Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-block.git] / kernel / time / alarmtimer.c
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31 #include <linux/module.h>
32
33 #include "posix-timers.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/alarmtimer.h>
37
38 /**
39  * struct alarm_base - Alarm timer bases
40  * @lock:               Lock for syncrhonized access to the base
41  * @timerqueue:         Timerqueue head managing the list of events
42  * @gettime:            Function to read the time correlating to the base
43  * @base_clockid:       clockid for the base
44  */
45 static struct alarm_base {
46         spinlock_t              lock;
47         struct timerqueue_head  timerqueue;
48         ktime_t                 (*gettime)(void);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 static struct wakeup_source *ws;
62
63 /* rtc timer and device for setting alarm wakeups at suspend */
64 static struct rtc_timer         rtctimer;
65 static struct rtc_device        *rtcdev;
66 static DEFINE_SPINLOCK(rtcdev_lock);
67
68 /**
69  * alarmtimer_get_rtcdev - Return selected rtcdevice
70  *
71  * This function returns the rtc device to use for wakealarms.
72  * If one has not already been chosen, it checks to see if a
73  * functional rtc device is available.
74  */
75 struct rtc_device *alarmtimer_get_rtcdev(void)
76 {
77         unsigned long flags;
78         struct rtc_device *ret;
79
80         spin_lock_irqsave(&rtcdev_lock, flags);
81         ret = rtcdev;
82         spin_unlock_irqrestore(&rtcdev_lock, flags);
83
84         return ret;
85 }
86 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
87
88 static int alarmtimer_rtc_add_device(struct device *dev,
89                                 struct class_interface *class_intf)
90 {
91         unsigned long flags;
92         struct rtc_device *rtc = to_rtc_device(dev);
93         struct wakeup_source *__ws;
94
95         if (rtcdev)
96                 return -EBUSY;
97
98         if (!rtc->ops->set_alarm)
99                 return -1;
100         if (!device_may_wakeup(rtc->dev.parent))
101                 return -1;
102
103         __ws = wakeup_source_register("alarmtimer");
104
105         spin_lock_irqsave(&rtcdev_lock, flags);
106         if (!rtcdev) {
107                 if (!try_module_get(rtc->owner)) {
108                         spin_unlock_irqrestore(&rtcdev_lock, flags);
109                         return -1;
110                 }
111
112                 rtcdev = rtc;
113                 /* hold a reference so it doesn't go away */
114                 get_device(dev);
115                 ws = __ws;
116                 __ws = NULL;
117         }
118         spin_unlock_irqrestore(&rtcdev_lock, flags);
119
120         wakeup_source_unregister(__ws);
121
122         return 0;
123 }
124
125 static inline void alarmtimer_rtc_timer_init(void)
126 {
127         rtc_timer_init(&rtctimer, NULL, NULL);
128 }
129
130 static struct class_interface alarmtimer_rtc_interface = {
131         .add_dev = &alarmtimer_rtc_add_device,
132 };
133
134 static int alarmtimer_rtc_interface_setup(void)
135 {
136         alarmtimer_rtc_interface.class = rtc_class;
137         return class_interface_register(&alarmtimer_rtc_interface);
138 }
139 static void alarmtimer_rtc_interface_remove(void)
140 {
141         class_interface_unregister(&alarmtimer_rtc_interface);
142 }
143 #else
144 struct rtc_device *alarmtimer_get_rtcdev(void)
145 {
146         return NULL;
147 }
148 #define rtcdev (NULL)
149 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
150 static inline void alarmtimer_rtc_interface_remove(void) { }
151 static inline void alarmtimer_rtc_timer_init(void) { }
152 #endif
153
154 /**
155  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
156  * @base: pointer to the base where the timer is being run
157  * @alarm: pointer to alarm being enqueued.
158  *
159  * Adds alarm to a alarm_base timerqueue
160  *
161  * Must hold base->lock when calling.
162  */
163 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
164 {
165         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
166                 timerqueue_del(&base->timerqueue, &alarm->node);
167
168         timerqueue_add(&base->timerqueue, &alarm->node);
169         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
170 }
171
172 /**
173  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
174  * @base: pointer to the base where the timer is running
175  * @alarm: pointer to alarm being removed
176  *
177  * Removes alarm to a alarm_base timerqueue
178  *
179  * Must hold base->lock when calling.
