scanned);
3127                 count_compact_events(KCOMPACTD_FREE_SCANNED,
3128                                      cc.total_free_scanned);
3129         }
3130
3131         /*
3132          * Regardless of success, we are done until woken up next. But remember
3133          * the requested order/highest_zoneidx in case it was higher/tighter
3134          * than our current ones
3135          */
3136         if (pgdat->kcompactd_max_order <= cc.order)
3137                 pgdat->kcompactd_max_order = 0;
3138         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3139                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3140 }
3141
3142 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3143 {
3144         if (!order)
3145                 return;
3146
3147         if (pgdat->kcompactd_max_order < order)
3148                 pgdat->kcompactd_max_order = order;
3149
3150         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3151                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3152
3153         /*
3154          * Pairs with implicit barrier in wait_event_freezable()
3155          * such that wakeups are not missed.
3156          */
3157         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3158                 return;
3159
3160         if (!kcompactd_node_suitable(pgdat))
3161                 return;
3162
3163         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3164                                                         highest_zoneidx);
3165         wake_up_interruptible(&pgdat->kcompactd_wait);
3166 }
3167
3168 /*
3169  * The background compaction daemon, started as a kernel thread
3170  * from the init process.
3171  */
3172 static int kcompactd(void *p)
3173 {
3174         pg_data_t *pgdat = (pg_data_t *)p;
3175         struct task_struct *tsk = current;
3176         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3177         long timeout = default_timeout;
3178
3179         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3180
3181         if (!cpumask_empty(cpumask))
3182                 set_cpus_allowed_ptr(tsk, cpumask);
3183
3184         set_freezable();
3185
3186         pgdat->kcompactd_max_order = 0;
3187         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3188
3189         while (!kthread_should_stop()) {
3190                 unsigned long pflags;
3191
3192                 /*
3193                  * Avoid the unnecessary wakeup for proactive compaction
3194                  * when it is disabled.
3195                  */
3196                 if (!sysctl_compaction_proactiveness)
3197                         timeout = MAX_SCHEDULE_TIMEOUT;
3198                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3199                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3200                         kcompactd_work_requested(pgdat), timeout) &&
3201                         !pgdat->proactive_compact_trigger) {
3202
3203                         psi_memstall_enter(&pflags);
3204                         kcompactd_do_work(pgdat);
3205                         psi_memstall_leave(&pflags);
3206                         /*
3207                          * Reset the timeout value. The defer timeout from
3208                          * proactive compaction is lost here but that is fine
3209                          * as the condition of the zone changing substantionally
3210                          * then carrying on with the previous defer interval is
3211                          * not useful.
3212                          */
3213                         timeout = default_timeout;
3214                         continue;
3215                 }
3216
3217                 /*
3218                  * Start the proactive work with default timeout. Based
3219                  * on the fragmentation score, this timeout is updated.
3220                  */
3221                 timeout = default_timeout;
3222                 if (should_proactive_compact_node(pgdat)) {
3223                         unsigned int prev_score, score;
3224
3225                         prev_score = fragmentation_score_node(pgdat);
3226                         compact_node(pgdat, true);
3227                         score = fragmentation_score_node(pgdat);
3228                         /*
3229                          * Defer proactive compaction if the fragmentation
3230                          * score did not go down i.e. no progress made.
3231                          */
3232                         if (unlikely(score >= prev_score))
3233                                 timeout =
3234                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3235                 }
3236                 if (unlikely(pgdat->proactive_compact_trigger))
3237                         pgdat->proactive_compact_trigger = false;
3238         }
3239
3240         return 0;
3241 }
3242
3243 /*
3244  * This kcompactd start function will be called by init and node-hot-add.
3245  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3246  */
3247 void __meminit kcompactd_run(int nid)
3248 {
3249         pg_data_t *pgdat = NODE_DATA(nid);
3250
3251         if (pgdat->kcompactd)
3252                 return;
3253
3254         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3255         if (IS_ERR(pgdat->kcompactd)) {
3256                 pr_err("Failed to start kcompactd on node %d\n", nid);
3257                 pgdat->kcompactd = NULL;
3258         }
3259 }
3260
3261 /*
3262  * Called by memory hotplug when all memory in a node is offlined. Caller must
3263  * be holding mem_hotplug_begin/done().
3264  */
3265 void __meminit kcompactd_stop(int nid)
3266 {
3267         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3268
3269         if (kcompactd) {
3270                 kthread_stop(kcompactd);
3271                 NODE_DATA(nid)->kcompactd = NULL;
3272         }
3273 }
3274
3275 /*
3276  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3277  * not required for correctness. So if the last cpu in a node goes
3278  * away, we get changed to run anywhere: as the first one comes back,
3279  * restore their cpu bindings.
3280  */
3281 static int kcompactd_cpu_online(unsigned int cpu)
3282 {
3283         int nid;
3284
3285         for_each_node_state(nid, N_MEMORY) {
3286                 pg_data_t *pgdat = NODE_DATA(nid);
3287                 const struct cpumask *mask;
3288
3289                 mask = cpumask_of_node(pgdat->node_id);
3290
3291                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3292                         /* One of our CPUs online: restore mask */
3293                         if (pgdat->kcompactd)
3294                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3295         }
3296         return 0;
3297 }
3298
3299 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3300                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3301 {
3302         int ret, old;
3303
3304         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3305                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3306
3307         old = *(int *)table->data;
3308         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3309         if (ret)
3310                 return ret;
3311         if (old != *(int *)table->data)
3312                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3313                              table->procname, current->comm,
3314                              task_pid_nr(current));
3315         return ret;
3316 }
3317
3318 static struct ctl_table vm_compaction[] = {
3319         {
3320                 .procname       = "compact_memory",
3321                 .data           = &sysctl_compact_memory,
3322                 .maxlen         = sizeof(int),
3323                 .mode           = 0200,
3324                 .proc_handler   = sysctl_compaction_handler,
3325         },
3326         {
3327                 .procname       = "compaction_proactiveness",
3328                 .data           = &sysctl_compaction_proactiveness,
3329                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3330                 .mode           = 0644,
3331                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3332                 .extra1         = SYSCTL_ZERO,
3333                 .extra2         = SYSCTL_ONE_HUNDRED,
3334         },
3335         {
3336                 .procname       = "extfrag_threshold",
3337                 .data           = &sysctl_extfrag_threshold,
3338                 .maxlen         = sizeof(int),
3339                 .mode           = 0644,
3340                 .proc_handler   = proc_dointvec_minmax,
3341                 .extra1         = SYSCTL_ZERO,
3342                 .extra2         = SYSCTL_ONE_THOUSAND,
3343         },
3344         {
3345                 .procname       = "compact_unevictable_allowed",
3346                 .data           = &sysctl_compact_unevictable_allowed,
3347                 .maxlen         = sizeof(int),
3348                 .mode           = 0644,
3349                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3350                 .extra1         = SYSCTL_ZERO,
3351                 .extra2         = SYSCTL_ONE,
3352         },
3353 };
3354
3355 static int __init kcompactd_init(void)
3356 {
3357         int nid;
3358         int ret;
3359
3360         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3361                                         "mm/compaction:online",
3362                                         kcompactd_cpu_online, NULL);
3363         if (ret < 0) {
3364                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3365                 return ret;
3366         }
3367
3368         for_each_node_state(nid, N_MEMORY)
3369                 kcompactd_run(nid);
3370         register_sysctl_init("vm", vm_compaction);
3371         return 0;
3372 }
3373 subsys_initcall(kcompactd_init)
3374
3375 #endif /* CONFIG_COMPACTION */