Merge tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 /*
233  * Compound pages of >= pageblock_order should consistently be skipped until
234  * released. It is always pointless to compact pages of such order (if they are
235  * migratable), and the pageblocks they occupy cannot contain any free pages.
236  */
237 static bool pageblock_skip_persistent(struct page *page)
238 {
239         if (!PageCompound(page))
240                 return false;
241
242         page = compound_head(page);
243
244         if (compound_order(page) >= pageblock_order)
245                 return true;
246
247         return false;
248 }
249
250 static bool
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252                                                         bool check_target)
253 {
254         struct page *page = pfn_to_online_page(pfn);
255         struct page *block_page;
256         struct page *end_page;
257         unsigned long block_pfn;
258
259         if (!page)
260                 return false;
261         if (zone != page_zone(page))
262                 return false;
263         if (pageblock_skip_persistent(page))
264                 return false;
265
266         /*
267          * If skip is already cleared do no further checking once the
268          * restart points have been set.
269          */
270         if (check_source && check_target && !get_pageblock_skip(page))
271                 return true;
272
273         /*
274          * If clearing skip for the target scanner, do not select a
275          * non-movable pageblock as the starting point.
276          */
277         if (!check_source && check_target &&
278             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279                 return false;
280
281         /* Ensure the start of the pageblock or zone is online and valid */
282         block_pfn = pageblock_start_pfn(pfn);
283         block_pfn = max(block_pfn, zone->zone_start_pfn);
284         block_page = pfn_to_online_page(block_pfn);
285         if (block_page) {
286                 page = block_page;
287                 pfn = block_pfn;
288         }
289
290         /* Ensure the end of the pageblock or zone is online and valid */
291         block_pfn = pageblock_end_pfn(pfn) - 1;
292         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293         end_page = pfn_to_online_page(block_pfn);
294         if (!end_page)
295                 return false;
296
297         /*
298          * Only clear the hint if a sample indicates there is either a
299          * free page or an LRU page in the block. One or other condition
300          * is necessary for the block to be a migration source/target.
301          */
302         do {
303                 if (check_source && PageLRU(page)) {
304                         clear_pageblock_skip(page);
305                         return true;
306                 }
307
308                 if (check_target && PageBuddy(page)) {
309                         clear_pageblock_skip(page);
310                         return true;
311                 }
312
313                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314         } while (page <= end_page);
315
316         return false;
317 }
318
319 /*
320  * This function is called to clear all cached information on pageblocks that
321  * should be skipped for page isolation when the migrate and free page scanner
322  * meet.
323  */
324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326         unsigned long migrate_pfn = zone->zone_start_pfn;
327         unsigned long free_pfn = zone_end_pfn(zone) - 1;
328         unsigned long reset_migrate = free_pfn;
329         unsigned long reset_free = migrate_pfn;
330         bool source_set = false;
331         bool free_set = false;
332
333         if (!zone->compact_blockskip_flush)
334                 return;
335
336         zone->compact_blockskip_flush = false;
337
338         /*
339          * Walk the zone and update pageblock skip information. Source looks
340          * for PageLRU while target looks for PageBuddy. When the scanner
341          * is found, both PageBuddy and PageLRU are checked as the pageblock
342          * is suitable as both source and target.
343          */
344         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345                                         free_pfn -= pageblock_nr_pages) {
346                 cond_resched();
347
348                 /* Update the migrate PFN */
349                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350                     migrate_pfn < reset_migrate) {
351                         source_set = true;
352                         reset_migrate = migrate_pfn;
353                         zone->compact_init_migrate_pfn = reset_migrate;
354                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
355                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
356                 }
357
358                 /* Update the free PFN */
359                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360                     free_pfn > reset_free) {
361                         free_set = true;
362                         reset_free = free_pfn;
363                         zone->compact_init_free_pfn = reset_free;
364                         zone->compact_cached_free_pfn = reset_free;
365                 }
366         }
367
368         /* Leave no distance if no suitable block was reset */
369         if (reset_migrate >= reset_free) {
370                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372                 zone->compact_cached_free_pfn = free_pfn;
373         }
374 }
375
376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378         int zoneid;
379
380         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381                 struct zone *zone = &pgdat->node_zones[zoneid];
382                 if (!populated_zone(zone))
383                         continue;
384
385                 /* Only flush if a full compaction finished recently */
386                 if (zone->compact_blockskip_flush)
387                         __reset_isolation_suitable(zone);
388         }
389 }
390
391 /*
392  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393  * locks are not required for read/writers. Returns true if it was already set.
394  */
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
396                                                         unsigned long pfn)
397 {
398         bool skip;
399
400         /* Do no update if skip hint is being ignored */
401         if (cc->ignore_skip_hint)
402                 return false;
403
404         if (!pageblock_aligned(pfn))
405                 return false;
406
407         skip = get_pageblock_skip(page);
408         if (!skip && !cc->no_set_skip_hint)
409                 set_pageblock_skip(page);
410
411         return skip;
412 }
413
414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
415 {
416         struct zone *zone = cc->zone;
417
418         pfn = pageblock_end_pfn(pfn);
419
420         /* Set for isolation rather than compaction */
421         if (cc->no_set_skip_hint)
422                 return;
423
424         if (pfn > zone->compact_cached_migrate_pfn[0])
425                 zone->compact_cached_migrate_pfn[0] = pfn;
426         if (cc->mode != MIGRATE_ASYNC &&
427             pfn > zone->compact_cached_migrate_pfn[1])
428                 zone->compact_cached_migrate_pfn[1] = pfn;
429 }
430
431 /*
432  * If no pages were isolated then mark this pageblock to be skipped in the
433  * future. The information is later cleared by __reset_isolation_suitable().
434  */
435 static void update_pageblock_skip(struct compact_control *cc,
436                         struct page *page, unsigned long pfn)
437 {
438         struct zone *zone = cc->zone;
439
440         if (cc->no_set_skip_hint)
441                 return;
442
443         if (!page)
444                 return;
445
446         set_pageblock_skip(page);
447
448         /* Update where async and sync compaction should restart */
449         if (pfn < zone->compact_cached_free_pfn)
450                 zone->compact_cached_free_pfn = pfn;
451 }
452 #else
453 static inline bool isolation_suitable(struct compact_control *cc,
454                                         struct page *page)
455 {
456         return true;
457 }
458
459 static inline bool pageblock_skip_persistent(struct page *page)
460 {
461         return false;
462 }
463
464 static inline void update_pageblock_skip(struct compact_control *cc,
465                         struct page *page, unsigned long pfn)
466 {
467 }
468
469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
470 {
471 }
472
473 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
474                                                         unsigned long pfn)
475 {
476         return false;
477 }
478 #endif /* CONFIG_COMPACTION */
479
480 /*
481  * Compaction requires the taking of some coarse locks that are potentially
482  * very heavily contended. For async compaction, trylock and record if the
483  * lock is contended. The lock will still be acquired but compaction will
484  * abort when the current block is finished regardless of success rate.
485  * Sync compaction acquires the lock.
486  *
487  * Always returns true which makes it easier to track lock state in callers.
488  */
489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
490                                                 struct compact_control *cc)
491         __acquires(lock)
492 {
493         /* Track if the lock is contended in async mode */
494         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495                 if (spin_trylock_irqsave(lock, *flags))
496                         return true;
497
498                 cc->contended = true;
499         }
500
501         spin_lock_irqsave(lock, *flags);
502         return true;
503 }
504
505 /*
506  * Compaction requires the taking of some coarse locks that are potentially
507  * very heavily contended. The lock should be periodically unlocked to avoid
508  * having disabled IRQs for a long time, even when there is nobody waiting on
509  * the lock. It might also be that allowing the IRQs will result in
510  * need_resched() becoming true. If scheduling is needed, compaction schedules.
511  * Either compaction type will also abort if a fatal signal is pending.
512  * In either case if the lock was locked, it is dropped and not regained.
513  *
514  * Returns true if compaction should abort due to fatal signal pending.
515  * Returns false when compaction can continue.
516  */
517 static bool compact_unlock_should_abort(spinlock_t *lock,
518                 unsigned long flags, bool *locked, struct compact_control *cc)
519 {
520         if (*locked) {
521                 spin_unlock_irqrestore(lock, flags);
522                 *locked = false;
523         }
524
525         if (fatal_signal_pending(current)) {
526                 cc->contended = true;
527                 return true;
528         }
529
530         cond_resched();
531
532         return false;
533 }
534
535 /*
536  * Isolate free pages onto a private freelist. If @strict is true, will abort
537  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538  * (even though it may still end up isolating some pages).
539  */
540 static unsigned long isolate_freepages_block(struct compact_control *cc,
541                                 unsigned long *start_pfn,
542                                 unsigned long end_pfn,
543                                 struct list_head *freelist,
544                                 unsigned int stride,
545                                 bool strict)
546 {
547         int nr_scanned = 0, total_isolated = 0;
548         struct page *cursor;
549         unsigned long flags = 0;
550         bool locked = false;
551         unsigned long blockpfn = *start_pfn;
552         unsigned int order;
553
554         /* Strict mode is for isolation, speed is secondary */
555         if (strict)
556                 stride = 1;
557
558         cursor = pfn_to_page(blockpfn);
559
560         /* Isolate free pages. */
561         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
562                 int isolated;
563                 struct page *page = cursor;
564
565                 /*
566                  * Periodically drop the lock (if held) regardless of its
567                  * contention, to give chance to IRQs. Abort if fatal signal
568                  * pending.
569                  */
570                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
571                     && compact_unlock_should_abort(&cc->zone->lock, flags,
572                                                                 &locked, cc))
573                         break;
574
575                 nr_scanned++;
576
577                 /*
578                  * For compound pages such as THP and hugetlbfs, we can save
579                  * potentially a lot of iterations if we skip them at once.
580                  * The check is racy, but we can consider only valid values
581                  * and the only danger is skipping too much.
582                  */
583                 if (PageCompound(page)) {
584                         const unsigned int order = compound_order(page);
585
586                         if (likely(order <= MAX_ORDER)) {
587                                 blockpfn += (1UL << order) - 1;
588                                 cursor += (1UL << order) - 1;
589                                 nr_scanned += (1UL << order) - 1;
590                         }
591                         goto isolate_fail;
592                 }
593
594                 if (!PageBuddy(page))
595                         goto isolate_fail;
596
597                 /* If we already hold the lock, we can skip some rechecking. */
598                 if (!locked) {
599                         locked = compact_lock_irqsave(&cc->zone->lock,
600                                                                 &flags, cc);
601
602                         /* Recheck this is a buddy page under lock */
603                         if (!PageBuddy(page))
604                                 goto isolate_fail;
605                 }
606
607                 /* Found a free page, will break it into order-0 pages */
608                 order = buddy_order(page);
609                 isolated = __isolate_free_page(page, order);
610                 if (!isolated)
611                         break;
612                 set_page_private(page, order);
613
614                 nr_scanned += isolated - 1;
615                 total_isolated += isolated;
616                 cc->nr_freepages += isolated;
617                 list_add_tail(&page->lru, freelist);
618
619                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620                         blockpfn += isolated;
621                         break;
622                 }
623                 /* Advance to the end of split page */
624                 blockpfn += isolated - 1;
625                 cursor += isolated - 1;
626                 continue;
627
628 isolate_fail:
629                 if (strict)
630                         break;
631                 else
632                         continue;
633
634         }
635
636         if (locked)
637                 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
639         /*
640          * There is a tiny chance that we have read bogus compound_order(),
641          * so be careful to not go outside of the pageblock.
