Merge tag 'backlight-next-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/lee...
[linux-block.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB          (0xf8ULL << 56)
38 #define ABS_TS_MASK     (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47         trace_seq_puts(s, "# compressed entry header\n");
48         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50         trace_seq_puts(s, "\tarray       :   32 bits\n");
51         trace_seq_putc(s, '\n');
52         trace_seq_printf(s, "\tpadding     : type == %d\n",
53                          RINGBUF_TYPE_PADDING);
54         trace_seq_printf(s, "\ttime_extend : type == %d\n",
55                          RINGBUF_TYPE_TIME_EXTEND);
56         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57                          RINGBUF_TYPE_TIME_STAMP);
58         trace_seq_printf(s, "\tdata max type_len  == %d\n",
59                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61         return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF           (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT            4U
139 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT       0
144 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT       1
147 # define RB_ARCH_ALIGNMENT              8U
148 #endif
149
150 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156         RB_LEN_TIME_EXTEND = 8,
157         RB_LEN_TIME_STAMP =  8,
158 };
159
160 #define skip_time_extend(event) \
161         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173         /* padding has a NULL time_delta */
174         event->type_len = RINGBUF_TYPE_PADDING;
175         event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181         unsigned length;
182
183         if (event->type_len)
184                 length = event->type_len * RB_ALIGNMENT;
185         else
186                 length = event->array[0];
187         return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198         switch (event->type_len) {
199         case RINGBUF_TYPE_PADDING:
200                 if (rb_null_event(event))
201                         /* undefined */
202                         return -1;
203                 return  event->array[0] + RB_EVNT_HDR_SIZE;
204
205         case RINGBUF_TYPE_TIME_EXTEND:
206                 return RB_LEN_TIME_EXTEND;
207
208         case RINGBUF_TYPE_TIME_STAMP:
209                 return RB_LEN_TIME_STAMP;
210
211         case RINGBUF_TYPE_DATA:
212                 return rb_event_data_length(event);
213         default:
214                 WARN_ON_ONCE(1);
215         }
216         /* not hit */
217         return 0;
218 }
219
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227         unsigned len = 0;
228
229         if (extended_time(event)) {
230                 /* time extends include the data event after it */
231                 len = RB_LEN_TIME_EXTEND;
232                 event = skip_time_extend(event);
233         }
234         return len + rb_event_length(event);
235 }
236
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249         unsigned length;
250
251         if (extended_time(event))
252                 event = skip_time_extend(event);
253
254         length = rb_event_length(event);
255         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256                 return length;
257         length -= RB_EVNT_HDR_SIZE;
258         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260         return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268         if (extended_time(event))
269                 event = skip_time_extend(event);
270         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271         /* If length is in len field, then array[0] has the data */
272         if (event->type_len)
273                 return (void *)&event->array[0];
274         /* Otherwise length is in array[0] and array[1] has the data */
275         return (void *)&event->array[1];
276 }
277
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284         return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu)                \
289         for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu)         \
292         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT        27
295 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST   (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300         u64 ts;
301
302         ts = event->array[0];
303         ts <<= TS_SHIFT;
304         ts += event->time_delta;
305
306         return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS        (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED        (1 << 30)
313
314 struct buffer_data_page {
315         u64              time_stamp;    /* page time stamp */
316         local_t          commit;        /* write committed index */
317         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
318 };
319
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329         struct list_head list;          /* list of buffer pages */
330         local_t          write;         /* index for next write */
331         unsigned         read;          /* index for next read */
332         local_t          entries;       /* entries on this page */
333         unsigned long    real_end;      /* real end of data */
334         struct buffer_data_page *page;  /* Actual data page */
335 };
336
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK           0xfffff
350 #define RB_WRITE_INTCNT         (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354         local_set(&bpage->commit, 0);
355 }
356
357 static void free_buffer_page(struct buffer_page *bpage)
358 {
359         free_page((unsigned long)bpage->page);
360         kfree(bpage);
361 }
362
363 /*
364  * We need to fit the time_stamp delta into 27 bits.
365  */
366 static inline bool test_time_stamp(u64 delta)
367 {
368         return !!(delta & TS_DELTA_TEST);
369 }
370
371 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
372
373 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
374 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
375
376 int ring_buffer_print_page_header(struct trace_seq *s)
377 {
378         struct buffer_data_page field;
379
380         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
381                          "offset:0;\tsize:%u;\tsigned:%u;\n",
382                          (unsigned int)sizeof(field.time_stamp),
383                          (unsigned int)is_signed_type(u64));
384
385         trace_seq_printf(s, "\tfield: local_t commit;\t"
386                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
387                          (unsigned int)offsetof(typeof(field), commit),
388                          (unsigned int)sizeof(field.commit),
389                          (unsigned int)is_signed_type(long));
390
391         trace_seq_printf(s, "\tfield: int overwrite;\t"
392                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
393                          (unsigned int)offsetof(typeof(field), commit),
394                          1,
395                          (unsigned int)is_signed_type(long));
396
397         trace_seq_printf(s, "\tfield: char data;\t"
398                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
399                          (unsigned int)offsetof(typeof(field), data),
400                          (unsigned int)BUF_PAGE_SIZE,
401                          (unsigned int)is_signed_type(char));
402
403         return !trace_seq_has_overflowed(s);
404 }
405
406 struct rb_irq_work {
407         struct irq_work                 work;
408         wait_queue_head_t               waiters;
409         wait_queue_head_t               full_waiters;
410         long                            wait_index;
411         bool                            waiters_pending;
412         bool                            full_waiters_pending;
413         bool                            wakeup_full;
414 };
415
416 /*
417  * Structure to hold event state and handle nested events.
418  */
419 struct rb_event_info {
420         u64                     ts;
421         u64                     delta;
422         u64                     before;
423         u64                     after;
424         unsigned long           length;
425         struct buffer_page      *tail_page;
426         int                     add_timestamp;
427 };
428
429 /*
430  * Used for the add_timestamp
431  *  NONE
432  *  EXTEND - wants a time extend
433  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
434  *  FORCE - force a full time stamp.
435  */
436 enum {
437         RB_ADD_STAMP_NONE               = 0,
438         RB_ADD_STAMP_EXTEND             = BIT(1),
439         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
440         RB_ADD_STAMP_FORCE              = BIT(3)
441 };
442 /*
443  * Used for which event context the event is in.
444  *  TRANSITION = 0
445  *  NMI     = 1
446  *  IRQ     = 2
447  *  SOFTIRQ = 3
448  *  NORMAL  = 4
449  *
450  * See trace_recursive_lock() comment below for more details.
451  */
452 enum {
453         RB_CTX_TRANSITION,
454         RB_CTX_NMI,
455         RB_CTX_IRQ,
456         RB_CTX_SOFTIRQ,
457         RB_CTX_NORMAL,
458         RB_CTX_MAX
459 };
460
461 #if BITS_PER_LONG == 32
462 #define RB_TIME_32
463 #endif
464
465 /* To test on 64 bit machines */
466 //#define RB_TIME_32
467
468 #ifdef RB_TIME_32
469
470 struct rb_time_struct {
471         local_t         cnt;
472         local_t         top;
473         local_t         bottom;
474         local_t         msb;
475 };
476 #else
477 #include <asm/local64.h>
478 struct rb_time_struct {
479         local64_t       time;
480 };
481 #endif
482 typedef struct rb_time_struct rb_time_t;
483
484 #define MAX_NEST        5
485
486 /*
487  * head_page == tail_page && head == tail then buffer is empty.
488  */
489 struct ring_buffer_per_cpu {
490         int                             cpu;
491         atomic_t                        record_disabled;
492         atomic_t                        resize_disabled;
493         struct trace_buffer     *buffer;
494         raw_spinlock_t                  reader_lock;    /* serialize readers */
495         arch_spinlock_t                 lock;
496         struct lock_class_key           lock_key;
497         struct buffer_data_page         *free_page;
498         unsigned long                   nr_pages;
499         unsigned int                    current_context;
500         struct list_head                *pages;
501         struct buffer_page              *head_page;     /* read from head */
502         struct buffer_page              *tail_page;     /* write to tail */
503         struct buffer_page              *commit_page;   /* committed pages */
504         struct buffer_page              *reader_page;
505         unsigned long                   lost_events;
506         unsigned long                   last_overrun;
507         unsigned long                   nest;
508         local_t                         entries_bytes;
509         local_t                         entries;
510         local_t                         overrun;
511         local_t                         commit_overrun;
512         local_t                         dropped_events;
513         local_t                         committing;
514         local_t                         commits;
515         local_t                         pages_touched;
516         local_t                         pages_lost;
517         local_t                         pages_read;
518         long                            last_pages_touch;
519         size_t                          shortest_full;
520         unsigned long                   read;
521         unsigned long                   read_bytes;
522         rb_time_t                       write_stamp;
523         rb_time_t                       before_stamp;
524         u64                             event_stamp[MAX_NEST];
525         u64                             read_stamp;
526         /* ring buffer pages to update, > 0 to add, < 0 to remove */
527         long                            nr_pages_to_update;
528         struct list_head                new_pages; /* new pages to add */
529         struct work_struct              update_pages_work;
530         struct completion               update_done;
531
532         struct rb_irq_work              irq_work;
533 };
534
535 struct trace_buffer {
536         unsigned                        flags;
537         int                             cpus;
538         atomic_t                        record_disabled;
539         cpumask_var_t                   cpumask;
540
541         struct lock_class_key           *reader_lock_key;
542
543         struct mutex                    mutex;
544
545         struct ring_buffer_per_cpu      **buffers;
546
547         struct hlist_node               node;
548         u64                             (*clock)(void);
549
550         struct rb_irq_work              irq_work;
551         bool                            time_stamp_abs;
552 };
553
554 struct ring_buffer_iter {
555         struct ring_buffer_per_cpu      *cpu_buffer;
556         unsigned long                   head;
557         unsigned long                   next_event;
558         struct buffer_page              *head_page;
559         struct buffer_page              *cache_reader_page;
560         unsigned long                   cache_read;
561         u64                             read_stamp;
562         u64                             page_stamp;
563         struct ring_buffer_event        *event;
564         int                             missed_events;
565 };
566
567 #ifdef RB_TIME_32
568
569 /*
570  * On 32 bit machines, local64_t is very expensive. As the ring
571  * buffer doesn't need all the features of a true 64 bit atomic,
572  * on 32 bit, it uses these functions (64 still uses local64_t).
573  *
574  * For the ring buffer, 64 bit required operations for the time is
575  * the following:
576  *
577  *  - Reads may fail if it interrupted a modification of the time stamp.
578  *      It will succeed if it did not interrupt another write even if
579  *      the read itself is interrupted by a write.
580  *      It returns whether it was successful or not.
581  *
582  *  - Writes always succeed and will overwrite other writes and writes
583  *      that were done by events interrupting the current write.
584  *
585  *  - A write followed by a read of the same time stamp will always succeed,
586  *      but may not contain the same value.
587  *
588  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
589  *      Other than that, it acts like a normal cmpxchg.
590  *
591  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
592  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
593  *
594  * The two most significant bits of each half holds a 2 bit counter (0-3).
595  * Each update will increment this counter by one.
596  * When reading the top and bottom, if the two counter bits match then the
597  *  top and bottom together make a valid 60 bit number.
598  */
599 #define RB_TIME_SHIFT   30
600 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
601 #define RB_TIME_MSB_SHIFT        60
602
603 static inline int rb_time_cnt(unsigned long val)
604 {
605         return (val >> RB_TIME_SHIFT) & 3;
606 }
607
608 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
609 {
610         u64 val;
611
612         val = top & RB_TIME_VAL_MASK;
613         val <<= RB_TIME_SHIFT;
614         val |= bottom & RB_TIME_VAL_MASK;
615
616         return val;
617 }
618
619 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
620 {
621         unsigned long top, bottom, msb;
622         unsigned long c;
623
624         /*
625          * If the read is interrupted by a write, then the cnt will
626          * be different. Loop until both top and bottom have been read
627          * without interruption.
628          */
629         do {
630                 c = local_read(&t->cnt);
631                 top = local_read(&t->top);
632                 bottom = local_read(&t->bottom);
633                 msb = local_read(&t->msb);
634         } while (c != local_read(&t->cnt));
635
636         *cnt = rb_time_cnt(top);
637
638         /* If top and bottom counts don't match, this interrupted a write */
639         if (*cnt != rb_time_cnt(bottom))
640                 return false;
641
642         /* The shift to msb will lose its cnt bits */
643         *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
644         return true;
645 }
646
647 static bool rb_time_read(rb_time_t *t, u64 *ret)
648 {
649         unsigned long cnt;
650
651         return __rb_time_read(t, ret, &cnt);
652 }
653
654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
655 {
656         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
657 }
658
659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
660                                  unsigned long *msb)
661 {
662         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
663         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
664         *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
665 }
666
667 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
668 {
669         val = rb_time_val_cnt(val, cnt);
670         local_set(t, val);
671 }
672
673 static void rb_time_set(rb_time_t *t, u64 val)
674 {
675         unsigned long cnt, top, bottom, msb;
676
677         rb_time_split(val, &top, &bottom, &msb);
678
679         /* Writes always succeed with a valid number even if it gets interrupted. */
680         do {
681                 cnt = local_inc_return(&t->cnt);
682                 rb_time_val_set(&t->top, top, cnt);
683                 rb_time_val_set(&t->bottom, bottom, cnt);
684                 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
685         } while (cnt != local_read(&t->cnt));
686 }
687
688 static inline bool
689 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
690 {
691         unsigned long ret;
692
693         ret = local_cmpxchg(l, expect, set);
694         return ret == expect;
695 }
696
697 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
698 {
699         unsigned long cnt, top, bottom, msb;
700         unsigned long cnt2, top2, bottom2, msb2;
701         u64 val;
702
703         /* The cmpxchg always fails if it interrupted an update */
704          if (!__rb_time_read(t, &val, &cnt2))
705                  return false;
706
707          if (val != expect)
708                  return false;
709
710          cnt = local_read(&t->cnt);
711          if ((cnt & 3) != cnt2)
712                  return false;
713
714          cnt2 = cnt + 1;
715
716          rb_time_split(val, &top, &bottom, &msb);
717          top = rb_time_val_cnt(top, cnt);
718          bottom = rb_time_val_cnt(bottom, cnt);
719
720          rb_time_split(set, &top2, &bottom2, &msb2);
721          top2 = rb_time_val_cnt(top2, cnt2);
722          bottom2 = rb_time_val_cnt(bottom2, cnt2);
723
724         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
725                 return false;
726         if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
727                 return false;
728         if (!rb_time_read_cmpxchg(&t->top, top, top2))
729                 return false;
730         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
731                 return false;
732         return true;
733 }
734
735 #else /* 64 bits */
736
737 /* local64_t always succeeds */
738
739 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
740 {
741         *ret = local64_read(&t->time);
742         return true;
743 }
744 static void rb_time_set(rb_time_t *t, u64 val)
745 {
746         local64_set(&t->time, val);
747 }
748
749 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
750 {
751         u64 val;
752         val = local64_cmpxchg(&t->time, expect, set);
753         return val == expect;
754 }
755 #endif
756
757 /*
758  * Enable this to make sure that the event passed to
759  * ring_buffer_event_time_stamp() is not committed and also
760  * is on the buffer that it passed in.
761  */
762 //#define RB_VERIFY_EVENT
763 #ifdef RB_VERIFY_EVENT
764 static struct list_head *rb_list_head(struct list_head *list);
765 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
766                          void *event)
767 {
768         struct buffer_page *page = cpu_buffer->commit_page;
769         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
770         struct list_head *next;
771         long commit, write;
772         unsigned long addr = (unsigned long)event;
773         bool done = false;
774         int stop = 0;
775
776         /* Make sure the event exists and is not committed yet */
777         do {
778                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
779                         done = true;
780                 commit = local_read(&page->page->commit);
781                 write = local_read(&page->write);
782                 if (addr >= (unsigned long)&page->page->data[commit] &&
783                     addr < (unsigned long)&page->page->data[write])
784                         return;
785
786                 next = rb_list_head(page->list.next);
787                 page = list_entry(next, struct buffer_page, list);
788         } while (!done);
789         WARN_ON_ONCE(1);
790 }
791 #else
792 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
793                          void *event)
794 {
795 }
796 #endif
797
798 /*
799  * The absolute time stamp drops the 5 MSBs and some clocks may
800  * require them. The rb_fix_abs_ts() will take a previous full
801  * time stamp, and add the 5 MSB of that time stamp on to the
802  * saved absolute time stamp. Then they are compared in case of
803  * the unlikely event that the latest time stamp incremented
804  * the 5 MSB.
805  */
806 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
807 {
808         if (save_ts & TS_MSB) {
809                 abs |= save_ts & TS_MSB;
810                 /* Check for overflow */
811                 if (unlikely(abs < save_ts))
812                         abs += 1ULL << 59;
813         }
814         return abs;
815 }
816
817 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
818
819 /**
820  * ring_buffer_event_time_stamp - return the event's current time stamp
821  * @buffer: The buffer that the event is on
822  * @event: the event to get the time stamp of
823  *
824  * Note, this must be called after @event is reserved, and before it is
825  * committed to the ring buffer. And must be called from the same
826  * context where the event was reserved (normal, softirq, irq, etc).
827  *
828  * Returns the time stamp associated with the current event.
829  * If the event has an extended time stamp, then that is used as
830  * the time stamp to return.
831  * In the highly unlikely case that the event was nested more than
832  * the max nesting, then the write_stamp of the buffer is returned,
833  * otherwise  current time is returned, but that really neither of
834  * the last two cases should ever happen.
835  */
836 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
837                                  struct ring_buffer_event *event)
838 {
839         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
840         unsigned int nest;
841         u64 ts;
842
843         /* If the event includes an absolute time, then just use that */
844         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
845                 ts = rb_event_time_stamp(event);
846                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
847         }
848
849         nest = local_read(&cpu_buffer->committing);
850         verify_event(cpu_buffer, event);
851         if (WARN_ON_ONCE(!nest))
852                 goto fail;
853
854         /* Read the current saved nesting level time stamp */
855         if (likely(--nest < MAX_NEST))
856                 return cpu_buffer->event_stamp[nest];
857
858         /* Shouldn't happen, warn if it does */
859         WARN_ONCE(1, "nest (%d) greater than max", nest);
860
861  fail:
862         /* Can only fail on 32 bit */
863         if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
864                 /* Screw it, just read the current time */
865                 ts = rb_time_stamp(cpu_buffer->buffer);
866
867         return ts;
868 }
869
870 /**
871  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
872  * @buffer: The ring_buffer to get the number of pages from
873  * @cpu: The cpu of the ring_buffer to get the number of pages from
874  *
875  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
876  */
877 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
878 {
879         return buffer->buffers[cpu]->nr_pages;
880 }
881
882 /**
883  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
884  * @buffer: The ring_buffer to get the number of pages from
885  * @cpu: The cpu of the ring_buffer to get the number of pages from
886  *
887  * Returns the number of pages that have content in the ring buffer.
888  */
889 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
890 {
891         size_t read;
892         size_t lost;
893         size_t cnt;
894
895         read = local_read(&buffer->buffers[cpu]->pages_read);
896         lost = local_read(&buffer->buffers[cpu]->pages_lost);
897         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
898
899         if (WARN_ON_ONCE(cnt < lost))
900                 return 0;
901
902         cnt -= lost;
903
904         /* The reader can read an empty page, but not more than that */
905         if (cnt < read) {
906                 WARN_ON_ONCE(read > cnt + 1);
907                 return 0;
908         }
909
910         return cnt - read;
911 }
912
913 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
914 {
915         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
916         size_t nr_pages;
917         size_t dirty;
918
919         nr_pages = cpu_buffer->nr_pages;
920         if (!nr_pages || !full)
921                 return true;
922
923         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
924
925         return (dirty * 100) > (full * nr_pages);
926 }
927
928 /*
929  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
930  *
931  * Schedules a delayed work to wake up any task that is blocked on the
932  * ring buffer waiters queue.
933  */
934 static void rb_wake_up_waiters(struct irq_work *work)
935 {
936         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
937
938         wake_up_all(&rbwork->waiters);
939         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
940                 rbwork->wakeup_full = false;
941                 rbwork->full_waiters_pending = false;
942                 wake_up_all(&rbwork->full_waiters);
943         }
944 }
945
946 /**
947  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
948  * @buffer: The ring buffer to wake waiters on
949  *
950  * In the case of a file that represents a ring buffer is closing,
951  * it is prudent to wake up any waiters that are on this.
952  */
953 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
954 {
955         struct ring_buffer_per_cpu *cpu_buffer;
956         struct rb_irq_work *rbwork;
957
958         if (!buffer)
959                 return;
960
961         if (cpu == RING_BUFFER_ALL_CPUS) {
962
963                 /* Wake up individual ones too. One level recursion */
964                 for_each_buffer_cpu(buffer, cpu)
965                         ring_buffer_wake_waiters(buffer, cpu);
966
967                 rbwork = &buffer->irq_work;
968         } else {
969                 if (WARN_ON_ONCE(!buffer->buffers))
970                         return;
971                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
972                         return;
973
974                 cpu_buffer = buffer->buffers[cpu];
975                 /* The CPU buffer may not have been initialized yet */
976                 if (!cpu_buffer)
977                         return;
978                 rbwork = &cpu_buffer->irq_work;
979         }
980
981         rbwork->wait_index++;
982         /* make sure the waiters see the new index */
983         smp_wmb();
984
985         rb_wake_up_waiters(&rbwork->work);
986 }
987
988 /**
989  * ring_buffer_wait - wait for input to the ring buffer
990  * @buffer: buffer to wait on
991  * @cpu: the cpu buffer to wait on
992  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
993  *
994  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
995  * as data is added to any of the @buffer's cpu buffers. Otherwise
996  * it will wait for data to be added to a specific cpu buffer.
997  */
998 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
999 {
1000         struct ring_buffer_per_cpu *cpu_buffer;
1001         DEFINE_WAIT(wait);
1002         struct rb_irq_work *work;
1003         long wait_index;
1004         int ret = 0;
1005
1006         /*
1007          * Depending on what the caller is waiting for, either any
1008          * data in any cpu buffer, or a specific buffer, put the
1009          * caller on the appropriate wait queue.
