timekeeping: Clean up ktime_get_real_ts64
[linux-2.6-block.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP            (1 << 0)
34 #define TK_MIRROR               (1 << 1)
35 #define TK_CLOCK_WAS_SET        (1 << 2)
36
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42         seqcount_t              seq;
43         struct timekeeper       timekeeper;
44 } tk_core ____cacheline_aligned;
45
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:        Sequence counter for protecting updates. The lowest bit
52  *              is the index for the tk_read_base array
53  * @base:       tk_read_base array. Access is indexed by the lowest bit of
54  *              @seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59         seqcount_t              seq;
60         struct tk_read_base     base[2];
61 };
62
63 /* Suspend-time cycles value for halted fast timekeeper. */
64 static u64 cycles_at_suspend;
65
66 static u64 dummy_clock_read(struct clocksource *cs)
67 {
68         return cycles_at_suspend;
69 }
70
71 static struct clocksource dummy_clock = {
72         .read = dummy_clock_read,
73 };
74
75 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76         .base[0] = { .clock = &dummy_clock, },
77         .base[1] = { .clock = &dummy_clock, },
78 };
79
80 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
81         .base[0] = { .clock = &dummy_clock, },
82         .base[1] = { .clock = &dummy_clock, },
83 };
84
85 /* flag for if timekeeping is suspended */
86 int __read_mostly timekeeping_suspended;
87
88 static inline void tk_normalize_xtime(struct timekeeper *tk)
89 {
90         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92                 tk->xtime_sec++;
93         }
94         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96                 tk->raw_sec++;
97         }
98 }
99
100 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
101 {
102         struct timespec64 ts;
103
104         ts.tv_sec = tk->xtime_sec;
105         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106         return ts;
107 }
108
109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 {
111         tk->xtime_sec = ts->tv_sec;
112         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 }
114
115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 {
117         tk->xtime_sec += ts->tv_sec;
118         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119         tk_normalize_xtime(tk);
120 }
121
122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123 {
124         struct timespec64 tmp;
125
126         /*
127          * Verify consistency of: offset_real = -wall_to_monotonic
128          * before modifying anything
129          */
130         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131                                         -tk->wall_to_monotonic.tv_nsec);
132         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133         tk->wall_to_monotonic = wtm;
134         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135         tk->offs_real = timespec64_to_ktime(tmp);
136         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 }
138
139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140 {
141         tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 }
143
144 /*
145  * tk_clock_read - atomic clocksource read() helper
146  *
147  * This helper is necessary to use in the read paths because, while the
148  * seqlock ensures we don't return a bad value while structures are updated,
149  * it doesn't protect from potential crashes. There is the possibility that
150  * the tkr's clocksource may change between the read reference, and the
151  * clock reference passed to the read function.  This can cause crashes if
152  * the wrong clocksource is passed to the wrong read function.
153  * This isn't necessary to use when holding the timekeeper_lock or doing
154  * a read of the fast-timekeeper tkrs (which is protected by its own locking
155  * and update logic).
156  */
157 static inline u64 tk_clock_read(struct tk_read_base *tkr)
158 {
159         struct clocksource *clock = READ_ONCE(tkr->clock);
160
161         return clock->read(clock);
162 }
163
164 #ifdef CONFIG_DEBUG_TIMEKEEPING
165 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
166
167 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
168 {
169
170         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171         const char *name = tk->tkr_mono.clock->name;
172
173         if (offset > max_cycles) {
174                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175                                 offset, name, max_cycles);
176                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177         } else {
178                 if (offset > (max_cycles >> 1)) {
179                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180                                         offset, name, max_cycles >> 1);
181                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
182                 }
183         }
184
185         if (tk->underflow_seen) {
186                 if (jiffies - tk->last_warning > WARNING_FREQ) {
187                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
188                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
189                         printk_deferred("         Your kernel is probably still fine.\n");
190                         tk->last_warning = jiffies;
191                 }
192                 tk->underflow_seen = 0;
193         }
194
195         if (tk->overflow_seen) {
196                 if (jiffies - tk->last_warning > WARNING_FREQ) {
197                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
198                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
199                         printk_deferred("         Your kernel is probably still fine.\n");
200                         tk->last_warning = jiffies;
201                 }
202                 tk->overflow_seen = 0;
203         }
204 }
205
206 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
207 {
208         struct timekeeper *tk = &tk_core.timekeeper;
209         u64 now, last, mask, max, delta;
210         unsigned int seq;
211
212         /*
213          * Since we're called holding a seqlock, the data may shift
214          * under us while we're doing the calculation. This can cause
215          * false positives, since we'd note a problem but throw the
216          * results away. So nest another seqlock here to atomically
217          * grab the points we are checking with.
218          */
219         do {
220                 seq = read_seqcount_begin(&tk_core.seq);
221                 now = tk_clock_read(tkr);
222                 last = tkr->cycle_last;
223                 mask = tkr->mask;
224                 max = tkr->clock->max_cycles;
225         } while (read_seqcount_retry(&tk_core.seq, seq));
226
227         delta = clocksource_delta(now, last, mask);
228
229         /*
230          * Try to catch underflows by checking if we are seeing small
231          * mask-relative negative values.
232          */
233         if (unlikely((~delta & mask) < (mask >> 3))) {
234                 tk->underflow_seen = 1;
235                 delta = 0;
236         }
237
238         /* Cap delta value to the max_cycles values to avoid mult overflows */
239         if (unlikely(delta > max)) {
240                 tk->overflow_seen = 1;
241                 delta = tkr->clock->max_cycles;
242         }
243
244         return delta;
245 }
246 #else
247 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
248 {
249 }
250 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
251 {
252         u64 cycle_now, delta;
253
254         /* read clocksource */
255         cycle_now = tk_clock_read(tkr);
256
257         /* calculate the delta since the last update_wall_time */
258         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
259
260         return delta;
261 }
262 #endif
263
264 /**
265  * tk_setup_internals - Set up internals to use clocksource clock.
266  *
267  * @tk:         The target timekeeper to setup.
268  * @clock:              Pointer to clocksource.
269  *
270  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
271  * pair and interval request.
272  *
273  * Unless you're the timekeeping code, you should not be using this!
274  */
275 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
276 {
277         u64 interval;
278         u64 tmp, ntpinterval;
279         struct clocksource *old_clock;
280
281         ++tk->cs_was_changed_seq;
282         old_clock = tk->tkr_mono.clock;
283         tk->tkr_mono.clock = clock;
284         tk->tkr_mono.mask = clock->mask;
285         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
286
287         tk->tkr_raw.clock = clock;
288         tk->tkr_raw.mask = clock->mask;
289         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
290
291         /* Do the ns -> cycle conversion first, using original mult */
292         tmp = NTP_INTERVAL_LENGTH;
293         tmp <<= clock->shift;
294         ntpinterval = tmp;
295         tmp += clock->mult/2;
296         do_div(tmp, clock->mult);
297         if (tmp == 0)
298                 tmp = 1;
299
300         interval = (u64) tmp;
301         tk->cycle_interval = interval;
302
303         /* Go back from cycles -> shifted ns */
304         tk->xtime_interval = interval * clock->mult;
305         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306         tk->raw_interval = interval * clock->mult;
307
308          /* if changing clocks, convert xtime_nsec shift units */
309         if (old_clock) {
310                 int shift_change = clock->shift - old_clock->shift;
311                 if (shift_change < 0) {
312                         tk->tkr_mono.xtime_nsec >>= -shift_change;
313                         tk->tkr_raw.xtime_nsec >>= -shift_change;
314                 } else {
315                         tk->tkr_mono.xtime_nsec <<= shift_change;
316                         tk->tkr_raw.xtime_nsec <<= shift_change;
317                 }
318         }
319
320         tk->tkr_mono.shift = clock->shift;
321         tk->tkr_raw.shift = clock->shift;
322
323         tk->ntp_error = 0;
324         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
326
327         /*
328          * The timekeeper keeps its own mult values for the currently
329          * active clocksource. These value will be adjusted via NTP
330          * to counteract clock drifting.
331          */
332         tk->tkr_mono.mult = clock->mult;
333         tk->tkr_raw.mult = clock->mult;
334         tk->ntp_err_mult = 0;
335         tk->skip_second_overflow = 0;
336 }
337
338 /* Timekeeper helper functions. */
339
340 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
341 static u32 default_arch_gettimeoffset(void) { return 0; }
342 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
343 #else
344 static inline u32 arch_gettimeoffset(void) { return 0; }
345 #endif
346
347 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
348 {
349         u64 nsec;
350
351         nsec = delta * tkr->mult + tkr->xtime_nsec;
352         nsec >>= tkr->shift;
353
354         /* If arch requires, add in get_arch_timeoffset() */
355         return nsec + arch_gettimeoffset();
356 }
357
358 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
359 {
360         u64 delta;
361
362         delta = timekeeping_get_delta(tkr);
363         return timekeeping_delta_to_ns(tkr, delta);
364 }
365
366 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
367 {
368         u64 delta;
369
370         /* calculate the delta since the last update_wall_time */
371         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
372         return timekeeping_delta_to_ns(tkr, delta);
373 }
374
375 /**
376  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
377  * @tkr: Timekeeping readout base from which we take the update
378  *
379  * We want to use this from any context including NMI and tracing /
380  * instrumenting the timekeeping code itself.