642          */
643         if (unlikely(blockpfn > end_pfn))
644                 blockpfn = end_pfn;
645
646         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647                                         nr_scanned, total_isolated);
648
649         /* Record how far we have got within the block */
650         *start_pfn = blockpfn;
651
652         /*
653          * If strict isolation is requested by CMA then check that all the
654          * pages requested were isolated. If there were any failures, 0 is
655          * returned and CMA will fail.
656          */
657         if (strict && blockpfn < end_pfn)
658                 total_isolated = 0;
659
660         cc->total_free_scanned += nr_scanned;
661         if (total_isolated)
662                 count_compact_events(COMPACTISOLATED, total_isolated);
663         return total_isolated;
664 }
665
666 /**
667  * isolate_freepages_range() - isolate free pages.
668  * @cc:        Compaction control structure.
669  * @start_pfn: The first PFN to start isolating.
670  * @end_pfn:   The one-past-last PFN.
671  *
672  * Non-free pages, invalid PFNs, or zone boundaries within the
673  * [start_pfn, end_pfn) range are considered errors, cause function to
674  * undo its actions and return zero.
675  *
676  * Otherwise, function returns one-past-the-last PFN of isolated page
677  * (which may be greater then end_pfn if end fell in a middle of
678  * a free page).
679  */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682                         unsigned long start_pfn, unsigned long end_pfn)
683 {
684         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685         LIST_HEAD(freelist);
686
687         pfn = start_pfn;
688         block_start_pfn = pageblock_start_pfn(pfn);
689         if (block_start_pfn < cc->zone->zone_start_pfn)
690                 block_start_pfn = cc->zone->zone_start_pfn;
691         block_end_pfn = pageblock_end_pfn(pfn);
692
693         for (; pfn < end_pfn; pfn += isolated,
694                                 block_start_pfn = block_end_pfn,
695                                 block_end_pfn += pageblock_nr_pages) {
696                 /* Protect pfn from changing by isolate_freepages_block */
697                 unsigned long isolate_start_pfn = pfn;
698
699                 block_end_pfn = min(block_end_pfn, end_pfn);
700
701                 /*
702                  * pfn could pass the block_end_pfn if isolated freepage
703                  * is more than pageblock order. In this case, we adjust
704                  * scanning range to right one.
705                  */
706                 if (pfn >= block_end_pfn) {
707                         block_start_pfn = pageblock_start_pfn(pfn);
708                         block_end_pfn = pageblock_end_pfn(pfn);
709                         block_end_pfn = min(block_end_pfn, end_pfn);
710                 }
711
712                 if (!pageblock_pfn_to_page(block_start_pfn,
713                                         block_end_pfn, cc->zone))
714                         break;
715
716                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717                                         block_end_pfn, &freelist, 0, true);
718
719                 /*
720                  * In strict mode, isolate_freepages_block() returns 0 if
721                  * there are any holes in the block (ie. invalid PFNs or
722                  * non-free pages).
723                  */
724                 if (!isolated)
725                         break;
726
727                 /*
728                  * If we managed to isolate pages, it is always (1 << n) *
729                  * pageblock_nr_pages for some non-negative n.  (Max order
730                  * page may span two pageblocks).
731                  */
732         }
733
734         /* __isolate_free_page() does not map the pages */
735         split_map_pages(&freelist);
736
737         if (pfn < end_pfn) {
738                 /* Loop terminated early, cleanup. */
739                 release_freepages(&freelist);
740                 return 0;
741         }
742
743         /* We don't use freelists for anything. */
744         return pfn;
745 }
746
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750         bool too_many;
751
752         unsigned long active, inactive, isolated;
753
754         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755                         node_page_state(pgdat, NR_INACTIVE_ANON);
756         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757                         node_page_state(pgdat, NR_ACTIVE_ANON);
758         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759                         node_page_state(pgdat, NR_ISOLATED_ANON);
760
761         too_many = isolated > (inactive + active) / 2;
762         if (!too_many)
763                 wake_throttle_isolated(pgdat);
764
765         return too_many;
766 }
767
768 /**
769  * isolate_migratepages_block() - isolate all migrate-able pages within
770  *                                a single pageblock
771  * @cc:         Compaction control structure.
772  * @low_pfn:    The first PFN to isolate
773  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
774  * @mode:       Isolation mode to be used.
775  *
776  * Isolate all pages that can be migrated from the range specified by
777  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
778  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
779  * -ENOMEM in case we could not allocate a page, or 0.
780  * cc->migrate_pfn will contain the next pfn to scan.
781  *
782  * The pages are isolated on cc->migratepages list (not required to be empty),
783  * and cc->nr_migratepages is updated accordingly.
784  */
785 static int
786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
787                         unsigned long end_pfn, isolate_mode_t mode)
788 {
789         pg_data_t *pgdat = cc->zone->zone_pgdat;
790         unsigned long nr_scanned = 0, nr_isolated = 0;
791         struct lruvec *lruvec;
792         unsigned long flags = 0;
793         struct lruvec *locked = NULL;
794         struct page *page = NULL, *valid_page = NULL;
795         struct address_space *mapping;
796         unsigned long start_pfn = low_pfn;
797         bool skip_on_failure = false;
798         unsigned long next_skip_pfn = 0;
799         bool skip_updated = false;
800         int ret = 0;
801
802         cc->migrate_pfn = low_pfn;
803
804         /*
805          * Ensure that there are not too many pages isolated from the LRU
806          * list by either parallel reclaimers or compaction. If there are,
807          * delay for some time until fewer pages are isolated
808          */
809         while (unlikely(too_many_isolated(pgdat))) {
810                 /* stop isolation if there are still pages not migrated */
811                 if (cc->nr_migratepages)
812                         return -EAGAIN;
813
814                 /* async migration should just abort */
815                 if (cc->mode == MIGRATE_ASYNC)
816                         return -EAGAIN;
817
818                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
819
820                 if (fatal_signal_pending(current))
821                         return -EINTR;
822         }
823
824         cond_resched();
825
826         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
827                 skip_on_failure = true;
828                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
829         }
830
831         /* Time to isolate some pages for migration */
832         for (; low_pfn < end_pfn; low_pfn++) {
833
834                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
835                         /*
836                          * We have isolated all migration candidates in the
837                          * previous order-aligned block, and did not skip it due
838                          * to failure. We should migrate the pages now and
839                          * hopefully succeed compaction.
840                          */
841                         if (nr_isolated)
842                                 break;
843
844                         /*
845                          * We failed to isolate in the previous order-aligned
846                          * block. Set the new boundary to the end of the
847                          * current block. Note we can't simply increase
848                          * next_skip_pfn by 1 << order, as low_pfn might have
849                          * been incremented by a higher number due to skipping
850                          * a compound or a high-order buddy page in the
851                          * previous loop iteration.
852                          */
853                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
854                 }
855
856                 /*
857                  * Periodically drop the lock (if held) regardless of its
858                  * contention, to give chance to IRQs. Abort completely if
859                  * a fatal signal is pending.
860                  */
861                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
862                         if (locked) {
863                                 unlock_page_lruvec_irqrestore(locked, flags);
864                                 locked = NULL;
865                         }
866
867                         if (fatal_signal_pending(current)) {
868                                 cc->contended = true;
869                                 ret = -EINTR;
870
871                                 goto fatal_pending;
872                         }
873
874                         cond_resched();
875                 }
876
877                 nr_scanned++;
878
879                 page = pfn_to_page(low_pfn);
880
881                 /*
882                  * Check if the pageblock has already been marked skipped.
883                  * Only the aligned PFN is checked as the caller isolates
884                  * COMPACT_CLUSTER_MAX at a time so the second call must
885                  * not falsely conclude that the block should be skipped.
886                  */
887                 if (!valid_page && pageblock_aligned(low_pfn)) {
888                         if (!isolation_suitable(cc, page)) {
889                                 low_pfn = end_pfn;
890                                 page = NULL;
891                                 goto isolate_abort;
892                         }
893                         valid_page = page;
894                 }
895
896                 if (PageHuge(page) && cc->alloc_contig) {
897                         if (locked) {
898                                 unlock_page_lruvec_irqrestore(locked, flags);
899                                 locked = NULL;
900                         }
901
902                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
903
904                         /*
905                          * Fail isolation in case isolate_or_dissolve_huge_page()
906                          * reports an error. In case of -ENOMEM, abort right away.
907                          */
908                         if (ret < 0) {
909                                  /* Do not report -EBUSY down the chain */
910                                 if (ret == -EBUSY)
911                                         ret = 0;
912                                 low_pfn += compound_nr(page) - 1;
913                                 nr_scanned += compound_nr(page) - 1;
914                                 goto isolate_fail;
915                         }
916
917                         if (PageHuge(page)) {
918                                 /*
919                                  * Hugepage was successfully isolated and placed
920                                  * on the cc->migratepages list.
921                                  */
922                                 low_pfn += compound_nr(page) - 1;
923                                 goto isolate_success_no_list;
924                         }
925
926                         /*
927                          * Ok, the hugepage was dissolved. Now these pages are
928                          * Buddy and cannot be re-allocated because they are
929                          * isolated. Fall-through as the check below handles
930                          * Buddy pages.
931                          */
932                 }
933
934                 /*
935                  * Skip if free. We read page order here without zone lock
936                  * which is generally unsafe, but the race window is small and
937                  * the worst thing that can happen is that we skip some
938                  * potential isolation targets.
939                  */
940                 if (PageBuddy(page)) {
941                         unsigned long freepage_order = buddy_order_unsafe(page);
942
943                         /*
944                          * Without lock, we cannot be sure that what we got is
945                          * a valid page order. Consider only values in the
946                          * valid order range to prevent low_pfn overflow.
947                          */
948                         if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
949                                 low_pfn += (1UL << freepage_order) - 1;
950                                 nr_scanned += (1UL << freepage_order) - 1;
951                         }
952                         continue;
953                 }
954
955                 /*
956                  * Regardless of being on LRU, compound pages such as THP and
957                  * hugetlbfs are not to be compacted unless we are attempting
958                  * an allocation much larger than the huge page size (eg CMA).
959                  * We can potentially save a lot of iterations if we skip them
960                  * at once. The check is racy, but we can consider only valid
961                  * values and the only danger is skipping too much.
962                  */
963                 if (PageCompound(page) && !cc->alloc_contig) {
964                         const unsigned int order = compound_order(page);
965
966                         if (likely(order <= MAX_ORDER)) {
967                                 low_pfn += (1UL << order) - 1;
968                                 nr_scanned += (1UL << order) - 1;
969                         }
970                         goto isolate_fail;
971                 }
972
973                 /*
974                  * Check may be lockless but that's ok as we recheck later.
975                  * It's possible to migrate LRU and non-lru movable pages.
976                  * Skip any other type of page
977                  */
978                 if (!PageLRU(page)) {
979                         /*
980                          * __PageMovable can return false positive so we need
981                          * to verify it under page_lock.
