49cbceef5debc7c06aab4f4f5a2479b291855ee7
[linux-2.6-block.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP            (1 << 0)
34 #define TK_MIRROR               (1 << 1)
35 #define TK_CLOCK_WAS_SET        (1 << 2)
36
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42         seqcount_t              seq;
43         struct timekeeper       timekeeper;
44 } tk_core ____cacheline_aligned;
45
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:        Sequence counter for protecting updates. The lowest bit
52  *              is the index for the tk_read_base array
53  * @base:       tk_read_base array. Access is indexed by the lowest bit of
54  *              @seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59         seqcount_t              seq;
60         struct tk_read_base     base[2];
61 };
62
63 /* Suspend-time cycles value for halted fast timekeeper. */
64 static u64 cycles_at_suspend;
65
66 static u64 dummy_clock_read(struct clocksource *cs)
67 {
68         return cycles_at_suspend;
69 }
70
71 static struct clocksource dummy_clock = {
72         .read = dummy_clock_read,
73 };
74
75 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76         .base[0] = { .clock = &dummy_clock, },
77         .base[1] = { .clock = &dummy_clock, },
78 };
79
80 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
81         .base[0] = { .clock = &dummy_clock, },
82         .base[1] = { .clock = &dummy_clock, },
83 };
84
85 /* flag for if timekeeping is suspended */
86 int __read_mostly timekeeping_suspended;
87
88 static inline void tk_normalize_xtime(struct timekeeper *tk)
89 {
90         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92                 tk->xtime_sec++;
93         }
94         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96                 tk->raw_sec++;
97         }
98 }
99
100 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
101 {
102         struct timespec64 ts;
103
104         ts.tv_sec = tk->xtime_sec;
105         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106         return ts;
107 }
108
109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 {
111         tk->xtime_sec = ts->tv_sec;
112         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 }
114
115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 {
117         tk->xtime_sec += ts->tv_sec;
118         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119         tk_normalize_xtime(tk);
120 }
121
122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123 {
124         struct timespec64 tmp;
125
126         /*
127          * Verify consistency of: offset_real = -wall_to_monotonic
128          * before modifying anything
129          */
130         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131                                         -tk->wall_to_monotonic.tv_nsec);
132         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133         tk->wall_to_monotonic = wtm;
134         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135         tk->offs_real = timespec64_to_ktime(tmp);
136         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 }
138
139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140 {
141         tk->offs_boot = ktime_add(tk->offs_boot, delta);
142 }
143
144 /*
145  * tk_clock_read - atomic clocksource read() helper
146  *
147  * This helper is necessary to use in the read paths because, while the
148  * seqlock ensures we don't return a bad value while structures are updated,
149  * it doesn't protect from potential crashes. There is the possibility that
150  * the tkr's clocksource may change between the read reference, and the
151  * clock reference passed to the read function.  This can cause crashes if
152  * the wrong clocksource is passed to the wrong read function.
153  * This isn't necessary to use when holding the timekeeper_lock or doing
154  * a read of the fast-timekeeper tkrs (which is protected by its own locking
155  * and update logic).
156  */
157 static inline u64 tk_clock_read(struct tk_read_base *tkr)
158 {
159         struct clocksource *clock = READ_ONCE(tkr->clock);
160
161         return clock->read(clock);
162 }
163
164 #ifdef CONFIG_DEBUG_TIMEKEEPING
165 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
166
167 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
168 {
169
170         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
171         const char *name = tk->tkr_mono.clock->name;
172
173         if (offset > max_cycles) {
174                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
175                                 offset, name, max_cycles);
176                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
177         } else {
178                 if (offset > (max_cycles >> 1)) {
179                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
180                                         offset, name, max_cycles >> 1);
181                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
182                 }
183         }
184
185         if (tk->underflow_seen) {
186                 if (jiffies - tk->last_warning > WARNING_FREQ) {
187                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
188                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
189                         printk_deferred("         Your kernel is probably still fine.\n");
190                         tk->last_warning = jiffies;
191                 }
192                 tk->underflow_seen = 0;
193         }
194
195         if (tk->overflow_seen) {
196                 if (jiffies - tk->last_warning > WARNING_FREQ) {
197                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
198                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
199                         printk_deferred("         Your kernel is probably still fine.\n");
200                         tk->last_warning = jiffies;
201                 }
202                 tk->overflow_seen = 0;
203         }
204 }
205
206 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
207 {
208         struct timekeeper *tk = &tk_core.timekeeper;
209         u64 now, last, mask, max, delta;
210         unsigned int seq;
211
212         /*
213          * Since we're called holding a seqlock, the data may shift
214          * under us while we're doing the calculation. This can cause
215          * false positives, since we'd note a problem but throw the
216          * results away. So nest another seqlock here to atomically
217          * grab the points we are checking with.
218          */
219         do {
220                 seq = read_seqcount_begin(&tk_core.seq);
221                 now = tk_clock_read(tkr);
222                 last = tkr->cycle_last;
223                 mask = tkr->mask;
224                 max = tkr->clock->max_cycles;
225         } while (read_seqcount_retry(&tk_core.seq, seq));
226
227         delta = clocksource_delta(now, last, mask);
228
229         /*
230          * Try to catch underflows by checking if we are seeing small
231          * mask-relative negative values.
232          */
233         if (unlikely((~delta & mask) < (mask >> 3))) {
234                 tk->underflow_seen = 1;
235                 delta = 0;
236         }
237
238         /* Cap delta value to the max_cycles values to avoid mult overflows */
239         if (unlikely(delta > max)) {
240                 tk->overflow_seen = 1;
241                 delta = tkr->clock->max_cycles;
242         }
243
244         return delta;
245 }
246 #else
247 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
248 {
249 }
250 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
251 {
252         u64 cycle_now, delta;
253
254         /* read clocksource */
255         cycle_now = tk_clock_read(tkr);
256
257         /* calculate the delta since the last update_wall_time */
258         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
259
260         return delta;
261 }
262 #endif
263
264 /**
265  * tk_setup_internals - Set up internals to use clocksource clock.
266  *
267  * @tk:         The target timekeeper to setup.
268  * @clock:              Pointer to clocksource.
269  *
270  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
271  * pair and interval request.
272  *
273  * Unless you're the timekeeping code, you should not be using this!
274  */
275 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
276 {
277         u64 interval;
278         u64 tmp, ntpinterval;
279         struct clocksource *old_clock;
280
281         ++tk->cs_was_changed_seq;
282         old_clock = tk->tkr_mono.clock;
283         tk->tkr_mono.clock = clock;
284         tk->tkr_mono.mask = clock->mask;
285         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
286
287         tk->tkr_raw.clock = clock;
288         tk->tkr_raw.mask = clock->mask;
289         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
290
291         /* Do the ns -> cycle conversion first, using original mult */
292         tmp = NTP_INTERVAL_LENGTH;
293         tmp <<= clock->shift;
294         ntpinterval = tmp;
295         tmp += clock->mult/2;
296         do_div(tmp, clock->mult);
297         if (tmp == 0)
298                 tmp = 1;
299
300         interval = (u64) tmp;
301         tk->cycle_interval = interval;
302
303         /* Go back from cycles -> shifted ns */
304         tk->xtime_interval = interval * clock->mult;
305         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
306         tk->raw_interval = interval * clock->mult;
307
308          /* if changing clocks, convert xtime_nsec shift units */
309         if (old_clock) {
310                 int shift_change = clock->shift - old_clock->shift;
311                 if (shift_change < 0) {
312                         tk->tkr_mono.xtime_nsec >>= -shift_change;
313                         tk->tkr_raw.xtime_nsec >>= -shift_change;
314                 } else {
315                         tk->tkr_mono.xtime_nsec <<= shift_change;
316                         tk->tkr_raw.xtime_nsec <<= shift_change;
317                 }
318         }
319
320         tk->tkr_mono.shift = clock->shift;
321         tk->tkr_raw.shift = clock->shift;
322
323         tk->ntp_error = 0;
324         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
325         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
326
327         /*
328          * The timekeeper keeps its own mult values for the currently
329          * active clocksource. These value will be adjusted via NTP
330          * to counteract clock drifting.
331          */
332         tk->tkr_mono.mult = clock->mult;
333         tk->tkr_raw.mult = clock->mult;
334         tk->ntp_err_mult = 0;
335         tk->skip_second_overflow = 0;
336 }
337
338 /* Timekeeper helper functions. */
339
340 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
341 static u32 default_arch_gettimeoffset(void) { return 0; }
342 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
343 #else
344 static inline u32 arch_gettimeoffset(void) { return 0; }
345 #endif
346
347 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
348 {
349         u64 nsec;
350
351         nsec = delta * tkr->mult + tkr->xtime_nsec;
352         nsec >>= tkr->shift;
353
354         /* If arch requires, add in get_arch_timeoffset() */
355         return nsec + arch_gettimeoffset();
356 }
357
358 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
359 {
360         u64 delta;
361
362         delta = timekeeping_get_delta(tkr);
363         return timekeeping_delta_to_ns(tkr, delta);
364 }
365
366 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
367 {
368         u64 delta;
369
370         /* calculate the delta since the last update_wall_time */
371         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
372         return timekeeping_delta_to_ns(tkr, delta);
373 }
374
375 /**
376  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
377  * @tkr: Timekeeping readout base from which we take the update
378  *
379  * We want to use this from any context including NMI and tracing /
380  * instrumenting the timekeeping code itself.
