Merge tag 'tag-chrome-platform-fixes-for-v5.7-rc2' of git://git.kernel.org/pub/scm...
[linux-block.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
49                      HRTIMER_MODE_REL_HARD);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56                 return;
57
58         raw_spin_lock(&rt_b->rt_runtime_lock);
59         if (!rt_b->rt_period_active) {
60                 rt_b->rt_period_active = 1;
61                 /*
62                  * SCHED_DEADLINE updates the bandwidth, as a run away
63                  * RT task with a DL task could hog a CPU. But DL does
64                  * not reset the period. If a deadline task was running
65                  * without an RT task running, it can cause RT tasks to
66                  * throttle when they start up. Kick the timer right away
67                  * to update the period.
68                  */
69                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70                 hrtimer_start_expires(&rt_b->rt_period_timer,
71                                       HRTIMER_MODE_ABS_PINNED_HARD);
72         }
73         raw_spin_unlock(&rt_b->rt_runtime_lock);
74 }
75
76 void init_rt_rq(struct rt_rq *rt_rq)
77 {
78         struct rt_prio_array *array;
79         int i;
80
81         array = &rt_rq->active;
82         for (i = 0; i < MAX_RT_PRIO; i++) {
83                 INIT_LIST_HEAD(array->queue + i);
84                 __clear_bit(i, array->bitmap);
85         }
86         /* delimiter for bitsearch: */
87         __set_bit(MAX_RT_PRIO, array->bitmap);
88
89 #if defined CONFIG_SMP
90         rt_rq->highest_prio.curr = MAX_RT_PRIO;
91         rt_rq->highest_prio.next = MAX_RT_PRIO;
92         rt_rq->rt_nr_migratory = 0;
93         rt_rq->overloaded = 0;
94         plist_head_init(&rt_rq->pushable_tasks);
95 #endif /* CONFIG_SMP */
96         /* We start is dequeued state, because no RT tasks are queued */
97         rt_rq->rt_queued = 0;
98
99         rt_rq->rt_time = 0;
100         rt_rq->rt_throttled = 0;
101         rt_rq->rt_runtime = 0;
102         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
103 }
104
105 #ifdef CONFIG_RT_GROUP_SCHED
106 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108         hrtimer_cancel(&rt_b->rt_period_timer);
109 }
110
111 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
112
113 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
114 {
115 #ifdef CONFIG_SCHED_DEBUG
116         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
117 #endif
118         return container_of(rt_se, struct task_struct, rt);
119 }
120
121 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
122 {
123         return rt_rq->rq;
124 }
125
126 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
127 {
128         return rt_se->rt_rq;
129 }
130
131 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
132 {
133         struct rt_rq *rt_rq = rt_se->rt_rq;
134
135         return rt_rq->rq;
136 }
137
138 void free_rt_sched_group(struct task_group *tg)
139 {
140         int i;
141
142         if (tg->rt_se)
143                 destroy_rt_bandwidth(&tg->rt_bandwidth);
144
145         for_each_possible_cpu(i) {
146                 if (tg->rt_rq)
147                         kfree(tg->rt_rq[i]);
148                 if (tg->rt_se)
149                         kfree(tg->rt_se[i]);
150         }
151
152         kfree(tg->rt_rq);
153         kfree(tg->rt_se);
154 }
155
156 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
157                 struct sched_rt_entity *rt_se, int cpu,
158                 struct sched_rt_entity *parent)
159 {
160         struct rq *rq = cpu_rq(cpu);
161
162         rt_rq->highest_prio.curr = MAX_RT_PRIO;
163         rt_rq->rt_nr_boosted = 0;
164         rt_rq->rq = rq;
165         rt_rq->tg = tg;
166
167         tg->rt_rq[cpu] = rt_rq;
168         tg->rt_se[cpu] = rt_se;
169
170         if (!rt_se)
171                 return;
172
173         if (!parent)
174                 rt_se->rt_rq = &rq->rt;
175         else
176                 rt_se->rt_rq = parent->my_q;
177
178         rt_se->my_q = rt_rq;
179         rt_se->parent = parent;
180         INIT_LIST_HEAD(&rt_se->run_list);
181 }
182
183 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
184 {
185         struct rt_rq *rt_rq;
186         struct sched_rt_entity *rt_se;
187         int i;
188
189         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
190         if (!tg->rt_rq)
191                 goto err;
192         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
193         if (!tg->rt_se)
194                 goto err;
195
196         init_rt_bandwidth(&tg->rt_bandwidth,
197                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
198
199         for_each_possible_cpu(i) {
200                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
201                                      GFP_KERNEL, cpu_to_node(i));
202                 if (!rt_rq)
203                         goto err;
204
205                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
206                                      GFP_KERNEL, cpu_to_node(i));
207                 if (!rt_se)
208                         goto err_free_rq;
209
210                 init_rt_rq(rt_rq);
211                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
212                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
213         }
214
215         return 1;
216
217 err_free_rq:
218         kfree(rt_rq);
219 err:
220         return 0;
221 }
222
223 #else /* CONFIG_RT_GROUP_SCHED */
224
225 #define rt_entity_is_task(rt_se) (1)
226
227 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
228 {
229         return container_of(rt_se, struct task_struct, rt);
230 }
231
232 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
233 {
234         return container_of(rt_rq, struct rq, rt);
235 }
236
237 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
238 {
239         struct task_struct *p = rt_task_of(rt_se);
240
241         return task_rq(p);
242 }
243
244 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
245 {
246         struct rq *rq = rq_of_rt_se(rt_se);
247
248         return &rq->rt;
249 }
250
251 void free_rt_sched_group(struct task_group *tg) { }
252
253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254 {
255         return 1;
256 }
257 #endif /* CONFIG_RT_GROUP_SCHED */
258
259 #ifdef CONFIG_SMP
260
261 static void pull_rt_task(struct rq *this_rq);
262
263 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
264 {
265         /* Try to pull RT tasks here if we lower this rq's prio */
266         return rq->rt.highest_prio.curr > prev->prio;
267 }
268
269 static inline int rt_overloaded(struct rq *rq)
270 {
271         return atomic_read(&rq->rd->rto_count);
272 }
273
274 static inline void rt_set_overload(struct rq *rq)
275 {
276         if (!rq->online)
277                 return;
278
279         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
280         /*
281          * Make sure the mask is visible before we set
282          * the overload count. That is checked to determine
283          * if we should look at the mask. It would be a shame
284          * if we looked at the mask, but the mask was not
285          * updated yet.
