mm, compaction: persistently skip hugetlbfs pageblocks
[linux-2.6-block.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include "internal.h"
26
27 #ifdef CONFIG_COMPACTION
28 static inline void count_compact_event(enum vm_event_item item)
29 {
30         count_vm_event(item);
31 }
32
33 static inline void count_compact_events(enum vm_event_item item, long delta)
34 {
35         count_vm_events(item, delta);
36 }
37 #else
38 #define count_compact_event(item) do { } while (0)
39 #define count_compact_events(item, delta) do { } while (0)
40 #endif
41
42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/compaction.h>
46
47 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
48 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
49 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
50 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
51
52 static unsigned long release_freepages(struct list_head *freelist)
53 {
54         struct page *page, *next;
55         unsigned long high_pfn = 0;
56
57         list_for_each_entry_safe(page, next, freelist, lru) {
58                 unsigned long pfn = page_to_pfn(page);
59                 list_del(&page->lru);
60                 __free_page(page);
61                 if (pfn > high_pfn)
62                         high_pfn = pfn;
63         }
64
65         return high_pfn;
66 }
67
68 static void map_pages(struct list_head *list)
69 {
70         unsigned int i, order, nr_pages;
71         struct page *page, *next;
72         LIST_HEAD(tmp_list);
73
74         list_for_each_entry_safe(page, next, list, lru) {
75                 list_del(&page->lru);
76
77                 order = page_private(page);
78                 nr_pages = 1 << order;
79
80                 post_alloc_hook(page, order, __GFP_MOVABLE);
81                 if (order)
82                         split_page(page, order);
83
84                 for (i = 0; i < nr_pages; i++) {
85                         list_add(&page->lru, &tmp_list);
86                         page++;
87                 }
88         }
89
90         list_splice(&tmp_list, list);
91 }
92
93 #ifdef CONFIG_COMPACTION
94
95 int PageMovable(struct page *page)
96 {
97         struct address_space *mapping;
98
99         VM_BUG_ON_PAGE(!PageLocked(page), page);
100         if (!__PageMovable(page))
101                 return 0;
102
103         mapping = page_mapping(page);
104         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
105                 return 1;
106
107         return 0;
108 }
109 EXPORT_SYMBOL(PageMovable);
110
111 void __SetPageMovable(struct page *page, struct address_space *mapping)
112 {
113         VM_BUG_ON_PAGE(!PageLocked(page), page);
114         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
115         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
116 }
117 EXPORT_SYMBOL(__SetPageMovable);
118
119 void __ClearPageMovable(struct page *page)
120 {
121         VM_BUG_ON_PAGE(!PageLocked(page), page);
122         VM_BUG_ON_PAGE(!PageMovable(page), page);
123         /*
124          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125          * flag so that VM can catch up released page by driver after isolation.
126          * With it, VM migration doesn't try to put it back.
127          */
128         page->mapping = (void *)((unsigned long)page->mapping &
129                                 PAGE_MAPPING_MOVABLE);
130 }
131 EXPORT_SYMBOL(__ClearPageMovable);
132
133 /* Do not skip compaction more than 64 times */
134 #define COMPACT_MAX_DEFER_SHIFT 6
135
136 /*
137  * Compaction is deferred when compaction fails to result in a page
138  * allocation success. 1 << compact_defer_limit compactions are skipped up
139  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
140  */
141 void defer_compaction(struct zone *zone, int order)
142 {
143         zone->compact_considered = 0;
144         zone->compact_defer_shift++;
145
146         if (order < zone->compact_order_failed)
147                 zone->compact_order_failed = order;
148
149         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
150                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
151
152         trace_mm_compaction_defer_compaction(zone, order);
153 }
154
155 /* Returns true if compaction should be skipped this time */
156 bool compaction_deferred(struct zone *zone, int order)
157 {
158         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
159
160         if (order < zone->compact_order_failed)
161                 return false;
162
163         /* Avoid possible overflow */
164         if (++zone->compact_considered > defer_limit)
165                 zone->compact_considered = defer_limit;
166
167         if (zone->compact_considered >= defer_limit)
168                 return false;
169
170         trace_mm_compaction_deferred(zone, order);
171
172         return true;
173 }
174
175 /*
176  * Update defer tracking counters after successful compaction of given order,
177  * which means an allocation either succeeded (alloc_success == true) or is
178  * expected to succeed.
179  */
180 void compaction_defer_reset(struct zone *zone, int order,
181                 bool alloc_success)
182 {
183         if (alloc_success) {
184                 zone->compact_considered = 0;
185                 zone->compact_defer_shift = 0;
186         }
187         if (order >= zone->compact_order_failed)
188                 zone->compact_order_failed = order + 1;
189
190         trace_mm_compaction_defer_reset(zone, order);
191 }
192
193 /* Returns true if restarting compaction after many failures */
194 bool compaction_restarting(struct zone *zone, int order)
195 {
196         if (order < zone->compact_order_failed)
197                 return false;
198
199         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
200                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
201 }
202
203 /* Returns true if the pageblock should be scanned for pages to isolate. */
204 static inline bool isolation_suitable(struct compact_control *cc,
205                                         struct page *page)
206 {
207         if (cc->ignore_skip_hint)
208                 return true;
209
210         return !get_pageblock_skip(page);
211 }
212
213 static void reset_cached_positions(struct zone *zone)
214 {
215         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
216         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
217         zone->compact_cached_free_pfn =
218                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
219 }
220
221 /*
222  * Hugetlbfs pages should consistenly be skipped until updated by the hugetlb
223  * subsystem.  It is always pointless to compact pages of pageblock_order and
224  * the free scanner can reconsider when no longer huge.
225  */
226 static bool pageblock_skip_persistent(struct page *page, unsigned int order)
227 {
228         if (!PageHuge(page))
229                 return false;
230         if (order != pageblock_order)
231                 return false;
232         return true;
233 }
234
235 /*
236  * This function is called to clear all cached information on pageblocks that
237  * should be skipped for page isolation when the migrate and free page scanner
238  * meet.
239  */
240 static void __reset_isolation_suitable(struct zone *zone)
241 {
242         unsigned long start_pfn = zone->zone_start_pfn;
243         unsigned long end_pfn = zone_end_pfn(zone);
244         unsigned long pfn;
245
246         zone->compact_blockskip_flush = false;
247
248         /* Walk the zone and mark every pageblock as suitable for isolation */
249         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
250                 struct page *page;
251
252                 cond_resched();
253
254                 page = pfn_to_online_page(pfn);
255                 if (!page)
256                         continue;
257                 if (zone != page_zone(page))
258                         continue;
259                 if (pageblock_skip_persistent(page, compound_order(page)))
260                         continue;
261
262                 clear_pageblock_skip(page);
263         }
264
265         reset_cached_positions(zone);
266 }
267
268 void reset_isolation_suitable(pg_data_t *pgdat)
269 {
270         int zoneid;
271
272         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
273                 struct zone *zone = &pgdat->node_zones[zoneid];
274                 if (!populated_zone(zone))
275                         continue;
276
277                 /* Only flush if a full compaction finished recently */
278                 if (zone->compact_blockskip_flush)
279                         __reset_isolation_suitable(zone);
280         }
281 }
282
283 /*
284  * If no pages were isolated then mark this pageblock to be skipped in the
285  * future. The information is later cleared by __reset_isolation_suitable().
286  */
287 static void update_pageblock_skip(struct compact_control *cc,
288                         struct page *page, unsigned long nr_isolated,
289                         bool migrate_scanner)
290 {
291         struct zone *zone = cc->zone;
292         unsigned long pfn;
293
294         if (cc->ignore_skip_hint)
295                 return;
296
297         if (!page)
298                 return;
299
300         if (nr_isolated)
301                 return;
302
303         set_pageblock_skip(page);
304
305         pfn = page_to_pfn(page);
306
307         /* Update where async and sync compaction should restart */
308         if (migrate_scanner) {
309                 if (pfn > zone->compact_cached_migrate_pfn[0])
310                         zone->compact_cached_migrate_pfn[0] = pfn;
311                 if (cc->mode != MIGRATE_ASYNC &&
312                     pfn > zone->compact_cached_migrate_pfn[1])
313                         zone->compact_cached_migrate_pfn[1] = pfn;
314         } else {
315                 if (pfn < zone->compact_cached_free_pfn)
316                         zone->compact_cached_free_pfn = pfn;
317         }
318 }
319 #else
320 static inline bool isolation_suitable(struct compact_control *cc,
321                                         struct page *page)
322 {
323         return true;
324 }
325
326 static inline bool pageblock_skip_persistent(struct page *page,
327                                              unsigned int order)
328 {
329         return false;
330 }
331
332 static inline void update_pageblock_skip(struct compact_control *cc,
333                         struct page *page, unsigned long nr_isolated,
334                         bool migrate_scanner)
335 {
336 }
337 #endif /* CONFIG_COMPACTION */
338
339 /*
340  * Compaction requires the taking of some coarse locks that are potentially
341  * very heavily contended. For async compaction, back out if the lock cannot
342  * be taken immediately. For sync compaction, spin on the lock if needed.