1010          */
1011         if (cpu == RING_BUFFER_ALL_CPUS) {
1012                 work = &buffer->irq_work;
1013                 /* Full only makes sense on per cpu reads */
1014                 full = 0;
1015         } else {
1016                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1017                         return -ENODEV;
1018                 cpu_buffer = buffer->buffers[cpu];
1019                 work = &cpu_buffer->irq_work;
1020         }
1021
1022         wait_index = READ_ONCE(work->wait_index);
1023
1024         while (true) {
1025                 if (full)
1026                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1027                 else
1028                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1029
1030                 /*
1031                  * The events can happen in critical sections where
1032                  * checking a work queue can cause deadlocks.
1033                  * After adding a task to the queue, this flag is set
1034                  * only to notify events to try to wake up the queue
1035                  * using irq_work.
1036                  *
1037                  * We don't clear it even if the buffer is no longer
1038                  * empty. The flag only causes the next event to run
1039                  * irq_work to do the work queue wake up. The worse
1040                  * that can happen if we race with !trace_empty() is that
1041                  * an event will cause an irq_work to try to wake up
1042                  * an empty queue.
1043                  *
1044                  * There's no reason to protect this flag either, as
1045                  * the work queue and irq_work logic will do the necessary
1046                  * synchronization for the wake ups. The only thing
1047                  * that is necessary is that the wake up happens after
1048                  * a task has been queued. It's OK for spurious wake ups.
1049                  */
1050                 if (full)
1051                         work->full_waiters_pending = true;
1052                 else
1053                         work->waiters_pending = true;
1054
1055                 if (signal_pending(current)) {
1056                         ret = -EINTR;
1057                         break;
1058                 }
1059
1060                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1061                         break;
1062
1063                 if (cpu != RING_BUFFER_ALL_CPUS &&
1064                     !ring_buffer_empty_cpu(buffer, cpu)) {
1065                         unsigned long flags;
1066                         bool pagebusy;
1067                         bool done;
1068
1069                         if (!full)
1070                                 break;
1071
1072                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1073                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1074                         done = !pagebusy && full_hit(buffer, cpu, full);
1075
1076                         if (!cpu_buffer->shortest_full ||
1077                             cpu_buffer->shortest_full > full)
1078                                 cpu_buffer->shortest_full = full;
1079                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1080                         if (done)
1081                                 break;
1082                 }
1083
1084                 schedule();
1085
1086                 /* Make sure to see the new wait index */
1087                 smp_rmb();
1088                 if (wait_index != work->wait_index)
1089                         break;
1090         }
1091
1092         if (full)
1093                 finish_wait(&work->full_waiters, &wait);
1094         else
1095                 finish_wait(&work->waiters, &wait);
1096
1097         return ret;
1098 }
1099
1100 /**
1101  * ring_buffer_poll_wait - poll on buffer input
1102  * @buffer: buffer to wait on
1103  * @cpu: the cpu buffer to wait on
1104  * @filp: the file descriptor
1105  * @poll_table: The poll descriptor
1106  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1107  *
1108  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1109  * as data is added to any of the @buffer's cpu buffers. Otherwise
1110  * it will wait for data to be added to a specific cpu buffer.
1111  *
1112  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1113  * zero otherwise.
1114  */
1115 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1116                           struct file *filp, poll_table *poll_table, int full)
1117 {
1118         struct ring_buffer_per_cpu *cpu_buffer;
1119         struct rb_irq_work *work;
1120
1121         if (cpu == RING_BUFFER_ALL_CPUS) {
1122                 work = &buffer->irq_work;
1123                 full = 0;
1124         } else {
1125                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1126                         return -EINVAL;
1127
1128                 cpu_buffer = buffer->buffers[cpu];
1129                 work = &cpu_buffer->irq_work;
1130         }
1131
1132         if (full) {
1133                 poll_wait(filp, &work->full_waiters, poll_table);
1134                 work->full_waiters_pending = true;
1135         } else {
1136                 poll_wait(filp, &work->waiters, poll_table);
1137                 work->waiters_pending = true;
1138         }
1139
1140         /*
1141          * There's a tight race between setting the waiters_pending and
1142          * checking if the ring buffer is empty.  Once the waiters_pending bit
1143          * is set, the next event will wake the task up, but we can get stuck
1144          * if there's only a single event in.
1145          *
1146          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1147          * but adding a memory barrier to all events will cause too much of a
1148          * performance hit in the fast path.  We only need a memory barrier when
1149          * the buffer goes from empty to having content.  But as this race is
1150          * extremely small, and it's not a problem if another event comes in, we
1151          * will fix it later.
1152          */
1153         smp_mb();
1154
1155         if (full)
1156                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1157
1158         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1159             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1160                 return EPOLLIN | EPOLLRDNORM;
1161         return 0;
1162 }
1163
1164 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1165 #define RB_WARN_ON(b, cond)                                             \
1166         ({                                                              \
1167                 int _____ret = unlikely(cond);                          \
1168                 if (_____ret) {                                         \
1169                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1170                                 struct ring_buffer_per_cpu *__b =       \
1171                                         (void *)b;                      \
1172                                 atomic_inc(&__b->buffer->record_disabled); \
1173                         } else                                          \
1174                                 atomic_inc(&b->record_disabled);        \
1175                         WARN_ON(1);                                     \
1176                 }                                                       \
1177                 _____ret;                                               \
1178         })
1179
1180 /* Up this if you want to test the TIME_EXTENTS and normalization */
1181 #define DEBUG_SHIFT 0
1182
1183 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1184 {
1185         u64 ts;
1186
1187         /* Skip retpolines :-( */
1188         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1189                 ts = trace_clock_local();
1190         else
1191                 ts = buffer->clock();
1192
1193         /* shift to debug/test normalization and TIME_EXTENTS */
1194         return ts << DEBUG_SHIFT;
1195 }
1196
1197 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1198 {
1199         u64 time;
1200
1201         preempt_disable_notrace();
1202         time = rb_time_stamp(buffer);
1203         preempt_enable_notrace();
1204
1205         return time;
1206 }
1207 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1208
1209 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1210                                       int cpu, u64 *ts)
1211 {
1212         /* Just stupid testing the normalize function and deltas */
1213         *ts >>= DEBUG_SHIFT;
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1216
1217 /*
1218  * Making the ring buffer lockless makes things tricky.
1219  * Although writes only happen on the CPU that they are on,
1220  * and they only need to worry about interrupts. Reads can
1221  * happen on any CPU.
1222  *
1223  * The reader page is always off the ring buffer, but when the
1224  * reader finishes with a page, it needs to swap its page with
1225  * a new one from the buffer. The reader needs to take from
1226  * the head (writes go to the tail). But if a writer is in overwrite
1227  * mode and wraps, it must push the head page forward.
1228  *
1229  * Here lies the problem.
1230  *
1231  * The reader must be careful to replace only the head page, and
1232  * not another one. As described at the top of the file in the
1233  * ASCII art, the reader sets its old page to point to the next
1234  * page after head. It then sets the page after head to point to
1235  * the old reader page. But if the writer moves the head page
1236  * during this operation, the reader could end up with the tail.
1237  *
1238  * We use cmpxchg to help prevent this race. We also do something
1239  * special with the page before head. We set the LSB to 1.
1240  *
1241  * When the writer must push the page forward, it will clear the
1242  * bit that points to the head page, move the head, and then set
1243  * the bit that points to the new head page.
1244  *
1245  * We also don't want an interrupt coming in and moving the head
1246  * page on another writer. Thus we use the second LSB to catch
1247  * that too. Thus:
1248  *
1249  * head->list->prev->next        bit 1          bit 0
1250  *                              -------        -------
1251  * Normal page                     0              0
1252  * Points to head page             0              1
1253  * New head page                   1              0
1254  *
1255  * Note we can not trust the prev pointer of the head page, because:
1256  *
1257  * +----+       +-----+        +-----+
1258  * |    |------>|  T  |---X--->|  N  |
1259  * |    |<------|     |        |     |
1260  * +----+       +-----+        +-----+
1261  *   ^                           ^ |
1262  *   |          +-----+          | |
1263  *   +----------|  R  |----------+ |
1264  *              |     |<-----------+
1265  *              +-----+
1266  *
1267  * Key:  ---X-->  HEAD flag set in pointer
1268  *         T      Tail page
1269  *         R      Reader page
1270  *         N      Next page
1271  *
1272  * (see __rb_reserve_next() to see where this happens)
1273  *
1274  *  What the above shows is that the reader just swapped out
1275  *  the reader page with a page in the buffer, but before it
1276  *  could make the new header point back to the new page added
1277  *  it was preempted by a writer. The writer moved forward onto
1278  *  the new page added by the reader and is about to move forward
1279  *  again.
1280  *
1281  *  You can see, it is legitimate for the previous pointer of
1282  *  the head (or any page) not to point back to itself. But only
1283  *  temporarily.
1284  */
1285
1286 #define RB_PAGE_NORMAL          0UL
1287 #define RB_PAGE_HEAD            1UL
1288 #define RB_PAGE_UPDATE          2UL
1289
1290
1291 #define RB_FLAG_MASK            3UL
1292
1293 /* PAGE_MOVED is not part of the mask */
1294 #define RB_PAGE_MOVED           4UL
1295
1296 /*
1297  * rb_list_head - remove any bit
1298  */
1299 static struct list_head *rb_list_head(struct list_head *list)
1300 {
1301         unsigned long val = (unsigned long)list;
1302
1303         return (struct list_head *)(val & ~RB_FLAG_MASK);
1304 }
1305
1306 /*
1307  * rb_is_head_page - test if the given page is the head page
1308  *
1309  * Because the reader may move the head_page pointer, we can
1310  * not trust what the head page is (it may be pointing to
1311  * the reader page). But if the next page is a header page,
1312  * its flags will be non zero.
1313  */
1314 static inline int
1315 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1316 {
1317         unsigned long val;
1318
1319         val = (unsigned long)list->next;
1320
1321         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1322                 return RB_PAGE_MOVED;
1323
1324         return val & RB_FLAG_MASK;
1325 }
1326
1327 /*
1328  * rb_is_reader_page
1329  *
1330  * The unique thing about the reader page, is that, if the
1331  * writer is ever on it, the previous pointer never points
1332  * back to the reader page.
1333  */
1334 static bool rb_is_reader_page(struct buffer_page *page)
1335 {
1336         struct list_head *list = page->list.prev;
1337
1338         return rb_list_head(list->next) != &page->list;
1339 }
1340
1341 /*
1342  * rb_set_list_to_head - set a list_head to be pointing to head.
1343  */
1344 static void rb_set_list_to_head(struct list_head *list)
1345 {
1346         unsigned long *ptr;
1347
1348         ptr = (unsigned long *)&list->next;
1349         *ptr |= RB_PAGE_HEAD;
1350         *ptr &= ~RB_PAGE_UPDATE;
1351 }
1352
1353 /*
1354  * rb_head_page_activate - sets up head page
1355  */
1356 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1357 {
1358         struct buffer_page *head;
1359
1360         head = cpu_buffer->head_page;
1361         if (!head)
1362                 return;
1363
1364         /*
1365          * Set the previous list pointer to have the HEAD flag.
1366          */
1367         rb_set_list_to_head(head->list.prev);
1368 }
1369
1370 static void rb_list_head_clear(struct list_head *list)
1371 {
1372         unsigned long *ptr = (unsigned long *)&list->next;
1373
1374         *ptr &= ~RB_FLAG_MASK;
1375 }
1376
1377 /*
1378  * rb_head_page_deactivate - clears head page ptr (for free list)
1379  */
1380 static void
1381 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1382 {
1383         struct list_head *hd;
1384
1385         /* Go through the whole list and clear any pointers found. */
1386         rb_list_head_clear(cpu_buffer->pages);
1387
1388         list_for_each(hd, cpu_buffer->pages)
1389                 rb_list_head_clear(hd);
1390 }
1391
1392 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1393                             struct buffer_page *head,
1394                             struct buffer_page *prev,
1395                             int old_flag, int new_flag)
1396 {
1397         struct list_head *list;
1398         unsigned long val = (unsigned long)&head->list;
1399         unsigned long ret;
1400
1401         list = &prev->list;
1402
1403         val &= ~RB_FLAG_MASK;
1404
1405         ret = cmpxchg((unsigned long *)&list->next,
1406                       val | old_flag, val | new_flag);
1407
1408         /* check if the reader took the page */
1409         if ((ret & ~RB_FLAG_MASK) != val)
1410                 return RB_PAGE_MOVED;
1411
1412         return ret & RB_FLAG_MASK;
1413 }
1414
1415 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1416                                    struct buffer_page *head,
1417                                    struct buffer_page *prev,
1418                                    int old_flag)
1419 {
1420         return rb_head_page_set(cpu_buffer, head, prev,
1421                                 old_flag, RB_PAGE_UPDATE);
1422 }
1423
1424 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1425                                  struct buffer_page *head,
1426                                  struct buffer_page *prev,
1427                                  int old_flag)
1428 {
1429         return rb_head_page_set(cpu_buffer, head, prev,
1430                                 old_flag, RB_PAGE_HEAD);
1431 }
1432
1433 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1434                                    struct buffer_page *head,
1435                                    struct buffer_page *prev,
1436                                    int old_flag)
1437 {
1438         return rb_head_page_set(cpu_buffer, head, prev,
1439                                 old_flag, RB_PAGE_NORMAL);
1440 }
1441
1442 static inline void rb_inc_page(struct buffer_page **bpage)
1443 {
1444         struct list_head *p = rb_list_head((*bpage)->list.next);
1445
1446         *bpage = list_entry(p, struct buffer_page, list);
1447 }
1448
1449 static struct buffer_page *
1450 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1451 {
1452         struct buffer_page *head;
1453         struct buffer_page *page;
1454         struct list_head *list;
1455         int i;
1456
1457         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1458                 return NULL;
1459
1460         /* sanity check */
1461         list = cpu_buffer->pages;
1462         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1463                 return NULL;
1464
1465         page = head = cpu_buffer->head_page;
1466         /*
1467          * It is possible that the writer moves the header behind
1468          * where we started, and we miss in one loop.
1469          * A second loop should grab the header, but we'll do
1470          * three loops just because I'm paranoid.
1471          */
1472         for (i = 0; i < 3; i++) {
1473                 do {
1474                         if (rb_is_head_page(page, page->list.prev)) {
1475                                 cpu_buffer->head_page = page;
1476                                 return page;
1477                         }
1478                         rb_inc_page(&page);
1479                 } while (page != head);
1480         }
1481
1482         RB_WARN_ON(cpu_buffer, 1);
1483
1484         return NULL;
1485 }
1486
1487 static bool rb_head_page_replace(struct buffer_page *old,
1488                                 struct buffer_page *new)
1489 {
1490         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1491         unsigned long val;
1492         unsigned long ret;
1493
1494         val = *ptr & ~RB_FLAG_MASK;
1495         val |= RB_PAGE_HEAD;
1496
1497         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1498
1499         return ret == val;
1500 }
1501
1502 /*
1503  * rb_tail_page_update - move the tail page forward
1504  */
1505 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1506                                struct buffer_page *tail_page,
1507                                struct buffer_page *next_page)
1508 {
1509         unsigned long old_entries;
1510         unsigned long old_write;
1511
1512         /*
1513          * The tail page now needs to be moved forward.
1514          *
1515          * We need to reset the tail page, but without messing
1516          * with possible erasing of data brought in by interrupts
1517          * that have moved the tail page and are currently on it.
1518          *
1519          * We add a counter to the write field to denote this.
1520          */
1521         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1522         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1523
1524         local_inc(&cpu_buffer->pages_touched);
1525         /*
1526          * Just make sure we have seen our old_write and synchronize
1527          * with any interrupts that come in.
1528          */
1529         barrier();
1530
1531         /*
1532          * If the tail page is still the same as what we think
1533          * it is, then it is up to us to update the tail
1534          * pointer.
1535          */
1536         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1537                 /* Zero the write counter */
1538                 unsigned long val = old_write & ~RB_WRITE_MASK;
1539                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1540
1541                 /*
1542                  * This will only succeed if an interrupt did
1543                  * not come in and change it. In which case, we
1544                  * do not want to modify it.
1545                  *
1546                  * We add (void) to let the compiler know that we do not care
1547                  * about the return value of these functions. We use the
1548                  * cmpxchg to only update if an interrupt did not already
1549                  * do it for us. If the cmpxchg fails, we don't care.
1550                  */
1551                 (void)local_cmpxchg(&next_page->write, old_write, val);
1552                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1553
1554                 /*
1555                  * No need to worry about races with clearing out the commit.
1556                  * it only can increment when a commit takes place. But that
1557                  * only happens in the outer most nested commit.
1558                  */
1559                 local_set(&next_page->page->commit, 0);
1560
1561                 /* Again, either we update tail_page or an interrupt does */
1562                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1563         }
1564 }
1565
1566 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1567                           struct buffer_page *bpage)
1568 {
1569         unsigned long val = (unsigned long)bpage;
1570
1571         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1572 }
1573
1574 /**
1575  * rb_check_pages - integrity check of buffer pages
1576  * @cpu_buffer: CPU buffer with pages to test
1577  *
1578  * As a safety measure we check to make sure the data pages have not
1579  * been corrupted.
1580  */
1581 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1582 {
1583         struct list_head *head = rb_list_head(cpu_buffer->pages);
1584         struct list_head *tmp;
1585
1586         if (RB_WARN_ON(cpu_buffer,
1587                         rb_list_head(rb_list_head(head->next)->prev) != head))
1588                 return;
1589
1590         if (RB_WARN_ON(cpu_buffer,
1591                         rb_list_head(rb_list_head(head->prev)->next) != head))
1592                 return;
1593
1594         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1595                 if (RB_WARN_ON(cpu_buffer,
1596                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1597                         return;
1598
1599                 if (RB_WARN_ON(cpu_buffer,
1600                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1601                         return;
1602         }
1603 }
1604
1605 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1606                 long nr_pages, struct list_head *pages)
1607 {
1608         struct buffer_page *bpage, *tmp;
1609         bool user_thread = current->mm != NULL;
1610         gfp_t mflags;
1611         long i;
1612
1613         /*
1614          * Check if the available memory is there first.
1615          * Note, si_mem_available() only gives us a rough estimate of available
1616          * memory. It may not be accurate. But we don't care, we just want
1617          * to prevent doing any allocation when it is obvious that it is
1618          * not going to succeed.
1619          */
1620         i = si_mem_available();
1621         if (i < nr_pages)
1622                 return -ENOMEM;
1623
1624         /*
1625          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1626          * gracefully without invoking oom-killer and the system is not
1627          * destabilized.
1628          */
1629         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1630
1631         /*
1632          * If a user thread allocates too much, and si_mem_available()
1633          * reports there's enough memory, even though there is not.
1634          * Make sure the OOM killer kills this thread. This can happen
1635          * even with RETRY_MAYFAIL because another task may be doing
1636          * an allocation after this task has taken all memory.
1637          * This is the task the OOM killer needs to take out during this
1638          * loop, even if it was triggered by an allocation somewhere else.
1639          */
1640         if (user_thread)
1641                 set_current_oom_origin();
1642         for (i = 0; i < nr_pages; i++) {
1643                 struct page *page;
1644
1645                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1646                                     mflags, cpu_to_node(cpu_buffer->cpu));
1647                 if (!bpage)
1648                         goto free_pages;
1649
1650                 rb_check_bpage(cpu_buffer, bpage);
1651
1652                 list_add(&bpage->list, pages);
1653
1654                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1655                 if (!page)
1656                         goto free_pages;
1657                 bpage->page = page_address(page);
1658                 rb_init_page(bpage->page);
1659
1660                 if (user_thread && fatal_signal_pending(current))
1661                         goto free_pages;
1662         }
1663         if (user_thread)
1664                 clear_current_oom_origin();
1665
1666         return 0;
1667
1668 free_pages:
1669         list_for_each_entry_safe(bpage, tmp, pages, list) {
1670                 list_del_init(&bpage->list);
1671                 free_buffer_page(bpage);
1672         }
1673         if (user_thread)
1674                 clear_current_oom_origin();
1675
1676         return -ENOMEM;
1677 }
1678
1679 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1680                              unsigned long nr_pages)
1681 {
1682         LIST_HEAD(pages);
1683
1684         WARN_ON(!nr_pages);
1685
1686         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1687                 return -ENOMEM;
1688
1689         /*
1690          * The ring buffer page list is a circular list that does not
1691          * start and end with a list head. All page list items point to
1692          * other pages.
1693          */
1694         cpu_buffer->pages = pages.next;
1695         list_del(&pages);
1696
1697         cpu_buffer->nr_pages = nr_pages;
1698
1699         rb_check_pages(cpu_buffer);
1700
1701         return 0;
1702 }
1703
1704 static struct ring_buffer_per_cpu *
1705 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1706 {
1707         struct ring_buffer_per_cpu *cpu_buffer;
1708         struct buffer_page *bpage;
1709         struct page *page;
1710         int ret;
1711
1712         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1713                                   GFP_KERNEL, cpu_to_node(cpu));
1714         if (!cpu_buffer)
1715                 return NULL;
1716
1717         cpu_buffer->cpu = cpu;
1718         cpu_buffer->buffer = buffer;
1719         raw_spin_lock_init(&cpu_buffer->reader_lock);
1720         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1721         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1722         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1723         init_completion(&cpu_buffer->update_done);
1724         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1725         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1726         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1727
1728         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1729                             GFP_KERNEL, cpu_to_node(cpu));
1730         if (!bpage)
1731                 goto fail_free_buffer;
1732
1733         rb_check_bpage(cpu_buffer, bpage);
1734
1735         cpu_buffer->reader_page = bpage;
1736         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1737         if (!page)
1738                 goto fail_free_reader;
1739         bpage->page = page_address(page);
1740         rb_init_page(bpage->page);
1741
1742         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1743         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1744
1745         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1746         if (ret < 0)
1747                 goto fail_free_reader;
1748
1749         cpu_buffer->head_page
1750                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1751         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1752
1753         rb_head_page_activate(cpu_buffer);
1754
1755         return cpu_buffer;
1756
1757  fail_free_reader:
1758         free_buffer_page(cpu_buffer->reader_page);
1759
1760  fail_free_buffer:
1761         kfree(cpu_buffer);
1762         return NULL;
1763 }
1764
1765 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1766 {
1767         struct list_head *head = cpu_buffer->pages;
1768         struct buffer_page *bpage, *tmp;
1769
1770         irq_work_sync(&cpu_buffer->irq_work.work);
1771
1772         free_buffer_page(cpu_buffer->reader_page);
1773
1774         if (head) {
1775                 rb_head_page_deactivate(cpu_buffer);
1776
1777                 list_for_each_entry_safe(bpage, tmp, head, list) {
1778                         list_del_init(&bpage->list);
1779                         free_buffer_page(bpage);
1780                 }
1781                 bpage = list_entry(head, struct buffer_page, list);
1782                 free_buffer_page(bpage);
1783         }
1784
1785         kfree(cpu_buffer);
1786 }
1787
1788 /**
1789  * __ring_buffer_alloc - allocate a new ring_buffer
1790  * @size: the size in bytes per cpu that is needed.
