uprobes, mm, x86: Add the ability to install and remove uprobes breakpoints
[linux-2.6-block.git] / kernel / uprobes.c
1 /*
2  * Userspace Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2011
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>      /* read_mapping_page */
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/rmap.h>         /* anon_vma_prepare */
30 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
31 #include <linux/swap.h>         /* try_to_free_swap */
32 #include <linux/uprobes.h>
33
34 static struct rb_root uprobes_tree = RB_ROOT;
35 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
36
37 #define UPROBES_HASH_SZ 13
38 /* serialize (un)register */
39 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
40 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) %\
41                                                 UPROBES_HASH_SZ])
42
43 /* serialize uprobe->pending_list */
44 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
45 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) %\
46                                                 UPROBES_HASH_SZ])
47
48 /*
49  * uprobe_events allows us to skip the mmap_uprobe if there are no uprobe
50  * events active at this time.  Probably a fine grained per inode count is
51  * better?
52  */
53 static atomic_t uprobe_events = ATOMIC_INIT(0);
54
55 /*
56  * Maintain a temporary per vma info that can be used to search if a vma
57  * has already been handled. This structure is introduced since extending
58  * vm_area_struct wasnt recommended.
59  */
60 struct vma_info {
61         struct list_head probe_list;
62         struct mm_struct *mm;
63         loff_t vaddr;
64 };
65
66 /*
67  * valid_vma: Verify if the specified vma is an executable vma
68  * Relax restrictions while unregistering: vm_flags might have
69  * changed after breakpoint was inserted.
70  *      - is_register: indicates if we are in register context.
71  *      - Return 1 if the specified virtual address is in an
72  *        executable vma.
73  */
74 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
75 {
76         if (!vma->vm_file)
77                 return false;
78
79         if (!is_register)
80                 return true;
81
82         if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) ==
83                                                 (VM_READ|VM_EXEC))
84                 return true;
85
86         return false;
87 }
88
89 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
90 {
91         loff_t vaddr;
92
93         vaddr = vma->vm_start + offset;
94         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
95         return vaddr;
96 }
97
98 /**
99  * __replace_page - replace page in vma by new page.
100  * based on replace_page in mm/ksm.c
101  *
102  * @vma:      vma that holds the pte pointing to page
103  * @page:     the cowed page we are replacing by kpage
104  * @kpage:    the modified page we replace page by
105  *
106  * Returns 0 on success, -EFAULT on failure.
107  */
108 static int __replace_page(struct vm_area_struct *vma, struct page *page,
109                                         struct page *kpage)
110 {
111         struct mm_struct *mm = vma->vm_mm;
112         pgd_t *pgd;
113         pud_t *pud;
114         pmd_t *pmd;
115         pte_t *ptep;
116         spinlock_t *ptl;
117         unsigned long addr;
118         int err = -EFAULT;
119
120         addr = page_address_in_vma(page, vma);
121         if (addr == -EFAULT)
122                 goto out;
123
124         pgd = pgd_offset(mm, addr);
125         if (!pgd_present(*pgd))
126                 goto out;
127
128         pud = pud_offset(pgd, addr);
129         if (!pud_present(*pud))
130                 goto out;
131
132         pmd = pmd_offset(pud, addr);
133         if (!pmd_present(*pmd))
134                 goto out;
135
136         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
137         if (!ptep)
138                 goto out;
139
140         get_page(kpage);
141         page_add_new_anon_rmap(kpage, vma, addr);
142
143         flush_cache_page(vma, addr, pte_pfn(*ptep));
144         ptep_clear_flush(vma, addr, ptep);
145         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
146
147         page_remove_rmap(page);
148         if (!page_mapped(page))
149                 try_to_free_swap(page);
150         put_page(page);
151         pte_unmap_unlock(ptep, ptl);
152         err = 0;
153
154 out:
155         return err;
156 }
157
158 /**
159  * is_bkpt_insn - check if instruction is breakpoint instruction.
160  * @insn: instruction to be checked.
161  * Default implementation of is_bkpt_insn
162  * Returns true if @insn is a breakpoint instruction.
