Merge tag 'x86_mm_for_v6.1_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113 bool PageMovable(struct page *page)
114 {
115         const struct movable_operations *mops;
116
117         VM_BUG_ON_PAGE(!PageLocked(page), page);
118         if (!__PageMovable(page))
119                 return false;
120
121         mops = page_movable_ops(page);
122         if (mops)
123                 return true;
124
125         return false;
126 }
127 EXPORT_SYMBOL(PageMovable);
128
129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
130 {
131         VM_BUG_ON_PAGE(!PageLocked(page), page);
132         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
134 }
135 EXPORT_SYMBOL(__SetPageMovable);
136
137 void __ClearPageMovable(struct page *page)
138 {
139         VM_BUG_ON_PAGE(!PageMovable(page), page);
140         /*
141          * This page still has the type of a movable page, but it's
142          * actually not movable any more.
143          */
144         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
145 }
146 EXPORT_SYMBOL(__ClearPageMovable);
147
148 /* Do not skip compaction more than 64 times */
149 #define COMPACT_MAX_DEFER_SHIFT 6
150
151 /*
152  * Compaction is deferred when compaction fails to result in a page
153  * allocation success. 1 << compact_defer_shift, compactions are skipped up
154  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
155  */
156 static void defer_compaction(struct zone *zone, int order)
157 {
158         zone->compact_considered = 0;
159         zone->compact_defer_shift++;
160
161         if (order < zone->compact_order_failed)
162                 zone->compact_order_failed = order;
163
164         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
166
167         trace_mm_compaction_defer_compaction(zone, order);
168 }
169
170 /* Returns true if compaction should be skipped this time */
171 static bool compaction_deferred(struct zone *zone, int order)
172 {
173         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
174
175         if (order < zone->compact_order_failed)
176                 return false;
177
178         /* Avoid possible overflow */
179         if (++zone->compact_considered >= defer_limit) {
180                 zone->compact_considered = defer_limit;
181                 return false;
182         }
183
184         trace_mm_compaction_deferred(zone, order);
185
186         return true;
187 }
188
189 /*
190  * Update defer tracking counters after successful compaction of given order,
191  * which means an allocation either succeeded (alloc_success == true) or is
192  * expected to succeed.
193  */
194 void compaction_defer_reset(struct zone *zone, int order,
195                 bool alloc_success)
196 {
197         if (alloc_success) {
198                 zone->compact_considered = 0;
199                 zone->compact_defer_shift = 0;
200         }
201         if (order >= zone->compact_order_failed)
202                 zone->compact_order_failed = order + 1;
203
204         trace_mm_compaction_defer_reset(zone, order);
205 }
206
207 /* Returns true if restarting compaction after many failures */
208 static bool compaction_restarting(struct zone *zone, int order)
209 {
210         if (order < zone->compact_order_failed)
211                 return false;
212
213         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
215 }
216
217 /* Returns true if the pageblock should be scanned for pages to isolate. */
218 static inline bool isolation_suitable(struct compact_control *cc,
219                                         struct page *page)
220 {
221         if (cc->ignore_skip_hint)
222                 return true;
223
224         return !get_pageblock_skip(page);
225 }
226
227 static void reset_cached_positions(struct zone *zone)
228 {
229         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
231         zone->compact_cached_free_pfn =
232                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
233 }
234
235 /*
236  * Compound pages of >= pageblock_order should consistently be skipped until
237  * released. It is always pointless to compact pages of such order (if they are
238  * migratable), and the pageblocks they occupy cannot contain any free pages.
239  */
240 static bool pageblock_skip_persistent(struct page *page)
241 {
242         if (!PageCompound(page))
243                 return false;
244
245         page = compound_head(page);
246
247         if (compound_order(page) >= pageblock_order)
248                 return true;
249
250         return false;
251 }
252
253 static bool
254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
255                                                         bool check_target)
256 {
257         struct page *page = pfn_to_online_page(pfn);
258         struct page *block_page;
259         struct page *end_page;
260         unsigned long block_pfn;
261
262         if (!page)
263                 return false;
264         if (zone != page_zone(page))
265                 return false;
266         if (pageblock_skip_persistent(page))
267                 return false;
268
269         /*
270          * If skip is already cleared do no further checking once the
271          * restart points have been set.
272          */
273         if (check_source && check_target && !get_pageblock_skip(page))
274                 return true;
275
276         /*
277          * If clearing skip for the target scanner, do not select a
278          * non-movable pageblock as the starting point.
279          */
280         if (!check_source && check_target &&
281             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
282                 return false;
283
284         /* Ensure the start of the pageblock or zone is online and valid */
285         block_pfn = pageblock_start_pfn(pfn);
286         block_pfn = max(block_pfn, zone->zone_start_pfn);
287         block_page = pfn_to_online_page(block_pfn);
288         if (block_page) {
289                 page = block_page;
290                 pfn = block_pfn;
291         }
292
293         /* Ensure the end of the pageblock or zone is online and valid */
294         block_pfn = pageblock_end_pfn(pfn) - 1;
295         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296         end_page = pfn_to_online_page(block_pfn);
297         if (!end_page)
298                 return false;
299
300         /*
301          * Only clear the hint if a sample indicates there is either a
302          * free page or an LRU page in the block. One or other condition
303          * is necessary for the block to be a migration source/target.
304          */
305         do {
306                 if (check_source && PageLRU(page)) {
307                         clear_pageblock_skip(page);
308                         return true;
309                 }
310
311                 if (check_target && PageBuddy(page)) {
312                         clear_pageblock_skip(page);
313                         return true;
314                 }
315
316                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
317         } while (page <= end_page);
318
319         return false;
320 }
321
322 /*
323  * This function is called to clear all cached information on pageblocks that
324  * should be skipped for page isolation when the migrate and free page scanner
325  * meet.
326  */
327 static void __reset_isolation_suitable(struct zone *zone)
328 {
329         unsigned long migrate_pfn = zone->zone_start_pfn;
330         unsigned long free_pfn = zone_end_pfn(zone) - 1;
331         unsigned long reset_migrate = free_pfn;
332         unsigned long reset_free = migrate_pfn;
333         bool source_set = false;
334         bool free_set = false;
335
336         if (!zone->compact_blockskip_flush)
337                 return;
338
339         zone->compact_blockskip_flush = false;
340
341         /*
342          * Walk the zone and update pageblock skip information. Source looks
343          * for PageLRU while target looks for PageBuddy. When the scanner
344          * is found, both PageBuddy and PageLRU are checked as the pageblock
345          * is suitable as both source and target.
346          */
347         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348                                         free_pfn -= pageblock_nr_pages) {
349                 cond_resched();
350
351                 /* Update the migrate PFN */
352                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353                     migrate_pfn < reset_migrate) {
354                         source_set = true;
355                         reset_migrate = migrate_pfn;
356                         zone->compact_init_migrate_pfn = reset_migrate;
357                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
358                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
359                 }
360
361                 /* Update the free PFN */
362                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363                     free_pfn > reset_free) {
364                         free_set = true;
365                         reset_free = free_pfn;
366                         zone->compact_init_free_pfn = reset_free;
367                         zone->compact_cached_free_pfn = reset_free;
368                 }
369         }
370
371         /* Leave no distance if no suitable block was reset */
372         if (reset_migrate >= reset_free) {
373                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375                 zone->compact_cached_free_pfn = free_pfn;
376         }
377 }
378
379 void reset_isolation_suitable(pg_data_t *pgdat)
380 {
381         int zoneid;
382
383         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384                 struct zone *zone = &pgdat->node_zones[zoneid];
385                 if (!populated_zone(zone))
386                         continue;
387
388                 /* Only flush if a full compaction finished recently */
389                 if (zone->compact_blockskip_flush)
390                         __reset_isolation_suitable(zone);
391         }
392 }
393
394 /*
395  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396  * locks are not required for read/writers. Returns true if it was already set.
397  */
398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
399                                                         unsigned long pfn)
400 {
401         bool skip;
402
403         /* Do no update if skip hint is being ignored */
404         if (cc->ignore_skip_hint)
405                 return false;
406
407         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
408                 return false;
409
410         skip = get_pageblock_skip(page);
411         if (!skip && !cc->no_set_skip_hint)
412                 set_pageblock_skip(page);
413
414         return skip;
415 }
416
417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
418 {
419         struct zone *zone = cc->zone;
420
421         pfn = pageblock_end_pfn(pfn);
422
423         /* Set for isolation rather than compaction */
424         if (cc->no_set_skip_hint)
425                 return;
426
427         if (pfn > zone->compact_cached_migrate_pfn[0])
428                 zone->compact_cached_migrate_pfn[0] = pfn;
429         if (cc->mode != MIGRATE_ASYNC &&
430             pfn > zone->compact_cached_migrate_pfn[1])
431                 zone->compact_cached_migrate_pfn[1] = pfn;
432 }
433
434 /*
435  * If no pages were isolated then mark this pageblock to be skipped in the
436  * future. The information is later cleared by __reset_isolation_suitable().
437  */
438 static void update_pageblock_skip(struct compact_control *cc,
439                         struct page *page, unsigned long pfn)
440 {
441         struct zone *zone = cc->zone;
442
443         if (cc->no_set_skip_hint)
444                 return;
445
446         if (!page)
447                 return;
448
449         set_pageblock_skip(page);
450
451         /* Update where async and sync compaction should restart */
452         if (pfn < zone->compact_cached_free_pfn)
453                 zone->compact_cached_free_pfn = pfn;
454 }
455 #else
456 static inline bool isolation_suitable(struct compact_control *cc,
457                                         struct page *page)
458 {
459         return true;
460 }
461
462 static inline bool pageblock_skip_persistent(struct page *page)
463 {
464         return false;
465 }
466
467 static inline void update_pageblock_skip(struct compact_control *cc,
468                         struct page *page, unsigned long pfn)
469 {
470 }
471
472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
473 {
474 }
475
476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
477                                                         unsigned long pfn)
478 {
479         return false;
480 }
481 #endif /* CONFIG_COMPACTION */
482
483 /*
484  * Compaction requires the taking of some coarse locks that are potentially
485  * very heavily contended. For async compaction, trylock and record if the
486  * lock is contended. The lock will still be acquired but compaction will
487  * abort when the current block is finished regardless of success rate.
488  * Sync compaction acquires the lock.
489  *
490  * Always returns true which makes it easier to track lock state in callers.
491  */
492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
493                                                 struct compact_control *cc)
494         __acquires(lock)
495 {
496         /* Track if the lock is contended in async mode */
497         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498                 if (spin_trylock_irqsave(lock, *flags))
499                         return true;
500
501                 cc->contended = true;
502         }
503
504         spin_lock_irqsave(lock, *flags);
505         return true;
506 }
507
508 /*
509  * Compaction requires the taking of some coarse locks that are potentially
510  * very heavily contended. The lock should be periodically unlocked to avoid
511  * having disabled IRQs for a long time, even when there is nobody waiting on
512  * the lock. It might also be that allowing the IRQs will result in
513  * need_resched() becoming true. If scheduling is needed, compaction schedules.
514  * Either compaction type will also abort if a fatal signal is pending.
515  * In either case if the lock was locked, it is dropped and not regained.
516  *
517  * Returns true if compaction should abort due to fatal signal pending.
518  * Returns false when compaction can continue.