343  *
344  * Returns true if the lock is held
345  * Returns false if the lock is not held and compaction should abort
346  */
347 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
348                                                 struct compact_control *cc)
349 {
350         if (cc->mode == MIGRATE_ASYNC) {
351                 if (!spin_trylock_irqsave(lock, *flags)) {
352                         cc->contended = true;
353                         return false;
354                 }
355         } else {
356                 spin_lock_irqsave(lock, *flags);
357         }
358
359         return true;
360 }
361
362 /*
363  * Compaction requires the taking of some coarse locks that are potentially
364  * very heavily contended. The lock should be periodically unlocked to avoid
365  * having disabled IRQs for a long time, even when there is nobody waiting on
366  * the lock. It might also be that allowing the IRQs will result in
367  * need_resched() becoming true. If scheduling is needed, async compaction
368  * aborts. Sync compaction schedules.
369  * Either compaction type will also abort if a fatal signal is pending.
370  * In either case if the lock was locked, it is dropped and not regained.
371  *
372  * Returns true if compaction should abort due to fatal signal pending, or
373  *              async compaction due to need_resched()
374  * Returns false when compaction can continue (sync compaction might have
375  *              scheduled)
376  */
377 static bool compact_unlock_should_abort(spinlock_t *lock,
378                 unsigned long flags, bool *locked, struct compact_control *cc)
379 {
380         if (*locked) {
381                 spin_unlock_irqrestore(lock, flags);
382                 *locked = false;
383         }
384
385         if (fatal_signal_pending(current)) {
386                 cc->contended = true;
387                 return true;
388         }
389
390         if (need_resched()) {
391                 if (cc->mode == MIGRATE_ASYNC) {
392                         cc->contended = true;
393                         return true;
394                 }
395                 cond_resched();
396         }
397
398         return false;
399 }
400
401 /*
402  * Aside from avoiding lock contention, compaction also periodically checks
403  * need_resched() and either schedules in sync compaction or aborts async
404  * compaction. This is similar to what compact_unlock_should_abort() does, but
405  * is used where no lock is concerned.
406  *
407  * Returns false when no scheduling was needed, or sync compaction scheduled.
408  * Returns true when async compaction should abort.
409  */
410 static inline bool compact_should_abort(struct compact_control *cc)
411 {
412         /* async compaction aborts if contended */
413         if (need_resched()) {
414                 if (cc->mode == MIGRATE_ASYNC) {
415                         cc->contended = true;
416                         return true;
417                 }
418
419                 cond_resched();
420         }
421
422         return false;
423 }
424
425 /*
426  * Isolate free pages onto a private freelist. If @strict is true, will abort
427  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
428  * (even though it may still end up isolating some pages).
429  */
430 static unsigned long isolate_freepages_block(struct compact_control *cc,
431                                 unsigned long *start_pfn,
432                                 unsigned long end_pfn,
433                                 struct list_head *freelist,
434                                 bool strict)
435 {
436         int nr_scanned = 0, total_isolated = 0;
437         struct page *cursor, *valid_page = NULL;
438         unsigned long flags = 0;
439         bool locked = false;
440         unsigned long blockpfn = *start_pfn;
441         unsigned int order;
442
443         cursor = pfn_to_page(blockpfn);
444
445         /* Isolate free pages. */
446         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
447                 int isolated;
448                 struct page *page = cursor;
449
450                 /*
451                  * Periodically drop the lock (if held) regardless of its
452                  * contention, to give chance to IRQs. Abort if fatal signal
453                  * pending or async compaction detects need_resched()
454                  */
455                 if (!(blockpfn % SWAP_CLUSTER_MAX)
456                     && compact_unlock_should_abort(&cc->zone->lock, flags,
457                                                                 &locked, cc))
458                         break;
459
460                 nr_scanned++;
461                 if (!pfn_valid_within(blockpfn))
462                         goto isolate_fail;
463
464                 if (!valid_page)
465                         valid_page = page;
466
467                 /*
468                  * For compound pages such as THP and hugetlbfs, we can save
469                  * potentially a lot of iterations if we skip them at once.
470                  * The check is racy, but we can consider only valid values
471                  * and the only danger is skipping too much.
472                  */
473                 if (PageCompound(page)) {
474                         const unsigned int order = compound_order(page);
475
476                         if (pageblock_skip_persistent(page, order)) {
477                                 set_pageblock_skip(page);
478                                 blockpfn = end_pfn;
479                         } else if (likely(order < MAX_ORDER)) {
480                                 blockpfn += (1UL << order) - 1;
481                                 cursor += (1UL << order) - 1;
482                         }
483                         goto isolate_fail;
484                 }
485
486                 if (!PageBuddy(page))
487                         goto isolate_fail;
488
489                 /*
490                  * If we already hold the lock, we can skip some rechecking.
491                  * Note that if we hold the lock now, checked_pageblock was
492                  * already set in some previous iteration (or strict is true),
493                  * so it is correct to skip the suitable migration target
494                  * recheck as well.
495                  */
496                 if (!locked) {
497                         /*
498                          * The zone lock must be held to isolate freepages.
499                          * Unfortunately this is a very coarse lock and can be
500                          * heavily contended if there are parallel allocations
501                          * or parallel compactions. For async compaction do not
502                          * spin on the lock and we acquire the lock as late as
503                          * possible.
504                          */
505                         locked = compact_trylock_irqsave(&cc->zone->lock,
506                                                                 &flags, cc);
507                         if (!locked)
508                                 break;
509
510                         /* Recheck this is a buddy page under lock */
511                         if (!PageBuddy(page))
512                                 goto isolate_fail;
513                 }
514
515                 /* Found a free page, will break it into order-0 pages */
516                 order = page_order(page);
517                 isolated = __isolate_free_page(page, order);
518                 if (!isolated)
519                         break;
520                 set_page_private(page, order);
521
522                 total_isolated += isolated;
523                 cc->nr_freepages += isolated;
524                 list_add_tail(&page->lru, freelist);
525
526                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
527                         blockpfn += isolated;
528                         break;
529                 }
530                 /* Advance to the end of split page */
531                 blockpfn += isolated - 1;
532                 cursor += isolated - 1;
533                 continue;
534
535 isolate_fail:
536                 if (strict)
537                         break;
538                 else
539                         continue;
540
541         }
542
543         if (locked)
544                 spin_unlock_irqrestore(&cc->zone->lock, flags);
545
546         /*
547          * There is a tiny chance that we have read bogus compound_order(),
548          * so be careful to not go outside of the pageblock.
549          */
550         if (unlikely(blockpfn > end_pfn))
551                 blockpfn = end_pfn;
552
553         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
554                                         nr_scanned, total_isolated);
555
556         /* Record how far we have got within the block */
557         *start_pfn = blockpfn;
558
559         /*
560          * If strict isolation is requested by CMA then check that all the
561          * pages requested were isolated. If there were any failures, 0 is
562          * returned and CMA will fail.
563          */
564         if (strict && blockpfn < end_pfn)
565                 total_isolated = 0;
566
567         /* Update the pageblock-skip if the whole pageblock was scanned */
568         if (blockpfn == end_pfn)
569                 update_pageblock_skip(cc, valid_page, total_isolated, false);
570
571         cc->total_free_scanned += nr_scanned;
572         if (total_isolated)
573                 count_compact_events(COMPACTISOLATED, total_isolated);
574         return total_isolated;
575 }
576
577 /**
578  * isolate_freepages_range() - isolate free pages.
579  * @start_pfn: The first PFN to start isolating.
580  * @end_pfn:   The one-past-last PFN.
581  *
582  * Non-free pages, invalid PFNs, or zone boundaries within the
583  * [start_pfn, end_pfn) range are considered errors, cause function to
584  * undo its actions and return zero.