163  */
164 bool __weak is_bkpt_insn(uprobe_opcode_t *insn)
165 {
166         return (*insn == UPROBES_BKPT_INSN);
167 }
168
169 /*
170  * NOTE:
171  * Expect the breakpoint instruction to be the smallest size instruction for
172  * the architecture. If an arch has variable length instruction and the
173  * breakpoint instruction is not of the smallest length instruction
174  * supported by that architecture then we need to modify read_opcode /
175  * write_opcode accordingly. This would never be a problem for archs that
176  * have fixed length instructions.
177  */
178
179 /*
180  * write_opcode - write the opcode at a given virtual address.
181  * @mm: the probed process address space.
182  * @uprobe: the breakpointing information.
183  * @vaddr: the virtual address to store the opcode.
184  * @opcode: opcode to be written at @vaddr.
185  *
186  * Called with mm->mmap_sem held (for read and with a reference to
187  * mm).
188  *
189  * For mm @mm, write the opcode at @vaddr.
190  * Return 0 (success) or a negative errno.
191  */
192 static int write_opcode(struct mm_struct *mm, struct uprobe *uprobe,
193                         unsigned long vaddr, uprobe_opcode_t opcode)
194 {
195         struct page *old_page, *new_page;
196         struct address_space *mapping;
197         void *vaddr_old, *vaddr_new;
198         struct vm_area_struct *vma;
199         loff_t addr;
200         int ret;
201
202         /* Read the page with vaddr into memory */
203         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
204         if (ret <= 0)
205                 return ret;
206         ret = -EINVAL;
207
208         /*
209          * We are interested in text pages only. Our pages of interest
210          * should be mapped for read and execute only. We desist from
211          * adding probes in write mapped pages since the breakpoints
212          * might end up in the file copy.
213          */
214         if (!valid_vma(vma, is_bkpt_insn(&opcode)))
215                 goto put_out;
216
217         mapping = uprobe->inode->i_mapping;
218         if (mapping != vma->vm_file->f_mapping)
219                 goto put_out;
220
221         addr = vma_address(vma, uprobe->offset);
222         if (vaddr != (unsigned long)addr)
223                 goto put_out;
224
225         ret = -ENOMEM;
226         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
227         if (!new_page)
228                 goto put_out;
229
230         __SetPageUptodate(new_page);
231
232         /*
233          * lock page will serialize against do_wp_page()'s
234          * PageAnon() handling
235          */
236         lock_page(old_page);
237         /* copy the page now that we've got it stable */
238         vaddr_old = kmap_atomic(old_page);
239         vaddr_new = kmap_atomic(new_page);
240
241         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
242         /* poke the new insn in, ASSUMES we don't cross page boundary */
243         vaddr &= ~PAGE_MASK;
244         BUG_ON(vaddr + uprobe_opcode_sz > PAGE_SIZE);
245         memcpy(vaddr_new + vaddr, &opcode, uprobe_opcode_sz);
246
247         kunmap_atomic(vaddr_new);
248         kunmap_atomic(vaddr_old);
249
250         ret = anon_vma_prepare(vma);
251         if (ret)
252                 goto unlock_out;
253
254         lock_page(new_page);
255         ret = __replace_page(vma, old_page, new_page);
256         unlock_page(new_page);
257
258 unlock_out:
259         unlock_page(old_page);
260         page_cache_release(new_page);
261
262 put_out:
263         put_page(old_page);     /* we did a get_page in the beginning */
264         return ret;
265 }
266
267 /**
268  * read_opcode - read the opcode at a given virtual address.
269  * @mm: the probed process address space.
270  * @vaddr: the virtual address to read the opcode.
271  * @opcode: location to store the read opcode.
272  *
273  * Called with mm->mmap_sem held (for read and with a reference to
274  * mm.
275  *
276  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
277  * Return 0 (success) or a negative errno.
278  */
279 static int read_opcode(struct mm_struct *mm, unsigned long vaddr,
280                                                 uprobe_opcode_t *opcode)
281 {
282         struct page *page;
283         void *vaddr_new;
284         int ret;
285
286         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL);
287         if (ret <= 0)
288                 return ret;
289
290         lock_page(page);
291         vaddr_new = kmap_atomic(page);
292         vaddr &= ~PAGE_MASK;
293         memcpy(opcode, vaddr_new + vaddr, uprobe_opcode_sz);
294         kunmap_atomic(vaddr_new);
295         unlock_page(page);
296         put_page(page);         /* we did a get_user_pages in the beginning */
297         return 0;
298 }
299
300 static int is_bkpt_at_addr(struct mm_struct *mm, unsigned long vaddr)
301 {
302         uprobe_opcode_t opcode;
303         int result = read_opcode(mm, vaddr, &opcode);
304
305         if (result)
306                 return result;
307
308         if (is_bkpt_insn(&opcode))
309                 return 1;
310
311         return 0;
312 }
313
314 /**
315  * set_bkpt - store breakpoint at a given address.