519  */
520 static bool compact_unlock_should_abort(spinlock_t *lock,
521                 unsigned long flags, bool *locked, struct compact_control *cc)
522 {
523         if (*locked) {
524                 spin_unlock_irqrestore(lock, flags);
525                 *locked = false;
526         }
527
528         if (fatal_signal_pending(current)) {
529                 cc->contended = true;
530                 return true;
531         }
532
533         cond_resched();
534
535         return false;
536 }
537
538 /*
539  * Isolate free pages onto a private freelist. If @strict is true, will abort
540  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541  * (even though it may still end up isolating some pages).
542  */
543 static unsigned long isolate_freepages_block(struct compact_control *cc,
544                                 unsigned long *start_pfn,
545                                 unsigned long end_pfn,
546                                 struct list_head *freelist,
547                                 unsigned int stride,
548                                 bool strict)
549 {
550         int nr_scanned = 0, total_isolated = 0;
551         struct page *cursor;
552         unsigned long flags = 0;
553         bool locked = false;
554         unsigned long blockpfn = *start_pfn;
555         unsigned int order;
556
557         /* Strict mode is for isolation, speed is secondary */
558         if (strict)
559                 stride = 1;
560
561         cursor = pfn_to_page(blockpfn);
562
563         /* Isolate free pages. */
564         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
565                 int isolated;
566                 struct page *page = cursor;
567
568                 /*
569                  * Periodically drop the lock (if held) regardless of its
570                  * contention, to give chance to IRQs. Abort if fatal signal
571                  * pending.
572                  */
573                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
574                     && compact_unlock_should_abort(&cc->zone->lock, flags,
575                                                                 &locked, cc))
576                         break;
577
578                 nr_scanned++;
579
580                 /*
581                  * For compound pages such as THP and hugetlbfs, we can save
582                  * potentially a lot of iterations if we skip them at once.
583                  * The check is racy, but we can consider only valid values
584                  * and the only danger is skipping too much.
585                  */
586                 if (PageCompound(page)) {
587                         const unsigned int order = compound_order(page);
588
589                         if (likely(order < MAX_ORDER)) {
590                                 blockpfn += (1UL << order) - 1;
591                                 cursor += (1UL << order) - 1;
592                         }
593                         goto isolate_fail;
594                 }
595
596                 if (!PageBuddy(page))
597                         goto isolate_fail;
598
599                 /* If we already hold the lock, we can skip some rechecking. */
600                 if (!locked) {
601                         locked = compact_lock_irqsave(&cc->zone->lock,
602                                                                 &flags, cc);
603
604                         /* Recheck this is a buddy page under lock */
605                         if (!PageBuddy(page))
606                                 goto isolate_fail;
607                 }
608
609                 /* Found a free page, will break it into order-0 pages */
610                 order = buddy_order(page);
611                 isolated = __isolate_free_page(page, order);
612                 if (!isolated)
613                         break;
614                 set_page_private(page, order);
615
616                 nr_scanned += isolated - 1;
617                 total_isolated += isolated;
618                 cc->nr_freepages += isolated;
619                 list_add_tail(&page->lru, freelist);
620
621                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622                         blockpfn += isolated;
623                         break;
624                 }
625                 /* Advance to the end of split page */
626                 blockpfn += isolated - 1;
627                 cursor += isolated - 1;
628                 continue;
629
630 isolate_fail:
631                 if (strict)
632                         break;
633                 else
634                         continue;
635
636         }
637
638         if (locked)
639                 spin_unlock_irqrestore(&cc->zone->lock, flags);
640
641         /*
642          * There is a tiny chance that we have read bogus compound_order(),
643          * so be careful to not go outside of the pageblock.
644          */
645         if (unlikely(blockpfn > end_pfn))
646                 blockpfn = end_pfn;
647
648         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649                                         nr_scanned, total_isolated);
650
651         /* Record how far we have got within the block */
652         *start_pfn = blockpfn;
653
654         /*
655          * If strict isolation is requested by CMA then check that all the
656          * pages requested were isolated. If there were any failures, 0 is
657          * returned and CMA will fail.
658          */
659         if (strict && blockpfn < end_pfn)
660                 total_isolated = 0;
661
662         cc->total_free_scanned += nr_scanned;
663         if (total_isolated)
664                 count_compact_events(COMPACTISOLATED, total_isolated);
665         return total_isolated;
666 }
667
668 /**
669  * isolate_freepages_range() - isolate free pages.
670  * @cc:        Compaction control structure.
671  * @start_pfn: The first PFN to start isolating.
672  * @end_pfn:   The one-past-last PFN.
673  *
674  * Non-free pages, invalid PFNs, or zone boundaries within the
675  * [start_pfn, end_pfn) range are considered errors, cause function to
676  * undo its actions and return zero.
677  *
678  * Otherwise, function returns one-past-the-last PFN of isolated page
679  * (which may be greater then end_pfn if end fell in a middle of
680  * a free page).
681  */
682 unsigned long
683 isolate_freepages_range(struct compact_control *cc,
684                         unsigned long start_pfn, unsigned long end_pfn)
685 {
686         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
687         LIST_HEAD(freelist);
688
689         pfn = start_pfn;
690         block_start_pfn = pageblock_start_pfn(pfn);
691         if (block_start_pfn < cc->zone->zone_start_pfn)
692                 block_start_pfn = cc->zone->zone_start_pfn;
693         block_end_pfn = pageblock_end_pfn(pfn);
694
695         for (; pfn < end_pfn; pfn += isolated,
696                                 block_start_pfn = block_end_pfn,
697                                 block_end_pfn += pageblock_nr_pages) {
698                 /* Protect pfn from changing by isolate_freepages_block */
699                 unsigned long isolate_start_pfn = pfn;
700
701                 block_end_pfn = min(block_end_pfn, end_pfn);
702
703                 /*
704                  * pfn could pass the block_end_pfn if isolated freepage
705                  * is more than pageblock order. In this case, we adjust
706                  * scanning range to right one.
707                  */
708                 if (pfn >= block_end_pfn) {
709                         block_start_pfn = pageblock_start_pfn(pfn);
710                         block_end_pfn = pageblock_end_pfn(pfn);
711                         block_end_pfn = min(block_end_pfn, end_pfn);
712                 }
713
714                 if (!pageblock_pfn_to_page(block_start_pfn,
715                                         block_end_pfn, cc->zone))
716                         break;
717
718                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
719                                         block_end_pfn, &freelist, 0, true);
720
721                 /*
722                  * In strict mode, isolate_freepages_block() returns 0 if
723                  * there are any holes in the block (ie. invalid PFNs or
724                  * non-free pages).
725                  */
726                 if (!isolated)
727                         break;
728
729                 /*
730                  * If we managed to isolate pages, it is always (1 << n) *
731                  * pageblock_nr_pages for some non-negative n.  (Max order
732                  * page may span two pageblocks).
733                  */
734         }
735
736         /* __isolate_free_page() does not map the pages */
737         split_map_pages(&freelist);
738
739         if (pfn < end_pfn) {
740                 /* Loop terminated early, cleanup. */
741                 release_freepages(&freelist);
742                 return 0;
743         }
744
745         /* We don't use freelists for anything. */
746         return pfn;
747 }
748
749 /* Similar to reclaim, but different enough that they don't share logic */
750 static bool too_many_isolated(pg_data_t *pgdat)
751 {
752         bool too_many;
753
754         unsigned long active, inactive, isolated;
755
756         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
757                         node_page_state(pgdat, NR_INACTIVE_ANON);
758         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
759                         node_page_state(pgdat, NR_ACTIVE_ANON);
760         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
761                         node_page_state(pgdat, NR_ISOLATED_ANON);
762
763         too_many = isolated > (inactive + active) / 2;
764         if (!too_many)
765                 wake_throttle_isolated(pgdat);
766
767         return too_many;
768 }
769
770 /**
771  * isolate_migratepages_block() - isolate all migrate-able pages within
772  *                                a single pageblock
773  * @cc:         Compaction control structure.
774  * @low_pfn:    The first PFN to isolate
775  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
776  * @mode:       Isolation mode to be used.
777  *
778  * Isolate all pages that can be migrated from the range specified by
779  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
780  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
781  * -ENOMEM in case we could not allocate a page, or 0.
782  * cc->migrate_pfn will contain the next pfn to scan.
783  *
784  * The pages are isolated on cc->migratepages list (not required to be empty),
785  * and cc->nr_migratepages is updated accordingly.
786  */
787 static int
788 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
789                         unsigned long end_pfn, isolate_mode_t mode)
790 {
791         pg_data_t *pgdat = cc->zone->zone_pgdat;
792         unsigned long nr_scanned = 0, nr_isolated = 0;
793         struct lruvec *lruvec;
794         unsigned long flags = 0;
795         struct lruvec *locked = NULL;
796         struct page *page = NULL, *valid_page = NULL;
797         struct address_space *mapping;
798         unsigned long start_pfn = low_pfn;
799         bool skip_on_failure = false;
800         unsigned long next_skip_pfn = 0;
801         bool skip_updated = false;
802         int ret = 0;
803
804         cc->migrate_pfn = low_pfn;
805
806         /*
807          * Ensure that there are not too many pages isolated from the LRU
808          * list by either parallel reclaimers or compaction. If there are,
809          * delay for some time until fewer pages are isolated
810          */
811         while (unlikely(too_many_isolated(pgdat))) {
812                 /* stop isolation if there are still pages not migrated */
813                 if (cc->nr_migratepages)
814                         return -EAGAIN;
815
816                 /* async migration should just abort */
817                 if (cc->mode == MIGRATE_ASYNC)
818                         return -EAGAIN;
819
820                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
821
822                 if (fatal_signal_pending(current))
823                         return -EINTR;
824         }
825
826         cond_resched();
827
828         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
829                 skip_on_failure = true;
830                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
831         }
832
833         /* Time to isolate some pages for migration */
834         for (; low_pfn < end_pfn; low_pfn++) {
835
836                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
837                         /*
838                          * We have isolated all migration candidates in the
839                          * previous order-aligned block, and did not skip it due
840                          * to failure. We should migrate the pages now and
841                          * hopefully succeed compaction.
842                          */
843                         if (nr_isolated)
844                                 break;
845
846                         /*
847                          * We failed to isolate in the previous order-aligned
848                          * block. Set the new boundary to the end of the
849                          * current block. Note we can't simply increase
850                          * next_skip_pfn by 1 << order, as low_pfn might have
851                          * been incremented by a higher number due to skipping
852                          * a compound or a high-order buddy page in the
853                          * previous loop iteration.
854                          */
855                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
856                 }
857
858                 /*
859                  * Periodically drop the lock (if held) regardless of its
860                  * contention, to give chance to IRQs. Abort completely if
861                  * a fatal signal is pending.
862                  */
863                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
864                         if (locked) {
865                                 unlock_page_lruvec_irqrestore(locked, flags);
866                                 locked = NULL;
867                         }
868
869                         if (fatal_signal_pending(current)) {
870                                 cc->contended = true;
871                                 ret = -EINTR;
872
873                                 goto fatal_pending;
874                         }
875
876                         cond_resched();
877                 }
878
879                 nr_scanned++;
880
881                 page = pfn_to_page(low_pfn);
882
883                 /*
884                  * Check if the pageblock has already been marked skipped.
885                  * Only the aligned PFN is checked as the caller isolates
886                  * COMPACT_CLUSTER_MAX at a time so the second call must
887                  * not falsely conclude that the block should be skipped.