1791  * @flags: attributes to set for the ring buffer.
1792  * @key: ring buffer reader_lock_key.
1793  *
1794  * Currently the only flag that is available is the RB_FL_OVERWRITE
1795  * flag. This flag means that the buffer will overwrite old data
1796  * when the buffer wraps. If this flag is not set, the buffer will
1797  * drop data when the tail hits the head.
1798  */
1799 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1800                                         struct lock_class_key *key)
1801 {
1802         struct trace_buffer *buffer;
1803         long nr_pages;
1804         int bsize;
1805         int cpu;
1806         int ret;
1807
1808         /* keep it in its own cache line */
1809         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1810                          GFP_KERNEL);
1811         if (!buffer)
1812                 return NULL;
1813
1814         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1815                 goto fail_free_buffer;
1816
1817         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1818         buffer->flags = flags;
1819         buffer->clock = trace_clock_local;
1820         buffer->reader_lock_key = key;
1821
1822         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1823         init_waitqueue_head(&buffer->irq_work.waiters);
1824
1825         /* need at least two pages */
1826         if (nr_pages < 2)
1827                 nr_pages = 2;
1828
1829         buffer->cpus = nr_cpu_ids;
1830
1831         bsize = sizeof(void *) * nr_cpu_ids;
1832         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1833                                   GFP_KERNEL);
1834         if (!buffer->buffers)
1835                 goto fail_free_cpumask;
1836
1837         cpu = raw_smp_processor_id();
1838         cpumask_set_cpu(cpu, buffer->cpumask);
1839         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1840         if (!buffer->buffers[cpu])
1841                 goto fail_free_buffers;
1842
1843         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1844         if (ret < 0)
1845                 goto fail_free_buffers;
1846
1847         mutex_init(&buffer->mutex);
1848
1849         return buffer;
1850
1851  fail_free_buffers:
1852         for_each_buffer_cpu(buffer, cpu) {
1853                 if (buffer->buffers[cpu])
1854                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1855         }
1856         kfree(buffer->buffers);
1857
1858  fail_free_cpumask:
1859         free_cpumask_var(buffer->cpumask);
1860
1861  fail_free_buffer:
1862         kfree(buffer);
1863         return NULL;
1864 }
1865 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1866
1867 /**
1868  * ring_buffer_free - free a ring buffer.
1869  * @buffer: the buffer to free.
1870  */
1871 void
1872 ring_buffer_free(struct trace_buffer *buffer)
1873 {
1874         int cpu;
1875
1876         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1877
1878         irq_work_sync(&buffer->irq_work.work);
1879
1880         for_each_buffer_cpu(buffer, cpu)
1881                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1882
1883         kfree(buffer->buffers);
1884         free_cpumask_var(buffer->cpumask);
1885
1886         kfree(buffer);
1887 }
1888 EXPORT_SYMBOL_GPL(ring_buffer_free);
1889
1890 void ring_buffer_set_clock(struct trace_buffer *buffer,
1891                            u64 (*clock)(void))
1892 {
1893         buffer->clock = clock;
1894 }
1895
1896 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1897 {
1898         buffer->time_stamp_abs = abs;
1899 }
1900
1901 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1902 {
1903         return buffer->time_stamp_abs;
1904 }
1905
1906 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1907
1908 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1909 {
1910         return local_read(&bpage->entries) & RB_WRITE_MASK;
1911 }
1912
1913 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1914 {
1915         return local_read(&bpage->write) & RB_WRITE_MASK;
1916 }
1917
1918 static bool
1919 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1920 {
1921         struct list_head *tail_page, *to_remove, *next_page;
1922         struct buffer_page *to_remove_page, *tmp_iter_page;
1923         struct buffer_page *last_page, *first_page;
1924         unsigned long nr_removed;
1925         unsigned long head_bit;
1926         int page_entries;
1927
1928         head_bit = 0;
1929
1930         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1931         atomic_inc(&cpu_buffer->record_disabled);
1932         /*
1933          * We don't race with the readers since we have acquired the reader
1934          * lock. We also don't race with writers after disabling recording.
1935          * This makes it easy to figure out the first and the last page to be
1936          * removed from the list. We unlink all the pages in between including
1937          * the first and last pages. This is done in a busy loop so that we
1938          * lose the least number of traces.
1939          * The pages are freed after we restart recording and unlock readers.
1940          */
1941         tail_page = &cpu_buffer->tail_page->list;
1942
1943         /*
1944          * tail page might be on reader page, we remove the next page
1945          * from the ring buffer
1946          */
1947         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1948                 tail_page = rb_list_head(tail_page->next);
1949         to_remove = tail_page;
1950
1951         /* start of pages to remove */
1952         first_page = list_entry(rb_list_head(to_remove->next),
1953                                 struct buffer_page, list);
1954
1955         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1956                 to_remove = rb_list_head(to_remove)->next;
1957                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1958         }
1959
1960         next_page = rb_list_head(to_remove)->next;
1961
1962         /*
1963          * Now we remove all pages between tail_page and next_page.
1964          * Make sure that we have head_bit value preserved for the
1965          * next page
1966          */
1967         tail_page->next = (struct list_head *)((unsigned long)next_page |
1968                                                 head_bit);
1969         next_page = rb_list_head(next_page);
1970         next_page->prev = tail_page;
1971
1972         /* make sure pages points to a valid page in the ring buffer */
1973         cpu_buffer->pages = next_page;
1974
1975         /* update head page */
1976         if (head_bit)
1977                 cpu_buffer->head_page = list_entry(next_page,
1978                                                 struct buffer_page, list);
1979
1980         /*
1981          * change read pointer to make sure any read iterators reset
1982          * themselves
1983          */
1984         cpu_buffer->read = 0;
1985
1986         /* pages are removed, resume tracing and then free the pages */
1987         atomic_dec(&cpu_buffer->record_disabled);
1988         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1989
1990         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1991
1992         /* last buffer page to remove */
1993         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1994                                 list);
1995         tmp_iter_page = first_page;
1996
1997         do {
1998                 cond_resched();
1999
2000                 to_remove_page = tmp_iter_page;
2001                 rb_inc_page(&tmp_iter_page);
2002
2003                 /* update the counters */
2004                 page_entries = rb_page_entries(to_remove_page);
2005                 if (page_entries) {
2006                         /*
2007                          * If something was added to this page, it was full
2008                          * since it is not the tail page. So we deduct the
2009                          * bytes consumed in ring buffer from here.
2010                          * Increment overrun to account for the lost events.
2011                          */
2012                         local_add(page_entries, &cpu_buffer->overrun);
2013                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2014                         local_inc(&cpu_buffer->pages_lost);
2015                 }
2016
2017                 /*
2018                  * We have already removed references to this list item, just
2019                  * free up the buffer_page and its page
2020                  */
2021                 free_buffer_page(to_remove_page);
2022                 nr_removed--;
2023
2024         } while (to_remove_page != last_page);
2025
2026         RB_WARN_ON(cpu_buffer, nr_removed);
2027
2028         return nr_removed == 0;
2029 }
2030
2031 static bool
2032 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2033 {
2034         struct list_head *pages = &cpu_buffer->new_pages;
2035         unsigned long flags;
2036         bool success;
2037         int retries;
2038
2039         /* Can be called at early boot up, where interrupts must not been enabled */
2040         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2041         /*
2042          * We are holding the reader lock, so the reader page won't be swapped
2043          * in the ring buffer. Now we are racing with the writer trying to
2044          * move head page and the tail page.
2045          * We are going to adapt the reader page update process where:
2046          * 1. We first splice the start and end of list of new pages between
2047          *    the head page and its previous page.
2048          * 2. We cmpxchg the prev_page->next to point from head page to the
2049          *    start of new pages list.
2050          * 3. Finally, we update the head->prev to the end of new list.
2051          *
2052          * We will try this process 10 times, to make sure that we don't keep
2053          * spinning.
2054          */
2055         retries = 10;
2056         success = false;
2057         while (retries--) {
2058                 struct list_head *head_page, *prev_page, *r;
2059                 struct list_head *last_page, *first_page;
2060                 struct list_head *head_page_with_bit;
2061                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2062
2063                 if (!hpage)
2064                         break;
2065                 head_page = &hpage->list;
2066                 prev_page = head_page->prev;
2067
2068                 first_page = pages->next;
2069                 last_page  = pages->prev;
2070
2071                 head_page_with_bit = (struct list_head *)
2072                                      ((unsigned long)head_page | RB_PAGE_HEAD);
2073
2074                 last_page->next = head_page_with_bit;
2075                 first_page->prev = prev_page;
2076
2077                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2078
2079                 if (r == head_page_with_bit) {
2080                         /*
2081                          * yay, we replaced the page pointer to our new list,
2082                          * now, we just have to update to head page's prev
2083                          * pointer to point to end of list
2084                          */
2085                         head_page->prev = last_page;
2086                         success = true;
2087                         break;
2088                 }
2089         }
2090
2091         if (success)
2092                 INIT_LIST_HEAD(pages);
2093         /*
2094          * If we weren't successful in adding in new pages, warn and stop
2095          * tracing
2096          */
2097         RB_WARN_ON(cpu_buffer, !success);
2098         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2099
2100         /* free pages if they weren't inserted */
2101         if (!success) {
2102                 struct buffer_page *bpage, *tmp;
2103                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2104                                          list) {
2105                         list_del_init(&bpage->list);
2106                         free_buffer_page(bpage);
2107                 }
2108         }
2109         return success;
2110 }
2111
2112 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2113 {
2114         bool success;
2115
2116         if (cpu_buffer->nr_pages_to_update > 0)
2117                 success = rb_insert_pages(cpu_buffer);
2118         else
2119                 success = rb_remove_pages(cpu_buffer,
2120                                         -cpu_buffer->nr_pages_to_update);
2121
2122         if (success)
2123                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2124 }
2125
2126 static void update_pages_handler(struct work_struct *work)
2127 {
2128         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2129                         struct ring_buffer_per_cpu, update_pages_work);
2130         rb_update_pages(cpu_buffer);
2131         complete(&cpu_buffer->update_done);
2132 }
2133
2134 /**
2135  * ring_buffer_resize - resize the ring buffer
2136  * @buffer: the buffer to resize.
2137  * @size: the new size.
2138  * @cpu_id: the cpu buffer to resize
2139  *
2140  * Minimum size is 2 * BUF_PAGE_SIZE.
2141  *
2142  * Returns 0 on success and < 0 on failure.
2143  */
2144 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2145                         int cpu_id)
2146 {
2147         struct ring_buffer_per_cpu *cpu_buffer;
2148         unsigned long nr_pages;
2149         int cpu, err;
2150
2151         /*
2152          * Always succeed at resizing a non-existent buffer:
2153          */
2154         if (!buffer)
2155                 return 0;
2156
2157         /* Make sure the requested buffer exists */
2158         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2159             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2160                 return 0;
2161
2162         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2163
2164         /* we need a minimum of two pages */
2165         if (nr_pages < 2)
2166                 nr_pages = 2;
2167
2168         /* prevent another thread from changing buffer sizes */
2169         mutex_lock(&buffer->mutex);
2170
2171
2172         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2173                 /*
2174                  * Don't succeed if resizing is disabled, as a reader might be
2175                  * manipulating the ring buffer and is expecting a sane state while
2176                  * this is true.
2177                  */
2178                 for_each_buffer_cpu(buffer, cpu) {
2179                         cpu_buffer = buffer->buffers[cpu];
2180                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2181                                 err = -EBUSY;
2182                                 goto out_err_unlock;
2183                         }
2184                 }
2185
2186                 /* calculate the pages to update */
2187                 for_each_buffer_cpu(buffer, cpu) {
2188                         cpu_buffer = buffer->buffers[cpu];
2189
2190                         cpu_buffer->nr_pages_to_update = nr_pages -
2191                                                         cpu_buffer->nr_pages;
2192                         /*
2193                          * nothing more to do for removing pages or no update
2194                          */
2195                         if (cpu_buffer->nr_pages_to_update <= 0)
2196                                 continue;
2197                         /*
2198                          * to add pages, make sure all new pages can be
2199                          * allocated without receiving ENOMEM
2200                          */
2201                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2202                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2203                                                 &cpu_buffer->new_pages)) {
2204                                 /* not enough memory for new pages */
2205                                 err = -ENOMEM;
2206                                 goto out_err;
2207                         }
2208                 }
2209
2210                 cpus_read_lock();
2211                 /*
2212                  * Fire off all the required work handlers
2213                  * We can't schedule on offline CPUs, but it's not necessary
2214                  * since we can change their buffer sizes without any race.
2215                  */
2216                 for_each_buffer_cpu(buffer, cpu) {
2217                         cpu_buffer = buffer->buffers[cpu];
2218                         if (!cpu_buffer->nr_pages_to_update)
2219                                 continue;
2220
2221                         /* Can't run something on an offline CPU. */
2222                         if (!cpu_online(cpu)) {
2223                                 rb_update_pages(cpu_buffer);
2224                                 cpu_buffer->nr_pages_to_update = 0;
2225                         } else {
2226                                 /* Run directly if possible. */
2227                                 migrate_disable();
2228                                 if (cpu != smp_processor_id()) {
2229                                         migrate_enable();
2230                                         schedule_work_on(cpu,
2231                                                          &cpu_buffer->update_pages_work);
2232                                 } else {
2233                                         update_pages_handler(&cpu_buffer->update_pages_work);
2234                                         migrate_enable();
2235                                 }
2236                         }
2237                 }
2238
2239                 /* wait for all the updates to complete */
2240                 for_each_buffer_cpu(buffer, cpu) {
2241                         cpu_buffer = buffer->buffers[cpu];
2242                         if (!cpu_buffer->nr_pages_to_update)
2243                                 continue;
2244
2245                         if (cpu_online(cpu))
2246                                 wait_for_completion(&cpu_buffer->update_done);
2247                         cpu_buffer->nr_pages_to_update = 0;
2248                 }
2249
2250                 cpus_read_unlock();
2251         } else {
2252                 cpu_buffer = buffer->buffers[cpu_id];
2253
2254                 if (nr_pages == cpu_buffer->nr_pages)
2255                         goto out;
2256
2257                 /*
2258                  * Don't succeed if resizing is disabled, as a reader might be
2259                  * manipulating the ring buffer and is expecting a sane state while
2260                  * this is true.
2261                  */
2262                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2263                         err = -EBUSY;
2264                         goto out_err_unlock;
2265                 }
2266
2267                 cpu_buffer->nr_pages_to_update = nr_pages -
2268                                                 cpu_buffer->nr_pages;
2269
2270                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2271                 if (cpu_buffer->nr_pages_to_update > 0 &&
2272                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2273                                             &cpu_buffer->new_pages)) {
2274                         err = -ENOMEM;
2275                         goto out_err;
2276                 }
2277
2278                 cpus_read_lock();
2279
2280                 /* Can't run something on an offline CPU. */
2281                 if (!cpu_online(cpu_id))
2282                         rb_update_pages(cpu_buffer);
2283                 else {
2284                         /* Run directly if possible. */
2285                         migrate_disable();
2286                         if (cpu_id == smp_processor_id()) {
2287                                 rb_update_pages(cpu_buffer);
2288                                 migrate_enable();
2289                         } else {
2290                                 migrate_enable();
2291                                 schedule_work_on(cpu_id,
2292                                                  &cpu_buffer->update_pages_work);
2293                                 wait_for_completion(&cpu_buffer->update_done);
2294                         }
2295                 }
2296
2297                 cpu_buffer->nr_pages_to_update = 0;
2298                 cpus_read_unlock();
2299         }
2300
2301  out:
2302         /*
2303          * The ring buffer resize can happen with the ring buffer
2304          * enabled, so that the update disturbs the tracing as little
2305          * as possible. But if the buffer is disabled, we do not need
2306          * to worry about that, and we can take the time to verify
2307          * that the buffer is not corrupt.
2308          */
2309         if (atomic_read(&buffer->record_disabled)) {
2310                 atomic_inc(&buffer->record_disabled);
2311                 /*
2312                  * Even though the buffer was disabled, we must make sure
2313                  * that it is truly disabled before calling rb_check_pages.
2314                  * There could have been a race between checking
2315                  * record_disable and incrementing it.
2316                  */
2317                 synchronize_rcu();
2318                 for_each_buffer_cpu(buffer, cpu) {
2319                         cpu_buffer = buffer->buffers[cpu];
2320                         rb_check_pages(cpu_buffer);
2321                 }
2322                 atomic_dec(&buffer->record_disabled);
2323         }
2324
2325         mutex_unlock(&buffer->mutex);
2326         return 0;
2327
2328  out_err:
2329         for_each_buffer_cpu(buffer, cpu) {
2330                 struct buffer_page *bpage, *tmp;
2331
2332                 cpu_buffer = buffer->buffers[cpu];
2333                 cpu_buffer->nr_pages_to_update = 0;
2334
2335                 if (list_empty(&cpu_buffer->new_pages))
2336                         continue;
2337
2338                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2339                                         list) {
2340                         list_del_init(&bpage->list);
2341                         free_buffer_page(bpage);
2342                 }
2343         }
2344  out_err_unlock:
2345         mutex_unlock(&buffer->mutex);
2346         return err;
2347 }
2348 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2349
2350 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2351 {
2352         mutex_lock(&buffer->mutex);
2353         if (val)
2354                 buffer->flags |= RB_FL_OVERWRITE;
2355         else
2356                 buffer->flags &= ~RB_FL_OVERWRITE;
2357         mutex_unlock(&buffer->mutex);
2358 }
2359 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2360
2361 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2362 {
2363         return bpage->page->data + index;
2364 }
2365
2366 static __always_inline struct ring_buffer_event *
2367 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2368 {
2369         return __rb_page_index(cpu_buffer->reader_page,
2370                                cpu_buffer->reader_page->read);
2371 }
2372
2373 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2374 {
2375         return local_read(&bpage->page->commit);
2376 }
2377
2378 static struct ring_buffer_event *
2379 rb_iter_head_event(struct ring_buffer_iter *iter)
2380 {
2381         struct ring_buffer_event *event;
2382         struct buffer_page *iter_head_page = iter->head_page;
2383         unsigned long commit;
2384         unsigned length;
2385
2386         if (iter->head != iter->next_event)
2387                 return iter->event;
2388
2389         /*
2390          * When the writer goes across pages, it issues a cmpxchg which
2391          * is a mb(), which will synchronize with the rmb here.
2392          * (see rb_tail_page_update() and __rb_reserve_next())
2393          */
2394         commit = rb_page_commit(iter_head_page);
2395         smp_rmb();
2396         event = __rb_page_index(iter_head_page, iter->head);
2397         length = rb_event_length(event);
2398
2399         /*
2400          * READ_ONCE() doesn't work on functions and we don't want the
2401          * compiler doing any crazy optimizations with length.
2402          */
2403         barrier();
2404
2405         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2406                 /* Writer corrupted the read? */
2407                 goto reset;
2408
2409         memcpy(iter->event, event, length);
2410         /*
2411          * If the page stamp is still the same after this rmb() then the
2412          * event was safely copied without the writer entering the page.
2413          */
2414         smp_rmb();
2415
2416         /* Make sure the page didn't change since we read this */
2417         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2418             commit > rb_page_commit(iter_head_page))
2419                 goto reset;
2420
2421         iter->next_event = iter->head + length;
2422         return iter->event;
2423  reset:
2424         /* Reset to the beginning */
2425         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2426         iter->head = 0;
2427         iter->next_event = 0;
2428         iter->missed_events = 1;
2429         return NULL;
2430 }
2431
2432 /* Size is determined by what has been committed */
2433 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2434 {
2435         return rb_page_commit(bpage);
2436 }
2437
2438 static __always_inline unsigned
2439 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2440 {
2441         return rb_page_commit(cpu_buffer->commit_page);
2442 }
2443
2444 static __always_inline unsigned
2445 rb_event_index(struct ring_buffer_event *event)
2446 {
2447         unsigned long addr = (unsigned long)event;
2448
2449         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2450 }
2451
2452 static void rb_inc_iter(struct ring_buffer_iter *iter)
2453 {
2454         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2455
2456         /*
2457          * The iterator could be on the reader page (it starts there).
2458          * But the head could have moved, since the reader was
2459          * found. Check for this case and assign the iterator
2460          * to the head page instead of next.
2461          */
2462         if (iter->head_page == cpu_buffer->reader_page)
2463                 iter->head_page = rb_set_head_page(cpu_buffer);
2464         else
2465                 rb_inc_page(&iter->head_page);
2466
2467         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2468         iter->head = 0;
2469         iter->next_event = 0;
2470 }
2471
2472 /*
2473  * rb_handle_head_page - writer hit the head page
2474  *
2475  * Returns: +1 to retry page
2476  *           0 to continue
2477  *          -1 on error
2478  */
2479 static int
2480 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2481                     struct buffer_page *tail_page,
2482                     struct buffer_page *next_page)
2483 {
2484         struct buffer_page *new_head;
2485         int entries;
2486         int type;
2487         int ret;
2488
2489         entries = rb_page_entries(next_page);
2490
2491         /*
2492          * The hard part is here. We need to move the head
2493          * forward, and protect against both readers on
2494          * other CPUs and writers coming in via interrupts.
2495          */
2496         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2497                                        RB_PAGE_HEAD);
2498
2499         /*
2500          * type can be one of four:
2501          *  NORMAL - an interrupt already moved it for us
2502          *  HEAD   - we are the first to get here.
2503          *  UPDATE - we are the interrupt interrupting
2504          *           a current move.