585  *
586  * Otherwise, function returns one-past-the-last PFN of isolated page
587  * (which may be greater then end_pfn if end fell in a middle of
588  * a free page).
589  */
590 unsigned long
591 isolate_freepages_range(struct compact_control *cc,
592                         unsigned long start_pfn, unsigned long end_pfn)
593 {
594         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
595         LIST_HEAD(freelist);
596
597         pfn = start_pfn;
598         block_start_pfn = pageblock_start_pfn(pfn);
599         if (block_start_pfn < cc->zone->zone_start_pfn)
600                 block_start_pfn = cc->zone->zone_start_pfn;
601         block_end_pfn = pageblock_end_pfn(pfn);
602
603         for (; pfn < end_pfn; pfn += isolated,
604                                 block_start_pfn = block_end_pfn,
605                                 block_end_pfn += pageblock_nr_pages) {
606                 /* Protect pfn from changing by isolate_freepages_block */
607                 unsigned long isolate_start_pfn = pfn;
608
609                 block_end_pfn = min(block_end_pfn, end_pfn);
610
611                 /*
612                  * pfn could pass the block_end_pfn if isolated freepage
613                  * is more than pageblock order. In this case, we adjust
614                  * scanning range to right one.
615                  */
616                 if (pfn >= block_end_pfn) {
617                         block_start_pfn = pageblock_start_pfn(pfn);
618                         block_end_pfn = pageblock_end_pfn(pfn);
619                         block_end_pfn = min(block_end_pfn, end_pfn);
620                 }
621
622                 if (!pageblock_pfn_to_page(block_start_pfn,
623                                         block_end_pfn, cc->zone))
624                         break;
625
626                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
627                                                 block_end_pfn, &freelist, true);
628
629                 /*
630                  * In strict mode, isolate_freepages_block() returns 0 if
631                  * there are any holes in the block (ie. invalid PFNs or
632                  * non-free pages).
633                  */
634                 if (!isolated)
635                         break;
636
637                 /*
638                  * If we managed to isolate pages, it is always (1 << n) *
639                  * pageblock_nr_pages for some non-negative n.  (Max order
640                  * page may span two pageblocks).
641                  */
642         }
643
644         /* __isolate_free_page() does not map the pages */
645         map_pages(&freelist);
646
647         if (pfn < end_pfn) {
648                 /* Loop terminated early, cleanup. */
649                 release_freepages(&freelist);
650                 return 0;
651         }
652
653         /* We don't use freelists for anything. */
654         return pfn;
655 }
656
657 /* Similar to reclaim, but different enough that they don't share logic */
658 static bool too_many_isolated(struct zone *zone)
659 {
660         unsigned long active, inactive, isolated;
661
662         inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
663                         node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
664         active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
665                         node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
666         isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
667                         node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
668
669         return isolated > (inactive + active) / 2;
670 }
671
672 /**
673  * isolate_migratepages_block() - isolate all migrate-able pages within
674  *                                a single pageblock
675  * @cc:         Compaction control structure.
676  * @low_pfn:    The first PFN to isolate
677  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
678  * @isolate_mode: Isolation mode to be used.
679  *
680  * Isolate all pages that can be migrated from the range specified by
681  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
682  * Returns zero if there is a fatal signal pending, otherwise PFN of the
683  * first page that was not scanned (which may be both less, equal to or more
684  * than end_pfn).
685  *
686  * The pages are isolated on cc->migratepages list (not required to be empty),
687  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
688  * is neither read nor updated.
689  */
690 static unsigned long
691 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
692                         unsigned long end_pfn, isolate_mode_t isolate_mode)
693 {
694         struct zone *zone = cc->zone;
695         unsigned long nr_scanned = 0, nr_isolated = 0;
696         struct lruvec *lruvec;
697         unsigned long flags = 0;
698         bool locked = false;
699         struct page *page = NULL, *valid_page = NULL;
700         unsigned long start_pfn = low_pfn;
701         bool skip_on_failure = false;
702         unsigned long next_skip_pfn = 0;
703
704         /*
705          * Ensure that there are not too many pages isolated from the LRU
706          * list by either parallel reclaimers or compaction. If there are,
707          * delay for some time until fewer pages are isolated
708          */
709         while (unlikely(too_many_isolated(zone))) {
710                 /* async migration should just abort */
711                 if (cc->mode == MIGRATE_ASYNC)
712                         return 0;
713
714                 congestion_wait(BLK_RW_ASYNC, HZ/10);
715
716                 if (fatal_signal_pending(current))
717                         return 0;
718         }
719
720         if (compact_should_abort(cc))
721                 return 0;
722
723         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
724                 skip_on_failure = true;
725                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
726         }
727
728         /* Time to isolate some pages for migration */
729         for (; low_pfn < end_pfn; low_pfn++) {
730
731                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
732                         /*
733                          * We have isolated all migration candidates in the
734                          * previous order-aligned block, and did not skip it due
735                          * to failure. We should migrate the pages now and
736                          * hopefully succeed compaction.
737                          */
738                         if (nr_isolated)
739                                 break;
740
741                         /*
742                          * We failed to isolate in the previous order-aligned
743                          * block. Set the new boundary to the end of the
744                          * current block. Note we can't simply increase
745                          * next_skip_pfn by 1 << order, as low_pfn might have
746                          * been incremented by a higher number due to skipping
747                          * a compound or a high-order buddy page in the
748                          * previous loop iteration.
749                          */
750                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
751                 }
752
753                 /*
754                  * Periodically drop the lock (if held) regardless of its
755                  * contention, to give chance to IRQs. Abort async compaction
756                  * if contended.
757                  */
758                 if (!(low_pfn % SWAP_CLUSTER_MAX)
759                     && compact_unlock_should_abort(zone_lru_lock(zone), flags,
760                                                                 &locked, cc))
761                         break;
762
763                 if (!pfn_valid_within(low_pfn))
764                         goto isolate_fail;
765                 nr_scanned++;
766
767                 page = pfn_to_page(low_pfn);
768
769                 if (!valid_page)
770                         valid_page = page;
771
772                 /*
773                  * Skip if free. We read page order here without zone lock
774                  * which is generally unsafe, but the race window is small and
775                  * the worst thing that can happen is that we skip some
776                  * potential isolation targets.
777                  */
778                 if (PageBuddy(page)) {
779                         unsigned long freepage_order = page_order_unsafe(page);
780
781                         /*
782                          * Without lock, we cannot be sure that what we got is
783                          * a valid page order. Consider only values in the
784                          * valid order range to prevent low_pfn overflow.
785                          */
786                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
787                                 low_pfn += (1UL << freepage_order) - 1;
788                         continue;
789                 }
790
791                 /*
792                  * Regardless of being on LRU, compound pages such as THP and
793                  * hugetlbfs are not to be compacted. We can potentially save
794                  * a lot of iterations if we skip them at once. The check is
795                  * racy, but we can consider only valid values and the only
796                  * danger is skipping too much.
797                  */
798                 if (PageCompound(page)) {
799                         const unsigned int order = compound_order(page);
800
801                         if (pageblock_skip_persistent(page, order)) {
802                                 set_pageblock_skip(page);
803                                 low_pfn = end_pfn;
804                         } else if (likely(order < MAX_ORDER))
805                                 low_pfn += (1UL << order) - 1;
806                         goto isolate_fail;
807                 }
808
809                 /*
810                  * Check may be lockless but that's ok as we recheck later.
811                  * It's possible to migrate LRU and non-lru movable pages.
812                  * Skip any other type of page
813                  */
814                 if (!PageLRU(page)) {
815                         /*
816                          * __PageMovable can return false positive so we need
817                          * to verify it under page_lock.
818                          */
819                         if (unlikely(__PageMovable(page)) &&
820                                         !PageIsolated(page)) {
821                                 if (locked) {
822                                         spin_unlock_irqrestore(zone_lru_lock(zone),
823                                                                         flags);
824                                         locked = false;
825                                 }
826
827                                 if (!isolate_movable_page(page, isolate_mode))
828                                         goto isolate_success;
829                         }
830
831                         goto isolate_fail;
832                 }
833
834                 /*
835                  * Migration will fail if an anonymous page is pinned in memory,
836                  * so avoid taking lru_lock and isolating it unnecessarily in an
837                  * admittedly racy check.