316  * @mm: the probed process address space.
317  * @uprobe: the probepoint information.
318  * @vaddr: the virtual address to insert the opcode.
319  *
320  * For mm @mm, store the breakpoint instruction at @vaddr.
321  * Return 0 (success) or a negative errno.
322  */
323 int __weak set_bkpt(struct mm_struct *mm, struct uprobe *uprobe,
324                                                 unsigned long vaddr)
325 {
326         int result = is_bkpt_at_addr(mm, vaddr);
327
328         if (result == 1)
329                 return -EEXIST;
330
331         if (result)
332                 return result;
333
334         return write_opcode(mm, uprobe, vaddr, UPROBES_BKPT_INSN);
335 }
336
337 /**
338  * set_orig_insn - Restore the original instruction.
339  * @mm: the probed process address space.
340  * @uprobe: the probepoint information.
341  * @vaddr: the virtual address to insert the opcode.
342  * @verify: if true, verify existance of breakpoint instruction.
343  *
344  * For mm @mm, restore the original opcode (opcode) at @vaddr.
345  * Return 0 (success) or a negative errno.
346  */
347 int __weak set_orig_insn(struct mm_struct *mm, struct uprobe *uprobe,
348                                         unsigned long vaddr, bool verify)
349 {
350         if (verify) {
351                 int result = is_bkpt_at_addr(mm, vaddr);
352
353                 if (!result)
354                         return -EINVAL;
355
356                 if (result != 1)
357                         return result;
358         }
359         return write_opcode(mm, uprobe, vaddr,
360                                 *(uprobe_opcode_t *)uprobe->insn);
361 }
362
363 static int match_uprobe(struct uprobe *l, struct uprobe *r)
364 {
365         if (l->inode < r->inode)
366                 return -1;
367         if (l->inode > r->inode)
368                 return 1;
369         else {
370                 if (l->offset < r->offset)
371                         return -1;
372
373                 if (l->offset > r->offset)
374                         return 1;
375         }
376
377         return 0;
378 }
379
380 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
381 {
382         struct uprobe u = { .inode = inode, .offset = offset };
383         struct rb_node *n = uprobes_tree.rb_node;
384         struct uprobe *uprobe;
385         int match;
386
387         while (n) {
388                 uprobe = rb_entry(n, struct uprobe, rb_node);
389                 match = match_uprobe(&u, uprobe);
390                 if (!match) {
391                         atomic_inc(&uprobe->ref);
392                         return uprobe;
393                 }
394                 if (match < 0)
395                         n = n->rb_left;
396                 else
397                         n = n->rb_right;
398         }
399         return NULL;
400 }
401
402 /*
403  * Find a uprobe corresponding to a given inode:offset
404  * Acquires uprobes_treelock
405  */
406 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
407 {
408         struct uprobe *uprobe;
409         unsigned long flags;
410
411         spin_lock_irqsave(&uprobes_treelock, flags);
412         uprobe = __find_uprobe(inode, offset);
413         spin_unlock_irqrestore(&uprobes_treelock, flags);
414         return uprobe;
415 }
416
417 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
418 {
419         struct rb_node **p = &uprobes_tree.rb_node;
420         struct rb_node *parent = NULL;
421         struct uprobe *u;
422         int match;
423
424         while (*p) {
425                 parent = *p;
426                 u = rb_entry(parent, struct uprobe, rb_node);
427                 match = match_uprobe(uprobe, u);
428                 if (!match) {
429                         atomic_inc(&u->ref);
430                         return u;
431                 }
432
433                 if (match < 0)
434                         p = &parent->rb_left;
435                 else
436                         p = &parent->rb_right;
437
438         }
439         u = NULL;
440         rb_link_node(&uprobe->rb_node, parent, p);
441         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
442         /* get access + creation ref */
443         atomic_set(&uprobe->ref, 2);
444         return u;
445 }
446
447 /*
448  * Acquires uprobes_treelock.