180  */
181 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
182 {
183         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
184                 return;
185
186         timerqueue_del(&base->timerqueue, &alarm->node);
187         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
188 }
189
190
191 /**
192  * alarmtimer_fired - Handles alarm hrtimer being fired.
193  * @timer: pointer to hrtimer being run
194  *
195  * When a alarm timer fires, this runs through the timerqueue to
196  * see which alarms expired, and runs those. If there are more alarm
197  * timers queued for the future, we set the hrtimer to fire when
198  * when the next future alarm timer expires.
199  */
200 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
201 {
202         struct alarm *alarm = container_of(timer, struct alarm, timer);
203         struct alarm_base *base = &alarm_bases[alarm->type];
204         unsigned long flags;
205         int ret = HRTIMER_NORESTART;
206         int restart = ALARMTIMER_NORESTART;
207
208         spin_lock_irqsave(&base->lock, flags);
209         alarmtimer_dequeue(base, alarm);
210         spin_unlock_irqrestore(&base->lock, flags);
211
212         if (alarm->function)
213                 restart = alarm->function(alarm, base->gettime());
214
215         spin_lock_irqsave(&base->lock, flags);
216         if (restart != ALARMTIMER_NORESTART) {
217                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
218                 alarmtimer_enqueue(base, alarm);
219                 ret = HRTIMER_RESTART;
220         }
221         spin_unlock_irqrestore(&base->lock, flags);
222
223         trace_alarmtimer_fired(alarm, base->gettime());
224         return ret;
225
226 }
227
228 ktime_t alarm_expires_remaining(const struct alarm *alarm)
229 {
230         struct alarm_base *base = &alarm_bases[alarm->type];
231         return ktime_sub(alarm->node.expires, base->gettime());
232 }
233 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
234
235 #ifdef CONFIG_RTC_CLASS
236 /**
237  * alarmtimer_suspend - Suspend time callback
238  * @dev: unused
239  * @state: unused
240  *
241  * When we are going into suspend, we look through the bases
242  * to see which is the soonest timer to expire. We then
243  * set an rtc timer to fire that far into the future, which
244  * will wake us from suspend.
245  */
246 static int alarmtimer_suspend(struct device *dev)
247 {
248         ktime_t min, now, expires;
249         int i, ret, type;
250         struct rtc_device *rtc;
251         unsigned long flags;
252         struct rtc_time tm;
253
254         spin_lock_irqsave(&freezer_delta_lock, flags);
255         min = freezer_delta;
256         expires = freezer_expires;
257         type = freezer_alarmtype;
258         freezer_delta = 0;
259         spin_unlock_irqrestore(&freezer_delta_lock, flags);
260
261         rtc = alarmtimer_get_rtcdev();
262         /* If we have no rtcdev, just return */
263         if (!rtc)
264                 return 0;
265
266         /* Find the soonest timer to expire*/
267         for (i = 0; i < ALARM_NUMTYPE; i++) {
268                 struct alarm_base *base = &alarm_bases[i];
269                 struct timerqueue_node *next;
270                 ktime_t delta;
271
272                 spin_lock_irqsave(&base->lock, flags);
273                 next = timerqueue_getnext(&base->timerqueue);
274                 spin_unlock_irqrestore(&base->lock, flags);
275                 if (!next)
276                         continue;
277                 delta = ktime_sub(next->expires, base->gettime());
278                 if (!min || (delta < min)) {
279                         expires = next->expires;
280                         min = delta;
281                         type = i;
282                 }
283         }
284         if (min == 0)
285                 return 0;
286
287         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
288                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
289                 return -EBUSY;
290         }
291
292         trace_alarmtimer_suspend(expires, type);
293
294         /* Setup an rtc timer to fire that far in the future */