838                  */
839                 if (!page_mapping(page) &&
840                     page_count(page) > page_mapcount(page))
841                         goto isolate_fail;
842
843                 /*
844                  * Only allow to migrate anonymous pages in GFP_NOFS context
845                  * because those do not depend on fs locks.
846                  */
847                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
848                         goto isolate_fail;
849
850                 /* If we already hold the lock, we can skip some rechecking */
851                 if (!locked) {
852                         locked = compact_trylock_irqsave(zone_lru_lock(zone),
853                                                                 &flags, cc);
854                         if (!locked)
855                                 break;
856
857                         /* Recheck PageLRU and PageCompound under lock */
858                         if (!PageLRU(page))
859                                 goto isolate_fail;
860
861                         /*
862                          * Page become compound since the non-locked check,
863                          * and it's on LRU. It can only be a THP so the order
864                          * is safe to read and it's 0 for tail pages.
865                          */
866                         if (unlikely(PageCompound(page))) {
867                                 const unsigned int order = compound_order(page);
868
869                                 if (pageblock_skip_persistent(page, order)) {
870                                         set_pageblock_skip(page);
871                                         low_pfn = end_pfn;
872                                 } else
873                                         low_pfn += (1UL << order) - 1;
874                                 goto isolate_fail;
875                         }
876                 }
877
878                 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
879
880                 /* Try isolate the page */
881                 if (__isolate_lru_page(page, isolate_mode) != 0)
882                         goto isolate_fail;
883
884                 VM_BUG_ON_PAGE(PageCompound(page), page);
885
886                 /* Successfully isolated */
887                 del_page_from_lru_list(page, lruvec, page_lru(page));
888                 inc_node_page_state(page,
889                                 NR_ISOLATED_ANON + page_is_file_cache(page));
890
891 isolate_success:
892                 list_add(&page->lru, &cc->migratepages);
893                 cc->nr_migratepages++;
894                 nr_isolated++;
895
896                 /*
897                  * Record where we could have freed pages by migration and not
898                  * yet flushed them to buddy allocator.
899                  * - this is the lowest page that was isolated and likely be
900                  * then freed by migration.
901                  */
902                 if (!cc->last_migrated_pfn)
903                         cc->last_migrated_pfn = low_pfn;
904
905                 /* Avoid isolating too much */
906                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
907                         ++low_pfn;
908                         break;
909                 }
910
911                 continue;
912 isolate_fail:
913                 if (!skip_on_failure)
914                         continue;
915
916                 /*
917                  * We have isolated some pages, but then failed. Release them
918                  * instead of migrating, as we cannot form the cc->order buddy
919                  * page anyway.
920                  */
921                 if (nr_isolated) {
922                         if (locked) {
923                                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
924                                 locked = false;
925                         }
926                         putback_movable_pages(&cc->migratepages);
927                         cc->nr_migratepages = 0;
928                         cc->last_migrated_pfn = 0;
929                         nr_isolated = 0;
930                 }
931
932                 if (low_pfn < next_skip_pfn) {
933                         low_pfn = next_skip_pfn - 1;
934                         /*
935                          * The check near the loop beginning would have updated
936                          * next_skip_pfn too, but this is a bit simpler.
937                          */
938                         next_skip_pfn += 1UL << cc->order;
939                 }
940         }
941
942         /*
943          * The PageBuddy() check could have potentially brought us outside
944          * the range to be scanned.
945          */
946         if (unlikely(low_pfn > end_pfn))
947                 low_pfn = end_pfn;
948
949         if (locked)
950                 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
951
952         /*
953          * Update the pageblock-skip information and cached scanner pfn,
954          * if the whole pageblock was scanned without isolating any page.
955          */
956         if (low_pfn == end_pfn)
957                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
958
959         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
960                                                 nr_scanned, nr_isolated);
961
962         cc->total_migrate_scanned += nr_scanned;
963         if (nr_isolated)
964                 count_compact_events(COMPACTISOLATED, nr_isolated);
965
966         return low_pfn;
967 }
968
969 /**
970  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
971  * @cc:        Compaction control structure.
972  * @start_pfn: The first PFN to start isolating.
973  * @end_pfn:   The one-past-last PFN.
974  *
975  * Returns zero if isolation fails fatally due to e.g. pending signal.
976  * Otherwise, function returns one-past-the-last PFN of isolated page
977  * (which may be greater than end_pfn if end fell in a middle of a THP page).
978  */
979 unsigned long
980 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
981                                                         unsigned long end_pfn)
982 {
983         unsigned long pfn, block_start_pfn, block_end_pfn;
984
985         /* Scan block by block. First and last block may be incomplete */
986         pfn = start_pfn;
987         block_start_pfn = pageblock_start_pfn(pfn);
988         if (block_start_pfn < cc->zone->zone_start_pfn)
989                 block_start_pfn = cc->zone->zone_start_pfn;
990         block_end_pfn = pageblock_end_pfn(pfn);
991
992         for (; pfn < end_pfn; pfn = block_end_pfn,
993                                 block_start_pfn = block_end_pfn,
994                                 block_end_pfn += pageblock_nr_pages) {
995
996                 block_end_pfn = min(block_end_pfn, end_pfn);
997
998                 if (!pageblock_pfn_to_page(block_start_pfn,
999                                         block_end_pfn, cc->zone))
1000                         continue;
1001
1002                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1003                                                         ISOLATE_UNEVICTABLE);
1004
1005                 if (!pfn)
1006                         break;
1007
1008                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1009                         break;
1010         }
1011
1012         return pfn;
1013 }
1014
1015 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1016 #ifdef CONFIG_COMPACTION
1017
1018 static bool suitable_migration_source(struct compact_control *cc,
1019                                                         struct page *page)
1020 {
1021         int block_mt;
1022
1023         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1024                 return true;
1025
1026         block_mt = get_pageblock_migratetype(page);
1027
1028         if (cc->migratetype == MIGRATE_MOVABLE)
1029                 return is_migrate_movable(block_mt);
1030         else
1031                 return block_mt == cc->migratetype;
1032 }
1033
1034 /* Returns true if the page is within a block suitable for migration to */
1035 static bool suitable_migration_target(struct compact_control *cc,
1036                                                         struct page *page)
1037 {
1038         /* If the page is a large free page, then disallow migration */
1039         if (PageBuddy(page)) {
1040                 /*
1041                  * We are checking page_order without zone->lock taken. But
1042                  * the only small danger is that we skip a potentially suitable
1043                  * pageblock, so it's not worth to check order for valid range.
1044                  */
1045                 if (page_order_unsafe(page) >= pageblock_order)
1046                         return false;
1047         }
1048
1049         if (cc->ignore_block_suitable)
1050                 return true;
1051
1052         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1053         if (is_migrate_movable(get_pageblock_migratetype(page)))
1054                 return true;
1055
1056         /* Otherwise skip the block */
1057         return false;
1058 }
1059
1060 /*
1061  * Test whether the free scanner has reached the same or lower pageblock than
1062  * the migration scanner, and compaction should thus terminate.
1063  */
1064 static inline bool compact_scanners_met(struct compact_control *cc)
1065 {
1066         return (cc->free_pfn >> pageblock_order)
1067                 <= (cc->migrate_pfn >> pageblock_order);
1068 }
1069
1070 /*
1071  * Based on information in the current compact_control, find blocks
1072  * suitable for isolating free pages from and then isolate them.
1073  */
1074 static void isolate_freepages(struct compact_control *cc)
1075 {
1076         struct zone *zone = cc->zone;
1077         struct page *page;
1078         unsigned long block_start_pfn;  /* start of current pageblock */
1079         unsigned long isolate_start_pfn; /* exact pfn we start at */
1080         unsigned long block_end_pfn;    /* end of current pageblock */
1081         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1082         struct list_head *freelist = &cc->freepages;
1083
1084         /*
1085          * Initialise the free scanner. The starting point is where we last
1086          * successfully isolated from, zone-cached value, or the end of the
1087          * zone when isolating for the first time. For looping we also need
1088          * this pfn aligned down to the pageblock boundary, because we do
1089          * block_start_pfn -= pageblock_nr_pages in the for loop.
1090          * For ending point, take care when isolating in last pageblock of a
1091          * a zone which ends in the middle of a pageblock.
1092          * The low boundary is the end of the pageblock the migration scanner
1093          * is using.