888                  */
889                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
890                         if (!isolation_suitable(cc, page)) {
891                                 low_pfn = end_pfn;
892                                 page = NULL;
893                                 goto isolate_abort;
894                         }
895                         valid_page = page;
896                 }
897
898                 if (PageHuge(page) && cc->alloc_contig) {
899                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
900
901                         /*
902                          * Fail isolation in case isolate_or_dissolve_huge_page()
903                          * reports an error. In case of -ENOMEM, abort right away.
904                          */
905                         if (ret < 0) {
906                                  /* Do not report -EBUSY down the chain */
907                                 if (ret == -EBUSY)
908                                         ret = 0;
909                                 low_pfn += compound_nr(page) - 1;
910                                 goto isolate_fail;
911                         }
912
913                         if (PageHuge(page)) {
914                                 /*
915                                  * Hugepage was successfully isolated and placed
916                                  * on the cc->migratepages list.
917                                  */
918                                 low_pfn += compound_nr(page) - 1;
919                                 goto isolate_success_no_list;
920                         }
921
922                         /*
923                          * Ok, the hugepage was dissolved. Now these pages are
924                          * Buddy and cannot be re-allocated because they are
925                          * isolated. Fall-through as the check below handles
926                          * Buddy pages.
927                          */
928                 }
929
930                 /*
931                  * Skip if free. We read page order here without zone lock
932                  * which is generally unsafe, but the race window is small and
933                  * the worst thing that can happen is that we skip some
934                  * potential isolation targets.
935                  */
936                 if (PageBuddy(page)) {
937                         unsigned long freepage_order = buddy_order_unsafe(page);
938
939                         /*
940                          * Without lock, we cannot be sure that what we got is
941                          * a valid page order. Consider only values in the
942                          * valid order range to prevent low_pfn overflow.
943                          */
944                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
945                                 low_pfn += (1UL << freepage_order) - 1;
946                         continue;
947                 }
948
949                 /*
950                  * Regardless of being on LRU, compound pages such as THP and
951                  * hugetlbfs are not to be compacted unless we are attempting
952                  * an allocation much larger than the huge page size (eg CMA).
953                  * We can potentially save a lot of iterations if we skip them
954                  * at once. The check is racy, but we can consider only valid
955                  * values and the only danger is skipping too much.
956                  */
957                 if (PageCompound(page) && !cc->alloc_contig) {
958                         const unsigned int order = compound_order(page);
959
960                         if (likely(order < MAX_ORDER))
961                                 low_pfn += (1UL << order) - 1;
962                         goto isolate_fail;
963                 }
964
965                 /*
966                  * Check may be lockless but that's ok as we recheck later.
967                  * It's possible to migrate LRU and non-lru movable pages.
968                  * Skip any other type of page
969                  */
970                 if (!PageLRU(page)) {
971                         /*
972                          * __PageMovable can return false positive so we need
973                          * to verify it under page_lock.
974                          */
975                         if (unlikely(__PageMovable(page)) &&
976                                         !PageIsolated(page)) {
977                                 if (locked) {
978                                         unlock_page_lruvec_irqrestore(locked, flags);
979                                         locked = NULL;
980                                 }
981
982                                 if (!isolate_movable_page(page, mode))
983                                         goto isolate_success;
984                         }
985
986                         goto isolate_fail;
987                 }
988
989                 /*
990                  * Migration will fail if an anonymous page is pinned in memory,
991                  * so avoid taking lru_lock and isolating it unnecessarily in an
992                  * admittedly racy check.
993                  */
994                 mapping = page_mapping(page);
995                 if (!mapping && page_count(page) > page_mapcount(page))
996                         goto isolate_fail;
997
998                 /*
999                  * Only allow to migrate anonymous pages in GFP_NOFS context
1000                  * because those do not depend on fs locks.
1001                  */
1002                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1003                         goto isolate_fail;
1004
1005                 /*
1006                  * Be careful not to clear PageLRU until after we're
1007                  * sure the page is not being freed elsewhere -- the
1008                  * page release code relies on it.
1009                  */
1010                 if (unlikely(!get_page_unless_zero(page)))
1011                         goto isolate_fail;
1012
1013                 /* Only take pages on LRU: a check now makes later tests safe */
1014                 if (!PageLRU(page))
1015                         goto isolate_fail_put;
1016
1017                 /* Compaction might skip unevictable pages but CMA takes them */
1018                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1019                         goto isolate_fail_put;
1020
1021                 /*
1022                  * To minimise LRU disruption, the caller can indicate with
1023                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1024                  * it will be able to migrate without blocking - clean pages
1025                  * for the most part.  PageWriteback would require blocking.
1026                  */
1027                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1028                         goto isolate_fail_put;
1029
1030                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1031                         bool migrate_dirty;
1032
1033                         /*
1034                          * Only pages without mappings or that have a
1035                          * ->migrate_folio callback are possible to migrate
1036                          * without blocking. However, we can be racing with
1037                          * truncation so it's necessary to lock the page
1038                          * to stabilise the mapping as truncation holds
1039                          * the page lock until after the page is removed
1040                          * from the page cache.
1041                          */
1042                         if (!trylock_page(page))
1043                                 goto isolate_fail_put;
1044
1045                         mapping = page_mapping(page);
1046                         migrate_dirty = !mapping ||
1047                                         mapping->a_ops->migrate_folio;
1048                         unlock_page(page);
1049                         if (!migrate_dirty)
1050                                 goto isolate_fail_put;
1051                 }
1052
1053                 /* Try isolate the page */
1054                 if (!TestClearPageLRU(page))
1055                         goto isolate_fail_put;
1056
1057                 lruvec = folio_lruvec(page_folio(page));
1058
1059                 /* If we already hold the lock, we can skip some rechecking */
1060                 if (lruvec != locked) {
1061                         if (locked)
1062                                 unlock_page_lruvec_irqrestore(locked, flags);
1063
1064                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1065                         locked = lruvec;
1066
1067                         lruvec_memcg_debug(lruvec, page_folio(page));
1068
1069                         /* Try get exclusive access under lock */
1070                         if (!skip_updated) {
1071                                 skip_updated = true;
1072                                 if (test_and_set_skip(cc, page, low_pfn))
1073                                         goto isolate_abort;
1074                         }
1075
1076                         /*
1077                          * Page become compound since the non-locked check,
1078                          * and it's on LRU. It can only be a THP so the order
1079                          * is safe to read and it's 0 for tail pages.
1080                          */
1081                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1082                                 low_pfn += compound_nr(page) - 1;
1083                                 SetPageLRU(page);
1084                                 goto isolate_fail_put;
1085                         }
1086                 }
1087
1088                 /* The whole page is taken off the LRU; skip the tail pages. */
1089                 if (PageCompound(page))
1090                         low_pfn += compound_nr(page) - 1;
1091
1092                 /* Successfully isolated */
1093                 del_page_from_lru_list(page, lruvec);
1094                 mod_node_page_state(page_pgdat(page),
1095                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1096                                 thp_nr_pages(page));
1097
1098 isolate_success:
1099                 list_add(&page->lru, &cc->migratepages);
1100 isolate_success_no_list:
1101                 cc->nr_migratepages += compound_nr(page);
1102                 nr_isolated += compound_nr(page);
1103                 nr_scanned += compound_nr(page) - 1;
1104
1105                 /*
1106                  * Avoid isolating too much unless this block is being
1107                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108                  * or a lock is contended. For contention, isolate quickly to
1109                  * potentially remove one source of contention.
1110                  */
1111                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1112                     !cc->rescan && !cc->contended) {
1113                         ++low_pfn;
1114                         break;
1115                 }
1116
1117                 continue;
1118
1119 isolate_fail_put:
1120                 /* Avoid potential deadlock in freeing page under lru_lock */
1121                 if (locked) {
1122                         unlock_page_lruvec_irqrestore(locked, flags);
1123                         locked = NULL;
1124                 }
1125                 put_page(page);
1126
1127 isolate_fail:
1128                 if (!skip_on_failure && ret != -ENOMEM)
1129                         continue;
1130
1131                 /*
1132                  * We have isolated some pages, but then failed. Release them
1133                  * instead of migrating, as we cannot form the cc->order buddy
1134                  * page anyway.
1135                  */
1136                 if (nr_isolated) {
1137                         if (locked) {
1138                                 unlock_page_lruvec_irqrestore(locked, flags);
1139                                 locked = NULL;
1140                         }
1141                         putback_movable_pages(&cc->migratepages);
1142                         cc->nr_migratepages = 0;
1143                         nr_isolated = 0;
1144                 }
1145
1146                 if (low_pfn < next_skip_pfn) {
1147                         low_pfn = next_skip_pfn - 1;
1148                         /*
1149                          * The check near the loop beginning would have updated
1150                          * next_skip_pfn too, but this is a bit simpler.
1151                          */
1152                         next_skip_pfn += 1UL << cc->order;
1153                 }
1154
1155                 if (ret == -ENOMEM)
1156                         break;
1157         }
1158
1159         /*
1160          * The PageBuddy() check could have potentially brought us outside
1161          * the range to be scanned.
1162          */
1163         if (unlikely(low_pfn > end_pfn))
1164                 low_pfn = end_pfn;
1165
1166         page = NULL;
1167
1168 isolate_abort:
1169         if (locked)
1170                 unlock_page_lruvec_irqrestore(locked, flags);
1171         if (page) {
1172                 SetPageLRU(page);
1173                 put_page(page);
1174         }
1175
1176         /*
1177          * Updated the cached scanner pfn once the pageblock has been scanned
1178          * Pages will either be migrated in which case there is no point
1179          * scanning in the near future or migration failed in which case the
1180          * failure reason may persist. The block is marked for skipping if
1181          * there were no pages isolated in the block or if the block is
1182          * rescanned twice in a row.
1183          */
1184         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1185                 if (valid_page && !skip_updated)
1186                         set_pageblock_skip(valid_page);
1187                 update_cached_migrate(cc, low_pfn);
1188         }
1189
1190         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191                                                 nr_scanned, nr_isolated);
1192
1193 fatal_pending:
1194         cc->total_migrate_scanned += nr_scanned;
1195         if (nr_isolated)
1196                 count_compact_events(COMPACTISOLATED, nr_isolated);
1197
1198         cc->migrate_pfn = low_pfn;
1199
1200         return ret;
1201 }
1202
1203 /**
1204  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205  * @cc:        Compaction control structure.
1206  * @start_pfn: The first PFN to start isolating.
1207  * @end_pfn:   The one-past-last PFN.
1208  *
1209  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210  * in case we could not allocate a page, or 0.
1211  */
1212 int
1213 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214                                                         unsigned long end_pfn)
1215 {
1216         unsigned long pfn, block_start_pfn, block_end_pfn;
1217         int ret = 0;
1218
1219         /* Scan block by block. First and last block may be incomplete */
1220         pfn = start_pfn;
1221         block_start_pfn = pageblock_start_pfn(pfn);
1222         if (block_start_pfn < cc->zone->zone_start_pfn)
1223                 block_start_pfn = cc->zone->zone_start_pfn;
1224         block_end_pfn = pageblock_end_pfn(pfn);
1225
1226         for (; pfn < end_pfn; pfn = block_end_pfn,
1227                                 block_start_pfn = block_end_pfn,
1228                                 block_end_pfn += pageblock_nr_pages) {
1229
1230                 block_end_pfn = min(block_end_pfn, end_pfn);
1231
1232                 if (!pageblock_pfn_to_page(block_start_pfn,
1233                                         block_end_pfn, cc->zone))
1234                         continue;
1235
1236                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237                                                  ISOLATE_UNEVICTABLE);
1238
1239                 if (ret)
1240                         break;
1241
1242                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1243                         break;
1244         }
1245
1246         return ret;
1247 }
1248
1249 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250 #ifdef CONFIG_COMPACTION
1251
1252 static bool suitable_migration_source(struct compact_control *cc,
1253                                                         struct page *page)
1254 {
1255         int block_mt;
1256
1257         if (pageblock_skip_persistent(page))
1258                 return false;
1259
1260         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1261                 return true;
1262
1263         block_mt = get_pageblock_migratetype(page);
1264
1265         if (cc->migratetype == MIGRATE_MOVABLE)
1266                 return is_migrate_movable(block_mt);
1267         else
1268                 return block_mt == cc->migratetype;
1269 }
1270
1271 /* Returns true if the page is within a block suitable for migration to */
1272 static bool suitable_migration_target(struct compact_control *cc,
1273                                                         struct page *page)
1274 {
1275         /* If the page is a large free page, then disallow migration */
1276         if (PageBuddy(page)) {
1277                 /*
1278                  * We are checking page_order without zone->lock taken. But
1279                  * the only small danger is that we skip a potentially suitable
1280                  * pageblock, so it's not worth to check order for valid range.