982                          */
983                         if (unlikely(__PageMovable(page)) &&
984                                         !PageIsolated(page)) {
985                                 if (locked) {
986                                         unlock_page_lruvec_irqrestore(locked, flags);
987                                         locked = NULL;
988                                 }
989
990                                 if (isolate_movable_page(page, mode))
991                                         goto isolate_success;
992                         }
993
994                         goto isolate_fail;
995                 }
996
997                 /*
998                  * Be careful not to clear PageLRU until after we're
999                  * sure the page is not being freed elsewhere -- the
1000                  * page release code relies on it.
1001                  */
1002                 if (unlikely(!get_page_unless_zero(page)))
1003                         goto isolate_fail;
1004
1005                 /*
1006                  * Migration will fail if an anonymous page is pinned in memory,
1007                  * so avoid taking lru_lock and isolating it unnecessarily in an
1008                  * admittedly racy check.
1009                  */
1010                 mapping = page_mapping(page);
1011                 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1012                         goto isolate_fail_put;
1013
1014                 /*
1015                  * Only allow to migrate anonymous pages in GFP_NOFS context
1016                  * because those do not depend on fs locks.
1017                  */
1018                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1019                         goto isolate_fail_put;
1020
1021                 /* Only take pages on LRU: a check now makes later tests safe */
1022                 if (!PageLRU(page))
1023                         goto isolate_fail_put;
1024
1025                 /* Compaction might skip unevictable pages but CMA takes them */
1026                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1027                         goto isolate_fail_put;
1028
1029                 /*
1030                  * To minimise LRU disruption, the caller can indicate with
1031                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1032                  * it will be able to migrate without blocking - clean pages
1033                  * for the most part.  PageWriteback would require blocking.
1034                  */
1035                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1036                         goto isolate_fail_put;
1037
1038                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1039                         bool migrate_dirty;
1040
1041                         /*
1042                          * Only pages without mappings or that have a
1043                          * ->migrate_folio callback are possible to migrate
1044                          * without blocking. However, we can be racing with
1045                          * truncation so it's necessary to lock the page
1046                          * to stabilise the mapping as truncation holds
1047                          * the page lock until after the page is removed
1048                          * from the page cache.
1049                          */
1050                         if (!trylock_page(page))
1051                                 goto isolate_fail_put;
1052
1053                         mapping = page_mapping(page);
1054                         migrate_dirty = !mapping ||
1055                                         mapping->a_ops->migrate_folio;
1056                         unlock_page(page);
1057                         if (!migrate_dirty)
1058                                 goto isolate_fail_put;
1059                 }
1060
1061                 /* Try isolate the page */
1062                 if (!TestClearPageLRU(page))
1063                         goto isolate_fail_put;
1064
1065                 lruvec = folio_lruvec(page_folio(page));
1066
1067                 /* If we already hold the lock, we can skip some rechecking */
1068                 if (lruvec != locked) {
1069                         if (locked)
1070                                 unlock_page_lruvec_irqrestore(locked, flags);
1071
1072                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1073                         locked = lruvec;
1074
1075                         lruvec_memcg_debug(lruvec, page_folio(page));
1076
1077                         /* Try get exclusive access under lock */
1078                         if (!skip_updated) {
1079                                 skip_updated = true;
1080                                 if (test_and_set_skip(cc, page, low_pfn))
1081                                         goto isolate_abort;
1082                         }
1083
1084                         /*
1085                          * Page become compound since the non-locked check,
1086                          * and it's on LRU. It can only be a THP so the order
1087                          * is safe to read and it's 0 for tail pages.
1088                          */
1089                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1090                                 low_pfn += compound_nr(page) - 1;
1091                                 nr_scanned += compound_nr(page) - 1;
1092                                 SetPageLRU(page);
1093                                 goto isolate_fail_put;
1094                         }
1095                 }
1096
1097                 /* The whole page is taken off the LRU; skip the tail pages. */
1098                 if (PageCompound(page))
1099                         low_pfn += compound_nr(page) - 1;
1100
1101                 /* Successfully isolated */
1102                 del_page_from_lru_list(page, lruvec);
1103                 mod_node_page_state(page_pgdat(page),
1104                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1105                                 thp_nr_pages(page));
1106
1107 isolate_success:
1108                 list_add(&page->lru, &cc->migratepages);
1109 isolate_success_no_list:
1110                 cc->nr_migratepages += compound_nr(page);
1111                 nr_isolated += compound_nr(page);
1112                 nr_scanned += compound_nr(page) - 1;
1113
1114                 /*
1115                  * Avoid isolating too much unless this block is being
1116                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1117                  * or a lock is contended. For contention, isolate quickly to
1118                  * potentially remove one source of contention.
1119                  */
1120                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1121                     !cc->finish_pageblock && !cc->contended) {
1122                         ++low_pfn;
1123                         break;
1124                 }
1125
1126                 continue;
1127
1128 isolate_fail_put:
1129                 /* Avoid potential deadlock in freeing page under lru_lock */
1130                 if (locked) {
1131                         unlock_page_lruvec_irqrestore(locked, flags);
1132                         locked = NULL;
1133                 }
1134                 put_page(page);
1135
1136 isolate_fail:
1137                 if (!skip_on_failure && ret != -ENOMEM)
1138                         continue;
1139
1140                 /*
1141                  * We have isolated some pages, but then failed. Release them
1142                  * instead of migrating, as we cannot form the cc->order buddy
1143                  * page anyway.
1144                  */
1145                 if (nr_isolated) {
1146                         if (locked) {
1147                                 unlock_page_lruvec_irqrestore(locked, flags);
1148                                 locked = NULL;
1149                         }
1150                         putback_movable_pages(&cc->migratepages);
1151                         cc->nr_migratepages = 0;
1152                         nr_isolated = 0;
1153                 }
1154
1155                 if (low_pfn < next_skip_pfn) {
1156                         low_pfn = next_skip_pfn - 1;
1157                         /*
1158                          * The check near the loop beginning would have updated
1159                          * next_skip_pfn too, but this is a bit simpler.
1160                          */
1161                         next_skip_pfn += 1UL << cc->order;
1162                 }
1163
1164                 if (ret == -ENOMEM)
1165                         break;
1166         }
1167
1168         /*
1169          * The PageBuddy() check could have potentially brought us outside
1170          * the range to be scanned.
1171          */
1172         if (unlikely(low_pfn > end_pfn))
1173                 low_pfn = end_pfn;
1174
1175         page = NULL;
1176
1177 isolate_abort:
1178         if (locked)
1179                 unlock_page_lruvec_irqrestore(locked, flags);
1180         if (page) {
1181                 SetPageLRU(page);
1182                 put_page(page);
1183         }
1184
1185         /*
1186          * Update the cached scanner pfn once the pageblock has been scanned.
1187          * Pages will either be migrated in which case there is no point
1188          * scanning in the near future or migration failed in which case the
1189          * failure reason may persist. The block is marked for skipping if
1190          * there were no pages isolated in the block or if the block is
1191          * rescanned twice in a row.
1192          */
1193         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1194                 if (valid_page && !skip_updated)
1195                         set_pageblock_skip(valid_page);
1196                 update_cached_migrate(cc, low_pfn);
1197         }
1198
1199         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1200                                                 nr_scanned, nr_isolated);
1201
1202 fatal_pending:
1203         cc->total_migrate_scanned += nr_scanned;
1204         if (nr_isolated)
1205                 count_compact_events(COMPACTISOLATED, nr_isolated);
1206
1207         cc->migrate_pfn = low_pfn;
1208
1209         return ret;
1210 }
1211
1212 /**
1213  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1214  * @cc:        Compaction control structure.
1215  * @start_pfn: The first PFN to start isolating.
1216  * @end_pfn:   The one-past-last PFN.
1217  *
1218  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1219  * in case we could not allocate a page, or 0.
1220  */
1221 int
1222 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1223                                                         unsigned long end_pfn)
1224 {
1225         unsigned long pfn, block_start_pfn, block_end_pfn;
1226         int ret = 0;
1227
1228         /* Scan block by block. First and last block may be incomplete */
1229         pfn = start_pfn;
1230         block_start_pfn = pageblock_start_pfn(pfn);
1231         if (block_start_pfn < cc->zone->zone_start_pfn)
1232                 block_start_pfn = cc->zone->zone_start_pfn;
1233         block_end_pfn = pageblock_end_pfn(pfn);
1234
1235         for (; pfn < end_pfn; pfn = block_end_pfn,
1236                                 block_start_pfn = block_end_pfn,
1237                                 block_end_pfn += pageblock_nr_pages) {
1238
1239                 block_end_pfn = min(block_end_pfn, end_pfn);
1240
1241                 if (!pageblock_pfn_to_page(block_start_pfn,
1242                                         block_end_pfn, cc->zone))
1243                         continue;
1244
1245                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1246                                                  ISOLATE_UNEVICTABLE);
1247
1248                 if (ret)
1249                         break;
1250
1251                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1252                         break;
1253         }
1254
1255         return ret;
1256 }
1257
1258 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1259 #ifdef CONFIG_COMPACTION
1260
1261 static bool suitable_migration_source(struct compact_control *cc,
1262                                                         struct page *page)
1263 {
1264         int block_mt;
1265
1266         if (pageblock_skip_persistent(page))
1267                 return false;
1268
1269         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1270                 return true;
1271
1272         block_mt = get_pageblock_migratetype(page);
1273
1274         if (cc->migratetype == MIGRATE_MOVABLE)
1275                 return is_migrate_movable(block_mt);
1276         else
1277                 return block_mt == cc->migratetype;
1278 }
1279
1280 /* Returns true if the page is within a block suitable for migration to */
1281 static bool suitable_migration_target(struct compact_control *cc,
1282                                                         struct page *page)
1283 {
1284         /* If the page is a large free page, then disallow migration */
1285         if (PageBuddy(page)) {
1286                 /*
1287                  * We are checking page_order without zone->lock taken. But
1288                  * the only small danger is that we skip a potentially suitable
1289                  * pageblock, so it's not worth to check order for valid range.
1290                  */
1291                 if (buddy_order_unsafe(page) >= pageblock_order)
1292                         return false;
1293         }
1294
1295         if (cc->ignore_block_suitable)
1296                 return true;
1297
1298         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1299         if (is_migrate_movable(get_pageblock_migratetype(page)))
1300                 return true;
1301
1302         /* Otherwise skip the block */
1303         return false;
1304 }
1305
1306 static inline unsigned int
1307 freelist_scan_limit(struct compact_control *cc)
1308 {
1309         unsigned short shift = BITS_PER_LONG - 1;
1310
1311         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1312 }
1313
1314 /*
1315  * Test whether the free scanner has reached the same or lower pageblock than
1316  * the migration scanner, and compaction should thus terminate.
1317  */
1318 static inline bool compact_scanners_met(struct compact_control *cc)
1319 {
1320         return (cc->free_pfn >> pageblock_order)
1321                 <= (cc->migrate_pfn >> pageblock_order);
1322 }
1323
1324 /*
1325  * Used when scanning for a suitable migration target which scans freelists
1326  * in reverse. Reorders the list such as the unscanned pages are scanned
1327  * first on the next iteration of the free scanner
1328  */
1329 static void
1330 move_freelist_head(struct list_head *freelist, struct page *freepage)
1331 {
1332         LIST_HEAD(sublist);
1333
1334         if (!list_is_last(freelist, &freepage->lru)) {
1335                 list_cut_before(&sublist, freelist, &freepage->lru);
1336                 list_splice_tail(&sublist, freelist);
1337         }
1338 }
1339
1340 /*
1341  * Similar to move_freelist_head except used by the migration scanner
1342  * when scanning forward. It's possible for these list operations to
1343  * move against each other if they search the free list exactly in
1344  * lockstep.