449  * Matching uprobe already exists in rbtree;
450  *      increment (access refcount) and return the matching uprobe.
451  *
452  * No matching uprobe; insert the uprobe in rb_tree;
453  *      get a double refcount (access + creation) and return NULL.
454  */
455 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
456 {
457         unsigned long flags;
458         struct uprobe *u;
459
460         spin_lock_irqsave(&uprobes_treelock, flags);
461         u = __insert_uprobe(uprobe);
462         spin_unlock_irqrestore(&uprobes_treelock, flags);
463         return u;
464 }
465
466 static void put_uprobe(struct uprobe *uprobe)
467 {
468         if (atomic_dec_and_test(&uprobe->ref))
469                 kfree(uprobe);
470 }
471
472 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
473 {
474         struct uprobe *uprobe, *cur_uprobe;
475
476         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
477         if (!uprobe)
478                 return NULL;
479
480         uprobe->inode = igrab(inode);
481         uprobe->offset = offset;
482         init_rwsem(&uprobe->consumer_rwsem);
483         INIT_LIST_HEAD(&uprobe->pending_list);
484
485         /* add to uprobes_tree, sorted on inode:offset */
486         cur_uprobe = insert_uprobe(uprobe);
487
488         /* a uprobe exists for this inode:offset combination */
489         if (cur_uprobe) {
490                 kfree(uprobe);
491                 uprobe = cur_uprobe;
492                 iput(inode);
493         } else
494                 atomic_inc(&uprobe_events);
495         return uprobe;
496 }
497
498 /* Returns the previous consumer */
499 static struct uprobe_consumer *add_consumer(struct uprobe *uprobe,
500                                 struct uprobe_consumer *consumer)
501 {
502         down_write(&uprobe->consumer_rwsem);
503         consumer->next = uprobe->consumers;
504         uprobe->consumers = consumer;
505         up_write(&uprobe->consumer_rwsem);
506         return consumer->next;
507 }
508
509 /*
510  * For uprobe @uprobe, delete the consumer @consumer.
511  * Return true if the @consumer is deleted successfully
512  * or return false.
513  */
514 static bool del_consumer(struct uprobe *uprobe,
515                                 struct uprobe_consumer *consumer)
516 {
517         struct uprobe_consumer **con;
518         bool ret = false;
519
520         down_write(&uprobe->consumer_rwsem);
521         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
522                 if (*con == consumer) {
523                         *con = consumer->next;
524                         ret = true;
525                         break;
526                 }
527         }
528         up_write(&uprobe->consumer_rwsem);
529         return ret;
530 }
531
532 static int __copy_insn(struct address_space *mapping,
533                         struct vm_area_struct *vma, char *insn,
534                         unsigned long nbytes, unsigned long offset)
535 {
536         struct file *filp = vma->vm_file;
537         struct page *page;
538         void *vaddr;
539         unsigned long off1;
540         unsigned long idx;
541
542         if (!filp)
543                 return -EINVAL;
544
545         idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
546         off1 = offset &= ~PAGE_MASK;
547
548         /*
549          * Ensure that the page that has the original instruction is
550          * populated and in page-cache.
551          */
552         page = read_mapping_page(mapping, idx, filp);
553         if (IS_ERR(page))
554                 return PTR_ERR(page);
555
556         vaddr = kmap_atomic(page);
557         memcpy(insn, vaddr + off1, nbytes);
558         kunmap_atomic(vaddr);
559         page_cache_release(page);
560         return 0;
561 }
562
563 static int copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma,
564                                         unsigned long addr)
565 {
566         struct address_space *mapping;
567         int bytes;
568         unsigned long nbytes;
569
570         addr &= ~PAGE_MASK;
571         nbytes = PAGE_SIZE - addr;
572         mapping = uprobe->inode->i_mapping;
573
574         /* Instruction at end of binary; copy only available bytes */
575         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
576                 bytes = uprobe->inode->i_size - uprobe->offset;
577         else
578                 bytes = MAX_UINSN_BYTES;
579
580         /* Instruction at the page-boundary; copy bytes in second page */
581         if (nbytes < bytes) {
582                 if (__copy_insn(mapping, vma, uprobe->insn + nbytes,
583                                 bytes - nbytes, uprobe->offset + nbytes))
584                         return -ENOMEM;
585
586                 bytes = nbytes;
587         }
588         return __copy_insn(mapping, vma, uprobe->insn, bytes, uprobe->offset);
589 }
590
591 static int install_breakpoint(struct mm_struct *mm, struct uprobe *uprobe,
592                                 struct vm_area_struct *vma, loff_t vaddr)
593 {
594         unsigned long addr;
595         int ret;
596
597         /*
598          * If probe is being deleted, unregister thread could be done with
599          * the vma-rmap-walk through. Adding a probe now can be fatal since
600          * nobody will be able to cleanup. Also we could be from fork or
601          * mremap path, where the probe might have already been inserted.