295         rtc_timer_cancel(rtc, &rtctimer);
296         rtc_read_time(rtc, &tm);
297         now = rtc_tm_to_ktime(tm);
298         now = ktime_add(now, min);
299
300         /* Set alarm, if in the past reject suspend briefly to handle */
301         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
302         if (ret < 0)
303                 __pm_wakeup_event(ws, MSEC_PER_SEC);
304         return ret;
305 }
306
307 static int alarmtimer_resume(struct device *dev)
308 {
309         struct rtc_device *rtc;
310
311         rtc = alarmtimer_get_rtcdev();
312         if (rtc)
313                 rtc_timer_cancel(rtc, &rtctimer);
314         return 0;
315 }
316
317 #else
318 static int alarmtimer_suspend(struct device *dev)
319 {
320         return 0;
321 }
322
323 static int alarmtimer_resume(struct device *dev)
324 {
325         return 0;
326 }
327 #endif
328
329 /**
330  * alarm_init - Initialize an alarm structure
331  * @alarm: ptr to alarm to be initialized
332  * @type: the type of the alarm
333  * @function: callback that is run when the alarm fires
334  */
335 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
336                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
337 {
338         timerqueue_init(&alarm->node);
339         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
340                         HRTIMER_MODE_ABS);
341         alarm->timer.function = alarmtimer_fired;
342         alarm->function = function;
343         alarm->type = type;
344         alarm->state = ALARMTIMER_STATE_INACTIVE;
345 }
346 EXPORT_SYMBOL_GPL(alarm_init);
347
348 /**
349  * alarm_start - Sets an absolute alarm to fire
350  * @alarm: ptr to alarm to set
351  * @start: time to run the alarm
352  */
353 void alarm_start(struct alarm *alarm, ktime_t start)
354 {
355         struct alarm_base *base = &alarm_bases[alarm->type];
356         unsigned long flags;
357
358         spin_lock_irqsave(&base->lock, flags);
359         alarm->node.expires = start;
360         alarmtimer_enqueue(base, alarm);
361         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
362         spin_unlock_irqrestore(&base->lock, flags);
363
364         trace_alarmtimer_start(alarm, base->gettime());
365 }
366 EXPORT_SYMBOL_GPL(alarm_start);
367
368 /**
369  * alarm_start_relative - Sets a relative alarm to fire
370  * @alarm: ptr to alarm to set
371  * @start: time relative to now to run the alarm
372  */
373 void alarm_start_relative(struct alarm *alarm, ktime_t start)
374 {
375         struct alarm_base *base = &alarm_bases[alarm->type];
376
377         start = ktime_add_safe(start, base->gettime());
378         alarm_start(alarm, start);
379 }
380 EXPORT_SYMBOL_GPL(alarm_start_relative);
381
382 void alarm_restart(struct alarm *alarm)
383 {
384         struct alarm_base *base = &alarm_bases[alarm->type];
385         unsigned long flags;
386
387         spin_lock_irqsave(&base->lock, flags);
388         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
389         hrtimer_restart(&alarm->timer);
390         alarmtimer_enqueue(base, alarm);
391         spin_unlock_irqrestore(&base->lock, flags);
392 }
393 EXPORT_SYMBOL_GPL(alarm_restart);
394
395 /**
396  * alarm_try_to_cancel - Tries to cancel an alarm timer
397  * @alarm: ptr to alarm to be canceled
398  *
399  * Returns 1 if the timer was canceled, 0 if it was not running,
400  * and -1 if the callback was running
401  */
402 int alarm_try_to_cancel(struct alarm *alarm)
403 {
404         struct alarm_base *base = &alarm_bases[alarm->type];
405         unsigned long flags;
406         int ret;
407
408         spin_lock_irqsave(&base->lock, flags);
409         ret = hrtimer_try_to_cancel(&alarm->timer);
410         if (ret >= 0)
411                 alarmtimer_dequeue(base, alarm);
412         spin_unlock_irqrestore(&base->lock, flags);
413
414         trace_alarmtimer_cancel(alarm, base->gettime());
415         return ret;
416 }
417 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
418
419
420 /**
421  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
422  * @alarm: ptr to alarm to be canceled
423  *
424  * Returns 1 if the timer was canceled, 0 if it was not active.