381  *
382  * Employ the latch technique; see @raw_write_seqcount_latch.
383  *
384  * So if a NMI hits the update of base[0] then it will use base[1]
385  * which is still consistent. In the worst case this can result is a
386  * slightly wrong timestamp (a few nanoseconds). See
387  * @ktime_get_mono_fast_ns.
388  */
389 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
390 {
391         struct tk_read_base *base = tkf->base;
392
393         /* Force readers off to base[1] */
394         raw_write_seqcount_latch(&tkf->seq);
395
396         /* Update base[0] */
397         memcpy(base, tkr, sizeof(*base));
398
399         /* Force readers back to base[0] */
400         raw_write_seqcount_latch(&tkf->seq);
401
402         /* Update base[1] */
403         memcpy(base + 1, base, sizeof(*base));
404 }
405
406 /**
407  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
408  *
409  * This timestamp is not guaranteed to be monotonic across an update.
410  * The timestamp is calculated by:
411  *
412  *      now = base_mono + clock_delta * slope
413  *
414  * So if the update lowers the slope, readers who are forced to the
415  * not yet updated second array are still using the old steeper slope.
416  *
417  * tmono
418  * ^
419  * |    o  n
420  * |   o n
421  * |  u
422  * | o
423  * |o
424  * |12345678---> reader order
425  *
426  * o = old slope
427  * u = update
428  * n = new slope
429  *
430  * So reader 6 will observe time going backwards versus reader 5.
431  *
432  * While other CPUs are likely to be able observe that, the only way
433  * for a CPU local observation is when an NMI hits in the middle of
434  * the update. Timestamps taken from that NMI context might be ahead
435  * of the following timestamps. Callers need to be aware of that and
436  * deal with it.
437  */
438 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
439 {
440         struct tk_read_base *tkr;
441         unsigned int seq;
442         u64 now;
443
444         do {
445                 seq = raw_read_seqcount_latch(&tkf->seq);
446                 tkr = tkf->base + (seq & 0x01);
447                 now = ktime_to_ns(tkr->base);
448
449                 now += timekeeping_delta_to_ns(tkr,
450                                 clocksource_delta(
451                                         tk_clock_read(tkr),
452                                         tkr->cycle_last,
453                                         tkr->mask));
454         } while (read_seqcount_retry(&tkf->seq, seq));
455
456         return now;
457 }
458
459 u64 ktime_get_mono_fast_ns(void)
460 {
461         return __ktime_get_fast_ns(&tk_fast_mono);
462 }
463 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
464
465 u64 ktime_get_raw_fast_ns(void)
466 {
467         return __ktime_get_fast_ns(&tk_fast_raw);
468 }
469 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
470
471 /**
472  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
473  *
474  * To keep it NMI safe since we're accessing from tracing, we're not using a
475  * separate timekeeper with updates to monotonic clock and boot offset
476  * protected with seqlocks. This has the following minor side effects:
477  *
478  * (1) Its possible that a timestamp be taken after the boot offset is updated
479  * but before the timekeeper is updated. If this happens, the new boot offset
480  * is added to the old timekeeping making the clock appear to update slightly
481  * earlier:
482  *    CPU 0                                        CPU 1
483  *    timekeeping_inject_sleeptime64()
484  *    __timekeeping_inject_sleeptime(tk, delta);
485  *                                                 timestamp();
486  *    timekeeping_update(tk, TK_CLEAR_NTP...);
487  *
488  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
489  * partially updated.  Since the tk->offs_boot update is a rare event, this
490  * should be a rare occurrence which postprocessing should be able to handle.
491  */
492 u64 notrace ktime_get_boot_fast_ns(void)
493 {
494         struct timekeeper *tk = &tk_core.timekeeper;
495
496         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
497 }
498 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
499
500
501 /*
502  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
503  */
504 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
505 {
506         struct tk_read_base *tkr;
507         unsigned int seq;
508         u64 now;
509
510         do {
511                 seq = raw_read_seqcount_latch(&tkf->seq);
512                 tkr = tkf->base + (seq & 0x01);
513                 now = ktime_to_ns(tkr->base_real);
514
515                 now += timekeeping_delta_to_ns(tkr,
516                                 clocksource_delta(
517                                         tk_clock_read(tkr),
518                                         tkr->cycle_last,
519                                         tkr->mask));
520         } while (read_seqcount_retry(&tkf->seq, seq));
521
522         return now;
523 }
524
525 /**
526  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
527  */
528 u64 ktime_get_real_fast_ns(void)
529 {
530         return __ktime_get_real_fast_ns(&tk_fast_mono);
531 }
532 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
533
534 /**
535  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
536  * @tk: Timekeeper to snapshot.
537  *
538  * It generally is unsafe to access the clocksource after timekeeping has been
539  * suspended, so take a snapshot of the readout base of @tk and use it as the
540  * fast timekeeper's readout base while suspended.  It will return the same
541  * number of cycles every time until timekeeping is resumed at which time the
542  * proper readout base for the fast timekeeper will be restored automatically.
543  */
544 static void halt_fast_timekeeper(struct timekeeper *tk)
545 {
546         static struct tk_read_base tkr_dummy;
547         struct tk_read_base *tkr = &tk->tkr_mono;
548
549         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
550         cycles_at_suspend = tk_clock_read(tkr);
551         tkr_dummy.clock = &dummy_clock;
552         tkr_dummy.base_real = tkr->base + tk->offs_real;
553         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
554
555         tkr = &tk->tkr_raw;
556         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
557         tkr_dummy.clock = &dummy_clock;
558         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
559 }
560
561 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
562
563 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
564 {
565         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
566 }
567
568 /**
569  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
570  */
571 int pvclock_gtod_register_notifier(struct notifier_block *nb)
572 {
573         struct timekeeper *tk = &tk_core.timekeeper;
574         unsigned long flags;
575         int ret;
576
577         raw_spin_lock_irqsave(&timekeeper_lock, flags);
578         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
579         update_pvclock_gtod(tk, true);
580         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
581
582         return ret;
583 }
584 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
585
586 /**
587  * pvclock_gtod_unregister_notifier - unregister a pvclock
588  * timedata update listener
589  */
590 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
591 {
592         unsigned long flags;
593         int ret;
594
595         raw_spin_lock_irqsave(&timekeeper_lock, flags);
596         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
597         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
598
599         return ret;
600 }
601 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
602
603 /*
604  * tk_update_leap_state - helper to update the next_leap_ktime
605  */
606 static inline void tk_update_leap_state(struct timekeeper *tk)
607 {
608         tk->next_leap_ktime = ntp_get_next_leap();
609         if (tk->next_leap_ktime != KTIME_MAX)
610                 /* Convert to monotonic time */
611                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
612 }
613
614 /*
615  * Update the ktime_t based scalar nsec members of the timekeeper
616  */
617 static inline void tk_update_ktime_data(struct timekeeper *tk)
618 {
619         u64 seconds;
620         u32 nsec;
621
622         /*
623          * The xtime based monotonic readout is:
624          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
625          * The ktime based monotonic readout is:
626          *      nsec = base_mono + now();
627          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
628          */
629         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
630         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
631         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
632
633         /*
634          * The sum of the nanoseconds portions of xtime and
635          * wall_to_monotonic can be greater/equal one second. Take
636          * this into account before updating tk->ktime_sec.
637          */
638         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
639         if (nsec >= NSEC_PER_SEC)
640                 seconds++;
641         tk->ktime_sec = seconds;
642
643         /* Update the monotonic raw base */
644         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
645 }
646
647 /* must hold timekeeper_lock */
648 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
649 {
650         if (action & TK_CLEAR_NTP) {
651                 tk->ntp_error = 0;
652                 ntp_clear();
653         }
654
655         tk_update_leap_state(tk);
656         tk_update_ktime_data(tk);
657
658         update_vsyscall(tk);
659         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
660
661         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
662         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
663         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
664
665         if (action & TK_CLOCK_WAS_SET)
666                 tk->clock_was_set_seq++;
667         /*
668          * The mirroring of the data to the shadow-timekeeper needs
669          * to happen last here to ensure we don't over-write the
670          * timekeeper structure on the next update with stale data
671          */
672         if (action & TK_MIRROR)
673                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
674                        sizeof(tk_core.timekeeper));
675 }
676
677 /**
678  * timekeeping_forward_now - update clock to the current time
679  *
680  * Forward the current clock to update its state since the last call to
681  * update_wall_time(). This is useful before significant clock changes,
682  * as it avoids having to deal with this time offset explicitly.