1281                  */
1282                 if (buddy_order_unsafe(page) >= pageblock_order)
1283                         return false;
1284         }
1285
1286         if (cc->ignore_block_suitable)
1287                 return true;
1288
1289         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1290         if (is_migrate_movable(get_pageblock_migratetype(page)))
1291                 return true;
1292
1293         /* Otherwise skip the block */
1294         return false;
1295 }
1296
1297 static inline unsigned int
1298 freelist_scan_limit(struct compact_control *cc)
1299 {
1300         unsigned short shift = BITS_PER_LONG - 1;
1301
1302         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1303 }
1304
1305 /*
1306  * Test whether the free scanner has reached the same or lower pageblock than
1307  * the migration scanner, and compaction should thus terminate.
1308  */
1309 static inline bool compact_scanners_met(struct compact_control *cc)
1310 {
1311         return (cc->free_pfn >> pageblock_order)
1312                 <= (cc->migrate_pfn >> pageblock_order);
1313 }
1314
1315 /*
1316  * Used when scanning for a suitable migration target which scans freelists
1317  * in reverse. Reorders the list such as the unscanned pages are scanned
1318  * first on the next iteration of the free scanner
1319  */
1320 static void
1321 move_freelist_head(struct list_head *freelist, struct page *freepage)
1322 {
1323         LIST_HEAD(sublist);
1324
1325         if (!list_is_last(freelist, &freepage->lru)) {
1326                 list_cut_before(&sublist, freelist, &freepage->lru);
1327                 list_splice_tail(&sublist, freelist);
1328         }
1329 }
1330
1331 /*
1332  * Similar to move_freelist_head except used by the migration scanner
1333  * when scanning forward. It's possible for these list operations to
1334  * move against each other if they search the free list exactly in
1335  * lockstep.
1336  */
1337 static void
1338 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339 {
1340         LIST_HEAD(sublist);
1341
1342         if (!list_is_first(freelist, &freepage->lru)) {
1343                 list_cut_position(&sublist, freelist, &freepage->lru);
1344                 list_splice_tail(&sublist, freelist);
1345         }
1346 }
1347
1348 static void
1349 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1350 {
1351         unsigned long start_pfn, end_pfn;
1352         struct page *page;
1353
1354         /* Do not search around if there are enough pages already */
1355         if (cc->nr_freepages >= cc->nr_migratepages)
1356                 return;
1357
1358         /* Minimise scanning during async compaction */
1359         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360                 return;
1361
1362         /* Pageblock boundaries */
1363         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1365
1366         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367         if (!page)
1368                 return;
1369
1370         /* Scan before */
1371         if (start_pfn != pfn) {
1372                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1373                 if (cc->nr_freepages >= cc->nr_migratepages)
1374                         return;
1375         }
1376
1377         /* Scan after */
1378         start_pfn = pfn + nr_isolated;
1379         if (start_pfn < end_pfn)
1380                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1381
1382         /* Skip this pageblock in the future as it's full or nearly full */
1383         if (cc->nr_freepages < cc->nr_migratepages)
1384                 set_pageblock_skip(page);
1385 }
1386
1387 /* Search orders in round-robin fashion */
1388 static int next_search_order(struct compact_control *cc, int order)
1389 {
1390         order--;
1391         if (order < 0)
1392                 order = cc->order - 1;
1393
1394         /* Search wrapped around? */
1395         if (order == cc->search_order) {
1396                 cc->search_order--;
1397                 if (cc->search_order < 0)
1398                         cc->search_order = cc->order - 1;
1399                 return -1;
1400         }
1401
1402         return order;
1403 }
1404
1405 static unsigned long
1406 fast_isolate_freepages(struct compact_control *cc)
1407 {
1408         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1409         unsigned int nr_scanned = 0;
1410         unsigned long low_pfn, min_pfn, highest = 0;
1411         unsigned long nr_isolated = 0;
1412         unsigned long distance;
1413         struct page *page = NULL;
1414         bool scan_start = false;
1415         int order;
1416
1417         /* Full compaction passes in a negative order */
1418         if (cc->order <= 0)
1419                 return cc->free_pfn;
1420
1421         /*
1422          * If starting the scan, use a deeper search and use the highest
1423          * PFN found if a suitable one is not found.
1424          */
1425         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1426                 limit = pageblock_nr_pages >> 1;
1427                 scan_start = true;
1428         }
1429
1430         /*
1431          * Preferred point is in the top quarter of the scan space but take
1432          * a pfn from the top half if the search is problematic.
1433          */
1434         distance = (cc->free_pfn - cc->migrate_pfn);
1435         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1437
1438         if (WARN_ON_ONCE(min_pfn > low_pfn))
1439                 low_pfn = min_pfn;
1440
1441         /*
1442          * Search starts from the last successful isolation order or the next
1443          * order to search after a previous failure
1444          */
1445         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1446
1447         for (order = cc->search_order;
1448              !page && order >= 0;
1449              order = next_search_order(cc, order)) {
1450                 struct free_area *area = &cc->zone->free_area[order];
1451                 struct list_head *freelist;
1452                 struct page *freepage;
1453                 unsigned long flags;
1454                 unsigned int order_scanned = 0;
1455                 unsigned long high_pfn = 0;
1456
1457                 if (!area->nr_free)
1458                         continue;
1459
1460                 spin_lock_irqsave(&cc->zone->lock, flags);
1461                 freelist = &area->free_list[MIGRATE_MOVABLE];
1462                 list_for_each_entry_reverse(freepage, freelist, lru) {
1463                         unsigned long pfn;
1464
1465                         order_scanned++;
1466                         nr_scanned++;
1467                         pfn = page_to_pfn(freepage);
1468
1469                         if (pfn >= highest)
1470                                 highest = max(pageblock_start_pfn(pfn),
1471                                               cc->zone->zone_start_pfn);
1472
1473                         if (pfn >= low_pfn) {
1474                                 cc->fast_search_fail = 0;
1475                                 cc->search_order = order;
1476                                 page = freepage;
1477                                 break;
1478                         }
1479
1480                         if (pfn >= min_pfn && pfn > high_pfn) {
1481                                 high_pfn = pfn;
1482
1483                                 /* Shorten the scan if a candidate is found */
1484                                 limit >>= 1;
1485                         }
1486
1487                         if (order_scanned >= limit)
1488                                 break;
1489                 }
1490
1491                 /* Use a minimum pfn if a preferred one was not found */
1492                 if (!page && high_pfn) {
1493                         page = pfn_to_page(high_pfn);
1494
1495                         /* Update freepage for the list reorder below */
1496                         freepage = page;
1497                 }
1498
1499                 /* Reorder to so a future search skips recent pages */
1500                 move_freelist_head(freelist, freepage);
1501
1502                 /* Isolate the page if available */
1503                 if (page) {
1504                         if (__isolate_free_page(page, order)) {
1505                                 set_page_private(page, order);
1506                                 nr_isolated = 1 << order;
1507                                 nr_scanned += nr_isolated - 1;
1508                                 cc->nr_freepages += nr_isolated;
1509                                 list_add_tail(&page->lru, &cc->freepages);
1510                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1511                         } else {
1512                                 /* If isolation fails, abort the search */
1513                                 order = cc->search_order + 1;
1514                                 page = NULL;
1515                         }
1516                 }
1517
1518                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1519
1520                 /*
1521                  * Smaller scan on next order so the total scan is related
1522                  * to freelist_scan_limit.
1523                  */
1524                 if (order_scanned >= limit)
1525                         limit = max(1U, limit >> 1);
1526         }
1527
1528         if (!page) {
1529                 cc->fast_search_fail++;
1530                 if (scan_start) {
1531                         /*
1532                          * Use the highest PFN found above min. If one was
1533                          * not found, be pessimistic for direct compaction
1534                          * and use the min mark.
1535                          */
1536                         if (highest >= min_pfn) {
1537                                 page = pfn_to_page(highest);
1538                                 cc->free_pfn = highest;
1539                         } else {
1540                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1541                                         page = pageblock_pfn_to_page(min_pfn,
1542                                                 min(pageblock_end_pfn(min_pfn),
1543                                                     zone_end_pfn(cc->zone)),
1544                                                 cc->zone);
1545                                         cc->free_pfn = min_pfn;
1546                                 }
1547                         }
1548                 }
1549         }
1550
1551         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1552                 highest -= pageblock_nr_pages;
1553                 cc->zone->compact_cached_free_pfn = highest;
1554         }
1555
1556         cc->total_free_scanned += nr_scanned;
1557         if (!page)
1558                 return cc->free_pfn;
1559
1560         low_pfn = page_to_pfn(page);
1561         fast_isolate_around(cc, low_pfn, nr_isolated);
1562         return low_pfn;
1563 }
1564
1565 /*
1566  * Based on information in the current compact_control, find blocks
1567  * suitable for isolating free pages from and then isolate them.
1568  */
1569 static void isolate_freepages(struct compact_control *cc)
1570 {
1571         struct zone *zone = cc->zone;
1572         struct page *page;
1573         unsigned long block_start_pfn;  /* start of current pageblock */
1574         unsigned long isolate_start_pfn; /* exact pfn we start at */
1575         unsigned long block_end_pfn;    /* end of current pageblock */
1576         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1577         struct list_head *freelist = &cc->freepages;
1578         unsigned int stride;
1579
1580         /* Try a small search of the free lists for a candidate */
1581         fast_isolate_freepages(cc);
1582         if (cc->nr_freepages)
1583                 goto splitmap;
1584
1585         /*
1586          * Initialise the free scanner. The starting point is where we last
1587          * successfully isolated from, zone-cached value, or the end of the
1588          * zone when isolating for the first time. For looping we also need
1589          * this pfn aligned down to the pageblock boundary, because we do
1590          * block_start_pfn -= pageblock_nr_pages in the for loop.
1591          * For ending point, take care when isolating in last pageblock of a
1592          * zone which ends in the middle of a pageblock.
1593          * The low boundary is the end of the pageblock the migration scanner
1594          * is using.
1595          */
1596         isolate_start_pfn = cc->free_pfn;
1597         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1598         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1599                                                 zone_end_pfn(zone));
1600         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1601         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1602
1603         /*
1604          * Isolate free pages until enough are available to migrate the
1605          * pages on cc->migratepages. We stop searching if the migrate
1606          * and free page scanners meet or enough free pages are isolated.
