ring-buffer: only warn on wrap if buffer is bigger than two pages
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/init.h>
17 #include <linux/hash.h>
18 #include <linux/list.h>
19 #include <linux/cpu.h>
20 #include <linux/fs.h>
21
22 #include "trace.h"
23
24 /*
25  * The ring buffer header is special. We must manually up keep it.
26  */
27 int ring_buffer_print_entry_header(struct trace_seq *s)
28 {
29         int ret;
30
31         ret = trace_seq_printf(s, "\ttype        :    2 bits\n");
32         ret = trace_seq_printf(s, "\tlen         :    3 bits\n");
33         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
34         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
35         ret = trace_seq_printf(s, "\n");
36         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
37                                RINGBUF_TYPE_PADDING);
38         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39                                RINGBUF_TYPE_TIME_EXTEND);
40         ret = trace_seq_printf(s, "\tdata        : type == %d\n",
41                                RINGBUF_TYPE_DATA);
42
43         return ret;
44 }
45
46 /*
47  * The ring buffer is made up of a list of pages. A separate list of pages is
48  * allocated for each CPU. A writer may only write to a buffer that is
49  * associated with the CPU it is currently executing on.  A reader may read
50  * from any per cpu buffer.
51  *
52  * The reader is special. For each per cpu buffer, the reader has its own
53  * reader page. When a reader has read the entire reader page, this reader
54  * page is swapped with another page in the ring buffer.
55  *
56  * Now, as long as the writer is off the reader page, the reader can do what
57  * ever it wants with that page. The writer will never write to that page
58  * again (as long as it is out of the ring buffer).
59  *
60  * Here's some silly ASCII art.
61  *
62  *   +------+
63  *   |reader|          RING BUFFER
64  *   |page  |
65  *   +------+        +---+   +---+   +---+
66  *                   |   |-->|   |-->|   |
67  *                   +---+   +---+   +---+
68  *                     ^               |
69  *                     |               |
70  *                     +---------------+
71  *
72  *
73  *   +------+
74  *   |reader|          RING BUFFER
75  *   |page  |------------------v
76  *   +------+        +---+   +---+   +---+
77  *                   |   |-->|   |-->|   |
78  *                   +---+   +---+   +---+
79  *                     ^               |
80  *                     |               |
81  *                     +---------------+
82  *
83  *
84  *   +------+
85  *   |reader|          RING BUFFER
86  *   |page  |------------------v
87  *   +------+        +---+   +---+   +---+
88  *      ^            |   |-->|   |-->|   |
89  *      |            +---+   +---+   +---+
90  *      |                              |
91  *      |                              |
92  *      +------------------------------+
93  *
94  *
95  *   +------+
96  *   |buffer|          RING BUFFER
97  *   |page  |------------------v
98  *   +------+        +---+   +---+   +---+
99  *      ^            |   |   |   |-->|   |
100  *      |   New      +---+   +---+   +---+
101  *      |  Reader------^               |
102  *      |   page                       |
103  *      +------------------------------+
104  *
105  *
106  * After we make this swap, the reader can hand this page off to the splice
107  * code and be done with it. It can even allocate a new page if it needs to
108  * and swap that into the ring buffer.
109  *
110  * We will be using cmpxchg soon to make all this lockless.
111  *
112  */
113
114 /*
115  * A fast way to enable or disable all ring buffers is to
116  * call tracing_on or tracing_off. Turning off the ring buffers
117  * prevents all ring buffers from being recorded to.
118  * Turning this switch on, makes it OK to write to the
119  * ring buffer, if the ring buffer is enabled itself.
120  *
121  * There's three layers that must be on in order to write
122  * to the ring buffer.
123  *
124  * 1) This global flag must be set.
125  * 2) The ring buffer must be enabled for recording.
126  * 3) The per cpu buffer must be enabled for recording.
127  *
128  * In case of an anomaly, this global flag has a bit set that
129  * will permantly disable all ring buffers.
130  */
131
132 /*
133  * Global flag to disable all recording to ring buffers
134  *  This has two bits: ON, DISABLED
135  *
136  *  ON   DISABLED
137  * ---- ----------
138  *   0      0        : ring buffers are off
139  *   1      0        : ring buffers are on
140  *   X      1        : ring buffers are permanently disabled
141  */
142
143 enum {
144         RB_BUFFERS_ON_BIT       = 0,
145         RB_BUFFERS_DISABLED_BIT = 1,
146 };
147
148 enum {
149         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
150         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
151 };
152
153 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
154
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
157 /**
158  * tracing_on - enable all tracing buffers
159  *
160  * This function enables all tracing buffers that may have been
161  * disabled with tracing_off.
162  */
163 void tracing_on(void)
164 {
165         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
166 }
167 EXPORT_SYMBOL_GPL(tracing_on);
168
169 /**
170  * tracing_off - turn off all tracing buffers
171  *
172  * This function stops all tracing buffers from recording data.
173  * It does not disable any overhead the tracers themselves may
174  * be causing. This function simply causes all recording to
175  * the ring buffers to fail.
176  */
177 void tracing_off(void)
178 {
179         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180 }
181 EXPORT_SYMBOL_GPL(tracing_off);
182
183 /**
184  * tracing_off_permanent - permanently disable ring buffers
185  *
186  * This function, once called, will disable all ring buffers
187  * permanently.
188  */
189 void tracing_off_permanent(void)
190 {
191         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
192 }
193
194 /**
195  * tracing_is_on - show state of ring buffers enabled
196  */
197 int tracing_is_on(void)
198 {
199         return ring_buffer_flags == RB_BUFFERS_ON;
200 }
201 EXPORT_SYMBOL_GPL(tracing_is_on);
202
203 #include "trace.h"
204
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT            4U
207 #define RB_MAX_SMALL_DATA       28
208
209 enum {
210         RB_LEN_TIME_EXTEND = 8,
211         RB_LEN_TIME_STAMP = 16,
212 };
213
214 static inline int rb_null_event(struct ring_buffer_event *event)
215 {
216         return event->type == RINGBUF_TYPE_PADDING && event->time_delta == 0;
217 }
218
219 static inline int rb_discarded_event(struct ring_buffer_event *event)
220 {
221         return event->type == RINGBUF_TYPE_PADDING && event->time_delta;
222 }
223
224 static void rb_event_set_padding(struct ring_buffer_event *event)
225 {
226         event->type = RINGBUF_TYPE_PADDING;
227         event->time_delta = 0;
228 }
229
230 static unsigned
231 rb_event_data_length(struct ring_buffer_event *event)
232 {
233         unsigned length;
234
235         if (event->len)
236                 length = event->len * RB_ALIGNMENT;
237         else
238                 length = event->array[0];
239         return length + RB_EVNT_HDR_SIZE;
240 }
241
242 /* inline for ring buffer fast paths */
243 static unsigned
244 rb_event_length(struct ring_buffer_event *event)
245 {
246         switch (event->type) {
247         case RINGBUF_TYPE_PADDING:
248                 if (rb_null_event(event))
249                         /* undefined */
250                         return -1;
251                 return rb_event_data_length(event);
252
253         case RINGBUF_TYPE_TIME_EXTEND:
254                 return RB_LEN_TIME_EXTEND;
255
256         case RINGBUF_TYPE_TIME_STAMP:
257                 return RB_LEN_TIME_STAMP;
258
259         case RINGBUF_TYPE_DATA:
260                 return rb_event_data_length(event);
261         default:
262                 BUG();
263         }
264         /* not hit */
265         return 0;
266 }
267
268 /**
269  * ring_buffer_event_length - return the length of the event
270  * @event: the event to get the length of
271  */
272 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 {
274         unsigned length = rb_event_length(event);
275         if (event->type != RINGBUF_TYPE_DATA)
276                 return length;
277         length -= RB_EVNT_HDR_SIZE;
278         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280         return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283
284 /* inline for ring buffer fast paths */
285 static void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288         BUG_ON(event->type != RINGBUF_TYPE_DATA);
289         /* If length is in len field, then array[0] has the data */
290         if (event->len)
291                 return (void *)&event->array[0];
292         /* Otherwise length is in array[0] and array[1] has the data */
293         return (void *)&event->array[1];
294 }
295
296 /**
297  * ring_buffer_event_data - return the data of the event
298  * @event: the event to get the data from
299  */
300 void *ring_buffer_event_data(struct ring_buffer_event *event)
301 {
302         return rb_event_data(event);
303 }
304 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
305
306 #define for_each_buffer_cpu(buffer, cpu)                \
307         for_each_cpu(cpu, buffer->cpumask)
308
309 #define TS_SHIFT        27
310 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
311 #define TS_DELTA_TEST   (~TS_MASK)
312
313 struct buffer_data_page {
314         u64              time_stamp;    /* page time stamp */
315         local_t          commit;        /* write committed index */
316         unsigned char    data[];        /* data of buffer page */
317 };
318
319 struct buffer_page {
320         local_t          write;         /* index for next write */
321         unsigned         read;          /* index for next read */
322         struct list_head list;          /* list of free pages */
323         struct buffer_data_page *page;  /* Actual data page */
324 };
325
326 static void rb_init_page(struct buffer_data_page *bpage)
327 {
328         local_set(&bpage->commit, 0);
329 }
330
331 /**
332  * ring_buffer_page_len - the size of data on the page.
333  * @page: The page to read
334  *
335  * Returns the amount of data on the page, including buffer page header.
336  */
337 size_t ring_buffer_page_len(void *page)
338 {
339         return local_read(&((struct buffer_data_page *)page)->commit)
340                 + BUF_PAGE_HDR_SIZE;
341 }
342
343 /*
344  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
345  * this issue out.
346  */
347 static void free_buffer_page(struct buffer_page *bpage)
348 {
349         free_page((unsigned long)bpage->page);
350         kfree(bpage);
351 }
352
353 /*
354  * We need to fit the time_stamp delta into 27 bits.
355  */
356 static inline int test_time_stamp(u64 delta)
357 {
358         if (delta & TS_DELTA_TEST)
359                 return 1;
360         return 0;
361 }
362
363 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
364
365 int ring_buffer_print_page_header(struct trace_seq *s)
366 {
367         struct buffer_data_page field;
368         int ret;
369
370         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
371                                "offset:0;\tsize:%u;\n",
372                                (unsigned int)sizeof(field.time_stamp));
373
374         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
375                                "offset:%u;\tsize:%u;\n",
376                                (unsigned int)offsetof(typeof(field), commit),
377                                (unsigned int)sizeof(field.commit));
378
379         ret = trace_seq_printf(s, "\tfield: char data;\t"
380                                "offset:%u;\tsize:%u;\n",
381                                (unsigned int)offsetof(typeof(field), data),
382                                (unsigned int)BUF_PAGE_SIZE);
383
384         return ret;
385 }
386
387 /*
388  * head_page == tail_page && head == tail then buffer is empty.