683  */
684 static void timekeeping_forward_now(struct timekeeper *tk)
685 {
686         u64 cycle_now, delta;
687
688         cycle_now = tk_clock_read(&tk->tkr_mono);
689         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
690         tk->tkr_mono.cycle_last = cycle_now;
691         tk->tkr_raw.cycle_last  = cycle_now;
692
693         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
694
695         /* If arch requires, add in get_arch_timeoffset() */
696         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
697
698
699         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
700
701         /* If arch requires, add in get_arch_timeoffset() */
702         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
703
704         tk_normalize_xtime(tk);
705 }
706
707 /**
708  * __getnstimeofday64 - Returns the time of day in a timespec64.
709  * @ts:         pointer to the timespec to be set
710  *
711  * Updates the time of day in the timespec.
712  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
713  */
714 int __getnstimeofday64(struct timespec64 *ts)
715 {
716         struct timekeeper *tk = &tk_core.timekeeper;
717         unsigned long seq;
718         u64 nsecs;
719
720         do {
721                 seq = read_seqcount_begin(&tk_core.seq);
722
723                 ts->tv_sec = tk->xtime_sec;
724                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
725
726         } while (read_seqcount_retry(&tk_core.seq, seq));
727
728         ts->tv_nsec = 0;
729         timespec64_add_ns(ts, nsecs);
730
731         /*
732          * Do not bail out early, in case there were callers still using
733          * the value, even in the face of the WARN_ON.
734          */
735         if (unlikely(timekeeping_suspended))
736                 return -EAGAIN;
737         return 0;
738 }
739 EXPORT_SYMBOL(__getnstimeofday64);
740
741 /**
742  * getnstimeofday64 - Returns the time of day in a timespec64.
743  * @ts:         pointer to the timespec64 to be set
744  *
745  * Returns the time of day in a timespec64 (WARN if suspended).
746  */
747 void getnstimeofday64(struct timespec64 *ts)
748 {
749         WARN_ON(__getnstimeofday64(ts));
750 }
751 EXPORT_SYMBOL(getnstimeofday64);
752
753 ktime_t ktime_get(void)
754 {
755         struct timekeeper *tk = &tk_core.timekeeper;
756         unsigned int seq;
757         ktime_t base;
758         u64 nsecs;
759
760         WARN_ON(timekeeping_suspended);
761
762         do {
763                 seq = read_seqcount_begin(&tk_core.seq);
764                 base = tk->tkr_mono.base;
765                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
766
767         } while (read_seqcount_retry(&tk_core.seq, seq));
768
769         return ktime_add_ns(base, nsecs);
770 }
771 EXPORT_SYMBOL_GPL(ktime_get);
772
773 u32 ktime_get_resolution_ns(void)
774 {
775         struct timekeeper *tk = &tk_core.timekeeper;
776         unsigned int seq;
777         u32 nsecs;
778
779         WARN_ON(timekeeping_suspended);
780
781         do {
782                 seq = read_seqcount_begin(&tk_core.seq);
783                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
784         } while (read_seqcount_retry(&tk_core.seq, seq));
785
786         return nsecs;
787 }
788 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
789
790 static ktime_t *offsets[TK_OFFS_MAX] = {
791         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
792         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
793         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
794 };
795
796 ktime_t ktime_get_with_offset(enum tk_offsets offs)
797 {
798         struct timekeeper *tk = &tk_core.timekeeper;
799         unsigned int seq;
800         ktime_t base, *offset = offsets[offs];
801         u64 nsecs;
802
803         WARN_ON(timekeeping_suspended);
804
805         do {
806                 seq = read_seqcount_begin(&tk_core.seq);
807                 base = ktime_add(tk->tkr_mono.base, *offset);
808                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
809
810         } while (read_seqcount_retry(&tk_core.seq, seq));
811
812         return ktime_add_ns(base, nsecs);
813
814 }
815 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
816
817 /**
818  * ktime_mono_to_any() - convert mononotic time to any other time
819  * @tmono:      time to convert.
820  * @offs:       which offset to use
821  */
822 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
823 {
824         ktime_t *offset = offsets[offs];
825         unsigned long seq;
826         ktime_t tconv;
827
828         do {
829                 seq = read_seqcount_begin(&tk_core.seq);
830                 tconv = ktime_add(tmono, *offset);
831         } while (read_seqcount_retry(&tk_core.seq, seq));
832
833         return tconv;
834 }
835 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
836
837 /**
838  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
839  */
840 ktime_t ktime_get_raw(void)
841 {
842         struct timekeeper *tk = &tk_core.timekeeper;
843         unsigned int seq;
844         ktime_t base;
845         u64 nsecs;
846
847         do {
848                 seq = read_seqcount_begin(&tk_core.seq);
849                 base = tk->tkr_raw.base;
850                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
851
852         } while (read_seqcount_retry(&tk_core.seq, seq));
853
854         return ktime_add_ns(base, nsecs);
855 }
856 EXPORT_SYMBOL_GPL(ktime_get_raw);
857
858 /**
859  * ktime_get_ts64 - get the monotonic clock in timespec64 format
860  * @ts:         pointer to timespec variable
861  *
862  * The function calculates the monotonic clock from the realtime
863  * clock and the wall_to_monotonic offset and stores the result
864  * in normalized timespec64 format in the variable pointed to by @ts.
865  */
866 void ktime_get_ts64(struct timespec64 *ts)
867 {
868         struct timekeeper *tk = &tk_core.timekeeper;
869         struct timespec64 tomono;
870         unsigned int seq;
871         u64 nsec;
872
873         WARN_ON(timekeeping_suspended);
874
875         do {
876                 seq = read_seqcount_begin(&tk_core.seq);
877                 ts->tv_sec = tk->xtime_sec;
878                 nsec = timekeeping_get_ns(&tk->tkr_mono);
879                 tomono = tk->wall_to_monotonic;
880
881         } while (read_seqcount_retry(&tk_core.seq, seq));
882
883         ts->tv_sec += tomono.tv_sec;
884         ts->tv_nsec = 0;
885         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
886 }
887 EXPORT_SYMBOL_GPL(ktime_get_ts64);
888
889 /**
890  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
891  *
892  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
893  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
894  * works on both 32 and 64 bit systems. On 32 bit systems the readout
895  * covers ~136 years of uptime which should be enough to prevent
896  * premature wrap arounds.
897  */
898 time64_t ktime_get_seconds(void)
899 {
900         struct timekeeper *tk = &tk_core.timekeeper;
901
902         WARN_ON(timekeeping_suspended);
903         return tk->ktime_sec;
904 }
905 EXPORT_SYMBOL_GPL(ktime_get_seconds);
906
907 /**
908  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
909  *
910  * Returns the wall clock seconds since 1970. This replaces the
911  * get_seconds() interface which is not y2038 safe on 32bit systems.
912  *
913  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
914  * 32bit systems the access must be protected with the sequence
915  * counter to provide "atomic" access to the 64bit tk->xtime_sec
916  * value.
917  */
918 time64_t ktime_get_real_seconds(void)
919 {
920         struct timekeeper *tk = &tk_core.timekeeper;
921         time64_t seconds;
922         unsigned int seq;
923
924         if (IS_ENABLED(CONFIG_64BIT))
925                 return tk->xtime_sec;
926
927         do {
928                 seq = read_seqcount_begin(&tk_core.seq);
929                 seconds = tk->xtime_sec;
930
931         } while (read_seqcount_retry(&tk_core.seq, seq));
932
933         return seconds;
934 }
935 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
936
937 /**
938  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
939  * but without the sequence counter protect. This internal function
940  * is called just when timekeeping lock is already held.
941  */
942 time64_t __ktime_get_real_seconds(void)
943 {
944         struct timekeeper *tk = &tk_core.timekeeper;
945
946         return tk->xtime_sec;
947 }
948
949 /**
950  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
951  * @systime_snapshot:   pointer to struct receiving the system time snapshot
952  */
953 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
954 {
955         struct timekeeper *tk = &tk_core.timekeeper;
956         unsigned long seq;
957         ktime_t base_raw;
958         ktime_t base_real;
959         u64 nsec_raw;
960         u64 nsec_real;
961         u64 now;
962
963         WARN_ON_ONCE(timekeeping_suspended);
964
965         do {
966                 seq = read_seqcount_begin(&tk_core.seq);
967                 now = tk_clock_read(&tk->tkr_mono);
968                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
969                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
970                 base_real = ktime_add(tk->tkr_mono.base,
971                                       tk_core.timekeeper.offs_real);
972                 base_raw = tk->tkr_raw.base;
973                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
974                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
975         } while (read_seqcount_retry(&tk_core.seq, seq));
976
977         systime_snapshot->cycles = now;
978         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
979         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
980 }
981 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
982
983 /* Scale base by mult/div checking for overflow */
984 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
985 {
986         u64 tmp, rem;
987
988         tmp = div64_u64_rem(*base, div, &rem);
989
990         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
991             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
992                 return -EOVERFLOW;
993         tmp *= mult;
994         rem *= mult;
995
996         do_div(rem, div);
997         *base = tmp + rem;
998         return 0;
999 }
1000
1001 /**
1002  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1003  * @history:                    Snapshot representing start of history
1004  * @partial_history_cycles:     Cycle offset into history (fractional part)
1005  * @total_history_cycles:       Total history length in cycles
1006  * @discontinuity:              True indicates clock was set on history period
1007  * @ts:                         Cross timestamp that should be adjusted using
1008  *      partial/total ratio
1009  *
1010  * Helper function used by get_device_system_crosststamp() to correct the
1011  * crosstimestamp corresponding to the start of the current interval to the
1012  * system counter value (timestamp point) provided by the driver. The
1013  * total_history_* quantities are the total history starting at the provided
1014  * reference point and ending at the start of the current interval. The cycle
1015  * count between the driver timestamp point and the start of the current
1016  * interval is partial_history_cycles.