2505          *  MOVED  - a reader on another CPU moved the next
2506          *           pointer to its reader page. Give up
2507          *           and try again.
2508          */
2509
2510         switch (type) {
2511         case RB_PAGE_HEAD:
2512                 /*
2513                  * We changed the head to UPDATE, thus
2514                  * it is our responsibility to update
2515                  * the counters.
2516                  */
2517                 local_add(entries, &cpu_buffer->overrun);
2518                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2519                 local_inc(&cpu_buffer->pages_lost);
2520
2521                 /*
2522                  * The entries will be zeroed out when we move the
2523                  * tail page.
2524                  */
2525
2526                 /* still more to do */
2527                 break;
2528
2529         case RB_PAGE_UPDATE:
2530                 /*
2531                  * This is an interrupt that interrupt the
2532                  * previous update. Still more to do.
2533                  */
2534                 break;
2535         case RB_PAGE_NORMAL:
2536                 /*
2537                  * An interrupt came in before the update
2538                  * and processed this for us.
2539                  * Nothing left to do.
2540                  */
2541                 return 1;
2542         case RB_PAGE_MOVED:
2543                 /*
2544                  * The reader is on another CPU and just did
2545                  * a swap with our next_page.
2546                  * Try again.
2547                  */
2548                 return 1;
2549         default:
2550                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2551                 return -1;
2552         }
2553
2554         /*
2555          * Now that we are here, the old head pointer is
2556          * set to UPDATE. This will keep the reader from
2557          * swapping the head page with the reader page.
2558          * The reader (on another CPU) will spin till
2559          * we are finished.
2560          *
2561          * We just need to protect against interrupts
2562          * doing the job. We will set the next pointer
2563          * to HEAD. After that, we set the old pointer
2564          * to NORMAL, but only if it was HEAD before.
2565          * otherwise we are an interrupt, and only
2566          * want the outer most commit to reset it.
2567          */
2568         new_head = next_page;
2569         rb_inc_page(&new_head);
2570
2571         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2572                                     RB_PAGE_NORMAL);
2573
2574         /*
2575          * Valid returns are:
2576          *  HEAD   - an interrupt came in and already set it.
2577          *  NORMAL - One of two things:
2578          *            1) We really set it.
2579          *            2) A bunch of interrupts came in and moved
2580          *               the page forward again.
2581          */
2582         switch (ret) {
2583         case RB_PAGE_HEAD:
2584         case RB_PAGE_NORMAL:
2585                 /* OK */
2586                 break;
2587         default:
2588                 RB_WARN_ON(cpu_buffer, 1);
2589                 return -1;
2590         }
2591
2592         /*
2593          * It is possible that an interrupt came in,
2594          * set the head up, then more interrupts came in
2595          * and moved it again. When we get back here,
2596          * the page would have been set to NORMAL but we
2597          * just set it back to HEAD.
2598          *
2599          * How do you detect this? Well, if that happened
2600          * the tail page would have moved.
2601          */
2602         if (ret == RB_PAGE_NORMAL) {
2603                 struct buffer_page *buffer_tail_page;
2604
2605                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2606                 /*
2607                  * If the tail had moved passed next, then we need
2608                  * to reset the pointer.
2609                  */
2610                 if (buffer_tail_page != tail_page &&
2611                     buffer_tail_page != next_page)
2612                         rb_head_page_set_normal(cpu_buffer, new_head,
2613                                                 next_page,
2614                                                 RB_PAGE_HEAD);
2615         }
2616
2617         /*
2618          * If this was the outer most commit (the one that
2619          * changed the original pointer from HEAD to UPDATE),
2620          * then it is up to us to reset it to NORMAL.
2621          */
2622         if (type == RB_PAGE_HEAD) {
2623                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2624                                               tail_page,
2625                                               RB_PAGE_UPDATE);
2626                 if (RB_WARN_ON(cpu_buffer,
2627                                ret != RB_PAGE_UPDATE))
2628                         return -1;
2629         }
2630
2631         return 0;
2632 }
2633
2634 static inline void
2635 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2636               unsigned long tail, struct rb_event_info *info)
2637 {
2638         struct buffer_page *tail_page = info->tail_page;
2639         struct ring_buffer_event *event;
2640         unsigned long length = info->length;
2641
2642         /*
2643          * Only the event that crossed the page boundary
2644          * must fill the old tail_page with padding.
2645          */
2646         if (tail >= BUF_PAGE_SIZE) {
2647                 /*
2648                  * If the page was filled, then we still need
2649                  * to update the real_end. Reset it to zero
2650                  * and the reader will ignore it.
2651                  */
2652                 if (tail == BUF_PAGE_SIZE)
2653                         tail_page->real_end = 0;
2654
2655                 local_sub(length, &tail_page->write);
2656                 return;
2657         }
2658
2659         event = __rb_page_index(tail_page, tail);
2660
2661         /* account for padding bytes */
2662         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2663
2664         /*
2665          * Save the original length to the meta data.
2666          * This will be used by the reader to add lost event
2667          * counter.
2668          */
2669         tail_page->real_end = tail;
2670
2671         /*
2672          * If this event is bigger than the minimum size, then
2673          * we need to be careful that we don't subtract the
2674          * write counter enough to allow another writer to slip
2675          * in on this page.
2676          * We put in a discarded commit instead, to make sure
2677          * that this space is not used again.
2678          *
2679          * If we are less than the minimum size, we don't need to
2680          * worry about it.
2681          */
2682         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2683                 /* No room for any events */
2684
2685                 /* Mark the rest of the page with padding */
2686                 rb_event_set_padding(event);
2687
2688                 /* Make sure the padding is visible before the write update */
2689                 smp_wmb();
2690
2691                 /* Set the write back to the previous setting */
2692                 local_sub(length, &tail_page->write);
2693                 return;
2694         }
2695
2696         /* Put in a discarded event */
2697         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2698         event->type_len = RINGBUF_TYPE_PADDING;
2699         /* time delta must be non zero */
2700         event->time_delta = 1;
2701
2702         /* Make sure the padding is visible before the tail_page->write update */
2703         smp_wmb();
2704
2705         /* Set write to end of buffer */
2706         length = (tail + length) - BUF_PAGE_SIZE;
2707         local_sub(length, &tail_page->write);
2708 }
2709
2710 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2711
2712 /*
2713  * This is the slow path, force gcc not to inline it.
2714  */
2715 static noinline struct ring_buffer_event *
2716 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2717              unsigned long tail, struct rb_event_info *info)
2718 {
2719         struct buffer_page *tail_page = info->tail_page;
2720         struct buffer_page *commit_page = cpu_buffer->commit_page;
2721         struct trace_buffer *buffer = cpu_buffer->buffer;
2722         struct buffer_page *next_page;
2723         int ret;
2724
2725         next_page = tail_page;
2726
2727         rb_inc_page(&next_page);
2728
2729         /*
2730          * If for some reason, we had an interrupt storm that made
2731          * it all the way around the buffer, bail, and warn
2732          * about it.
2733          */
2734         if (unlikely(next_page == commit_page)) {
2735                 local_inc(&cpu_buffer->commit_overrun);
2736                 goto out_reset;
2737         }
2738
2739         /*
2740          * This is where the fun begins!
2741          *
2742          * We are fighting against races between a reader that
2743          * could be on another CPU trying to swap its reader
2744          * page with the buffer head.
2745          *
2746          * We are also fighting against interrupts coming in and
2747          * moving the head or tail on us as well.
2748          *
2749          * If the next page is the head page then we have filled
2750          * the buffer, unless the commit page is still on the
2751          * reader page.
2752          */
2753         if (rb_is_head_page(next_page, &tail_page->list)) {
2754
2755                 /*
2756                  * If the commit is not on the reader page, then
2757                  * move the header page.
2758                  */
2759                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2760                         /*
2761                          * If we are not in overwrite mode,
2762                          * this is easy, just stop here.
2763                          */
2764                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2765                                 local_inc(&cpu_buffer->dropped_events);
2766                                 goto out_reset;
2767                         }
2768
2769                         ret = rb_handle_head_page(cpu_buffer,
2770                                                   tail_page,
2771                                                   next_page);
2772                         if (ret < 0)
2773                                 goto out_reset;
2774                         if (ret)
2775                                 goto out_again;
2776                 } else {
2777                         /*
2778                          * We need to be careful here too. The
2779                          * commit page could still be on the reader
2780                          * page. We could have a small buffer, and
2781                          * have filled up the buffer with events
2782                          * from interrupts and such, and wrapped.
2783                          *
2784                          * Note, if the tail page is also on the
2785                          * reader_page, we let it move out.
2786                          */
2787                         if (unlikely((cpu_buffer->commit_page !=
2788                                       cpu_buffer->tail_page) &&
2789                                      (cpu_buffer->commit_page ==
2790                                       cpu_buffer->reader_page))) {
2791                                 local_inc(&cpu_buffer->commit_overrun);
2792                                 goto out_reset;
2793                         }
2794                 }
2795         }
2796
2797         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2798
2799  out_again:
2800
2801         rb_reset_tail(cpu_buffer, tail, info);
2802
2803         /* Commit what we have for now. */
2804         rb_end_commit(cpu_buffer);
2805         /* rb_end_commit() decs committing */
2806         local_inc(&cpu_buffer->committing);
2807
2808         /* fail and let the caller try again */
2809         return ERR_PTR(-EAGAIN);
2810
2811  out_reset:
2812         /* reset write */
2813         rb_reset_tail(cpu_buffer, tail, info);
2814
2815         return NULL;
2816 }
2817
2818 /* Slow path */
2819 static struct ring_buffer_event *
2820 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2821 {
2822         if (abs)
2823                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2824         else
2825                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2826
2827         /* Not the first event on the page, or not delta? */
2828         if (abs || rb_event_index(event)) {
2829                 event->time_delta = delta & TS_MASK;
2830                 event->array[0] = delta >> TS_SHIFT;
2831         } else {
2832                 /* nope, just zero it */
2833                 event->time_delta = 0;
2834                 event->array[0] = 0;
2835         }
2836
2837         return skip_time_extend(event);
2838 }
2839
2840 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2841 static inline bool sched_clock_stable(void)
2842 {
2843         return true;
2844 }
2845 #endif
2846
2847 static void
2848 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2849                    struct rb_event_info *info)
2850 {
2851         u64 write_stamp;
2852
2853         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2854                   (unsigned long long)info->delta,
2855                   (unsigned long long)info->ts,
2856                   (unsigned long long)info->before,
2857                   (unsigned long long)info->after,
2858                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2859                   sched_clock_stable() ? "" :
2860                   "If you just came from a suspend/resume,\n"
2861                   "please switch to the trace global clock:\n"
2862                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2863                   "or add trace_clock=global to the kernel command line\n");
2864 }
2865
2866 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2867                                       struct ring_buffer_event **event,
2868                                       struct rb_event_info *info,
2869                                       u64 *delta,
2870                                       unsigned int *length)
2871 {
2872         bool abs = info->add_timestamp &
2873                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2874
2875         if (unlikely(info->delta > (1ULL << 59))) {
2876                 /*
2877                  * Some timers can use more than 59 bits, and when a timestamp
2878                  * is added to the buffer, it will lose those bits.
2879                  */
2880                 if (abs && (info->ts & TS_MSB)) {
2881                         info->delta &= ABS_TS_MASK;
2882
2883                 /* did the clock go backwards */
2884                 } else if (info->before == info->after && info->before > info->ts) {
2885                         /* not interrupted */
2886                         static int once;
2887
2888                         /*
2889                          * This is possible with a recalibrating of the TSC.
2890                          * Do not produce a call stack, but just report it.
2891                          */
2892                         if (!once) {
2893                                 once++;
2894                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2895                                         info->before, info->ts);
2896                         }
2897                 } else
2898                         rb_check_timestamp(cpu_buffer, info);
2899                 if (!abs)
2900                         info->delta = 0;
2901         }
2902         *event = rb_add_time_stamp(*event, info->delta, abs);
2903         *length -= RB_LEN_TIME_EXTEND;
2904         *delta = 0;
2905 }
2906
2907 /**
2908  * rb_update_event - update event type and data
2909  * @cpu_buffer: The per cpu buffer of the @event
2910  * @event: the event to update
2911  * @info: The info to update the @event with (contains length and delta)
2912  *
2913  * Update the type and data fields of the @event. The length
2914  * is the actual size that is written to the ring buffer,
2915  * and with this, we can determine what to place into the
2916  * data field.
2917  */
2918 static void
2919 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2920                 struct ring_buffer_event *event,
2921                 struct rb_event_info *info)
2922 {
2923         unsigned length = info->length;
2924         u64 delta = info->delta;
2925         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2926
2927         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2928                 cpu_buffer->event_stamp[nest] = info->ts;
2929
2930         /*
2931          * If we need to add a timestamp, then we
2932          * add it to the start of the reserved space.
2933          */
2934         if (unlikely(info->add_timestamp))
2935                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2936
2937         event->time_delta = delta;
2938         length -= RB_EVNT_HDR_SIZE;
2939         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2940                 event->type_len = 0;
2941                 event->array[0] = length;
2942         } else
2943                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2944 }
2945
2946 static unsigned rb_calculate_event_length(unsigned length)
2947 {
2948         struct ring_buffer_event event; /* Used only for sizeof array */
2949
2950         /* zero length can cause confusions */
2951         if (!length)
2952                 length++;
2953
2954         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2955                 length += sizeof(event.array[0]);
2956
2957         length += RB_EVNT_HDR_SIZE;
2958         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2959
2960         /*
2961          * In case the time delta is larger than the 27 bits for it
2962          * in the header, we need to add a timestamp. If another
2963          * event comes in when trying to discard this one to increase
2964          * the length, then the timestamp will be added in the allocated
2965          * space of this event. If length is bigger than the size needed
2966          * for the TIME_EXTEND, then padding has to be used. The events
2967          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2968          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2969          * As length is a multiple of 4, we only need to worry if it
2970          * is 12 (RB_LEN_TIME_EXTEND + 4).
2971          */
2972         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2973                 length += RB_ALIGNMENT;
2974
2975         return length;
2976 }
2977
2978 static u64 rb_time_delta(struct ring_buffer_event *event)
2979 {
2980         switch (event->type_len) {
2981         case RINGBUF_TYPE_PADDING:
2982                 return 0;
2983
2984         case RINGBUF_TYPE_TIME_EXTEND:
2985                 return rb_event_time_stamp(event);
2986
2987         case RINGBUF_TYPE_TIME_STAMP:
2988                 return 0;
2989
2990         case RINGBUF_TYPE_DATA:
2991                 return event->time_delta;
2992         default:
2993                 return 0;
2994         }
2995 }
2996
2997 static inline bool
2998 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2999                   struct ring_buffer_event *event)
3000 {
3001         unsigned long new_index, old_index;
3002         struct buffer_page *bpage;
3003         unsigned long index;
3004         unsigned long addr;
3005         u64 write_stamp;
3006         u64 delta;
3007
3008         new_index = rb_event_index(event);
3009         old_index = new_index + rb_event_ts_length(event);
3010         addr = (unsigned long)event;
3011         addr &= PAGE_MASK;
3012
3013         bpage = READ_ONCE(cpu_buffer->tail_page);
3014
3015         delta = rb_time_delta(event);
3016
3017         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3018                 return false;
3019
3020         /* Make sure the write stamp is read before testing the location */
3021         barrier();
3022
3023         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3024                 unsigned long write_mask =
3025                         local_read(&bpage->write) & ~RB_WRITE_MASK;
3026                 unsigned long event_length = rb_event_length(event);
3027
3028                 /* Something came in, can't discard */
3029                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3030                                        write_stamp, write_stamp - delta))
3031                         return false;
3032
3033                 /*
3034                  * It's possible that the event time delta is zero
3035                  * (has the same time stamp as the previous event)
3036                  * in which case write_stamp and before_stamp could
3037                  * be the same. In such a case, force before_stamp
3038                  * to be different than write_stamp. It doesn't
3039                  * matter what it is, as long as its different.
3040                  */
3041                 if (!delta)
3042                         rb_time_set(&cpu_buffer->before_stamp, 0);
3043
3044                 /*
3045                  * If an event were to come in now, it would see that the
3046                  * write_stamp and the before_stamp are different, and assume
3047                  * that this event just added itself before updating
3048                  * the write stamp. The interrupting event will fix the
3049                  * write stamp for us, and use the before stamp as its delta.
3050                  */
3051
3052                 /*
3053                  * This is on the tail page. It is possible that
3054                  * a write could come in and move the tail page
3055                  * and write to the next page. That is fine
3056                  * because we just shorten what is on this page.
3057                  */
3058                 old_index += write_mask;
3059                 new_index += write_mask;
3060                 index = local_cmpxchg(&bpage->write, old_index, new_index);
3061                 if (index == old_index) {
3062                         /* update counters */
3063                         local_sub(event_length, &cpu_buffer->entries_bytes);
3064                         return true;
3065                 }
3066         }
3067
3068         /* could not discard */
3069         return false;
3070 }
3071
3072 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3073 {
3074         local_inc(&cpu_buffer->committing);
3075         local_inc(&cpu_buffer->commits);
3076 }
3077
3078 static __always_inline void
3079 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3080 {
3081         unsigned long max_count;
3082
3083         /*
3084          * We only race with interrupts and NMIs on this CPU.
3085          * If we own the commit event, then we can commit
3086          * all others that interrupted us, since the interruptions
3087          * are in stack format (they finish before they come
3088          * back to us). This allows us to do a simple loop to
3089          * assign the commit to the tail.
3090          */
3091  again:
3092         max_count = cpu_buffer->nr_pages * 100;
3093
3094         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3095                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3096                         return;
3097                 if (RB_WARN_ON(cpu_buffer,
3098                                rb_is_reader_page(cpu_buffer->tail_page)))
3099                         return;
3100                 /*
3101                  * No need for a memory barrier here, as the update
3102                  * of the tail_page did it for this page.
3103                  */
3104                 local_set(&cpu_buffer->commit_page->page->commit,
3105                           rb_page_write(cpu_buffer->commit_page));
3106                 rb_inc_page(&cpu_buffer->commit_page);
3107                 /* add barrier to keep gcc from optimizing too much */
3108                 barrier();
3109         }
3110         while (rb_commit_index(cpu_buffer) !=
3111                rb_page_write(cpu_buffer->commit_page)) {
3112
3113                 /* Make sure the readers see the content of what is committed. */
3114                 smp_wmb();
3115                 local_set(&cpu_buffer->commit_page->page->commit,
3116                           rb_page_write(cpu_buffer->commit_page));
3117                 RB_WARN_ON(cpu_buffer,
3118                            local_read(&cpu_buffer->commit_page->page->commit) &
3119                            ~RB_WRITE_MASK);
3120                 barrier();
3121         }
3122
3123         /* again, keep gcc from optimizing */
3124         barrier();
3125
3126         /*
3127          * If an interrupt came in just after the first while loop
3128          * and pushed the tail page forward, we will be left with
3129          * a dangling commit that will never go forward.
3130          */
3131         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3132                 goto again;
3133 }
3134
3135 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3136 {
3137         unsigned long commits;
3138
3139         if (RB_WARN_ON(cpu_buffer,
3140                        !local_read(&cpu_buffer->committing)))
3141                 return;
3142
3143  again:
3144         commits = local_read(&cpu_buffer->commits);
3145         /* synchronize with interrupts */
3146         barrier();
3147         if (local_read(&cpu_buffer->committing) == 1)
3148                 rb_set_commit_to_write(cpu_buffer);
3149
3150         local_dec(&cpu_buffer->committing);
3151
3152         /* synchronize with interrupts */
3153         barrier();
3154
3155         /*
3156          * Need to account for interrupts coming in between the
3157          * updating of the commit page and the clearing of the
3158          * committing counter.
3159          */
3160         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3161             !local_read(&cpu_buffer->committing)) {
3162                 local_inc(&cpu_buffer->committing);
3163                 goto again;
3164         }
3165 }
3166
3167 static inline void rb_event_discard(struct ring_buffer_event *event)
3168 {
3169         if (extended_time(event))
3170                 event = skip_time_extend(event);
3171
3172         /* array[0] holds the actual length for the discarded event */
3173         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3174         event->type_len = RINGBUF_TYPE_PADDING;
3175         /* time delta must be non zero */
3176         if (!event->time_delta)
3177                 event->time_delta = 1;
3178 }
3179
3180 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3181 {
3182         local_inc(&cpu_buffer->entries);
3183         rb_end_commit(cpu_buffer);
3184 }
3185
3186 static __always_inline void
3187 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3188 {
3189         if (buffer->irq_work.waiters_pending) {
3190                 buffer->irq_work.waiters_pending = false;
3191                 /* irq_work_queue() supplies it's own memory barriers */
3192                 irq_work_queue(&buffer->irq_work.work);
3193         }
3194
3195         if (cpu_buffer->irq_work.waiters_pending) {
3196                 cpu_buffer->irq_work.waiters_pending = false;
3197                 /* irq_work_queue() supplies it's own memory barriers */
3198                 irq_work_queue(&cpu_buffer->irq_work.work);
3199         }
3200
3201         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3202                 return;
3203
3204         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3205                 return;
3206
3207         if (!cpu_buffer->irq_work.full_waiters_pending)
3208                 return;
3209
3210         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3211
3212         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3213                 return;
3214
3215         cpu_buffer->irq_work.wakeup_full = true;
3216         cpu_buffer->irq_work.full_waiters_pending = false;
3217         /* irq_work_queue() supplies it's own memory barriers */
3218         irq_work_queue(&cpu_buffer->irq_work.work);
3219 }
3220
3221 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3222 # define do_ring_buffer_record_recursion()      \
3223         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3224 #else
3225 # define do_ring_buffer_record_recursion() do { } while (0)
3226 #endif
3227
3228 /*
3229  * The lock and unlock are done within a preempt disable section.
3230  * The current_context per_cpu variable can only be modified
3231  * by the current task between lock and unlock. But it can
3232  * be modified more than once via an interrupt. To pass this
3233  * information from the lock to the unlock without having to
3234  * access the 'in_interrupt()' functions again (which do show
3235  * a bit of overhead in something as critical as function tracing,
3236  * we use a bitmask trick.
3237  *
3238  *  bit 1 =  NMI context
3239  *  bit 2 =  IRQ context
3240  *  bit 3 =  SoftIRQ context
3241  *  bit 4 =  normal context.