381  *
382  * Employ the latch technique; see @raw_write_seqcount_latch.
383  *
384  * So if a NMI hits the update of base[0] then it will use base[1]
385  * which is still consistent. In the worst case this can result is a
386  * slightly wrong timestamp (a few nanoseconds). See
387  * @ktime_get_mono_fast_ns.
388  */
389 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
390 {
391         struct tk_read_base *base = tkf->base;
392
393         /* Force readers off to base[1] */
394         raw_write_seqcount_latch(&tkf->seq);
395
396         /* Update base[0] */
397         memcpy(base, tkr, sizeof(*base));
398
399         /* Force readers back to base[0] */
400         raw_write_seqcount_latch(&tkf->seq);
401
402         /* Update base[1] */
403         memcpy(base + 1, base, sizeof(*base));
404 }
405
406 /**
407  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
408  *
409  * This timestamp is not guaranteed to be monotonic across an update.
410  * The timestamp is calculated by:
411  *
412  *      now = base_mono + clock_delta * slope
413  *
414  * So if the update lowers the slope, readers who are forced to the
415  * not yet updated second array are still using the old steeper slope.
416  *
417  * tmono
418  * ^
419  * |    o  n
420  * |   o n
421  * |  u
422  * | o
423  * |o
424  * |12345678---> reader order
425  *
426  * o = old slope
427  * u = update
428  * n = new slope
429  *
430  * So reader 6 will observe time going backwards versus reader 5.
431  *
432  * While other CPUs are likely to be able observe that, the only way
433  * for a CPU local observation is when an NMI hits in the middle of
434  * the update. Timestamps taken from that NMI context might be ahead
435  * of the following timestamps. Callers need to be aware of that and
436  * deal with it.
437  */
438 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
439 {
440         struct tk_read_base *tkr;
441         unsigned int seq;
442         u64 now;
443
444         do {
445                 seq = raw_read_seqcount_latch(&tkf->seq);
446                 tkr = tkf->base + (seq & 0x01);
447                 now = ktime_to_ns(tkr->base);
448
449                 now += timekeeping_delta_to_ns(tkr,
450                                 clocksource_delta(
451                                         tk_clock_read(tkr),
452                                         tkr->cycle_last,
453                                         tkr->mask));
454         } while (read_seqcount_retry(&tkf->seq, seq));
455
456         return now;
457 }
458
459 u64 ktime_get_mono_fast_ns(void)
460 {
461         return __ktime_get_fast_ns(&tk_fast_mono);
462 }
463 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
464
465 u64 ktime_get_raw_fast_ns(void)
466 {
467         return __ktime_get_fast_ns(&tk_fast_raw);
468 }
469 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
470
471 /**
472  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
473  *
474  * To keep it NMI safe since we're accessing from tracing, we're not using a
475  * separate timekeeper with updates to monotonic clock and boot offset
476  * protected with seqlocks. This has the following minor side effects:
477  *
478  * (1) Its possible that a timestamp be taken after the boot offset is updated
479  * but before the timekeeper is updated. If this happens, the new boot offset
480  * is added to the old timekeeping making the clock appear to update slightly
481  * earlier:
482  *    CPU 0                                        CPU 1
483  *    timekeeping_inject_sleeptime64()
484  *    __timekeeping_inject_sleeptime(tk, delta);
485  *                                                 timestamp();
486  *    timekeeping_update(tk, TK_CLEAR_NTP...);
487  *
488  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
489  * partially updated.  Since the tk->offs_boot update is a rare event, this
490  * should be a rare occurrence which postprocessing should be able to handle.
491  */
492 u64 notrace ktime_get_boot_fast_ns(void)
493 {
494         struct timekeeper *tk = &tk_core.timekeeper;
495
496         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
497 }
498 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
499
500
501 /*
502  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
503  */
504 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
505 {
506         struct tk_read_base *tkr;
507         unsigned int seq;
508         u64 now;
509
510         do {
511                 seq = raw_read_seqcount_latch(&tkf->seq);
512                 tkr = tkf->base + (seq & 0x01);
513                 now = ktime_to_ns(tkr->base_real);
514
515                 now += timekeeping_delta_to_ns(tkr,
516                                 clocksource_delta(
517                                         tk_clock_read(tkr),
518                                         tkr->cycle_last,
519                                         tkr->mask));
520         } while (read_seqcount_retry(&tkf->seq, seq));
521
522         return now;
523 }
524
525 /**
526  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
527  */
528 u64 ktime_get_real_fast_ns(void)
529 {
530         return __ktime_get_real_fast_ns(&tk_fast_mono);
531 }
532 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
533
534 /**
535  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
536  * @tk: Timekeeper to snapshot.
537  *
538  * It generally is unsafe to access the clocksource after timekeeping has been
539  * suspended, so take a snapshot of the readout base of @tk and use it as the
540  * fast timekeeper's readout base while suspended.  It will return the same
541  * number of cycles every time until timekeeping is resumed at which time the
542  * proper readout base for the fast timekeeper will be restored automatically.
543  */
544 static void halt_fast_timekeeper(struct timekeeper *tk)
545 {
546         static struct tk_read_base tkr_dummy;
547         struct tk_read_base *tkr = &tk->tkr_mono;
548
549         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
550         cycles_at_suspend = tk_clock_read(tkr);
551         tkr_dummy.clock = &dummy_clock;
552         tkr_dummy.base_real = tkr->base + tk->offs_real;
553         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
554
555         tkr = &tk->tkr_raw;
556         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
557         tkr_dummy.clock = &dummy_clock;
558         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
559 }
560
561 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
562
563 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
564 {
565         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
566 }
567
568 /**
569  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
570  */
571 int pvclock_gtod_register_notifier(struct notifier_block *nb)
572 {
573         struct timekeeper *tk = &tk_core.timekeeper;
574         unsigned long flags;
575         int ret;
576
577         raw_spin_lock_irqsave(&timekeeper_lock, flags);
578         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
579         update_pvclock_gtod(tk, true);
580         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
581
582         return ret;
583 }
584 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
585
586 /**
587  * pvclock_gtod_unregister_notifier - unregister a pvclock
588  * timedata update listener
589  */
590 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
591 {
592         unsigned long flags;
593         int ret;
594
595         raw_spin_lock_irqsave(&timekeeper_lock, flags);
596         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
597         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
598
599         return ret;
600 }
601 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
602
603 /*
604  * tk_update_leap_state - helper to update the next_leap_ktime
605  */
606 static inline void tk_update_leap_state(struct timekeeper *tk)
607 {
608         tk->next_leap_ktime = ntp_get_next_leap();
609         if (tk->next_leap_ktime != KTIME_MAX)
610                 /* Convert to monotonic time */
611                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
612 }
613
614 /*
615  * Update the ktime_t based scalar nsec members of the timekeeper
616  */
617 static inline void tk_update_ktime_data(struct timekeeper *tk)
618 {
619         u64 seconds;
620         u32 nsec;
621
622         /*
623          * The xtime based monotonic readout is:
624          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
625          * The ktime based monotonic readout is:
626          *      nsec = base_mono + now();
627          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
628          */
629         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
630         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
631         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
632
633         /*
634          * The sum of the nanoseconds portions of xtime and
635          * wall_to_monotonic can be greater/equal one second. Take
636          * this into account before updating tk->ktime_sec.
637          */
638         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
639         if (nsec >= NSEC_PER_SEC)
640                 seconds++;
641         tk->ktime_sec = seconds;
642
643         /* Update the monotonic raw base */
644         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
645 }
646
647 /* must hold timekeeper_lock */
648 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
649 {
650         if (action & TK_CLEAR_NTP) {
651                 tk->ntp_error = 0;
652                 ntp_clear();
653         }
654
655         tk_update_leap_state(tk);
656         tk_update_ktime_data(tk);
657
658         update_vsyscall(tk);
659         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
660
661         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
662         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
663         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
664
665         if (action & TK_CLOCK_WAS_SET)
666                 tk->clock_was_set_seq++;
667         /*
668          * The mirroring of the data to the shadow-timekeeper needs
669          * to happen last here to ensure we don't over-write the
670          * timekeeper structure on the next update with stale data
671          */
672         if (action & TK_MIRROR)
673                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
674                        sizeof(tk_core.timekeeper));
675 }
676
677 /**
678  * timekeeping_forward_now - update clock to the current time
679  *
680  * Forward the current clock to update its state since the last call to
681  * update_wall_time(). This is useful before significant clock changes,
682  * as it avoids having to deal with this time offset explicitly.
683  */
684 static void timekeeping_forward_now(struct timekeeper *tk)
685 {
686         u64 cycle_now, delta;
687
688         cycle_now = tk_clock_read(&tk->tkr_mono);
689         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
690         tk->tkr_mono.cycle_last = cycle_now;
691         tk->tkr_raw.cycle_last  = cycle_now;
692
693         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
694
695         /* If arch requires, add in get_arch_timeoffset() */
696         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
697
698
699         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
700
701         /* If arch requires, add in get_arch_timeoffset() */
702         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
703
704         tk_normalize_xtime(tk);
705 }
706
707 /**
708  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
709  * @ts:         pointer to the timespec to be set
710  *
711  * Returns the time of day in a timespec64 (WARN if suspended).
712  */
713 void ktime_get_real_ts64(struct timespec64 *ts)
714 {
715         struct timekeeper *tk = &tk_core.timekeeper;
716         unsigned long seq;
717         u64 nsecs;
718
719         WARN_ON(timekeeping_suspended);
720
721         do {
722                 seq = read_seqcount_begin(&tk_core.seq);
723
724                 ts->tv_sec = tk->xtime_sec;
725                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
726
727         } while (read_seqcount_retry(&tk_core.seq, seq));
728
729         ts->tv_nsec = 0;
730         timespec64_add_ns(ts, nsecs);
731 }
732 EXPORT_SYMBOL(ktime_get_real_ts64);
733
734 ktime_t ktime_get(void)
735 {
736         struct timekeeper *tk = &tk_core.timekeeper;
737         unsigned int seq;
738         ktime_t base;
739         u64 nsecs;
740
741         WARN_ON(timekeeping_suspended);
742
743         do {
744                 seq = read_seqcount_begin(&tk_core.seq);
745                 base = tk->tkr_mono.base;
746                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
747
748         } while (read_seqcount_retry(&tk_core.seq, seq));
749
750         return ktime_add_ns(base, nsecs);
751 }
752 EXPORT_SYMBOL_GPL(ktime_get);
753
754 u32 ktime_get_resolution_ns(void)
755 {
756         struct timekeeper *tk = &tk_core.timekeeper;
757         unsigned int seq;
758         u32 nsecs;
759
760         WARN_ON(timekeeping_suspended);
761
762         do {
763                 seq = read_seqcount_begin(&tk_core.seq);
764                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
765         } while (read_seqcount_retry(&tk_core.seq, seq));
766
767         return nsecs;
768 }
769 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
770
771 static ktime_t *offsets[TK_OFFS_MAX] = {
772         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
773         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
774         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
775 };
776
777 ktime_t ktime_get_with_offset(enum tk_offsets offs)
778 {
779         struct timekeeper *tk = &tk_core.timekeeper;
780         unsigned int seq;
781         ktime_t base, *offset = offsets[offs];
782         u64 nsecs;
783
784         WARN_ON(timekeeping_suspended);
785
786         do {
787                 seq = read_seqcount_begin(&tk_core.seq);
788                 base = ktime_add(tk->tkr_mono.base, *offset);
789                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
790
791         } while (read_seqcount_retry(&tk_core.seq, seq));
792
793         return ktime_add_ns(base, nsecs);
794
795 }
796 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
797
798 /**
799  * ktime_mono_to_any() - convert mononotic time to any other time
800  * @tmono:      time to convert.
801  * @offs:       which offset to use
802  */
803 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
804 {
805         ktime_t *offset = offsets[offs];
806         unsigned long seq;
807         ktime_t tconv;
808
809         do {
810                 seq = read_seqcount_begin(&tk_core.seq);
811                 tconv = ktime_add(tmono, *offset);
812         } while (read_seqcount_retry(&tk_core.seq, seq));
813
814         return tconv;
815 }
816 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
817
818 /**
819  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
820  */
821 ktime_t ktime_get_raw(void)
822 {
823         struct timekeeper *tk = &tk_core.timekeeper;
824         unsigned int seq;
825         ktime_t base;
826         u64 nsecs;
827
828         do {
829                 seq = read_seqcount_begin(&tk_core.seq);
830                 base = tk->tkr_raw.base;
831                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
832
833         } while (read_seqcount_retry(&tk_core.seq, seq));
834
835         return ktime_add_ns(base, nsecs);
836 }
837 EXPORT_SYMBOL_GPL(ktime_get_raw);
838
839 /**
840  * ktime_get_ts64 - get the monotonic clock in timespec64 format
841  * @ts:         pointer to timespec variable
842  *
843  * The function calculates the monotonic clock from the realtime
844  * clock and the wall_to_monotonic offset and stores the result
845  * in normalized timespec64 format in the variable pointed to by @ts.
846  */
847 void ktime_get_ts64(struct timespec64 *ts)
848 {
849         struct timekeeper *tk = &tk_core.timekeeper;
850         struct timespec64 tomono;
851         unsigned int seq;
852         u64 nsec;
853
854         WARN_ON(timekeeping_suspended);
855
856         do {
857                 seq = read_seqcount_begin(&tk_core.seq);
858                 ts->tv_sec = tk->xtime_sec;
859                 nsec = timekeeping_get_ns(&tk->tkr_mono);
860                 tomono = tk->wall_to_monotonic;
861
862         } while (read_seqcount_retry(&tk_core.seq, seq));
863
864         ts->tv_sec += tomono.tv_sec;
865         ts->tv_nsec = 0;
866         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
867 }
868 EXPORT_SYMBOL_GPL(ktime_get_ts64);
869
870 /**
871  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
872  *
873  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
874  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
875  * works on both 32 and 64 bit systems. On 32 bit systems the readout
876  * covers ~136 years of uptime which should be enough to prevent
877  * premature wrap arounds.
878  */
879 time64_t ktime_get_seconds(void)
880 {
881         struct timekeeper *tk = &tk_core.timekeeper;
882
883         WARN_ON(timekeeping_suspended);
884         return tk->ktime_sec;
885 }
886 EXPORT_SYMBOL_GPL(ktime_get_seconds);
887
888 /**
889  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
890  *
891  * Returns the wall clock seconds since 1970. This replaces the
892  * get_seconds() interface which is not y2038 safe on 32bit systems.
893  *
894  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
895  * 32bit systems the access must be protected with the sequence
896  * counter to provide "atomic" access to the 64bit tk->xtime_sec
897  * value.
898  */
899 time64_t ktime_get_real_seconds(void)
900 {
901         struct timekeeper *tk = &tk_core.timekeeper;
902         time64_t seconds;
903         unsigned int seq;
904
905         if (IS_ENABLED(CONFIG_64BIT))
906                 return tk->xtime_sec;
907
908         do {
909                 seq = read_seqcount_begin(&tk_core.seq);
910                 seconds = tk->xtime_sec;
911
912         } while (read_seqcount_retry(&tk_core.seq, seq));
913
914         return seconds;
915 }
916 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
917
918 /**
919  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
920  * but without the sequence counter protect. This internal function
921  * is called just when timekeeping lock is already held.
922  */
923 time64_t __ktime_get_real_seconds(void)
924 {
925         struct timekeeper *tk = &tk_core.timekeeper;
926
927         return tk->xtime_sec;
928 }
929
930 /**
931  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
932  * @systime_snapshot:   pointer to struct receiving the system time snapshot
933  */
934 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
935 {
936         struct timekeeper *tk = &tk_core.timekeeper;
937         unsigned long seq;
938         ktime_t base_raw;
939         ktime_t base_real;
940         u64 nsec_raw;
941         u64 nsec_real;
942         u64 now;
943
944         WARN_ON_ONCE(timekeeping_suspended);
945
946         do {
947                 seq = read_seqcount_begin(&tk_core.seq);
948                 now = tk_clock_read(&tk->tkr_mono);
949                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
950                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
951                 base_real = ktime_add(tk->tkr_mono.base,
952                                       tk_core.timekeeper.offs_real);
953                 base_raw = tk->tkr_raw.base;
954                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
955                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
956         } while (read_seqcount_retry(&tk_core.seq, seq));
957
958         systime_snapshot->cycles = now;
959         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
960         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
961 }
962 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
963
964 /* Scale base by mult/div checking for overflow */
965 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
966 {
967         u64 tmp, rem;
968
969         tmp = div64_u64_rem(*base, div, &rem);
970
971         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
972             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
973                 return -EOVERFLOW;
974         tmp *= mult;
975         rem *= mult;
976
977         do_div(rem, div);
978         *base = tmp + rem;
979         return 0;
980 }
981
982 /**
983  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
984  * @history:                    Snapshot representing start of history
985  * @partial_history_cycles:     Cycle offset into history (fractional part)
986  * @total_history_cycles:       Total history length in cycles
987  * @discontinuity:              True indicates clock was set on history period
988  * @ts:                         Cross timestamp that should be adjusted using
989  *      partial/total ratio
990  *
991  * Helper function used by get_device_system_crosststamp() to correct the
992  * crosstimestamp corresponding to the start of the current interval to the
993  * system counter value (timestamp point) provided by the driver. The
994  * total_history_* quantities are the total history starting at the provided
995  * reference point and ending at the start of the current interval. The cycle
996  * count between the driver timestamp point and the start of the current
997  * interval is partial_history_cycles.
998  */
999 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1000                                          u64 partial_history_cycles,
1001                                          u64 total_history_cycles,
1002                                          bool discontinuity,
1003                                          struct system_device_crosststamp *ts)
1004 {
1005         struct timekeeper *tk = &tk_core.timekeeper;
1006         u64 corr_raw, corr_real;
1007         bool interp_forward;
1008         int ret;
1009
1010         if (total_history_cycles == 0 || partial_history_cycles == 0)
1011                 return 0;
1012
1013         /* Interpolate shortest distance from beginning or end of history */
1014         interp_forward = partial_history_cycles > total_history_cycles / 2;
1015         partial_history_cycles = interp_forward ?
1016                 total_history_cycles - partial_history_cycles :
1017                 partial_history_cycles;
1018
1019         /*
1020          * Scale the monotonic raw time delta by:
1021          *      partial_history_cycles / total_history_cycles
1022          */
1023         corr_raw = (u64)ktime_to_ns(
1024                 ktime_sub(ts->sys_monoraw, history->raw));
1025         ret = scale64_check_overflow(partial_history_cycles,
1026                                      total_history_cycles, &corr_raw);
1027         if (ret)
1028                 return ret;
1029
1030         /*
1031          * If there is a discontinuity in the history, scale monotonic raw
1032          *      correction by:
1033          *      mult(real)/mult(raw) yielding the realtime correction
1034          * Otherwise, calculate the realtime correction similar to monotonic
1035          *      raw calculation
1036          */
1037         if (discontinuity) {
1038                 corr_real = mul_u64_u32_div
1039                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1040         } else {
1041                 corr_real = (u64)ktime_to_ns(
1042                         ktime_sub(ts->sys_realtime, history->real));
1043                 ret = scale64_check_overflow(partial_history_cycles,
1044                                              total_history_cycles, &corr_real);
1045                 if (ret)
1046                         return ret;
1047         }
1048
1049         /* Fixup monotonic raw and real time time values */
1050         if (interp_forward) {
1051                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1052                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1053         } else {
1054                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1055                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1056         }
1057
1058         return 0;
1059 }
1060
1061 /*
1062  * cycle_between - true if test occurs chronologically between before and after
1063  */
1064 static bool cycle_between(u64 before, u64 test, u64 after)
1065 {
1066         if (test > before && test < after)
1067                 return true;
1068         if (test < before && before > after)
1069                 return true;
1070         return false;
1071 }
1072
1073 /**
1074  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1075  * @get_time_fn:        Callback to get simultaneous device time and
1076  *      system counter from the device driver
1077  * @ctx:                Context passed to get_time_fn()
1078  * @history_begin:      Historical reference point used to interpolate system
1079  *      time when counter provided by the driver is before the current interval
1080  * @xtstamp:            Receives simultaneously captured system and device time
1081  *
1082  * Reads a timestamp from a device and correlates it to system time
1083  */
1084 int get_device_system_crosststamp(int (*get_time_fn)
1085                                   (ktime_t *device_time,
1086                                    struct system_counterval_t *sys_counterval,
1087                                    void *ctx),
1088                                   void *ctx,
1089                                   struct system_time_snapshot *history_begin,
1090                                   struct system_device_crosststamp *xtstamp)
1091 {
1092         struct system_counterval_t system_counterval;
1093         struct timekeeper *tk = &tk_core.timekeeper;
1094         u64 cycles, now, interval_start;
1095         unsigned int clock_was_set_seq = 0;
1096         ktime_t base_real, base_raw;
1097         u64 nsec_real, nsec_raw;
1098         u8 cs_was_changed_seq;
1099         unsigned long seq;
1100         bool do_interp;
1101         int ret;
1102
1103         do {
1104                 seq = read_seqcount_begin(&tk_core.seq);
1105                 /*
1106                  * Try to synchronously capture device time and a system
1107                  * counter value calling back into the device driver
1108                  */
1109                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1110                 if (ret)
1111                         return ret;
1112
1113                 /*
1114                  * Verify that the clocksource associated with the captured
1115                  * system counter value is the same as the currently installed
1116                  * timekeeper clocksource
1117                  */
1118                 if (tk->tkr_mono.clock != system_counterval.cs)
1119                         return -ENODEV;
1120                 cycles = system_counterval.cycles;
1121
1122                 /*
1123                  * Check whether the system counter value provided by the
1124                  * device driver is on the current timekeeping interval.
1125                  */
1126                 now = tk_clock_read(&tk->tkr_mono);
1127                 interval_start = tk->tkr_mono.cycle_last;
1128                 if (!cycle_between(interval_start, cycles, now)) {
1129                         clock_was_set_seq = tk->clock_was_set_seq;
1130                         cs_was_changed_seq = tk->cs_was_changed_seq;
1131                         cycles = interval_start;
1132                         do_interp = true;
1133                 } else {
1134                         do_interp = false;
1135                 }
1136
1137                 base_real = ktime_add(tk->tkr_mono.base,
1138                                       tk_core.timekeeper.offs_real);
1139                 base_raw = tk->tkr_raw.base;
1140
1141                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1142                                                      system_counterval.cycles);
1143                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1144                                                     system_counterval.cycles);
1145         } while (read_seqcount_retry(&tk_core.seq, seq));
1146
1147         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1148         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1149
1150         /*
1151          * Interpolate if necessary, adjusting back from the start of the
1152          * current interval
1153          */
1154         if (do_interp) {
1155                 u64 partial_history_cycles, total_history_cycles;
1156                 bool discontinuity;
1157
1158                 /*
1159                  * Check that the counter value occurs after the provided
1160                  * history reference and that the history doesn't cross a
1161                  * clocksource change
1162                  */
1163                 if (!history_begin ||
1164                     !cycle_between(history_begin->cycles,
1165                                    system_counterval.cycles, cycles) ||
1166                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1167                         return -EINVAL;
1168                 partial_history_cycles = cycles - system_counterval.cycles;
1169                 total_history_cycles = cycles - history_begin->cycles;
1170                 discontinuity =
1171                         history_begin->clock_was_set_seq != clock_was_set_seq;
1172
1173                 ret = adjust_historical_crosststamp(history_begin,
1174                                                     partial_history_cycles,
1175                                                     total_history_cycles,
1176                                                     discontinuity, xtstamp);
1177                 if (ret)
1178                         return ret;
1179         }
1180
1181         return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1184
1185 /**
1186  * do_gettimeofday - Returns the time of day in a timeval
1187  * @tv:         pointer to the timeval to be set
1188  *
1189  * NOTE: Users should be converted to using getnstimeofday()
1190  */
1191 void do_gettimeofday(struct timeval *tv)
1192 {
1193         struct timespec64 now;
1194
1195         getnstimeofday64(&now);
1196         tv->tv_sec = now.tv_sec;
1197         tv->tv_usec = now.tv_nsec/1000;
1198 }
1199 EXPORT_SYMBOL(do_gettimeofday);
1200
1201 /**
1202  * do_settimeofday64 - Sets the time of day.
1203  * @ts:     pointer to the timespec64 variable containing the new time
1204  *
1205  * Sets the time of day to the new time and update NTP and notify hrtimers
1206  */
1207 int do_settimeofday64(const struct timespec64 *ts)
1208 {
1209         struct timekeeper *tk = &tk_core.timekeeper;
1210         struct timespec64 ts_delta, xt;
1211         unsigned long flags;
1212         int ret = 0;
1213
1214         if (!timespec64_valid_strict(ts))
1215                 return -EINVAL;
1216
1217         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218         write_seqcount_begin(&tk_core.seq);
1219
1220         timekeeping_forward_now(tk);
1221
1222         xt = tk_xtime(tk);
1223         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1224         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1225
1226         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1227                 ret = -EINVAL;
1228                 goto out;
1229         }
1230
1231         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1232
1233         tk_set_xtime(tk, ts);
1234 out:
1235         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1236
1237         write_seqcount_end(&tk_core.seq);
1238         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1239
1240         /* signal hrtimers about time change */
1241         clock_was_set();
1242
1243         return ret;
1244 }
1245 EXPORT_SYMBOL(do_settimeofday64);
1246
1247 /**
1248  * timekeeping_inject_offset - Adds or subtracts from the current time.
1249  * @tv:         pointer to the timespec variable containing the offset
1250  *
1251  * Adds or subtracts an offset value from the current time.
1252  */
1253 static int timekeeping_inject_offset(struct timespec64 *ts)
1254 {
1255         struct timekeeper *tk = &tk_core.timekeeper;
1256         unsigned long flags;
1257         struct timespec64 tmp;
1258         int ret = 0;
1259
1260         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1261                 return -EINVAL;
1262
1263         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1264         write_seqcount_begin(&tk_core.seq);
1265
1266         timekeeping_forward_now(tk);
1267
1268         /* Make sure the proposed value is valid */
1269         tmp = timespec64_add(tk_xtime(tk), *ts);
1270         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1271             !timespec64_valid_strict(&tmp)) {
1272                 ret = -EINVAL;
1273                 goto error;
1274         }
1275
1276         tk_xtime_add(tk, ts);
1277         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1278
1279 error: /* even if we error out, we forwarded the time, so call update */
1280         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1281
1282         write_seqcount_end(&tk_core.seq);
1283         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1284
1285         /* signal hrtimers about time change */
1286         clock_was_set();
1287
1288         return ret;
1289 }
1290
1291 /*
1292  * Indicates if there is an offset between the system clock and the hardware
1293  * clock/persistent clock/rtc.
1294  */
1295 int persistent_clock_is_local;
1296
1297 /*
1298  * Adjust the time obtained from the CMOS to be UTC time instead of
1299  * local time.
1300  *
1301  * This is ugly, but preferable to the alternatives.  Otherwise we
1302  * would either need to write a program to do it in /etc/rc (and risk
1303  * confusion if the program gets run more than once; it would also be
1304  * hard to make the program warp the clock precisely n hours)  or
1305  * compile in the timezone information into the kernel.  Bad, bad....
1306  *
1307  *                                              - TYT, 1992-01-01
1308  *
1309  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1310  * as real UNIX machines always do it. This avoids all headaches about
1311  * daylight saving times and warping kernel clocks.
1312  */
1313 void timekeeping_warp_clock(void)
1314 {
1315         if (sys_tz.tz_minuteswest != 0) {
1316                 struct timespec64 adjust;
1317
1318                 persistent_clock_is_local = 1;
1319                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1320                 adjust.tv_nsec = 0;
1321                 timekeeping_inject_offset(&adjust);
1322         }
1323 }
1324
1325 /**
1326  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1327  *
1328  */
1329 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1330 {
1331         tk->tai_offset = tai_offset;
1332         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1333 }
1334
1335 /**
1336  * change_clocksource - Swaps clocksources if a new one is available
1337  *
1338  * Accumulates current time interval and initializes new clocksource
1339  */
1340 static int change_clocksource(void *data)
1341 {
1342         struct timekeeper *tk = &tk_core.timekeeper;
1343         struct clocksource *new, *old;
1344         unsigned long flags;
1345
1346         new = (struct clocksource *) data;
1347
1348         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1349         write_seqcount_begin(&tk_core.seq);
1350
1351         timekeeping_forward_now(tk);
1352         /*
1353          * If the cs is in module, get a module reference. Succeeds
1354          * for built-in code (owner == NULL) as well.
1355          */
1356         if (try_module_get(new->owner)) {
1357                 if (!new->enable || new->enable(new) == 0) {
1358                         old = tk->tkr_mono.clock;
1359                         tk_setup_internals(tk, new);
1360                         if (old->disable)
1361                                 old->disable(old);
1362                         module_put(old->owner);
1363                 } else {
1364                         module_put(new->owner);
1365                 }
1366         }
1367         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1368
1369         write_seqcount_end(&tk_core.seq);
1370         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1371
1372         return 0;
1373 }
1374
1375 /**
1376  * timekeeping_notify - Install a new clock source
1377  * @clock:              pointer to the clock source
1378  *
1379  * This function is called from clocksource.c after a new, better clock
1380  * source has been registered. The caller holds the clocksource_mutex.
1381  */
1382 int timekeeping_notify(struct clocksource *clock)
1383 {
1384         struct timekeeper *tk = &tk_core.timekeeper;
1385
1386         if (tk->tkr_mono.clock == clock)
1387                 return 0;
1388         stop_machine(change_clocksource, clock, NULL);
1389         tick_clock_notify();
1390         return tk->tkr_mono.clock == clock ? 0 : -1;
1391 }
1392
1393 /**
1394  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1395  * @ts:         pointer to the timespec64 to be set
1396  *
1397  * Returns the raw monotonic time (completely un-modified by ntp)
1398  */
1399 void getrawmonotonic64(struct timespec64 *ts)
1400 {
1401         struct timekeeper *tk = &tk_core.timekeeper;
1402         unsigned long seq;
1403         u64 nsecs;
1404
1405         do {
1406                 seq = read_seqcount_begin(&tk_core.seq);
1407                 ts->tv_sec = tk->raw_sec;
1408                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1409
1410         } while (read_seqcount_retry(&tk_core.seq, seq));
1411
1412         ts->tv_nsec = 0;
1413         timespec64_add_ns(ts, nsecs);
1414 }
1415 EXPORT_SYMBOL(getrawmonotonic64);
1416
1417
1418 /**
1419  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1420  */
1421 int timekeeping_valid_for_hres(void)
1422 {
1423         struct timekeeper *tk = &tk_core.timekeeper;
1424         unsigned long seq;
1425         int ret;
1426
1427         do {
1428                 seq = read_seqcount_begin(&tk_core.seq);
1429
1430                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1431
1432         } while (read_seqcount_retry(&tk_core.seq, seq));
1433
1434         return ret;
1435 }
1436
1437 /**
1438  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1439  */
1440 u64 timekeeping_max_deferment(void)
1441 {
1442         struct timekeeper *tk = &tk_core.timekeeper;
1443         unsigned long seq;
1444         u64 ret;
1445
1446         do {
1447                 seq = read_seqcount_begin(&tk_core.seq);
1448
1449                 ret = tk->tkr_mono.clock->max_idle_ns;
1450
1451         } while (read_seqcount_retry(&tk_core.seq, seq));
1452
1453         return ret;
1454 }
1455
1456 /**
1457  * read_persistent_clock -  Return time from the persistent clock.
1458  *
1459  * Weak dummy function for arches that do not yet support it.
1460  * Reads the time from the battery backed persistent clock.
1461  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1462  *
1463  *  XXX - Do be sure to remove it once all arches implement it.
1464  */
1465 void __weak read_persistent_clock(struct timespec *ts)
1466 {
1467         ts->tv_sec = 0;
1468         ts->tv_nsec = 0;
1469 }
1470
1471 void __weak read_persistent_clock64(struct timespec64 *ts64)
1472 {
1473         struct timespec ts;
1474
1475         read_persistent_clock(&ts);
1476         *ts64 = timespec_to_timespec64(ts);
1477 }
1478
1479 /**
1480  * read_boot_clock64 -  Return time of the system start.
1481  *
1482  * Weak dummy function for arches that do not yet support it.
1483  * Function to read the exact time the system has been started.
1484  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1485  *
1486  *  XXX - Do be sure to remove it once all arches implement it.
1487  */
1488 void __weak read_boot_clock64(struct timespec64 *ts)
1489 {
1490         ts->tv_sec = 0;
1491         ts->tv_nsec = 0;
1492 }
1493
1494 /* Flag for if timekeeping_resume() has injected sleeptime */
1495 static bool sleeptime_injected;
1496
1497 /* Flag for if there is a persistent clock on this platform */
1498 static bool persistent_clock_exists;
1499
1500 /*
1501  * timekeeping_init - Initializes the clocksource and common timekeeping values
1502  */
1503 void __init timekeeping_init(void)
1504 {
1505         struct timekeeper *tk = &tk_core.timekeeper;
1506         struct clocksource *clock;
1507         unsigned long flags;
1508         struct timespec64 now, boot, tmp;
1509
1510         read_persistent_clock64(&now);
1511         if (!timespec64_valid_strict(&now)) {
1512                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1513                         "         Check your CMOS/BIOS settings.\n");
1514                 now.tv_sec = 0;
1515                 now.tv_nsec = 0;
1516         } else if (now.tv_sec || now.tv_nsec)
1517                 persistent_clock_exists = true;
1518
1519         read_boot_clock64(&boot);
1520         if (!timespec64_valid_strict(&boot)) {
1521                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1522                         "         Check your CMOS/BIOS settings.\n");
1523                 boot.tv_sec = 0;
1524                 boot.tv_nsec = 0;
1525         }
1526
1527         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1528         write_seqcount_begin(&tk_core.seq);
1529         ntp_init();
1530
1531         clock = clocksource_default_clock();
1532         if (clock->enable)
1533                 clock->enable(clock);
1534         tk_setup_internals(tk, clock);
1535
1536         tk_set_xtime(tk, &now);
1537         tk->raw_sec = 0;
1538         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1539                 boot = tk_xtime(tk);
1540
1541         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1542         tk_set_wall_to_mono(tk, tmp);
1543
1544         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1545
1546         write_seqcount_end(&tk_core.seq);
1547         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1548 }
1549
1550 /* time in seconds when suspend began for persistent clock */
1551 static struct timespec64 timekeeping_suspend_time;
1552
1553 /**
1554  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1555  * @delta: pointer to a timespec delta value
1556  *
1557  * Takes a timespec offset measuring a suspend interval and properly
1558  * adds the sleep offset to the timekeeping variables.
1559  */
1560 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1561                                            struct timespec64 *delta)
1562 {
1563         if (!timespec64_valid_strict(delta)) {
1564                 printk_deferred(KERN_WARNING
1565                                 "__timekeeping_inject_sleeptime: Invalid "
1566                                 "sleep delta value!\n");
1567                 return;
1568         }
1569         tk_xtime_add(tk, delta);
1570         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1571         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1572         tk_debug_account_sleep_time(delta);
1573 }
1574
1575 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1576 /**
1577  * We have three kinds of time sources to use for sleep time
1578  * injection, the preference order is:
1579  * 1) non-stop clocksource
1580  * 2) persistent clock (ie: RTC accessible when irqs are off)
1581  * 3) RTC
1582  *
1583  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1584  * If system has neither 1) nor 2), 3) will be used finally.
1585  *
1586  *
1587  * If timekeeping has injected sleeptime via either 1) or 2),
1588  * 3) becomes needless, so in this case we don't need to call
1589  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1590  * means.
1591  */
1592 bool timekeeping_rtc_skipresume(void)
1593 {
1594         return sleeptime_injected;
1595 }
1596
1597 /**
1598  * 1) can be determined whether to use or not only when doing
1599  * timekeeping_resume() which is invoked after rtc_suspend(),
1600  * so we can't skip rtc_suspend() surely if system has 1).
1601  *
1602  * But if system has 2), 2) will definitely be used, so in this
1603  * case we don't need to call rtc_suspend(), and this is what
1604  * timekeeping_rtc_skipsuspend() means.
1605  */
1606 bool timekeeping_rtc_skipsuspend(void)
1607 {
1608         return persistent_clock_exists;
1609 }
1610
1611 /**
1612  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1613  * @delta: pointer to a timespec64 delta value
1614  *
1615  * This hook is for architectures that cannot support read_persistent_clock64
1616  * because their RTC/persistent clock is only accessible when irqs are enabled.
1617  * and also don't have an effective nonstop clocksource.
1618  *
1619  * This function should only be called by rtc_resume(), and allows
1620  * a suspend offset to be injected into the timekeeping values.
1621  */
1622 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1623 {
1624         struct timekeeper *tk = &tk_core.timekeeper;
1625         unsigned long flags;
1626
1627         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1628         write_seqcount_begin(&tk_core.seq);
1629
1630         timekeeping_forward_now(tk);
1631
1632         __timekeeping_inject_sleeptime(tk, delta);
1633
1634         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1635
1636         write_seqcount_end(&tk_core.seq);
1637         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1638
1639         /* signal hrtimers about time change */
1640         clock_was_set();
1641 }
1642 #endif
1643
1644 /**
1645  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1646  */
1647 void timekeeping_resume(void)
1648 {
1649         struct timekeeper *tk = &tk_core.timekeeper;
1650         struct clocksource *clock = tk->tkr_mono.clock;
1651         unsigned long flags;
1652         struct timespec64 ts_new, ts_delta;
1653         u64 cycle_now;
1654
1655         sleeptime_injected = false;
1656         read_persistent_clock64(&ts_new);
1657
1658         clockevents_resume();
1659         clocksource_resume();
1660
1661         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1662         write_seqcount_begin(&tk_core.seq);
1663
1664         /*
1665          * After system resumes, we need to calculate the suspended time and
1666          * compensate it for the OS time. There are 3 sources that could be
1667          * used: Nonstop clocksource during suspend, persistent clock and rtc
1668          * device.
1669          *
1670          * One specific platform may have 1 or 2 or all of them, and the
1671          * preference will be:
1672          *      suspend-nonstop clocksource -> persistent clock -> rtc
1673          * The less preferred source will only be tried if there is no better
1674          * usable source. The rtc part is handled separately in rtc core code.
1675          */
1676         cycle_now = tk_clock_read(&tk->tkr_mono);
1677         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1678                 cycle_now > tk->tkr_mono.cycle_last) {
1679                 u64 nsec, cyc_delta;
1680
1681                 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1682                                               tk->tkr_mono.mask);
1683                 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1684                 ts_delta = ns_to_timespec64(nsec);
1685                 sleeptime_injected = true;
1686         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1687                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1688                 sleeptime_injected = true;
1689         }
1690
1691         if (sleeptime_injected)
1692                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1693
1694         /* Re-base the last cycle value */
1695         tk->tkr_mono.cycle_last = cycle_now;
1696         tk->tkr_raw.cycle_last  = cycle_now;
1697
1698         tk->ntp_error = 0;
1699         timekeeping_suspended = 0;
1700         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1701         write_seqcount_end(&tk_core.seq);
1702         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1703
1704         touch_softlockup_watchdog();
1705
1706         tick_resume();
1707         hrtimers_resume();
1708 }
1709
1710 int timekeeping_suspend(void)
1711 {
1712         struct timekeeper *tk = &tk_core.timekeeper;
1713         unsigned long flags;
1714         struct timespec64               delta, delta_delta;
1715         static struct timespec64        old_delta;
1716
1717         read_persistent_clock64(&timekeeping_suspend_time);
1718
1719         /*
1720          * On some systems the persistent_clock can not be detected at
1721          * timekeeping_init by its return value, so if we see a valid
1722          * value returned, update the persistent_clock_exists flag.
1723          */
1724         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1725                 persistent_clock_exists = true;
1726
1727         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1728         write_seqcount_begin(&tk_core.seq);
1729         timekeeping_forward_now(tk);
1730         timekeeping_suspended = 1;
1731
1732         if (persistent_clock_exists) {
1733                 /*
1734                  * To avoid drift caused by repeated suspend/resumes,
1735                  * which each can add ~1 second drift error,
1736                  * try to compensate so the difference in system time
1737                  * and persistent_clock time stays close to constant.
1738                  */
1739                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1740                 delta_delta = timespec64_sub(delta, old_delta);
1741                 if (abs(delta_delta.tv_sec) >= 2) {
1742                         /*
1743                          * if delta_delta is too large, assume time correction
1744                          * has occurred and set old_delta to the current delta.
1745                          */
1746                         old_delta = delta;
1747                 } else {
1748                         /* Otherwise try to adjust old_system to compensate */
1749                         timekeeping_suspend_time =
1750                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1751                 }
1752         }
1753
1754         timekeeping_update(tk, TK_MIRROR);
1755         halt_fast_timekeeper(tk);
1756         write_seqcount_end(&tk_core.seq);
1757         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1758
1759         tick_suspend();
1760         clocksource_suspend();
1761         clockevents_suspend();
1762
1763         return 0;
1764 }
1765
1766 /* sysfs resume/suspend bits for timekeeping */
1767 static struct syscore_ops timekeeping_syscore_ops = {
1768         .resume         = timekeeping_resume,
1769         .suspend        = timekeeping_suspend,
1770 };
1771
1772 static int __init timekeeping_init_ops(void)
1773 {
1774         register_syscore_ops(&timekeeping_syscore_ops);
1775         return 0;
1776 }
1777 device_initcall(timekeeping_init_ops);
1778
1779 /*
1780  * Apply a multiplier adjustment to the timekeeper
1781  */
1782 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1783                                                          s64 offset,
1784                                                          s32 mult_adj)
1785 {
1786         s64 interval = tk->cycle_interval;
1787
1788         if (mult_adj == 0) {
1789                 return;
1790         } else if (mult_adj == -1) {
1791                 interval = -interval;
1792                 offset = -offset;
1793         } else if (mult_adj != 1) {
1794                 interval *= mult_adj;
1795                 offset *= mult_adj;
1796         }
1797
1798         /*
1799          * So the following can be confusing.
1800          *
1801          * To keep things simple, lets assume mult_adj == 1 for now.
1802          *
1803          * When mult_adj != 1, remember that the interval and offset values
1804          * have been appropriately scaled so the math is the same.
1805          *
1806          * The basic idea here is that we're increasing the multiplier
1807          * by one, this causes the xtime_interval to be incremented by
1808          * one cycle_interval. This is because:
1809          *      xtime_interval = cycle_interval * mult
1810          * So if mult is being incremented by one:
1811          *      xtime_interval = cycle_interval * (mult + 1)
1812          * Its the same as:
1813          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1814          * Which can be shortened to:
1815          *      xtime_interval += cycle_interval
1816          *
1817          * So offset stores the non-accumulated cycles. Thus the current
1818          * time (in shifted nanoseconds) is:
1819          *      now = (offset * adj) + xtime_nsec
1820          * Now, even though we're adjusting the clock frequency, we have
1821          * to keep time consistent. In other words, we can't jump back
1822          * in time, and we also want to avoid jumping forward in time.
1823          *
1824          * So given the same offset value, we need the time to be the same
1825          * both before and after the freq adjustment.
1826          *      now = (offset * adj_1) + xtime_nsec_1
1827          *      now = (offset * adj_2) + xtime_nsec_2
1828          * So:
1829          *      (offset * adj_1) + xtime_nsec_1 =
1830          *              (offset * adj_2) + xtime_nsec_2
1831          * And we know:
1832          *      adj_2 = adj_1 + 1
1833          * So:
1834          *      (offset * adj_1) + xtime_nsec_1 =
1835          *              (offset * (adj_1+1)) + xtime_nsec_2
1836          *      (offset * adj_1) + xtime_nsec_1 =
1837          *              (offset * adj_1) + offset + xtime_nsec_2
1838          * Canceling the sides:
1839          *      xtime_nsec_1 = offset + xtime_nsec_2
1840          * Which gives us:
1841          *      xtime_nsec_2 = xtime_nsec_1 - offset
1842          * Which simplfies to:
1843          *      xtime_nsec -= offset
1844          */
1845         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1846                 /* NTP adjustment caused clocksource mult overflow */
1847                 WARN_ON_ONCE(1);
1848                 return;
1849         }
1850
1851         tk->tkr_mono.mult += mult_adj;
1852         tk->xtime_interval += interval;
1853         tk->tkr_mono.xtime_nsec -= offset;
1854 }
1855
1856 /*
1857  * Adjust the timekeeper's multiplier to the correct frequency
1858  * and also to reduce the accumulated error value.
1859  */
1860 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1861 {
1862         u32 mult;
1863
1864         /*
1865          * Determine the multiplier from the current NTP tick length.
1866          * Avoid expensive division when the tick length doesn't change.
1867          */
1868         if (likely(tk->ntp_tick == ntp_tick_length())) {
1869                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1870         } else {
1871                 tk->ntp_tick = ntp_tick_length();
1872                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1873                                  tk->xtime_remainder, tk->cycle_interval);
1874         }
1875
1876         /*
1877          * If the clock is behind the NTP time, increase the multiplier by 1
1878          * to catch up with it. If it's ahead and there was a remainder in the
1879          * tick division, the clock will slow down. Otherwise it will stay
1880          * ahead until the tick length changes to a non-divisible value.
1881          */
1882         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1883         mult += tk->ntp_err_mult;
1884
1885         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1886
1887         if (unlikely(tk->tkr_mono.clock->maxadj &&
1888                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1889                         > tk->tkr_mono.clock->maxadj))) {
1890                 printk_once(KERN_WARNING
1891                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1892                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1893                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1894         }
1895
1896         /*
1897          * It may be possible that when we entered this function, xtime_nsec
1898          * was very small.  Further, if we're slightly speeding the clocksource
1899          * in the code above, its possible the required corrective factor to
1900          * xtime_nsec could cause it to underflow.
1901          *
1902          * Now, since we have already accumulated the second and the NTP
1903          * subsystem has been notified via second_overflow(), we need to skip
1904          * the next update.
1905          */
1906         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1907                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1908                                                         tk->tkr_mono.shift;
1909                 tk->xtime_sec--;
1910                 tk->skip_second_overflow = 1;
1911         }
1912 }
1913
1914 /**
1915  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1916  *
1917  * Helper function that accumulates the nsecs greater than a second
1918  * from the xtime_nsec field to the xtime_secs field.
1919  * It also calls into the NTP code to handle leapsecond processing.
1920  *
1921  */
1922 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1923 {
1924         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1925         unsigned int clock_set = 0;
1926
1927         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1928                 int leap;
1929
1930                 tk->tkr_mono.xtime_nsec -= nsecps;
1931                 tk->xtime_sec++;
1932
1933                 /*
1934                  * Skip NTP update if this second was accumulated before,
1935                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1936                  */
1937                 if (unlikely(tk->skip_second_overflow)) {
1938                         tk->skip_second_overflow = 0;
1939                         continue;
1940                 }
1941
1942                 /* Figure out if its a leap sec and apply if needed */
1943                 leap = second_overflow(tk->xtime_sec);
1944                 if (unlikely(leap)) {
1945                         struct timespec64 ts;
1946
1947                         tk->xtime_sec += leap;
1948
1949                         ts.tv_sec = leap;
1950                         ts.tv_nsec = 0;
1951                         tk_set_wall_to_mono(tk,
1952                                 timespec64_sub(tk->wall_to_monotonic, ts));
1953
1954                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1955
1956                         clock_set = TK_CLOCK_WAS_SET;
1957                 }
1958         }
1959         return clock_set;
1960 }
1961
1962 /**
1963  * logarithmic_accumulation - shifted accumulation of cycles
1964  *
1965  * This functions accumulates a shifted interval of cycles into
1966  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1967  * loop.
1968  *
1969  * Returns the unconsumed cycles.
1970  */
1971 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1972                                     u32 shift, unsigned int *clock_set)
1973 {
1974         u64 interval = tk->cycle_interval << shift;
1975         u64 snsec_per_sec;
1976
1977         /* If the offset is smaller than a shifted interval, do nothing */
1978         if (offset < interval)
1979                 return offset;
1980
1981         /* Accumulate one shifted interval */
1982         offset -= interval;
1983         tk->tkr_mono.cycle_last += interval;
1984         tk->tkr_raw.cycle_last  += interval;
1985
1986         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1987         *clock_set |= accumulate_nsecs_to_secs(tk);
1988
1989         /* Accumulate raw time */
1990         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
1991         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
1992         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
1993                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
1994                 tk->raw_sec++;
1995         }
1996
1997         /* Accumulate error between NTP and clock interval */
1998         tk->ntp_error += tk->ntp_tick << shift;
1999         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2000                                                 (tk->ntp_error_shift + shift);
2001
2002         return offset;
2003 }
2004
2005 /**
2006  * update_wall_time - Uses the current clocksource to increment the wall time
2007  *
2008  */
2009 void update_wall_time(void)
2010 {
2011         struct timekeeper *real_tk = &tk_core.timekeeper;
2012         struct timekeeper *tk = &shadow_timekeeper;
2013         u64 offset;
2014         int shift = 0, maxshift;
2015         unsigned int clock_set = 0;
2016         unsigned long flags;
2017
2018         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2019
2020         /* Make sure we're fully resumed: */
2021         if (unlikely(timekeeping_suspended))
2022                 goto out;
2023
2024 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2025         offset = real_tk->cycle_interval;
2026 #else
2027         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2028                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2029 #endif
2030
2031         /* Check if there's really nothing to do */
2032         if (offset < real_tk->cycle_interval)
2033                 goto out;
2034
2035         /* Do some additional sanity checking */
2036         timekeeping_check_update(tk, offset);
2037
2038         /*
2039          * With NO_HZ we may have to accumulate many cycle_intervals
2040          * (think "ticks") worth of time at once. To do this efficiently,
2041          * we calculate the largest doubling multiple of cycle_intervals
2042          * that is smaller than the offset.  We then accumulate that
2043          * chunk in one go, and then try to consume the next smaller
2044          * doubled multiple.
2045          */
2046         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2047         shift = max(0, shift);
2048         /* Bound shift to one less than what overflows tick_length */
2049         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2050         shift = min(shift, maxshift);
2051         while (offset >= tk->cycle_interval) {
2052                 offset = logarithmic_accumulation(tk, offset, shift,
2053                                                         &clock_set);
2054                 if (offset < tk->cycle_interval<<shift)
2055                         shift--;
2056         }
2057
2058         /* Adjust the multiplier to correct NTP error */
2059         timekeeping_adjust(tk, offset);
2060
2061         /*
2062          * Finally, make sure that after the rounding
2063          * xtime_nsec isn't larger than NSEC_PER_SEC
2064          */
2065         clock_set |= accumulate_nsecs_to_secs(tk);
2066
2067         write_seqcount_begin(&tk_core.seq);
2068         /*
2069          * Update the real timekeeper.
2070          *
2071          * We could avoid this memcpy by switching pointers, but that
2072          * requires changes to all other timekeeper usage sites as
2073          * well, i.e. move the timekeeper pointer getter into the
2074          * spinlocked/seqcount protected sections. And we trade this
2075          * memcpy under the tk_core.seq against one before we start
2076          * updating.
2077          */
2078         timekeeping_update(tk, clock_set);
2079         memcpy(real_tk, tk, sizeof(*tk));
2080         /* The memcpy must come last. Do not put anything here! */
2081         write_seqcount_end(&tk_core.seq);
2082 out:
2083         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2084         if (clock_set)
2085                 /* Have to call _delayed version, since in irq context*/
2086                 clock_was_set_delayed();
2087 }
2088
2089 /**
2090  * getboottime64 - Return the real time of system boot.
2091  * @ts:         pointer to the timespec64 to be set
2092  *
2093  * Returns the wall-time of boot in a timespec64.
2094  *
2095  * This is based on the wall_to_monotonic offset and the total suspend
2096  * time. Calls to settimeofday will affect the value returned (which
2097  * basically means that however wrong your real time clock is at boot time,
2098  * you get the right time here).
2099  */
2100 void getboottime64(struct timespec64 *ts)
2101 {
2102         struct timekeeper *tk = &tk_core.timekeeper;
2103         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2104
2105         *ts = ktime_to_timespec64(t);
2106 }
2107 EXPORT_SYMBOL_GPL(getboottime64);
2108
2109 unsigned long get_seconds(void)
2110 {
2111         struct timekeeper *tk = &tk_core.timekeeper;
2112
2113         return tk->xtime_sec;
2114 }
2115 EXPORT_SYMBOL(get_seconds);
2116
2117 struct timespec64 current_kernel_time64(void)
2118 {
2119         struct timekeeper *tk = &tk_core.timekeeper;
2120         struct timespec64 now;
2121         unsigned long seq;
2122
2123         do {
2124                 seq = read_seqcount_begin(&tk_core.seq);
2125
2126                 now = tk_xtime(tk);
2127         } while (read_seqcount_retry(&tk_core.seq, seq));
2128
2129         return now;
2130 }
2131 EXPORT_SYMBOL(current_kernel_time64);
2132
2133 struct timespec64 get_monotonic_coarse64(void)
2134 {
2135         struct timekeeper *tk = &tk_core.timekeeper;
2136         struct timespec64 now, mono;
2137         unsigned long seq;
2138
2139         do {
2140                 seq = read_seqcount_begin(&tk_core.seq);
2141
2142                 now = tk_xtime(tk);
2143                 mono = tk->wall_to_monotonic;
2144         } while (read_seqcount_retry(&tk_core.seq, seq));
2145
2146         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2147                                 now.tv_nsec + mono.tv_nsec);
2148
2149         return now;
2150 }
2151 EXPORT_SYMBOL(get_monotonic_coarse64);
2152
2153 /*
2154  * Must hold jiffies_lock
2155  */
2156 void do_timer(unsigned long ticks)
2157 {
2158         jiffies_64 += ticks;
2159         calc_global_load(ticks);
2160 }
2161
2162 /**
2163  * ktime_get_update_offsets_now - hrtimer helper
2164  * @cwsseq:     pointer to check and store the clock was set sequence number
2165  * @offs_real:  pointer to storage for monotonic -> realtime offset
2166  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2167  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2168  *
2169  * Returns current monotonic time and updates the offsets if the
2170  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2171  * different.
2172  *
2173  * Called from hrtimer_interrupt() or retrigger_next_event()
2174  */
2175 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2176                                      ktime_t *offs_boot, ktime_t *offs_tai)
2177 {
2178         struct timekeeper *tk = &tk_core.timekeeper;
2179         unsigned int seq;
2180         ktime_t base;
2181         u64 nsecs;
2182
2183         do {
2184                 seq = read_seqcount_begin(&tk_core.seq);
2185
2186                 base = tk->tkr_mono.base;
2187                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2188                 base = ktime_add_ns(base, nsecs);
2189
2190                 if (*cwsseq != tk->clock_was_set_seq) {
2191                         *cwsseq = tk->clock_was_set_seq;
2192                         *offs_real = tk->offs_real;
2193                         *offs_boot = tk->offs_boot;
2194                         *offs_tai = tk->offs_tai;
2195                 }
2196
2197                 /* Handle leapsecond insertion adjustments */
2198                 if (unlikely(base >= tk->next_leap_ktime))
2199                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2200
2201         } while (read_seqcount_retry(&tk_core.seq, seq));
2202
2203         return base;
2204 }
2205
2206 /**
2207  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2208  */
2209 static int timekeeping_validate_timex(struct timex *txc)
2210 {
2211         if (txc->modes & ADJ_ADJTIME) {
2212                 /* singleshot must not be used with any other mode bits */
2213                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2214                         return -EINVAL;
2215                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2216                     !capable(CAP_SYS_TIME))
2217                         return -EPERM;
2218         } else {
2219                 /* In order to modify anything, you gotta be super-user! */
2220                 if (txc->modes && !capable(CAP_SYS_TIME))
2221                         return -EPERM;
2222                 /*
2223                  * if the quartz is off by more than 10% then
2224                  * something is VERY wrong!
2225                  */
2226                 if (txc->modes & ADJ_TICK &&
2227                     (txc->tick <  900000/USER_HZ ||
2228                      txc->tick > 1100000/USER_HZ))
2229                         return -EINVAL;
2230         }
2231
2232         if (txc->modes & ADJ_SETOFFSET) {
2233                 /* In order to inject time, you gotta be super-user! */
2234                 if (!capable(CAP_SYS_TIME))
2235                         return -EPERM;
2236
2237                 /*
2238                  * Validate if a timespec/timeval used to inject a time
2239                  * offset is valid.  Offsets can be postive or negative, so
2240                  * we don't check tv_sec. The value of the timeval/timespec
2241                  * is the sum of its fields,but *NOTE*:
2242                  * The field tv_usec/tv_nsec must always be non-negative and
2243                  * we can't have more nanoseconds/microseconds than a second.
2244                  */
2245                 if (txc->time.tv_usec < 0)
2246                         return -EINVAL;
2247
2248                 if (txc->modes & ADJ_NANO) {
2249                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2250                                 return -EINVAL;
2251                 } else {
2252                         if (txc->time.tv_usec >= USEC_PER_SEC)
2253                                 return -EINVAL;
2254                 }
2255         }
2256
2257         /*
2258          * Check for potential multiplication overflows that can
2259          * only happen on 64-bit systems:
2260          */
2261         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2262                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2263                         return -EINVAL;
2264                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2265                         return -EINVAL;
2266         }
2267
2268         return 0;
2269 }
2270
2271
2272 /**
2273  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2274  */
2275 int do_adjtimex(struct timex *txc)
2276 {
2277         struct timekeeper *tk = &tk_core.timekeeper;
2278         unsigned long flags;
2279         struct timespec64 ts;
2280         s32 orig_tai, tai;
2281         int ret;
2282
2283         /* Validate the data before disabling interrupts */
2284         ret = timekeeping_validate_timex(txc);
2285         if (ret)
2286                 return ret;
2287
2288         if (txc->modes & ADJ_SETOFFSET) {
2289                 struct timespec64 delta;
2290                 delta.tv_sec  = txc->time.tv_sec;
2291                 delta.tv_nsec = txc->time.tv_usec;
2292                 if (!(txc->modes & ADJ_NANO))
2293                         delta.tv_nsec *= 1000;
2294                 ret = timekeeping_inject_offset(&delta);
2295                 if (ret)
2296                         return ret;
2297         }
2298
2299         getnstimeofday64(&ts);
2300
2301         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2302         write_seqcount_begin(&tk_core.seq);
2303
2304         orig_tai = tai = tk->tai_offset;
2305         ret = __do_adjtimex(txc, &ts, &tai);
2306
2307         if (tai != orig_tai) {
2308                 __timekeeping_set_tai_offset(tk, tai);
2309                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2310         }
2311         tk_update_leap_state(tk);
2312
2313         write_seqcount_end(&tk_core.seq);
2314         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2315
2316         if (tai != orig_tai)
2317                 clock_was_set();
2318
2319         ntp_notify_cmos_timer();
2320
2321         return ret;
2322 }
2323
2324 #ifdef CONFIG_NTP_PPS
2325 /**
2326  * hardpps() - Accessor function to NTP __hardpps function
2327  */
2328 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2329 {
2330         unsigned long flags;
2331
2332         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2333         write_seqcount_begin(&tk_core.seq);
2334
2335         __hardpps(phase_ts, raw_ts);
2336
2337         write_seqcount_end(&tk_core.seq);
2338         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2339 }
2340 EXPORT_SYMBOL(hardpps);
2341 #endif /* CONFIG_NTP_PPS */
2342
2343 /**
2344  * xtime_update() - advances the timekeeping infrastructure
2345  * @ticks:      number of ticks, that have elapsed since the last call.
2346  *
2347  * Must be called with interrupts disabled.
2348  */
2349 void xtime_update(unsigned long ticks)
2350 {
2351         write_seqlock(&jiffies_lock);
2352         do_timer(ticks);
2353         write_sequnlock(&jiffies_lock);
2354         update_wall_time();
2355 }