1017  */
1018 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1019                                          u64 partial_history_cycles,
1020                                          u64 total_history_cycles,
1021                                          bool discontinuity,
1022                                          struct system_device_crosststamp *ts)
1023 {
1024         struct timekeeper *tk = &tk_core.timekeeper;
1025         u64 corr_raw, corr_real;
1026         bool interp_forward;
1027         int ret;
1028
1029         if (total_history_cycles == 0 || partial_history_cycles == 0)
1030                 return 0;
1031
1032         /* Interpolate shortest distance from beginning or end of history */
1033         interp_forward = partial_history_cycles > total_history_cycles / 2;
1034         partial_history_cycles = interp_forward ?
1035                 total_history_cycles - partial_history_cycles :
1036                 partial_history_cycles;
1037
1038         /*
1039          * Scale the monotonic raw time delta by:
1040          *      partial_history_cycles / total_history_cycles
1041          */
1042         corr_raw = (u64)ktime_to_ns(
1043                 ktime_sub(ts->sys_monoraw, history->raw));
1044         ret = scale64_check_overflow(partial_history_cycles,
1045                                      total_history_cycles, &corr_raw);
1046         if (ret)
1047                 return ret;
1048
1049         /*
1050          * If there is a discontinuity in the history, scale monotonic raw
1051          *      correction by:
1052          *      mult(real)/mult(raw) yielding the realtime correction
1053          * Otherwise, calculate the realtime correction similar to monotonic
1054          *      raw calculation
1055          */
1056         if (discontinuity) {
1057                 corr_real = mul_u64_u32_div
1058                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1059         } else {
1060                 corr_real = (u64)ktime_to_ns(
1061                         ktime_sub(ts->sys_realtime, history->real));
1062                 ret = scale64_check_overflow(partial_history_cycles,
1063                                              total_history_cycles, &corr_real);
1064                 if (ret)
1065                         return ret;
1066         }
1067
1068         /* Fixup monotonic raw and real time time values */
1069         if (interp_forward) {
1070                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1071                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1072         } else {
1073                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1074                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1075         }
1076
1077         return 0;
1078 }
1079
1080 /*
1081  * cycle_between - true if test occurs chronologically between before and after
1082  */
1083 static bool cycle_between(u64 before, u64 test, u64 after)
1084 {
1085         if (test > before && test < after)
1086                 return true;
1087         if (test < before && before > after)
1088                 return true;
1089         return false;
1090 }
1091
1092 /**
1093  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1094  * @get_time_fn:        Callback to get simultaneous device time and
1095  *      system counter from the device driver
1096  * @ctx:                Context passed to get_time_fn()
1097  * @history_begin:      Historical reference point used to interpolate system
1098  *      time when counter provided by the driver is before the current interval
1099  * @xtstamp:            Receives simultaneously captured system and device time
1100  *
1101  * Reads a timestamp from a device and correlates it to system time
1102  */
1103 int get_device_system_crosststamp(int (*get_time_fn)
1104                                   (ktime_t *device_time,
1105                                    struct system_counterval_t *sys_counterval,
1106                                    void *ctx),
1107                                   void *ctx,
1108                                   struct system_time_snapshot *history_begin,
1109                                   struct system_device_crosststamp *xtstamp)
1110 {
1111         struct system_counterval_t system_counterval;
1112         struct timekeeper *tk = &tk_core.timekeeper;
1113         u64 cycles, now, interval_start;
1114         unsigned int clock_was_set_seq = 0;
1115         ktime_t base_real, base_raw;
1116         u64 nsec_real, nsec_raw;
1117         u8 cs_was_changed_seq;
1118         unsigned long seq;
1119         bool do_interp;
1120         int ret;
1121
1122         do {
1123                 seq = read_seqcount_begin(&tk_core.seq);
1124                 /*
1125                  * Try to synchronously capture device time and a system
1126                  * counter value calling back into the device driver
1127                  */
1128                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1129                 if (ret)
1130                         return ret;
1131
1132                 /*
1133                  * Verify that the clocksource associated with the captured
1134                  * system counter value is the same as the currently installed
1135                  * timekeeper clocksource
1136                  */
1137                 if (tk->tkr_mono.clock != system_counterval.cs)
1138                         return -ENODEV;
1139                 cycles = system_counterval.cycles;
1140
1141                 /*
1142                  * Check whether the system counter value provided by the
1143                  * device driver is on the current timekeeping interval.
1144                  */
1145                 now = tk_clock_read(&tk->tkr_mono);
1146                 interval_start = tk->tkr_mono.cycle_last;
1147                 if (!cycle_between(interval_start, cycles, now)) {
1148                         clock_was_set_seq = tk->clock_was_set_seq;
1149                         cs_was_changed_seq = tk->cs_was_changed_seq;
1150                         cycles = interval_start;
1151                         do_interp = true;
1152                 } else {
1153                         do_interp = false;
1154                 }
1155
1156                 base_real = ktime_add(tk->tkr_mono.base,
1157                                       tk_core.timekeeper.offs_real);
1158                 base_raw = tk->tkr_raw.base;
1159
1160                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1161                                                      system_counterval.cycles);
1162                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1163                                                     system_counterval.cycles);
1164         } while (read_seqcount_retry(&tk_core.seq, seq));
1165
1166         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1167         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1168
1169         /*
1170          * Interpolate if necessary, adjusting back from the start of the
1171          * current interval
1172          */
1173         if (do_interp) {
1174                 u64 partial_history_cycles, total_history_cycles;
1175                 bool discontinuity;
1176
1177                 /*
1178                  * Check that the counter value occurs after the provided
1179                  * history reference and that the history doesn't cross a
1180                  * clocksource change
1181                  */
1182                 if (!history_begin ||
1183                     !cycle_between(history_begin->cycles,
1184                                    system_counterval.cycles, cycles) ||
1185                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1186                         return -EINVAL;
1187                 partial_history_cycles = cycles - system_counterval.cycles;
1188                 total_history_cycles = cycles - history_begin->cycles;
1189                 discontinuity =
1190                         history_begin->clock_was_set_seq != clock_was_set_seq;
1191
1192                 ret = adjust_historical_crosststamp(history_begin,
1193                                                     partial_history_cycles,
1194                                                     total_history_cycles,
1195                                                     discontinuity, xtstamp);
1196                 if (ret)
1197                         return ret;
1198         }
1199
1200         return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1203
1204 /**
1205  * do_gettimeofday - Returns the time of day in a timeval
1206  * @tv:         pointer to the timeval to be set
1207  *
1208  * NOTE: Users should be converted to using getnstimeofday()
1209  */
1210 void do_gettimeofday(struct timeval *tv)
1211 {
1212         struct timespec64 now;
1213
1214         getnstimeofday64(&now);
1215         tv->tv_sec = now.tv_sec;
1216         tv->tv_usec = now.tv_nsec/1000;
1217 }
1218 EXPORT_SYMBOL(do_gettimeofday);
1219
1220 /**
1221  * do_settimeofday64 - Sets the time of day.
1222  * @ts:     pointer to the timespec64 variable containing the new time
1223  *
1224  * Sets the time of day to the new time and update NTP and notify hrtimers
1225  */
1226 int do_settimeofday64(const struct timespec64 *ts)
1227 {
1228         struct timekeeper *tk = &tk_core.timekeeper;
1229         struct timespec64 ts_delta, xt;
1230         unsigned long flags;
1231         int ret = 0;
1232
1233         if (!timespec64_valid_strict(ts))
1234                 return -EINVAL;
1235
1236         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1237         write_seqcount_begin(&tk_core.seq);
1238
1239         timekeeping_forward_now(tk);
1240
1241         xt = tk_xtime(tk);
1242         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1243         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1244
1245         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1246                 ret = -EINVAL;
1247                 goto out;
1248         }
1249
1250         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1251
1252         tk_set_xtime(tk, ts);
1253 out:
1254         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1255
1256         write_seqcount_end(&tk_core.seq);
1257         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1258
1259         /* signal hrtimers about time change */
1260         clock_was_set();
1261
1262         return ret;
1263 }
1264 EXPORT_SYMBOL(do_settimeofday64);
1265
1266 /**
1267  * timekeeping_inject_offset - Adds or subtracts from the current time.