3242  *
3243  * This works because this is the order of contexts that can
3244  * preempt other contexts. A SoftIRQ never preempts an IRQ
3245  * context.
3246  *
3247  * When the context is determined, the corresponding bit is
3248  * checked and set (if it was set, then a recursion of that context
3249  * happened).
3250  *
3251  * On unlock, we need to clear this bit. To do so, just subtract
3252  * 1 from the current_context and AND it to itself.
3253  *
3254  * (binary)
3255  *  101 - 1 = 100
3256  *  101 & 100 = 100 (clearing bit zero)
3257  *
3258  *  1010 - 1 = 1001
3259  *  1010 & 1001 = 1000 (clearing bit 1)
3260  *
3261  * The least significant bit can be cleared this way, and it
3262  * just so happens that it is the same bit corresponding to
3263  * the current context.
3264  *
3265  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3266  * is set when a recursion is detected at the current context, and if
3267  * the TRANSITION bit is already set, it will fail the recursion.
3268  * This is needed because there's a lag between the changing of
3269  * interrupt context and updating the preempt count. In this case,
3270  * a false positive will be found. To handle this, one extra recursion
3271  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3272  * bit is already set, then it is considered a recursion and the function
3273  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3274  *
3275  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3276  * to be cleared. Even if it wasn't the context that set it. That is,
3277  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3278  * is called before preempt_count() is updated, since the check will
3279  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3280  * NMI then comes in, it will set the NMI bit, but when the NMI code
3281  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3282  * and leave the NMI bit set. But this is fine, because the interrupt
3283  * code that set the TRANSITION bit will then clear the NMI bit when it
3284  * calls trace_recursive_unlock(). If another NMI comes in, it will
3285  * set the TRANSITION bit and continue.
3286  *
3287  * Note: The TRANSITION bit only handles a single transition between context.
3288  */
3289
3290 static __always_inline bool
3291 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3292 {
3293         unsigned int val = cpu_buffer->current_context;
3294         int bit = interrupt_context_level();
3295
3296         bit = RB_CTX_NORMAL - bit;
3297
3298         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3299                 /*
3300                  * It is possible that this was called by transitioning
3301                  * between interrupt context, and preempt_count() has not
3302                  * been updated yet. In this case, use the TRANSITION bit.
3303                  */
3304                 bit = RB_CTX_TRANSITION;
3305                 if (val & (1 << (bit + cpu_buffer->nest))) {
3306                         do_ring_buffer_record_recursion();
3307                         return true;
3308                 }
3309         }
3310
3311         val |= (1 << (bit + cpu_buffer->nest));
3312         cpu_buffer->current_context = val;
3313
3314         return false;
3315 }
3316
3317 static __always_inline void
3318 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3319 {
3320         cpu_buffer->current_context &=
3321                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3322 }
3323
3324 /* The recursive locking above uses 5 bits */
3325 #define NESTED_BITS 5
3326
3327 /**
3328  * ring_buffer_nest_start - Allow to trace while nested
3329  * @buffer: The ring buffer to modify
3330  *
3331  * The ring buffer has a safety mechanism to prevent recursion.
3332  * But there may be a case where a trace needs to be done while
3333  * tracing something else. In this case, calling this function
3334  * will allow this function to nest within a currently active
3335  * ring_buffer_lock_reserve().
3336  *
3337  * Call this function before calling another ring_buffer_lock_reserve() and
3338  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3339  */
3340 void ring_buffer_nest_start(struct trace_buffer *buffer)
3341 {
3342         struct ring_buffer_per_cpu *cpu_buffer;
3343         int cpu;
3344
3345         /* Enabled by ring_buffer_nest_end() */
3346         preempt_disable_notrace();
3347         cpu = raw_smp_processor_id();
3348         cpu_buffer = buffer->buffers[cpu];
3349         /* This is the shift value for the above recursive locking */
3350         cpu_buffer->nest += NESTED_BITS;
3351 }
3352
3353 /**
3354  * ring_buffer_nest_end - Allow to trace while nested
3355  * @buffer: The ring buffer to modify
3356  *
3357  * Must be called after ring_buffer_nest_start() and after the
3358  * ring_buffer_unlock_commit().
3359  */
3360 void ring_buffer_nest_end(struct trace_buffer *buffer)
3361 {
3362         struct ring_buffer_per_cpu *cpu_buffer;
3363         int cpu;
3364
3365         /* disabled by ring_buffer_nest_start() */
3366         cpu = raw_smp_processor_id();
3367         cpu_buffer = buffer->buffers[cpu];
3368         /* This is the shift value for the above recursive locking */
3369         cpu_buffer->nest -= NESTED_BITS;
3370         preempt_enable_notrace();
3371 }
3372
3373 /**
3374  * ring_buffer_unlock_commit - commit a reserved
3375  * @buffer: The buffer to commit to
3376  * @event: The event pointer to commit.
3377  *
3378  * This commits the data to the ring buffer, and releases any locks held.
3379  *
3380  * Must be paired with ring_buffer_lock_reserve.
3381  */
3382 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3383 {
3384         struct ring_buffer_per_cpu *cpu_buffer;
3385         int cpu = raw_smp_processor_id();
3386
3387         cpu_buffer = buffer->buffers[cpu];
3388
3389         rb_commit(cpu_buffer);
3390
3391         rb_wakeups(buffer, cpu_buffer);
3392
3393         trace_recursive_unlock(cpu_buffer);
3394
3395         preempt_enable_notrace();
3396
3397         return 0;
3398 }
3399 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3400
3401 /* Special value to validate all deltas on a page. */
3402 #define CHECK_FULL_PAGE         1L
3403
3404 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3405 static void dump_buffer_page(struct buffer_data_page *bpage,
3406                              struct rb_event_info *info,
3407                              unsigned long tail)
3408 {
3409         struct ring_buffer_event *event;
3410         u64 ts, delta;
3411         int e;
3412
3413         ts = bpage->time_stamp;
3414         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3415
3416         for (e = 0; e < tail; e += rb_event_length(event)) {
3417
3418                 event = (struct ring_buffer_event *)(bpage->data + e);
3419
3420                 switch (event->type_len) {
3421
3422                 case RINGBUF_TYPE_TIME_EXTEND:
3423                         delta = rb_event_time_stamp(event);
3424                         ts += delta;
3425                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3426                         break;
3427
3428                 case RINGBUF_TYPE_TIME_STAMP:
3429                         delta = rb_event_time_stamp(event);
3430                         ts = rb_fix_abs_ts(delta, ts);
3431                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3432                         break;
3433
3434                 case RINGBUF_TYPE_PADDING:
3435                         ts += event->time_delta;
3436                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3437                         break;
3438
3439                 case RINGBUF_TYPE_DATA:
3440                         ts += event->time_delta;
3441                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3442                         break;
3443
3444                 default:
3445                         break;
3446                 }
3447         }
3448 }
3449
3450 static DEFINE_PER_CPU(atomic_t, checking);
3451 static atomic_t ts_dump;
3452
3453 /*
3454  * Check if the current event time stamp matches the deltas on
3455  * the buffer page.
3456  */
3457 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3458                          struct rb_event_info *info,
3459                          unsigned long tail)
3460 {
3461         struct ring_buffer_event *event;
3462         struct buffer_data_page *bpage;
3463         u64 ts, delta;
3464         bool full = false;
3465         int e;
3466
3467         bpage = info->tail_page->page;
3468
3469         if (tail == CHECK_FULL_PAGE) {
3470                 full = true;
3471                 tail = local_read(&bpage->commit);
3472         } else if (info->add_timestamp &
3473                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3474                 /* Ignore events with absolute time stamps */
3475                 return;
3476         }
3477
3478         /*
3479          * Do not check the first event (skip possible extends too).
3480          * Also do not check if previous events have not been committed.
3481          */
3482         if (tail <= 8 || tail > local_read(&bpage->commit))
3483                 return;
3484
3485         /*
3486          * If this interrupted another event, 
3487          */
3488         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3489                 goto out;
3490
3491         ts = bpage->time_stamp;
3492
3493         for (e = 0; e < tail; e += rb_event_length(event)) {
3494
3495                 event = (struct ring_buffer_event *)(bpage->data + e);
3496
3497                 switch (event->type_len) {
3498
3499                 case RINGBUF_TYPE_TIME_EXTEND:
3500                         delta = rb_event_time_stamp(event);
3501                         ts += delta;
3502                         break;
3503
3504                 case RINGBUF_TYPE_TIME_STAMP:
3505                         delta = rb_event_time_stamp(event);
3506                         ts = rb_fix_abs_ts(delta, ts);
3507                         break;
3508
3509                 case RINGBUF_TYPE_PADDING:
3510                         if (event->time_delta == 1)
3511                                 break;
3512                         fallthrough;
3513                 case RINGBUF_TYPE_DATA:
3514                         ts += event->time_delta;
3515                         break;
3516
3517                 default:
3518                         RB_WARN_ON(cpu_buffer, 1);
3519                 }
3520         }
3521         if ((full && ts > info->ts) ||
3522             (!full && ts + info->delta != info->ts)) {
3523                 /* If another report is happening, ignore this one */
3524                 if (atomic_inc_return(&ts_dump) != 1) {
3525                         atomic_dec(&ts_dump);
3526                         goto out;
3527                 }
3528                 atomic_inc(&cpu_buffer->record_disabled);
3529                 /* There's some cases in boot up that this can happen */
3530                 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3531                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3532                         cpu_buffer->cpu,
3533                         ts + info->delta, info->ts, info->delta,
3534                         info->before, info->after,
3535                         full ? " (full)" : "");
3536                 dump_buffer_page(bpage, info, tail);
3537                 atomic_dec(&ts_dump);
3538                 /* Do not re-enable checking */
3539                 return;
3540         }
3541 out:
3542         atomic_dec(this_cpu_ptr(&checking));
3543 }
3544 #else
3545 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3546                          struct rb_event_info *info,
3547                          unsigned long tail)
3548 {
3549 }
3550 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3551
3552 static struct ring_buffer_event *
3553 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3554                   struct rb_event_info *info)
3555 {
3556         struct ring_buffer_event *event;
3557         struct buffer_page *tail_page;
3558         unsigned long tail, write, w;
3559         bool a_ok;
3560         bool b_ok;
3561
3562         /* Don't let the compiler play games with cpu_buffer->tail_page */
3563         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3564
3565  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3566         barrier();
3567         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3568         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3569         barrier();
3570         info->ts = rb_time_stamp(cpu_buffer->buffer);
3571
3572         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3573                 info->delta = info->ts;
3574         } else {
3575                 /*
3576                  * If interrupting an event time update, we may need an
3577                  * absolute timestamp.
3578                  * Don't bother if this is the start of a new page (w == 0).
3579                  */
3580                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3581                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3582                         info->length += RB_LEN_TIME_EXTEND;
3583                 } else {
3584                         info->delta = info->ts - info->after;
3585                         if (unlikely(test_time_stamp(info->delta))) {
3586                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3587                                 info->length += RB_LEN_TIME_EXTEND;
3588                         }
3589                 }
3590         }
3591
3592  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3593
3594  /*C*/  write = local_add_return(info->length, &tail_page->write);
3595
3596         /* set write to only the index of the write */
3597         write &= RB_WRITE_MASK;
3598
3599         tail = write - info->length;
3600
3601         /* See if we shot pass the end of this buffer page */
3602         if (unlikely(write > BUF_PAGE_SIZE)) {
3603                 /* before and after may now different, fix it up*/
3604                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3605                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3606                 if (a_ok && b_ok && info->before != info->after)
3607                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3608                                               info->before, info->after);
3609                 if (a_ok && b_ok)
3610                         check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3611                 return rb_move_tail(cpu_buffer, tail, info);
3612         }
3613
3614         if (likely(tail == w)) {
3615                 u64 save_before;
3616                 bool s_ok;
3617
3618                 /* Nothing interrupted us between A and C */
3619  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3620                 barrier();
3621  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3622                 RB_WARN_ON(cpu_buffer, !s_ok);
3623                 if (likely(!(info->add_timestamp &
3624                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3625                         /* This did not interrupt any time update */
3626                         info->delta = info->ts - info->after;
3627                 else
3628                         /* Just use full timestamp for interrupting event */
3629                         info->delta = info->ts;
3630                 barrier();
3631                 check_buffer(cpu_buffer, info, tail);
3632                 if (unlikely(info->ts != save_before)) {
3633                         /* SLOW PATH - Interrupted between C and E */
3634
3635                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3636                         RB_WARN_ON(cpu_buffer, !a_ok);
3637
3638                         /* Write stamp must only go forward */
3639                         if (save_before > info->after) {
3640                                 /*
3641                                  * We do not care about the result, only that
3642                                  * it gets updated atomically.
3643                                  */
3644                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3645                                                       info->after, save_before);
3646                         }
3647                 }
3648         } else {
3649                 u64 ts;
3650                 /* SLOW PATH - Interrupted between A and C */
3651                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3652                 /* Was interrupted before here, write_stamp must be valid */
3653                 RB_WARN_ON(cpu_buffer, !a_ok);
3654                 ts = rb_time_stamp(cpu_buffer->buffer);
3655                 barrier();
3656  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3657                     info->after < ts &&
3658                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3659                                     info->after, ts)) {
3660                         /* Nothing came after this event between C and E */
3661                         info->delta = ts - info->after;
3662                 } else {
3663                         /*
3664                          * Interrupted between C and E:
3665                          * Lost the previous events time stamp. Just set the
3666                          * delta to zero, and this will be the same time as
3667                          * the event this event interrupted. And the events that
3668                          * came after this will still be correct (as they would
3669                          * have built their delta on the previous event.
3670                          */
3671                         info->delta = 0;
3672                 }
3673                 info->ts = ts;
3674                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3675         }
3676
3677         /*
3678          * If this is the first commit on the page, then it has the same
3679          * timestamp as the page itself.
3680          */
3681         if (unlikely(!tail && !(info->add_timestamp &
3682                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3683                 info->delta = 0;
3684
3685         /* We reserved something on the buffer */
3686
3687         event = __rb_page_index(tail_page, tail);
3688         rb_update_event(cpu_buffer, event, info);
3689
3690         local_inc(&tail_page->entries);
3691
3692         /*
3693          * If this is the first commit on the page, then update
3694          * its timestamp.
3695          */
3696         if (unlikely(!tail))
3697                 tail_page->page->time_stamp = info->ts;
3698
3699         /* account for these added bytes */
3700         local_add(info->length, &cpu_buffer->entries_bytes);
3701
3702         return event;
3703 }
3704
3705 static __always_inline struct ring_buffer_event *
3706 rb_reserve_next_event(struct trace_buffer *buffer,
3707                       struct ring_buffer_per_cpu *cpu_buffer,
3708                       unsigned long length)
3709 {
3710         struct ring_buffer_event *event;
3711         struct rb_event_info info;
3712         int nr_loops = 0;
3713         int add_ts_default;
3714
3715         rb_start_commit(cpu_buffer);
3716         /* The commit page can not change after this */
3717
3718 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3719         /*
3720          * Due to the ability to swap a cpu buffer from a buffer
3721          * it is possible it was swapped before we committed.
3722          * (committing stops a swap). We check for it here and
3723          * if it happened, we have to fail the write.
3724          */
3725         barrier();
3726         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3727                 local_dec(&cpu_buffer->committing);
3728                 local_dec(&cpu_buffer->commits);
3729                 return NULL;
3730         }
3731 #endif
3732
3733         info.length = rb_calculate_event_length(length);
3734
3735         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3736                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3737                 info.length += RB_LEN_TIME_EXTEND;
3738         } else {
3739                 add_ts_default = RB_ADD_STAMP_NONE;
3740         }
3741
3742  again:
3743         info.add_timestamp = add_ts_default;
3744         info.delta = 0;
3745
3746         /*
3747          * We allow for interrupts to reenter here and do a trace.
3748          * If one does, it will cause this original code to loop
3749          * back here. Even with heavy interrupts happening, this
3750          * should only happen a few times in a row. If this happens
3751          * 1000 times in a row, there must be either an interrupt
3752          * storm or we have something buggy.
3753          * Bail!
3754          */
3755         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3756                 goto out_fail;
3757
3758         event = __rb_reserve_next(cpu_buffer, &info);
3759
3760         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3761                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3762                         info.length -= RB_LEN_TIME_EXTEND;
3763                 goto again;
3764         }
3765
3766         if (likely(event))
3767                 return event;
3768  out_fail:
3769         rb_end_commit(cpu_buffer);
3770         return NULL;
3771 }
3772
3773 /**
3774  * ring_buffer_lock_reserve - reserve a part of the buffer
3775  * @buffer: the ring buffer to reserve from
3776  * @length: the length of the data to reserve (excluding event header)
3777  *
3778  * Returns a reserved event on the ring buffer to copy directly to.
3779  * The user of this interface will need to get the body to write into
3780  * and can use the ring_buffer_event_data() interface.
3781  *
3782  * The length is the length of the data needed, not the event length
3783  * which also includes the event header.
3784  *
3785  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3786  * If NULL is returned, then nothing has been allocated or locked.
3787  */
3788 struct ring_buffer_event *
3789 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3790 {
3791         struct ring_buffer_per_cpu *cpu_buffer;
3792         struct ring_buffer_event *event;
3793         int cpu;
3794
3795         /* If we are tracing schedule, we don't want to recurse */
3796         preempt_disable_notrace();
3797
3798         if (unlikely(atomic_read(&buffer->record_disabled)))
3799                 goto out;
3800
3801         cpu = raw_smp_processor_id();
3802
3803         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3804                 goto out;
3805
3806         cpu_buffer = buffer->buffers[cpu];
3807
3808         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3809                 goto out;
3810
3811         if (unlikely(length > BUF_MAX_DATA_SIZE))
3812                 goto out;
3813
3814         if (unlikely(trace_recursive_lock(cpu_buffer)))
3815                 goto out;
3816
3817         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3818         if (!event)
3819                 goto out_unlock;
3820
3821         return event;
3822
3823  out_unlock:
3824         trace_recursive_unlock(cpu_buffer);
3825  out:
3826         preempt_enable_notrace();
3827         return NULL;
3828 }
3829 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3830
3831 /*
3832  * Decrement the entries to the page that an event is on.
3833  * The event does not even need to exist, only the pointer
3834  * to the page it is on. This may only be called before the commit
3835  * takes place.
3836  */
3837 static inline void
3838 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3839                    struct ring_buffer_event *event)
3840 {
3841         unsigned long addr = (unsigned long)event;
3842         struct buffer_page *bpage = cpu_buffer->commit_page;
3843         struct buffer_page *start;
3844
3845         addr &= PAGE_MASK;
3846
3847         /* Do the likely case first */
3848         if (likely(bpage->page == (void *)addr)) {
3849                 local_dec(&bpage->entries);
3850                 return;
3851         }
3852
3853         /*
3854          * Because the commit page may be on the reader page we
3855          * start with the next page and check the end loop there.
3856          */
3857         rb_inc_page(&bpage);
3858         start = bpage;
3859         do {
3860                 if (bpage->page == (void *)addr) {
3861                         local_dec(&bpage->entries);
3862                         return;
3863                 }
3864                 rb_inc_page(&bpage);
3865         } while (bpage != start);
3866
3867         /* commit not part of this buffer?? */
3868         RB_WARN_ON(cpu_buffer, 1);
3869 }
3870
3871 /**
3872  * ring_buffer_discard_commit - discard an event that has not been committed
3873  * @buffer: the ring buffer
3874  * @event: non committed event to discard
3875  *
3876  * Sometimes an event that is in the ring buffer needs to be ignored.
3877  * This function lets the user discard an event in the ring buffer
3878  * and then that event will not be read later.
3879  *
3880  * This function only works if it is called before the item has been
3881  * committed. It will try to free the event from the ring buffer
3882  * if another event has not been added behind it.
3883  *
3884  * If another event has been added behind it, it will set the event
3885  * up as discarded, and perform the commit.
3886  *
3887  * If this function is called, do not call ring_buffer_unlock_commit on
3888  * the event.
3889  */
3890 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3891                                 struct ring_buffer_event *event)
3892 {
3893         struct ring_buffer_per_cpu *cpu_buffer;
3894         int cpu;
3895
3896         /* The event is discarded regardless */
3897         rb_event_discard(event);
3898
3899         cpu = smp_processor_id();
3900         cpu_buffer = buffer->buffers[cpu];
3901
3902         /*
3903          * This must only be called if the event has not been
3904          * committed yet. Thus we can assume that preemption
3905          * is still disabled.
3906          */
3907         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3908
3909         rb_decrement_entry(cpu_buffer, event);
3910         if (rb_try_to_discard(cpu_buffer, event))
3911                 goto out;
3912
3913  out:
3914         rb_end_commit(cpu_buffer);
3915
3916         trace_recursive_unlock(cpu_buffer);
3917
3918         preempt_enable_notrace();
3919
3920 }
3921 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3922
3923 /**
3924  * ring_buffer_write - write data to the buffer without reserving
3925  * @buffer: The ring buffer to write to.
3926  * @length: The length of the data being written (excluding the event header)
3927  * @data: The data to write to the buffer.
3928  *
3929  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3930  * one function. If you already have the data to write to the buffer, it
3931  * may be easier to simply call this function.
3932  *
3933  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3934  * and not the length of the event which would hold the header.