1345  */
1346 static void
1347 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1348 {
1349         LIST_HEAD(sublist);
1350
1351         if (!list_is_first(freelist, &freepage->lru)) {
1352                 list_cut_position(&sublist, freelist, &freepage->lru);
1353                 list_splice_tail(&sublist, freelist);
1354         }
1355 }
1356
1357 static void
1358 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1359 {
1360         unsigned long start_pfn, end_pfn;
1361         struct page *page;
1362
1363         /* Do not search around if there are enough pages already */
1364         if (cc->nr_freepages >= cc->nr_migratepages)
1365                 return;
1366
1367         /* Minimise scanning during async compaction */
1368         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1369                 return;
1370
1371         /* Pageblock boundaries */
1372         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1373         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1374
1375         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1376         if (!page)
1377                 return;
1378
1379         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1380
1381         /* Skip this pageblock in the future as it's full or nearly full */
1382         if (cc->nr_freepages < cc->nr_migratepages)
1383                 set_pageblock_skip(page);
1384
1385         return;
1386 }
1387
1388 /* Search orders in round-robin fashion */
1389 static int next_search_order(struct compact_control *cc, int order)
1390 {
1391         order--;
1392         if (order < 0)
1393                 order = cc->order - 1;
1394
1395         /* Search wrapped around? */
1396         if (order == cc->search_order) {
1397                 cc->search_order--;
1398                 if (cc->search_order < 0)
1399                         cc->search_order = cc->order - 1;
1400                 return -1;
1401         }
1402
1403         return order;
1404 }
1405
1406 static unsigned long
1407 fast_isolate_freepages(struct compact_control *cc)
1408 {
1409         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1410         unsigned int nr_scanned = 0;
1411         unsigned long low_pfn, min_pfn, highest = 0;
1412         unsigned long nr_isolated = 0;
1413         unsigned long distance;
1414         struct page *page = NULL;
1415         bool scan_start = false;
1416         int order;
1417
1418         /* Full compaction passes in a negative order */
1419         if (cc->order <= 0)
1420                 return cc->free_pfn;
1421
1422         /*
1423          * If starting the scan, use a deeper search and use the highest
1424          * PFN found if a suitable one is not found.
1425          */
1426         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1427                 limit = pageblock_nr_pages >> 1;
1428                 scan_start = true;
1429         }
1430
1431         /*
1432          * Preferred point is in the top quarter of the scan space but take
1433          * a pfn from the top half if the search is problematic.
1434          */
1435         distance = (cc->free_pfn - cc->migrate_pfn);
1436         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1437         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1438
1439         if (WARN_ON_ONCE(min_pfn > low_pfn))
1440                 low_pfn = min_pfn;
1441
1442         /*
1443          * Search starts from the last successful isolation order or the next
1444          * order to search after a previous failure
1445          */
1446         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1447
1448         for (order = cc->search_order;
1449              !page && order >= 0;
1450              order = next_search_order(cc, order)) {
1451                 struct free_area *area = &cc->zone->free_area[order];
1452                 struct list_head *freelist;
1453                 struct page *freepage;
1454                 unsigned long flags;
1455                 unsigned int order_scanned = 0;
1456                 unsigned long high_pfn = 0;
1457
1458                 if (!area->nr_free)
1459                         continue;
1460
1461                 spin_lock_irqsave(&cc->zone->lock, flags);
1462                 freelist = &area->free_list[MIGRATE_MOVABLE];
1463                 list_for_each_entry_reverse(freepage, freelist, lru) {
1464                         unsigned long pfn;
1465
1466                         order_scanned++;
1467                         nr_scanned++;
1468                         pfn = page_to_pfn(freepage);
1469
1470                         if (pfn >= highest)
1471                                 highest = max(pageblock_start_pfn(pfn),
1472                                               cc->zone->zone_start_pfn);
1473
1474                         if (pfn >= low_pfn) {
1475                                 cc->fast_search_fail = 0;
1476                                 cc->search_order = order;
1477                                 page = freepage;
1478                                 break;
1479                         }
1480
1481                         if (pfn >= min_pfn && pfn > high_pfn) {
1482                                 high_pfn = pfn;
1483
1484                                 /* Shorten the scan if a candidate is found */
1485                                 limit >>= 1;
1486                         }
1487
1488                         if (order_scanned >= limit)
1489                                 break;
1490                 }
1491
1492                 /* Use a minimum pfn if a preferred one was not found */
1493                 if (!page && high_pfn) {
1494                         page = pfn_to_page(high_pfn);
1495
1496                         /* Update freepage for the list reorder below */
1497                         freepage = page;
1498                 }
1499
1500                 /* Reorder to so a future search skips recent pages */
1501                 move_freelist_head(freelist, freepage);
1502
1503                 /* Isolate the page if available */
1504                 if (page) {
1505                         if (__isolate_free_page(page, order)) {
1506                                 set_page_private(page, order);
1507                                 nr_isolated = 1 << order;
1508                                 nr_scanned += nr_isolated - 1;
1509                                 cc->nr_freepages += nr_isolated;
1510                                 list_add_tail(&page->lru, &cc->freepages);
1511                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1512                         } else {
1513                                 /* If isolation fails, abort the search */
1514                                 order = cc->search_order + 1;
1515                                 page = NULL;
1516                         }
1517                 }
1518
1519                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1520
1521                 /*
1522                  * Smaller scan on next order so the total scan is related
1523                  * to freelist_scan_limit.
1524                  */
1525                 if (order_scanned >= limit)
1526                         limit = max(1U, limit >> 1);
1527         }
1528
1529         if (!page) {
1530                 cc->fast_search_fail++;
1531                 if (scan_start) {
1532                         /*
1533                          * Use the highest PFN found above min. If one was
1534                          * not found, be pessimistic for direct compaction
1535                          * and use the min mark.
1536                          */
1537                         if (highest >= min_pfn) {
1538                                 page = pfn_to_page(highest);
1539                                 cc->free_pfn = highest;
1540                         } else {
1541                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1542                                         page = pageblock_pfn_to_page(min_pfn,
1543                                                 min(pageblock_end_pfn(min_pfn),
1544                                                     zone_end_pfn(cc->zone)),
1545                                                 cc->zone);
1546                                         cc->free_pfn = min_pfn;
1547                                 }
1548                         }
1549                 }
1550         }
1551
1552         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1553                 highest -= pageblock_nr_pages;
1554                 cc->zone->compact_cached_free_pfn = highest;
1555         }
1556
1557         cc->total_free_scanned += nr_scanned;
1558         if (!page)
1559                 return cc->free_pfn;
1560
1561         low_pfn = page_to_pfn(page);
1562         fast_isolate_around(cc, low_pfn);
1563         return low_pfn;
1564 }
1565
1566 /*
1567  * Based on information in the current compact_control, find blocks
1568  * suitable for isolating free pages from and then isolate them.
1569  */
1570 static void isolate_freepages(struct compact_control *cc)
1571 {
1572         struct zone *zone = cc->zone;
1573         struct page *page;
1574         unsigned long block_start_pfn;  /* start of current pageblock */
1575         unsigned long isolate_start_pfn; /* exact pfn we start at */
1576         unsigned long block_end_pfn;    /* end of current pageblock */
1577         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1578         struct list_head *freelist = &cc->freepages;
1579         unsigned int stride;
1580
1581         /* Try a small search of the free lists for a candidate */
1582         fast_isolate_freepages(cc);
1583         if (cc->nr_freepages)
1584                 goto splitmap;
1585
1586         /*
1587          * Initialise the free scanner. The starting point is where we last
1588          * successfully isolated from, zone-cached value, or the end of the
1589          * zone when isolating for the first time. For looping we also need
1590          * this pfn aligned down to the pageblock boundary, because we do
1591          * block_start_pfn -= pageblock_nr_pages in the for loop.
1592          * For ending point, take care when isolating in last pageblock of a
1593          * zone which ends in the middle of a pageblock.
1594          * The low boundary is the end of the pageblock the migration scanner
1595          * is using.
1596          */
1597         isolate_start_pfn = cc->free_pfn;
1598         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1599         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1600                                                 zone_end_pfn(zone));
1601         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1602         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1603
1604         /*
1605          * Isolate free pages until enough are available to migrate the
1606          * pages on cc->migratepages. We stop searching if the migrate
1607          * and free page scanners meet or enough free pages are isolated.
1608          */
1609         for (; block_start_pfn >= low_pfn;
1610                                 block_end_pfn = block_start_pfn,
1611                                 block_start_pfn -= pageblock_nr_pages,
1612                                 isolate_start_pfn = block_start_pfn) {
1613                 unsigned long nr_isolated;
1614
1615                 /*
1616                  * This can iterate a massively long zone without finding any
1617                  * suitable migration targets, so periodically check resched.
1618                  */
1619                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1620                         cond_resched();
1621
1622                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1623                                                                         zone);
1624                 if (!page)
1625                         continue;
1626
1627                 /* Check the block is suitable for migration */
1628                 if (!suitable_migration_target(cc, page))
1629                         continue;
1630
1631                 /* If isolation recently failed, do not retry */
1632                 if (!isolation_suitable(cc, page))
1633                         continue;
1634
1635                 /* Found a block suitable for isolating free pages from. */
1636                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1637                                         block_end_pfn, freelist, stride, false);
1638
1639                 /* Update the skip hint if the full pageblock was scanned */
1640                 if (isolate_start_pfn == block_end_pfn)
1641                         update_pageblock_skip(cc, page, block_start_pfn);
1642
1643                 /* Are enough freepages isolated? */
1644                 if (cc->nr_freepages >= cc->nr_migratepages) {
1645                         if (isolate_start_pfn >= block_end_pfn) {
1646                                 /*
1647                                  * Restart at previous pageblock if more
1648                                  * freepages can be isolated next time.
1649                                  */
1650                                 isolate_start_pfn =
1651                                         block_start_pfn - pageblock_nr_pages;
1652                         }
1653                         break;
1654                 } else if (isolate_start_pfn < block_end_pfn) {
1655                         /*
1656                          * If isolation failed early, do not continue
1657                          * needlessly.
1658                          */
1659                         break;
1660                 }
1661
1662                 /* Adjust stride depending on isolation */
1663                 if (nr_isolated) {
1664                         stride = 1;
1665                         continue;
1666                 }
1667                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1668         }
1669
1670         /*
1671          * Record where the free scanner will restart next time. Either we
1672          * broke from the loop and set isolate_start_pfn based on the last
1673          * call to isolate_freepages_block(), or we met the migration scanner
1674          * and the loop terminated due to isolate_start_pfn < low_pfn
1675          */
1676         cc->free_pfn = isolate_start_pfn;
1677
1678 splitmap:
1679         /* __isolate_free_page() does not map the pages */
1680         split_map_pages(freelist);
1681 }
1682
1683 /*
1684  * This is a migrate-callback that "allocates" freepages by taking pages
1685  * from the isolated freelists in the block we are migrating to.