425  */
426 int alarm_cancel(struct alarm *alarm)
427 {
428         for (;;) {
429                 int ret = alarm_try_to_cancel(alarm);
430                 if (ret >= 0)
431                         return ret;
432                 cpu_relax();
433         }
434 }
435 EXPORT_SYMBOL_GPL(alarm_cancel);
436
437
438 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
439 {
440         u64 overrun = 1;
441         ktime_t delta;
442
443         delta = ktime_sub(now, alarm->node.expires);
444
445         if (delta < 0)
446                 return 0;
447
448         if (unlikely(delta >= interval)) {
449                 s64 incr = ktime_to_ns(interval);
450
451                 overrun = ktime_divns(delta, incr);
452
453                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
454                                                         incr*overrun);
455
456                 if (alarm->node.expires > now)
457                         return overrun;
458                 /*
459                  * This (and the ktime_add() below) is the
460                  * correction for exact:
461                  */
462                 overrun++;
463         }
464
465         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
466         return overrun;
467 }
468 EXPORT_SYMBOL_GPL(alarm_forward);
469
470 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
471 {
472         struct alarm_base *base = &alarm_bases[alarm->type];
473
474         return alarm_forward(alarm, base->gettime(), interval);
475 }
476 EXPORT_SYMBOL_GPL(alarm_forward_now);
477
478 #ifdef CONFIG_POSIX_TIMERS
479
480 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
481 {
482         struct alarm_base *base;
483         unsigned long flags;
484         ktime_t delta;
485
486         switch(type) {
487         case ALARM_REALTIME:
488                 base = &alarm_bases[ALARM_REALTIME];
489                 type = ALARM_REALTIME_FREEZER;
490                 break;
491         case ALARM_BOOTTIME:
492                 base = &alarm_bases[ALARM_BOOTTIME];
493                 type = ALARM_BOOTTIME_FREEZER;
494                 break;
495         default:
496                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
497                 return;
498         }
499
500         delta = ktime_sub(absexp, base->gettime());
501
502         spin_lock_irqsave(&freezer_delta_lock, flags);
503         if (!freezer_delta || (delta < freezer_delta)) {
504                 freezer_delta = delta;
505                 freezer_expires = absexp;
506                 freezer_alarmtype = type;
507         }
508         spin_unlock_irqrestore(&freezer_delta_lock, flags);
509 }
510
511 /**
512  * clock2alarm - helper that converts from clockid to alarmtypes
513  * @clockid: clockid.
514  */
515 static enum alarmtimer_type clock2alarm(clockid_t clockid)
516 {
517         if (clockid == CLOCK_REALTIME_ALARM)
518                 return ALARM_REALTIME;
519         if (clockid == CLOCK_BOOTTIME_ALARM)
520                 return ALARM_BOOTTIME;
521         return -1;
522 }
523
524 /**
525  * alarm_handle_timer - Callback for posix timers
526  * @alarm: alarm that fired
527  *
528  * Posix timer callback for expired alarm timers.
529  */
530 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
531                                                         ktime_t now)
532 {
533         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
534                                             it.alarm.alarmtimer);
535         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
536         unsigned long flags;
537         int si_private = 0;
538
539         spin_lock_irqsave(&ptr->it_lock, flags);
540
541         ptr->it_active = 0;
542         if (ptr->it_interval)
543                 si_private = ++ptr->it_requeue_pending;
544
545         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
546                 /*
547                  * Handle ignored signals and rearm the timer. This will go
548                  * away once we handle ignored signals proper.
549                  */
550                 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
551                 ++ptr->it_requeue_pending;
552                 ptr->it_active = 1;
553                 result = ALARMTIMER_RESTART;
554         }
555         spin_unlock_irqrestore(&ptr->it_lock, flags);
556
557         return result;
558 }
559
560 /**
561  * alarm_timer_rearm - Posix timer callback for rearming timer
562  * @timr:       Pointer to the posixtimer data struct
563  */
564 static void alarm_timer_rearm(struct k_itimer *timr)
565 {
566         struct alarm *alarm = &timr->it.alarm.alarmtimer;
567
568         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
569         alarm_start(alarm, alarm->node.expires);
570 }
571
572 /**
573  * alarm_timer_forward - Posix timer callback for forwarding timer
574  * @timr:       Pointer to the posixtimer data struct
575  * @now:        Current time to forward the timer against
576  */
577 static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