1268  * @tv:         pointer to the timespec variable containing the offset
1269  *
1270  * Adds or subtracts an offset value from the current time.
1271  */
1272 static int timekeeping_inject_offset(struct timespec64 *ts)
1273 {
1274         struct timekeeper *tk = &tk_core.timekeeper;
1275         unsigned long flags;
1276         struct timespec64 tmp;
1277         int ret = 0;
1278
1279         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1280                 return -EINVAL;
1281
1282         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283         write_seqcount_begin(&tk_core.seq);
1284
1285         timekeeping_forward_now(tk);
1286
1287         /* Make sure the proposed value is valid */
1288         tmp = timespec64_add(tk_xtime(tk), *ts);
1289         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1290             !timespec64_valid_strict(&tmp)) {
1291                 ret = -EINVAL;
1292                 goto error;
1293         }
1294
1295         tk_xtime_add(tk, ts);
1296         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1297
1298 error: /* even if we error out, we forwarded the time, so call update */
1299         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1300
1301         write_seqcount_end(&tk_core.seq);
1302         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1303
1304         /* signal hrtimers about time change */
1305         clock_was_set();
1306
1307         return ret;
1308 }
1309
1310 /*
1311  * Indicates if there is an offset between the system clock and the hardware
1312  * clock/persistent clock/rtc.
1313  */
1314 int persistent_clock_is_local;
1315
1316 /*
1317  * Adjust the time obtained from the CMOS to be UTC time instead of
1318  * local time.
1319  *
1320  * This is ugly, but preferable to the alternatives.  Otherwise we
1321  * would either need to write a program to do it in /etc/rc (and risk
1322  * confusion if the program gets run more than once; it would also be
1323  * hard to make the program warp the clock precisely n hours)  or
1324  * compile in the timezone information into the kernel.  Bad, bad....
1325  *
1326  *                                              - TYT, 1992-01-01
1327  *
1328  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1329  * as real UNIX machines always do it. This avoids all headaches about
1330  * daylight saving times and warping kernel clocks.
1331  */
1332 void timekeeping_warp_clock(void)
1333 {
1334         if (sys_tz.tz_minuteswest != 0) {
1335                 struct timespec64 adjust;
1336
1337                 persistent_clock_is_local = 1;
1338                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1339                 adjust.tv_nsec = 0;
1340                 timekeeping_inject_offset(&adjust);
1341         }
1342 }
1343
1344 /**
1345  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1346  *
1347  */
1348 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1349 {
1350         tk->tai_offset = tai_offset;
1351         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1352 }
1353
1354 /**
1355  * change_clocksource - Swaps clocksources if a new one is available
1356  *
1357  * Accumulates current time interval and initializes new clocksource
1358  */
1359 static int change_clocksource(void *data)
1360 {
1361         struct timekeeper *tk = &tk_core.timekeeper;
1362         struct clocksource *new, *old;
1363         unsigned long flags;
1364
1365         new = (struct clocksource *) data;
1366
1367         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1368         write_seqcount_begin(&tk_core.seq);
1369
1370         timekeeping_forward_now(tk);
1371         /*
1372          * If the cs is in module, get a module reference. Succeeds
1373          * for built-in code (owner == NULL) as well.
1374          */
1375         if (try_module_get(new->owner)) {
1376                 if (!new->enable || new->enable(new) == 0) {
1377                         old = tk->tkr_mono.clock;
1378                         tk_setup_internals(tk, new);
1379                         if (old->disable)
1380                                 old->disable(old);
1381                         module_put(old->owner);
1382                 } else {
1383                         module_put(new->owner);
1384                 }
1385         }
1386         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1387
1388         write_seqcount_end(&tk_core.seq);
1389         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1390
1391         return 0;
1392 }
1393
1394 /**
1395  * timekeeping_notify - Install a new clock source
1396  * @clock:              pointer to the clock source
1397  *
1398  * This function is called from clocksource.c after a new, better clock
1399  * source has been registered. The caller holds the clocksource_mutex.
1400  */
1401 int timekeeping_notify(struct clocksource *clock)
1402 {
1403         struct timekeeper *tk = &tk_core.timekeeper;
1404
1405         if (tk->tkr_mono.clock == clock)
1406                 return 0;
1407         stop_machine(change_clocksource, clock, NULL);
1408         tick_clock_notify();
1409         return tk->tkr_mono.clock == clock ? 0 : -1;
1410 }
1411
1412 /**
1413  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1414  * @ts:         pointer to the timespec64 to be set
1415  *
1416  * Returns the raw monotonic time (completely un-modified by ntp)
1417  */
1418 void getrawmonotonic64(struct timespec64 *ts)
1419 {
1420         struct timekeeper *tk = &tk_core.timekeeper;
1421         unsigned long seq;
1422         u64 nsecs;
1423
1424         do {
1425                 seq = read_seqcount_begin(&tk_core.seq);
1426                 ts->tv_sec = tk->raw_sec;
1427                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1428
1429         } while (read_seqcount_retry(&tk_core.seq, seq));
1430
1431         ts->tv_nsec = 0;
1432         timespec64_add_ns(ts, nsecs);
1433 }
1434 EXPORT_SYMBOL(getrawmonotonic64);
1435
1436
1437 /**
1438  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1439  */
1440 int timekeeping_valid_for_hres(void)
1441 {
1442         struct timekeeper *tk = &tk_core.timekeeper;
1443         unsigned long seq;
1444         int ret;
1445
1446         do {
1447                 seq = read_seqcount_begin(&tk_core.seq);
1448
1449                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1450
1451         } while (read_seqcount_retry(&tk_core.seq, seq));
1452
1453         return ret;
1454 }
1455
1456 /**
1457  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1458  */
1459 u64 timekeeping_max_deferment(void)
1460 {
1461         struct timekeeper *tk = &tk_core.timekeeper;
1462         unsigned long seq;
1463         u64 ret;
1464
1465         do {
1466                 seq = read_seqcount_begin(&tk_core.seq);
1467
1468                 ret = tk->tkr_mono.clock->max_idle_ns;
1469
1470         } while (read_seqcount_retry(&tk_core.seq, seq));
1471
1472         return ret;
1473 }
1474
1475 /**
1476  * read_persistent_clock -  Return time from the persistent clock.
1477  *
1478  * Weak dummy function for arches that do not yet support it.
1479  * Reads the time from the battery backed persistent clock.
1480  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1481  *
1482  *  XXX - Do be sure to remove it once all arches implement it.
1483  */
1484 void __weak read_persistent_clock(struct timespec *ts)
1485 {
1486         ts->tv_sec = 0;
1487         ts->tv_nsec = 0;
1488 }
1489
1490 void __weak read_persistent_clock64(struct timespec64 *ts64)
1491 {
1492         struct timespec ts;
1493
1494         read_persistent_clock(&ts);
1495         *ts64 = timespec_to_timespec64(ts);
1496 }
1497
1498 /**
1499  * read_boot_clock64 -  Return time of the system start.
1500  *
1501  * Weak dummy function for arches that do not yet support it.
1502  * Function to read the exact time the system has been started.
1503  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1504  *
1505  *  XXX - Do be sure to remove it once all arches implement it.
1506  */
1507 void __weak read_boot_clock64(struct timespec64 *ts)
1508 {
1509         ts->tv_sec = 0;
1510         ts->tv_nsec = 0;
1511 }
1512
1513 /* Flag for if timekeeping_resume() has injected sleeptime */
1514 static bool sleeptime_injected;
1515
1516 /* Flag for if there is a persistent clock on this platform */
1517 static bool persistent_clock_exists;
1518
1519 /*
1520  * timekeeping_init - Initializes the clocksource and common timekeeping values
1521  */
1522 void __init timekeeping_init(void)
1523 {
1524         struct timekeeper *tk = &tk_core.timekeeper;
1525         struct clocksource *clock;
1526         unsigned long flags;
1527         struct timespec64 now, boot, tmp;
1528
1529         read_persistent_clock64(&now);
1530         if (!timespec64_valid_strict(&now)) {
1531                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1532                         "         Check your CMOS/BIOS settings.\n");
1533                 now.tv_sec = 0;
1534                 now.tv_nsec = 0;
1535         } else if (now.tv_sec || now.tv_nsec)
1536                 persistent_clock_exists = true;
1537
1538         read_boot_clock64(&boot);
1539         if (!timespec64_valid_strict(&boot)) {
1540                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1541                         "         Check your CMOS/BIOS settings.\n");
1542                 boot.tv_sec = 0;
1543                 boot.tv_nsec = 0;
1544         }
1545
1546         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1547         write_seqcount_begin(&tk_core.seq);
1548         ntp_init();
1549
1550         clock = clocksource_default_clock();
1551         if (clock->enable)
1552                 clock->enable(clock);
1553         tk_setup_internals(tk, clock);
1554
1555         tk_set_xtime(tk, &now);
1556         tk->raw_sec = 0;
1557         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1558                 boot = tk_xtime(tk);
1559
1560         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1561         tk_set_wall_to_mono(tk, tmp);
1562
1563         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1564
1565         write_seqcount_end(&tk_core.seq);
1566         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1567 }
1568
1569 /* time in seconds when suspend began for persistent clock */
1570 static struct timespec64 timekeeping_suspend_time;
1571
1572 /**
1573  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1574  * @delta: pointer to a timespec delta value
1575  *
1576  * Takes a timespec offset measuring a suspend interval and properly
1577  * adds the sleep offset to the timekeeping variables.