1686  */
1687 static struct page *compaction_alloc(struct page *migratepage,
1688                                         unsigned long data)
1689 {
1690         struct compact_control *cc = (struct compact_control *)data;
1691         struct page *freepage;
1692
1693         if (list_empty(&cc->freepages)) {
1694                 isolate_freepages(cc);
1695
1696                 if (list_empty(&cc->freepages))
1697                         return NULL;
1698         }
1699
1700         freepage = list_entry(cc->freepages.next, struct page, lru);
1701         list_del(&freepage->lru);
1702         cc->nr_freepages--;
1703
1704         return freepage;
1705 }
1706
1707 /*
1708  * This is a migrate-callback that "frees" freepages back to the isolated
1709  * freelist.  All pages on the freelist are from the same zone, so there is no
1710  * special handling needed for NUMA.
1711  */
1712 static void compaction_free(struct page *page, unsigned long data)
1713 {
1714         struct compact_control *cc = (struct compact_control *)data;
1715
1716         list_add(&page->lru, &cc->freepages);
1717         cc->nr_freepages++;
1718 }
1719
1720 /* possible outcome of isolate_migratepages */
1721 typedef enum {
1722         ISOLATE_ABORT,          /* Abort compaction now */
1723         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1724         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1725 } isolate_migrate_t;
1726
1727 /*
1728  * Allow userspace to control policy on scanning the unevictable LRU for
1729  * compactable pages.
1730  */
1731 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1732 /*
1733  * Tunable for proactive compaction. It determines how
1734  * aggressively the kernel should compact memory in the
1735  * background. It takes values in the range [0, 100].
1736  */
1737 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1738 static int sysctl_extfrag_threshold = 500;
1739
1740 static inline void
1741 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1742 {
1743         if (cc->fast_start_pfn == ULONG_MAX)
1744                 return;
1745
1746         if (!cc->fast_start_pfn)
1747                 cc->fast_start_pfn = pfn;
1748
1749         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1750 }
1751
1752 static inline unsigned long
1753 reinit_migrate_pfn(struct compact_control *cc)
1754 {
1755         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1756                 return cc->migrate_pfn;
1757
1758         cc->migrate_pfn = cc->fast_start_pfn;
1759         cc->fast_start_pfn = ULONG_MAX;
1760
1761         return cc->migrate_pfn;
1762 }
1763
1764 /*
1765  * Briefly search the free lists for a migration source that already has
1766  * some free pages to reduce the number of pages that need migration
1767  * before a pageblock is free.
1768  */
1769 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1770 {
1771         unsigned int limit = freelist_scan_limit(cc);
1772         unsigned int nr_scanned = 0;
1773         unsigned long distance;
1774         unsigned long pfn = cc->migrate_pfn;
1775         unsigned long high_pfn;
1776         int order;
1777         bool found_block = false;
1778
1779         /* Skip hints are relied on to avoid repeats on the fast search */
1780         if (cc->ignore_skip_hint)
1781                 return pfn;
1782
1783         /*
1784          * If the pageblock should be finished then do not select a different
1785          * pageblock.
1786          */
1787         if (cc->finish_pageblock)
1788                 return pfn;
1789
1790         /*
1791          * If the migrate_pfn is not at the start of a zone or the start
1792          * of a pageblock then assume this is a continuation of a previous
1793          * scan restarted due to COMPACT_CLUSTER_MAX.
1794          */
1795         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1796                 return pfn;
1797
1798         /*
1799          * For smaller orders, just linearly scan as the number of pages
1800          * to migrate should be relatively small and does not necessarily
1801          * justify freeing up a large block for a small allocation.
1802          */
1803         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1804                 return pfn;
1805
1806         /*
1807          * Only allow kcompactd and direct requests for movable pages to
1808          * quickly clear out a MOVABLE pageblock for allocation. This
1809          * reduces the risk that a large movable pageblock is freed for
1810          * an unmovable/reclaimable small allocation.
1811          */
1812         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1813                 return pfn;
1814
1815         /*
1816          * When starting the migration scanner, pick any pageblock within the
1817          * first half of the search space. Otherwise try and pick a pageblock
1818          * within the first eighth to reduce the chances that a migration
1819          * target later becomes a source.
1820          */
1821         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1822         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1823                 distance >>= 2;
1824         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1825
1826         for (order = cc->order - 1;
1827              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1828              order--) {
1829                 struct free_area *area = &cc->zone->free_area[order];
1830                 struct list_head *freelist;
1831                 unsigned long flags;
1832                 struct page *freepage;
1833
1834                 if (!area->nr_free)
1835                         continue;
1836
1837                 spin_lock_irqsave(&cc->zone->lock, flags);
1838                 freelist = &area->free_list[MIGRATE_MOVABLE];
1839                 list_for_each_entry(freepage, freelist, lru) {
1840                         unsigned long free_pfn;
1841
1842                         if (nr_scanned++ >= limit) {
1843                                 move_freelist_tail(freelist, freepage);
1844                                 break;
1845                         }
1846
1847                         free_pfn = page_to_pfn(freepage);
1848                         if (free_pfn < high_pfn) {
1849                                 /*
1850                                  * Avoid if skipped recently. Ideally it would
1851                                  * move to the tail but even safe iteration of
1852                                  * the list assumes an entry is deleted, not
1853                                  * reordered.
1854                                  */
1855                                 if (get_pageblock_skip(freepage))
1856                                         continue;
1857
1858                                 /* Reorder to so a future search skips recent pages */
1859                                 move_freelist_tail(freelist, freepage);
1860
1861                                 update_fast_start_pfn(cc, free_pfn);
1862                                 pfn = pageblock_start_pfn(free_pfn);
1863                                 if (pfn < cc->zone->zone_start_pfn)
1864                                         pfn = cc->zone->zone_start_pfn;
1865                                 cc->fast_search_fail = 0;
1866                                 found_block = true;
1867                                 set_pageblock_skip(freepage);
1868                                 break;
1869                         }
1870                 }
1871                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1872         }
1873
1874         cc->total_migrate_scanned += nr_scanned;
1875
1876         /*
1877          * If fast scanning failed then use a cached entry for a page block
1878          * that had free pages as the basis for starting a linear scan.
1879          */
1880         if (!found_block) {
1881                 cc->fast_search_fail++;
1882                 pfn = reinit_migrate_pfn(cc);
1883         }
1884         return pfn;
1885 }
1886
1887 /*
1888  * Isolate all pages that can be migrated from the first suitable block,
1889  * starting at the block pointed to by the migrate scanner pfn within
1890  * compact_control.
1891  */
1892 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1893 {
1894         unsigned long block_start_pfn;
1895         unsigned long block_end_pfn;
1896         unsigned long low_pfn;
1897         struct page *page;
1898         const isolate_mode_t isolate_mode =
1899                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1900                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1901         bool fast_find_block;
1902
1903         /*
1904          * Start at where we last stopped, or beginning of the zone as
1905          * initialized by compact_zone(). The first failure will use
1906          * the lowest PFN as the starting point for linear scanning.
1907          */
1908         low_pfn = fast_find_migrateblock(cc);
1909         block_start_pfn = pageblock_start_pfn(low_pfn);
1910         if (block_start_pfn < cc->zone->zone_start_pfn)
1911                 block_start_pfn = cc->zone->zone_start_pfn;
1912
1913         /*
1914          * fast_find_migrateblock marks a pageblock skipped so to avoid
1915          * the isolation_suitable check below, check whether the fast
1916          * search was successful.
1917          */
1918         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1919
1920         /* Only scan within a pageblock boundary */
1921         block_end_pfn = pageblock_end_pfn(low_pfn);
1922
1923         /*
1924          * Iterate over whole pageblocks until we find the first suitable.
1925          * Do not cross the free scanner.
1926          */
1927         for (; block_end_pfn <= cc->free_pfn;
1928                         fast_find_block = false,
1929                         cc->migrate_pfn = low_pfn = block_end_pfn,
1930                         block_start_pfn = block_end_pfn,
1931                         block_end_pfn += pageblock_nr_pages) {
1932
1933                 /*
1934                  * This can potentially iterate a massively long zone with
1935                  * many pageblocks unsuitable, so periodically check if we
1936                  * need to schedule.
1937                  */
1938                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1939                         cond_resched();
1940
1941                 page = pageblock_pfn_to_page(block_start_pfn,
1942                                                 block_end_pfn, cc->zone);
1943                 if (!page)
1944                         continue;
1945
1946                 /*
1947                  * If isolation recently failed, do not retry. Only check the
1948                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1949                  * to be visited multiple times. Assume skip was checked
1950                  * before making it "skip" so other compaction instances do
1951                  * not scan the same block.
1952                  */
1953                 if (pageblock_aligned(low_pfn) &&
1954                     !fast_find_block && !isolation_suitable(cc, page))
1955                         continue;
1956
1957                 /*
1958                  * For async direct compaction, only scan the pageblocks of the
1959                  * same migratetype without huge pages. Async direct compaction
1960                  * is optimistic to see if the minimum amount of work satisfies
1961                  * the allocation. The cached PFN is updated as it's possible
1962                  * that all remaining blocks between source and target are
1963                  * unsuitable and the compaction scanners fail to meet.
1964                  */
1965                 if (!suitable_migration_source(cc, page)) {
1966                         update_cached_migrate(cc, block_end_pfn);
1967                         continue;
1968                 }
1969
1970                 /* Perform the isolation */
1971                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1972                                                 isolate_mode))
1973                         return ISOLATE_ABORT;
1974
1975                 /*
1976                  * Either we isolated something and proceed with migration. Or
1977                  * we failed and compact_zone should decide if we should
1978                  * continue or not.
1979                  */
1980                 break;
1981         }
1982
1983         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1984 }
1985
1986 /*
1987  * order == -1 is expected when compacting via
1988  * /proc/sys/vm/compact_memory
1989  */
1990 static inline bool is_via_compact_memory(int order)
1991 {
1992         return order == -1;
1993 }
1994
1995 /*
1996  * Determine whether kswapd is (or recently was!) running on this node.
1997  *
1998  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1999  * zero it.
2000  */
2001 static bool kswapd_is_running(pg_data_t *pgdat)
2002 {
2003         bool running;
2004
2005         pgdat_kswapd_lock(pgdat);
2006         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2007         pgdat_kswapd_unlock(pgdat);
2008
2009         return running;
2010 }
2011
2012 /*
2013  * A zone's fragmentation score is the external fragmentation wrt to the
2014  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2015  */
2016 static unsigned int fragmentation_score_zone(struct zone *zone)
2017 {
2018         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2019 }
2020
2021 /*
2022  * A weighted zone's fragmentation score is the external fragmentation
2023  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2024  * returns a value in the range [0, 100].
2025  *
2026  * The scaling factor ensures that proactive compaction focuses on larger
2027  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2028  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2029  * and thus never exceeds the high threshold for proactive compaction.
2030  */
2031 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2032 {
2033         unsigned long score;
2034
2035         score = zone->present_pages * fragmentation_score_zone(zone);
2036         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2037 }
2038
2039 /*
2040  * The per-node proactive (background) compaction process is started by its
2041  * corresponding kcompactd thread when the node's fragmentation score
2042  * exceeds the high threshold. The compaction process remains active till
2043  * the node's score falls below the low threshold, or one of the back-off
2044  * conditions is met.
2045  */
2046 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2047 {
2048         unsigned int score = 0;
2049         int zoneid;
2050
2051         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2052                 struct zone *zone;
2053
2054                 zone = &pgdat->node_zones[zoneid];
2055                 if (!populated_zone(zone))
2056                         continue;
2057                 score += fragmentation_score_zone_weighted(zone);
2058         }
2059
2060         return score;
2061 }
2062
2063 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2064 {
2065         unsigned int wmark_low;
2066
2067         /*
2068          * Cap the low watermark to avoid excessive compaction
2069          * activity in case a user sets the proactiveness tunable
2070          * close to 100 (maximum).