578 {
579         struct alarm *alarm = &timr->it.alarm.alarmtimer;
580
581         return (int) alarm_forward(alarm, timr->it_interval, now);
582 }
583
584 /**
585  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
586  * @timr:       Pointer to the posixtimer data struct
587  * @now:        Current time to calculate against
588  */
589 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
590 {
591         struct alarm *alarm = &timr->it.alarm.alarmtimer;
592
593         return ktime_sub(now, alarm->node.expires);
594 }
595
596 /**
597  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
598  * @timr:       Pointer to the posixtimer data struct
599  */
600 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
601 {
602         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
603 }
604
605 /**
606  * alarm_timer_arm - Posix timer callback to arm a timer
607  * @timr:       Pointer to the posixtimer data struct
608  * @expires:    The new expiry time
609  * @absolute:   Expiry value is absolute time
610  * @sigev_none: Posix timer does not deliver signals
611  */
612 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
613                             bool absolute, bool sigev_none)
614 {
615         struct alarm *alarm = &timr->it.alarm.alarmtimer;
616         struct alarm_base *base = &alarm_bases[alarm->type];
617
618         if (!absolute)
619                 expires = ktime_add_safe(expires, base->gettime());
620         if (sigev_none)
621                 alarm->node.expires = expires;
622         else
623                 alarm_start(&timr->it.alarm.alarmtimer, expires);
624 }
625
626 /**
627  * alarm_clock_getres - posix getres interface
628  * @which_clock: clockid
629  * @tp: timespec to fill
630  *
631  * Returns the granularity of underlying alarm base clock
632  */
633 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
634 {
635         if (!alarmtimer_get_rtcdev())
636                 return -EINVAL;
637
638         tp->tv_sec = 0;
639         tp->tv_nsec = hrtimer_resolution;
640         return 0;
641 }
642
643 /**
644  * alarm_clock_get - posix clock_get interface
645  * @which_clock: clockid
646  * @tp: timespec to fill.
647  *
648  * Provides the underlying alarm base time.
649  */
650 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
651 {
652         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
653
654         if (!alarmtimer_get_rtcdev())
655                 return -EINVAL;
656
657         *tp = ktime_to_timespec64(base->gettime());
658         return 0;
659 }
660
661 /**
662  * alarm_timer_create - posix timer_create interface
663  * @new_timer: k_itimer pointer to manage
664  *
665  * Initializes the k_itimer structure.
666  */
667 static int alarm_timer_create(struct k_itimer *new_timer)
668 {
669         enum  alarmtimer_type type;
670
671         if (!alarmtimer_get_rtcdev())
672                 return -ENOTSUPP;
673
674         if (!capable(CAP_WAKE_ALARM))
675                 return -EPERM;
676
677         type = clock2alarm(new_timer->it_clock);
678         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
679         return 0;
680 }
681
682 /**
683  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
684  * @alarm: ptr to alarm that fired
685  *
686  * Wakes up the task that set the alarmtimer
687  */
688 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
689                                                                 ktime_t now)
690 {
691         struct task_struct *task = (struct task_struct *)alarm->data;
692
693         alarm->data = NULL;
694         if (task)
695                 wake_up_process(task);
696         return ALARMTIMER_NORESTART;
697 }
698
699 /**
700  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
701  * @alarm: ptr to alarmtimer
702  * @absexp: absolute expiration time
703  *
704  * Sets the alarm timer and sleeps until it is fired or interrupted.
705  */
706 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
707                                 enum alarmtimer_type type)
708 {
709         struct restart_block *restart;
710         alarm->data = (void *)current;
711         do {
712                 set_current_state(TASK_INTERRUPTIBLE);
713                 alarm_start(alarm, absexp);
714                 if (likely(alarm->data))
715                         schedule();
716
717                 alarm_cancel(alarm);
718         } while (alarm->data && !signal_pending(current));
719
720         __set_current_state(TASK_RUNNING);
721
722         if (!alarm->data)
723                 return 0;
724
725         if (freezing(current))
726                 alarmtimer_freezerset(absexp, type);
727         restart = &current->restart_block;
728         if (restart->nanosleep.type != TT_NONE) {
729                 struct timespec64 rmt;
730                 ktime_t rem;
731
732                 rem = ktime_sub(absexp, alarm_bases[type].gettime());
733
734                 if (rem <= 0)
735                         return 0;
736                 rmt = ktime_to_timespec64(rem);