389  */
390 struct ring_buffer_per_cpu {
391         int                             cpu;
392         struct ring_buffer              *buffer;
393         spinlock_t                      reader_lock; /* serialize readers */
394         raw_spinlock_t                  lock;
395         struct lock_class_key           lock_key;
396         struct list_head                pages;
397         struct buffer_page              *head_page;     /* read from head */
398         struct buffer_page              *tail_page;     /* write to tail */
399         struct buffer_page              *commit_page;   /* committed pages */
400         struct buffer_page              *reader_page;
401         unsigned long                   overrun;
402         unsigned long                   entries;
403         u64                             write_stamp;
404         u64                             read_stamp;
405         atomic_t                        record_disabled;
406 };
407
408 struct ring_buffer {
409         unsigned                        pages;
410         unsigned                        flags;
411         int                             cpus;
412         atomic_t                        record_disabled;
413         cpumask_var_t                   cpumask;
414
415         struct mutex                    mutex;
416
417         struct ring_buffer_per_cpu      **buffers;
418
419 #ifdef CONFIG_HOTPLUG_CPU
420         struct notifier_block           cpu_notify;
421 #endif
422         u64                             (*clock)(void);
423 };
424
425 struct ring_buffer_iter {
426         struct ring_buffer_per_cpu      *cpu_buffer;
427         unsigned long                   head;
428         struct buffer_page              *head_page;
429         u64                             read_stamp;
430 };
431
432 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
433 #define RB_WARN_ON(buffer, cond)                                \
434         ({                                                      \
435                 int _____ret = unlikely(cond);                  \
436                 if (_____ret) {                                 \
437                         atomic_inc(&buffer->record_disabled);   \
438                         WARN_ON(1);                             \
439                 }                                               \
440                 _____ret;                                       \
441         })
442
443 /* Up this if you want to test the TIME_EXTENTS and normalization */
444 #define DEBUG_SHIFT 0
445
446 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
447 {
448         u64 time;
449
450         preempt_disable_notrace();
451         /* shift to debug/test normalization and TIME_EXTENTS */
452         time = buffer->clock() << DEBUG_SHIFT;
453         preempt_enable_no_resched_notrace();
454
455         return time;
456 }
457 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
458
459 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
460                                       int cpu, u64 *ts)
461 {
462         /* Just stupid testing the normalize function and deltas */
463         *ts >>= DEBUG_SHIFT;
464 }
465 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
466
467 /**
468  * check_pages - integrity check of buffer pages
469  * @cpu_buffer: CPU buffer with pages to test
470  *
471  * As a safety measure we check to make sure the data pages have not
472  * been corrupted.
473  */
474 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
475 {
476         struct list_head *head = &cpu_buffer->pages;
477         struct buffer_page *bpage, *tmp;
478
479         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
480                 return -1;
481         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
482                 return -1;
483
484         list_for_each_entry_safe(bpage, tmp, head, list) {
485                 if (RB_WARN_ON(cpu_buffer,
486                                bpage->list.next->prev != &bpage->list))
487                         return -1;
488                 if (RB_WARN_ON(cpu_buffer,
489                                bpage->list.prev->next != &bpage->list))
490                         return -1;
491         }
492
493         return 0;
494 }
495
496 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
497                              unsigned nr_pages)
498 {
499         struct list_head *head = &cpu_buffer->pages;
500         struct buffer_page *bpage, *tmp;
501         unsigned long addr;
502         LIST_HEAD(pages);
503         unsigned i;
504
505         for (i = 0; i < nr_pages; i++) {
506                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
507                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
508                 if (!bpage)
509                         goto free_pages;
510                 list_add(&bpage->list, &pages);
511
512                 addr = __get_free_page(GFP_KERNEL);
513                 if (!addr)
514                         goto free_pages;
515                 bpage->page = (void *)addr;
516                 rb_init_page(bpage->page);
517         }
518
519         list_splice(&pages, head);
520
521         rb_check_pages(cpu_buffer);
522
523         return 0;
524
525  free_pages:
526         list_for_each_entry_safe(bpage, tmp, &pages, list) {
527                 list_del_init(&bpage->list);
528                 free_buffer_page(bpage);
529         }
530         return -ENOMEM;
531 }
532
533 static struct ring_buffer_per_cpu *
534 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
535 {
536         struct ring_buffer_per_cpu *cpu_buffer;
537         struct buffer_page *bpage;
538         unsigned long addr;
539         int ret;
540
541         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
542                                   GFP_KERNEL, cpu_to_node(cpu));
543         if (!cpu_buffer)
544                 return NULL;
545
546         cpu_buffer->cpu = cpu;
547         cpu_buffer->buffer = buffer;
548         spin_lock_init(&cpu_buffer->reader_lock);
549         cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
550         INIT_LIST_HEAD(&cpu_buffer->pages);
551
552         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
553                             GFP_KERNEL, cpu_to_node(cpu));
554         if (!bpage)
555                 goto fail_free_buffer;
556
557         cpu_buffer->reader_page = bpage;
558         addr = __get_free_page(GFP_KERNEL);
559         if (!addr)
560                 goto fail_free_reader;
561         bpage->page = (void *)addr;
562         rb_init_page(bpage->page);
563
564         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
565
566         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
567         if (ret < 0)
568                 goto fail_free_reader;
569
570         cpu_buffer->head_page
571                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
572         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
573
574         return cpu_buffer;
575
576  fail_free_reader:
577         free_buffer_page(cpu_buffer->reader_page);
578
579  fail_free_buffer:
580         kfree(cpu_buffer);
581         return NULL;
582 }
583
584 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
585 {
586         struct list_head *head = &cpu_buffer->pages;
587         struct buffer_page *bpage, *tmp;
588
589         free_buffer_page(cpu_buffer->reader_page);
590
591         list_for_each_entry_safe(bpage, tmp, head, list) {
592                 list_del_init(&bpage->list);
593                 free_buffer_page(bpage);
594         }
595         kfree(cpu_buffer);
596 }
597
598 /*
599  * Causes compile errors if the struct buffer_page gets bigger
600  * than the struct page.
601  */
602 extern int ring_buffer_page_too_big(void);
603
604 #ifdef CONFIG_HOTPLUG_CPU
605 static int rb_cpu_notify(struct notifier_block *self,
606                          unsigned long action, void *hcpu);
607 #endif
608
609 /**
610  * ring_buffer_alloc - allocate a new ring_buffer
611  * @size: the size in bytes per cpu that is needed.
612  * @flags: attributes to set for the ring buffer.
613  *
614  * Currently the only flag that is available is the RB_FL_OVERWRITE
615  * flag. This flag means that the buffer will overwrite old data
616  * when the buffer wraps. If this flag is not set, the buffer will
617  * drop data when the tail hits the head.
618  */
619 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
620 {
621         struct ring_buffer *buffer;
622         int bsize;
623         int cpu;
624
625         /* Paranoid! Optimizes out when all is well */
626         if (sizeof(struct buffer_page) > sizeof(struct page))
627                 ring_buffer_page_too_big();
628
629
630         /* keep it in its own cache line */
631         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
632                          GFP_KERNEL);
633         if (!buffer)
634                 return NULL;
635
636         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
637                 goto fail_free_buffer;
638
639         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
640         buffer->flags = flags;
641         buffer->clock = trace_clock_local;
642
643         /* need at least two pages */
644         if (buffer->pages == 1)
645                 buffer->pages++;
646
647         /*
648          * In case of non-hotplug cpu, if the ring-buffer is allocated
649          * in early initcall, it will not be notified of secondary cpus.
650          * In that off case, we need to allocate for all possible cpus.
651          */
652 #ifdef CONFIG_HOTPLUG_CPU
653         get_online_cpus();
654         cpumask_copy(buffer->cpumask, cpu_online_mask);
655 #else
656         cpumask_copy(buffer->cpumask, cpu_possible_mask);
657 #endif
658         buffer->cpus = nr_cpu_ids;
659
660         bsize = sizeof(void *) * nr_cpu_ids;
661         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
662                                   GFP_KERNEL);
663         if (!buffer->buffers)
664                 goto fail_free_cpumask;
665
666         for_each_buffer_cpu(buffer, cpu) {
667                 buffer->buffers[cpu] =
668                         rb_allocate_cpu_buffer(buffer, cpu);
669                 if (!buffer->buffers[cpu])
670                         goto fail_free_buffers;
671         }
672
673 #ifdef CONFIG_HOTPLUG_CPU
674         buffer->cpu_notify.notifier_call = rb_cpu_notify;
675         buffer->cpu_notify.priority = 0;
676         register_cpu_notifier(&buffer->cpu_notify);
677 #endif
678
679         put_online_cpus();
680         mutex_init(&buffer->mutex);
681
682         return buffer;
683
684  fail_free_buffers:
685         for_each_buffer_cpu(buffer, cpu) {
686                 if (buffer->buffers[cpu])
687                         rb_free_cpu_buffer(buffer->buffers[cpu]);
688         }
689         kfree(buffer->buffers);
690
691  fail_free_cpumask:
692         free_cpumask_var(buffer->cpumask);
693         put_online_cpus();
694
695  fail_free_buffer:
696         kfree(buffer);
697         return NULL;
698 }
699 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
700
701 /**
702  * ring_buffer_free - free a ring buffer.
703  * @buffer: the buffer to free.
704  */
705 void
706 ring_buffer_free(struct ring_buffer *buffer)
707 {
708         int cpu;
709
710         get_online_cpus();
711
712 #ifdef CONFIG_HOTPLUG_CPU
713         unregister_cpu_notifier(&buffer->cpu_notify);
714 #endif
715
716         for_each_buffer_cpu(buffer, cpu)
717                 rb_free_cpu_buffer(buffer->buffers[cpu]);
718
719         put_online_cpus();
720
721         free_cpumask_var(buffer->cpumask);
722
723         kfree(buffer);
724 }
725 EXPORT_SYMBOL_GPL(ring_buffer_free);
726
727 void ring_buffer_set_clock(struct ring_buffer *buffer,
728                            u64 (*clock)(void))
729 {
730         buffer->clock = clock;
731 }
732
733 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
734
735 static void
736 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
737 {
738         struct buffer_page *bpage;
739         struct list_head *p;
740         unsigned i;
741
742         atomic_inc(&cpu_buffer->record_disabled);
743         synchronize_sched();
744
745         for (i = 0; i < nr_pages; i++) {
746                 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
747                         return;
748                 p = cpu_buffer->pages.next;
749                 bpage = list_entry(p, struct buffer_page, list);
750                 list_del_init(&bpage->list);
751                 free_buffer_page(bpage);
752         }
753         if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
754                 return;
755
756         rb_reset_cpu(cpu_buffer);
757
758         rb_check_pages(cpu_buffer);
759
760         atomic_dec(&cpu_buffer->record_disabled);
761
762 }
763
764 static void
765 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
766                 struct list_head *pages, unsigned nr_pages)
767 {
768         struct buffer_page *bpage;
769         struct list_head *p;
770         unsigned i;
771
772         atomic_inc(&cpu_buffer->record_disabled);
773         synchronize_sched();
774
775         for (i = 0; i < nr_pages; i++) {
776                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
777                         return;
778                 p = pages->next;
779                 bpage = list_entry(p, struct buffer_page, list);
780                 list_del_init(&bpage->list);
781                 list_add_tail(&bpage->list, &cpu_buffer->pages);
782         }
783         rb_reset_cpu(cpu_buffer);
784
785         rb_check_pages(cpu_buffer);
786
787         atomic_dec(&cpu_buffer->record_disabled);
788 }
789
790 /**
791  * ring_buffer_resize - resize the ring buffer
792  * @buffer: the buffer to resize.
793  * @size: the new size.
794  *
795  * The tracer is responsible for making sure that the buffer is
796  * not being used while changing the size.
797  * Note: We may be able to change the above requirement by using
798  *  RCU synchronizations.
799  *
800  * Minimum size is 2 * BUF_PAGE_SIZE.
801  *
802  * Returns -1 on failure.