1094          */
1095         isolate_start_pfn = cc->free_pfn;
1096         block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1097         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1098                                                 zone_end_pfn(zone));
1099         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1100
1101         /*
1102          * Isolate free pages until enough are available to migrate the
1103          * pages on cc->migratepages. We stop searching if the migrate
1104          * and free page scanners meet or enough free pages are isolated.
1105          */
1106         for (; block_start_pfn >= low_pfn;
1107                                 block_end_pfn = block_start_pfn,
1108                                 block_start_pfn -= pageblock_nr_pages,
1109                                 isolate_start_pfn = block_start_pfn) {
1110                 /*
1111                  * This can iterate a massively long zone without finding any
1112                  * suitable migration targets, so periodically check if we need
1113                  * to schedule, or even abort async compaction.
1114                  */
1115                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1116                                                 && compact_should_abort(cc))
1117                         break;
1118
1119                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1120                                                                         zone);
1121                 if (!page)
1122                         continue;
1123
1124                 /* Check the block is suitable for migration */
1125                 if (!suitable_migration_target(cc, page))
1126                         continue;
1127
1128                 /* If isolation recently failed, do not retry */
1129                 if (!isolation_suitable(cc, page))
1130                         continue;
1131
1132                 /* Found a block suitable for isolating free pages from. */
1133                 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1134                                         freelist, false);
1135
1136                 /*
1137                  * If we isolated enough freepages, or aborted due to lock
1138                  * contention, terminate.
1139                  */
1140                 if ((cc->nr_freepages >= cc->nr_migratepages)
1141                                                         || cc->contended) {
1142                         if (isolate_start_pfn >= block_end_pfn) {
1143                                 /*
1144                                  * Restart at previous pageblock if more
1145                                  * freepages can be isolated next time.
1146                                  */
1147                                 isolate_start_pfn =
1148                                         block_start_pfn - pageblock_nr_pages;
1149                         }
1150                         break;
1151                 } else if (isolate_start_pfn < block_end_pfn) {
1152                         /*
1153                          * If isolation failed early, do not continue
1154                          * needlessly.
1155                          */
1156                         break;
1157                 }
1158         }
1159
1160         /* __isolate_free_page() does not map the pages */
1161         map_pages(freelist);
1162
1163         /*
1164          * Record where the free scanner will restart next time. Either we
1165          * broke from the loop and set isolate_start_pfn based on the last
1166          * call to isolate_freepages_block(), or we met the migration scanner
1167          * and the loop terminated due to isolate_start_pfn < low_pfn
1168          */
1169         cc->free_pfn = isolate_start_pfn;
1170 }
1171
1172 /*
1173  * This is a migrate-callback that "allocates" freepages by taking pages
1174  * from the isolated freelists in the block we are migrating to.
1175  */
1176 static struct page *compaction_alloc(struct page *migratepage,
1177                                         unsigned long data,
1178                                         int **result)
1179 {
1180         struct compact_control *cc = (struct compact_control *)data;
1181         struct page *freepage;
1182
1183         /*
1184          * Isolate free pages if necessary, and if we are not aborting due to
1185          * contention.
1186          */
1187         if (list_empty(&cc->freepages)) {
1188                 if (!cc->contended)
1189                         isolate_freepages(cc);
1190
1191                 if (list_empty(&cc->freepages))
1192                         return NULL;
1193         }
1194
1195         freepage = list_entry(cc->freepages.next, struct page, lru);
1196         list_del(&freepage->lru);
1197         cc->nr_freepages--;
1198
1199         return freepage;
1200 }
1201
1202 /*
1203  * This is a migrate-callback that "frees" freepages back to the isolated
1204  * freelist.  All pages on the freelist are from the same zone, so there is no
1205  * special handling needed for NUMA.
1206  */
1207 static void compaction_free(struct page *page, unsigned long data)
1208 {
1209         struct compact_control *cc = (struct compact_control *)data;
1210
1211         list_add(&page->lru, &cc->freepages);
1212         cc->nr_freepages++;
1213 }
1214
1215 /* possible outcome of isolate_migratepages */
1216 typedef enum {
1217         ISOLATE_ABORT,          /* Abort compaction now */
1218         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1219         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1220 } isolate_migrate_t;
1221
1222 /*
1223  * Allow userspace to control policy on scanning the unevictable LRU for
1224  * compactable pages.
1225  */
1226 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1227
1228 /*
1229  * Isolate all pages that can be migrated from the first suitable block,
1230  * starting at the block pointed to by the migrate scanner pfn within
1231  * compact_control.
1232  */
1233 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1234                                         struct compact_control *cc)
1235 {
1236         unsigned long block_start_pfn;
1237         unsigned long block_end_pfn;
1238         unsigned long low_pfn;
1239         struct page *page;
1240         const isolate_mode_t isolate_mode =
1241                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1242                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1243
1244         /*
1245          * Start at where we last stopped, or beginning of the zone as
1246          * initialized by compact_zone()
1247          */
1248         low_pfn = cc->migrate_pfn;
1249         block_start_pfn = pageblock_start_pfn(low_pfn);
1250         if (block_start_pfn < zone->zone_start_pfn)
1251                 block_start_pfn = zone->zone_start_pfn;
1252
1253         /* Only scan within a pageblock boundary */
1254         block_end_pfn = pageblock_end_pfn(low_pfn);
1255
1256         /*
1257          * Iterate over whole pageblocks until we find the first suitable.
1258          * Do not cross the free scanner.
1259          */
1260         for (; block_end_pfn <= cc->free_pfn;
1261                         low_pfn = block_end_pfn,
1262                         block_start_pfn = block_end_pfn,
1263                         block_end_pfn += pageblock_nr_pages) {
1264
1265                 /*
1266                  * This can potentially iterate a massively long zone with
1267                  * many pageblocks unsuitable, so periodically check if we
1268                  * need to schedule, or even abort async compaction.
1269                  */
1270                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1271                                                 && compact_should_abort(cc))
1272                         break;
1273
1274                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1275                                                                         zone);
1276                 if (!page)
1277                         continue;
1278
1279                 /* If isolation recently failed, do not retry */
1280                 if (!isolation_suitable(cc, page))
1281                         continue;
1282
1283                 /*
1284                  * For async compaction, also only scan in MOVABLE blocks.
1285                  * Async compaction is optimistic to see if the minimum amount
1286                  * of work satisfies the allocation.
1287                  */
1288                 if (!suitable_migration_source(cc, page))
1289                         continue;
1290
1291                 /* Perform the isolation */
1292                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1293                                                 block_end_pfn, isolate_mode);
1294
1295                 if (!low_pfn || cc->contended)
1296                         return ISOLATE_ABORT;
1297
1298                 /*
1299                  * Either we isolated something and proceed with migration. Or
1300                  * we failed and compact_zone should decide if we should
1301                  * continue or not.
1302                  */
1303                 break;
1304         }
1305
1306         /* Record where migration scanner will be restarted. */
1307         cc->migrate_pfn = low_pfn;
1308
1309         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1310 }
1311
1312 /*
1313  * order == -1 is expected when compacting via
1314  * /proc/sys/vm/compact_memory
1315  */
1316 static inline bool is_via_compact_memory(int order)
1317 {
1318         return order == -1;
1319 }
1320
1321 static enum compact_result __compact_finished(struct zone *zone,
1322                                                 struct compact_control *cc)
1323 {
1324         unsigned int order;
1325         const int migratetype = cc->migratetype;
1326
1327         if (cc->contended || fatal_signal_pending(current))
1328                 return COMPACT_CONTENDED;
1329
1330         /* Compaction run completes if the migrate and free scanner meet */
1331         if (compact_scanners_met(cc)) {
1332                 /* Let the next compaction start anew. */
1333                 reset_cached_positions(zone);
1334
1335                 /*
1336                  * Mark that the PG_migrate_skip information should be cleared
1337                  * by kswapd when it goes to sleep. kcompactd does not set the
1338                  * flag itself as the decision to be clear should be directly
1339                  * based on an allocation request.
1340                  */
1341                 if (cc->direct_compaction)
1342                         zone->compact_blockskip_flush = true;
1343
1344                 if (cc->whole_zone)
1345                         return COMPACT_COMPLETE;
1346                 else
1347                         return COMPACT_PARTIAL_SKIPPED;
1348         }
1349
1350         if (is_via_compact_memory(cc->order))
1351                 return COMPACT_CONTINUE;
1352
1353         if (cc->finishing_block) {
1354                 /*
1355                  * We have finished the pageblock, but better check again that
1356                  * we really succeeded.
1357                  */
1358                 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1359                         cc->finishing_block = false;
1360                 else
1361                         return COMPACT_CONTINUE;
1362         }
1363
1364         /* Direct compactor: Is a suitable page free? */
1365         for (order = cc->order; order < MAX_ORDER; order++) {
1366                 struct free_area *area = &zone->free_area[order];
1367                 bool can_steal;
1368
1369                 /* Job done if page is free of the right migratetype */
1370                 if (!list_empty(&area->free_list[migratetype]))
1371                         return COMPACT_SUCCESS;
1372
1373 #ifdef CONFIG_CMA
1374                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1375                 if (migratetype == MIGRATE_MOVABLE &&
1376                         !list_empty(&area->free_list[MIGRATE_CMA]))
1377                         return COMPACT_SUCCESS;
1378 #endif
1379                 /*
1380                  * Job done if allocation would steal freepages from
1381                  * other migratetype buddy lists.
1382                  */
1383                 if (find_suitable_fallback(area, order, migratetype,
1384                                                 true, &can_steal) != -1) {
1385
1386                         /* movable pages are OK in any pageblock */
1387                         if (migratetype == MIGRATE_MOVABLE)
1388                                 return COMPACT_SUCCESS;
1389
1390                         /*
1391                          * We are stealing for a non-movable allocation. Make
1392                          * sure we finish compacting the current pageblock
1393                          * first so it is as free as possible and we won't
1394                          * have to steal another one soon. This only applies
1395                          * to sync compaction, as async compaction operates
1396                          * on pageblocks of the same migratetype.
1397                          */
1398                         if (cc->mode == MIGRATE_ASYNC ||
1399                                         IS_ALIGNED(cc->migrate_pfn,
1400                                                         pageblock_nr_pages)) {
1401                                 return COMPACT_SUCCESS;
1402                         }
1403
1404                         cc->finishing_block = true;
1405                         return COMPACT_CONTINUE;
1406                 }
1407         }
1408
1409         return COMPACT_NO_SUITABLE_PAGE;
1410 }
1411
1412 static enum compact_result compact_finished(struct zone *zone,
1413                         struct compact_control *cc)
1414 {
1415         int ret;
1416
1417         ret = __compact_finished(zone, cc);
1418         trace_mm_compaction_finished(zone, cc->order, ret);
1419         if (ret == COMPACT_NO_SUITABLE_PAGE)
1420                 ret = COMPACT_CONTINUE;
1421
1422         return ret;
1423 }
1424
1425 /*
1426  * compaction_suitable: Is this suitable to run compaction on this zone now?
1427  * Returns
1428  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1429  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1430  *   COMPACT_CONTINUE - If compaction should run now
1431  */
1432 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1433                                         unsigned int alloc_flags,
1434                                         int classzone_idx,
1435                                         unsigned long wmark_target)
1436 {
1437         unsigned long watermark;
1438
1439         if (is_via_compact_memory(order))
1440                 return COMPACT_CONTINUE;
1441
1442         watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1443         /*
1444          * If watermarks for high-order allocation are already met, there
1445          * should be no need for compaction at all.
1446          */
1447         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1448                                                                 alloc_flags))
1449                 return COMPACT_SUCCESS;
1450
1451         /*
1452          * Watermarks for order-0 must be met for compaction to be able to
1453          * isolate free pages for migration targets. This means that the
1454          * watermark and alloc_flags have to match, or be more pessimistic than
1455          * the check in __isolate_free_page(). We don't use the direct
1456          * compactor's alloc_flags, as they are not relevant for freepage
1457          * isolation. We however do use the direct compactor's classzone_idx to
1458          * skip over zones where lowmem reserves would prevent allocation even
1459          * if compaction succeeds.
1460          * For costly orders, we require low watermark instead of min for
1461          * compaction to proceed to increase its chances.
1462          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1463          * suitable migration targets
1464          */
1465         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1466                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1467         watermark += compact_gap(order);
1468         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1469                                                 ALLOC_CMA, wmark_target))
1470                 return COMPACT_SKIPPED;
1471
1472         return COMPACT_CONTINUE;
1473 }
1474
1475 enum compact_result compaction_suitable(struct zone *zone, int order,
1476                                         unsigned int alloc_flags,
1477                                         int classzone_idx)
1478 {
1479         enum compact_result ret;
1480         int fragindex;
1481
1482         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1483                                     zone_page_state(zone, NR_FREE_PAGES));
1484         /*
1485          * fragmentation index determines if allocation failures are due to
1486          * low memory or external fragmentation
1487          *
1488          * index of -1000 would imply allocations might succeed depending on
1489          * watermarks, but we already failed the high-order watermark check
1490          * index towards 0 implies failure is due to lack of memory
1491          * index towards 1000 implies failure is due to fragmentation
1492          *
1493          * Only compact if a failure would be due to fragmentation. Also
1494          * ignore fragindex for non-costly orders where the alternative to
1495          * a successful reclaim/compaction is OOM. Fragindex and the
1496          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1497          * excessive compaction for costly orders, but it should not be at the
1498          * expense of system stability.
1499          */
1500         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1501                 fragindex = fragmentation_index(zone, order);
1502                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1503                         ret = COMPACT_NOT_SUITABLE_ZONE;
1504         }
1505
1506         trace_mm_compaction_suitable(zone, order, ret);
1507         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1508                 ret = COMPACT_SKIPPED;
1509
1510         return ret;
1511 }
1512
1513 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1514                 int alloc_flags)
1515 {
1516         struct zone *zone;
1517         struct zoneref *z;
1518
1519         /*
1520          * Make sure at least one zone would pass __compaction_suitable if we continue
1521          * retrying the reclaim.
1522          */
1523         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1524                                         ac->nodemask) {
1525                 unsigned long available;
1526                 enum compact_result compact_result;
1527
1528                 /*
1529                  * Do not consider all the reclaimable memory because we do not
1530                  * want to trash just for a single high order allocation which
1531                  * is even not guaranteed to appear even if __compaction_suitable
1532                  * is happy about the watermark check.
1533                  */
1534                 available = zone_reclaimable_pages(zone) / order;
1535                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1536                 compact_result = __compaction_suitable(zone, order, alloc_flags,
1537                                 ac_classzone_idx(ac), available);
1538                 if (compact_result != COMPACT_SKIPPED)
1539                         return true;
1540         }
1541
1542         return false;
1543 }
1544
1545 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1546 {
1547         enum compact_result ret;
1548         unsigned long start_pfn = zone->zone_start_pfn;
1549         unsigned long end_pfn = zone_end_pfn(zone);
1550         const bool sync = cc->mode != MIGRATE_ASYNC;
1551
1552         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1553         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1554                                                         cc->classzone_idx);
1555         /* Compaction is likely to fail */
1556         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1557                 return ret;
1558
1559         /* huh, compaction_suitable is returning something unexpected */
1560         VM_BUG_ON(ret != COMPACT_CONTINUE);
1561
1562         /*
1563          * Clear pageblock skip if there were failures recently and compaction
1564          * is about to be retried after being deferred.
1565          */
1566         if (compaction_restarting(zone, cc->order))
1567                 __reset_isolation_suitable(zone);
1568
1569         /*
1570          * Setup to move all movable pages to the end of the zone. Used cached
1571          * information on where the scanners should start (unless we explicitly
1572          * want to compact the whole zone), but check that it is initialised
1573          * by ensuring the values are within zone boundaries.
1574          */
1575         if (cc->whole_zone) {
1576                 cc->migrate_pfn = start_pfn;
1577                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1578         } else {
1579                 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1580                 cc->free_pfn = zone->compact_cached_free_pfn;
1581                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1582                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1583                         zone->compact_cached_free_pfn = cc->free_pfn;
1584                 }
1585                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1586                         cc->migrate_pfn = start_pfn;
1587                         zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1588                         zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1589                 }
1590
1591                 if (cc->migrate_pfn == start_pfn)
1592                         cc->whole_zone = true;
1593         }
1594
1595         cc->last_migrated_pfn = 0;
1596
1597         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1598                                 cc->free_pfn, end_pfn, sync);
1599
1600         migrate_prep_local();
1601
1602         while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1603                 int err;
1604
1605                 switch (isolate_migratepages(zone, cc)) {
1606                 case ISOLATE_ABORT:
1607                         ret = COMPACT_CONTENDED;
1608                         putback_movable_pages(&cc->migratepages);
1609                         cc->nr_migratepages = 0;
1610                         goto out;
1611                 case ISOLATE_NONE:
1612                         /*
1613                          * We haven't isolated and migrated anything, but
1614                          * there might still be unflushed migrations from
1615                          * previous cc->order aligned block.