1578  */
1579 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1580                                            struct timespec64 *delta)
1581 {
1582         if (!timespec64_valid_strict(delta)) {
1583                 printk_deferred(KERN_WARNING
1584                                 "__timekeeping_inject_sleeptime: Invalid "
1585                                 "sleep delta value!\n");
1586                 return;
1587         }
1588         tk_xtime_add(tk, delta);
1589         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1590         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1591         tk_debug_account_sleep_time(delta);
1592 }
1593
1594 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1595 /**
1596  * We have three kinds of time sources to use for sleep time
1597  * injection, the preference order is:
1598  * 1) non-stop clocksource
1599  * 2) persistent clock (ie: RTC accessible when irqs are off)
1600  * 3) RTC
1601  *
1602  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1603  * If system has neither 1) nor 2), 3) will be used finally.
1604  *
1605  *
1606  * If timekeeping has injected sleeptime via either 1) or 2),
1607  * 3) becomes needless, so in this case we don't need to call
1608  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1609  * means.
1610  */
1611 bool timekeeping_rtc_skipresume(void)
1612 {
1613         return sleeptime_injected;
1614 }
1615
1616 /**
1617  * 1) can be determined whether to use or not only when doing
1618  * timekeeping_resume() which is invoked after rtc_suspend(),
1619  * so we can't skip rtc_suspend() surely if system has 1).
1620  *
1621  * But if system has 2), 2) will definitely be used, so in this
1622  * case we don't need to call rtc_suspend(), and this is what
1623  * timekeeping_rtc_skipsuspend() means.
1624  */
1625 bool timekeeping_rtc_skipsuspend(void)
1626 {
1627         return persistent_clock_exists;
1628 }
1629
1630 /**
1631  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1632  * @delta: pointer to a timespec64 delta value
1633  *
1634  * This hook is for architectures that cannot support read_persistent_clock64
1635  * because their RTC/persistent clock is only accessible when irqs are enabled.
1636  * and also don't have an effective nonstop clocksource.
1637  *
1638  * This function should only be called by rtc_resume(), and allows
1639  * a suspend offset to be injected into the timekeeping values.
1640  */
1641 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1642 {
1643         struct timekeeper *tk = &tk_core.timekeeper;
1644         unsigned long flags;
1645
1646         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1647         write_seqcount_begin(&tk_core.seq);
1648
1649         timekeeping_forward_now(tk);
1650
1651         __timekeeping_inject_sleeptime(tk, delta);
1652
1653         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1654
1655         write_seqcount_end(&tk_core.seq);
1656         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1657
1658         /* signal hrtimers about time change */
1659         clock_was_set();
1660 }
1661 #endif
1662
1663 /**
1664  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1665  */
1666 void timekeeping_resume(void)
1667 {
1668         struct timekeeper *tk = &tk_core.timekeeper;
1669         struct clocksource *clock = tk->tkr_mono.clock;
1670         unsigned long flags;
1671         struct timespec64 ts_new, ts_delta;
1672         u64 cycle_now;
1673
1674         sleeptime_injected = false;
1675         read_persistent_clock64(&ts_new);
1676
1677         clockevents_resume();
1678         clocksource_resume();
1679
1680         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1681         write_seqcount_begin(&tk_core.seq);
1682
1683         /*
1684          * After system resumes, we need to calculate the suspended time and
1685          * compensate it for the OS time. There are 3 sources that could be
1686          * used: Nonstop clocksource during suspend, persistent clock and rtc
1687          * device.
1688          *
1689          * One specific platform may have 1 or 2 or all of them, and the
1690          * preference will be:
1691          *      suspend-nonstop clocksource -> persistent clock -> rtc
1692          * The less preferred source will only be tried if there is no better
1693          * usable source. The rtc part is handled separately in rtc core code.
1694          */
1695         cycle_now = tk_clock_read(&tk->tkr_mono);
1696         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1697                 cycle_now > tk->tkr_mono.cycle_last) {
1698                 u64 nsec, cyc_delta;
1699
1700                 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1701                                               tk->tkr_mono.mask);
1702                 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1703                 ts_delta = ns_to_timespec64(nsec);
1704                 sleeptime_injected = true;
1705         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1706                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1707                 sleeptime_injected = true;
1708         }
1709
1710         if (sleeptime_injected)
1711                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1712
1713         /* Re-base the last cycle value */
1714         tk->tkr_mono.cycle_last = cycle_now;
1715         tk->tkr_raw.cycle_last  = cycle_now;
1716
1717         tk->ntp_error = 0;
1718         timekeeping_suspended = 0;
1719         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1720         write_seqcount_end(&tk_core.seq);
1721         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1722
1723         touch_softlockup_watchdog();
1724
1725         tick_resume();
1726         hrtimers_resume();
1727 }
1728
1729 int timekeeping_suspend(void)
1730 {
1731         struct timekeeper *tk = &tk_core.timekeeper;
1732         unsigned long flags;
1733         struct timespec64               delta, delta_delta;
1734         static struct timespec64        old_delta;
1735
1736         read_persistent_clock64(&timekeeping_suspend_time);
1737
1738         /*
1739          * On some systems the persistent_clock can not be detected at
1740          * timekeeping_init by its return value, so if we see a valid
1741          * value returned, update the persistent_clock_exists flag.
1742          */
1743         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1744                 persistent_clock_exists = true;
1745
1746         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1747         write_seqcount_begin(&tk_core.seq);
1748         timekeeping_forward_now(tk);
1749         timekeeping_suspended = 1;
1750
1751         if (persistent_clock_exists) {
1752                 /*
1753                  * To avoid drift caused by repeated suspend/resumes,
1754                  * which each can add ~1 second drift error,
1755                  * try to compensate so the difference in system time
1756                  * and persistent_clock time stays close to constant.
1757                  */
1758                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1759                 delta_delta = timespec64_sub(delta, old_delta);
1760                 if (abs(delta_delta.tv_sec) >= 2) {
1761                         /*
1762                          * if delta_delta is too large, assume time correction
1763                          * has occurred and set old_delta to the current delta.
1764                          */
1765                         old_delta = delta;
1766                 } else {
1767                         /* Otherwise try to adjust old_system to compensate */
1768                         timekeeping_suspend_time =
1769                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1770                 }
1771         }
1772
1773         timekeeping_update(tk, TK_MIRROR);
1774         halt_fast_timekeeper(tk);
1775         write_seqcount_end(&tk_core.seq);
1776         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1777
1778         tick_suspend();
1779         clocksource_suspend();
1780         clockevents_suspend();
1781
1782         return 0;
1783 }
1784
1785 /* sysfs resume/suspend bits for timekeeping */
1786 static struct syscore_ops timekeeping_syscore_ops = {
1787         .resume         = timekeeping_resume,
1788         .suspend        = timekeeping_suspend,
1789 };
1790
1791 static int __init timekeeping_init_ops(void)
1792 {
1793         register_syscore_ops(&timekeeping_syscore_ops);
1794         return 0;
1795 }
1796 device_initcall(timekeeping_init_ops);
1797
1798 /*
1799  * Apply a multiplier adjustment to the timekeeper
1800  */
1801 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1802                                                          s64 offset,
1803                                                          s32 mult_adj)
1804 {
1805         s64 interval = tk->cycle_interval;
1806
1807         if (mult_adj == 0) {
1808                 return;
1809         } else if (mult_adj == -1) {
1810                 interval = -interval;
1811                 offset = -offset;
1812         } else if (mult_adj != 1) {
1813                 interval *= mult_adj;
1814                 offset *= mult_adj;
1815         }
1816
1817         /*
1818          * So the following can be confusing.
1819          *
1820          * To keep things simple, lets assume mult_adj == 1 for now.
1821          *
1822          * When mult_adj != 1, remember that the interval and offset values
1823          * have been appropriately scaled so the math is the same.