803  */
804 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
805 {
806         struct ring_buffer_per_cpu *cpu_buffer;
807         unsigned nr_pages, rm_pages, new_pages;
808         struct buffer_page *bpage, *tmp;
809         unsigned long buffer_size;
810         unsigned long addr;
811         LIST_HEAD(pages);
812         int i, cpu;
813
814         /*
815          * Always succeed at resizing a non-existent buffer:
816          */
817         if (!buffer)
818                 return size;
819
820         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
821         size *= BUF_PAGE_SIZE;
822         buffer_size = buffer->pages * BUF_PAGE_SIZE;
823
824         /* we need a minimum of two pages */
825         if (size < BUF_PAGE_SIZE * 2)
826                 size = BUF_PAGE_SIZE * 2;
827
828         if (size == buffer_size)
829                 return size;
830
831         mutex_lock(&buffer->mutex);
832         get_online_cpus();
833
834         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
835
836         if (size < buffer_size) {
837
838                 /* easy case, just free pages */
839                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
840                         goto out_fail;
841
842                 rm_pages = buffer->pages - nr_pages;
843
844                 for_each_buffer_cpu(buffer, cpu) {
845                         cpu_buffer = buffer->buffers[cpu];
846                         rb_remove_pages(cpu_buffer, rm_pages);
847                 }
848                 goto out;
849         }
850
851         /*
852          * This is a bit more difficult. We only want to add pages
853          * when we can allocate enough for all CPUs. We do this
854          * by allocating all the pages and storing them on a local
855          * link list. If we succeed in our allocation, then we
856          * add these pages to the cpu_buffers. Otherwise we just free
857          * them all and return -ENOMEM;
858          */
859         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
860                 goto out_fail;
861
862         new_pages = nr_pages - buffer->pages;
863
864         for_each_buffer_cpu(buffer, cpu) {
865                 for (i = 0; i < new_pages; i++) {
866                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
867                                                   cache_line_size()),
868                                             GFP_KERNEL, cpu_to_node(cpu));
869                         if (!bpage)
870                                 goto free_pages;
871                         list_add(&bpage->list, &pages);
872                         addr = __get_free_page(GFP_KERNEL);
873                         if (!addr)
874                                 goto free_pages;
875                         bpage->page = (void *)addr;
876                         rb_init_page(bpage->page);
877                 }
878         }
879
880         for_each_buffer_cpu(buffer, cpu) {
881                 cpu_buffer = buffer->buffers[cpu];
882                 rb_insert_pages(cpu_buffer, &pages, new_pages);
883         }
884
885         if (RB_WARN_ON(buffer, !list_empty(&pages)))
886                 goto out_fail;
887
888  out:
889         buffer->pages = nr_pages;
890         put_online_cpus();
891         mutex_unlock(&buffer->mutex);
892
893         return size;
894
895  free_pages:
896         list_for_each_entry_safe(bpage, tmp, &pages, list) {
897                 list_del_init(&bpage->list);
898                 free_buffer_page(bpage);
899         }
900         put_online_cpus();
901         mutex_unlock(&buffer->mutex);
902         return -ENOMEM;
903
904         /*
905          * Something went totally wrong, and we are too paranoid
906          * to even clean up the mess.
907          */
908  out_fail:
909         put_online_cpus();
910         mutex_unlock(&buffer->mutex);
911         return -1;
912 }
913 EXPORT_SYMBOL_GPL(ring_buffer_resize);
914
915 static inline void *
916 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
917 {
918         return bpage->data + index;
919 }
920
921 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
922 {
923         return bpage->page->data + index;
924 }
925
926 static inline struct ring_buffer_event *
927 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
928 {
929         return __rb_page_index(cpu_buffer->reader_page,
930                                cpu_buffer->reader_page->read);
931 }
932
933 static inline struct ring_buffer_event *
934 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
935 {
936         return __rb_page_index(cpu_buffer->head_page,
937                                cpu_buffer->head_page->read);
938 }
939
940 static inline struct ring_buffer_event *
941 rb_iter_head_event(struct ring_buffer_iter *iter)
942 {
943         return __rb_page_index(iter->head_page, iter->head);
944 }
945
946 static inline unsigned rb_page_write(struct buffer_page *bpage)
947 {
948         return local_read(&bpage->write);
949 }
950
951 static inline unsigned rb_page_commit(struct buffer_page *bpage)
952 {
953         return local_read(&bpage->page->commit);
954 }
955
956 /* Size is determined by what has been commited */
957 static inline unsigned rb_page_size(struct buffer_page *bpage)
958 {
959         return rb_page_commit(bpage);
960 }
961
962 static inline unsigned
963 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
964 {
965         return rb_page_commit(cpu_buffer->commit_page);
966 }
967
968 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
969 {
970         return rb_page_commit(cpu_buffer->head_page);
971 }
972
973 /*
974  * When the tail hits the head and the buffer is in overwrite mode,
975  * the head jumps to the next page and all content on the previous
976  * page is discarded. But before doing so, we update the overrun
977  * variable of the buffer.
978  */
979 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
980 {
981         struct ring_buffer_event *event;
982         unsigned long head;
983
984         for (head = 0; head < rb_head_size(cpu_buffer);
985              head += rb_event_length(event)) {
986
987                 event = __rb_page_index(cpu_buffer->head_page, head);
988                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
989                         return;
990                 /* Only count data entries */
991                 if (event->type != RINGBUF_TYPE_DATA)
992                         continue;
993                 cpu_buffer->overrun++;
994                 cpu_buffer->entries--;
995         }
996 }
997
998 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
999                                struct buffer_page **bpage)
1000 {
1001         struct list_head *p = (*bpage)->list.next;
1002
1003         if (p == &cpu_buffer->pages)
1004                 p = p->next;
1005
1006         *bpage = list_entry(p, struct buffer_page, list);
1007 }
1008
1009 static inline unsigned
1010 rb_event_index(struct ring_buffer_event *event)
1011 {
1012         unsigned long addr = (unsigned long)event;
1013
1014         return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1015 }
1016
1017 static int
1018 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1019              struct ring_buffer_event *event)
1020 {
1021         unsigned long addr = (unsigned long)event;
1022         unsigned long index;
1023
1024         index = rb_event_index(event);
1025         addr &= PAGE_MASK;
1026
1027         return cpu_buffer->commit_page->page == (void *)addr &&
1028                 rb_commit_index(cpu_buffer) == index;
1029 }
1030
1031 static void
1032 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1033                     struct ring_buffer_event *event)
1034 {
1035         unsigned long addr = (unsigned long)event;
1036         unsigned long index;
1037
1038         index = rb_event_index(event);
1039         addr &= PAGE_MASK;
1040
1041         while (cpu_buffer->commit_page->page != (void *)addr) {
1042                 if (RB_WARN_ON(cpu_buffer,
1043                           cpu_buffer->commit_page == cpu_buffer->tail_page))
1044                         return;
1045                 cpu_buffer->commit_page->page->commit =
1046                         cpu_buffer->commit_page->write;
1047                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1048                 cpu_buffer->write_stamp =
1049                         cpu_buffer->commit_page->page->time_stamp;
1050         }
1051
1052         /* Now set the commit to the event's index */
1053         local_set(&cpu_buffer->commit_page->page->commit, index);
1054 }
1055
1056 static void
1057 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1058 {
1059         /*
1060          * We only race with interrupts and NMIs on this CPU.
1061          * If we own the commit event, then we can commit
1062          * all others that interrupted us, since the interruptions
1063          * are in stack format (they finish before they come
1064          * back to us). This allows us to do a simple loop to
1065          * assign the commit to the tail.
1066          */
1067  again:
1068         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1069                 cpu_buffer->commit_page->page->commit =
1070                         cpu_buffer->commit_page->write;
1071                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1072                 cpu_buffer->write_stamp =
1073                         cpu_buffer->commit_page->page->time_stamp;
1074                 /* add barrier to keep gcc from optimizing too much */
1075                 barrier();
1076         }
1077         while (rb_commit_index(cpu_buffer) !=
1078                rb_page_write(cpu_buffer->commit_page)) {
1079                 cpu_buffer->commit_page->page->commit =
1080                         cpu_buffer->commit_page->write;
1081                 barrier();
1082         }
1083
1084         /* again, keep gcc from optimizing */
1085         barrier();
1086
1087         /*
1088          * If an interrupt came in just after the first while loop
1089          * and pushed the tail page forward, we will be left with
1090          * a dangling commit that will never go forward.
1091          */
1092         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1093                 goto again;
1094 }
1095
1096 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1097 {
1098         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1099         cpu_buffer->reader_page->read = 0;
1100 }
1101
1102 static void rb_inc_iter(struct ring_buffer_iter *iter)
1103 {
1104         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1105
1106         /*
1107          * The iterator could be on the reader page (it starts there).
1108          * But the head could have moved, since the reader was
1109          * found. Check for this case and assign the iterator
1110          * to the head page instead of next.
1111          */
1112         if (iter->head_page == cpu_buffer->reader_page)
1113                 iter->head_page = cpu_buffer->head_page;
1114         else
1115                 rb_inc_page(cpu_buffer, &iter->head_page);
1116
1117         iter->read_stamp = iter->head_page->page->time_stamp;
1118         iter->head = 0;
1119 }
1120
1121 /**
1122  * ring_buffer_update_event - update event type and data
1123  * @event: the even to update
1124  * @type: the type of event
1125  * @length: the size of the event field in the ring buffer
1126  *
1127  * Update the type and data fields of the event. The length
1128  * is the actual size that is written to the ring buffer,
1129  * and with this, we can determine what to place into the
1130  * data field.
1131  */
1132 static void
1133 rb_update_event(struct ring_buffer_event *event,
1134                          unsigned type, unsigned length)
1135 {
1136         event->type = type;
1137
1138         switch (type) {
1139
1140         case RINGBUF_TYPE_PADDING:
1141                 break;
1142
1143         case RINGBUF_TYPE_TIME_EXTEND:
1144                 event->len = DIV_ROUND_UP(RB_LEN_TIME_EXTEND, RB_ALIGNMENT);
1145                 break;
1146
1147         case RINGBUF_TYPE_TIME_STAMP:
1148                 event->len = DIV_ROUND_UP(RB_LEN_TIME_STAMP, RB_ALIGNMENT);
1149                 break;
1150
1151         case RINGBUF_TYPE_DATA:
1152                 length -= RB_EVNT_HDR_SIZE;
1153                 if (length > RB_MAX_SMALL_DATA) {
1154                         event->len = 0;
1155                         event->array[0] = length;
1156                 } else
1157                         event->len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1158                 break;
1159         default:
1160                 BUG();
1161         }
1162 }
1163
1164 static unsigned rb_calculate_event_length(unsigned length)
1165 {
1166         struct ring_buffer_event event; /* Used only for sizeof array */
1167
1168         /* zero length can cause confusions */
1169         if (!length)
1170                 length = 1;
1171
1172         if (length > RB_MAX_SMALL_DATA)
1173                 length += sizeof(event.array[0]);
1174
1175         length += RB_EVNT_HDR_SIZE;
1176         length = ALIGN(length, RB_ALIGNMENT);
1177
1178         return length;
1179 }
1180
1181 static struct ring_buffer_event *
1182 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1183                   unsigned type, unsigned long length, u64 *ts)
1184 {
1185         struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
1186         unsigned long tail, write;
1187         struct ring_buffer *buffer = cpu_buffer->buffer;
1188         struct ring_buffer_event *event;
1189         unsigned long flags;
1190         bool lock_taken = false;
1191
1192         commit_page = cpu_buffer->commit_page;
1193         /* we just need to protect against interrupts */
1194         barrier();
1195         tail_page = cpu_buffer->tail_page;
1196         write = local_add_return(length, &tail_page->write);
1197         tail = write - length;
1198
1199         /* See if we shot pass the end of this buffer page */
1200         if (write > BUF_PAGE_SIZE) {
1201                 struct buffer_page *next_page = tail_page;
1202
1203                 local_irq_save(flags);
1204                 /*
1205                  * Since the write to the buffer is still not
1206                  * fully lockless, we must be careful with NMIs.