2071          */
2072         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2073         return low ? wmark_low : min(wmark_low + 10, 100U);
2074 }
2075
2076 static bool should_proactive_compact_node(pg_data_t *pgdat)
2077 {
2078         int wmark_high;
2079
2080         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2081                 return false;
2082
2083         wmark_high = fragmentation_score_wmark(pgdat, false);
2084         return fragmentation_score_node(pgdat) > wmark_high;
2085 }
2086
2087 static enum compact_result __compact_finished(struct compact_control *cc)
2088 {
2089         unsigned int order;
2090         const int migratetype = cc->migratetype;
2091         int ret;
2092
2093         /* Compaction run completes if the migrate and free scanner meet */
2094         if (compact_scanners_met(cc)) {
2095                 /* Let the next compaction start anew. */
2096                 reset_cached_positions(cc->zone);
2097
2098                 /*
2099                  * Mark that the PG_migrate_skip information should be cleared
2100                  * by kswapd when it goes to sleep. kcompactd does not set the
2101                  * flag itself as the decision to be clear should be directly
2102                  * based on an allocation request.
2103                  */
2104                 if (cc->direct_compaction)
2105                         cc->zone->compact_blockskip_flush = true;
2106
2107                 if (cc->whole_zone)
2108                         return COMPACT_COMPLETE;
2109                 else
2110                         return COMPACT_PARTIAL_SKIPPED;
2111         }
2112
2113         if (cc->proactive_compaction) {
2114                 int score, wmark_low;
2115                 pg_data_t *pgdat;
2116
2117                 pgdat = cc->zone->zone_pgdat;
2118                 if (kswapd_is_running(pgdat))
2119                         return COMPACT_PARTIAL_SKIPPED;
2120
2121                 score = fragmentation_score_zone(cc->zone);
2122                 wmark_low = fragmentation_score_wmark(pgdat, true);
2123
2124                 if (score > wmark_low)
2125                         ret = COMPACT_CONTINUE;
2126                 else
2127                         ret = COMPACT_SUCCESS;
2128
2129                 goto out;
2130         }
2131
2132         if (is_via_compact_memory(cc->order))
2133                 return COMPACT_CONTINUE;
2134
2135         /*
2136          * Always finish scanning a pageblock to reduce the possibility of
2137          * fallbacks in the future. This is particularly important when
2138          * migration source is unmovable/reclaimable but it's not worth
2139          * special casing.
2140          */
2141         if (!pageblock_aligned(cc->migrate_pfn))
2142                 return COMPACT_CONTINUE;
2143
2144         /* Direct compactor: Is a suitable page free? */
2145         ret = COMPACT_NO_SUITABLE_PAGE;
2146         for (order = cc->order; order <= MAX_ORDER; order++) {
2147                 struct free_area *area = &cc->zone->free_area[order];
2148                 bool can_steal;
2149
2150                 /* Job done if page is free of the right migratetype */
2151                 if (!free_area_empty(area, migratetype))
2152                         return COMPACT_SUCCESS;
2153
2154 #ifdef CONFIG_CMA
2155                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2156                 if (migratetype == MIGRATE_MOVABLE &&
2157                         !free_area_empty(area, MIGRATE_CMA))
2158                         return COMPACT_SUCCESS;
2159 #endif
2160                 /*
2161                  * Job done if allocation would steal freepages from
2162                  * other migratetype buddy lists.
2163                  */
2164                 if (find_suitable_fallback(area, order, migratetype,
2165                                                 true, &can_steal) != -1)
2166                         /*
2167                          * Movable pages are OK in any pageblock. If we are
2168                          * stealing for a non-movable allocation, make sure
2169                          * we finish compacting the current pageblock first
2170                          * (which is assured by the above migrate_pfn align
2171                          * check) so it is as free as possible and we won't
2172                          * have to steal another one soon.
2173                          */
2174                         return COMPACT_SUCCESS;
2175         }
2176
2177 out:
2178         if (cc->contended || fatal_signal_pending(current))
2179                 ret = COMPACT_CONTENDED;
2180
2181         return ret;
2182 }
2183
2184 static enum compact_result compact_finished(struct compact_control *cc)
2185 {
2186         int ret;
2187
2188         ret = __compact_finished(cc);
2189         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2190         if (ret == COMPACT_NO_SUITABLE_PAGE)
2191                 ret = COMPACT_CONTINUE;
2192
2193         return ret;
2194 }
2195
2196 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2197                                         unsigned int alloc_flags,
2198                                         int highest_zoneidx,
2199                                         unsigned long wmark_target)
2200 {
2201         unsigned long watermark;
2202
2203         if (is_via_compact_memory(order))
2204                 return COMPACT_CONTINUE;
2205
2206         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2207         /*
2208          * If watermarks for high-order allocation are already met, there
2209          * should be no need for compaction at all.
2210          */
2211         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2212                                                                 alloc_flags))
2213                 return COMPACT_SUCCESS;
2214
2215         /*
2216          * Watermarks for order-0 must be met for compaction to be able to
2217          * isolate free pages for migration targets. This means that the
2218          * watermark and alloc_flags have to match, or be more pessimistic than
2219          * the check in __isolate_free_page(). We don't use the direct
2220          * compactor's alloc_flags, as they are not relevant for freepage
2221          * isolation. We however do use the direct compactor's highest_zoneidx
2222          * to skip over zones where lowmem reserves would prevent allocation
2223          * even if compaction succeeds.
2224          * For costly orders, we require low watermark instead of min for
2225          * compaction to proceed to increase its chances.
2226          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2227          * suitable migration targets
2228          */
2229         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2230                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2231         watermark += compact_gap(order);
2232         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2233                                                 ALLOC_CMA, wmark_target))
2234                 return COMPACT_SKIPPED;
2235
2236         return COMPACT_CONTINUE;
2237 }
2238
2239 /*
2240  * compaction_suitable: Is this suitable to run compaction on this zone now?
2241  * Returns
2242  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2243  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2244  *   COMPACT_CONTINUE - If compaction should run now
2245  */
2246 enum compact_result compaction_suitable(struct zone *zone, int order,
2247                                         unsigned int alloc_flags,
2248                                         int highest_zoneidx)
2249 {
2250         enum compact_result ret;
2251         int fragindex;
2252
2253         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2254                                     zone_page_state(zone, NR_FREE_PAGES));
2255         /*
2256          * fragmentation index determines if allocation failures are due to
2257          * low memory or external fragmentation
2258          *
2259          * index of -1000 would imply allocations might succeed depending on
2260          * watermarks, but we already failed the high-order watermark check
2261          * index towards 0 implies failure is due to lack of memory
2262          * index towards 1000 implies failure is due to fragmentation
2263          *
2264          * Only compact if a failure would be due to fragmentation. Also
2265          * ignore fragindex for non-costly orders where the alternative to
2266          * a successful reclaim/compaction is OOM. Fragindex and the
2267          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2268          * excessive compaction for costly orders, but it should not be at the
2269          * expense of system stability.
2270          */
2271         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2272                 fragindex = fragmentation_index(zone, order);
2273                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2274                         ret = COMPACT_NOT_SUITABLE_ZONE;
2275         }
2276
2277         trace_mm_compaction_suitable(zone, order, ret);
2278         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2279                 ret = COMPACT_SKIPPED;
2280
2281         return ret;
2282 }
2283
2284 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2285                 int alloc_flags)
2286 {
2287         struct zone *zone;
2288         struct zoneref *z;
2289
2290         /*
2291          * Make sure at least one zone would pass __compaction_suitable if we continue
2292          * retrying the reclaim.
2293          */
2294         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2295                                 ac->highest_zoneidx, ac->nodemask) {
2296                 unsigned long available;
2297                 enum compact_result compact_result;
2298
2299                 /*
2300                  * Do not consider all the reclaimable memory because we do not
2301                  * want to trash just for a single high order allocation which
2302                  * is even not guaranteed to appear even if __compaction_suitable
2303                  * is happy about the watermark check.
2304                  */
2305                 available = zone_reclaimable_pages(zone) / order;
2306                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2307                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2308                                 ac->highest_zoneidx, available);
2309                 if (compact_result == COMPACT_CONTINUE)
2310                         return true;
2311         }
2312
2313         return false;
2314 }
2315
2316 static enum compact_result
2317 compact_zone(struct compact_control *cc, struct capture_control *capc)
2318 {
2319         enum compact_result ret;
2320         unsigned long start_pfn = cc->zone->zone_start_pfn;
2321         unsigned long end_pfn = zone_end_pfn(cc->zone);
2322         unsigned long last_migrated_pfn;
2323         const bool sync = cc->mode != MIGRATE_ASYNC;
2324         bool update_cached;
2325         unsigned int nr_succeeded = 0;
2326
2327         /*
2328          * These counters track activities during zone compaction.  Initialize
2329          * them before compacting a new zone.
2330          */
2331         cc->total_migrate_scanned = 0;
2332         cc->total_free_scanned = 0;
2333         cc->nr_migratepages = 0;
2334         cc->nr_freepages = 0;
2335         INIT_LIST_HEAD(&cc->freepages);
2336         INIT_LIST_HEAD(&cc->migratepages);
2337
2338         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2339         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2340                                                         cc->highest_zoneidx);
2341         /* Compaction is likely to fail */
2342         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2343                 return ret;
2344
2345         /*
2346          * Clear pageblock skip if there were failures recently and compaction
2347          * is about to be retried after being deferred.
2348          */
2349         if (compaction_restarting(cc->zone, cc->order))
2350                 __reset_isolation_suitable(cc->zone);
2351
2352         /*
2353          * Setup to move all movable pages to the end of the zone. Used cached
2354          * information on where the scanners should start (unless we explicitly
2355          * want to compact the whole zone), but check that it is initialised
2356          * by ensuring the values are within zone boundaries.
2357          */
2358         cc->fast_start_pfn = 0;
2359         if (cc->whole_zone) {
2360                 cc->migrate_pfn = start_pfn;
2361                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2362         } else {
2363                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2364                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2365                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2366                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2367                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2368                 }
2369                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2370                         cc->migrate_pfn = start_pfn;
2371                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2372                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2373                 }
2374
2375                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2376                         cc->whole_zone = true;
2377         }
2378
2379         last_migrated_pfn = 0;
2380
2381         /*
2382          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2383          * the basis that some migrations will fail in ASYNC mode. However,
2384          * if the cached PFNs match and pageblocks are skipped due to having
2385          * no isolation candidates, then the sync state does not matter.
2386          * Until a pageblock with isolation candidates is found, keep the
2387          * cached PFNs in sync to avoid revisiting the same blocks.
2388          */
2389         update_cached = !sync &&
2390                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2391
2392         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2393
2394         /* lru_add_drain_all could be expensive with involving other CPUs */
2395         lru_add_drain();
2396
2397         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2398                 int err;
2399                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2400
2401                 /*
2402                  * Avoid multiple rescans of the same pageblock which can
2403                  * happen if a page cannot be isolated (dirty/writeback in
2404                  * async mode) or if the migrated pages are being allocated
2405                  * before the pageblock is cleared.  The first rescan will
2406                  * capture the entire pageblock for migration. If it fails,
2407                  * it'll be marked skip and scanning will proceed as normal.