1824          *
1825          * The basic idea here is that we're increasing the multiplier
1826          * by one, this causes the xtime_interval to be incremented by
1827          * one cycle_interval. This is because:
1828          *      xtime_interval = cycle_interval * mult
1829          * So if mult is being incremented by one:
1830          *      xtime_interval = cycle_interval * (mult + 1)
1831          * Its the same as:
1832          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1833          * Which can be shortened to:
1834          *      xtime_interval += cycle_interval
1835          *
1836          * So offset stores the non-accumulated cycles. Thus the current
1837          * time (in shifted nanoseconds) is:
1838          *      now = (offset * adj) + xtime_nsec
1839          * Now, even though we're adjusting the clock frequency, we have
1840          * to keep time consistent. In other words, we can't jump back
1841          * in time, and we also want to avoid jumping forward in time.
1842          *
1843          * So given the same offset value, we need the time to be the same
1844          * both before and after the freq adjustment.
1845          *      now = (offset * adj_1) + xtime_nsec_1
1846          *      now = (offset * adj_2) + xtime_nsec_2
1847          * So:
1848          *      (offset * adj_1) + xtime_nsec_1 =
1849          *              (offset * adj_2) + xtime_nsec_2
1850          * And we know:
1851          *      adj_2 = adj_1 + 1
1852          * So:
1853          *      (offset * adj_1) + xtime_nsec_1 =
1854          *              (offset * (adj_1+1)) + xtime_nsec_2
1855          *      (offset * adj_1) + xtime_nsec_1 =
1856          *              (offset * adj_1) + offset + xtime_nsec_2
1857          * Canceling the sides:
1858          *      xtime_nsec_1 = offset + xtime_nsec_2
1859          * Which gives us:
1860          *      xtime_nsec_2 = xtime_nsec_1 - offset
1861          * Which simplfies to:
1862          *      xtime_nsec -= offset
1863          */
1864         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1865                 /* NTP adjustment caused clocksource mult overflow */
1866                 WARN_ON_ONCE(1);
1867                 return;
1868         }
1869
1870         tk->tkr_mono.mult += mult_adj;
1871         tk->xtime_interval += interval;
1872         tk->tkr_mono.xtime_nsec -= offset;
1873 }
1874
1875 /*
1876  * Adjust the timekeeper's multiplier to the correct frequency
1877  * and also to reduce the accumulated error value.
1878  */
1879 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1880 {
1881         u32 mult;
1882
1883         /*
1884          * Determine the multiplier from the current NTP tick length.
1885          * Avoid expensive division when the tick length doesn't change.
1886          */
1887         if (likely(tk->ntp_tick == ntp_tick_length())) {
1888                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1889         } else {
1890                 tk->ntp_tick = ntp_tick_length();
1891                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1892                                  tk->xtime_remainder, tk->cycle_interval);
1893         }
1894
1895         /*
1896          * If the clock is behind the NTP time, increase the multiplier by 1
1897          * to catch up with it. If it's ahead and there was a remainder in the
1898          * tick division, the clock will slow down. Otherwise it will stay
1899          * ahead until the tick length changes to a non-divisible value.
1900          */
1901         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1902         mult += tk->ntp_err_mult;
1903
1904         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1905
1906         if (unlikely(tk->tkr_mono.clock->maxadj &&
1907                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1908                         > tk->tkr_mono.clock->maxadj))) {
1909                 printk_once(KERN_WARNING
1910                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1911                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1912                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1913         }
1914
1915         /*
1916          * It may be possible that when we entered this function, xtime_nsec
1917          * was very small.  Further, if we're slightly speeding the clocksource
1918          * in the code above, its possible the required corrective factor to
1919          * xtime_nsec could cause it to underflow.
1920          *
1921          * Now, since we have already accumulated the second and the NTP
1922          * subsystem has been notified via second_overflow(), we need to skip
1923          * the next update.
1924          */
1925         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1926                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1927                                                         tk->tkr_mono.shift;
1928                 tk->xtime_sec--;
1929                 tk->skip_second_overflow = 1;
1930         }
1931 }
1932
1933 /**
1934  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1935  *
1936  * Helper function that accumulates the nsecs greater than a second
1937  * from the xtime_nsec field to the xtime_secs field.
1938  * It also calls into the NTP code to handle leapsecond processing.
1939  *
1940  */
1941 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1942 {
1943         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1944         unsigned int clock_set = 0;
1945
1946         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1947                 int leap;
1948
1949                 tk->tkr_mono.xtime_nsec -= nsecps;
1950                 tk->xtime_sec++;
1951
1952                 /*
1953                  * Skip NTP update if this second was accumulated before,
1954                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1955                  */
1956                 if (unlikely(tk->skip_second_overflow)) {
1957                         tk->skip_second_overflow = 0;
1958                         continue;
1959                 }
1960
1961                 /* Figure out if its a leap sec and apply if needed */
1962                 leap = second_overflow(tk->xtime_sec);
1963                 if (unlikely(leap)) {
1964                         struct timespec64 ts;
1965
1966                         tk->xtime_sec += leap;
1967
1968                         ts.tv_sec = leap;
1969                         ts.tv_nsec = 0;
1970                         tk_set_wall_to_mono(tk,
1971                                 timespec64_sub(tk->wall_to_monotonic, ts));
1972
1973                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1974
1975                         clock_set = TK_CLOCK_WAS_SET;
1976                 }
1977         }
1978         return clock_set;
1979 }
1980
1981 /**
1982  * logarithmic_accumulation - shifted accumulation of cycles
1983  *
1984  * This functions accumulates a shifted interval of cycles into
1985  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1986  * loop.
1987  *
1988  * Returns the unconsumed cycles.
1989  */
1990 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1991                                     u32 shift, unsigned int *clock_set)
1992 {
1993         u64 interval = tk->cycle_interval << shift;
1994         u64 snsec_per_sec;
1995
1996         /* If the offset is smaller than a shifted interval, do nothing */
1997         if (offset < interval)
1998                 return offset;
1999
2000         /* Accumulate one shifted interval */
2001         offset -= interval;
2002         tk->tkr_mono.cycle_last += interval;
2003         tk->tkr_raw.cycle_last  += interval;
2004
2005         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2006         *clock_set |= accumulate_nsecs_to_secs(tk);
2007
2008         /* Accumulate raw time */
2009         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2010         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2011         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2012                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2013                 tk->raw_sec++;
2014         }
2015
2016         /* Accumulate error between NTP and clock interval */
2017         tk->ntp_error += tk->ntp_tick << shift;
2018         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2019                                                 (tk->ntp_error_shift + shift);
2020
2021         return offset;
2022 }
2023
2024 /**
2025  * update_wall_time - Uses the current clocksource to increment the wall time
2026  *
2027  */
2028 void update_wall_time(void)
2029 {
2030         struct timekeeper *real_tk = &tk_core.timekeeper;
2031         struct timekeeper *tk = &shadow_timekeeper;
2032         u64 offset;
2033         int shift = 0, maxshift;
2034         unsigned int clock_set = 0;
2035         unsigned long flags;
2036
2037         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2038
2039         /* Make sure we're fully resumed: */
2040         if (unlikely(timekeeping_suspended))
2041                 goto out;
2042
2043 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2044         offset = real_tk->cycle_interval;
2045 #else
2046         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2047                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2048 #endif
2049
2050         /* Check if there's really nothing to do */
2051         if (offset < real_tk->cycle_interval)
2052                 goto out;
2053
2054         /* Do some additional sanity checking */
2055         timekeeping_check_update(tk, offset);
2056
2057         /*
2058          * With NO_HZ we may have to accumulate many cycle_intervals
2059          * (think "ticks") worth of time at once. To do this efficiently,
2060          * we calculate the largest doubling multiple of cycle_intervals
2061          * that is smaller than the offset.  We then accumulate that
2062          * chunk in one go, and then try to consume the next smaller
2063          * doubled multiple.
2064          */
2065         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2066         shift = max(0, shift);
2067         /* Bound shift to one less than what overflows tick_length */
2068         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2069         shift = min(shift, maxshift);
2070         while (offset >= tk->cycle_interval) {
2071                 offset = logarithmic_accumulation(tk, offset, shift,
2072                                                         &clock_set);
2073                 if (offset < tk->cycle_interval<<shift)
2074                         shift--;
2075         }
2076
2077         /* Adjust the multiplier to correct NTP error */
2078         timekeeping_adjust(tk, offset);
2079
2080         /*
2081          * Finally, make sure that after the rounding
2082          * xtime_nsec isn't larger than NSEC_PER_SEC
2083          */
2084         clock_set |= accumulate_nsecs_to_secs(tk);
2085
2086         write_seqcount_begin(&tk_core.seq);
2087         /*
2088          * Update the real timekeeper.
2089          *
2090          * We could avoid this memcpy by switching pointers, but that
2091          * requires changes to all other timekeeper usage sites as
2092          * well, i.e. move the timekeeper pointer getter into the
2093          * spinlocked/seqcount protected sections. And we trade this
2094          * memcpy under the tk_core.seq against one before we start
2095          * updating.