3935  */
3936 int ring_buffer_write(struct trace_buffer *buffer,
3937                       unsigned long length,
3938                       void *data)
3939 {
3940         struct ring_buffer_per_cpu *cpu_buffer;
3941         struct ring_buffer_event *event;
3942         void *body;
3943         int ret = -EBUSY;
3944         int cpu;
3945
3946         preempt_disable_notrace();
3947
3948         if (atomic_read(&buffer->record_disabled))
3949                 goto out;
3950
3951         cpu = raw_smp_processor_id();
3952
3953         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3954                 goto out;
3955
3956         cpu_buffer = buffer->buffers[cpu];
3957
3958         if (atomic_read(&cpu_buffer->record_disabled))
3959                 goto out;
3960
3961         if (length > BUF_MAX_DATA_SIZE)
3962                 goto out;
3963
3964         if (unlikely(trace_recursive_lock(cpu_buffer)))
3965                 goto out;
3966
3967         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3968         if (!event)
3969                 goto out_unlock;
3970
3971         body = rb_event_data(event);
3972
3973         memcpy(body, data, length);
3974
3975         rb_commit(cpu_buffer);
3976
3977         rb_wakeups(buffer, cpu_buffer);
3978
3979         ret = 0;
3980
3981  out_unlock:
3982         trace_recursive_unlock(cpu_buffer);
3983
3984  out:
3985         preempt_enable_notrace();
3986
3987         return ret;
3988 }
3989 EXPORT_SYMBOL_GPL(ring_buffer_write);
3990
3991 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3992 {
3993         struct buffer_page *reader = cpu_buffer->reader_page;
3994         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3995         struct buffer_page *commit = cpu_buffer->commit_page;
3996
3997         /* In case of error, head will be NULL */
3998         if (unlikely(!head))
3999                 return true;
4000
4001         /* Reader should exhaust content in reader page */
4002         if (reader->read != rb_page_commit(reader))
4003                 return false;
4004
4005         /*
4006          * If writers are committing on the reader page, knowing all
4007          * committed content has been read, the ring buffer is empty.
4008          */
4009         if (commit == reader)
4010                 return true;
4011
4012         /*
4013          * If writers are committing on a page other than reader page
4014          * and head page, there should always be content to read.
4015          */
4016         if (commit != head)
4017                 return false;
4018
4019         /*
4020          * Writers are committing on the head page, we just need
4021          * to care about there're committed data, and the reader will
4022          * swap reader page with head page when it is to read data.
4023          */
4024         return rb_page_commit(commit) == 0;
4025 }
4026
4027 /**
4028  * ring_buffer_record_disable - stop all writes into the buffer
4029  * @buffer: The ring buffer to stop writes to.
4030  *
4031  * This prevents all writes to the buffer. Any attempt to write
4032  * to the buffer after this will fail and return NULL.
4033  *
4034  * The caller should call synchronize_rcu() after this.
4035  */
4036 void ring_buffer_record_disable(struct trace_buffer *buffer)
4037 {
4038         atomic_inc(&buffer->record_disabled);
4039 }
4040 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4041
4042 /**
4043  * ring_buffer_record_enable - enable writes to the buffer
4044  * @buffer: The ring buffer to enable writes
4045  *
4046  * Note, multiple disables will need the same number of enables
4047  * to truly enable the writing (much like preempt_disable).
4048  */
4049 void ring_buffer_record_enable(struct trace_buffer *buffer)
4050 {
4051         atomic_dec(&buffer->record_disabled);
4052 }
4053 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4054
4055 /**
4056  * ring_buffer_record_off - stop all writes into the buffer
4057  * @buffer: The ring buffer to stop writes to.
4058  *
4059  * This prevents all writes to the buffer. Any attempt to write
4060  * to the buffer after this will fail and return NULL.
4061  *
4062  * This is different than ring_buffer_record_disable() as
4063  * it works like an on/off switch, where as the disable() version
4064  * must be paired with a enable().
4065  */
4066 void ring_buffer_record_off(struct trace_buffer *buffer)
4067 {
4068         unsigned int rd;
4069         unsigned int new_rd;
4070
4071         rd = atomic_read(&buffer->record_disabled);
4072         do {
4073                 new_rd = rd | RB_BUFFER_OFF;
4074         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4075 }
4076 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4077
4078 /**
4079  * ring_buffer_record_on - restart writes into the buffer
4080  * @buffer: The ring buffer to start writes to.
4081  *
4082  * This enables all writes to the buffer that was disabled by
4083  * ring_buffer_record_off().
4084  *
4085  * This is different than ring_buffer_record_enable() as
4086  * it works like an on/off switch, where as the enable() version
4087  * must be paired with a disable().
4088  */
4089 void ring_buffer_record_on(struct trace_buffer *buffer)
4090 {
4091         unsigned int rd;
4092         unsigned int new_rd;
4093
4094         rd = atomic_read(&buffer->record_disabled);
4095         do {
4096                 new_rd = rd & ~RB_BUFFER_OFF;
4097         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4098 }
4099 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4100
4101 /**
4102  * ring_buffer_record_is_on - return true if the ring buffer can write
4103  * @buffer: The ring buffer to see if write is enabled
4104  *
4105  * Returns true if the ring buffer is in a state that it accepts writes.
4106  */
4107 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4108 {
4109         return !atomic_read(&buffer->record_disabled);
4110 }
4111
4112 /**
4113  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4114  * @buffer: The ring buffer to see if write is set enabled
4115  *
4116  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4117  * Note that this does NOT mean it is in a writable state.
4118  *
4119  * It may return true when the ring buffer has been disabled by
4120  * ring_buffer_record_disable(), as that is a temporary disabling of
4121  * the ring buffer.
4122  */
4123 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4124 {
4125         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4126 }
4127
4128 /**
4129  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4130  * @buffer: The ring buffer to stop writes to.
4131  * @cpu: The CPU buffer to stop
4132  *
4133  * This prevents all writes to the buffer. Any attempt to write
4134  * to the buffer after this will fail and return NULL.
4135  *
4136  * The caller should call synchronize_rcu() after this.
4137  */
4138 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4139 {
4140         struct ring_buffer_per_cpu *cpu_buffer;
4141
4142         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4143                 return;
4144
4145         cpu_buffer = buffer->buffers[cpu];
4146         atomic_inc(&cpu_buffer->record_disabled);
4147 }
4148 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4149
4150 /**
4151  * ring_buffer_record_enable_cpu - enable writes to the buffer
4152  * @buffer: The ring buffer to enable writes
4153  * @cpu: The CPU to enable.
4154  *
4155  * Note, multiple disables will need the same number of enables
4156  * to truly enable the writing (much like preempt_disable).
4157  */
4158 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4159 {
4160         struct ring_buffer_per_cpu *cpu_buffer;
4161
4162         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4163                 return;
4164
4165         cpu_buffer = buffer->buffers[cpu];
4166         atomic_dec(&cpu_buffer->record_disabled);
4167 }
4168 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4169
4170 /*
4171  * The total entries in the ring buffer is the running counter
4172  * of entries entered into the ring buffer, minus the sum of
4173  * the entries read from the ring buffer and the number of
4174  * entries that were overwritten.
4175  */
4176 static inline unsigned long
4177 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4178 {
4179         return local_read(&cpu_buffer->entries) -
4180                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4181 }
4182
4183 /**
4184  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4185  * @buffer: The ring buffer
4186  * @cpu: The per CPU buffer to read from.
4187  */
4188 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4189 {
4190         unsigned long flags;
4191         struct ring_buffer_per_cpu *cpu_buffer;
4192         struct buffer_page *bpage;
4193         u64 ret = 0;
4194
4195         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4196                 return 0;
4197
4198         cpu_buffer = buffer->buffers[cpu];
4199         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4200         /*
4201          * if the tail is on reader_page, oldest time stamp is on the reader
4202          * page
4203          */
4204         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4205                 bpage = cpu_buffer->reader_page;
4206         else
4207                 bpage = rb_set_head_page(cpu_buffer);
4208         if (bpage)
4209                 ret = bpage->page->time_stamp;
4210         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4211
4212         return ret;
4213 }
4214 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4215
4216 /**
4217  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4218  * @buffer: The ring buffer
4219  * @cpu: The per CPU buffer to read from.
4220  */
4221 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4222 {
4223         struct ring_buffer_per_cpu *cpu_buffer;
4224         unsigned long ret;
4225
4226         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4227                 return 0;
4228
4229         cpu_buffer = buffer->buffers[cpu];
4230         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4231
4232         return ret;
4233 }
4234 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4235
4236 /**
4237  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4238  * @buffer: The ring buffer
4239  * @cpu: The per CPU buffer to get the entries from.
4240  */
4241 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4242 {
4243         struct ring_buffer_per_cpu *cpu_buffer;
4244
4245         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4246                 return 0;
4247
4248         cpu_buffer = buffer->buffers[cpu];
4249
4250         return rb_num_of_entries(cpu_buffer);
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4253
4254 /**
4255  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4256  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4257  * @buffer: The ring buffer
4258  * @cpu: The per CPU buffer to get the number of overruns from
4259  */
4260 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4261 {
4262         struct ring_buffer_per_cpu *cpu_buffer;
4263         unsigned long ret;
4264
4265         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4266                 return 0;
4267
4268         cpu_buffer = buffer->buffers[cpu];
4269         ret = local_read(&cpu_buffer->overrun);
4270
4271         return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4274
4275 /**
4276  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4277  * commits failing due to the buffer wrapping around while there are uncommitted
4278  * events, such as during an interrupt storm.
4279  * @buffer: The ring buffer
4280  * @cpu: The per CPU buffer to get the number of overruns from
4281  */
4282 unsigned long
4283 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4284 {
4285         struct ring_buffer_per_cpu *cpu_buffer;
4286         unsigned long ret;
4287
4288         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4289                 return 0;
4290
4291         cpu_buffer = buffer->buffers[cpu];
4292         ret = local_read(&cpu_buffer->commit_overrun);
4293
4294         return ret;
4295 }
4296 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4297
4298 /**
4299  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4300  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4301  * @buffer: The ring buffer
4302  * @cpu: The per CPU buffer to get the number of overruns from
4303  */
4304 unsigned long
4305 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4306 {
4307         struct ring_buffer_per_cpu *cpu_buffer;
4308         unsigned long ret;
4309
4310         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4311                 return 0;
4312
4313         cpu_buffer = buffer->buffers[cpu];
4314         ret = local_read(&cpu_buffer->dropped_events);
4315
4316         return ret;
4317 }
4318 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4319
4320 /**
4321  * ring_buffer_read_events_cpu - get the number of events successfully read
4322  * @buffer: The ring buffer
4323  * @cpu: The per CPU buffer to get the number of events read
4324  */
4325 unsigned long
4326 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4327 {
4328         struct ring_buffer_per_cpu *cpu_buffer;
4329
4330         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4331                 return 0;
4332
4333         cpu_buffer = buffer->buffers[cpu];
4334         return cpu_buffer->read;
4335 }
4336 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4337
4338 /**
4339  * ring_buffer_entries - get the number of entries in a buffer
4340  * @buffer: The ring buffer
4341  *
4342  * Returns the total number of entries in the ring buffer
4343  * (all CPU entries)
4344  */
4345 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4346 {
4347         struct ring_buffer_per_cpu *cpu_buffer;
4348         unsigned long entries = 0;
4349         int cpu;
4350
4351         /* if you care about this being correct, lock the buffer */
4352         for_each_buffer_cpu(buffer, cpu) {
4353                 cpu_buffer = buffer->buffers[cpu];
4354                 entries += rb_num_of_entries(cpu_buffer);
4355         }
4356
4357         return entries;
4358 }
4359 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4360
4361 /**
4362  * ring_buffer_overruns - get the number of overruns in buffer
4363  * @buffer: The ring buffer
4364  *
4365  * Returns the total number of overruns in the ring buffer
4366  * (all CPU entries)
4367  */
4368 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4369 {
4370         struct ring_buffer_per_cpu *cpu_buffer;
4371         unsigned long overruns = 0;
4372         int cpu;
4373
4374         /* if you care about this being correct, lock the buffer */
4375         for_each_buffer_cpu(buffer, cpu) {
4376                 cpu_buffer = buffer->buffers[cpu];
4377                 overruns += local_read(&cpu_buffer->overrun);
4378         }
4379
4380         return overruns;
4381 }
4382 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4383
4384 static void rb_iter_reset(struct ring_buffer_iter *iter)
4385 {
4386         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4387
4388         /* Iterator usage is expected to have record disabled */
4389         iter->head_page = cpu_buffer->reader_page;
4390         iter->head = cpu_buffer->reader_page->read;
4391         iter->next_event = iter->head;
4392
4393         iter->cache_reader_page = iter->head_page;
4394         iter->cache_read = cpu_buffer->read;
4395
4396         if (iter->head) {
4397                 iter->read_stamp = cpu_buffer->read_stamp;
4398                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4399         } else {
4400                 iter->read_stamp = iter->head_page->page->time_stamp;
4401                 iter->page_stamp = iter->read_stamp;
4402         }
4403 }
4404
4405 /**
4406  * ring_buffer_iter_reset - reset an iterator
4407  * @iter: The iterator to reset
4408  *
4409  * Resets the iterator, so that it will start from the beginning
4410  * again.
4411  */
4412 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4413 {
4414         struct ring_buffer_per_cpu *cpu_buffer;
4415         unsigned long flags;
4416
4417         if (!iter)
4418                 return;
4419
4420         cpu_buffer = iter->cpu_buffer;
4421
4422         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4423         rb_iter_reset(iter);
4424         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4425 }
4426 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4427
4428 /**
4429  * ring_buffer_iter_empty - check if an iterator has no more to read
4430  * @iter: The iterator to check
4431  */
4432 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4433 {
4434         struct ring_buffer_per_cpu *cpu_buffer;
4435         struct buffer_page *reader;
4436         struct buffer_page *head_page;
4437         struct buffer_page *commit_page;
4438         struct buffer_page *curr_commit_page;
4439         unsigned commit;
4440         u64 curr_commit_ts;
4441         u64 commit_ts;
4442
4443         cpu_buffer = iter->cpu_buffer;
4444         reader = cpu_buffer->reader_page;
4445         head_page = cpu_buffer->head_page;
4446         commit_page = cpu_buffer->commit_page;
4447         commit_ts = commit_page->page->time_stamp;
4448
4449         /*
4450          * When the writer goes across pages, it issues a cmpxchg which
4451          * is a mb(), which will synchronize with the rmb here.
4452          * (see rb_tail_page_update())
4453          */
4454         smp_rmb();
4455         commit = rb_page_commit(commit_page);
4456         /* We want to make sure that the commit page doesn't change */
4457         smp_rmb();
4458
4459         /* Make sure commit page didn't change */
4460         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4461         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4462
4463         /* If the commit page changed, then there's more data */
4464         if (curr_commit_page != commit_page ||
4465             curr_commit_ts != commit_ts)
4466                 return 0;
4467
4468         /* Still racy, as it may return a false positive, but that's OK */
4469         return ((iter->head_page == commit_page && iter->head >= commit) ||
4470                 (iter->head_page == reader && commit_page == head_page &&
4471                  head_page->read == commit &&
4472                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4473 }
4474 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4475
4476 static void
4477 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4478                      struct ring_buffer_event *event)
4479 {
4480         u64 delta;
4481
4482         switch (event->type_len) {
4483         case RINGBUF_TYPE_PADDING:
4484                 return;
4485
4486         case RINGBUF_TYPE_TIME_EXTEND:
4487                 delta = rb_event_time_stamp(event);
4488                 cpu_buffer->read_stamp += delta;
4489                 return;
4490
4491         case RINGBUF_TYPE_TIME_STAMP:
4492                 delta = rb_event_time_stamp(event);
4493                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4494                 cpu_buffer->read_stamp = delta;
4495                 return;
4496
4497         case RINGBUF_TYPE_DATA:
4498                 cpu_buffer->read_stamp += event->time_delta;
4499                 return;
4500
4501         default:
4502                 RB_WARN_ON(cpu_buffer, 1);
4503         }
4504 }
4505
4506 static void
4507 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4508                           struct ring_buffer_event *event)
4509 {
4510         u64 delta;
4511
4512         switch (event->type_len) {
4513         case RINGBUF_TYPE_PADDING:
4514                 return;
4515
4516         case RINGBUF_TYPE_TIME_EXTEND:
4517                 delta = rb_event_time_stamp(event);
4518                 iter->read_stamp += delta;
4519                 return;
4520
4521         case RINGBUF_TYPE_TIME_STAMP:
4522                 delta = rb_event_time_stamp(event);
4523                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4524                 iter->read_stamp = delta;
4525                 return;
4526
4527         case RINGBUF_TYPE_DATA:
4528                 iter->read_stamp += event->time_delta;
4529                 return;
4530
4531         default:
4532                 RB_WARN_ON(iter->cpu_buffer, 1);
4533         }
4534 }
4535
4536 static struct buffer_page *
4537 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4538 {
4539         struct buffer_page *reader = NULL;
4540         unsigned long overwrite;
4541         unsigned long flags;
4542         int nr_loops = 0;
4543         bool ret;
4544
4545         local_irq_save(flags);
4546         arch_spin_lock(&cpu_buffer->lock);
4547
4548  again:
4549         /*
4550          * This should normally only loop twice. But because the
4551          * start of the reader inserts an empty page, it causes
4552          * a case where we will loop three times. There should be no
4553          * reason to loop four times (that I know of).
4554          */
4555         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4556                 reader = NULL;
4557                 goto out;
4558         }
4559
4560         reader = cpu_buffer->reader_page;
4561
4562         /* If there's more to read, return this page */
4563         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4564                 goto out;
4565
4566         /* Never should we have an index greater than the size */
4567         if (RB_WARN_ON(cpu_buffer,
4568                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4569                 goto out;
4570
4571         /* check if we caught up to the tail */
4572         reader = NULL;
4573         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4574                 goto out;
4575
4576         /* Don't bother swapping if the ring buffer is empty */
4577         if (rb_num_of_entries(cpu_buffer) == 0)
4578                 goto out;
4579
4580         /*
4581          * Reset the reader page to size zero.
4582          */
4583         local_set(&cpu_buffer->reader_page->write, 0);
4584         local_set(&cpu_buffer->reader_page->entries, 0);
4585         local_set(&cpu_buffer->reader_page->page->commit, 0);
4586         cpu_buffer->reader_page->real_end = 0;
4587
4588  spin:
4589         /*
4590          * Splice the empty reader page into the list around the head.
4591          */
4592         reader = rb_set_head_page(cpu_buffer);
4593         if (!reader)
4594                 goto out;
4595         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4596         cpu_buffer->reader_page->list.prev = reader->list.prev;
4597
4598         /*
4599          * cpu_buffer->pages just needs to point to the buffer, it
4600          *  has no specific buffer page to point to. Lets move it out
4601          *  of our way so we don't accidentally swap it.
4602          */
4603         cpu_buffer->pages = reader->list.prev;
4604
4605         /* The reader page will be pointing to the new head */
4606         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4607
4608         /*
4609          * We want to make sure we read the overruns after we set up our
4610          * pointers to the next object. The writer side does a
4611          * cmpxchg to cross pages which acts as the mb on the writer
4612          * side. Note, the reader will constantly fail the swap
4613          * while the writer is updating the pointers, so this
4614          * guarantees that the overwrite recorded here is the one we
4615          * want to compare with the last_overrun.
4616          */
4617         smp_mb();
4618         overwrite = local_read(&(cpu_buffer->overrun));
4619
4620         /*
4621          * Here's the tricky part.
4622          *
4623          * We need to move the pointer past the header page.
4624          * But we can only do that if a writer is not currently
4625          * moving it. The page before the header page has the
4626          * flag bit '1' set if it is pointing to the page we want.
4627          * but if the writer is in the process of moving it
4628          * than it will be '2' or already moved '0'.
4629          */
4630
4631         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4632
4633         /*
4634          * If we did not convert it, then we must try again.
4635          */
4636         if (!ret)
4637                 goto spin;
4638
4639         /*
4640          * Yay! We succeeded in replacing the page.
4641          *
4642          * Now make the new head point back to the reader page.
4643          */
4644         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4645         rb_inc_page(&cpu_buffer->head_page);
4646
4647         local_inc(&cpu_buffer->pages_read);
4648
4649         /* Finally update the reader page to the new head */
4650         cpu_buffer->reader_page = reader;
4651         cpu_buffer->reader_page->read = 0;
4652
4653         if (overwrite != cpu_buffer->last_overrun) {
4654                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4655                 cpu_buffer->last_overrun = overwrite;
4656         }
4657
4658         goto again;
4659
4660  out:
4661         /* Update the read_stamp on the first event */
4662         if (reader && reader->read == 0)
4663                 cpu_buffer->read_stamp = reader->page->time_stamp;
4664
4665         arch_spin_unlock(&cpu_buffer->lock);
4666         local_irq_restore(flags);
4667
4668         /*
4669          * The writer has preempt disable, wait for it. But not forever
4670          * Although, 1 second is pretty much "forever"
4671          */
4672 #define USECS_WAIT      1000000
4673         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4674                 /* If the write is past the end of page, a writer is still updating it */
4675                 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4676                         break;
4677
4678                 udelay(1);
4679
4680                 /* Get the latest version of the reader write value */
4681                 smp_rmb();
4682         }
4683
4684         /* The writer is not moving forward? Something is wrong */
4685         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4686                 reader = NULL;
4687
4688         /*
4689          * Make sure we see any padding after the write update
4690          * (see rb_reset_tail()).
4691          *
4692          * In addition, a writer may be writing on the reader page
4693          * if the page has not been fully filled, so the read barrier
4694          * is also needed to make sure we see the content of what is
4695          * committed by the writer (see rb_set_commit_to_write()).
4696          */
4697         smp_rmb();
4698
4699
4700         return reader;
4701 }
4702
4703 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4704 {
4705         struct ring_buffer_event *event;
4706         struct buffer_page *reader;
4707         unsigned length;
4708
4709         reader = rb_get_reader_page(cpu_buffer);
4710
4711         /* This function should not be called when buffer is empty */
4712         if (RB_WARN_ON(cpu_buffer, !reader))
4713                 return;
4714
4715         event = rb_reader_event(cpu_buffer);
4716
4717         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4718                 cpu_buffer->read++;
4719
4720         rb_update_read_stamp(cpu_buffer, event);
4721
4722         length = rb_event_length(event);
4723         cpu_buffer->reader_page->read += length;
4724 }
4725
4726 static void rb_advance_iter(struct ring_buffer_iter *iter)
4727 {
4728         struct ring_buffer_per_cpu *cpu_buffer;
4729
4730         cpu_buffer = iter->cpu_buffer;
4731
4732         /* If head == next_event then we need to jump to the next event */
4733         if (iter->head == iter->next_event) {
4734                 /* If the event gets overwritten again, there's nothing to do */
4735                 if (rb_iter_head_event(iter) == NULL)
4736                         return;
4737         }
4738
4739         iter->head = iter->next_event;
4740
4741         /*
4742          * Check if we are at the end of the buffer.