2408                  */
2409                 cc->finish_pageblock = false;
2410                 if (pageblock_start_pfn(last_migrated_pfn) ==
2411                     pageblock_start_pfn(iteration_start_pfn)) {
2412                         cc->finish_pageblock = true;
2413                 }
2414
2415 rescan:
2416                 switch (isolate_migratepages(cc)) {
2417                 case ISOLATE_ABORT:
2418                         ret = COMPACT_CONTENDED;
2419                         putback_movable_pages(&cc->migratepages);
2420                         cc->nr_migratepages = 0;
2421                         goto out;
2422                 case ISOLATE_NONE:
2423                         if (update_cached) {
2424                                 cc->zone->compact_cached_migrate_pfn[1] =
2425                                         cc->zone->compact_cached_migrate_pfn[0];
2426                         }
2427
2428                         /*
2429                          * We haven't isolated and migrated anything, but
2430                          * there might still be unflushed migrations from
2431                          * previous cc->order aligned block.
2432                          */
2433                         goto check_drain;
2434                 case ISOLATE_SUCCESS:
2435                         update_cached = false;
2436                         last_migrated_pfn = iteration_start_pfn;
2437                 }
2438
2439                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2440                                 compaction_free, (unsigned long)cc, cc->mode,
2441                                 MR_COMPACTION, &nr_succeeded);
2442
2443                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2444
2445                 /* All pages were either migrated or will be released */
2446                 cc->nr_migratepages = 0;
2447                 if (err) {
2448                         putback_movable_pages(&cc->migratepages);
2449                         /*
2450                          * migrate_pages() may return -ENOMEM when scanners meet
2451                          * and we want compact_finished() to detect it
2452                          */
2453                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2454                                 ret = COMPACT_CONTENDED;
2455                                 goto out;
2456                         }
2457                         /*
2458                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2459                          * within the current order-aligned block, scan the
2460                          * remainder of the pageblock. This will mark the
2461                          * pageblock "skip" to avoid rescanning in the near
2462                          * future. This will isolate more pages than necessary
2463                          * for the request but avoid loops due to
2464                          * fast_find_migrateblock revisiting blocks that were
2465                          * recently partially scanned.
2466                          */
2467                         if (cc->direct_compaction && !cc->finish_pageblock &&
2468                                                 (cc->mode < MIGRATE_SYNC)) {
2469                                 cc->finish_pageblock = true;
2470
2471                                 /*
2472                                  * Draining pcplists does not help THP if
2473                                  * any page failed to migrate. Even after
2474                                  * drain, the pageblock will not be free.
2475                                  */
2476                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2477                                         last_migrated_pfn = 0;
2478
2479                                 goto rescan;
2480                         }
2481                 }
2482
2483                 /* Stop if a page has been captured */
2484                 if (capc && capc->page) {
2485                         ret = COMPACT_SUCCESS;
2486                         break;
2487                 }
2488
2489 check_drain:
2490                 /*
2491                  * Has the migration scanner moved away from the previous
2492                  * cc->order aligned block where we migrated from? If yes,
2493                  * flush the pages that were freed, so that they can merge and
2494                  * compact_finished() can detect immediately if allocation
2495                  * would succeed.
2496                  */
2497                 if (cc->order > 0 && last_migrated_pfn) {
2498                         unsigned long current_block_start =
2499                                 block_start_pfn(cc->migrate_pfn, cc->order);
2500
2501                         if (last_migrated_pfn < current_block_start) {
2502                                 lru_add_drain_cpu_zone(cc->zone);
2503                                 /* No more flushing until we migrate again */
2504                                 last_migrated_pfn = 0;
2505                         }
2506                 }
2507         }
2508
2509 out:
2510         /*
2511          * Release free pages and update where the free scanner should restart,
2512          * so we don't leave any returned pages behind in the next attempt.
2513          */
2514         if (cc->nr_freepages > 0) {
2515                 unsigned long free_pfn = release_freepages(&cc->freepages);
2516
2517                 cc->nr_freepages = 0;
2518                 VM_BUG_ON(free_pfn == 0);
2519                 /* The cached pfn is always the first in a pageblock */
2520                 free_pfn = pageblock_start_pfn(free_pfn);
2521                 /*
2522                  * Only go back, not forward. The cached pfn might have been
2523                  * already reset to zone end in compact_finished()
2524                  */
2525                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2526                         cc->zone->compact_cached_free_pfn = free_pfn;
2527         }
2528
2529         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2530         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2531
2532         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2533
2534         VM_BUG_ON(!list_empty(&cc->freepages));
2535         VM_BUG_ON(!list_empty(&cc->migratepages));
2536
2537         return ret;
2538 }
2539
2540 static enum compact_result compact_zone_order(struct zone *zone, int order,
2541                 gfp_t gfp_mask, enum compact_priority prio,
2542                 unsigned int alloc_flags, int highest_zoneidx,
2543                 struct page **capture)
2544 {
2545         enum compact_result ret;
2546         struct compact_control cc = {
2547                 .order = order,
2548                 .search_order = order,
2549                 .gfp_mask = gfp_mask,
2550                 .zone = zone,
2551                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2552                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2553                 .alloc_flags = alloc_flags,
2554                 .highest_zoneidx = highest_zoneidx,
2555                 .direct_compaction = true,
2556                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2557                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2558                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2559         };
2560         struct capture_control capc = {
2561                 .cc = &cc,
2562                 .page = NULL,
2563         };
2564
2565         /*
2566          * Make sure the structs are really initialized before we expose the
2567          * capture control, in case we are interrupted and the interrupt handler
2568          * frees a page.
2569          */
2570         barrier();
2571         WRITE_ONCE(current->capture_control, &capc);
2572
2573         ret = compact_zone(&cc, &capc);
2574
2575         /*
2576          * Make sure we hide capture control first before we read the captured
2577          * page pointer, otherwise an interrupt could free and capture a page
2578          * and we would leak it.
2579          */
2580         WRITE_ONCE(current->capture_control, NULL);
2581         *capture = READ_ONCE(capc.page);
2582         /*
2583          * Technically, it is also possible that compaction is skipped but
2584          * the page is still captured out of luck(IRQ came and freed the page).
2585          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2586          * the COMPACT[STALL|FAIL] when compaction is skipped.
2587          */
2588         if (*capture)
2589                 ret = COMPACT_SUCCESS;
2590
2591         return ret;
2592 }
2593
2594 /**
2595  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2596  * @gfp_mask: The GFP mask of the current allocation
2597  * @order: The order of the current allocation
2598  * @alloc_flags: The allocation flags of the current allocation
2599  * @ac: The context of current allocation
2600  * @prio: Determines how hard direct compaction should try to succeed
2601  * @capture: Pointer to free page created by compaction will be stored here
2602  *
2603  * This is the main entry point for direct page compaction.
2604  */
2605 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2606                 unsigned int alloc_flags, const struct alloc_context *ac,
2607                 enum compact_priority prio, struct page **capture)
2608 {
2609         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2610         struct zoneref *z;
2611         struct zone *zone;
2612         enum compact_result rc = COMPACT_SKIPPED;
2613
2614         /*
2615          * Check if the GFP flags allow compaction - GFP_NOIO is really
2616          * tricky context because the migration might require IO
2617          */
2618         if (!may_perform_io)
2619                 return COMPACT_SKIPPED;
2620
2621         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2622
2623         /* Compact each zone in the list */
2624         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2625                                         ac->highest_zoneidx, ac->nodemask) {
2626                 enum compact_result status;
2627
2628                 if (prio > MIN_COMPACT_PRIORITY
2629                                         && compaction_deferred(zone, order)) {
2630                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2631                         continue;
2632                 }
2633
2634                 status = compact_zone_order(zone, order, gfp_mask, prio,
2635                                 alloc_flags, ac->highest_zoneidx, capture);
2636                 rc = max(status, rc);
2637
2638                 /* The allocation should succeed, stop compacting */
2639                 if (status == COMPACT_SUCCESS) {
2640                         /*
2641                          * We think the allocation will succeed in this zone,
2642                          * but it is not certain, hence the false. The caller
2643                          * will repeat this with true if allocation indeed
2644                          * succeeds in this zone.
2645                          */
2646                         compaction_defer_reset(zone, order, false);
2647
2648                         break;
2649                 }
2650
2651                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2652                                         status == COMPACT_PARTIAL_SKIPPED))
2653                         /*
2654                          * We think that allocation won't succeed in this zone
2655                          * so we defer compaction there. If it ends up
2656                          * succeeding after all, it will be reset.
2657                          */
2658                         defer_compaction(zone, order);
2659
2660                 /*
2661                  * We might have stopped compacting due to need_resched() in
2662                  * async compaction, or due to a fatal signal detected. In that
2663                  * case do not try further zones
2664                  */
2665                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2666                                         || fatal_signal_pending(current))
2667                         break;
2668         }
2669
2670         return rc;
2671 }
2672
2673 /*
2674  * Compact all zones within a node till each zone's fragmentation score
2675  * reaches within proactive compaction thresholds (as determined by the
2676  * proactiveness tunable).
2677  *
2678  * It is possible that the function returns before reaching score targets
2679  * due to various back-off conditions, such as, contention on per-node or
2680  * per-zone locks.