2096          */
2097         timekeeping_update(tk, clock_set);
2098         memcpy(real_tk, tk, sizeof(*tk));
2099         /* The memcpy must come last. Do not put anything here! */
2100         write_seqcount_end(&tk_core.seq);
2101 out:
2102         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2103         if (clock_set)
2104                 /* Have to call _delayed version, since in irq context*/
2105                 clock_was_set_delayed();
2106 }
2107
2108 /**
2109  * getboottime64 - Return the real time of system boot.
2110  * @ts:         pointer to the timespec64 to be set
2111  *
2112  * Returns the wall-time of boot in a timespec64.
2113  *
2114  * This is based on the wall_to_monotonic offset and the total suspend
2115  * time. Calls to settimeofday will affect the value returned (which
2116  * basically means that however wrong your real time clock is at boot time,
2117  * you get the right time here).
2118  */
2119 void getboottime64(struct timespec64 *ts)
2120 {
2121         struct timekeeper *tk = &tk_core.timekeeper;
2122         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2123
2124         *ts = ktime_to_timespec64(t);
2125 }
2126 EXPORT_SYMBOL_GPL(getboottime64);
2127
2128 unsigned long get_seconds(void)
2129 {
2130         struct timekeeper *tk = &tk_core.timekeeper;
2131
2132         return tk->xtime_sec;
2133 }
2134 EXPORT_SYMBOL(get_seconds);
2135
2136 struct timespec64 current_kernel_time64(void)
2137 {
2138         struct timekeeper *tk = &tk_core.timekeeper;
2139         struct timespec64 now;
2140         unsigned long seq;
2141
2142         do {
2143                 seq = read_seqcount_begin(&tk_core.seq);
2144
2145                 now = tk_xtime(tk);
2146         } while (read_seqcount_retry(&tk_core.seq, seq));
2147
2148         return now;
2149 }
2150 EXPORT_SYMBOL(current_kernel_time64);
2151
2152 struct timespec64 get_monotonic_coarse64(void)
2153 {
2154         struct timekeeper *tk = &tk_core.timekeeper;
2155         struct timespec64 now, mono;
2156         unsigned long seq;
2157
2158         do {
2159                 seq = read_seqcount_begin(&tk_core.seq);
2160
2161                 now = tk_xtime(tk);
2162                 mono = tk->wall_to_monotonic;
2163         } while (read_seqcount_retry(&tk_core.seq, seq));
2164
2165         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2166                                 now.tv_nsec + mono.tv_nsec);
2167
2168         return now;
2169 }
2170 EXPORT_SYMBOL(get_monotonic_coarse64);
2171
2172 /*
2173  * Must hold jiffies_lock
2174  */
2175 void do_timer(unsigned long ticks)
2176 {
2177         jiffies_64 += ticks;
2178         calc_global_load(ticks);
2179 }
2180
2181 /**
2182  * ktime_get_update_offsets_now - hrtimer helper
2183  * @cwsseq:     pointer to check and store the clock was set sequence number
2184  * @offs_real:  pointer to storage for monotonic -> realtime offset
2185  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2186  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2187  *
2188  * Returns current monotonic time and updates the offsets if the
2189  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2190  * different.
2191  *
2192  * Called from hrtimer_interrupt() or retrigger_next_event()
2193  */
2194 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2195                                      ktime_t *offs_boot, ktime_t *offs_tai)
2196 {
2197         struct timekeeper *tk = &tk_core.timekeeper;
2198         unsigned int seq;
2199         ktime_t base;
2200         u64 nsecs;
2201
2202         do {
2203                 seq = read_seqcount_begin(&tk_core.seq);
2204
2205                 base = tk->tkr_mono.base;
2206                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2207                 base = ktime_add_ns(base, nsecs);
2208
2209                 if (*cwsseq != tk->clock_was_set_seq) {
2210                         *cwsseq = tk->clock_was_set_seq;
2211                         *offs_real = tk->offs_real;
2212                         *offs_boot = tk->offs_boot;
2213                         *offs_tai = tk->offs_tai;
2214                 }
2215
2216                 /* Handle leapsecond insertion adjustments */
2217                 if (unlikely(base >= tk->next_leap_ktime))
2218                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2219
2220         } while (read_seqcount_retry(&tk_core.seq, seq));
2221
2222         return base;
2223 }
2224
2225 /**
2226  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2227  */
2228 static int timekeeping_validate_timex(struct timex *txc)
2229 {
2230         if (txc->modes & ADJ_ADJTIME) {
2231                 /* singleshot must not be used with any other mode bits */
2232                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2233                         return -EINVAL;
2234                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2235                     !capable(CAP_SYS_TIME))
2236                         return -EPERM;
2237         } else {
2238                 /* In order to modify anything, you gotta be super-user! */
2239                 if (txc->modes && !capable(CAP_SYS_TIME))
2240                         return -EPERM;
2241                 /*
2242                  * if the quartz is off by more than 10% then
2243                  * something is VERY wrong!
2244                  */
2245                 if (txc->modes & ADJ_TICK &&
2246                     (txc->tick <  900000/USER_HZ ||
2247                      txc->tick > 1100000/USER_HZ))
2248                         return -EINVAL;
2249         }
2250
2251         if (txc->modes & ADJ_SETOFFSET) {
2252                 /* In order to inject time, you gotta be super-user! */
2253                 if (!capable(CAP_SYS_TIME))
2254                         return -EPERM;
2255
2256                 /*
2257                  * Validate if a timespec/timeval used to inject a time
2258                  * offset is valid.  Offsets can be postive or negative, so
2259                  * we don't check tv_sec. The value of the timeval/timespec
2260                  * is the sum of its fields,but *NOTE*:
2261                  * The field tv_usec/tv_nsec must always be non-negative and
2262                  * we can't have more nanoseconds/microseconds than a second.
2263                  */
2264                 if (txc->time.tv_usec < 0)
2265                         return -EINVAL;
2266
2267                 if (txc->modes & ADJ_NANO) {
2268                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2269                                 return -EINVAL;
2270                 } else {
2271                         if (txc->time.tv_usec >= USEC_PER_SEC)
2272                                 return -EINVAL;
2273                 }
2274         }
2275
2276         /*
2277          * Check for potential multiplication overflows that can
2278          * only happen on 64-bit systems:
2279          */
2280         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2281                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2282                         return -EINVAL;
2283                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2284                         return -EINVAL;
2285         }
2286
2287         return 0;
2288 }
2289
2290
2291 /**
2292  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2293  */
2294 int do_adjtimex(struct timex *txc)
2295 {
2296         struct timekeeper *tk = &tk_core.timekeeper;
2297         unsigned long flags;
2298         struct timespec64 ts;
2299         s32 orig_tai, tai;
2300         int ret;
2301
2302         /* Validate the data before disabling interrupts */
2303         ret = timekeeping_validate_timex(txc);
2304         if (ret)
2305                 return ret;
2306
2307         if (txc->modes & ADJ_SETOFFSET) {
2308                 struct timespec64 delta;
2309                 delta.tv_sec  = txc->time.tv_sec;
2310                 delta.tv_nsec = txc->time.tv_usec;
2311                 if (!(txc->modes & ADJ_NANO))
2312                         delta.tv_nsec *= 1000;
2313                 ret = timekeeping_inject_offset(&delta);
2314                 if (ret)
2315                         return ret;
2316         }
2317
2318         getnstimeofday64(&ts);
2319
2320         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2321         write_seqcount_begin(&tk_core.seq);
2322
2323         orig_tai = tai = tk->tai_offset;
2324         ret = __do_adjtimex(txc, &ts, &tai);
2325
2326         if (tai != orig_tai) {
2327                 __timekeeping_set_tai_offset(tk, tai);
2328                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2329         }
2330         tk_update_leap_state(tk);
2331
2332         write_seqcount_end(&tk_core.seq);
2333         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2334
2335         if (tai != orig_tai)
2336                 clock_was_set();
2337
2338         ntp_notify_cmos_timer();
2339
2340         return ret;
2341 }
2342
2343 #ifdef CONFIG_NTP_PPS
2344 /**
2345  * hardpps() - Accessor function to NTP __hardpps function
2346  */
2347 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2348 {
2349         unsigned long flags;
2350
2351         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2352         write_seqcount_begin(&tk_core.seq);
2353
2354         __hardpps(phase_ts, raw_ts);
2355
2356         write_seqcount_end(&tk_core.seq);
2357         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2358 }
2359 EXPORT_SYMBOL(hardpps);
2360 #endif /* CONFIG_NTP_PPS */
2361
2362 /**
2363  * xtime_update() - advances the timekeeping infrastructure
2364  * @ticks:      number of ticks, that have elapsed since the last call.
2365  *
2366  * Must be called with interrupts disabled.
2367  */
2368 void xtime_update(unsigned long ticks)
2369 {
2370         write_seqlock(&jiffies_lock);
2371         do_timer(ticks);
2372         write_sequnlock(&jiffies_lock);
2373         update_wall_time();
2374 }