1607          */
1608         for (; block_start_pfn >= low_pfn;
1609                                 block_end_pfn = block_start_pfn,
1610                                 block_start_pfn -= pageblock_nr_pages,
1611                                 isolate_start_pfn = block_start_pfn) {
1612                 unsigned long nr_isolated;
1613
1614                 /*
1615                  * This can iterate a massively long zone without finding any
1616                  * suitable migration targets, so periodically check resched.
1617                  */
1618                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1619                         cond_resched();
1620
1621                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1622                                                                         zone);
1623                 if (!page)
1624                         continue;
1625
1626                 /* Check the block is suitable for migration */
1627                 if (!suitable_migration_target(cc, page))
1628                         continue;
1629
1630                 /* If isolation recently failed, do not retry */
1631                 if (!isolation_suitable(cc, page))
1632                         continue;
1633
1634                 /* Found a block suitable for isolating free pages from. */
1635                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1636                                         block_end_pfn, freelist, stride, false);
1637
1638                 /* Update the skip hint if the full pageblock was scanned */
1639                 if (isolate_start_pfn == block_end_pfn)
1640                         update_pageblock_skip(cc, page, block_start_pfn);
1641
1642                 /* Are enough freepages isolated? */
1643                 if (cc->nr_freepages >= cc->nr_migratepages) {
1644                         if (isolate_start_pfn >= block_end_pfn) {
1645                                 /*
1646                                  * Restart at previous pageblock if more
1647                                  * freepages can be isolated next time.
1648                                  */
1649                                 isolate_start_pfn =
1650                                         block_start_pfn - pageblock_nr_pages;
1651                         }
1652                         break;
1653                 } else if (isolate_start_pfn < block_end_pfn) {
1654                         /*
1655                          * If isolation failed early, do not continue
1656                          * needlessly.
1657                          */
1658                         break;
1659                 }
1660
1661                 /* Adjust stride depending on isolation */
1662                 if (nr_isolated) {
1663                         stride = 1;
1664                         continue;
1665                 }
1666                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1667         }
1668
1669         /*
1670          * Record where the free scanner will restart next time. Either we
1671          * broke from the loop and set isolate_start_pfn based on the last
1672          * call to isolate_freepages_block(), or we met the migration scanner
1673          * and the loop terminated due to isolate_start_pfn < low_pfn
1674          */
1675         cc->free_pfn = isolate_start_pfn;
1676
1677 splitmap:
1678         /* __isolate_free_page() does not map the pages */
1679         split_map_pages(freelist);
1680 }
1681
1682 /*
1683  * This is a migrate-callback that "allocates" freepages by taking pages
1684  * from the isolated freelists in the block we are migrating to.
1685  */
1686 static struct page *compaction_alloc(struct page *migratepage,
1687                                         unsigned long data)
1688 {
1689         struct compact_control *cc = (struct compact_control *)data;
1690         struct page *freepage;
1691
1692         if (list_empty(&cc->freepages)) {
1693                 isolate_freepages(cc);
1694
1695                 if (list_empty(&cc->freepages))
1696                         return NULL;
1697         }
1698
1699         freepage = list_entry(cc->freepages.next, struct page, lru);
1700         list_del(&freepage->lru);
1701         cc->nr_freepages--;
1702
1703         return freepage;
1704 }
1705
1706 /*
1707  * This is a migrate-callback that "frees" freepages back to the isolated
1708  * freelist.  All pages on the freelist are from the same zone, so there is no
1709  * special handling needed for NUMA.
1710  */
1711 static void compaction_free(struct page *page, unsigned long data)
1712 {
1713         struct compact_control *cc = (struct compact_control *)data;
1714
1715         list_add(&page->lru, &cc->freepages);
1716         cc->nr_freepages++;
1717 }
1718
1719 /* possible outcome of isolate_migratepages */
1720 typedef enum {
1721         ISOLATE_ABORT,          /* Abort compaction now */
1722         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1723         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1724 } isolate_migrate_t;
1725
1726 /*
1727  * Allow userspace to control policy on scanning the unevictable LRU for
1728  * compactable pages.
1729  */
1730 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1731
1732 static inline void
1733 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1734 {
1735         if (cc->fast_start_pfn == ULONG_MAX)
1736                 return;
1737
1738         if (!cc->fast_start_pfn)
1739                 cc->fast_start_pfn = pfn;
1740
1741         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1742 }
1743
1744 static inline unsigned long
1745 reinit_migrate_pfn(struct compact_control *cc)
1746 {
1747         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1748                 return cc->migrate_pfn;
1749
1750         cc->migrate_pfn = cc->fast_start_pfn;
1751         cc->fast_start_pfn = ULONG_MAX;
1752
1753         return cc->migrate_pfn;
1754 }
1755
1756 /*
1757  * Briefly search the free lists for a migration source that already has
1758  * some free pages to reduce the number of pages that need migration
1759  * before a pageblock is free.
1760  */
1761 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1762 {
1763         unsigned int limit = freelist_scan_limit(cc);
1764         unsigned int nr_scanned = 0;
1765         unsigned long distance;
1766         unsigned long pfn = cc->migrate_pfn;
1767         unsigned long high_pfn;
1768         int order;
1769         bool found_block = false;
1770
1771         /* Skip hints are relied on to avoid repeats on the fast search */
1772         if (cc->ignore_skip_hint)
1773                 return pfn;
1774
1775         /*
1776          * If the migrate_pfn is not at the start of a zone or the start
1777          * of a pageblock then assume this is a continuation of a previous
1778          * scan restarted due to COMPACT_CLUSTER_MAX.
1779          */
1780         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1781                 return pfn;
1782
1783         /*
1784          * For smaller orders, just linearly scan as the number of pages
1785          * to migrate should be relatively small and does not necessarily
1786          * justify freeing up a large block for a small allocation.
1787          */
1788         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1789                 return pfn;
1790
1791         /*
1792          * Only allow kcompactd and direct requests for movable pages to
1793          * quickly clear out a MOVABLE pageblock for allocation. This
1794          * reduces the risk that a large movable pageblock is freed for
1795          * an unmovable/reclaimable small allocation.
1796          */
1797         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1798                 return pfn;
1799
1800         /*
1801          * When starting the migration scanner, pick any pageblock within the
1802          * first half of the search space. Otherwise try and pick a pageblock
1803          * within the first eighth to reduce the chances that a migration
1804          * target later becomes a source.
1805          */
1806         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1807         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1808                 distance >>= 2;
1809         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1810
1811         for (order = cc->order - 1;
1812              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1813              order--) {
1814                 struct free_area *area = &cc->zone->free_area[order];
1815                 struct list_head *freelist;
1816                 unsigned long flags;
1817                 struct page *freepage;
1818
1819                 if (!area->nr_free)
1820                         continue;
1821
1822                 spin_lock_irqsave(&cc->zone->lock, flags);
1823                 freelist = &area->free_list[MIGRATE_MOVABLE];
1824                 list_for_each_entry(freepage, freelist, lru) {
1825                         unsigned long free_pfn;
1826
1827                         if (nr_scanned++ >= limit) {
1828                                 move_freelist_tail(freelist, freepage);
1829                                 break;
1830                         }
1831
1832                         free_pfn = page_to_pfn(freepage);
1833                         if (free_pfn < high_pfn) {
1834                                 /*
1835                                  * Avoid if skipped recently. Ideally it would
1836                                  * move to the tail but even safe iteration of
1837                                  * the list assumes an entry is deleted, not
1838                                  * reordered.
1839                                  */
1840                                 if (get_pageblock_skip(freepage))
1841                                         continue;
1842
1843                                 /* Reorder to so a future search skips recent pages */
1844                                 move_freelist_tail(freelist, freepage);
1845
1846                                 update_fast_start_pfn(cc, free_pfn);
1847                                 pfn = pageblock_start_pfn(free_pfn);
1848                                 if (pfn < cc->zone->zone_start_pfn)
1849                                         pfn = cc->zone->zone_start_pfn;
1850                                 cc->fast_search_fail = 0;
1851                                 found_block = true;
1852                                 set_pageblock_skip(freepage);
1853                                 break;
1854                         }
1855                 }
1856                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1857         }
1858
1859         cc->total_migrate_scanned += nr_scanned;
1860
1861         /*
1862          * If fast scanning failed then use a cached entry for a page block
1863          * that had free pages as the basis for starting a linear scan.
1864          */
1865         if (!found_block) {
1866                 cc->fast_search_fail++;
1867                 pfn = reinit_migrate_pfn(cc);
1868         }
1869         return pfn;
1870 }
1871
1872 /*
1873  * Isolate all pages that can be migrated from the first suitable block,
1874  * starting at the block pointed to by the migrate scanner pfn within
1875  * compact_control.
1876  */
1877 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1878 {
1879         unsigned long block_start_pfn;
1880         unsigned long block_end_pfn;
1881         unsigned long low_pfn;
1882         struct page *page;
1883         const isolate_mode_t isolate_mode =
1884                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1885                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1886         bool fast_find_block;
1887
1888         /*
1889          * Start at where we last stopped, or beginning of the zone as
1890          * initialized by compact_zone(). The first failure will use
1891          * the lowest PFN as the starting point for linear scanning.
1892          */
1893         low_pfn = fast_find_migrateblock(cc);
1894         block_start_pfn = pageblock_start_pfn(low_pfn);
1895         if (block_start_pfn < cc->zone->zone_start_pfn)
1896                 block_start_pfn = cc->zone->zone_start_pfn;
1897
1898         /*
1899          * fast_find_migrateblock marks a pageblock skipped so to avoid
1900          * the isolation_suitable check below, check whether the fast
1901          * search was successful.
1902          */
1903         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1904
1905         /* Only scan within a pageblock boundary */
1906         block_end_pfn = pageblock_end_pfn(low_pfn);
1907
1908         /*
1909          * Iterate over whole pageblocks until we find the first suitable.
1910          * Do not cross the free scanner.
1911          */
1912         for (; block_end_pfn <= cc->free_pfn;
1913                         fast_find_block = false,
1914                         cc->migrate_pfn = low_pfn = block_end_pfn,
1915                         block_start_pfn = block_end_pfn,
1916                         block_end_pfn += pageblock_nr_pages) {
1917
1918                 /*
1919                  * This can potentially iterate a massively long zone with
1920                  * many pageblocks unsuitable, so periodically check if we
1921                  * need to schedule.
1922                  */
1923                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1924                         cond_resched();
1925
1926                 page = pageblock_pfn_to_page(block_start_pfn,
1927                                                 block_end_pfn, cc->zone);
1928                 if (!page)
1929                         continue;
1930
1931                 /*
1932                  * If isolation recently failed, do not retry. Only check the
1933                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1934                  * to be visited multiple times. Assume skip was checked
1935                  * before making it "skip" so other compaction instances do
1936                  * not scan the same block.
1937                  */
1938                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1939                     !fast_find_block && !isolation_suitable(cc, page))
1940                         continue;
1941
1942                 /*
1943                  * For async direct compaction, only scan the pageblocks of the
1944                  * same migratetype without huge pages. Async direct compaction
1945                  * is optimistic to see if the minimum amount of work satisfies
1946                  * the allocation. The cached PFN is updated as it's possible
1947                  * that all remaining blocks between source and target are
1948                  * unsuitable and the compaction scanners fail to meet.