4743          */
4744         if (iter->next_event >= rb_page_size(iter->head_page)) {
4745                 /* discarded commits can make the page empty */
4746                 if (iter->head_page == cpu_buffer->commit_page)
4747                         return;
4748                 rb_inc_iter(iter);
4749                 return;
4750         }
4751
4752         rb_update_iter_read_stamp(iter, iter->event);
4753 }
4754
4755 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4756 {
4757         return cpu_buffer->lost_events;
4758 }
4759
4760 static struct ring_buffer_event *
4761 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4762                unsigned long *lost_events)
4763 {
4764         struct ring_buffer_event *event;
4765         struct buffer_page *reader;
4766         int nr_loops = 0;
4767
4768         if (ts)
4769                 *ts = 0;
4770  again:
4771         /*
4772          * We repeat when a time extend is encountered.
4773          * Since the time extend is always attached to a data event,
4774          * we should never loop more than once.
4775          * (We never hit the following condition more than twice).
4776          */
4777         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4778                 return NULL;
4779
4780         reader = rb_get_reader_page(cpu_buffer);
4781         if (!reader)
4782                 return NULL;
4783
4784         event = rb_reader_event(cpu_buffer);
4785
4786         switch (event->type_len) {
4787         case RINGBUF_TYPE_PADDING:
4788                 if (rb_null_event(event))
4789                         RB_WARN_ON(cpu_buffer, 1);
4790                 /*
4791                  * Because the writer could be discarding every
4792                  * event it creates (which would probably be bad)
4793                  * if we were to go back to "again" then we may never
4794                  * catch up, and will trigger the warn on, or lock
4795                  * the box. Return the padding, and we will release
4796                  * the current locks, and try again.
4797                  */
4798                 return event;
4799
4800         case RINGBUF_TYPE_TIME_EXTEND:
4801                 /* Internal data, OK to advance */
4802                 rb_advance_reader(cpu_buffer);
4803                 goto again;
4804
4805         case RINGBUF_TYPE_TIME_STAMP:
4806                 if (ts) {
4807                         *ts = rb_event_time_stamp(event);
4808                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4809                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4810                                                          cpu_buffer->cpu, ts);
4811                 }
4812                 /* Internal data, OK to advance */
4813                 rb_advance_reader(cpu_buffer);
4814                 goto again;
4815
4816         case RINGBUF_TYPE_DATA:
4817                 if (ts && !(*ts)) {
4818                         *ts = cpu_buffer->read_stamp + event->time_delta;
4819                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4820                                                          cpu_buffer->cpu, ts);
4821                 }
4822                 if (lost_events)
4823                         *lost_events = rb_lost_events(cpu_buffer);
4824                 return event;
4825
4826         default:
4827                 RB_WARN_ON(cpu_buffer, 1);
4828         }
4829
4830         return NULL;
4831 }
4832 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4833
4834 static struct ring_buffer_event *
4835 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4836 {
4837         struct trace_buffer *buffer;
4838         struct ring_buffer_per_cpu *cpu_buffer;
4839         struct ring_buffer_event *event;
4840         int nr_loops = 0;
4841
4842         if (ts)
4843                 *ts = 0;
4844
4845         cpu_buffer = iter->cpu_buffer;
4846         buffer = cpu_buffer->buffer;
4847
4848         /*
4849          * Check if someone performed a consuming read to
4850          * the buffer. A consuming read invalidates the iterator
4851          * and we need to reset the iterator in this case.
4852          */
4853         if (unlikely(iter->cache_read != cpu_buffer->read ||
4854                      iter->cache_reader_page != cpu_buffer->reader_page))
4855                 rb_iter_reset(iter);
4856
4857  again:
4858         if (ring_buffer_iter_empty(iter))
4859                 return NULL;
4860
4861         /*
4862          * As the writer can mess with what the iterator is trying
4863          * to read, just give up if we fail to get an event after
4864          * three tries. The iterator is not as reliable when reading
4865          * the ring buffer with an active write as the consumer is.
4866          * Do not warn if the three failures is reached.
4867          */
4868         if (++nr_loops > 3)
4869                 return NULL;
4870
4871         if (rb_per_cpu_empty(cpu_buffer))
4872                 return NULL;
4873
4874         if (iter->head >= rb_page_size(iter->head_page)) {
4875                 rb_inc_iter(iter);
4876                 goto again;
4877         }
4878
4879         event = rb_iter_head_event(iter);
4880         if (!event)
4881                 goto again;
4882
4883         switch (event->type_len) {
4884         case RINGBUF_TYPE_PADDING:
4885                 if (rb_null_event(event)) {
4886                         rb_inc_iter(iter);
4887                         goto again;
4888                 }
4889                 rb_advance_iter(iter);
4890                 return event;
4891
4892         case RINGBUF_TYPE_TIME_EXTEND:
4893                 /* Internal data, OK to advance */
4894                 rb_advance_iter(iter);
4895                 goto again;
4896
4897         case RINGBUF_TYPE_TIME_STAMP:
4898                 if (ts) {
4899                         *ts = rb_event_time_stamp(event);
4900                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4901                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4902                                                          cpu_buffer->cpu, ts);
4903                 }
4904                 /* Internal data, OK to advance */
4905                 rb_advance_iter(iter);
4906                 goto again;
4907
4908         case RINGBUF_TYPE_DATA:
4909                 if (ts && !(*ts)) {
4910                         *ts = iter->read_stamp + event->time_delta;
4911                         ring_buffer_normalize_time_stamp(buffer,
4912                                                          cpu_buffer->cpu, ts);
4913                 }
4914                 return event;
4915
4916         default:
4917                 RB_WARN_ON(cpu_buffer, 1);
4918         }
4919
4920         return NULL;
4921 }
4922 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4923
4924 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4925 {
4926         if (likely(!in_nmi())) {
4927                 raw_spin_lock(&cpu_buffer->reader_lock);
4928                 return true;
4929         }
4930
4931         /*
4932          * If an NMI die dumps out the content of the ring buffer
4933          * trylock must be used to prevent a deadlock if the NMI
4934          * preempted a task that holds the ring buffer locks. If
4935          * we get the lock then all is fine, if not, then continue
4936          * to do the read, but this can corrupt the ring buffer,
4937          * so it must be permanently disabled from future writes.
4938          * Reading from NMI is a oneshot deal.
4939          */
4940         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4941                 return true;
4942
4943         /* Continue without locking, but disable the ring buffer */
4944         atomic_inc(&cpu_buffer->record_disabled);
4945         return false;
4946 }
4947
4948 static inline void
4949 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4950 {
4951         if (likely(locked))
4952                 raw_spin_unlock(&cpu_buffer->reader_lock);
4953 }
4954
4955 /**
4956  * ring_buffer_peek - peek at the next event to be read
4957  * @buffer: The ring buffer to read
4958  * @cpu: The cpu to peak at
4959  * @ts: The timestamp counter of this event.
4960  * @lost_events: a variable to store if events were lost (may be NULL)
4961  *
4962  * This will return the event that will be read next, but does
4963  * not consume the data.
4964  */
4965 struct ring_buffer_event *
4966 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4967                  unsigned long *lost_events)
4968 {
4969         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4970         struct ring_buffer_event *event;
4971         unsigned long flags;
4972         bool dolock;
4973
4974         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4975                 return NULL;
4976
4977  again:
4978         local_irq_save(flags);
4979         dolock = rb_reader_lock(cpu_buffer);
4980         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4981         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4982                 rb_advance_reader(cpu_buffer);
4983         rb_reader_unlock(cpu_buffer, dolock);
4984         local_irq_restore(flags);
4985
4986         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4987                 goto again;
4988
4989         return event;
4990 }
4991
4992 /** ring_buffer_iter_dropped - report if there are dropped events
4993  * @iter: The ring buffer iterator
4994  *
4995  * Returns true if there was dropped events since the last peek.
4996  */
4997 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4998 {
4999         bool ret = iter->missed_events != 0;
5000
5001         iter->missed_events = 0;
5002         return ret;
5003 }
5004 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5005
5006 /**
5007  * ring_buffer_iter_peek - peek at the next event to be read
5008  * @iter: The ring buffer iterator
5009  * @ts: The timestamp counter of this event.
5010  *
5011  * This will return the event that will be read next, but does
5012  * not increment the iterator.
5013  */
5014 struct ring_buffer_event *
5015 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5016 {
5017         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5018         struct ring_buffer_event *event;
5019         unsigned long flags;
5020
5021  again:
5022         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5023         event = rb_iter_peek(iter, ts);
5024         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5025
5026         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5027                 goto again;
5028
5029         return event;
5030 }
5031
5032 /**
5033  * ring_buffer_consume - return an event and consume it
5034  * @buffer: The ring buffer to get the next event from
5035  * @cpu: the cpu to read the buffer from
5036  * @ts: a variable to store the timestamp (may be NULL)
5037  * @lost_events: a variable to store if events were lost (may be NULL)
5038  *
5039  * Returns the next event in the ring buffer, and that event is consumed.
5040  * Meaning, that sequential reads will keep returning a different event,
5041  * and eventually empty the ring buffer if the producer is slower.
5042  */
5043 struct ring_buffer_event *
5044 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5045                     unsigned long *lost_events)
5046 {
5047         struct ring_buffer_per_cpu *cpu_buffer;
5048         struct ring_buffer_event *event = NULL;
5049         unsigned long flags;
5050         bool dolock;
5051
5052  again:
5053         /* might be called in atomic */
5054         preempt_disable();
5055
5056         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5057                 goto out;
5058
5059         cpu_buffer = buffer->buffers[cpu];
5060         local_irq_save(flags);
5061         dolock = rb_reader_lock(cpu_buffer);
5062
5063         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5064         if (event) {
5065                 cpu_buffer->lost_events = 0;
5066                 rb_advance_reader(cpu_buffer);
5067         }
5068
5069         rb_reader_unlock(cpu_buffer, dolock);
5070         local_irq_restore(flags);
5071
5072  out:
5073         preempt_enable();
5074
5075         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5076                 goto again;
5077
5078         return event;
5079 }
5080 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5081
5082 /**
5083  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5084  * @buffer: The ring buffer to read from
5085  * @cpu: The cpu buffer to iterate over
5086  * @flags: gfp flags to use for memory allocation
5087  *
5088  * This performs the initial preparations necessary to iterate
5089  * through the buffer.  Memory is allocated, buffer recording
5090  * is disabled, and the iterator pointer is returned to the caller.
5091  *
5092  * Disabling buffer recording prevents the reading from being
5093  * corrupted. This is not a consuming read, so a producer is not
5094  * expected.
5095  *
5096  * After a sequence of ring_buffer_read_prepare calls, the user is
5097  * expected to make at least one call to ring_buffer_read_prepare_sync.
5098  * Afterwards, ring_buffer_read_start is invoked to get things going
5099  * for real.
5100  *
5101  * This overall must be paired with ring_buffer_read_finish.
5102  */
5103 struct ring_buffer_iter *
5104 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5105 {
5106         struct ring_buffer_per_cpu *cpu_buffer;
5107         struct ring_buffer_iter *iter;
5108
5109         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5110                 return NULL;
5111
5112         iter = kzalloc(sizeof(*iter), flags);
5113         if (!iter)
5114                 return NULL;
5115
5116         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5117         if (!iter->event) {
5118                 kfree(iter);
5119                 return NULL;
5120         }
5121
5122         cpu_buffer = buffer->buffers[cpu];
5123
5124         iter->cpu_buffer = cpu_buffer;
5125
5126         atomic_inc(&cpu_buffer->resize_disabled);
5127
5128         return iter;
5129 }
5130 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5131
5132 /**
5133  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5134  *
5135  * All previously invoked ring_buffer_read_prepare calls to prepare
5136  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5137  * calls on those iterators are allowed.
5138  */
5139 void
5140 ring_buffer_read_prepare_sync(void)
5141 {
5142         synchronize_rcu();
5143 }
5144 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5145
5146 /**
5147  * ring_buffer_read_start - start a non consuming read of the buffer
5148  * @iter: The iterator returned by ring_buffer_read_prepare
5149  *
5150  * This finalizes the startup of an iteration through the buffer.
5151  * The iterator comes from a call to ring_buffer_read_prepare and
5152  * an intervening ring_buffer_read_prepare_sync must have been
5153  * performed.
5154  *
5155  * Must be paired with ring_buffer_read_finish.
5156  */
5157 void
5158 ring_buffer_read_start(struct ring_buffer_iter *iter)
5159 {
5160         struct ring_buffer_per_cpu *cpu_buffer;
5161         unsigned long flags;
5162
5163         if (!iter)
5164                 return;
5165
5166         cpu_buffer = iter->cpu_buffer;
5167
5168         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5169         arch_spin_lock(&cpu_buffer->lock);
5170         rb_iter_reset(iter);
5171         arch_spin_unlock(&cpu_buffer->lock);
5172         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5173 }
5174 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5175
5176 /**
5177  * ring_buffer_read_finish - finish reading the iterator of the buffer
5178  * @iter: The iterator retrieved by ring_buffer_start
5179  *
5180  * This re-enables the recording to the buffer, and frees the
5181  * iterator.
5182  */
5183 void
5184 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5185 {
5186         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5187         unsigned long flags;
5188
5189         /*
5190          * Ring buffer is disabled from recording, here's a good place
5191          * to check the integrity of the ring buffer.
5192          * Must prevent readers from trying to read, as the check
5193          * clears the HEAD page and readers require it.
5194          */
5195         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5196         rb_check_pages(cpu_buffer);
5197         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5198
5199         atomic_dec(&cpu_buffer->resize_disabled);
5200         kfree(iter->event);
5201         kfree(iter);
5202 }
5203 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5204
5205 /**
5206  * ring_buffer_iter_advance - advance the iterator to the next location
5207  * @iter: The ring buffer iterator
5208  *
5209  * Move the location of the iterator such that the next read will
5210  * be the next location of the iterator.
5211  */
5212 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5213 {
5214         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5215         unsigned long flags;
5216
5217         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5218
5219         rb_advance_iter(iter);
5220
5221         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5222 }
5223 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5224
5225 /**
5226  * ring_buffer_size - return the size of the ring buffer (in bytes)
5227  * @buffer: The ring buffer.
5228  * @cpu: The CPU to get ring buffer size from.
5229  */
5230 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5231 {
5232         /*
5233          * Earlier, this method returned
5234          *      BUF_PAGE_SIZE * buffer->nr_pages
5235          * Since the nr_pages field is now removed, we have converted this to
5236          * return the per cpu buffer value.
5237          */
5238         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5239                 return 0;
5240
5241         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5242 }
5243 EXPORT_SYMBOL_GPL(ring_buffer_size);
5244
5245 static void
5246 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5247 {
5248         rb_head_page_deactivate(cpu_buffer);
5249
5250         cpu_buffer->head_page
5251                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5252         local_set(&cpu_buffer->head_page->write, 0);
5253         local_set(&cpu_buffer->head_page->entries, 0);
5254         local_set(&cpu_buffer->head_page->page->commit, 0);
5255
5256         cpu_buffer->head_page->read = 0;
5257
5258         cpu_buffer->tail_page = cpu_buffer->head_page;
5259         cpu_buffer->commit_page = cpu_buffer->head_page;
5260
5261         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5262         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5263         local_set(&cpu_buffer->reader_page->write, 0);
5264         local_set(&cpu_buffer->reader_page->entries, 0);
5265         local_set(&cpu_buffer->reader_page->page->commit, 0);
5266         cpu_buffer->reader_page->read = 0;
5267
5268         local_set(&cpu_buffer->entries_bytes, 0);
5269         local_set(&cpu_buffer->overrun, 0);
5270         local_set(&cpu_buffer->commit_overrun, 0);
5271         local_set(&cpu_buffer->dropped_events, 0);
5272         local_set(&cpu_buffer->entries, 0);
5273         local_set(&cpu_buffer->committing, 0);
5274         local_set(&cpu_buffer->commits, 0);
5275         local_set(&cpu_buffer->pages_touched, 0);
5276         local_set(&cpu_buffer->pages_lost, 0);
5277         local_set(&cpu_buffer->pages_read, 0);
5278         cpu_buffer->last_pages_touch = 0;
5279         cpu_buffer->shortest_full = 0;
5280         cpu_buffer->read = 0;
5281         cpu_buffer->read_bytes = 0;
5282
5283         rb_time_set(&cpu_buffer->write_stamp, 0);
5284         rb_time_set(&cpu_buffer->before_stamp, 0);
5285
5286         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5287
5288         cpu_buffer->lost_events = 0;
5289         cpu_buffer->last_overrun = 0;
5290
5291         rb_head_page_activate(cpu_buffer);
5292 }
5293
5294 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5295 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5296 {
5297         unsigned long flags;
5298
5299         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5300
5301         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5302                 goto out;
5303
5304         arch_spin_lock(&cpu_buffer->lock);
5305
5306         rb_reset_cpu(cpu_buffer);
5307
5308         arch_spin_unlock(&cpu_buffer->lock);
5309
5310  out:
5311         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5312 }
5313
5314 /**
5315  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5316  * @buffer: The ring buffer to reset a per cpu buffer of
5317  * @cpu: The CPU buffer to be reset
5318  */
5319 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5320 {
5321         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5322
5323         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5324                 return;
5325
5326         /* prevent another thread from changing buffer sizes */
5327         mutex_lock(&buffer->mutex);
5328
5329         atomic_inc(&cpu_buffer->resize_disabled);
5330         atomic_inc(&cpu_buffer->record_disabled);
5331
5332         /* Make sure all commits have finished */
5333         synchronize_rcu();
5334
5335         reset_disabled_cpu_buffer(cpu_buffer);
5336
5337         atomic_dec(&cpu_buffer->record_disabled);
5338         atomic_dec(&cpu_buffer->resize_disabled);
5339
5340         mutex_unlock(&buffer->mutex);
5341 }
5342 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5343
5344 /* Flag to ensure proper resetting of atomic variables */
5345 #define RESET_BIT       (1 << 30)
5346
5347 /**
5348  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5349  * @buffer: The ring buffer to reset a per cpu buffer of
5350  * @cpu: The CPU buffer to be reset
5351  */
5352 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5353 {
5354         struct ring_buffer_per_cpu *cpu_buffer;
5355         int cpu;
5356
5357         /* prevent another thread from changing buffer sizes */
5358         mutex_lock(&buffer->mutex);
5359
5360         for_each_online_buffer_cpu(buffer, cpu) {
5361                 cpu_buffer = buffer->buffers[cpu];
5362
5363                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5364                 atomic_inc(&cpu_buffer->record_disabled);
5365         }
5366
5367         /* Make sure all commits have finished */
5368         synchronize_rcu();
5369
5370         for_each_buffer_cpu(buffer, cpu) {
5371                 cpu_buffer = buffer->buffers[cpu];
5372
5373                 /*
5374                  * If a CPU came online during the synchronize_rcu(), then
5375                  * ignore it.
5376                  */
5377                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5378                         continue;
5379
5380                 reset_disabled_cpu_buffer(cpu_buffer);
5381
5382                 atomic_dec(&cpu_buffer->record_disabled);
5383                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5384         }
5385
5386         mutex_unlock(&buffer->mutex);
5387 }
5388
5389 /**
5390  * ring_buffer_reset - reset a ring buffer
5391  * @buffer: The ring buffer to reset all cpu buffers
5392  */
5393 void ring_buffer_reset(struct trace_buffer *buffer)
5394 {
5395         struct ring_buffer_per_cpu *cpu_buffer;
5396         int cpu;
5397
5398         /* prevent another thread from changing buffer sizes */
5399         mutex_lock(&buffer->mutex);
5400
5401         for_each_buffer_cpu(buffer, cpu) {
5402                 cpu_buffer = buffer->buffers[cpu];
5403
5404                 atomic_inc(&cpu_buffer->resize_disabled);
5405                 atomic_inc(&cpu_buffer->record_disabled);
5406         }
5407
5408         /* Make sure all commits have finished */
5409         synchronize_rcu();
5410
5411         for_each_buffer_cpu(buffer, cpu) {
5412                 cpu_buffer = buffer->buffers[cpu];
5413
5414                 reset_disabled_cpu_buffer(cpu_buffer);
5415
5416                 atomic_dec(&cpu_buffer->record_disabled);
5417                 atomic_dec(&cpu_buffer->resize_disabled);
5418         }
5419
5420         mutex_unlock(&buffer->mutex);
5421 }
5422 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5423
5424 /**
5425  * ring_buffer_empty - is the ring buffer empty?
5426  * @buffer: The ring buffer to test
5427  */
5428 bool ring_buffer_empty(struct trace_buffer *buffer)
5429 {
5430         struct ring_buffer_per_cpu *cpu_buffer;
5431         unsigned long flags;
5432         bool dolock;
5433         bool ret;
5434         int cpu;
5435
5436         /* yes this is racy, but if you don't like the race, lock the buffer */
5437         for_each_buffer_cpu(buffer, cpu) {
5438                 cpu_buffer = buffer->buffers[cpu];
5439                 local_irq_save(flags);
5440                 dolock = rb_reader_lock(cpu_buffer);
5441                 ret = rb_per_cpu_empty(cpu_buffer);
5442                 rb_reader_unlock(cpu_buffer, dolock);
5443                 local_irq_restore(flags);
5444
5445                 if (!ret)
5446                         return false;
5447         }
5448
5449         return true;
5450 }
5451 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5452
5453 /**
5454  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5455  * @buffer: The ring buffer
5456  * @cpu: The CPU buffer to test
5457  */
5458 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5459 {
5460         struct ring_buffer_per_cpu *cpu_buffer;
5461         unsigned long flags;
5462         bool dolock;
5463         bool ret;
5464
5465         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5466                 return true;
5467
5468         cpu_buffer = buffer->buffers[cpu];
5469         local_irq_save(flags);
5470         dolock = rb_reader_lock(cpu_buffer);
5471         ret = rb_per_cpu_empty(cpu_buffer);
5472         rb_reader_unlock(cpu_buffer, dolock);
5473         local_irq_restore(flags);
5474
5475         return ret;
5476 }
5477 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5478
5479 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5480 /**
5481  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5482  * @buffer_a: One buffer to swap with
5483  * @buffer_b: The other buffer to swap with
5484  * @cpu: the CPU of the buffers to swap
5485  *
5486  * This function is useful for tracers that want to take a "snapshot"
5487  * of a CPU buffer and has another back up buffer lying around.
5488  * it is expected that the tracer handles the cpu buffer not being
5489  * used at the moment.