602          * Hence behave as if probe already existed.
603          */
604         if (!uprobe->consumers)
605                 return -EEXIST;
606
607         addr = (unsigned long)vaddr;
608         if (!(uprobe->flags & UPROBES_COPY_INSN)) {
609                 ret = copy_insn(uprobe, vma, addr);
610                 if (ret)
611                         return ret;
612
613                 if (is_bkpt_insn((uprobe_opcode_t *)uprobe->insn))
614                         return -EEXIST;
615
616                 ret = analyze_insn(mm, uprobe);
617                 if (ret)
618                         return ret;
619
620                 uprobe->flags |= UPROBES_COPY_INSN;
621         }
622         ret = set_bkpt(mm, uprobe, addr);
623
624         return ret;
625 }
626
627 static void remove_breakpoint(struct mm_struct *mm, struct uprobe *uprobe,
628                                                         loff_t vaddr)
629 {
630         set_orig_insn(mm, uprobe, (unsigned long)vaddr, true);
631 }
632
633 static void delete_uprobe(struct uprobe *uprobe)
634 {
635         unsigned long flags;
636
637         spin_lock_irqsave(&uprobes_treelock, flags);
638         rb_erase(&uprobe->rb_node, &uprobes_tree);
639         spin_unlock_irqrestore(&uprobes_treelock, flags);
640         iput(uprobe->inode);
641         put_uprobe(uprobe);
642         atomic_dec(&uprobe_events);
643 }
644
645 static struct vma_info *__find_next_vma_info(struct list_head *head,
646                         loff_t offset, struct address_space *mapping,
647                         struct vma_info *vi, bool is_register)
648 {
649         struct prio_tree_iter iter;
650         struct vm_area_struct *vma;
651         struct vma_info *tmpvi;
652         loff_t vaddr;
653         unsigned long pgoff = offset >> PAGE_SHIFT;
654         int existing_vma;
655
656         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
657                 if (!valid_vma(vma, is_register))
658                         continue;
659
660                 existing_vma = 0;
661                 vaddr = vma_address(vma, offset);
662                 list_for_each_entry(tmpvi, head, probe_list) {
663                         if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
664                                 existing_vma = 1;
665                                 break;
666                         }
667                 }
668
669                 /*
670                  * Another vma needs a probe to be installed. However skip
671                  * installing the probe if the vma is about to be unlinked.
672                  */
673                 if (!existing_vma &&
674                                 atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
675                         vi->mm = vma->vm_mm;
676                         vi->vaddr = vaddr;
677                         list_add(&vi->probe_list, head);
678                         return vi;
679                 }
680         }
681         return NULL;
682 }
683
684 /*
685  * Iterate in the rmap prio tree  and find a vma where a probe has not
686  * yet been inserted.