1949                  */
1950                 if (!suitable_migration_source(cc, page)) {
1951                         update_cached_migrate(cc, block_end_pfn);
1952                         continue;
1953                 }
1954
1955                 /* Perform the isolation */
1956                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1957                                                 isolate_mode))
1958                         return ISOLATE_ABORT;
1959
1960                 /*
1961                  * Either we isolated something and proceed with migration. Or
1962                  * we failed and compact_zone should decide if we should
1963                  * continue or not.
1964                  */
1965                 break;
1966         }
1967
1968         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1969 }
1970
1971 /*
1972  * order == -1 is expected when compacting via
1973  * /proc/sys/vm/compact_memory
1974  */
1975 static inline bool is_via_compact_memory(int order)
1976 {
1977         return order == -1;
1978 }
1979
1980 static bool kswapd_is_running(pg_data_t *pgdat)
1981 {
1982         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1983 }
1984
1985 /*
1986  * A zone's fragmentation score is the external fragmentation wrt to the
1987  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1988  */
1989 static unsigned int fragmentation_score_zone(struct zone *zone)
1990 {
1991         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1992 }
1993
1994 /*
1995  * A weighted zone's fragmentation score is the external fragmentation
1996  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1997  * returns a value in the range [0, 100].
1998  *
1999  * The scaling factor ensures that proactive compaction focuses on larger
2000  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2001  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2002  * and thus never exceeds the high threshold for proactive compaction.
2003  */
2004 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2005 {
2006         unsigned long score;
2007
2008         score = zone->present_pages * fragmentation_score_zone(zone);
2009         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2010 }
2011
2012 /*
2013  * The per-node proactive (background) compaction process is started by its
2014  * corresponding kcompactd thread when the node's fragmentation score
2015  * exceeds the high threshold. The compaction process remains active till
2016  * the node's score falls below the low threshold, or one of the back-off
2017  * conditions is met.
2018  */
2019 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2020 {
2021         unsigned int score = 0;
2022         int zoneid;
2023
2024         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2025                 struct zone *zone;
2026
2027                 zone = &pgdat->node_zones[zoneid];
2028                 score += fragmentation_score_zone_weighted(zone);
2029         }
2030
2031         return score;
2032 }
2033
2034 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2035 {
2036         unsigned int wmark_low;
2037
2038         /*
2039          * Cap the low watermark to avoid excessive compaction
2040          * activity in case a user sets the proactiveness tunable
2041          * close to 100 (maximum).
2042          */
2043         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2044         return low ? wmark_low : min(wmark_low + 10, 100U);
2045 }
2046
2047 static bool should_proactive_compact_node(pg_data_t *pgdat)
2048 {
2049         int wmark_high;
2050
2051         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2052                 return false;
2053
2054         wmark_high = fragmentation_score_wmark(pgdat, false);
2055         return fragmentation_score_node(pgdat) > wmark_high;
2056 }
2057
2058 static enum compact_result __compact_finished(struct compact_control *cc)
2059 {
2060         unsigned int order;
2061         const int migratetype = cc->migratetype;
2062         int ret;
2063
2064         /* Compaction run completes if the migrate and free scanner meet */
2065         if (compact_scanners_met(cc)) {
2066                 /* Let the next compaction start anew. */
2067                 reset_cached_positions(cc->zone);
2068
2069                 /*
2070                  * Mark that the PG_migrate_skip information should be cleared
2071                  * by kswapd when it goes to sleep. kcompactd does not set the
2072                  * flag itself as the decision to be clear should be directly
2073                  * based on an allocation request.
2074                  */
2075                 if (cc->direct_compaction)
2076                         cc->zone->compact_blockskip_flush = true;
2077
2078                 if (cc->whole_zone)
2079                         return COMPACT_COMPLETE;
2080                 else
2081                         return COMPACT_PARTIAL_SKIPPED;
2082         }
2083
2084         if (cc->proactive_compaction) {
2085                 int score, wmark_low;
2086                 pg_data_t *pgdat;
2087
2088                 pgdat = cc->zone->zone_pgdat;
2089                 if (kswapd_is_running(pgdat))
2090                         return COMPACT_PARTIAL_SKIPPED;
2091
2092                 score = fragmentation_score_zone(cc->zone);
2093                 wmark_low = fragmentation_score_wmark(pgdat, true);
2094
2095                 if (score > wmark_low)
2096                         ret = COMPACT_CONTINUE;
2097                 else
2098                         ret = COMPACT_SUCCESS;
2099
2100                 goto out;
2101         }
2102
2103         if (is_via_compact_memory(cc->order))
2104                 return COMPACT_CONTINUE;
2105
2106         /*
2107          * Always finish scanning a pageblock to reduce the possibility of
2108          * fallbacks in the future. This is particularly important when
2109          * migration source is unmovable/reclaimable but it's not worth
2110          * special casing.
2111          */
2112         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2113                 return COMPACT_CONTINUE;
2114
2115         /* Direct compactor: Is a suitable page free? */
2116         ret = COMPACT_NO_SUITABLE_PAGE;
2117         for (order = cc->order; order < MAX_ORDER; order++) {
2118                 struct free_area *area = &cc->zone->free_area[order];
2119                 bool can_steal;
2120
2121                 /* Job done if page is free of the right migratetype */
2122                 if (!free_area_empty(area, migratetype))
2123                         return COMPACT_SUCCESS;
2124
2125 #ifdef CONFIG_CMA
2126                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2127                 if (migratetype == MIGRATE_MOVABLE &&
2128                         !free_area_empty(area, MIGRATE_CMA))
2129                         return COMPACT_SUCCESS;
2130 #endif
2131                 /*
2132                  * Job done if allocation would steal freepages from
2133                  * other migratetype buddy lists.
2134                  */
2135                 if (find_suitable_fallback(area, order, migratetype,
2136                                                 true, &can_steal) != -1)
2137                         /*
2138                          * Movable pages are OK in any pageblock. If we are
2139                          * stealing for a non-movable allocation, make sure
2140                          * we finish compacting the current pageblock first
2141                          * (which is assured by the above migrate_pfn align
2142                          * check) so it is as free as possible and we won't
2143                          * have to steal another one soon.
2144                          */
2145                         return COMPACT_SUCCESS;
2146         }
2147
2148 out:
2149         if (cc->contended || fatal_signal_pending(current))
2150                 ret = COMPACT_CONTENDED;
2151
2152         return ret;
2153 }
2154
2155 static enum compact_result compact_finished(struct compact_control *cc)
2156 {
2157         int ret;
2158
2159         ret = __compact_finished(cc);
2160         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2161         if (ret == COMPACT_NO_SUITABLE_PAGE)
2162                 ret = COMPACT_CONTINUE;
2163
2164         return ret;
2165 }
2166
2167 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2168                                         unsigned int alloc_flags,
2169                                         int highest_zoneidx,
2170                                         unsigned long wmark_target)
2171 {
2172         unsigned long watermark;
2173
2174         if (is_via_compact_memory(order))
2175                 return COMPACT_CONTINUE;
2176
2177         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2178         /*
2179          * If watermarks for high-order allocation are already met, there
2180          * should be no need for compaction at all.
2181          */
2182         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2183                                                                 alloc_flags))
2184                 return COMPACT_SUCCESS;
2185
2186         /*
2187          * Watermarks for order-0 must be met for compaction to be able to
2188          * isolate free pages for migration targets. This means that the
2189          * watermark and alloc_flags have to match, or be more pessimistic than
2190          * the check in __isolate_free_page(). We don't use the direct
2191          * compactor's alloc_flags, as they are not relevant for freepage
2192          * isolation. We however do use the direct compactor's highest_zoneidx
2193          * to skip over zones where lowmem reserves would prevent allocation
2194          * even if compaction succeeds.
2195          * For costly orders, we require low watermark instead of min for
2196          * compaction to proceed to increase its chances.
2197          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2198          * suitable migration targets
2199          */
2200         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2201                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2202         watermark += compact_gap(order);
2203         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2204                                                 ALLOC_CMA, wmark_target))
2205                 return COMPACT_SKIPPED;
2206
2207         return COMPACT_CONTINUE;
2208 }
2209
2210 /*
2211  * compaction_suitable: Is this suitable to run compaction on this zone now?
2212  * Returns
2213  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2214  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2215  *   COMPACT_CONTINUE - If compaction should run now
2216  */
2217 enum compact_result compaction_suitable(struct zone *zone, int order,
2218                                         unsigned int alloc_flags,
2219                                         int highest_zoneidx)
2220 {
2221         enum compact_result ret;
2222         int fragindex;
2223
2224         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2225                                     zone_page_state(zone, NR_FREE_PAGES));
2226         /*
2227          * fragmentation index determines if allocation failures are due to
2228          * low memory or external fragmentation
2229          *
2230          * index of -1000 would imply allocations might succeed depending on
2231          * watermarks, but we already failed the high-order watermark check
2232          * index towards 0 implies failure is due to lack of memory
2233          * index towards 1000 implies failure is due to fragmentation
2234          *
2235          * Only compact if a failure would be due to fragmentation. Also
2236          * ignore fragindex for non-costly orders where the alternative to
2237          * a successful reclaim/compaction is OOM. Fragindex and the
2238          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2239          * excessive compaction for costly orders, but it should not be at the
2240          * expense of system stability.
2241          */
2242         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2243                 fragindex = fragmentation_index(zone, order);
2244                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2245                         ret = COMPACT_NOT_SUITABLE_ZONE;
2246         }
2247
2248         trace_mm_compaction_suitable(zone, order, ret);
2249         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2250                 ret = COMPACT_SKIPPED;
2251
2252         return ret;
2253 }
2254
2255 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2256                 int alloc_flags)
2257 {
2258         struct zone *zone;
2259         struct zoneref *z;
2260
2261         /*
2262          * Make sure at least one zone would pass __compaction_suitable if we continue
2263          * retrying the reclaim.
2264          */
2265         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2266                                 ac->highest_zoneidx, ac->nodemask) {
2267                 unsigned long available;
2268                 enum compact_result compact_result;
2269
2270                 /*
2271                  * Do not consider all the reclaimable memory because we do not
2272                  * want to trash just for a single high order allocation which
2273                  * is even not guaranteed to appear even if __compaction_suitable
2274                  * is happy about the watermark check.
2275                  */
2276                 available = zone_reclaimable_pages(zone) / order;
2277                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2278                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2279                                 ac->highest_zoneidx, available);
2280                 if (compact_result == COMPACT_CONTINUE)
2281                         return true;
2282         }
2283
2284         return false;
2285 }
2286
2287 static enum compact_result
2288 compact_zone(struct compact_control *cc, struct capture_control *capc)
2289 {
2290         enum compact_result ret;
2291         unsigned long start_pfn = cc->zone->zone_start_pfn;
2292         unsigned long end_pfn = zone_end_pfn(cc->zone);
2293         unsigned long last_migrated_pfn;
2294         const bool sync = cc->mode != MIGRATE_ASYNC;
2295         bool update_cached;
2296         unsigned int nr_succeeded = 0;
2297
2298         /*
2299          * These counters track activities during zone compaction.  Initialize
2300          * them before compacting a new zone.
2301          */
2302         cc->total_migrate_scanned = 0;
2303         cc->total_free_scanned = 0;
2304         cc->nr_migratepages = 0;
2305         cc->nr_freepages = 0;
2306         INIT_LIST_HEAD(&cc->freepages);
2307         INIT_LIST_HEAD(&cc->migratepages);
2308
2309         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2310         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2311                                                         cc->highest_zoneidx);
2312         /* Compaction is likely to fail */
2313         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2314                 return ret;
2315
2316         /* huh, compaction_suitable is returning something unexpected */
2317         VM_BUG_ON(ret != COMPACT_CONTINUE);
2318
2319         /*
2320          * Clear pageblock skip if there were failures recently and compaction
2321          * is about to be retried after being deferred.
2322          */
2323         if (compaction_restarting(cc->zone, cc->order))
2324                 __reset_isolation_suitable(cc->zone);
2325
2326         /*
2327          * Setup to move all movable pages to the end of the zone. Used cached
2328          * information on where the scanners should start (unless we explicitly
2329          * want to compact the whole zone), but check that it is initialised
2330          * by ensuring the values are within zone boundaries.
2331          */
2332         cc->fast_start_pfn = 0;
2333         if (cc->whole_zone) {
2334                 cc->migrate_pfn = start_pfn;
2335                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2336         } else {
2337                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2338                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2339                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2340                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2341                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2342                 }
2343                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2344                         cc->migrate_pfn = start_pfn;
2345                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2346                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2347                 }
2348
2349                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2350                         cc->whole_zone = true;
2351         }
2352
2353         last_migrated_pfn = 0;
2354
2355         /*
2356          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2357          * the basis that some migrations will fail in ASYNC mode. However,
2358          * if the cached PFNs match and pageblocks are skipped due to having
2359          * no isolation candidates, then the sync state does not matter.
2360          * Until a pageblock with isolation candidates is found, keep the
2361          * cached PFNs in sync to avoid revisiting the same blocks.
2362          */
2363         update_cached = !sync &&
2364                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2365
2366         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2367
2368         /* lru_add_drain_all could be expensive with involving other CPUs */
2369         lru_add_drain();
2370
2371         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2372                 int err;
2373                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2374
2375                 /*
2376                  * Avoid multiple rescans which can happen if a page cannot be
2377                  * isolated (dirty/writeback in async mode) or if the migrated
2378                  * pages are being allocated before the pageblock is cleared.
2379                  * The first rescan will capture the entire pageblock for
2380                  * migration. If it fails, it'll be marked skip and scanning
2381                  * will proceed as normal.
2382                  */
2383                 cc->rescan = false;
2384                 if (pageblock_start_pfn(last_migrated_pfn) ==
2385                     pageblock_start_pfn(iteration_start_pfn)) {
2386                         cc->rescan = true;
2387                 }
2388
2389                 switch (isolate_migratepages(cc)) {
2390                 case ISOLATE_ABORT:
2391                         ret = COMPACT_CONTENDED;
2392                         putback_movable_pages(&cc->migratepages);
2393                         cc->nr_migratepages = 0;
2394                         goto out;
2395                 case ISOLATE_NONE:
2396                         if (update_cached) {
2397                                 cc->zone->compact_cached_migrate_pfn[1] =
2398                                         cc->zone->compact_cached_migrate_pfn[0];
2399                         }
2400
2401                         /*
2402                          * We haven't isolated and migrated anything, but
2403                          * there might still be unflushed migrations from
2404                          * previous cc->order aligned block.
2405                          */
2406                         goto check_drain;
2407                 case ISOLATE_SUCCESS:
2408                         update_cached = false;
2409                         last_migrated_pfn = iteration_start_pfn;
2410                 }
2411
2412                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2413                                 compaction_free, (unsigned long)cc, cc->mode,
2414                                 MR_COMPACTION, &nr_succeeded);
2415
2416                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2417
2418                 /* All pages were either migrated or will be released */
2419                 cc->nr_migratepages = 0;
2420                 if (err) {
2421                         putback_movable_pages(&cc->migratepages);
2422                         /*
2423                          * migrate_pages() may return -ENOMEM when scanners meet
2424                          * and we want compact_finished() to detect it
2425                          */
2426                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2427                                 ret = COMPACT_CONTENDED;
2428                                 goto out;
2429                         }
2430                         /*
2431                          * We failed to migrate at least one page in the current
2432                          * order-aligned block, so skip the rest of it.
2433                          */
2434                         if (cc->direct_compaction &&
2435                                                 (cc->mode == MIGRATE_ASYNC)) {
2436                                 cc->migrate_pfn = block_end_pfn(
2437                                                 cc->migrate_pfn - 1, cc->order);
2438                                 /* Draining pcplists is useless in this case */
2439                                 last_migrated_pfn = 0;
2440                         }
2441                 }
2442
2443 check_drain:
2444                 /*
2445                  * Has the migration scanner moved away from the previous
2446                  * cc->order aligned block where we migrated from? If yes,
2447                  * flush the pages that were freed, so that they can merge and
2448                  * compact_finished() can detect immediately if allocation
2449                  * would succeed.
2450                  */
2451                 if (cc->order > 0 && last_migrated_pfn) {
2452                         unsigned long current_block_start =
2453                                 block_start_pfn(cc->migrate_pfn, cc->order);
2454
2455                         if (last_migrated_pfn < current_block_start) {
2456                                 lru_add_drain_cpu_zone(cc->zone);
2457                                 /* No more flushing until we migrate again */
2458                                 last_migrated_pfn = 0;
2459                         }
2460                 }
2461
2462                 /* Stop if a page has been captured */
2463                 if (capc && capc->page) {
2464                         ret = COMPACT_SUCCESS;
2465                         break;
2466                 }
2467         }
2468
2469 out:
2470         /*
2471          * Release free pages and update where the free scanner should restart,
2472          * so we don't leave any returned pages behind in the next attempt.
2473          */
2474         if (cc->nr_freepages > 0) {
2475                 unsigned long free_pfn = release_freepages(&cc->freepages);
2476
2477                 cc->nr_freepages = 0;
2478                 VM_BUG_ON(free_pfn == 0);
2479                 /* The cached pfn is always the first in a pageblock */
2480                 free_pfn = pageblock_start_pfn(free_pfn);
2481                 /*
2482                  * Only go back, not forward. The cached pfn might have been
2483                  * already reset to zone end in compact_finished()
2484                  */
2485                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2486                         cc->zone->compact_cached_free_pfn = free_pfn;
2487         }
2488
2489         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2490         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2491
2492         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2493
2494         return ret;
2495 }
2496
2497 static enum compact_result compact_zone_order(struct zone *zone, int order,
2498                 gfp_t gfp_mask, enum compact_priority prio,
2499                 unsigned int alloc_flags, int highest_zoneidx,
2500                 struct page **capture)
2501 {
2502         enum compact_result ret;
2503         struct compact_control cc = {
2504                 .order = order,
2505                 .search_order = order,
2506                 .gfp_mask = gfp_mask,
2507                 .zone = zone,
2508                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2509                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2510                 .alloc_flags = alloc_flags,
2511                 .highest_zoneidx = highest_zoneidx,
2512                 .direct_compaction = true,
2513                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2514                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2515                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2516         };
2517         struct capture_control capc = {
2518                 .cc = &cc,
2519                 .page = NULL,
2520         };
2521
2522         /*
2523          * Make sure the structs are really initialized before we expose the
2524          * capture control, in case we are interrupted and the interrupt handler
2525          * frees a page.
2526          */
2527         barrier();
2528         WRITE_ONCE(current->capture_control, &capc);
2529
2530         ret = compact_zone(&cc, &capc);
2531
2532         VM_BUG_ON(!list_empty(&cc.freepages));
2533         VM_BUG_ON(!list_empty(&cc.migratepages));
2534
2535         /*
2536          * Make sure we hide capture control first before we read the captured
2537          * page pointer, otherwise an interrupt could free and capture a page
2538          * and we would leak it.
2539          */
2540         WRITE_ONCE(current->capture_control, NULL);
2541         *capture = READ_ONCE(capc.page);
2542         /*
2543          * Technically, it is also possible that compaction is skipped but
2544          * the page is still captured out of luck(IRQ came and freed the page).
2545          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2546          * the COMPACT[STALL|FAIL] when compaction is skipped.
2547          */
2548         if (*capture)
2549                 ret = COMPACT_SUCCESS;
2550
2551         return ret;
2552 }
2553
2554 int sysctl_extfrag_threshold = 500;
2555
2556 /**
2557  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2558  * @gfp_mask: The GFP mask of the current allocation
2559  * @order: The order of the current allocation
2560  * @alloc_flags: The allocation flags of the current allocation
2561  * @ac: The context of current allocation
2562  * @prio: Determines how hard direct compaction should try to succeed
2563  * @capture: Pointer to free page created by compaction will be stored here
2564  *
2565  * This is the main entry point for direct page compaction.
2566  */
2567 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2568                 unsigned int alloc_flags, const struct alloc_context *ac,
2569                 enum compact_priority prio, struct page **capture)
2570 {
2571         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2572         struct zoneref *z;
2573         struct zone *zone;
2574         enum compact_result rc = COMPACT_SKIPPED;
2575
2576         /*
2577          * Check if the GFP flags allow compaction - GFP_NOIO is really
2578          * tricky context because the migration might require IO
2579          */
2580         if (!may_perform_io)
2581                 return COMPACT_SKIPPED;
2582
2583         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2584
2585         /* Compact each zone in the list */
2586         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2587                                         ac->highest_zoneidx, ac->nodemask) {
2588                 enum compact_result status;
2589
2590                 if (prio > MIN_COMPACT_PRIORITY
2591                                         && compaction_deferred(zone, order)) {
2592                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2593                         continue;
2594                 }
2595
2596                 status = compact_zone_order(zone, order, gfp_mask, prio,
2597                                 alloc_flags, ac->highest_zoneidx, capture);
2598                 rc = max(status, rc);
2599
2600                 /* The allocation should succeed, stop compacting */
2601                 if (status == COMPACT_SUCCESS) {
2602                         /*
2603                          * We think the allocation will succeed in this zone,
2604                          * but it is not certain, hence the false. The caller
2605                          * will repeat this with true if allocation indeed
2606                          * succeeds in this zone.
2607                          */
2608                         compaction_defer_reset(zone, order, false);
2609
2610                         break;
2611                 }
2612
2613                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2614                                         status == COMPACT_PARTIAL_SKIPPED))
2615                         /*
2616                          * We think that allocation won't succeed in this zone
2617                          * so we defer compaction there. If it ends up
2618                          * succeeding after all, it will be reset.
2619                          */
2620                         defer_compaction(zone, order);
2621
2622                 /*
2623                  * We might have stopped compacting due to need_resched() in
2624                  * async compaction, or due to a fatal signal detected. In that
2625                  * case do not try further zones
2626                  */
2627                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2628                                         || fatal_signal_pending(current))
2629                         break;
2630         }
2631
2632         return rc;
2633 }
2634
2635 /*
2636  * Compact all zones within a node till each zone's fragmentation score
2637  * reaches within proactive compaction thresholds (as determined by the
2638  * proactiveness tunable).
2639  *
2640  * It is possible that the function returns before reaching score targets
2641  * due to various back-off conditions, such as, contention on per-node or
2642  * per-zone locks.