2681  */
2682 static void proactive_compact_node(pg_data_t *pgdat)
2683 {
2684         int zoneid;
2685         struct zone *zone;
2686         struct compact_control cc = {
2687                 .order = -1,
2688                 .mode = MIGRATE_SYNC_LIGHT,
2689                 .ignore_skip_hint = true,
2690                 .whole_zone = true,
2691                 .gfp_mask = GFP_KERNEL,
2692                 .proactive_compaction = true,
2693         };
2694
2695         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2696                 zone = &pgdat->node_zones[zoneid];
2697                 if (!populated_zone(zone))
2698                         continue;
2699
2700                 cc.zone = zone;
2701
2702                 compact_zone(&cc, NULL);
2703
2704                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2705                                      cc.total_migrate_scanned);
2706                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2707                                      cc.total_free_scanned);
2708         }
2709 }
2710
2711 /* Compact all zones within a node */
2712 static void compact_node(int nid)
2713 {
2714         pg_data_t *pgdat = NODE_DATA(nid);
2715         int zoneid;
2716         struct zone *zone;
2717         struct compact_control cc = {
2718                 .order = -1,
2719                 .mode = MIGRATE_SYNC,
2720                 .ignore_skip_hint = true,
2721                 .whole_zone = true,
2722                 .gfp_mask = GFP_KERNEL,
2723         };
2724
2725
2726         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2727
2728                 zone = &pgdat->node_zones[zoneid];
2729                 if (!populated_zone(zone))
2730                         continue;
2731
2732                 cc.zone = zone;
2733
2734                 compact_zone(&cc, NULL);
2735         }
2736 }
2737
2738 /* Compact all nodes in the system */
2739 static void compact_nodes(void)
2740 {
2741         int nid;
2742
2743         /* Flush pending updates to the LRU lists */
2744         lru_add_drain_all();
2745
2746         for_each_online_node(nid)
2747                 compact_node(nid);
2748 }
2749
2750 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2751                 void *buffer, size_t *length, loff_t *ppos)
2752 {
2753         int rc, nid;
2754
2755         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2756         if (rc)
2757                 return rc;
2758
2759         if (write && sysctl_compaction_proactiveness) {
2760                 for_each_online_node(nid) {
2761                         pg_data_t *pgdat = NODE_DATA(nid);
2762
2763                         if (pgdat->proactive_compact_trigger)
2764                                 continue;
2765
2766                         pgdat->proactive_compact_trigger = true;
2767                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2768                                                              pgdat->nr_zones - 1);
2769                         wake_up_interruptible(&pgdat->kcompactd_wait);
2770                 }
2771         }
2772
2773         return 0;
2774 }
2775
2776 /*
2777  * This is the entry point for compacting all nodes via
2778  * /proc/sys/vm/compact_memory
2779  */
2780 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2781                         void *buffer, size_t *length, loff_t *ppos)
2782 {
2783         if (write)
2784                 compact_nodes();
2785
2786         return 0;
2787 }
2788
2789 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2790 static ssize_t compact_store(struct device *dev,
2791                              struct device_attribute *attr,
2792                              const char *buf, size_t count)
2793 {
2794         int nid = dev->id;
2795
2796         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2797                 /* Flush pending updates to the LRU lists */
2798                 lru_add_drain_all();
2799
2800                 compact_node(nid);
2801         }
2802
2803         return count;
2804 }
2805 static DEVICE_ATTR_WO(compact);
2806
2807 int compaction_register_node(struct node *node)
2808 {
2809         return device_create_file(&node->dev, &dev_attr_compact);
2810 }
2811
2812 void compaction_unregister_node(struct node *node)
2813 {
2814         return device_remove_file(&node->dev, &dev_attr_compact);
2815 }
2816 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2817
2818 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2819 {
2820         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2821                 pgdat->proactive_compact_trigger;
2822 }
2823
2824 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2825 {
2826         int zoneid;
2827         struct zone *zone;
2828         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2829
2830         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2831                 zone = &pgdat->node_zones[zoneid];
2832
2833                 if (!populated_zone(zone))
2834                         continue;
2835
2836                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2837                                         highest_zoneidx) == COMPACT_CONTINUE)
2838                         return true;
2839         }
2840
2841         return false;
2842 }
2843
2844 static void kcompactd_do_work(pg_data_t *pgdat)
2845 {
2846         /*
2847          * With no special task, compact all zones so that a page of requested
2848          * order is allocatable.
2849          */
2850         int zoneid;
2851         struct zone *zone;
2852         struct compact_control cc = {
2853                 .order = pgdat->kcompactd_max_order,
2854                 .search_order = pgdat->kcompactd_max_order,
2855                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2856                 .mode = MIGRATE_SYNC_LIGHT,
2857                 .ignore_skip_hint = false,
2858                 .gfp_mask = GFP_KERNEL,
2859         };
2860         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2861                                                         cc.highest_zoneidx);
2862         count_compact_event(KCOMPACTD_WAKE);
2863
2864         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2865                 int status;
2866
2867                 zone = &pgdat->node_zones[zoneid];
2868                 if (!populated_zone(zone))
2869                         continue;
2870
2871                 if (compaction_deferred(zone, cc.order))
2872                         continue;
2873
2874                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2875                                                         COMPACT_CONTINUE)
2876                         continue;
2877
2878                 if (kthread_should_stop())
2879                         return;
2880
2881                 cc.zone = zone;
2882                 status = compact_zone(&cc, NULL);
2883
2884                 if (status == COMPACT_SUCCESS) {
2885                         compaction_defer_reset(zone, cc.order, false);
2886                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2887                         /*
2888                          * Buddy pages may become stranded on pcps that could
2889                          * otherwise coalesce on the zone's free area for
2890                          * order >= cc.order.  This is ratelimited by the
2891                          * upcoming deferral.
2892                          */
2893                         drain_all_pages(zone);
2894
2895                         /*
2896                          * We use sync migration mode here, so we defer like
2897                          * sync direct compaction does.
2898                          */
2899                         defer_compaction(zone, cc.order);
2900                 }
2901
2902                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2903                                      cc.total_migrate_scanned);
2904                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2905                                      cc.total_free_scanned);
2906         }
2907
2908         /*
2909          * Regardless of success, we are done until woken up next. But remember
2910          * the requested order/highest_zoneidx in case it was higher/tighter
2911          * than our current ones
2912          */
2913         if (pgdat->kcompactd_max_order <= cc.order)
2914                 pgdat->kcompactd_max_order = 0;
2915         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2916                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2917 }
2918
2919 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2920 {
2921         if (!order)
2922                 return;
2923
2924         if (pgdat->kcompactd_max_order < order)
2925                 pgdat->kcompactd_max_order = order;
2926
2927         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2928                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2929
2930         /*
2931          * Pairs with implicit barrier in wait_event_freezable()
2932          * such that wakeups are not missed.
2933          */
2934         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2935                 return;
2936
2937         if (!kcompactd_node_suitable(pgdat))
2938                 return;
2939
2940         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2941                                                         highest_zoneidx);
2942         wake_up_interruptible(&pgdat->kcompactd_wait);
2943 }
2944
2945 /*
2946  * The background compaction daemon, started as a kernel thread
2947  * from the init process.
2948  */
2949 static int kcompactd(void *p)
2950 {
2951         pg_data_t *pgdat = (pg_data_t *)p;
2952         struct task_struct *tsk = current;
2953         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2954         long timeout = default_timeout;
2955
2956         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2957
2958         if (!cpumask_empty(cpumask))
2959                 set_cpus_allowed_ptr(tsk, cpumask);
2960
2961         set_freezable();
2962
2963         pgdat->kcompactd_max_order = 0;
2964         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2965
2966         while (!kthread_should_stop()) {
2967                 unsigned long pflags;
2968
2969                 /*
2970                  * Avoid the unnecessary wakeup for proactive compaction
2971                  * when it is disabled.
2972                  */
2973                 if (!sysctl_compaction_proactiveness)
2974                         timeout = MAX_SCHEDULE_TIMEOUT;
2975                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2976                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2977                         kcompactd_work_requested(pgdat), timeout) &&
2978                         !pgdat->proactive_compact_trigger) {
2979
2980                         psi_memstall_enter(&pflags);
2981                         kcompactd_do_work(pgdat);
2982                         psi_memstall_leave(&pflags);
2983                         /*
2984                          * Reset the timeout value. The defer timeout from
2985                          * proactive compaction is lost here but that is fine
2986                          * as the condition of the zone changing substantionally
2987                          * then carrying on with the previous defer interval is
2988                          * not useful.
2989                          */
2990                         timeout = default_timeout;
2991                         continue;
2992                 }
2993
2994                 /*
2995                  * Start the proactive work with default timeout. Based
2996                  * on the fragmentation score, this timeout is updated.
2997                  */
2998                 timeout = default_timeout;
2999                 if (should_proactive_compact_node(pgdat)) {
3000                         unsigned int prev_score, score;
3001
3002                         prev_score = fragmentation_score_node(pgdat);
3003                         proactive_compact_node(pgdat);
3004                         score = fragmentation_score_node(pgdat);
3005                         /*
3006                          * Defer proactive compaction if the fragmentation
3007                          * score did not go down i.e. no progress made.
3008                          */
3009                         if (unlikely(score >= prev_score))
3010                                 timeout =
3011                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3012                 }
3013                 if (unlikely(pgdat->proactive_compact_trigger))
3014                         pgdat->proactive_compact_trigger = false;
3015         }
3016
3017         return 0;
3018 }
3019
3020 /*
3021  * This kcompactd start function will be called by init and node-hot-add.
3022  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3023  */
3024 void kcompactd_run(int nid)
3025 {
3026         pg_data_t *pgdat = NODE_DATA(nid);
3027
3028         if (pgdat->kcompactd)
3029                 return;
3030
3031         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3032         if (IS_ERR(pgdat->kcompactd)) {
3033                 pr_err("Failed to start kcompactd on node %d\n", nid);
3034                 pgdat->kcompactd = NULL;
3035         }
3036 }
3037
3038 /*
3039  * Called by memory hotplug when all memory in a node is offlined. Caller must
3040  * be holding mem_hotplug_begin/done().
3041  */
3042 void kcompactd_stop(int nid)
3043 {
3044         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3045
3046         if (kcompactd) {
3047                 kthread_stop(kcompactd);
3048                 NODE_DATA(nid)->kcompactd = NULL;
3049         }
3050 }
3051
3052 /*
3053  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3054  * not required for correctness. So if the last cpu in a node goes
3055  * away, we get changed to run anywhere: as the first one comes back,
3056  * restore their cpu bindings.
3057  */
3058 static int kcompactd_cpu_online(unsigned int cpu)
3059 {
3060         int nid;
3061
3062         for_each_node_state(nid, N_MEMORY) {
3063                 pg_data_t *pgdat = NODE_DATA(nid);
3064                 const struct cpumask *mask;
3065
3066                 mask = cpumask_of_node(pgdat->node_id);
3067
3068                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3069                         /* One of our CPUs online: restore mask */
3070                         if (pgdat->kcompactd)
3071                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3072         }
3073         return 0;
3074 }
3075
3076 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3077                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3078 {
3079         int ret, old;
3080
3081         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3082                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3083
3084         old = *(int *)table->data;
3085         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3086         if (ret)
3087                 return ret;
3088         if (old != *(int *)table->data)
3089                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3090                              table->procname, current->comm,
3091                              task_pid_nr(current));
3092         return ret;
3093 }
3094
3095 static struct ctl_table vm_compaction[] = {
3096         {
3097                 .procname       = "compact_memory",
3098                 .data           = NULL,
3099                 .maxlen         = sizeof(int),
3100                 .mode           = 0200,
3101                 .proc_handler   = sysctl_compaction_handler,
3102         },
3103         {
3104                 .procname       = "compaction_proactiveness",
3105                 .data           = &sysctl_compaction_proactiveness,
3106                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3107                 .mode           = 0644,
3108                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3109                 .extra1         = SYSCTL_ZERO,
3110                 .extra2         = SYSCTL_ONE_HUNDRED,
3111         },
3112         {
3113                 .procname       = "extfrag_threshold",
3114                 .data           = &sysctl_extfrag_threshold,
3115                 .maxlen         = sizeof(int),
3116                 .mode           = 0644,
3117                 .proc_handler   = proc_dointvec_minmax,
3118                 .extra1         = SYSCTL_ZERO,
3119                 .extra2         = SYSCTL_ONE_THOUSAND,
3120         },
3121         {
3122                 .procname       = "compact_unevictable_allowed",
3123                 .data           = &sysctl_compact_unevictable_allowed,
3124                 .maxlen         = sizeof(int),
3125                 .mode           = 0644,
3126                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3127                 .extra1         = SYSCTL_ZERO,
3128                 .extra2         = SYSCTL_ONE,
3129         },
3130         { }
3131 };
3132
3133 static int __init kcompactd_init(void)
3134 {
3135         int nid;
3136         int ret;
3137
3138         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3139                                         "mm/compaction:online",
3140                                         kcompactd_cpu_online, NULL);
3141         if (ret < 0) {
3142                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3143                 return ret;
3144         }
3145
3146         for_each_node_state(nid, N_MEMORY)
3147                 kcompactd_run(nid);
3148         register_sysctl_init("vm", vm_compaction);
3149         return 0;
3150 }
3151 subsys_initcall(kcompactd_init)
3152
3153 #endif /* CONFIG_COMPACTION */