687  */
688 static struct vma_info *find_next_vma_info(struct list_head *head,
689                         loff_t offset, struct address_space *mapping,
690                         bool is_register)
691 {
692         struct vma_info *vi, *retvi;
693         vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
694         if (!vi)
695                 return ERR_PTR(-ENOMEM);
696
697         mutex_lock(&mapping->i_mmap_mutex);
698         retvi = __find_next_vma_info(head, offset, mapping, vi, is_register);
699         mutex_unlock(&mapping->i_mmap_mutex);
700
701         if (!retvi)
702                 kfree(vi);
703         return retvi;
704 }
705
706 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
707 {
708         struct list_head try_list;
709         struct vm_area_struct *vma;
710         struct address_space *mapping;
711         struct vma_info *vi, *tmpvi;
712         struct mm_struct *mm;
713         loff_t vaddr;
714         int ret = 0;
715
716         mapping = uprobe->inode->i_mapping;
717         INIT_LIST_HEAD(&try_list);
718         while ((vi = find_next_vma_info(&try_list, uprobe->offset,
719                                         mapping, is_register)) != NULL) {
720                 if (IS_ERR(vi)) {
721                         ret = PTR_ERR(vi);
722                         break;
723                 }
724                 mm = vi->mm;
725                 down_read(&mm->mmap_sem);
726                 vma = find_vma(mm, (unsigned long)vi->vaddr);
727                 if (!vma || !valid_vma(vma, is_register)) {
728                         list_del(&vi->probe_list);
729                         kfree(vi);
730                         up_read(&mm->mmap_sem);
731                         mmput(mm);
732                         continue;
733                 }
734                 vaddr = vma_address(vma, uprobe->offset);
735                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
736                                                 vaddr != vi->vaddr) {
737                         list_del(&vi->probe_list);
738                         kfree(vi);
739                         up_read(&mm->mmap_sem);
740                         mmput(mm);
741                         continue;
742                 }
743
744                 if (is_register)
745                         ret = install_breakpoint(mm, uprobe, vma, vi->vaddr);
746                 else
747                         remove_breakpoint(mm, uprobe, vi->vaddr);
748
749                 up_read(&mm->mmap_sem);
750                 mmput(mm);
751                 if (is_register) {
752                         if (ret && ret == -EEXIST)
753                                 ret = 0;
754                         if (ret)
755                                 break;
756                 }
757         }
758         list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
759                 list_del(&vi->probe_list);
760                 kfree(vi);
761         }
762         return ret;
763 }
764
765 static int __register_uprobe(struct uprobe *uprobe)
766 {
767         return register_for_each_vma(uprobe, true);
768 }
769
770 static void __unregister_uprobe(struct uprobe *uprobe)
771 {
772         if (!register_for_each_vma(uprobe, false))
773                 delete_uprobe(uprobe);
774
775         /* TODO : cant unregister? schedule a worker thread */
776 }
777
778 /*
779  * register_uprobe - register a probe
780  * @inode: the file in which the probe has to be placed.
781  * @offset: offset from the start of the file.
782  * @consumer: information on howto handle the probe..
783  *
784  * Apart from the access refcount, register_uprobe() takes a creation
785  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
786  * inserted into the rbtree (i.e first consumer for a @inode:@offset
787  * tuple).  Creation refcount stops unregister_uprobe from freeing the
788  * @uprobe even before the register operation is complete. Creation
789  * refcount is released when the last @consumer for the @uprobe
790  * unregisters.
791  *
792  * Return errno if it cannot successully install probes
793  * else return 0 (success)
794  */
795 int register_uprobe(struct inode *inode, loff_t offset,
796                                 struct uprobe_consumer *consumer)
797 {
798         struct uprobe *uprobe;
799         int ret = -EINVAL;
800
801         if (!inode || !consumer || consumer->next)
802                 return ret;
803
804         if (offset > i_size_read(inode))
805                 return ret;
806
807         ret = 0;
808         mutex_lock(uprobes_hash(inode));
809         uprobe = alloc_uprobe(inode, offset);
810         if (uprobe && !add_consumer(uprobe, consumer)) {
811                 ret = __register_uprobe(uprobe);
812                 if (ret) {
813                         uprobe->consumers = NULL;
814                         __unregister_uprobe(uprobe);
815                 } else
816                         uprobe->flags |= UPROBES_RUN_HANDLER;
817         }
818
819         mutex_unlock(uprobes_hash(inode));
820         put_uprobe(uprobe);
821
822         return ret;
823 }
824
825 /*
826  * unregister_uprobe - unregister a already registered probe.
827  * @inode: the file in which the probe has to be removed.
828  * @offset: offset from the start of the file.
829  * @consumer: identify which probe if multiple probes are colocated.