1207                  * The locks in the writers are taken when a write
1208                  * crosses to a new page. The locks protect against
1209                  * races with the readers (this will soon be fixed
1210                  * with a lockless solution).
1211                  *
1212                  * Because we can not protect against NMIs, and we
1213                  * want to keep traces reentrant, we need to manage
1214                  * what happens when we are in an NMI.
1215                  *
1216                  * NMIs can happen after we take the lock.
1217                  * If we are in an NMI, only take the lock
1218                  * if it is not already taken. Otherwise
1219                  * simply fail.
1220                  */
1221                 if (unlikely(in_nmi())) {
1222                         if (!__raw_spin_trylock(&cpu_buffer->lock))
1223                                 goto out_reset;
1224                 } else
1225                         __raw_spin_lock(&cpu_buffer->lock);
1226
1227                 lock_taken = true;
1228
1229                 rb_inc_page(cpu_buffer, &next_page);
1230
1231                 head_page = cpu_buffer->head_page;
1232                 reader_page = cpu_buffer->reader_page;
1233
1234                 /* we grabbed the lock before incrementing */
1235                 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1236                         goto out_reset;
1237
1238                 /*
1239                  * If for some reason, we had an interrupt storm that made
1240                  * it all the way around the buffer, bail, and warn
1241                  * about it.
1242                  */
1243                 if (unlikely(next_page == commit_page)) {
1244                         /* This can easily happen on small ring buffers */
1245                         WARN_ON_ONCE(buffer->pages > 2);
1246                         goto out_reset;
1247                 }
1248
1249                 if (next_page == head_page) {
1250                         if (!(buffer->flags & RB_FL_OVERWRITE))
1251                                 goto out_reset;
1252
1253                         /* tail_page has not moved yet? */
1254                         if (tail_page == cpu_buffer->tail_page) {
1255                                 /* count overflows */
1256                                 rb_update_overflow(cpu_buffer);
1257
1258                                 rb_inc_page(cpu_buffer, &head_page);
1259                                 cpu_buffer->head_page = head_page;
1260                                 cpu_buffer->head_page->read = 0;
1261                         }
1262                 }
1263
1264                 /*
1265                  * If the tail page is still the same as what we think
1266                  * it is, then it is up to us to update the tail
1267                  * pointer.
1268                  */
1269                 if (tail_page == cpu_buffer->tail_page) {
1270                         local_set(&next_page->write, 0);
1271                         local_set(&next_page->page->commit, 0);
1272                         cpu_buffer->tail_page = next_page;
1273
1274                         /* reread the time stamp */
1275                         *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1276                         cpu_buffer->tail_page->page->time_stamp = *ts;
1277                 }
1278
1279                 /*
1280                  * The actual tail page has moved forward.
1281                  */
1282                 if (tail < BUF_PAGE_SIZE) {
1283                         /* Mark the rest of the page with padding */
1284                         event = __rb_page_index(tail_page, tail);
1285                         rb_event_set_padding(event);
1286                 }
1287
1288                 if (tail <= BUF_PAGE_SIZE)
1289                         /* Set the write back to the previous setting */
1290                         local_set(&tail_page->write, tail);
1291
1292                 /*
1293                  * If this was a commit entry that failed,
1294                  * increment that too
1295                  */
1296                 if (tail_page == cpu_buffer->commit_page &&
1297                     tail == rb_commit_index(cpu_buffer)) {
1298                         rb_set_commit_to_write(cpu_buffer);
1299                 }
1300
1301                 __raw_spin_unlock(&cpu_buffer->lock);
1302                 local_irq_restore(flags);
1303
1304                 /* fail and let the caller try again */
1305                 return ERR_PTR(-EAGAIN);
1306         }
1307
1308         /* We reserved something on the buffer */
1309
1310         if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1311                 return NULL;
1312
1313         event = __rb_page_index(tail_page, tail);
1314         rb_update_event(event, type, length);
1315
1316         /*
1317          * If this is a commit and the tail is zero, then update
1318          * this page's time stamp.
1319          */
1320         if (!tail && rb_is_commit(cpu_buffer, event))
1321                 cpu_buffer->commit_page->page->time_stamp = *ts;
1322
1323         return event;
1324
1325  out_reset:
1326         /* reset write */
1327         if (tail <= BUF_PAGE_SIZE)
1328                 local_set(&tail_page->write, tail);
1329
1330         if (likely(lock_taken))
1331                 __raw_spin_unlock(&cpu_buffer->lock);
1332         local_irq_restore(flags);
1333         return NULL;
1334 }
1335
1336 static int
1337 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1338                   u64 *ts, u64 *delta)
1339 {
1340         struct ring_buffer_event *event;
1341         static int once;
1342         int ret;
1343
1344         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1345                 printk(KERN_WARNING "Delta way too big! %llu"
1346                        " ts=%llu write stamp = %llu\n",
1347                        (unsigned long long)*delta,
1348                        (unsigned long long)*ts,
1349                        (unsigned long long)cpu_buffer->write_stamp);
1350                 WARN_ON(1);
1351         }
1352
1353         /*
1354          * The delta is too big, we to add a
1355          * new timestamp.
1356          */
1357         event = __rb_reserve_next(cpu_buffer,
1358                                   RINGBUF_TYPE_TIME_EXTEND,
1359                                   RB_LEN_TIME_EXTEND,
1360                                   ts);
1361         if (!event)
1362                 return -EBUSY;
1363
1364         if (PTR_ERR(event) == -EAGAIN)
1365                 return -EAGAIN;
1366
1367         /* Only a commited time event can update the write stamp */
1368         if (rb_is_commit(cpu_buffer, event)) {
1369                 /*
1370                  * If this is the first on the page, then we need to
1371                  * update the page itself, and just put in a zero.
1372                  */
1373                 if (rb_event_index(event)) {
1374                         event->time_delta = *delta & TS_MASK;
1375                         event->array[0] = *delta >> TS_SHIFT;
1376                 } else {
1377                         cpu_buffer->commit_page->page->time_stamp = *ts;
1378                         event->time_delta = 0;
1379                         event->array[0] = 0;
1380                 }
1381                 cpu_buffer->write_stamp = *ts;
1382                 /* let the caller know this was the commit */
1383                 ret = 1;
1384         } else {
1385                 /* Darn, this is just wasted space */
1386                 event->time_delta = 0;
1387                 event->array[0] = 0;
1388                 ret = 0;
1389         }
1390
1391         *delta = 0;
1392
1393         return ret;
1394 }
1395
1396 static struct ring_buffer_event *
1397 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1398                       unsigned type, unsigned long length)
1399 {
1400         struct ring_buffer_event *event;
1401         u64 ts, delta;
1402         int commit = 0;
1403         int nr_loops = 0;
1404
1405  again:
1406         /*
1407          * We allow for interrupts to reenter here and do a trace.
1408          * If one does, it will cause this original code to loop
1409          * back here. Even with heavy interrupts happening, this
1410          * should only happen a few times in a row. If this happens
1411          * 1000 times in a row, there must be either an interrupt
1412          * storm or we have something buggy.
1413          * Bail!
1414          */
1415         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1416                 return NULL;
1417
1418         ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
1419
1420         /*
1421          * Only the first commit can update the timestamp.
1422          * Yes there is a race here. If an interrupt comes in
1423          * just after the conditional and it traces too, then it
1424          * will also check the deltas. More than one timestamp may
1425          * also be made. But only the entry that did the actual
1426          * commit will be something other than zero.
1427          */
1428         if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1429             rb_page_write(cpu_buffer->tail_page) ==
1430             rb_commit_index(cpu_buffer)) {
1431
1432                 delta = ts - cpu_buffer->write_stamp;
1433
1434                 /* make sure this delta is calculated here */
1435                 barrier();
1436
1437                 /* Did the write stamp get updated already? */
1438                 if (unlikely(ts < cpu_buffer->write_stamp))
1439                         delta = 0;
1440
1441                 if (test_time_stamp(delta)) {
1442
1443                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1444
1445                         if (commit == -EBUSY)
1446                                 return NULL;
1447
1448                         if (commit == -EAGAIN)
1449                                 goto again;
1450
1451                         RB_WARN_ON(cpu_buffer, commit < 0);
1452                 }
1453         } else
1454                 /* Non commits have zero deltas */
1455                 delta = 0;
1456
1457         event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1458         if (PTR_ERR(event) == -EAGAIN)
1459                 goto again;
1460
1461         if (!event) {
1462                 if (unlikely(commit))
1463                         /*
1464                          * Ouch! We needed a timestamp and it was commited. But
1465                          * we didn't get our event reserved.
1466                          */
1467                         rb_set_commit_to_write(cpu_buffer);
1468                 return NULL;
1469         }
1470
1471         /*
1472          * If the timestamp was commited, make the commit our entry
1473          * now so that we will update it when needed.
1474          */
1475         if (commit)
1476                 rb_set_commit_event(cpu_buffer, event);
1477         else if (!rb_is_commit(cpu_buffer, event))
1478                 delta = 0;
1479
1480         event->time_delta = delta;
1481
1482         return event;
1483 }
1484
1485 #define TRACE_RECURSIVE_DEPTH 16
1486
1487 static int trace_recursive_lock(void)
1488 {
1489         current->trace_recursion++;
1490
1491         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1492                 return 0;
1493
1494         /* Disable all tracing before we do anything else */
1495         tracing_off_permanent();
1496
1497         printk_once(KERN_WARNING "Tracing recursion: depth[%d]:"
1498                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1499                     current->trace_recursion,
1500                     hardirq_count() >> HARDIRQ_SHIFT,
1501                     softirq_count() >> SOFTIRQ_SHIFT,
1502                     in_nmi());
1503
1504         WARN_ON_ONCE(1);
1505         return -1;
1506 }
1507
1508 static void trace_recursive_unlock(void)
1509 {
1510         WARN_ON_ONCE(!current->trace_recursion);
1511
1512         current->trace_recursion--;
1513 }
1514
1515 static DEFINE_PER_CPU(int, rb_need_resched);
1516
1517 /**
1518  * ring_buffer_lock_reserve - reserve a part of the buffer
1519  * @buffer: the ring buffer to reserve from
1520  * @length: the length of the data to reserve (excluding event header)
1521  *
1522  * Returns a reseverd event on the ring buffer to copy directly to.
1523  * The user of this interface will need to get the body to write into
1524  * and can use the ring_buffer_event_data() interface.
1525  *
1526  * The length is the length of the data needed, not the event length
1527  * which also includes the event header.
1528  *
1529  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1530  * If NULL is returned, then nothing has been allocated or locked.
1531  */
1532 struct ring_buffer_event *
1533 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
1534 {
1535         struct ring_buffer_per_cpu *cpu_buffer;
1536         struct ring_buffer_event *event;
1537         int cpu, resched;
1538
1539         if (ring_buffer_flags != RB_BUFFERS_ON)
1540                 return NULL;
1541
1542         if (atomic_read(&buffer->record_disabled))
1543                 return NULL;
1544
1545         /* If we are tracing schedule, we don't want to recurse */
1546         resched = ftrace_preempt_disable();
1547
1548         if (trace_recursive_lock())
1549                 goto out_nocheck;
1550
1551         cpu = raw_smp_processor_id();
1552
1553         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1554                 goto out;
1555
1556         cpu_buffer = buffer->buffers[cpu];
1557
1558         if (atomic_read(&cpu_buffer->record_disabled))
1559                 goto out;
1560
1561         length = rb_calculate_event_length(length);
1562         if (length > BUF_PAGE_SIZE)
1563                 goto out;
1564
1565         event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1566         if (!event)
1567                 goto out;
1568
1569         /*
1570          * Need to store resched state on this cpu.
1571          * Only the first needs to.
1572          */
1573
1574         if (preempt_count() == 1)
1575                 per_cpu(rb_need_resched, cpu) = resched;
1576
1577         return event;
1578
1579  out:
1580         trace_recursive_unlock();
1581
1582  out_nocheck:
1583         ftrace_preempt_enable(resched);
1584         return NULL;
1585 }
1586 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1587
1588 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1589                       struct ring_buffer_event *event)
1590 {
1591         cpu_buffer->entries++;
1592
1593         /* Only process further if we own the commit */
1594         if (!rb_is_commit(cpu_buffer, event))
1595                 return;
1596
1597         cpu_buffer->write_stamp += event->time_delta;
1598
1599         rb_set_commit_to_write(cpu_buffer);
1600 }
1601
1602 /**
1603  * ring_buffer_unlock_commit - commit a reserved
1604  * @buffer: The buffer to commit to
1605  * @event: The event pointer to commit.
1606  *
1607  * This commits the data to the ring buffer, and releases any locks held.
1608  *
1609  * Must be paired with ring_buffer_lock_reserve.
1610  */
1611 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1612                               struct ring_buffer_event *event)
1613 {
1614         struct ring_buffer_per_cpu *cpu_buffer;
1615         int cpu = raw_smp_processor_id();
1616
1617         cpu_buffer = buffer->buffers[cpu];
1618
1619         rb_commit(cpu_buffer, event);
1620
1621         trace_recursive_unlock();
1622
1623         /*
1624          * Only the last preempt count needs to restore preemption.
1625          */
1626         if (preempt_count() == 1)
1627                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1628         else
1629                 preempt_enable_no_resched_notrace();
1630
1631         return 0;
1632 }
1633 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1634
1635 static inline void rb_event_discard(struct ring_buffer_event *event)
1636 {
1637         event->type = RINGBUF_TYPE_PADDING;
1638         /* time delta must be non zero */
1639         if (!event->time_delta)
1640                 event->time_delta = 1;
1641 }
1642
1643 /**
1644  * ring_buffer_event_discard - discard any event in the ring buffer
1645  * @event: the event to discard
1646  *
1647  * Sometimes a event that is in the ring buffer needs to be ignored.
1648  * This function lets the user discard an event in the ring buffer
1649  * and then that event will not be read later.
1650  *
1651  * Note, it is up to the user to be careful with this, and protect
1652  * against races. If the user discards an event that has been consumed
1653  * it is possible that it could corrupt the ring buffer.
1654  */
1655 void ring_buffer_event_discard(struct ring_buffer_event *event)
1656 {
1657         rb_event_discard(event);
1658 }
1659 EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1660
1661 /**
1662  * ring_buffer_commit_discard - discard an event that has not been committed
1663  * @buffer: the ring buffer
1664  * @event: non committed event to discard
1665  *
1666  * This is similar to ring_buffer_event_discard but must only be
1667  * performed on an event that has not been committed yet. The difference
1668  * is that this will also try to free the event from the ring buffer
1669  * if another event has not been added behind it.
1670  *
1671  * If another event has been added behind it, it will set the event
1672  * up as discarded, and perform the commit.
1673  *
1674  * If this function is called, do not call ring_buffer_unlock_commit on
1675  * the event.
1676  */
1677 void ring_buffer_discard_commit(struct ring_buffer *buffer,
1678                                 struct ring_buffer_event *event)
1679 {
1680         struct ring_buffer_per_cpu *cpu_buffer;
1681         unsigned long new_index, old_index;
1682         struct buffer_page *bpage;
1683         unsigned long index;
1684         unsigned long addr;
1685         int cpu;
1686
1687         /* The event is discarded regardless */
1688         rb_event_discard(event);
1689
1690         /*
1691          * This must only be called if the event has not been
1692          * committed yet. Thus we can assume that preemption
1693          * is still disabled.
1694          */
1695         RB_WARN_ON(buffer, !preempt_count());
1696
1697         cpu = smp_processor_id();
1698         cpu_buffer = buffer->buffers[cpu];
1699
1700         new_index = rb_event_index(event);
1701         old_index = new_index + rb_event_length(event);
1702         addr = (unsigned long)event;
1703         addr &= PAGE_MASK;
1704
1705         bpage = cpu_buffer->tail_page;
1706
1707         if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1708                 /*
1709                  * This is on the tail page. It is possible that
1710                  * a write could come in and move the tail page
1711                  * and write to the next page. That is fine
1712                  * because we just shorten what is on this page.
1713                  */
1714                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1715                 if (index == old_index)
1716                         goto out;
1717         }
1718
1719         /*
1720          * The commit is still visible by the reader, so we
1721          * must increment entries.
1722          */
1723         cpu_buffer->entries++;
1724  out:
1725         /*
1726          * If a write came in and pushed the tail page
1727          * we still need to update the commit pointer
1728          * if we were the commit.
1729          */
1730         if (rb_is_commit(cpu_buffer, event))
1731                 rb_set_commit_to_write(cpu_buffer);
1732
1733         trace_recursive_unlock();
1734
1735         /*
1736          * Only the last preempt count needs to restore preemption.
1737          */
1738         if (preempt_count() == 1)
1739                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1740         else
1741                 preempt_enable_no_resched_notrace();
1742
1743 }
1744 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1745
1746 /**
1747  * ring_buffer_write - write data to the buffer without reserving
1748  * @buffer: The ring buffer to write to.
1749  * @length: The length of the data being written (excluding the event header)
1750  * @data: The data to write to the buffer.
1751  *
1752  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1753  * one function. If you already have the data to write to the buffer, it
1754  * may be easier to simply call this function.
1755  *
1756  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1757  * and not the length of the event which would hold the header.
1758  */
1759 int ring_buffer_write(struct ring_buffer *buffer,
1760                         unsigned long length,
1761                         void *data)
1762 {
1763         struct ring_buffer_per_cpu *cpu_buffer;
1764         struct ring_buffer_event *event;
1765         unsigned long event_length;
1766         void *body;
1767         int ret = -EBUSY;
1768         int cpu, resched;
1769
1770         if (ring_buffer_flags != RB_BUFFERS_ON)
1771                 return -EBUSY;
1772
1773         if (atomic_read(&buffer->record_disabled))
1774                 return -EBUSY;
1775
1776         resched = ftrace_preempt_disable();
1777
1778         cpu = raw_smp_processor_id();
1779
1780         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1781                 goto out;
1782
1783         cpu_buffer = buffer->buffers[cpu];
1784
1785         if (atomic_read(&cpu_buffer->record_disabled))
1786                 goto out;
1787
1788         event_length = rb_calculate_event_length(length);
1789         event = rb_reserve_next_event(cpu_buffer,
1790                                       RINGBUF_TYPE_DATA, event_length);
1791         if (!event)
1792                 goto out;
1793
1794         body = rb_event_data(event);
1795
1796         memcpy(body, data, length);
1797
1798         rb_commit(cpu_buffer, event);
1799
1800         ret = 0;
1801  out:
1802         ftrace_preempt_enable(resched);
1803
1804         return ret;
1805 }
1806 EXPORT_SYMBOL_GPL(ring_buffer_write);
1807
1808 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1809 {
1810         struct buffer_page *reader = cpu_buffer->reader_page;
1811         struct buffer_page *head = cpu_buffer->head_page;
1812         struct buffer_page *commit = cpu_buffer->commit_page;
1813
1814         return reader->read == rb_page_commit(reader) &&
1815                 (commit == reader ||
1816                  (commit == head &&
1817                   head->read == rb_page_commit(commit)));
1818 }
1819
1820 /**
1821  * ring_buffer_record_disable - stop all writes into the buffer
1822  * @buffer: The ring buffer to stop writes to.
1823  *
1824  * This prevents all writes to the buffer. Any attempt to write
1825  * to the buffer after this will fail and return NULL.
1826  *
1827  * The caller should call synchronize_sched() after this.
1828  */
1829 void ring_buffer_record_disable(struct ring_buffer *buffer)
1830 {
1831         atomic_inc(&buffer->record_disabled);
1832 }
1833 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1834
1835 /**
1836  * ring_buffer_record_enable - enable writes to the buffer
1837  * @buffer: The ring buffer to enable writes
1838  *
1839  * Note, multiple disables will need the same number of enables
1840  * to truely enable the writing (much like preempt_disable).
1841  */
1842 void ring_buffer_record_enable(struct ring_buffer *buffer)
1843 {
1844         atomic_dec(&buffer->record_disabled);
1845 }
1846 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1847
1848 /**
1849  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1850  * @buffer: The ring buffer to stop writes to.
1851  * @cpu: The CPU buffer to stop
1852  *
1853  * This prevents all writes to the buffer. Any attempt to write
1854  * to the buffer after this will fail and return NULL.
1855  *
1856  * The caller should call synchronize_sched() after this.
1857  */
1858 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1859 {
1860         struct ring_buffer_per_cpu *cpu_buffer;
1861
1862         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1863                 return;
1864
1865         cpu_buffer = buffer->buffers[cpu];
1866         atomic_inc(&cpu_buffer->record_disabled);
1867 }
1868 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1869
1870 /**
1871  * ring_buffer_record_enable_cpu - enable writes to the buffer
1872  * @buffer: The ring buffer to enable writes
1873  * @cpu: The CPU to enable.
1874  *
1875  * Note, multiple disables will need the same number of enables
1876  * to truely enable the writing (much like preempt_disable).
1877  */
1878 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1879 {
1880         struct ring_buffer_per_cpu *cpu_buffer;
1881
1882         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1883                 return;
1884
1885         cpu_buffer = buffer->buffers[cpu];
1886         atomic_dec(&cpu_buffer->record_disabled);
1887 }
1888 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1889
1890 /**
1891  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1892  * @buffer: The ring buffer
1893  * @cpu: The per CPU buffer to get the entries from.
1894  */
1895 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1896 {
1897         struct ring_buffer_per_cpu *cpu_buffer;
1898         unsigned long ret;
1899
1900         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1901                 return 0;
1902
1903         cpu_buffer = buffer->buffers[cpu];
1904         ret = cpu_buffer->entries;
1905
1906         return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1909
1910 /**
1911  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1912  * @buffer: The ring buffer
1913  * @cpu: The per CPU buffer to get the number of overruns from
1914  */
1915 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1916 {
1917         struct ring_buffer_per_cpu *cpu_buffer;
1918         unsigned long ret;
1919
1920         if (!cpumask_test_cpu(cpu, buffer->cpumask))
1921                 return 0;
1922
1923         cpu_buffer = buffer->buffers[cpu];
1924         ret = cpu_buffer->overrun;
1925
1926         return ret;
1927 }
1928 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1929
1930 /**
1931  * ring_buffer_entries - get the number of entries in a buffer
1932  * @buffer: The ring buffer
1933  *
1934  * Returns the total number of entries in the ring buffer
1935  * (all CPU entries)
1936  */
1937 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1938 {
1939         struct ring_buffer_per_cpu *cpu_buffer;
1940         unsigned long entries = 0;
1941         int cpu;
1942
1943         /* if you care about this being correct, lock the buffer */
1944         for_each_buffer_cpu(buffer, cpu) {
1945                 cpu_buffer = buffer->buffers[cpu];
1946                 entries += cpu_buffer->entries;
1947         }
1948
1949         return entries;
1950 }
1951 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1952
1953 /**
1954  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1955  * @buffer: The ring buffer
1956  *
1957  * Returns the total number of overruns in the ring buffer
1958  * (all CPU entries)
1959  */
1960 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1961 {
1962         struct ring_buffer_per_cpu *cpu_buffer;
1963         unsigned long overruns = 0;
1964         int cpu;
1965
1966         /* if you care about this being correct, lock the buffer */
1967         for_each_buffer_cpu(buffer, cpu) {
1968                 cpu_buffer = buffer->buffers[cpu];
1969                 overruns += cpu_buffer->overrun;
1970         }
1971
1972         return overruns;
1973 }
1974 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1975
1976 static void rb_iter_reset(struct ring_buffer_iter *iter)
1977 {
1978         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1979
1980         /* Iterator usage is expected to have record disabled */
1981         if (list_empty(&cpu_buffer->reader_page->list)) {
1982                 iter->head_page = cpu_buffer->head_page;
1983                 iter->head = cpu_buffer->head_page->read;
1984         } else {
1985                 iter->head_page = cpu_buffer->reader_page;
1986                 iter->head = cpu_buffer->reader_page->read;
1987         }
1988         if (iter->head)
1989                 iter->read_stamp = cpu_buffer->read_stamp;
1990         else
1991                 iter->read_stamp = iter->head_page->page->time_stamp;
1992 }
1993
1994 /**
1995  * ring_buffer_iter_reset - reset an iterator
1996  * @iter: The iterator to reset
1997  *
1998  * Resets the iterator, so that it will start from the beginning
1999  * again.
2000  */
2001 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2002 {
2003         struct ring_buffer_per_cpu *cpu_buffer;
2004         unsigned long flags;
2005
2006         if (!iter)
2007                 return;
2008
2009         cpu_buffer = iter->cpu_buffer;
2010
2011         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2012         rb_iter_reset(iter);
2013         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2014 }
2015 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2016
2017 /**
2018  * ring_buffer_iter_empty - check if an iterator has no more to read
2019  * @iter: The iterator to check
2020  */
2021 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2022 {
2023         struct ring_buffer_per_cpu *cpu_buffer;
2024
2025         cpu_buffer = iter->cpu_buffer;
2026
2027         return iter->head_page == cpu_buffer->commit_page &&
2028                 iter->head == rb_commit_index(cpu_buffer);
2029 }
2030 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2031
2032 static void
2033 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2034                      struct ring_buffer_event *event)
2035 {
2036         u64 delta;
2037
2038         switch (event->type) {
2039         case RINGBUF_TYPE_PADDING:
2040                 return;
2041
2042         case RINGBUF_TYPE_TIME_EXTEND:
2043                 delta = event->array[0];
2044                 delta <<= TS_SHIFT;
2045                 delta += event->time_delta;
2046                 cpu_buffer->read_stamp += delta;
2047                 return;
2048
2049         case RINGBUF_TYPE_TIME_STAMP:
2050                 /* FIXME: not implemented */
2051                 return;
2052
2053         case RINGBUF_TYPE_DATA:
2054                 cpu_buffer->read_stamp += event->time_delta;
2055                 return;
2056
2057         default:
2058                 BUG();
2059         }
2060         return;
2061 }
2062
2063 static void
2064 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2065                           struct ring_buffer_event *event)
2066 {
2067         u64 delta;
2068
2069         switch (event->type) {
2070         case RINGBUF_TYPE_PADDING:
2071                 return;
2072
2073         case RINGBUF_TYPE_TIME_EXTEND:
2074                 delta = event->array[0];
2075                 delta <<= TS_SHIFT;
2076                 delta += event->time_delta;
2077                 iter->read_stamp += delta;
2078                 return;
2079
2080         case RINGBUF_TYPE_TIME_STAMP:
2081                 /* FIXME: not implemented */
2082                 return;
2083
2084         case RINGBUF_TYPE_DATA:
2085                 iter->read_stamp += event->time_delta;
2086                 return;
2087
2088         default:
2089                 BUG();
2090         }
2091         return;
2092 }
2093
2094 static struct buffer_page *
2095 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2096 {
2097         struct buffer_page *reader = NULL;
2098         unsigned long flags;
2099         int nr_loops = 0;
2100
2101         local_irq_save(flags);
2102         __raw_spin_lock(&cpu_buffer->lock);
2103
2104  again:
2105         /*
2106          * This should normally only loop twice. But because the
2107          * start of the reader inserts an empty page, it causes
2108          * a case where we will loop three times. There should be no
2109          * reason to loop four times (that I know of).
2110          */
2111         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2112                 reader = NULL;
2113                 goto out;
2114         }
2115
2116         reader = cpu_buffer->reader_page;
2117
2118         /* If there's more to read, return this page */
2119         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2120                 goto out;
2121
2122         /* Never should we have an index greater than the size */
2123         if (RB_WARN_ON(cpu_buffer,
2124                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2125                 goto out;
2126
2127         /* check if we caught up to the tail */
2128         reader = NULL;
2129         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2130                 goto out;
2131
2132         /*
2133          * Splice the empty reader page into the list around the head.
2134          * Reset the reader page to size zero.
2135          */
2136
2137         reader = cpu_buffer->head_page;
2138         cpu_buffer->reader_page->list.next = reader->list.next;
2139         cpu_buffer->reader_page->list.prev = reader->list.prev;
2140
2141         local_set(&cpu_buffer->reader_page->write, 0);
2142         local_set(&cpu_buffer->reader_page->page->commit, 0);
2143
2144         /* Make the reader page now replace the head */
2145         reader->list.prev->next = &cpu_buffer->reader_page->list;
2146         reader->list.next->prev = &cpu_buffer->reader_page->list;
2147
2148         /*
2149          * If the tail is on the reader, then we must set the head
2150          * to the inserted page, otherwise we set it one before.
2151          */
2152         cpu_buffer->head_page = cpu_buffer->reader_page;
2153
2154         if (cpu_buffer->commit_page != reader)
2155                 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2156
2157         /* Finally update the reader page to the new head */
2158         cpu_buffer->reader_page = reader;
2159         rb_reset_reader_page(cpu_buffer);
2160
2161         goto again;
2162
2163  out:
2164         __raw_spin_unlock(&cpu_buffer->lock);
2165         local_irq_restore(flags);
2166
2167         return reader;
2168 }
2169
2170 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2171 {
2172         struct ring_buffer_event *event;
2173         struct buffer_page *reader;
2174         unsigned length;
2175
2176         reader = rb_get_reader_page(cpu_buffer);
2177
2178         /* This function should not be called when buffer is empty */
2179         if (RB_WARN_ON(cpu_buffer, !reader))
2180                 return;
2181
2182         event = rb_reader_event(cpu_buffer);
2183
2184         if (event->type == RINGBUF_TYPE_DATA || rb_discarded_event(event))
2185                 cpu_buffer->entries--;
2186
2187         rb_update_read_stamp(cpu_buffer, event);
2188
2189         length = rb_event_length(event);
2190         cpu_buffer->reader_page->read += length;
2191 }
2192
2193 static void rb_advance_iter(struct ring_buffer_iter *iter)
2194 {
2195         struct ring_buffer *buffer;
2196         struct ring_buffer_per_cpu *cpu_buffer;
2197         struct ring_buffer_event *event;
2198         unsigned length;
2199
2200         cpu_buffer = iter->cpu_buffer;
2201         buffer = cpu_buffer->buffer;
2202
2203         /*
2204          * Check if we are at the end of the buffer.
2205          */
2206         if (iter->head >= rb_page_size(iter->head_page)) {
2207                 if (RB_WARN_ON(buffer,
2208                                iter->head_page == cpu_buffer->commit_page))
2209                         return;
2210                 rb_inc_iter(iter);
2211                 return;
2212         }
2213
2214         event = rb_iter_head_event(iter);
2215
2216         length = rb_event_length(event);
2217
2218         /*
2219          * This should not be called to advance the header if we are
2220          * at the tail of the buffer.
2221          */
2222         if (RB_WARN_ON(cpu_buffer,
2223                        (iter->head_page == cpu_buffer->commit_page) &&
2224                        (iter->head + length > rb_commit_index(cpu_buffer))))
2225                 return;
2226
2227         rb_update_iter_read_stamp(iter, event);
2228
2229         iter->head += length;
2230
2231         /* check for end of page padding */
2232         if ((iter->head >= rb_page_size(iter->head_page)) &&
2233             (iter->head_page != cpu_buffer->commit_page))
2234                 rb_advance_iter(iter);
2235 }
2236
2237 static struct ring_buffer_event *
2238 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2239 {
2240         struct ring_buffer_per_cpu *cpu_buffer;
2241         struct ring_buffer_event *event;
2242         struct buffer_page *reader;
2243         int nr_loops = 0;
2244
2245         cpu_buffer = buffer->buffers[cpu];
2246
2247  again:
2248         /*
2249          * We repeat when a timestamp is encountered. It is possible
2250          * to get multiple timestamps from an interrupt entering just
2251          * as one timestamp is about to be written. The max times
2252          * that this can happen is the number of nested interrupts we
2253          * can have.  Nesting 10 deep of interrupts is clearly
2254          * an anomaly.
2255          */
2256         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2257                 return NULL;
2258
2259         reader = rb_get_reader_page(cpu_buffer);
2260         if (!reader)
2261                 return NULL;
2262
2263         event = rb_reader_event(cpu_buffer);
2264
2265         switch (event->type) {
2266         case RINGBUF_TYPE_PADDING:
2267                 if (rb_null_event(event))
2268                         RB_WARN_ON(cpu_buffer, 1);
2269                 /*
2270                  * Because the writer could be discarding every
2271                  * event it creates (which would probably be bad)
2272                  * if we were to go back to "again" then we may never
2273                  * catch up, and will trigger the warn on, or lock
2274                  * the box. Return the padding, and we will release
2275                  * the current locks, and try again.
2276                  */
2277                 rb_advance_reader(cpu_buffer);
2278                 return event;
2279
2280         case RINGBUF_TYPE_TIME_EXTEND:
2281                 /* Internal data, OK to advance */
2282                 rb_advance_reader(cpu_buffer);
2283                 goto again;
2284
2285         case RINGBUF_TYPE_TIME_STAMP:
2286                 /* FIXME: not implemented */
2287                 rb_advance_reader(cpu_buffer);
2288                 goto again;
2289
2290         case RINGBUF_TYPE_DATA:
2291                 if (ts) {
2292                         *ts = cpu_buffer->read_stamp + event->time_delta;
2293                         ring_buffer_normalize_time_stamp(buffer,
2294                                                          cpu_buffer->cpu, ts);
2295                 }
2296                 return event;
2297
2298         default:
2299                 BUG();
2300         }
2301
2302         return NULL;
2303 }
2304 EXPORT_SYMBOL_GPL(ring_buffer_peek);
2305
2306 static struct ring_buffer_event *
2307 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2308 {
2309         struct ring_buffer *buffer;
2310         struct ring_buffer_per_cpu *cpu_buffer;
2311         struct ring_buffer_event *event;
2312         int nr_loops = 0;
2313
2314         if (ring_buffer_iter_empty(iter))
2315                 return NULL;
2316
2317         cpu_buffer = iter->cpu_buffer;
2318         buffer = cpu_buffer->buffer;
2319
2320  again:
2321         /*
2322          * We repeat when a timestamp is encountered. It is possible
2323          * to get multiple timestamps from an interrupt entering just
2324          * as one timestamp is about to be written. The max times
2325          * that this can happen is the number of nested interrupts we
2326          * can have. Nesting 10 deep of interrupts is clearly
2327          * an anomaly.
2328          */
2329         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
2330                 return NULL;
2331
2332         if (rb_per_cpu_empty(cpu_buffer))
2333                 return NULL;
2334
2335         event = rb_iter_head_event(iter);
2336
2337         switch (event->type) {
2338         case RINGBUF_TYPE_PADDING:
2339                 if (rb_null_event(event)) {
2340                         rb_inc_iter(iter);
2341                         goto again;
2342                 }
2343                 rb_advance_iter(iter);
2344                 return event;
2345
2346         case RINGBUF_TYPE_TIME_EXTEND:
2347                 /* Internal data, OK to advance */
2348                 rb_advance_iter(iter);
2349                 goto again;
2350
2351         case RINGBUF_TYPE_TIME_STAMP:
2352                 /* FIXME: not implemented */
2353                 rb_advance_iter(iter);
2354                 goto again;
2355
2356         case RINGBUF_TYPE_DATA:
2357                 if (ts) {
2358                         *ts = iter->read_stamp + event->time_delta;
2359                         ring_buffer_normalize_time_stamp(buffer,
2360                                                          cpu_buffer->cpu, ts);
2361                 }
2362                 return event;
2363
2364         default:
2365                 BUG();
2366         }
2367
2368         return NULL;
2369 }
2370 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
2371
2372 /**
2373  * ring_buffer_peek - peek at the next event to be read
2374  * @buffer: The ring buffer to read
2375  * @cpu: The cpu to peak at
2376  * @ts: The timestamp counter of this event.
2377  *
2378  * This will return the event that will be read next, but does
2379  * not consume the data.
2380  */
2381 struct ring_buffer_event *
2382 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2383 {
2384         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2385         struct ring_buffer_event *event;
2386         unsigned long flags;
2387
2388         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2389                 return NULL;
2390
2391  again:
2392         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2393         event = rb_buffer_peek(buffer, cpu, ts);
2394         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2395
2396         if (event && event->type == RINGBUF_TYPE_PADDING) {
2397                 cpu_relax();
2398                 goto again;
2399         }
2400
2401         return event;
2402 }
2403
2404 /**
2405  * ring_buffer_iter_peek - peek at the next event to be read
2406  * @iter: The ring buffer iterator
2407  * @ts: The timestamp counter of this event.
2408  *
2409  * This will return the event that will be read next, but does
2410  * not increment the iterator.
2411  */
2412 struct ring_buffer_event *
2413 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2414 {
2415         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2416         struct ring_buffer_event *event;
2417         unsigned long flags;
2418
2419  again:
2420         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2421         event = rb_iter_peek(iter, ts);
2422         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2423
2424         if (event && event->type == RINGBUF_TYPE_PADDING) {
2425                 cpu_relax();
2426                 goto again;
2427         }
2428
2429         return event;
2430 }
2431
2432 /**
2433  * ring_buffer_consume - return an event and consume it
2434  * @buffer: The ring buffer to get the next event from
2435  *
2436  * Returns the next event in the ring buffer, and that event is consumed.
2437  * Meaning, that sequential reads will keep returning a different event,
2438  * and eventually empty the ring buffer if the producer is slower.
2439  */
2440 struct ring_buffer_event *
2441 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2442 {
2443         struct ring_buffer_per_cpu *cpu_buffer;
2444         struct ring_buffer_event *event = NULL;
2445         unsigned long flags;
2446
2447  again:
2448         /* might be called in atomic */
2449         preempt_disable();
2450
2451         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2452                 goto out;
2453
2454         cpu_buffer = buffer->buffers[cpu];
2455         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2456
2457         event = rb_buffer_peek(buffer, cpu, ts);
2458         if (!event)
2459                 goto out_unlock;
2460
2461         rb_advance_reader(cpu_buffer);
2462
2463  out_unlock:
2464         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2465
2466  out:
2467         preempt_enable();
2468
2469         if (event && event->type == RINGBUF_TYPE_PADDING) {
2470                 cpu_relax();
2471                 goto again;
2472         }
2473
2474         return event;
2475 }
2476 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2477
2478 /**
2479  * ring_buffer_read_start - start a non consuming read of the buffer
2480  * @buffer: The ring buffer to read from
2481  * @cpu: The cpu buffer to iterate over
2482  *
2483  * This starts up an iteration through the buffer. It also disables
2484  * the recording to the buffer until the reading is finished.
2485  * This prevents the reading from being corrupted. This is not
2486  * a consuming read, so a producer is not expected.
2487  *
2488  * Must be paired with ring_buffer_finish.
2489  */
2490 struct ring_buffer_iter *
2491 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2492 {
2493         struct ring_buffer_per_cpu *cpu_buffer;
2494         struct ring_buffer_iter *iter;
2495         unsigned long flags;
2496
2497         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2498                 return NULL;
2499
2500         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2501         if (!iter)
2502                 return NULL;
2503
2504         cpu_buffer = buffer->buffers[cpu];
2505
2506         iter->cpu_buffer = cpu_buffer;
2507
2508         atomic_inc(&cpu_buffer->record_disabled);
2509         synchronize_sched();
2510
2511         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2512         __raw_spin_lock(&cpu_buffer->lock);
2513         rb_iter_reset(iter);
2514         __raw_spin_unlock(&cpu_buffer->lock);
2515         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2516
2517         return iter;
2518 }
2519 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2520
2521 /**
2522  * ring_buffer_finish - finish reading the iterator of the buffer
2523  * @iter: The iterator retrieved by ring_buffer_start
2524  *
2525  * This re-enables the recording to the buffer, and frees the
2526  * iterator.
2527  */
2528 void
2529 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2530 {
2531         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2532
2533         atomic_dec(&cpu_buffer->record_disabled);
2534         kfree(iter);
2535 }
2536 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2537
2538 /**
2539  * ring_buffer_read - read the next item in the ring buffer by the iterator
2540  * @iter: The ring buffer iterator
2541  * @ts: The time stamp of the event read.
2542  *
2543  * This reads the next event in the ring buffer and increments the iterator.
2544  */
2545 struct ring_buffer_event *
2546 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2547 {
2548         struct ring_buffer_event *event;
2549         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2550         unsigned long flags;
2551
2552  again:
2553         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2554         event = rb_iter_peek(iter, ts);
2555         if (!event)
2556                 goto out;
2557
2558         rb_advance_iter(iter);
2559  out:
2560         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2561
2562         if (event && event->type == RINGBUF_TYPE_PADDING) {
2563                 cpu_relax();
2564                 goto again;
2565         }
2566
2567         return event;
2568 }
2569 EXPORT_SYMBOL_GPL(ring_buffer_read);
2570
2571 /**
2572  * ring_buffer_size - return the size of the ring buffer (in bytes)
2573  * @buffer: The ring buffer.
2574  */
2575 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2576 {
2577         return BUF_PAGE_SIZE * buffer->pages;
2578 }
2579 EXPORT_SYMBOL_GPL(ring_buffer_size);
2580
2581 static void
2582 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2583 {
2584         cpu_buffer->head_page
2585                 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2586         local_set(&cpu_buffer->head_page->write, 0);
2587         local_set(&cpu_buffer->head_page->page->commit, 0);
2588
2589         cpu_buffer->head_page->read = 0;
2590
2591         cpu_buffer->tail_page = cpu_buffer->head_page;
2592         cpu_buffer->commit_page = cpu_buffer->head_page;
2593
2594         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2595         local_set(&cpu_buffer->reader_page->write, 0);
2596         local_set(&cpu_buffer->reader_page->page->commit, 0);
2597         cpu_buffer->reader_page->read = 0;
2598
2599         cpu_buffer->overrun = 0;
2600         cpu_buffer->entries = 0;
2601
2602         cpu_buffer->write_stamp = 0;
2603         cpu_buffer->read_stamp = 0;
2604 }
2605
2606 /**
2607  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2608  * @buffer: The ring buffer to reset a per cpu buffer of
2609  * @cpu: The CPU buffer to be reset
2610  */
2611 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2612 {
2613         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2614         unsigned long flags;
2615
2616         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2617                 return;
2618
2619         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2620
2621         __raw_spin_lock(&cpu_buffer->lock);
2622
2623         rb_reset_cpu(cpu_buffer);
2624
2625         __raw_spin_unlock(&cpu_buffer->lock);
2626
2627         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2628 }
2629 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2630
2631 /**
2632  * ring_buffer_reset - reset a ring buffer
2633  * @buffer: The ring buffer to reset all cpu buffers
2634  */
2635 void ring_buffer_reset(struct ring_buffer *buffer)
2636 {
2637         int cpu;
2638
2639         for_each_buffer_cpu(buffer, cpu)
2640                 ring_buffer_reset_cpu(buffer, cpu);
2641 }
2642 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2643
2644 /**
2645  * rind_buffer_empty - is the ring buffer empty?
2646  * @buffer: The ring buffer to test
2647  */
2648 int ring_buffer_empty(struct ring_buffer *buffer)
2649 {
2650         struct ring_buffer_per_cpu *cpu_buffer;
2651         int cpu;
2652
2653         /* yes this is racy, but if you don't like the race, lock the buffer */
2654         for_each_buffer_cpu(buffer, cpu) {
2655                 cpu_buffer = buffer->buffers[cpu];
2656                 if (!rb_per_cpu_empty(cpu_buffer))
2657                         return 0;
2658         }
2659
2660         return 1;
2661 }
2662 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2663
2664 /**
2665  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2666  * @buffer: The ring buffer
2667  * @cpu: The CPU buffer to test
2668  */
2669 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2670 {
2671         struct ring_buffer_per_cpu *cpu_buffer;
2672         int ret;
2673
2674         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2675                 return 1;
2676
2677         cpu_buffer = buffer->buffers[cpu];
2678         ret = rb_per_cpu_empty(cpu_buffer);
2679
2680
2681         return ret;
2682 }
2683 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2684
2685 /**
2686  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2687  * @buffer_a: One buffer to swap with
2688  * @buffer_b: The other buffer to swap with
2689  *
2690  * This function is useful for tracers that want to take a "snapshot"
2691  * of a CPU buffer and has another back up buffer lying around.
2692  * it is expected that the tracer handles the cpu buffer not being
2693  * used at the moment.
2694  */
2695 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2696                          struct ring_buffer *buffer_b, int cpu)
2697 {
2698         struct ring_buffer_per_cpu *cpu_buffer_a;
2699         struct ring_buffer_per_cpu *cpu_buffer_b;
2700         int ret = -EINVAL;
2701
2702         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2703             !cpumask_test_cpu(cpu, buffer_b->cpumask))
2704                 goto out;
2705
2706         /* At least make sure the two buffers are somewhat the same */
2707         if (buffer_a->pages != buffer_b->pages)
2708                 goto out;
2709
2710         ret = -EAGAIN;
2711
2712         if (ring_buffer_flags != RB_BUFFERS_ON)
2713                 goto out;
2714
2715         if (atomic_read(&buffer_a->record_disabled))
2716                 goto out;
2717
2718         if (atomic_read(&buffer_b->record_disabled))
2719                 goto out;
2720
2721         cpu_buffer_a = buffer_a->buffers[cpu];
2722         cpu_buffer_b = buffer_b->buffers[cpu];
2723
2724         if (atomic_read(&cpu_buffer_a->record_disabled))
2725                 goto out;
2726
2727         if (atomic_read(&cpu_buffer_b->record_disabled))
2728                 goto out;
2729
2730         /*
2731          * We can't do a synchronize_sched here because this
2732          * function can be called in atomic context.
2733          * Normally this will be called from the same CPU as cpu.
2734          * If not it's up to the caller to protect this.
2735          */
2736         atomic_inc(&cpu_buffer_a->record_disabled);
2737         atomic_inc(&cpu_buffer_b->record_disabled);
2738
2739         buffer_a->buffers[cpu] = cpu_buffer_b;
2740         buffer_b->buffers[cpu] = cpu_buffer_a;
2741
2742         cpu_buffer_b->buffer = buffer_a;
2743         cpu_buffer_a->buffer = buffer_b;
2744
2745         atomic_dec(&cpu_buffer_a->record_disabled);
2746         atomic_dec(&cpu_buffer_b->record_disabled);
2747
2748         ret = 0;
2749 out:
2750         return ret;
2751 }
2752 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2753
2754 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2755                               struct buffer_data_page *bpage,
2756                               unsigned int offset)
2757 {
2758         struct ring_buffer_event *event;
2759         unsigned long head;
2760
2761         __raw_spin_lock(&cpu_buffer->lock);
2762         for (head = offset; head < local_read(&bpage->commit);
2763              head += rb_event_length(event)) {
2764
2765                 event = __rb_data_page_index(bpage, head);
2766                 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2767                         return;
2768                 /* Only count data entries */
2769                 if (event->type != RINGBUF_TYPE_DATA)
2770                         continue;
2771                 cpu_buffer->entries--;
2772         }
2773         __raw_spin_unlock(&cpu_buffer->lock);
2774 }
2775
2776 /**
2777  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2778  * @buffer: the buffer to allocate for.
2779  *
2780  * This function is used in conjunction with ring_buffer_read_page.
2781  * When reading a full page from the ring buffer, these functions
2782  * can be used to speed up the process. The calling function should
2783  * allocate a few pages first with this function. Then when it
2784  * needs to get pages from the ring buffer, it passes the result
2785  * of this function into ring_buffer_read_page, which will swap
2786  * the page that was allocated, with the read page of the buffer.
2787  *
2788  * Returns:
2789  *  The page allocated, or NULL on error.
2790  */
2791 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2792 {
2793         struct buffer_data_page *bpage;
2794         unsigned long addr;
2795
2796         addr = __get_free_page(GFP_KERNEL);
2797         if (!addr)
2798                 return NULL;
2799
2800         bpage = (void *)addr;
2801
2802         rb_init_page(bpage);
2803
2804         return bpage;
2805 }
2806
2807 /**
2808  * ring_buffer_free_read_page - free an allocated read page
2809  * @buffer: the buffer the page was allocate for
2810  * @data: the page to free
2811  *
2812  * Free a page allocated from ring_buffer_alloc_read_page.
2813  */
2814 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2815 {
2816         free_page((unsigned long)data);
2817 }
2818
2819 /**
2820  * ring_buffer_read_page - extract a page from the ring buffer
2821  * @buffer: buffer to extract from
2822  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2823  * @len: amount to extract
2824  * @cpu: the cpu of the buffer to extract
2825  * @full: should the extraction only happen when the page is full.
2826  *
2827  * This function will pull out a page from the ring buffer and consume it.
2828  * @data_page must be the address of the variable that was returned
2829  * from ring_buffer_alloc_read_page. This is because the page might be used
2830  * to swap with a page in the ring buffer.
2831  *
2832  * for example:
2833  *      rpage = ring_buffer_alloc_read_page(buffer);
2834  *      if (!rpage)
2835  *              return error;
2836  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2837  *      if (ret >= 0)
2838  *              process_page(rpage, ret);
2839  *
2840  * When @full is set, the function will not return true unless
2841  * the writer is off the reader page.
2842  *
2843  * Note: it is up to the calling functions to handle sleeps and wakeups.
2844  *  The ring buffer can be used anywhere in the kernel and can not
2845  *  blindly call wake_up. The layer that uses the ring buffer must be
2846  *  responsible for that.
2847  *
2848  * Returns:
2849  *  >=0 if data has been transferred, returns the offset of consumed data.
2850  *  <0 if no data has been transferred.
2851  */
2852 int ring_buffer_read_page(struct ring_buffer *buffer,
2853                           void **data_page, size_t len, int cpu, int full)
2854 {
2855         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2856         struct ring_buffer_event *event;
2857         struct buffer_data_page *bpage;
2858         struct buffer_page *reader;
2859         unsigned long flags;
2860         unsigned int commit;
2861         unsigned int read;
2862         u64 save_timestamp;
2863         int ret = -1;
2864
2865         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2866                 goto out;
2867
2868         /*
2869          * If len is not big enough to hold the page header, then
2870          * we can not copy anything.
2871          */
2872         if (len <= BUF_PAGE_HDR_SIZE)
2873                 goto out;
2874
2875         len -= BUF_PAGE_HDR_SIZE;
2876
2877         if (!data_page)
2878                 goto out;
2879
2880         bpage = *data_page;
2881         if (!bpage)
2882                 goto out;
2883
2884         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2885
2886         reader = rb_get_reader_page(cpu_buffer);
2887         if (!reader)
2888                 goto out_unlock;
2889
2890         event = rb_reader_event(cpu_buffer);
2891
2892         read = reader->read;
2893         commit = rb_page_commit(reader);
2894
2895         /*
2896          * If this page has been partially read or
2897          * if len is not big enough to read the rest of the page or
2898          * a writer is still on the page, then
2899          * we must copy the data from the page to the buffer.
2900          * Otherwise, we can simply swap the page with the one passed in.
2901          */
2902         if (read || (len < (commit - read)) ||
2903             cpu_buffer->reader_page == cpu_buffer->commit_page) {
2904                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
2905                 unsigned int rpos = read;
2906                 unsigned int pos = 0;
2907                 unsigned int size;
2908
2909                 if (full)
2910                         goto out_unlock;
2911
2912                 if (len > (commit - read))
2913                         len = (commit - read);
2914
2915                 size = rb_event_length(event);
2916
2917                 if (len < size)
2918                         goto out_unlock;
2919
2920                 /* save the current timestamp, since the user will need it */
2921                 save_timestamp = cpu_buffer->read_stamp;
2922
2923                 /* Need to copy one event at a time */
2924                 do {
2925                         memcpy(bpage->data + pos, rpage->data + rpos, size);
2926
2927                         len -= size;
2928
2929                         rb_advance_reader(cpu_buffer);
2930                         rpos = reader->read;
2931                         pos += size;
2932
2933                         event = rb_reader_event(cpu_buffer);
2934                         size = rb_event_length(event);
2935                 } while (len > size);
2936
2937                 /* update bpage */
2938                 local_set(&bpage->commit, pos);
2939                 bpage->time_stamp = save_timestamp;
2940
2941                 /* we copied everything to the beginning */
2942                 read = 0;
2943         } else {
2944                 /* swap the pages */
2945                 rb_init_page(bpage);
2946                 bpage = reader->page;
2947                 reader->page = *data_page;
2948                 local_set(&reader->write, 0);
2949                 reader->read = 0;
2950                 *data_page = bpage;
2951
2952                 /* update the entry counter */
2953                 rb_remove_entries(cpu_buffer, bpage, read);
2954         }
2955         ret = read;
2956
2957  out_unlock:
2958         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2959
2960  out:
2961         return ret;
2962 }
2963
2964 static ssize_t
2965 rb_simple_read(struct file *filp, char __user *ubuf,
2966                size_t cnt, loff_t *ppos)
2967 {
2968         unsigned long *p = filp->private_data;
2969         char buf[64];
2970         int r;
2971
2972         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2973                 r = sprintf(buf, "permanently disabled\n");
2974         else
2975                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2976
2977         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2978 }
2979
2980 static ssize_t
2981 rb_simple_write(struct file *filp, const char __user *ubuf,
2982                 size_t cnt, loff_t *ppos)
2983 {
2984         unsigned long *p = filp->private_data;
2985         char buf[64];
2986         unsigned long val;
2987         int ret;
2988
2989         if (cnt >= sizeof(buf))
2990                 return -EINVAL;
2991
2992         if (copy_from_user(&buf, ubuf, cnt))
2993                 return -EFAULT;
2994
2995         buf[cnt] = 0;
2996
2997         ret = strict_strtoul(buf, 10, &val);
2998         if (ret < 0)
2999                 return ret;
3000
3001         if (val)
3002                 set_bit(RB_BUFFERS_ON_BIT, p);
3003         else
3004                 clear_bit(RB_BUFFERS_ON_BIT, p);
3005
3006         (*ppos)++;
3007
3008         return cnt;
3009 }
3010
3011 static const struct file_operations rb_simple_fops = {
3012         .open           = tracing_open_generic,
3013         .read           = rb_simple_read,
3014         .write          = rb_simple_write,
3015 };
3016
3017
3018 static __init int rb_init_debugfs(void)
3019 {
3020         struct dentry *d_tracer;
3021
3022         d_tracer = tracing_init_dentry();
3023
3024         trace_create_file("tracing_on", 0644, d_tracer,
3025                             &ring_buffer_flags, &rb_simple_fops);
3026
3027         return 0;
3028 }
3029
3030 fs_initcall(rb_init_debugfs);
3031
3032 #ifdef CONFIG_HOTPLUG_CPU
3033 static int rb_cpu_notify(struct notifier_block *self,
3034                          unsigned long action, void *hcpu)
3035 {
3036         struct ring_buffer *buffer =
3037                 container_of(self, struct ring_buffer, cpu_notify);
3038         long cpu = (long)hcpu;
3039
3040         switch (action) {
3041         case CPU_UP_PREPARE:
3042         case CPU_UP_PREPARE_FROZEN:
3043                 if (cpu_isset(cpu, *buffer->cpumask))
3044                         return NOTIFY_OK;
3045
3046                 buffer->buffers[cpu] =
3047                         rb_allocate_cpu_buffer(buffer, cpu);
3048                 if (!buffer->buffers[cpu]) {
3049                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3050                              cpu);
3051                         return NOTIFY_OK;
3052                 }
3053                 smp_wmb();
3054                 cpu_set(cpu, *buffer->cpumask);
3055                 break;
3056         case CPU_DOWN_PREPARE:
3057         case CPU_DOWN_PREPARE_FROZEN:
3058                 /*
3059                  * Do nothing.
3060                  *  If we were to free the buffer, then the user would
3061                  *  lose any trace that was in the buffer.
3062                  */
3063                 break;
3064         default:
3065                 break;
3066         }
3067         return NOTIFY_OK;
3068 }
3069 #endif