2643  */
2644 static void proactive_compact_node(pg_data_t *pgdat)
2645 {
2646         int zoneid;
2647         struct zone *zone;
2648         struct compact_control cc = {
2649                 .order = -1,
2650                 .mode = MIGRATE_SYNC_LIGHT,
2651                 .ignore_skip_hint = true,
2652                 .whole_zone = true,
2653                 .gfp_mask = GFP_KERNEL,
2654                 .proactive_compaction = true,
2655         };
2656
2657         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2658                 zone = &pgdat->node_zones[zoneid];
2659                 if (!populated_zone(zone))
2660                         continue;
2661
2662                 cc.zone = zone;
2663
2664                 compact_zone(&cc, NULL);
2665
2666                 VM_BUG_ON(!list_empty(&cc.freepages));
2667                 VM_BUG_ON(!list_empty(&cc.migratepages));
2668         }
2669 }
2670
2671 /* Compact all zones within a node */
2672 static void compact_node(int nid)
2673 {
2674         pg_data_t *pgdat = NODE_DATA(nid);
2675         int zoneid;
2676         struct zone *zone;
2677         struct compact_control cc = {
2678                 .order = -1,
2679                 .mode = MIGRATE_SYNC,
2680                 .ignore_skip_hint = true,
2681                 .whole_zone = true,
2682                 .gfp_mask = GFP_KERNEL,
2683         };
2684
2685
2686         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2687
2688                 zone = &pgdat->node_zones[zoneid];
2689                 if (!populated_zone(zone))
2690                         continue;
2691
2692                 cc.zone = zone;
2693
2694                 compact_zone(&cc, NULL);
2695
2696                 VM_BUG_ON(!list_empty(&cc.freepages));
2697                 VM_BUG_ON(!list_empty(&cc.migratepages));
2698         }
2699 }
2700
2701 /* Compact all nodes in the system */
2702 static void compact_nodes(void)
2703 {
2704         int nid;
2705
2706         /* Flush pending updates to the LRU lists */
2707         lru_add_drain_all();
2708
2709         for_each_online_node(nid)
2710                 compact_node(nid);
2711 }
2712
2713 /*
2714  * Tunable for proactive compaction. It determines how
2715  * aggressively the kernel should compact memory in the
2716  * background. It takes values in the range [0, 100].
2717  */
2718 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2719
2720 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2721                 void *buffer, size_t *length, loff_t *ppos)
2722 {
2723         int rc, nid;
2724
2725         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2726         if (rc)
2727                 return rc;
2728
2729         if (write && sysctl_compaction_proactiveness) {
2730                 for_each_online_node(nid) {
2731                         pg_data_t *pgdat = NODE_DATA(nid);
2732
2733                         if (pgdat->proactive_compact_trigger)
2734                                 continue;
2735
2736                         pgdat->proactive_compact_trigger = true;
2737                         wake_up_interruptible(&pgdat->kcompactd_wait);
2738                 }
2739         }
2740
2741         return 0;
2742 }
2743
2744 /*
2745  * This is the entry point for compacting all nodes via
2746  * /proc/sys/vm/compact_memory
2747  */
2748 int sysctl_compaction_handler(struct ctl_table *table, int write,
2749                         void *buffer, size_t *length, loff_t *ppos)
2750 {
2751         if (write)
2752                 compact_nodes();
2753
2754         return 0;
2755 }
2756
2757 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2758 static ssize_t compact_store(struct device *dev,
2759                              struct device_attribute *attr,
2760                              const char *buf, size_t count)
2761 {
2762         int nid = dev->id;
2763
2764         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2765                 /* Flush pending updates to the LRU lists */
2766                 lru_add_drain_all();
2767
2768                 compact_node(nid);
2769         }
2770
2771         return count;
2772 }
2773 static DEVICE_ATTR_WO(compact);
2774
2775 int compaction_register_node(struct node *node)
2776 {
2777         return device_create_file(&node->dev, &dev_attr_compact);
2778 }
2779
2780 void compaction_unregister_node(struct node *node)
2781 {
2782         return device_remove_file(&node->dev, &dev_attr_compact);
2783 }
2784 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2785
2786 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2787 {
2788         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2789                 pgdat->proactive_compact_trigger;
2790 }
2791
2792 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2793 {
2794         int zoneid;
2795         struct zone *zone;
2796         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2797
2798         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2799                 zone = &pgdat->node_zones[zoneid];
2800
2801                 if (!populated_zone(zone))
2802                         continue;
2803
2804                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2805                                         highest_zoneidx) == COMPACT_CONTINUE)
2806                         return true;
2807         }
2808
2809         return false;
2810 }
2811
2812 static void kcompactd_do_work(pg_data_t *pgdat)
2813 {
2814         /*
2815          * With no special task, compact all zones so that a page of requested
2816          * order is allocatable.
2817          */
2818         int zoneid;
2819         struct zone *zone;
2820         struct compact_control cc = {
2821                 .order = pgdat->kcompactd_max_order,
2822                 .search_order = pgdat->kcompactd_max_order,
2823                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2824                 .mode = MIGRATE_SYNC_LIGHT,
2825                 .ignore_skip_hint = false,
2826                 .gfp_mask = GFP_KERNEL,
2827         };
2828         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2829                                                         cc.highest_zoneidx);
2830         count_compact_event(KCOMPACTD_WAKE);
2831
2832         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2833                 int status;
2834
2835                 zone = &pgdat->node_zones[zoneid];
2836                 if (!populated_zone(zone))
2837                         continue;
2838
2839                 if (compaction_deferred(zone, cc.order))
2840                         continue;
2841
2842                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2843                                                         COMPACT_CONTINUE)
2844                         continue;
2845
2846                 if (kthread_should_stop())
2847                         return;
2848
2849                 cc.zone = zone;
2850                 status = compact_zone(&cc, NULL);
2851
2852                 if (status == COMPACT_SUCCESS) {
2853                         compaction_defer_reset(zone, cc.order, false);
2854                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2855                         /*
2856                          * Buddy pages may become stranded on pcps that could
2857                          * otherwise coalesce on the zone's free area for
2858                          * order >= cc.order.  This is ratelimited by the
2859                          * upcoming deferral.
2860                          */
2861                         drain_all_pages(zone);
2862
2863                         /*
2864                          * We use sync migration mode here, so we defer like
2865                          * sync direct compaction does.
2866                          */
2867                         defer_compaction(zone, cc.order);
2868                 }
2869
2870                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2871                                      cc.total_migrate_scanned);
2872                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2873                                      cc.total_free_scanned);
2874
2875                 VM_BUG_ON(!list_empty(&cc.freepages));
2876                 VM_BUG_ON(!list_empty(&cc.migratepages));
2877         }
2878
2879         /*
2880          * Regardless of success, we are done until woken up next. But remember
2881          * the requested order/highest_zoneidx in case it was higher/tighter
2882          * than our current ones
2883          */
2884         if (pgdat->kcompactd_max_order <= cc.order)
2885                 pgdat->kcompactd_max_order = 0;
2886         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2887                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2888 }
2889
2890 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2891 {
2892         if (!order)
2893                 return;
2894
2895         if (pgdat->kcompactd_max_order < order)
2896                 pgdat->kcompactd_max_order = order;
2897
2898         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2899                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2900
2901         /*
2902          * Pairs with implicit barrier in wait_event_freezable()
2903          * such that wakeups are not missed.
2904          */
2905         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2906                 return;
2907
2908         if (!kcompactd_node_suitable(pgdat))
2909                 return;
2910
2911         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2912                                                         highest_zoneidx);
2913         wake_up_interruptible(&pgdat->kcompactd_wait);
2914 }
2915
2916 /*
2917  * The background compaction daemon, started as a kernel thread
2918  * from the init process.
2919  */
2920 static int kcompactd(void *p)
2921 {
2922         pg_data_t *pgdat = (pg_data_t *)p;
2923         struct task_struct *tsk = current;
2924         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2925         long timeout = default_timeout;
2926
2927         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2928
2929         if (!cpumask_empty(cpumask))
2930                 set_cpus_allowed_ptr(tsk, cpumask);
2931
2932         set_freezable();
2933
2934         pgdat->kcompactd_max_order = 0;
2935         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2936
2937         while (!kthread_should_stop()) {
2938                 unsigned long pflags;
2939
2940                 /*
2941                  * Avoid the unnecessary wakeup for proactive compaction
2942                  * when it is disabled.
2943                  */
2944                 if (!sysctl_compaction_proactiveness)
2945                         timeout = MAX_SCHEDULE_TIMEOUT;
2946                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2947                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2948                         kcompactd_work_requested(pgdat), timeout) &&
2949                         !pgdat->proactive_compact_trigger) {
2950
2951                         psi_memstall_enter(&pflags);
2952                         kcompactd_do_work(pgdat);
2953                         psi_memstall_leave(&pflags);
2954                         /*
2955                          * Reset the timeout value. The defer timeout from
2956                          * proactive compaction is lost here but that is fine
2957                          * as the condition of the zone changing substantionally
2958                          * then carrying on with the previous defer interval is
2959                          * not useful.
2960                          */
2961                         timeout = default_timeout;
2962                         continue;
2963                 }
2964
2965                 /*
2966                  * Start the proactive work with default timeout. Based
2967                  * on the fragmentation score, this timeout is updated.
2968                  */
2969                 timeout = default_timeout;
2970                 if (should_proactive_compact_node(pgdat)) {
2971                         unsigned int prev_score, score;
2972
2973                         prev_score = fragmentation_score_node(pgdat);
2974                         proactive_compact_node(pgdat);
2975                         score = fragmentation_score_node(pgdat);
2976                         /*
2977                          * Defer proactive compaction if the fragmentation
2978                          * score did not go down i.e. no progress made.
2979                          */
2980                         if (unlikely(score >= prev_score))
2981                                 timeout =
2982                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2983                 }
2984                 if (unlikely(pgdat->proactive_compact_trigger))
2985                         pgdat->proactive_compact_trigger = false;
2986         }
2987
2988         return 0;
2989 }
2990
2991 /*
2992  * This kcompactd start function will be called by init and node-hot-add.
2993  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2994  */
2995 void kcompactd_run(int nid)
2996 {
2997         pg_data_t *pgdat = NODE_DATA(nid);
2998
2999         if (pgdat->kcompactd)
3000                 return;
3001
3002         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3003         if (IS_ERR(pgdat->kcompactd)) {
3004                 pr_err("Failed to start kcompactd on node %d\n", nid);
3005                 pgdat->kcompactd = NULL;
3006         }
3007 }
3008
3009 /*
3010  * Called by memory hotplug when all memory in a node is offlined. Caller must
3011  * be holding mem_hotplug_begin/done().
3012  */
3013 void kcompactd_stop(int nid)
3014 {
3015         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3016
3017         if (kcompactd) {
3018                 kthread_stop(kcompactd);
3019                 NODE_DATA(nid)->kcompactd = NULL;
3020         }
3021 }
3022
3023 /*
3024  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3025  * not required for correctness. So if the last cpu in a node goes
3026  * away, we get changed to run anywhere: as the first one comes back,
3027  * restore their cpu bindings.
3028  */
3029 static int kcompactd_cpu_online(unsigned int cpu)
3030 {
3031         int nid;
3032
3033         for_each_node_state(nid, N_MEMORY) {
3034                 pg_data_t *pgdat = NODE_DATA(nid);
3035                 const struct cpumask *mask;
3036
3037                 mask = cpumask_of_node(pgdat->node_id);
3038
3039                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3040                         /* One of our CPUs online: restore mask */
3041                         if (pgdat->kcompactd)
3042                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3043         }
3044         return 0;
3045 }
3046
3047 static int __init kcompactd_init(void)
3048 {
3049         int nid;
3050         int ret;
3051
3052         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3053                                         "mm/compaction:online",
3054                                         kcompactd_cpu_online, NULL);
3055         if (ret < 0) {
3056                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3057                 return ret;
3058         }
3059
3060         for_each_node_state(nid, N_MEMORY)
3061                 kcompactd_run(nid);
3062         return 0;
3063 }
3064 subsys_initcall(kcompactd_init)
3065
3066 #endif /* CONFIG_COMPACTION */