5490  */
5491 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5492                          struct trace_buffer *buffer_b, int cpu)
5493 {
5494         struct ring_buffer_per_cpu *cpu_buffer_a;
5495         struct ring_buffer_per_cpu *cpu_buffer_b;
5496         int ret = -EINVAL;
5497
5498         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5499             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5500                 goto out;
5501
5502         cpu_buffer_a = buffer_a->buffers[cpu];
5503         cpu_buffer_b = buffer_b->buffers[cpu];
5504
5505         /* At least make sure the two buffers are somewhat the same */
5506         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5507                 goto out;
5508
5509         ret = -EAGAIN;
5510
5511         if (atomic_read(&buffer_a->record_disabled))
5512                 goto out;
5513
5514         if (atomic_read(&buffer_b->record_disabled))
5515                 goto out;
5516
5517         if (atomic_read(&cpu_buffer_a->record_disabled))
5518                 goto out;
5519
5520         if (atomic_read(&cpu_buffer_b->record_disabled))
5521                 goto out;
5522
5523         /*
5524          * We can't do a synchronize_rcu here because this
5525          * function can be called in atomic context.
5526          * Normally this will be called from the same CPU as cpu.
5527          * If not it's up to the caller to protect this.
5528          */
5529         atomic_inc(&cpu_buffer_a->record_disabled);
5530         atomic_inc(&cpu_buffer_b->record_disabled);
5531
5532         ret = -EBUSY;
5533         if (local_read(&cpu_buffer_a->committing))
5534                 goto out_dec;
5535         if (local_read(&cpu_buffer_b->committing))
5536                 goto out_dec;
5537
5538         buffer_a->buffers[cpu] = cpu_buffer_b;
5539         buffer_b->buffers[cpu] = cpu_buffer_a;
5540
5541         cpu_buffer_b->buffer = buffer_a;
5542         cpu_buffer_a->buffer = buffer_b;
5543
5544         ret = 0;
5545
5546 out_dec:
5547         atomic_dec(&cpu_buffer_a->record_disabled);
5548         atomic_dec(&cpu_buffer_b->record_disabled);
5549 out:
5550         return ret;
5551 }
5552 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5553 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5554
5555 /**
5556  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5557  * @buffer: the buffer to allocate for.
5558  * @cpu: the cpu buffer to allocate.
5559  *
5560  * This function is used in conjunction with ring_buffer_read_page.
5561  * When reading a full page from the ring buffer, these functions
5562  * can be used to speed up the process. The calling function should
5563  * allocate a few pages first with this function. Then when it
5564  * needs to get pages from the ring buffer, it passes the result
5565  * of this function into ring_buffer_read_page, which will swap
5566  * the page that was allocated, with the read page of the buffer.
5567  *
5568  * Returns:
5569  *  The page allocated, or ERR_PTR
5570  */
5571 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5572 {
5573         struct ring_buffer_per_cpu *cpu_buffer;
5574         struct buffer_data_page *bpage = NULL;
5575         unsigned long flags;
5576         struct page *page;
5577
5578         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5579                 return ERR_PTR(-ENODEV);
5580
5581         cpu_buffer = buffer->buffers[cpu];
5582         local_irq_save(flags);
5583         arch_spin_lock(&cpu_buffer->lock);
5584
5585         if (cpu_buffer->free_page) {
5586                 bpage = cpu_buffer->free_page;
5587                 cpu_buffer->free_page = NULL;
5588         }
5589
5590         arch_spin_unlock(&cpu_buffer->lock);
5591         local_irq_restore(flags);
5592
5593         if (bpage)
5594                 goto out;
5595
5596         page = alloc_pages_node(cpu_to_node(cpu),
5597                                 GFP_KERNEL | __GFP_NORETRY, 0);
5598         if (!page)
5599                 return ERR_PTR(-ENOMEM);
5600
5601         bpage = page_address(page);
5602
5603  out:
5604         rb_init_page(bpage);
5605
5606         return bpage;
5607 }
5608 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5609
5610 /**
5611  * ring_buffer_free_read_page - free an allocated read page
5612  * @buffer: the buffer the page was allocate for
5613  * @cpu: the cpu buffer the page came from
5614  * @data: the page to free
5615  *
5616  * Free a page allocated from ring_buffer_alloc_read_page.
5617  */
5618 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5619 {
5620         struct ring_buffer_per_cpu *cpu_buffer;
5621         struct buffer_data_page *bpage = data;
5622         struct page *page = virt_to_page(bpage);
5623         unsigned long flags;
5624
5625         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5626                 return;
5627
5628         cpu_buffer = buffer->buffers[cpu];
5629
5630         /* If the page is still in use someplace else, we can't reuse it */
5631         if (page_ref_count(page) > 1)
5632                 goto out;
5633
5634         local_irq_save(flags);
5635         arch_spin_lock(&cpu_buffer->lock);
5636
5637         if (!cpu_buffer->free_page) {
5638                 cpu_buffer->free_page = bpage;
5639                 bpage = NULL;
5640         }
5641
5642         arch_spin_unlock(&cpu_buffer->lock);
5643         local_irq_restore(flags);
5644
5645  out:
5646         free_page((unsigned long)bpage);
5647 }
5648 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5649
5650 /**
5651  * ring_buffer_read_page - extract a page from the ring buffer
5652  * @buffer: buffer to extract from
5653  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5654  * @len: amount to extract
5655  * @cpu: the cpu of the buffer to extract
5656  * @full: should the extraction only happen when the page is full.
5657  *
5658  * This function will pull out a page from the ring buffer and consume it.
5659  * @data_page must be the address of the variable that was returned
5660  * from ring_buffer_alloc_read_page. This is because the page might be used
5661  * to swap with a page in the ring buffer.
5662  *
5663  * for example:
5664  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5665  *      if (IS_ERR(rpage))
5666  *              return PTR_ERR(rpage);
5667  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5668  *      if (ret >= 0)
5669  *              process_page(rpage, ret);
5670  *
5671  * When @full is set, the function will not return true unless
5672  * the writer is off the reader page.
5673  *
5674  * Note: it is up to the calling functions to handle sleeps and wakeups.
5675  *  The ring buffer can be used anywhere in the kernel and can not
5676  *  blindly call wake_up. The layer that uses the ring buffer must be
5677  *  responsible for that.
5678  *
5679  * Returns:
5680  *  >=0 if data has been transferred, returns the offset of consumed data.
5681  *  <0 if no data has been transferred.
5682  */
5683 int ring_buffer_read_page(struct trace_buffer *buffer,
5684                           void **data_page, size_t len, int cpu, int full)
5685 {
5686         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5687         struct ring_buffer_event *event;
5688         struct buffer_data_page *bpage;
5689         struct buffer_page *reader;
5690         unsigned long missed_events;
5691         unsigned long flags;
5692         unsigned int commit;
5693         unsigned int read;
5694         u64 save_timestamp;
5695         int ret = -1;
5696
5697         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5698                 goto out;
5699
5700         /*
5701          * If len is not big enough to hold the page header, then
5702          * we can not copy anything.
5703          */
5704         if (len <= BUF_PAGE_HDR_SIZE)
5705                 goto out;
5706
5707         len -= BUF_PAGE_HDR_SIZE;
5708
5709         if (!data_page)
5710                 goto out;
5711
5712         bpage = *data_page;
5713         if (!bpage)
5714                 goto out;
5715
5716         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5717
5718         reader = rb_get_reader_page(cpu_buffer);
5719         if (!reader)
5720                 goto out_unlock;
5721
5722         event = rb_reader_event(cpu_buffer);
5723
5724         read = reader->read;
5725         commit = rb_page_commit(reader);
5726
5727         /* Check if any events were dropped */
5728         missed_events = cpu_buffer->lost_events;
5729
5730         /*
5731          * If this page has been partially read or
5732          * if len is not big enough to read the rest of the page or
5733          * a writer is still on the page, then
5734          * we must copy the data from the page to the buffer.
5735          * Otherwise, we can simply swap the page with the one passed in.
5736          */
5737         if (read || (len < (commit - read)) ||
5738             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5739                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5740                 unsigned int rpos = read;
5741                 unsigned int pos = 0;
5742                 unsigned int size;
5743
5744                 /*
5745                  * If a full page is expected, this can still be returned
5746                  * if there's been a previous partial read and the
5747                  * rest of the page can be read and the commit page is off
5748                  * the reader page.
5749                  */
5750                 if (full &&
5751                     (!read || (len < (commit - read)) ||
5752                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5753                         goto out_unlock;
5754
5755                 if (len > (commit - read))
5756                         len = (commit - read);
5757
5758                 /* Always keep the time extend and data together */
5759                 size = rb_event_ts_length(event);
5760
5761                 if (len < size)
5762                         goto out_unlock;
5763
5764                 /* save the current timestamp, since the user will need it */
5765                 save_timestamp = cpu_buffer->read_stamp;
5766
5767                 /* Need to copy one event at a time */
5768                 do {
5769                         /* We need the size of one event, because
5770                          * rb_advance_reader only advances by one event,
5771                          * whereas rb_event_ts_length may include the size of
5772                          * one or two events.
5773                          * We have already ensured there's enough space if this
5774                          * is a time extend. */
5775                         size = rb_event_length(event);
5776                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5777
5778                         len -= size;
5779
5780                         rb_advance_reader(cpu_buffer);
5781                         rpos = reader->read;
5782                         pos += size;
5783
5784                         if (rpos >= commit)
5785                                 break;
5786
5787                         event = rb_reader_event(cpu_buffer);
5788                         /* Always keep the time extend and data together */
5789                         size = rb_event_ts_length(event);
5790                 } while (len >= size);
5791
5792                 /* update bpage */
5793                 local_set(&bpage->commit, pos);
5794                 bpage->time_stamp = save_timestamp;
5795
5796                 /* we copied everything to the beginning */
5797                 read = 0;
5798         } else {
5799                 /* update the entry counter */
5800                 cpu_buffer->read += rb_page_entries(reader);
5801                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5802
5803                 /* swap the pages */
5804                 rb_init_page(bpage);
5805                 bpage = reader->page;
5806                 reader->page = *data_page;
5807                 local_set(&reader->write, 0);
5808                 local_set(&reader->entries, 0);
5809                 reader->read = 0;
5810                 *data_page = bpage;
5811
5812                 /*
5813                  * Use the real_end for the data size,
5814                  * This gives us a chance to store the lost events
5815                  * on the page.
5816                  */
5817                 if (reader->real_end)
5818                         local_set(&bpage->commit, reader->real_end);
5819         }
5820         ret = read;
5821
5822         cpu_buffer->lost_events = 0;
5823
5824         commit = local_read(&bpage->commit);
5825         /*
5826          * Set a flag in the commit field if we lost events
5827          */
5828         if (missed_events) {
5829                 /* If there is room at the end of the page to save the
5830                  * missed events, then record it there.
5831                  */
5832                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5833                         memcpy(&bpage->data[commit], &missed_events,
5834                                sizeof(missed_events));
5835                         local_add(RB_MISSED_STORED, &bpage->commit);
5836                         commit += sizeof(missed_events);
5837                 }
5838                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5839         }
5840
5841         /*
5842          * This page may be off to user land. Zero it out here.
5843          */
5844         if (commit < BUF_PAGE_SIZE)
5845                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5846
5847  out_unlock:
5848         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5849
5850  out:
5851         return ret;
5852 }
5853 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5854
5855 /*
5856  * We only allocate new buffers, never free them if the CPU goes down.
5857  * If we were to free the buffer, then the user would lose any trace that was in
5858  * the buffer.
5859  */
5860 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5861 {
5862         struct trace_buffer *buffer;
5863         long nr_pages_same;
5864         int cpu_i;
5865         unsigned long nr_pages;
5866
5867         buffer = container_of(node, struct trace_buffer, node);
5868         if (cpumask_test_cpu(cpu, buffer->cpumask))
5869                 return 0;
5870
5871         nr_pages = 0;
5872         nr_pages_same = 1;
5873         /* check if all cpu sizes are same */
5874         for_each_buffer_cpu(buffer, cpu_i) {
5875                 /* fill in the size from first enabled cpu */
5876                 if (nr_pages == 0)
5877                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5878                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5879                         nr_pages_same = 0;
5880                         break;
5881                 }
5882         }
5883         /* allocate minimum pages, user can later expand it */
5884         if (!nr_pages_same)
5885                 nr_pages = 2;
5886         buffer->buffers[cpu] =
5887                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5888         if (!buffer->buffers[cpu]) {
5889                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5890                      cpu);
5891                 return -ENOMEM;
5892         }
5893         smp_wmb();
5894         cpumask_set_cpu(cpu, buffer->cpumask);
5895         return 0;
5896 }
5897
5898 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5899 /*
5900  * This is a basic integrity check of the ring buffer.
5901  * Late in the boot cycle this test will run when configured in.
5902  * It will kick off a thread per CPU that will go into a loop
5903  * writing to the per cpu ring buffer various sizes of data.
5904  * Some of the data will be large items, some small.
5905  *
5906  * Another thread is created that goes into a spin, sending out
5907  * IPIs to the other CPUs to also write into the ring buffer.
5908  * this is to test the nesting ability of the buffer.
5909  *
5910  * Basic stats are recorded and reported. If something in the
5911  * ring buffer should happen that's not expected, a big warning
5912  * is displayed and all ring buffers are disabled.
5913  */
5914 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5915
5916 struct rb_test_data {
5917         struct trace_buffer *buffer;
5918         unsigned long           events;
5919         unsigned long           bytes_written;
5920         unsigned long           bytes_alloc;
5921         unsigned long           bytes_dropped;
5922         unsigned long           events_nested;
5923         unsigned long           bytes_written_nested;
5924         unsigned long           bytes_alloc_nested;
5925         unsigned long           bytes_dropped_nested;
5926         int                     min_size_nested;
5927         int                     max_size_nested;
5928         int                     max_size;
5929         int                     min_size;
5930         int                     cpu;
5931         int                     cnt;
5932 };
5933
5934 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5935
5936 /* 1 meg per cpu */
5937 #define RB_TEST_BUFFER_SIZE     1048576
5938
5939 static char rb_string[] __initdata =
5940         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5941         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5942         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5943
5944 static bool rb_test_started __initdata;
5945
5946 struct rb_item {
5947         int size;
5948         char str[];
5949 };
5950
5951 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5952 {
5953         struct ring_buffer_event *event;
5954         struct rb_item *item;
5955         bool started;
5956         int event_len;
5957         int size;
5958         int len;
5959         int cnt;
5960
5961         /* Have nested writes different that what is written */
5962         cnt = data->cnt + (nested ? 27 : 0);
5963
5964         /* Multiply cnt by ~e, to make some unique increment */
5965         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5966
5967         len = size + sizeof(struct rb_item);
5968
5969         started = rb_test_started;
5970         /* read rb_test_started before checking buffer enabled */
5971         smp_rmb();
5972
5973         event = ring_buffer_lock_reserve(data->buffer, len);
5974         if (!event) {
5975                 /* Ignore dropped events before test starts. */
5976                 if (started) {
5977                         if (nested)
5978                                 data->bytes_dropped += len;
5979                         else
5980                                 data->bytes_dropped_nested += len;
5981                 }
5982                 return len;
5983         }
5984
5985         event_len = ring_buffer_event_length(event);
5986
5987         if (RB_WARN_ON(data->buffer, event_len < len))
5988                 goto out;
5989
5990         item = ring_buffer_event_data(event);
5991         item->size = size;
5992         memcpy(item->str, rb_string, size);
5993
5994         if (nested) {
5995                 data->bytes_alloc_nested += event_len;
5996                 data->bytes_written_nested += len;
5997                 data->events_nested++;
5998                 if (!data->min_size_nested || len < data->min_size_nested)
5999                         data->min_size_nested = len;
6000                 if (len > data->max_size_nested)
6001                         data->max_size_nested = len;
6002         } else {
6003                 data->bytes_alloc += event_len;
6004                 data->bytes_written += len;
6005                 data->events++;
6006                 if (!data->min_size || len < data->min_size)
6007                         data->max_size = len;
6008                 if (len > data->max_size)
6009                         data->max_size = len;
6010         }
6011
6012  out:
6013         ring_buffer_unlock_commit(data->buffer);
6014
6015         return 0;
6016 }
6017
6018 static __init int rb_test(void *arg)
6019 {
6020         struct rb_test_data *data = arg;
6021
6022         while (!kthread_should_stop()) {
6023                 rb_write_something(data, false);
6024                 data->cnt++;
6025
6026                 set_current_state(TASK_INTERRUPTIBLE);
6027                 /* Now sleep between a min of 100-300us and a max of 1ms */
6028                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6029         }
6030
6031         return 0;
6032 }
6033
6034 static __init void rb_ipi(void *ignore)
6035 {
6036         struct rb_test_data *data;
6037         int cpu = smp_processor_id();
6038
6039         data = &rb_data[cpu];
6040         rb_write_something(data, true);
6041 }
6042
6043 static __init int rb_hammer_test(void *arg)
6044 {
6045         while (!kthread_should_stop()) {
6046
6047                 /* Send an IPI to all cpus to write data! */
6048                 smp_call_function(rb_ipi, NULL, 1);
6049                 /* No sleep, but for non preempt, let others run */
6050                 schedule();
6051         }
6052
6053         return 0;
6054 }
6055
6056 static __init int test_ringbuffer(void)
6057 {
6058         struct task_struct *rb_hammer;
6059         struct trace_buffer *buffer;
6060         int cpu;
6061         int ret = 0;
6062
6063         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6064                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6065                 return 0;
6066         }
6067
6068         pr_info("Running ring buffer tests...\n");
6069
6070         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6071         if (WARN_ON(!buffer))
6072                 return 0;
6073
6074         /* Disable buffer so that threads can't write to it yet */
6075         ring_buffer_record_off(buffer);
6076
6077         for_each_online_cpu(cpu) {
6078                 rb_data[cpu].buffer = buffer;
6079                 rb_data[cpu].cpu = cpu;
6080                 rb_data[cpu].cnt = cpu;
6081                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6082                                                      cpu, "rbtester/%u");
6083                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6084                         pr_cont("FAILED\n");
6085                         ret = PTR_ERR(rb_threads[cpu]);
6086                         goto out_free;
6087                 }
6088         }
6089
6090         /* Now create the rb hammer! */
6091         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6092         if (WARN_ON(IS_ERR(rb_hammer))) {
6093                 pr_cont("FAILED\n");
6094                 ret = PTR_ERR(rb_hammer);
6095                 goto out_free;
6096         }
6097
6098         ring_buffer_record_on(buffer);
6099         /*
6100          * Show buffer is enabled before setting rb_test_started.
6101          * Yes there's a small race window where events could be
6102          * dropped and the thread wont catch it. But when a ring
6103          * buffer gets enabled, there will always be some kind of
6104          * delay before other CPUs see it. Thus, we don't care about
6105          * those dropped events. We care about events dropped after
6106          * the threads see that the buffer is active.
6107          */
6108         smp_wmb();
6109         rb_test_started = true;
6110
6111         set_current_state(TASK_INTERRUPTIBLE);
6112         /* Just run for 10 seconds */;
6113         schedule_timeout(10 * HZ);
6114
6115         kthread_stop(rb_hammer);
6116
6117  out_free:
6118         for_each_online_cpu(cpu) {
6119                 if (!rb_threads[cpu])
6120                         break;
6121                 kthread_stop(rb_threads[cpu]);
6122         }
6123         if (ret) {
6124                 ring_buffer_free(buffer);
6125                 return ret;
6126         }
6127
6128         /* Report! */
6129         pr_info("finished\n");
6130         for_each_online_cpu(cpu) {
6131                 struct ring_buffer_event *event;
6132                 struct rb_test_data *data = &rb_data[cpu];
6133                 struct rb_item *item;
6134                 unsigned long total_events;
6135                 unsigned long total_dropped;
6136                 unsigned long total_written;
6137                 unsigned long total_alloc;
6138                 unsigned long total_read = 0;
6139                 unsigned long total_size = 0;
6140                 unsigned long total_len = 0;
6141                 unsigned long total_lost = 0;
6142                 unsigned long lost;
6143                 int big_event_size;
6144                 int small_event_size;
6145
6146                 ret = -1;
6147
6148                 total_events = data->events + data->events_nested;
6149                 total_written = data->bytes_written + data->bytes_written_nested;
6150                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6151                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6152
6153                 big_event_size = data->max_size + data->max_size_nested;
6154                 small_event_size = data->min_size + data->min_size_nested;
6155
6156                 pr_info("CPU %d:\n", cpu);
6157                 pr_info("              events:    %ld\n", total_events);
6158                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6159                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6160                 pr_info("       written bytes:    %ld\n", total_written);
6161                 pr_info("       biggest event:    %d\n", big_event_size);
6162                 pr_info("      smallest event:    %d\n", small_event_size);
6163
6164                 if (RB_WARN_ON(buffer, total_dropped))
6165                         break;
6166
6167                 ret = 0;
6168
6169                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6170                         total_lost += lost;
6171                         item = ring_buffer_event_data(event);
6172                         total_len += ring_buffer_event_length(event);
6173                         total_size += item->size + sizeof(struct rb_item);
6174                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6175                                 pr_info("FAILED!\n");
6176                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6177                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6178                                 RB_WARN_ON(buffer, 1);
6179                                 ret = -1;
6180                                 break;
6181                         }
6182                         total_read++;
6183                 }
6184                 if (ret)
6185                         break;
6186
6187                 ret = -1;
6188
6189                 pr_info("         read events:   %ld\n", total_read);
6190                 pr_info("         lost events:   %ld\n", total_lost);
6191                 pr_info("        total events:   %ld\n", total_lost + total_read);
6192                 pr_info("  recorded len bytes:   %ld\n", total_len);
6193                 pr_info(" recorded size bytes:   %ld\n", total_size);
6194                 if (total_lost) {
6195                         pr_info(" With dropped events, record len and size may not match\n"
6196                                 " alloced and written from above\n");
6197                 } else {
6198                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6199                                        total_size != total_written))
6200                                 break;
6201                 }
6202                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6203                         break;
6204
6205                 ret = 0;
6206         }
6207         if (!ret)
6208                 pr_info("Ring buffer PASSED!\n");
6209
6210         ring_buffer_free(buffer);
6211         return 0;
6212 }
6213
6214 late_initcall(test_ringbuffer);
6215 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */