Merge tag 'nfs-for-6.12-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux-block.git] / lib / sort.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A fast, small, non-recursive O(n log n) sort for the Linux kernel
4  *
5  * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
6  * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
7  *
8  * Quicksort manages n*log2(n) - 1.26*n for random inputs (1.63*n
9  * better) at the expense of stack usage and much larger code to avoid
10  * quicksort's O(n^2) worst case.
11  */
12
13 #include <linux/types.h>
14 #include <linux/export.h>
15 #include <linux/sort.h>
16
17 /**
18  * is_aligned - is this pointer & size okay for word-wide copying?
19  * @base: pointer to data
20  * @size: size of each element
21  * @align: required alignment (typically 4 or 8)
22  *
23  * Returns true if elements can be copied using word loads and stores.
24  * The size must be a multiple of the alignment, and the base address must
25  * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
26  *
27  * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
28  * to "if ((a | b) & mask)", so we do that by hand.
29  */
30 __attribute_const__ __always_inline
31 static bool is_aligned(const void *base, size_t size, unsigned char align)
32 {
33         unsigned char lsbits = (unsigned char)size;
34
35         (void)base;
36 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
37         lsbits |= (unsigned char)(uintptr_t)base;
38 #endif
39         return (lsbits & (align - 1)) == 0;
40 }
41
42 /**
43  * swap_words_32 - swap two elements in 32-bit chunks
44  * @a: pointer to the first element to swap
45  * @b: pointer to the second element to swap
46  * @n: element size (must be a multiple of 4)
47  *
48  * Exchange the two objects in memory.  This exploits base+index addressing,
49  * which basically all CPUs have, to minimize loop overhead computations.
50  *
51  * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
52  * bottom of the loop, even though the zero flag is still valid from the
53  * subtract (since the intervening mov instructions don't alter the flags).
54  * Gcc 8.1.0 doesn't have that problem.
55  */
56 static void swap_words_32(void *a, void *b, size_t n)
57 {
58         do {
59                 u32 t = *(u32 *)(a + (n -= 4));
60                 *(u32 *)(a + n) = *(u32 *)(b + n);
61                 *(u32 *)(b + n) = t;
62         } while (n);
63 }
64
65 /**
66  * swap_words_64 - swap two elements in 64-bit chunks
67  * @a: pointer to the first element to swap
68  * @b: pointer to the second element to swap
69  * @n: element size (must be a multiple of 8)
70  *
71  * Exchange the two objects in memory.  This exploits base+index
72  * addressing, which basically all CPUs have, to minimize loop overhead
73  * computations.
74  *
75  * We'd like to use 64-bit loads if possible.  If they're not, emulating
76  * one requires base+index+4 addressing which x86 has but most other
77  * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
78  * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
79  * x32 ABI).  Are there any cases the kernel needs to worry about?
80  */
81 static void swap_words_64(void *a, void *b, size_t n)
82 {
83         do {
84 #ifdef CONFIG_64BIT
85                 u64 t = *(u64 *)(a + (n -= 8));
86                 *(u64 *)(a + n) = *(u64 *)(b + n);
87                 *(u64 *)(b + n) = t;
88 #else
89                 /* Use two 32-bit transfers to avoid base+index+4 addressing */
90                 u32 t = *(u32 *)(a + (n -= 4));
91                 *(u32 *)(a + n) = *(u32 *)(b + n);
92                 *(u32 *)(b + n) = t;
93
94                 t = *(u32 *)(a + (n -= 4));
95                 *(u32 *)(a + n) = *(u32 *)(b + n);
96                 *(u32 *)(b + n) = t;
97 #endif
98         } while (n);
99 }
100
101 /**
102  * swap_bytes - swap two elements a byte at a time
103  * @a: pointer to the first element to swap
104  * @b: pointer to the second element to swap
105  * @n: element size
106  *
107  * This is the fallback if alignment doesn't allow using larger chunks.
108  */
109 static void swap_bytes(void *a, void *b, size_t n)
110 {
111         do {
112                 char t = ((char *)a)[--n];
113                 ((char *)a)[n] = ((char *)b)[n];
114                 ((char *)b)[n] = t;
115         } while (n);
116 }
117
118 /*
119  * The values are arbitrary as long as they can't be confused with
120  * a pointer, but small integers make for the smallest compare
121  * instructions.
122  */
123 #define SWAP_WORDS_64 (swap_r_func_t)0
124 #define SWAP_WORDS_32 (swap_r_func_t)1
125 #define SWAP_BYTES    (swap_r_func_t)2
126 #define SWAP_WRAPPER  (swap_r_func_t)3
127
128 struct wrapper {
129         cmp_func_t cmp;
130         swap_func_t swap;
131 };
132
133 /*
134  * The function pointer is last to make tail calls most efficient if the
135  * compiler decides not to inline this function.
136  */
137 static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
138 {
139         if (swap_func == SWAP_WRAPPER) {
140                 ((const struct wrapper *)priv)->swap(a, b, (int)size);
141                 return;
142         }
143
144         if (swap_func == SWAP_WORDS_64)
145                 swap_words_64(a, b, size);
146         else if (swap_func == SWAP_WORDS_32)
147                 swap_words_32(a, b, size);
148         else if (swap_func == SWAP_BYTES)
149                 swap_bytes(a, b, size);
150         else
151                 swap_func(a, b, (int)size, priv);
152 }
153
154 #define _CMP_WRAPPER ((cmp_r_func_t)0L)
155
156 static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
157 {
158         if (cmp == _CMP_WRAPPER)
159                 return ((const struct wrapper *)priv)->cmp(a, b);
160         return cmp(a, b, priv);
161 }
162
163 /**
164  * parent - given the offset of the child, find the offset of the parent.