830  */
831 void unregister_uprobe(struct inode *inode, loff_t offset,
832                                 struct uprobe_consumer *consumer)
833 {
834         struct uprobe *uprobe = NULL;
835
836         if (!inode || !consumer)
837                 return;
838
839         uprobe = find_uprobe(inode, offset);
840         if (!uprobe)
841                 return;
842
843         mutex_lock(uprobes_hash(inode));
844         if (!del_consumer(uprobe, consumer))
845                 goto unreg_out;
846
847         if (!uprobe->consumers) {
848                 __unregister_uprobe(uprobe);
849                 uprobe->flags &= ~UPROBES_RUN_HANDLER;
850         }
851
852 unreg_out:
853         mutex_unlock(uprobes_hash(inode));
854         if (uprobe)
855                 put_uprobe(uprobe);
856 }
857
858 /*
859  * Of all the nodes that correspond to the given inode, return the node
860  * with the least offset.
861  */
862 static struct rb_node *find_least_offset_node(struct inode *inode)
863 {
864         struct uprobe u = { .inode = inode, .offset = 0};
865         struct rb_node *n = uprobes_tree.rb_node;
866         struct rb_node *close_node = NULL;
867         struct uprobe *uprobe;
868         int match;
869
870         while (n) {
871                 uprobe = rb_entry(n, struct uprobe, rb_node);
872                 match = match_uprobe(&u, uprobe);
873                 if (uprobe->inode == inode)
874                         close_node = n;
875
876                 if (!match)
877                         return close_node;
878
879                 if (match < 0)
880                         n = n->rb_left;
881                 else
882                         n = n->rb_right;
883         }
884         return close_node;
885 }
886
887 /*
888  * For a given inode, build a list of probes that need to be inserted.
889  */
890 static void build_probe_list(struct inode *inode, struct list_head *head)
891 {
892         struct uprobe *uprobe;
893         struct rb_node *n;
894         unsigned long flags;
895
896         spin_lock_irqsave(&uprobes_treelock, flags);
897         n = find_least_offset_node(inode);
898         for (; n; n = rb_next(n)) {
899                 uprobe = rb_entry(n, struct uprobe, rb_node);
900                 if (uprobe->inode != inode)
901                         break;
902
903                 list_add(&uprobe->pending_list, head);
904                 atomic_inc(&uprobe->ref);
905         }
906         spin_unlock_irqrestore(&uprobes_treelock, flags);
907 }
908
909 /*
910  * Called from mmap_region.
911  * called with mm->mmap_sem acquired.
912  *
913  * Return -ve no if we fail to insert probes and we cannot
914  * bail-out.
915  * Return 0 otherwise. i.e :
916  *      - successful insertion of probes
917  *      - (or) no possible probes to be inserted.
918  *      - (or) insertion of probes failed but we can bail-out.
919  */
920 int mmap_uprobe(struct vm_area_struct *vma)
921 {
922         struct list_head tmp_list;
923         struct uprobe *uprobe, *u;
924         struct inode *inode;
925         int ret = 0;
926
927         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
928                 return ret;     /* Bail-out */
929
930         inode = vma->vm_file->f_mapping->host;
931         if (!inode)
932                 return ret;
933
934         INIT_LIST_HEAD(&tmp_list);
935         mutex_lock(uprobes_mmap_hash(inode));
936         build_probe_list(inode, &tmp_list);
937         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
938                 loff_t vaddr;
939
940                 list_del(&uprobe->pending_list);
941                 if (!ret) {
942                         vaddr = vma_address(vma, uprobe->offset);
943                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
944                                 put_uprobe(uprobe);
945                                 continue;
946                         }
947                         ret = install_breakpoint(vma->vm_mm, uprobe, vma,
948                                                                 vaddr);
949                         if (ret == -EEXIST)
950                                 ret = 0;
951                 }
952                 put_uprobe(uprobe);
953         }
954
955         mutex_unlock(uprobes_mmap_hash(inode));
956
957         return ret;
958 }
959
960 static int __init init_uprobes(void)
961 {
962         int i;
963
964         for (i = 0; i < UPROBES_HASH_SZ; i++) {
965                 mutex_init(&uprobes_mutex[i]);
966                 mutex_init(&uprobes_mmap_mutex[i]);
967         }
968         return 0;
969 }
970
971 static void __exit exit_uprobes(void)
972 {
973 }
974
975 module_init(init_uprobes);
976 module_exit(exit_uprobes);