737
738                 return nanosleep_copyout(restart, &rmt);
739         }
740         return -ERESTART_RESTARTBLOCK;
741 }
742
743 /**
744  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
745  * @restart: ptr to restart block
746  *
747  * Handles restarted clock_nanosleep calls
748  */
749 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
750 {
751         enum  alarmtimer_type type = restart->nanosleep.clockid;
752         ktime_t exp = restart->nanosleep.expires;
753         struct alarm alarm;
754
755         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
756
757         return alarmtimer_do_nsleep(&alarm, exp, type);
758 }
759
760 /**
761  * alarm_timer_nsleep - alarmtimer nanosleep
762  * @which_clock: clockid
763  * @flags: determins abstime or relative
764  * @tsreq: requested sleep time (abs or rel)
765  * @rmtp: remaining sleep time saved
766  *
767  * Handles clock_nanosleep calls against _ALARM clockids
768  */
769 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
770                               const struct timespec64 *tsreq)
771 {
772         enum  alarmtimer_type type = clock2alarm(which_clock);
773         struct restart_block *restart = &current->restart_block;
774         struct alarm alarm;
775         ktime_t exp;
776         int ret = 0;
777
778         if (!alarmtimer_get_rtcdev())
779                 return -ENOTSUPP;
780
781         if (flags & ~TIMER_ABSTIME)
782                 return -EINVAL;
783
784         if (!capable(CAP_WAKE_ALARM))
785                 return -EPERM;
786
787         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
788
789         exp = timespec64_to_ktime(*tsreq);
790         /* Convert (if necessary) to absolute time */
791         if (flags != TIMER_ABSTIME) {
792                 ktime_t now = alarm_bases[type].gettime();
793                 exp = ktime_add(now, exp);
794         }
795
796         ret = alarmtimer_do_nsleep(&alarm, exp, type);
797         if (ret != -ERESTART_RESTARTBLOCK)
798                 return ret;
799
800         /* abs timers don't set remaining time or restart */
801         if (flags == TIMER_ABSTIME)
802                 return -ERESTARTNOHAND;
803
804         restart->fn = alarm_timer_nsleep_restart;
805         restart->nanosleep.clockid = type;
806         restart->nanosleep.expires = exp;
807         return ret;
808 }
809
810 const struct k_clock alarm_clock = {
811         .clock_getres           = alarm_clock_getres,
812         .clock_get              = alarm_clock_get,
813         .timer_create           = alarm_timer_create,
814         .timer_set              = common_timer_set,
815         .timer_del              = common_timer_del,
816         .timer_get              = common_timer_get,
817         .timer_arm              = alarm_timer_arm,
818         .timer_rearm            = alarm_timer_rearm,
819         .timer_forward          = alarm_timer_forward,
820         .timer_remaining        = alarm_timer_remaining,
821         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
822         .nsleep                 = alarm_timer_nsleep,
823 };
824 #endif /* CONFIG_POSIX_TIMERS */
825
826
827 /* Suspend hook structures */
828 static const struct dev_pm_ops alarmtimer_pm_ops = {
829         .suspend = alarmtimer_suspend,
830         .resume = alarmtimer_resume,
831 };
832
833 static struct platform_driver alarmtimer_driver = {
834         .driver = {
835                 .name = "alarmtimer",
836                 .pm = &alarmtimer_pm_ops,
837         }
838 };
839
840 /**
841  * alarmtimer_init - Initialize alarm timer code
842  *
843  * This function initializes the alarm bases and registers
844  * the posix clock ids.
845  */
846 static int __init alarmtimer_init(void)
847 {
848         struct platform_device *pdev;
849         int error = 0;
850         int i;
851
852         alarmtimer_rtc_timer_init();
853
854         /* Initialize alarm bases */
855         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
856         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
857         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
858         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
859         for (i = 0; i < ALARM_NUMTYPE; i++) {
860                 timerqueue_init_head(&alarm_bases[i].timerqueue);
861                 spin_lock_init(&alarm_bases[i].lock);
862         }
863
864         error = alarmtimer_rtc_interface_setup();
865         if (error)
866                 return error;
867
868         error = platform_driver_register(&alarmtimer_driver);
869         if (error)
870                 goto out_if;
871
872         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
873         if (IS_ERR(pdev)) {
874                 error = PTR_ERR(pdev);
875                 goto out_drv;
876         }
877         return 0;
878
879 out_drv:
880         platform_driver_unregister(&alarmtimer_driver);
881 out_if:
882         alarmtimer_rtc_interface_remove();
883         return error;
884 }
885 device_initcall(alarmtimer_init);