165  * @i: the offset of the heap element whose parent is sought.  Non-zero.
166  * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
167  * @size: size of each element
168  *
169  * In terms of array indexes, the parent of element j = @i/@size is simply
170  * (j-1)/2.  But when working in byte offsets, we can't use implicit
171  * truncation of integer divides.
172  *
173  * Fortunately, we only need one bit of the quotient, not the full divide.
174  * @size has a least significant bit.  That bit will be clear if @i is
175  * an even multiple of @size, and set if it's an odd multiple.
176  *
177  * Logically, we're doing "if (i & lsbit) i -= size;", but since the
178  * branch is unpredictable, it's done with a bit of clever branch-free
179  * code instead.
180  */
181 __attribute_const__ __always_inline
182 static size_t parent(size_t i, unsigned int lsbit, size_t size)
183 {
184         i -= size;
185         i -= size & -(i & lsbit);
186         return i / 2;
187 }
188
189 /**
190  * sort_r - sort an array of elements
191  * @base: pointer to data to sort
192  * @num: number of elements
193  * @size: size of each element
194  * @cmp_func: pointer to comparison function
195  * @swap_func: pointer to swap function or NULL
196  * @priv: third argument passed to comparison function
197  *
198  * This function does a heapsort on the given array.  You may provide
199  * a swap_func function if you need to do something more than a memory
200  * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
201  * avoids a slow retpoline and so is significantly faster.
202  *
203  * Sorting time is O(n log n) both on average and worst-case. While
204  * quicksort is slightly faster on average, it suffers from exploitable
205  * O(n*n) worst-case behavior and extra memory requirements that make
206  * it less suitable for kernel use.
207  */
208 void sort_r(void *base, size_t num, size_t size,
209             cmp_r_func_t cmp_func,
210             swap_r_func_t swap_func,
211             const void *priv)
212 {
213         /* pre-scale counters for performance */
214         size_t n = num * size, a = (num/2) * size;
215         const unsigned int lsbit = size & -size;  /* Used to find parent */
216         size_t shift = 0;
217
218         if (!a)         /* num < 2 || size == 0 */
219                 return;
220
221         /* called from 'sort' without swap function, let's pick the default */
222         if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap)
223                 swap_func = NULL;
224
225         if (!swap_func) {
226                 if (is_aligned(base, size, 8))
227                         swap_func = SWAP_WORDS_64;
228                 else if (is_aligned(base, size, 4))
229                         swap_func = SWAP_WORDS_32;
230                 else
231                         swap_func = SWAP_BYTES;
232         }
233
234         /*
235          * Loop invariants:
236          * 1. elements [a,n) satisfy the heap property (compare greater than
237          *    all of their children),
238          * 2. elements [n,num*size) are sorted, and
239          * 3. a <= b <= c <= d <= n (whenever they are valid).
240          */
241         for (;;) {
242                 size_t b, c, d;
243
244                 if (a)                  /* Building heap: sift down a */
245                         a -= size << shift;
246                 else if (n > 3 * size) { /* Sorting: Extract two largest elements */
247                         n -= size;
248                         do_swap(base, base + n, size, swap_func, priv);
249                         shift = do_cmp(base + size, base + 2 * size, cmp_func, priv) <= 0;
250                         a = size << shift;
251                         n -= size;
252                         do_swap(base + a, base + n, size, swap_func, priv);
253                 } else {                /* Sort complete */
254                         break;
255                 }
256
257                 /*
258                  * Sift element at "a" down into heap.  This is the
259                  * "bottom-up" variant, which significantly reduces
260                  * calls to cmp_func(): we find the sift-down path all
261                  * the way to the leaves (one compare per level), then
262                  * backtrack to find where to insert the target element.
263                  *
264                  * Because elements tend to sift down close to the leaves,
265                  * this uses fewer compares than doing two per level
266                  * on the way down.  (A bit more than half as many on
267                  * average, 3/4 worst-case.)
268                  */
269                 for (b = a; c = 2*b + size, (d = c + size) < n;)
270                         b = do_cmp(base + c, base + d, cmp_func, priv) > 0 ? c : d;
271                 if (d == n)     /* Special case last leaf with no sibling */
272                         b = c;
273
274                 /* Now backtrack from "b" to the correct location for "a" */
275                 while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
276                         b = parent(b, lsbit, size);
277                 c = b;                  /* Where "a" belongs */
278                 while (b != a) {        /* Shift it into place */
279                         b = parent(b, lsbit, size);
280                         do_swap(base + b, base + c, size, swap_func, priv);
281                 }
282         }
283
284         n -= size;
285         do_swap(base, base + n, size, swap_func, priv);
286         if (n == size * 2 && do_cmp(base, base + size, cmp_func, priv) > 0)
287                 do_swap(base, base + size, size, swap_func, priv);
288 }
289 EXPORT_SYMBOL(sort_r);
290
291 void sort(void *base, size_t num, size_t size,
292           cmp_func_t cmp_func,
293           swap_func_t swap_func)
294 {
295         struct wrapper w = {
296                 .cmp  = cmp_func,
297                 .swap = swap_func,
298         };
299
300         return sort_r(base, num, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
301 }
302 EXPORT_SYMBOL(sort);