1616                          */
1617                         goto check_drain;
1618                 case ISOLATE_SUCCESS:
1619                         ;
1620                 }
1621
1622                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1623                                 compaction_free, (unsigned long)cc, cc->mode,
1624                                 MR_COMPACTION);
1625
1626                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1627                                                         &cc->migratepages);
1628
1629                 /* All pages were either migrated or will be released */
1630                 cc->nr_migratepages = 0;
1631                 if (err) {
1632                         putback_movable_pages(&cc->migratepages);
1633                         /*
1634                          * migrate_pages() may return -ENOMEM when scanners meet
1635                          * and we want compact_finished() to detect it
1636                          */
1637                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1638                                 ret = COMPACT_CONTENDED;
1639                                 goto out;
1640                         }
1641                         /*
1642                          * We failed to migrate at least one page in the current
1643                          * order-aligned block, so skip the rest of it.
1644                          */
1645                         if (cc->direct_compaction &&
1646                                                 (cc->mode == MIGRATE_ASYNC)) {
1647                                 cc->migrate_pfn = block_end_pfn(
1648                                                 cc->migrate_pfn - 1, cc->order);
1649                                 /* Draining pcplists is useless in this case */
1650                                 cc->last_migrated_pfn = 0;
1651
1652                         }
1653                 }
1654
1655 check_drain:
1656                 /*
1657                  * Has the migration scanner moved away from the previous
1658                  * cc->order aligned block where we migrated from? If yes,
1659                  * flush the pages that were freed, so that they can merge and
1660                  * compact_finished() can detect immediately if allocation
1661                  * would succeed.
1662                  */
1663                 if (cc->order > 0 && cc->last_migrated_pfn) {
1664                         int cpu;
1665                         unsigned long current_block_start =
1666                                 block_start_pfn(cc->migrate_pfn, cc->order);
1667
1668                         if (cc->last_migrated_pfn < current_block_start) {
1669                                 cpu = get_cpu();
1670                                 lru_add_drain_cpu(cpu);
1671                                 drain_local_pages(zone);
1672                                 put_cpu();
1673                                 /* No more flushing until we migrate again */
1674                                 cc->last_migrated_pfn = 0;
1675                         }
1676                 }
1677
1678         }
1679
1680 out:
1681         /*
1682          * Release free pages and update where the free scanner should restart,
1683          * so we don't leave any returned pages behind in the next attempt.
1684          */
1685         if (cc->nr_freepages > 0) {
1686                 unsigned long free_pfn = release_freepages(&cc->freepages);
1687
1688                 cc->nr_freepages = 0;
1689                 VM_BUG_ON(free_pfn == 0);
1690                 /* The cached pfn is always the first in a pageblock */
1691                 free_pfn = pageblock_start_pfn(free_pfn);
1692                 /*
1693                  * Only go back, not forward. The cached pfn might have been
1694                  * already reset to zone end in compact_finished()
1695                  */
1696                 if (free_pfn > zone->compact_cached_free_pfn)
1697                         zone->compact_cached_free_pfn = free_pfn;
1698         }
1699
1700         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1701         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1702
1703         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1704                                 cc->free_pfn, end_pfn, sync, ret);
1705
1706         return ret;
1707 }
1708
1709 static enum compact_result compact_zone_order(struct zone *zone, int order,
1710                 gfp_t gfp_mask, enum compact_priority prio,
1711                 unsigned int alloc_flags, int classzone_idx)
1712 {
1713         enum compact_result ret;
1714         struct compact_control cc = {
1715                 .nr_freepages = 0,
1716                 .nr_migratepages = 0,
1717                 .total_migrate_scanned = 0,
1718                 .total_free_scanned = 0,
1719                 .order = order,
1720                 .gfp_mask = gfp_mask,
1721                 .zone = zone,
1722                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1723                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1724                 .alloc_flags = alloc_flags,
1725                 .classzone_idx = classzone_idx,
1726                 .direct_compaction = true,
1727                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1728                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1729                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1730         };
1731         INIT_LIST_HEAD(&cc.freepages);
1732         INIT_LIST_HEAD(&cc.migratepages);
1733
1734         ret = compact_zone(zone, &cc);
1735
1736         VM_BUG_ON(!list_empty(&cc.freepages));
1737         VM_BUG_ON(!list_empty(&cc.migratepages));
1738
1739         return ret;
1740 }
1741
1742 int sysctl_extfrag_threshold = 500;
1743
1744 /**
1745  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1746  * @gfp_mask: The GFP mask of the current allocation
1747  * @order: The order of the current allocation
1748  * @alloc_flags: The allocation flags of the current allocation
1749  * @ac: The context of current allocation
1750  * @mode: The migration mode for async, sync light, or sync migration
1751  *
1752  * This is the main entry point for direct page compaction.
1753  */
1754 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1755                 unsigned int alloc_flags, const struct alloc_context *ac,
1756                 enum compact_priority prio)
1757 {
1758         int may_perform_io = gfp_mask & __GFP_IO;
1759         struct zoneref *z;
1760         struct zone *zone;
1761         enum compact_result rc = COMPACT_SKIPPED;
1762
1763         /*
1764          * Check if the GFP flags allow compaction - GFP_NOIO is really
1765          * tricky context because the migration might require IO
1766          */
1767         if (!may_perform_io)
1768                 return COMPACT_SKIPPED;
1769
1770         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1771
1772         /* Compact each zone in the list */
1773         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1774                                                                 ac->nodemask) {
1775                 enum compact_result status;
1776
1777                 if (prio > MIN_COMPACT_PRIORITY
1778                                         && compaction_deferred(zone, order)) {
1779                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1780                         continue;
1781                 }
1782
1783                 status = compact_zone_order(zone, order, gfp_mask, prio,
1784                                         alloc_flags, ac_classzone_idx(ac));
1785                 rc = max(status, rc);
1786
1787                 /* The allocation should succeed, stop compacting */
1788                 if (status == COMPACT_SUCCESS) {
1789                         /*
1790                          * We think the allocation will succeed in this zone,
1791                          * but it is not certain, hence the false. The caller
1792                          * will repeat this with true if allocation indeed
1793                          * succeeds in this zone.
1794                          */
1795                         compaction_defer_reset(zone, order, false);
1796
1797                         break;
1798                 }
1799
1800                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1801                                         status == COMPACT_PARTIAL_SKIPPED))
1802                         /*
1803                          * We think that allocation won't succeed in this zone
1804                          * so we defer compaction there. If it ends up
1805                          * succeeding after all, it will be reset.
1806                          */
1807                         defer_compaction(zone, order);
1808
1809                 /*
1810                  * We might have stopped compacting due to need_resched() in
1811                  * async compaction, or due to a fatal signal detected. In that
1812                  * case do not try further zones
1813                  */
1814                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1815                                         || fatal_signal_pending(current))
1816                         break;
1817         }
1818
1819         return rc;
1820 }
1821
1822
1823 /* Compact all zones within a node */
1824 static void compact_node(int nid)
1825 {
1826         pg_data_t *pgdat = NODE_DATA(nid);
1827         int zoneid;
1828         struct zone *zone;
1829         struct compact_control cc = {
1830                 .order = -1,
1831                 .total_migrate_scanned = 0,
1832                 .total_free_scanned = 0,
1833                 .mode = MIGRATE_SYNC,
1834                 .ignore_skip_hint = true,
1835                 .whole_zone = true,
1836                 .gfp_mask = GFP_KERNEL,
1837         };
1838
1839
1840         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1841
1842                 zone = &pgdat->node_zones[zoneid];
1843                 if (!populated_zone(zone))
1844                         continue;
1845
1846                 cc.nr_freepages = 0;
1847                 cc.nr_migratepages = 0;
1848                 cc.zone = zone;
1849                 INIT_LIST_HEAD(&cc.freepages);
1850                 INIT_LIST_HEAD(&cc.migratepages);
1851
1852                 compact_zone(zone, &cc);
1853
1854                 VM_BUG_ON(!list_empty(&cc.freepages));
1855                 VM_BUG_ON(!list_empty(&cc.migratepages));
1856         }
1857 }
1858
1859 /* Compact all nodes in the system */
1860 static void compact_nodes(void)
1861 {
1862         int nid;
1863
1864         /* Flush pending updates to the LRU lists */
1865         lru_add_drain_all();
1866
1867         for_each_online_node(nid)
1868                 compact_node(nid);
1869 }
1870
1871 /* The written value is actually unused, all memory is compacted */
1872 int sysctl_compact_memory;
1873
1874 /*
1875  * This is the entry point for compacting all nodes via
1876  * /proc/sys/vm/compact_memory
1877  */
1878 int sysctl_compaction_handler(struct ctl_table *table, int write,
1879                         void __user *buffer, size_t *length, loff_t *ppos)
1880 {
1881         if (write)
1882                 compact_nodes();
1883
1884         return 0;
1885 }
1886
1887 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1888                         void __user *buffer, size_t *length, loff_t *ppos)
1889 {
1890         proc_dointvec_minmax(table, write, buffer, length, ppos);
1891
1892         return 0;
1893 }
1894
1895 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1896 static ssize_t sysfs_compact_node(struct device *dev,
1897                         struct device_attribute *attr,
1898                         const char *buf, size_t count)
1899 {
1900         int nid = dev->id;
1901
1902         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1903                 /* Flush pending updates to the LRU lists */
1904                 lru_add_drain_all();
1905
1906                 compact_node(nid);
1907         }
1908
1909         return count;
1910 }
1911 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1912
1913 int compaction_register_node(struct node *node)
1914 {
1915         return device_create_file(&node->dev, &dev_attr_compact);
1916 }
1917
1918 void compaction_unregister_node(struct node *node)
1919 {
1920         return device_remove_file(&node->dev, &dev_attr_compact);
1921 }
1922 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1923
1924 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1925 {
1926         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1927 }
1928
1929 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1930 {
1931         int zoneid;
1932         struct zone *zone;
1933         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1934
1935         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1936                 zone = &pgdat->node_zones[zoneid];
1937
1938                 if (!populated_zone(zone))
1939                         continue;
1940
1941                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1942                                         classzone_idx) == COMPACT_CONTINUE)
1943                         return true;
1944         }
1945
1946         return false;
1947 }
1948
1949 static void kcompactd_do_work(pg_data_t *pgdat)
1950 {
1951         /*
1952          * With no special task, compact all zones so that a page of requested
1953          * order is allocatable.
1954          */
1955         int zoneid;
1956         struct zone *zone;
1957         struct compact_control cc = {
1958                 .order = pgdat->kcompactd_max_order,
1959                 .total_migrate_scanned = 0,
1960                 .total_free_scanned = 0,
1961                 .classzone_idx = pgdat->kcompactd_classzone_idx,
1962                 .mode = MIGRATE_SYNC_LIGHT,
1963                 .ignore_skip_hint = false,
1964                 .gfp_mask = GFP_KERNEL,
1965         };
1966         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1967                                                         cc.classzone_idx);
1968         count_compact_event(KCOMPACTD_WAKE);
1969
1970         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1971                 int status;
1972
1973                 zone = &pgdat->node_zones[zoneid];
1974                 if (!populated_zone(zone))
1975                         continue;
1976
1977                 if (compaction_deferred(zone, cc.order))
1978                         continue;
1979
1980                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1981                                                         COMPACT_CONTINUE)
1982                         continue;
1983
1984                 cc.nr_freepages = 0;
1985                 cc.nr_migratepages = 0;
1986                 cc.total_migrate_scanned = 0;
1987                 cc.total_free_scanned = 0;
1988                 cc.zone = zone;
1989                 INIT_LIST_HEAD(&cc.freepages);
1990                 INIT_LIST_HEAD(&cc.migratepages);
1991
1992                 if (kthread_should_stop())
1993                         return;
1994                 status = compact_zone(zone, &cc);
1995
1996                 if (status == COMPACT_SUCCESS) {
1997                         compaction_defer_reset(zone, cc.order, false);
1998                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1999                         /*
2000                          * We use sync migration mode here, so we defer like
2001                          * sync direct compaction does.
2002                          */
2003                         defer_compaction(zone, cc.order);
2004                 }
2005
2006                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2007                                      cc.total_migrate_scanned);
2008                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2009                                      cc.total_free_scanned);
2010
2011                 VM_BUG_ON(!list_empty(&cc.freepages));
2012                 VM_BUG_ON(!list_empty(&cc.migratepages));
2013         }
2014
2015         /*
2016          * Regardless of success, we are done until woken up next. But remember
2017          * the requested order/classzone_idx in case it was higher/tighter than
2018          * our current ones
2019          */
2020         if (pgdat->kcompactd_max_order <= cc.order)
2021                 pgdat->kcompactd_max_order = 0;
2022         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2023                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2024 }
2025
2026 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2027 {
2028         if (!order)
2029                 return;
2030
2031         if (pgdat->kcompactd_max_order < order)
2032                 pgdat->kcompactd_max_order = order;
2033
2034         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2035                 pgdat->kcompactd_classzone_idx = classzone_idx;
2036
2037         /*
2038          * Pairs with implicit barrier in wait_event_freezable()
2039          * such that wakeups are not missed.
2040          */
2041         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2042                 return;
2043
2044         if (!kcompactd_node_suitable(pgdat))
2045                 return;
2046
2047         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2048                                                         classzone_idx);
2049         wake_up_interruptible(&pgdat->kcompactd_wait);
2050 }
2051
2052 /*
2053  * The background compaction daemon, started as a kernel thread
2054  * from the init process.
2055  */
2056 static int kcompactd(void *p)
2057 {
2058         pg_data_t *pgdat = (pg_data_t*)p;
2059         struct task_struct *tsk = current;
2060
2061         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2062
2063         if (!cpumask_empty(cpumask))
2064                 set_cpus_allowed_ptr(tsk, cpumask);
2065
2066         set_freezable();
2067
2068         pgdat->kcompactd_max_order = 0;
2069         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2070
2071         while (!kthread_should_stop()) {
2072                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2073                 wait_event_freezable(pgdat->kcompactd_wait,
2074                                 kcompactd_work_requested(pgdat));
2075
2076                 kcompactd_do_work(pgdat);
2077         }
2078
2079         return 0;
2080 }
2081
2082 /*
2083  * This kcompactd start function will be called by init and node-hot-add.
2084  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2085  */
2086 int kcompactd_run(int nid)
2087 {
2088         pg_data_t *pgdat = NODE_DATA(nid);
2089         int ret = 0;
2090
2091         if (pgdat->kcompactd)
2092                 return 0;
2093
2094         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2095         if (IS_ERR(pgdat->kcompactd)) {
2096                 pr_err("Failed to start kcompactd on node %d\n", nid);
2097                 ret = PTR_ERR(pgdat->kcompactd);
2098                 pgdat->kcompactd = NULL;
2099         }
2100         return ret;
2101 }
2102
2103 /*
2104  * Called by memory hotplug when all memory in a node is offlined. Caller must
2105  * hold mem_hotplug_begin/end().
2106  */
2107 void kcompactd_stop(int nid)
2108 {
2109         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2110
2111         if (kcompactd) {
2112                 kthread_stop(kcompactd);
2113                 NODE_DATA(nid)->kcompactd = NULL;
2114         }
2115 }
2116
2117 /*
2118  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2119  * not required for correctness. So if the last cpu in a node goes
2120  * away, we get changed to run anywhere: as the first one comes back,
2121  * restore their cpu bindings.
2122  */
2123 static int kcompactd_cpu_online(unsigned int cpu)
2124 {
2125         int nid;
2126
2127         for_each_node_state(nid, N_MEMORY) {
2128                 pg_data_t *pgdat = NODE_DATA(nid);
2129                 const struct cpumask *mask;
2130
2131                 mask = cpumask_of_node(pgdat->node_id);
2132
2133                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2134                         /* One of our CPUs online: restore mask */
2135                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2136         }
2137         return 0;
2138 }
2139
2140 static int __init kcompactd_init(void)
2141 {
2142         int nid;
2143         int ret;
2144
2145         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2146                                         "mm/compaction:online",
2147                                         kcompactd_cpu_online, NULL);
2148         if (ret < 0) {
2149                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2150                 return ret;
2151         }
2152
2153         for_each_node_state(nid, N_MEMORY)
2154                 kcompactd_run(nid);
2155         return 0;
2156 }
2157 subsys_initcall(kcompactd_init)
2158
2159 #endif /* CONFIG_COMPACTION */