286          *
287          * Matched by the barrier in pull_rt_task().
288          */
289         smp_wmb();
290         atomic_inc(&rq->rd->rto_count);
291 }
292
293 static inline void rt_clear_overload(struct rq *rq)
294 {
295         if (!rq->online)
296                 return;
297
298         /* the order here really doesn't matter */
299         atomic_dec(&rq->rd->rto_count);
300         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
301 }
302
303 static void update_rt_migration(struct rt_rq *rt_rq)
304 {
305         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
306                 if (!rt_rq->overloaded) {
307                         rt_set_overload(rq_of_rt_rq(rt_rq));
308                         rt_rq->overloaded = 1;
309                 }
310         } else if (rt_rq->overloaded) {
311                 rt_clear_overload(rq_of_rt_rq(rt_rq));
312                 rt_rq->overloaded = 0;
313         }
314 }
315
316 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
317 {
318         struct task_struct *p;
319
320         if (!rt_entity_is_task(rt_se))
321                 return;
322
323         p = rt_task_of(rt_se);
324         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
325
326         rt_rq->rt_nr_total++;
327         if (p->nr_cpus_allowed > 1)
328                 rt_rq->rt_nr_migratory++;
329
330         update_rt_migration(rt_rq);
331 }
332
333 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
334 {
335         struct task_struct *p;
336
337         if (!rt_entity_is_task(rt_se))
338                 return;
339
340         p = rt_task_of(rt_se);
341         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
342
343         rt_rq->rt_nr_total--;
344         if (p->nr_cpus_allowed > 1)
345                 rt_rq->rt_nr_migratory--;
346
347         update_rt_migration(rt_rq);
348 }
349
350 static inline int has_pushable_tasks(struct rq *rq)
351 {
352         return !plist_head_empty(&rq->rt.pushable_tasks);
353 }
354
355 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
356 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
357
358 static void push_rt_tasks(struct rq *);
359 static void pull_rt_task(struct rq *);
360
361 static inline void rt_queue_push_tasks(struct rq *rq)
362 {
363         if (!has_pushable_tasks(rq))
364                 return;
365
366         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
367 }
368
369 static inline void rt_queue_pull_task(struct rq *rq)
370 {
371         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
372 }
373
374 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
375 {
376         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
377         plist_node_init(&p->pushable_tasks, p->prio);
378         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
379
380         /* Update the highest prio pushable task */
381         if (p->prio < rq->rt.highest_prio.next)
382                 rq->rt.highest_prio.next = p->prio;
383 }
384
385 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388
389         /* Update the new highest prio pushable task */
390         if (has_pushable_tasks(rq)) {
391                 p = plist_first_entry(&rq->rt.pushable_tasks,
392                                       struct task_struct, pushable_tasks);
393                 rq->rt.highest_prio.next = p->prio;
394         } else
395                 rq->rt.highest_prio.next = MAX_RT_PRIO;
396 }
397
398 #else
399
400 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
401 {
402 }
403
404 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 }
407
408 static inline
409 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
410 {
411 }
412
413 static inline
414 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
415 {
416 }
417
418 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
419 {
420         return false;
421 }
422
423 static inline void pull_rt_task(struct rq *this_rq)
424 {
425 }
426
427 static inline void rt_queue_push_tasks(struct rq *rq)
428 {
429 }
430 #endif /* CONFIG_SMP */
431
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437         return rt_se->on_rq;
438 }
439
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443  * settings.
444  *
445  * This check is only important for heterogeneous systems where uclamp_min value
446  * is higher than the capacity of a @cpu. For non-heterogeneous system this
447  * function will always return true.
448  *
449  * The function will return true if the capacity of the @cpu is >= the
450  * uclamp_min and false otherwise.
451  *
452  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453  * > uclamp_max.
454  */
455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457         unsigned int min_cap;
458         unsigned int max_cap;
459         unsigned int cpu_cap;
460
461         /* Only heterogeneous systems can benefit from this check */
462         if (!static_branch_unlikely(&sched_asym_cpucapacity))
463                 return true;
464
465         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467
468         cpu_cap = capacity_orig_of(cpu);
469
470         return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else
473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475         return true;
476 }
477 #endif
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480
481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483         if (!rt_rq->tg)
484                 return RUNTIME_INF;
485
486         return rt_rq->rt_runtime;
487 }
488
489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490 {
491         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
492 }
493
494 typedef struct task_group *rt_rq_iter_t;
495
496 static inline struct task_group *next_task_group(struct task_group *tg)
497 {
498         do {
499                 tg = list_entry_rcu(tg->list.next,
500                         typeof(struct task_group), list);
501         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
502
503         if (&tg->list == &task_groups)
504                 tg = NULL;
505
506         return tg;
507 }
508
509 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
510         for (iter = container_of(&task_groups, typeof(*iter), list);    \
511                 (iter = next_task_group(iter)) &&                       \
512                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
513
514 #define for_each_sched_rt_entity(rt_se) \
515         for (; rt_se; rt_se = rt_se->parent)
516
517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
518 {
519         return rt_se->my_q;
520 }
521
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
524
525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
526 {
527         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528         struct rq *rq = rq_of_rt_rq(rt_rq);
529         struct sched_rt_entity *rt_se;
530
531         int cpu = cpu_of(rq);
532
533         rt_se = rt_rq->tg->rt_se[cpu];
534
535         if (rt_rq->rt_nr_running) {
536                 if (!rt_se)
537                         enqueue_top_rt_rq(rt_rq);
538                 else if (!on_rt_rq(rt_se))
539                         enqueue_rt_entity(rt_se, 0);
540
541                 if (rt_rq->highest_prio.curr < curr->prio)
542                         resched_curr(rq);
543         }
544 }
545
546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
547 {
548         struct sched_rt_entity *rt_se;
549         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
550
551         rt_se = rt_rq->tg->rt_se[cpu];
552
553         if (!rt_se) {
554                 dequeue_top_rt_rq(rt_rq);
555                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
557         }
558         else if (on_rt_rq(rt_se))
559                 dequeue_rt_entity(rt_se, 0);
560 }
561
562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
563 {
564         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
565 }
566
567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
568 {
569         struct rt_rq *rt_rq = group_rt_rq(rt_se);
570         struct task_struct *p;
571
572         if (rt_rq)
573                 return !!rt_rq->rt_nr_boosted;
574
575         p = rt_task_of(rt_se);
576         return p->prio != p->normal_prio;
577 }
578
579 #ifdef CONFIG_SMP
580 static inline const struct cpumask *sched_rt_period_mask(void)
581 {
582         return this_rq()->rd->span;
583 }
584 #else
585 static inline const struct cpumask *sched_rt_period_mask(void)
586 {
587         return cpu_online_mask;
588 }
589 #endif
590
591 static inline
592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
593 {
594         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
595 }
596
597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
598 {
599         return &rt_rq->tg->rt_bandwidth;
600 }
601
602 #else /* !CONFIG_RT_GROUP_SCHED */
603
604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
605 {
606         return rt_rq->rt_runtime;
607 }
608
609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
610 {
611         return ktime_to_ns(def_rt_bandwidth.rt_period);
612 }
613
614 typedef struct rt_rq *rt_rq_iter_t;
615
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
618
619 #define for_each_sched_rt_entity(rt_se) \
620         for (; rt_se; rt_se = NULL)
621
622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
623 {
624         return NULL;
625 }
626
627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
628 {
629         struct rq *rq = rq_of_rt_rq(rt_rq);
630
631         if (!rt_rq->rt_nr_running)
632                 return;
633
634         enqueue_top_rt_rq(rt_rq);
635         resched_curr(rq);
636 }
637
638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
639 {
640         dequeue_top_rt_rq(rt_rq);
641 }
642
643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
644 {
645         return rt_rq->rt_throttled;
646 }
647
648 static inline const struct cpumask *sched_rt_period_mask(void)
649 {
650         return cpu_online_mask;
651 }
652
653 static inline
654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
655 {
656         return &cpu_rq(cpu)->rt;
657 }
658
659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
660 {
661         return &def_rt_bandwidth;
662 }
663
664 #endif /* CONFIG_RT_GROUP_SCHED */
665
666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
667 {
668         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
669
670         return (hrtimer_active(&rt_b->rt_period_timer) ||
671                 rt_rq->rt_time < rt_b->rt_runtime);
672 }
673
674 #ifdef CONFIG_SMP
675 /*
676  * We ran out of runtime, see if we can borrow some from our neighbours.
677  */
678 static void do_balance_runtime(struct rt_rq *rt_rq)
679 {
680         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
682         int i, weight;
683         u64 rt_period;
684
685         weight = cpumask_weight(rd->span);
686
687         raw_spin_lock(&rt_b->rt_runtime_lock);
688         rt_period = ktime_to_ns(rt_b->rt_period);
689         for_each_cpu(i, rd->span) {
690                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691                 s64 diff;
692
693                 if (iter == rt_rq)
694                         continue;
695
696                 raw_spin_lock(&iter->rt_runtime_lock);
697                 /*
698                  * Either all rqs have inf runtime and there's nothing to steal
699                  * or __disable_runtime() below sets a specific rq to inf to
700                  * indicate its been disabled and disalow stealing.
701                  */
702                 if (iter->rt_runtime == RUNTIME_INF)
703                         goto next;
704
705                 /*
706                  * From runqueues with spare time, take 1/n part of their
707                  * spare time, but no more than our period.
708                  */
709                 diff = iter->rt_runtime - iter->rt_time;
710                 if (diff > 0) {
711                         diff = div_u64((u64)diff, weight);
712                         if (rt_rq->rt_runtime + diff > rt_period)
713                                 diff = rt_period - rt_rq->rt_runtime;
714                         iter->rt_runtime -= diff;
715                         rt_rq->rt_runtime += diff;
716                         if (rt_rq->rt_runtime == rt_period) {
717                                 raw_spin_unlock(&iter->rt_runtime_lock);
718                                 break;
719                         }
720                 }
721 next:
722                 raw_spin_unlock(&iter->rt_runtime_lock);
723         }
724         raw_spin_unlock(&rt_b->rt_runtime_lock);
725 }
726
727 /*
728  * Ensure this RQ takes back all the runtime it lend to its neighbours.
729  */
730 static void __disable_runtime(struct rq *rq)
731 {
732         struct root_domain *rd = rq->rd;
733         rt_rq_iter_t iter;
734         struct rt_rq *rt_rq;
735
736         if (unlikely(!scheduler_running))
737                 return;
738
739         for_each_rt_rq(rt_rq, iter, rq) {
740                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741                 s64 want;
742                 int i;
743
744                 raw_spin_lock(&rt_b->rt_runtime_lock);
745                 raw_spin_lock(&rt_rq->rt_runtime_lock);
746                 /*
747                  * Either we're all inf and nobody needs to borrow, or we're
748                  * already disabled and thus have nothing to do, or we have
749                  * exactly the right amount of runtime to take out.
750                  */
751                 if (rt_rq->rt_runtime == RUNTIME_INF ||
752                                 rt_rq->rt_runtime == rt_b->rt_runtime)
753                         goto balanced;
754                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
755
756                 /*
757                  * Calculate the difference between what we started out with
758                  * and what we current have, that's the amount of runtime
759                  * we lend and now have to reclaim.
760                  */
761                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
762
763                 /*
764                  * Greedy reclaim, take back as much as we can.
765                  */
766                 for_each_cpu(i, rd->span) {
767                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768                         s64 diff;
769
770                         /*
771                          * Can't reclaim from ourselves or disabled runqueues.
772                          */
773                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
774                                 continue;
775
776                         raw_spin_lock(&iter->rt_runtime_lock);
777                         if (want > 0) {
778                                 diff = min_t(s64, iter->rt_runtime, want);
779                                 iter->rt_runtime -= diff;
780                                 want -= diff;
781                         } else {
782                                 iter->rt_runtime -= want;
783                                 want -= want;
784                         }
785                         raw_spin_unlock(&iter->rt_runtime_lock);
786
787                         if (!want)
788                                 break;
789                 }
790
791                 raw_spin_lock(&rt_rq->rt_runtime_lock);
792                 /*
793                  * We cannot be left wanting - that would mean some runtime
794                  * leaked out of the system.
795                  */
796                 BUG_ON(want);
797 balanced:
798                 /*
799                  * Disable all the borrow logic by pretending we have inf
800                  * runtime - in which case borrowing doesn't make sense.
801                  */
802                 rt_rq->rt_runtime = RUNTIME_INF;
803                 rt_rq->rt_throttled = 0;
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805                 raw_spin_unlock(&rt_b->rt_runtime_lock);
806
807                 /* Make rt_rq available for pick_next_task() */
808                 sched_rt_rq_enqueue(rt_rq);
809         }
810 }
811
812 static void __enable_runtime(struct rq *rq)
813 {
814         rt_rq_iter_t iter;
815         struct rt_rq *rt_rq;
816
817         if (unlikely(!scheduler_running))
818                 return;
819
820         /*
821          * Reset each runqueue's bandwidth settings
822          */
823         for_each_rt_rq(rt_rq, iter, rq) {
824                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
825
826                 raw_spin_lock(&rt_b->rt_runtime_lock);
827                 raw_spin_lock(&rt_rq->rt_runtime_lock);
828                 rt_rq->rt_runtime = rt_b->rt_runtime;
829                 rt_rq->rt_time = 0;
830                 rt_rq->rt_throttled = 0;
831                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
832                 raw_spin_unlock(&rt_b->rt_runtime_lock);
833         }
834 }
835
836 static void balance_runtime(struct rt_rq *rt_rq)
837 {
838         if (!sched_feat(RT_RUNTIME_SHARE))
839                 return;
840
841         if (rt_rq->rt_time > rt_rq->rt_runtime) {
842                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
843                 do_balance_runtime(rt_rq);
844                 raw_spin_lock(&rt_rq->rt_runtime_lock);
845         }
846 }
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
850
851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
852 {
853         int i, idle = 1, throttled = 0;
854         const struct cpumask *span;
855
856         span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
858         /*
859          * FIXME: isolated CPUs should really leave the root task group,
860          * whether they are isolcpus or were isolated via cpusets, lest
861          * the timer run on a CPU which does not service all runqueues,
862          * potentially leaving other CPUs indefinitely throttled.  If
863          * isolation is really required, the user will turn the throttle
864          * off to kill the perturbations it causes anyway.  Meanwhile,
865          * this maintains functionality for boot and/or troubleshooting.
866          */
867         if (rt_b == &root_task_group.rt_bandwidth)
868                 span = cpu_online_mask;
869 #endif
870         for_each_cpu(i, span) {
871                 int enqueue = 0;
872                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873                 struct rq *rq = rq_of_rt_rq(rt_rq);
874                 int skip;
875
876                 /*
877                  * When span == cpu_online_mask, taking each rq->lock
878                  * can be time-consuming. Try to avoid it when possible.
879                  */
880                 raw_spin_lock(&rt_rq->rt_runtime_lock);
881                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882                         rt_rq->rt_runtime = rt_b->rt_runtime;
883                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
885                 if (skip)
886                         continue;
887
888                 raw_spin_lock(&rq->lock);
889                 update_rq_clock(rq);
890
891                 if (rt_rq->rt_time) {
892                         u64 runtime;
893
894                         raw_spin_lock(&rt_rq->rt_runtime_lock);
895                         if (rt_rq->rt_throttled)
896                                 balance_runtime(rt_rq);
897                         runtime = rt_rq->rt_runtime;
898                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900                                 rt_rq->rt_throttled = 0;
901                                 enqueue = 1;
902
903                                 /*
904                                  * When we're idle and a woken (rt) task is
905                                  * throttled check_preempt_curr() will set
906                                  * skip_update and the time between the wakeup
907                                  * and this unthrottle will get accounted as
908                                  * 'runtime'.
909                                  */
910                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911                                         rq_clock_cancel_skipupdate(rq);
912                         }
913                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
914                                 idle = 0;
915                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
916                 } else if (rt_rq->rt_nr_running) {
917                         idle = 0;
918                         if (!rt_rq_throttled(rt_rq))
919                                 enqueue = 1;
920                 }
921                 if (rt_rq->rt_throttled)
922                         throttled = 1;
923
924                 if (enqueue)
925                         sched_rt_rq_enqueue(rt_rq);
926                 raw_spin_unlock(&rq->lock);
927         }
928
929         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930                 return 1;
931
932         return idle;
933 }
934
935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
936 {
937 #ifdef CONFIG_RT_GROUP_SCHED
938         struct rt_rq *rt_rq = group_rt_rq(rt_se);
939
940         if (rt_rq)
941                 return rt_rq->highest_prio.curr;
942 #endif
943
944         return rt_task_of(rt_se)->prio;
945 }
946
947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
948 {
949         u64 runtime = sched_rt_runtime(rt_rq);
950
951         if (rt_rq->rt_throttled)
952                 return rt_rq_throttled(rt_rq);
953
954         if (runtime >= sched_rt_period(rt_rq))
955                 return 0;
956
957         balance_runtime(rt_rq);
958         runtime = sched_rt_runtime(rt_rq);
959         if (runtime == RUNTIME_INF)
960                 return 0;
961
962         if (rt_rq->rt_time > runtime) {
963                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
964
965                 /*
966                  * Don't actually throttle groups that have no runtime assigned
967                  * but accrue some time due to boosting.
968                  */
969                 if (likely(rt_b->rt_runtime)) {
970                         rt_rq->rt_throttled = 1;
971                         printk_deferred_once("sched: RT throttling activated\n");
972                 } else {
973                         /*
974                          * In case we did anyway, make it go away,
975                          * replenishment is a joke, since it will replenish us
976                          * with exactly 0 ns.
977                          */
978                         rt_rq->rt_time = 0;
979                 }
980
981                 if (rt_rq_throttled(rt_rq)) {
982                         sched_rt_rq_dequeue(rt_rq);
983                         return 1;
984                 }
985         }
986
987         return 0;
988 }
989
990 /*
991  * Update the current task's runtime statistics. Skip current tasks that
992  * are not in our scheduling class.
993  */
994 static void update_curr_rt(struct rq *rq)
995 {
996         struct task_struct *curr = rq->curr;
997         struct sched_rt_entity *rt_se = &curr->rt;
998         u64 delta_exec;
999         u64 now;
1000
1001         if (curr->sched_class != &rt_sched_class)
1002                 return;
1003
1004         now = rq_clock_task(rq);
1005         delta_exec = now - curr->se.exec_start;
1006         if (unlikely((s64)delta_exec <= 0))
1007                 return;
1008
1009         schedstat_set(curr->se.statistics.exec_max,
1010                       max(curr->se.statistics.exec_max, delta_exec));
1011
1012         curr->se.sum_exec_runtime += delta_exec;
1013         account_group_exec_runtime(curr, delta_exec);
1014
1015         curr->se.exec_start = now;
1016         cgroup_account_cputime(curr, delta_exec);
1017
1018         if (!rt_bandwidth_enabled())
1019                 return;
1020
1021         for_each_sched_rt_entity(rt_se) {
1022                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1023
1024                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1025                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1026                         rt_rq->rt_time += delta_exec;
1027                         if (sched_rt_runtime_exceeded(rt_rq))
1028                                 resched_curr(rq);
1029                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1030                 }
1031         }
1032 }
1033
1034 static void
1035 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1036 {
1037         struct rq *rq = rq_of_rt_rq(rt_rq);
1038
1039         BUG_ON(&rq->rt != rt_rq);
1040
1041         if (!rt_rq->rt_queued)
1042                 return;
1043
1044         BUG_ON(!rq->nr_running);
1045
1046         sub_nr_running(rq, rt_rq->rt_nr_running);
1047         rt_rq->rt_queued = 0;
1048
1049 }
1050
1051 static void
1052 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053 {
1054         struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056         BUG_ON(&rq->rt != rt_rq);
1057
1058         if (rt_rq->rt_queued)
1059                 return;
1060
1061         if (rt_rq_throttled(rt_rq))
1062                 return;
1063
1064         if (rt_rq->rt_nr_running) {
1065                 add_nr_running(rq, rt_rq->rt_nr_running);
1066                 rt_rq->rt_queued = 1;
1067         }
1068
1069         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070         cpufreq_update_util(rq, 0);
1071 }
1072
1073 #if defined CONFIG_SMP
1074
1075 static void
1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077 {
1078         struct rq *rq = rq_of_rt_rq(rt_rq);
1079
1080 #ifdef CONFIG_RT_GROUP_SCHED
1081         /*
1082          * Change rq's cpupri only if rt_rq is the top queue.
1083          */
1084         if (&rq->rt != rt_rq)
1085                 return;
1086 #endif
1087         if (rq->online && prio < prev_prio)
1088                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089 }
1090
1091 static void
1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093 {
1094         struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097         /*
1098          * Change rq's cpupri only if rt_rq is the top queue.
1099          */
1100         if (&rq->rt != rt_rq)
1101                 return;
1102 #endif
1103         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105 }
1106
1107 #else /* CONFIG_SMP */
1108
1109 static inline
1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111 static inline
1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113
1114 #endif /* CONFIG_SMP */
1115
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117 static void
1118 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119 {
1120         int prev_prio = rt_rq->highest_prio.curr;
1121
1122         if (prio < prev_prio)
1123                 rt_rq->highest_prio.curr = prio;
1124
1125         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126 }
1127
1128 static void
1129 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130 {
1131         int prev_prio = rt_rq->highest_prio.curr;
1132
1133         if (rt_rq->rt_nr_running) {
1134
1135                 WARN_ON(prio < prev_prio);
1136
1137                 /*
1138                  * This may have been our highest task, and therefore
1139                  * we may have some recomputation to do
1140                  */
1141                 if (prio == prev_prio) {
1142                         struct rt_prio_array *array = &rt_rq->active;
1143
1144                         rt_rq->highest_prio.curr =
1145                                 sched_find_first_bit(array->bitmap);
1146                 }
1147
1148         } else
1149                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1150
1151         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1152 }
1153
1154 #else
1155
1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158
1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1160
1161 #ifdef CONFIG_RT_GROUP_SCHED
1162
1163 static void
1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1165 {
1166         if (rt_se_boosted(rt_se))
1167                 rt_rq->rt_nr_boosted++;
1168
1169         if (rt_rq->tg)
1170                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1171 }
1172
1173 static void
1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175 {
1176         if (rt_se_boosted(rt_se))
1177                 rt_rq->rt_nr_boosted--;
1178
1179         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1180 }
1181
1182 #else /* CONFIG_RT_GROUP_SCHED */
1183
1184 static void
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187         start_rt_bandwidth(&def_rt_bandwidth);
1188 }
1189
1190 static inline
1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1192
1193 #endif /* CONFIG_RT_GROUP_SCHED */
1194
1195 static inline
1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1197 {
1198         struct rt_rq *group_rq = group_rt_rq(rt_se);
1199
1200         if (group_rq)
1201                 return group_rq->rt_nr_running;
1202         else
1203                 return 1;
1204 }
1205
1206 static inline
1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1208 {
1209         struct rt_rq *group_rq = group_rt_rq(rt_se);
1210         struct task_struct *tsk;
1211
1212         if (group_rq)
1213                 return group_rq->rr_nr_running;
1214
1215         tsk = rt_task_of(rt_se);
1216
1217         return (tsk->policy == SCHED_RR) ? 1 : 0;
1218 }
1219
1220 static inline
1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1222 {
1223         int prio = rt_se_prio(rt_se);
1224
1225         WARN_ON(!rt_prio(prio));
1226         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1227         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1228
1229         inc_rt_prio(rt_rq, prio);
1230         inc_rt_migration(rt_se, rt_rq);
1231         inc_rt_group(rt_se, rt_rq);
1232 }
1233
1234 static inline
1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236 {
1237         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238         WARN_ON(!rt_rq->rt_nr_running);
1239         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241
1242         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243         dec_rt_migration(rt_se, rt_rq);
1244         dec_rt_group(rt_se, rt_rq);
1245 }
1246
1247 /*
1248  * Change rt_se->run_list location unless SAVE && !MOVE
1249  *
1250  * assumes ENQUEUE/DEQUEUE flags match
1251  */
1252 static inline bool move_entity(unsigned int flags)
1253 {
1254         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1255                 return false;
1256
1257         return true;
1258 }
1259
1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1261 {
1262         list_del_init(&rt_se->run_list);
1263
1264         if (list_empty(array->queue + rt_se_prio(rt_se)))
1265                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1266
1267         rt_se->on_list = 0;
1268 }
1269
1270 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1271 {
1272         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1273         struct rt_prio_array *array = &rt_rq->active;
1274         struct rt_rq *group_rq = group_rt_rq(rt_se);
1275         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1276
1277         /*
1278          * Don't enqueue the group if its throttled, or when empty.
1279          * The latter is a consequence of the former when a child group
1280          * get throttled and the current group doesn't have any other
1281          * active members.
1282          */
1283         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1284                 if (rt_se->on_list)
1285                         __delist_rt_entity(rt_se, array);
1286                 return;
1287         }
1288
1289         if (move_entity(flags)) {
1290                 WARN_ON_ONCE(rt_se->on_list);
1291                 if (flags & ENQUEUE_HEAD)
1292                         list_add(&rt_se->run_list, queue);
1293                 else
1294                         list_add_tail(&rt_se->run_list, queue);
1295
1296                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1297                 rt_se->on_list = 1;
1298         }
1299         rt_se->on_rq = 1;
1300
1301         inc_rt_tasks(rt_se, rt_rq);
1302 }
1303
1304 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1305 {
1306         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1307         struct rt_prio_array *array = &rt_rq->active;
1308
1309         if (move_entity(flags)) {
1310                 WARN_ON_ONCE(!rt_se->on_list);
1311                 __delist_rt_entity(rt_se, array);
1312         }
1313         rt_se->on_rq = 0;
1314
1315         dec_rt_tasks(rt_se, rt_rq);
1316 }
1317
1318 /*
1319  * Because the prio of an upper entry depends on the lower
1320  * entries, we must remove entries top - down.
1321  */
1322 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1323 {
1324         struct sched_rt_entity *back = NULL;
1325
1326         for_each_sched_rt_entity(rt_se) {
1327                 rt_se->back = back;
1328                 back = rt_se;
1329         }
1330
1331         dequeue_top_rt_rq(rt_rq_of_se(back));
1332
1333         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1334                 if (on_rt_rq(rt_se))
1335                         __dequeue_rt_entity(rt_se, flags);
1336         }
1337 }
1338
1339 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1340 {
1341         struct rq *rq = rq_of_rt_se(rt_se);
1342
1343         dequeue_rt_stack(rt_se, flags);
1344         for_each_sched_rt_entity(rt_se)
1345                 __enqueue_rt_entity(rt_se, flags);
1346         enqueue_top_rt_rq(&rq->rt);
1347 }
1348
1349 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1350 {
1351         struct rq *rq = rq_of_rt_se(rt_se);
1352
1353         dequeue_rt_stack(rt_se, flags);
1354
1355         for_each_sched_rt_entity(rt_se) {
1356                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1357
1358                 if (rt_rq && rt_rq->rt_nr_running)
1359                         __enqueue_rt_entity(rt_se, flags);
1360         }
1361         enqueue_top_rt_rq(&rq->rt);
1362 }
1363
1364 /*
1365  * Adding/removing a task to/from a priority array:
1366  */
1367 static void
1368 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1369 {
1370         struct sched_rt_entity *rt_se = &p->rt;
1371
1372         if (flags & ENQUEUE_WAKEUP)
1373                 rt_se->timeout = 0;
1374
1375         enqueue_rt_entity(rt_se, flags);
1376
1377         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1378                 enqueue_pushable_task(rq, p);
1379 }
1380
1381 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1382 {
1383         struct sched_rt_entity *rt_se = &p->rt;
1384
1385         update_curr_rt(rq);
1386         dequeue_rt_entity(rt_se, flags);
1387
1388         dequeue_pushable_task(rq, p);
1389 }
1390
1391 /*
1392  * Put task to the head or the end of the run list without the overhead of
1393  * dequeue followed by enqueue.
1394  */
1395 static void
1396 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1397 {
1398         if (on_rt_rq(rt_se)) {
1399                 struct rt_prio_array *array = &rt_rq->active;
1400                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1401
1402                 if (head)
1403                         list_move(&rt_se->run_list, queue);
1404                 else
1405                         list_move_tail(&rt_se->run_list, queue);
1406         }
1407 }
1408
1409 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1410 {
1411         struct sched_rt_entity *rt_se = &p->rt;
1412         struct rt_rq *rt_rq;
1413
1414         for_each_sched_rt_entity(rt_se) {
1415                 rt_rq = rt_rq_of_se(rt_se);
1416                 requeue_rt_entity(rt_rq, rt_se, head);
1417         }
1418 }
1419
1420 static void yield_task_rt(struct rq *rq)
1421 {
1422         requeue_task_rt(rq, rq->curr, 0);
1423 }
1424
1425 #ifdef CONFIG_SMP
1426 static int find_lowest_rq(struct task_struct *task);
1427
1428 static int
1429 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1430 {
1431         struct task_struct *curr;
1432         struct rq *rq;
1433         bool test;
1434
1435         /* For anything but wake ups, just return the task_cpu */
1436         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1437                 goto out;
1438
1439         rq = cpu_rq(cpu);
1440
1441         rcu_read_lock();
1442         curr = READ_ONCE(rq->curr); /* unlocked access */
1443
1444         /*
1445          * If the current task on @p's runqueue is an RT task, then
1446          * try to see if we can wake this RT task up on another
1447          * runqueue. Otherwise simply start this RT task
1448          * on its current runqueue.
1449          *
1450          * We want to avoid overloading runqueues. If the woken
1451          * task is a higher priority, then it will stay on this CPU
1452          * and the lower prio task should be moved to another CPU.
1453          * Even though this will probably make the lower prio task
1454          * lose its cache, we do not want to bounce a higher task
1455          * around just because it gave up its CPU, perhaps for a
1456          * lock?
1457          *
1458          * For equal prio tasks, we just let the scheduler sort it out.
1459          *
1460          * Otherwise, just let it ride on the affined RQ and the
1461          * post-schedule router will push the preempted task away
1462          *
1463          * This test is optimistic, if we get it wrong the load-balancer
1464          * will have to sort it out.
1465          *
1466          * We take into account the capacity of the CPU to ensure it fits the
1467          * requirement of the task - which is only important on heterogeneous
1468          * systems like big.LITTLE.
1469          */
1470         test = curr &&
1471                unlikely(rt_task(curr)) &&
1472                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1473
1474         if (test || !rt_task_fits_capacity(p, cpu)) {
1475                 int target = find_lowest_rq(p);
1476
1477                 /*
1478                  * Bail out if we were forcing a migration to find a better
1479                  * fitting CPU but our search failed.
1480                  */
1481                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1482                         goto out_unlock;
1483
1484                 /*
1485                  * Don't bother moving it if the destination CPU is
1486                  * not running a lower priority task.
1487                  */
1488                 if (target != -1 &&
1489                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1490                         cpu = target;
1491         }
1492
1493 out_unlock:
1494         rcu_read_unlock();
1495
1496 out:
1497         return cpu;
1498 }
1499
1500 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1501 {
1502         /*
1503          * Current can't be migrated, useless to reschedule,
1504          * let's hope p can move out.
1505          */
1506         if (rq->curr->nr_cpus_allowed == 1 ||
1507             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1508                 return;
1509
1510         /*
1511          * p is migratable, so let's not schedule it and
1512          * see if it is pushed or pulled somewhere else.
1513          */
1514         if (p->nr_cpus_allowed != 1 &&
1515             cpupri_find(&rq->rd->cpupri, p, NULL))
1516                 return;
1517
1518         /*
1519          * There appear to be other CPUs that can accept
1520          * the current task but none can run 'p', so lets reschedule
1521          * to try and push the current task away:
1522          */
1523         requeue_task_rt(rq, p, 1);
1524         resched_curr(rq);
1525 }
1526
1527 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1528 {
1529         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1530                 /*
1531                  * This is OK, because current is on_cpu, which avoids it being
1532                  * picked for load-balance and preemption/IRQs are still
1533                  * disabled avoiding further scheduler activity on it and we've
1534                  * not yet started the picking loop.
1535                  */
1536                 rq_unpin_lock(rq, rf);
1537                 pull_rt_task(rq);
1538                 rq_repin_lock(rq, rf);
1539         }
1540
1541         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1542 }
1543 #endif /* CONFIG_SMP */
1544
1545 /*
1546  * Preempt the current task with a newly woken task if needed:
1547  */
1548 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1549 {
1550         if (p->prio < rq->curr->prio) {
1551                 resched_curr(rq);
1552                 return;
1553         }
1554
1555 #ifdef CONFIG_SMP
1556         /*
1557          * If:
1558          *
1559          * - the newly woken task is of equal priority to the current task
1560          * - the newly woken task is non-migratable while current is migratable
1561          * - current will be preempted on the next reschedule
1562          *
1563          * we should check to see if current can readily move to a different
1564          * cpu.  If so, we will reschedule to allow the push logic to try
1565          * to move current somewhere else, making room for our non-migratable
1566          * task.
1567          */
1568         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1569                 check_preempt_equal_prio(rq, p);
1570 #endif
1571 }
1572
1573 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1574 {
1575         p->se.exec_start = rq_clock_task(rq);
1576
1577         /* The running task is never eligible for pushing */
1578         dequeue_pushable_task(rq, p);
1579
1580         if (!first)
1581                 return;
1582
1583         /*
1584          * If prev task was rt, put_prev_task() has already updated the
1585          * utilization. We only care of the case where we start to schedule a
1586          * rt task
1587          */
1588         if (rq->curr->sched_class != &rt_sched_class)
1589                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1590
1591         rt_queue_push_tasks(rq);
1592 }
1593
1594 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1595                                                    struct rt_rq *rt_rq)
1596 {
1597         struct rt_prio_array *array = &rt_rq->active;
1598         struct sched_rt_entity *next = NULL;
1599         struct list_head *queue;
1600         int idx;
1601
1602         idx = sched_find_first_bit(array->bitmap);
1603         BUG_ON(idx >= MAX_RT_PRIO);
1604
1605         queue = array->queue + idx;
1606         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1607
1608         return next;
1609 }
1610
1611 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1612 {
1613         struct sched_rt_entity *rt_se;
1614         struct rt_rq *rt_rq  = &rq->rt;
1615
1616         do {
1617                 rt_se = pick_next_rt_entity(rq, rt_rq);
1618                 BUG_ON(!rt_se);
1619                 rt_rq = group_rt_rq(rt_se);
1620         } while (rt_rq);
1621
1622         return rt_task_of(rt_se);
1623 }
1624
1625 static struct task_struct *pick_next_task_rt(struct rq *rq)
1626 {
1627         struct task_struct *p;
1628
1629         if (!sched_rt_runnable(rq))
1630                 return NULL;
1631
1632         p = _pick_next_task_rt(rq);
1633         set_next_task_rt(rq, p, true);
1634         return p;
1635 }
1636
1637 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1638 {
1639         update_curr_rt(rq);
1640
1641         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1642
1643         /*
1644          * The previous task needs to be made eligible for pushing
1645          * if it is still active
1646          */
1647         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1648                 enqueue_pushable_task(rq, p);
1649 }
1650
1651 #ifdef CONFIG_SMP
1652
1653 /* Only try algorithms three times */
1654 #define RT_MAX_TRIES 3
1655
1656 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1657 {
1658         if (!task_running(rq, p) &&
1659             cpumask_test_cpu(cpu, p->cpus_ptr))
1660                 return 1;
1661
1662         return 0;
1663 }
1664
1665 /*
1666  * Return the highest pushable rq's task, which is suitable to be executed
1667  * on the CPU, NULL otherwise
1668  */
1669 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1670 {
1671         struct plist_head *head = &rq->rt.pushable_tasks;
1672         struct task_struct *p;
1673
1674         if (!has_pushable_tasks(rq))
1675                 return NULL;
1676
1677         plist_for_each_entry(p, head, pushable_tasks) {
1678                 if (pick_rt_task(rq, p, cpu))
1679                         return p;
1680         }
1681
1682         return NULL;
1683 }
1684
1685 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1686
1687 static int find_lowest_rq(struct task_struct *task)
1688 {
1689         struct sched_domain *sd;
1690         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1691         int this_cpu = smp_processor_id();
1692         int cpu      = task_cpu(task);
1693         int ret;
1694
1695         /* Make sure the mask is initialized first */
1696         if (unlikely(!lowest_mask))
1697                 return -1;
1698
1699         if (task->nr_cpus_allowed == 1)
1700                 return -1; /* No other targets possible */
1701
1702         /*
1703          * If we're on asym system ensure we consider the different capacities
1704          * of the CPUs when searching for the lowest_mask.
1705          */
1706         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1707
1708                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1709                                           task, lowest_mask,
1710                                           rt_task_fits_capacity);
1711         } else {
1712
1713                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1714                                   task, lowest_mask);
1715         }
1716
1717         if (!ret)
1718                 return -1; /* No targets found */
1719
1720         /*
1721          * At this point we have built a mask of CPUs representing the
1722          * lowest priority tasks in the system.  Now we want to elect
1723          * the best one based on our affinity and topology.
1724          *
1725          * We prioritize the last CPU that the task executed on since
1726          * it is most likely cache-hot in that location.
1727          */
1728         if (cpumask_test_cpu(cpu, lowest_mask))
1729                 return cpu;
1730
1731         /*
1732          * Otherwise, we consult the sched_domains span maps to figure
1733          * out which CPU is logically closest to our hot cache data.
1734          */
1735         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1736                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1737
1738         rcu_read_lock();
1739         for_each_domain(cpu, sd) {
1740                 if (sd->flags & SD_WAKE_AFFINE) {
1741                         int best_cpu;
1742
1743                         /*
1744                          * "this_cpu" is cheaper to preempt than a
1745                          * remote processor.
1746                          */
1747                         if (this_cpu != -1 &&
1748                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1749                                 rcu_read_unlock();
1750                                 return this_cpu;
1751                         }
1752
1753                         best_cpu = cpumask_first_and(lowest_mask,
1754                                                      sched_domain_span(sd));
1755                         if (best_cpu < nr_cpu_ids) {
1756                                 rcu_read_unlock();
1757                                 return best_cpu;
1758                         }
1759                 }
1760         }
1761         rcu_read_unlock();
1762
1763         /*
1764          * And finally, if there were no matches within the domains
1765          * just give the caller *something* to work with from the compatible
1766          * locations.
1767          */
1768         if (this_cpu != -1)
1769                 return this_cpu;
1770
1771         cpu = cpumask_any(lowest_mask);
1772         if (cpu < nr_cpu_ids)
1773                 return cpu;
1774
1775         return -1;
1776 }
1777
1778 /* Will lock the rq it finds */
1779 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1780 {
1781         struct rq *lowest_rq = NULL;
1782         int tries;
1783         int cpu;
1784
1785         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1786                 cpu = find_lowest_rq(task);
1787
1788                 if ((cpu == -1) || (cpu == rq->cpu))
1789                         break;
1790
1791                 lowest_rq = cpu_rq(cpu);
1792
1793                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1794                         /*
1795                          * Target rq has tasks of equal or higher priority,
1796                          * retrying does not release any lock and is unlikely
1797                          * to yield a different result.
1798                          */
1799                         lowest_rq = NULL;
1800                         break;
1801                 }
1802
1803                 /* if the prio of this runqueue changed, try again */
1804                 if (double_lock_balance(rq, lowest_rq)) {
1805                         /*
1806                          * We had to unlock the run queue. In
1807                          * the mean time, task could have
1808                          * migrated already or had its affinity changed.
1809                          * Also make sure that it wasn't scheduled on its rq.
1810                          */
1811                         if (unlikely(task_rq(task) != rq ||
1812                                      !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1813                                      task_running(rq, task) ||
1814                                      !rt_task(task) ||
1815                                      !task_on_rq_queued(task))) {
1816
1817                                 double_unlock_balance(rq, lowest_rq);
1818                                 lowest_rq = NULL;
1819                                 break;
1820                         }
1821                 }
1822
1823                 /* If this rq is still suitable use it. */
1824                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1825                         break;
1826
1827                 /* try again */
1828                 double_unlock_balance(rq, lowest_rq);
1829                 lowest_rq = NULL;
1830         }
1831
1832         return lowest_rq;
1833 }
1834
1835 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1836 {
1837         struct task_struct *p;
1838
1839         if (!has_pushable_tasks(rq))
1840                 return NULL;
1841
1842         p = plist_first_entry(&rq->rt.pushable_tasks,
1843                               struct task_struct, pushable_tasks);
1844
1845         BUG_ON(rq->cpu != task_cpu(p));
1846         BUG_ON(task_current(rq, p));
1847         BUG_ON(p->nr_cpus_allowed <= 1);
1848
1849         BUG_ON(!task_on_rq_queued(p));
1850         BUG_ON(!rt_task(p));
1851
1852         return p;
1853 }
1854
1855 /*
1856  * If the current CPU has more than one RT task, see if the non
1857  * running task can migrate over to a CPU that is running a task
1858  * of lesser priority.
1859  */
1860 static int push_rt_task(struct rq *rq)
1861 {
1862         struct task_struct *next_task;
1863         struct rq *lowest_rq;
1864         int ret = 0;
1865
1866         if (!rq->rt.overloaded)
1867                 return 0;
1868
1869         next_task = pick_next_pushable_task(rq);
1870         if (!next_task)
1871                 return 0;
1872
1873 retry:
1874         if (WARN_ON(next_task == rq->curr))
1875                 return 0;
1876
1877         /*
1878          * It's possible that the next_task slipped in of
1879          * higher priority than current. If that's the case
1880          * just reschedule current.
1881          */
1882         if (unlikely(next_task->prio < rq->curr->prio)) {
1883                 resched_curr(rq);
1884                 return 0;
1885         }
1886
1887         /* We might release rq lock */
1888         get_task_struct(next_task);
1889
1890         /* find_lock_lowest_rq locks the rq if found */
1891         lowest_rq = find_lock_lowest_rq(next_task, rq);
1892         if (!lowest_rq) {
1893                 struct task_struct *task;
1894                 /*
1895                  * find_lock_lowest_rq releases rq->lock
1896                  * so it is possible that next_task has migrated.
1897                  *
1898                  * We need to make sure that the task is still on the same
1899                  * run-queue and is also still the next task eligible for
1900                  * pushing.
1901                  */
1902                 task = pick_next_pushable_task(rq);
1903                 if (task == next_task) {
1904                         /*
1905                          * The task hasn't migrated, and is still the next
1906                          * eligible task, but we failed to find a run-queue
1907                          * to push it to.  Do not retry in this case, since
1908                          * other CPUs will pull from us when ready.
1909                          */
1910                         goto out;
1911                 }
1912
1913                 if (!task)
1914                         /* No more tasks, just exit */
1915                         goto out;
1916
1917                 /*
1918                  * Something has shifted, try again.
1919                  */
1920                 put_task_struct(next_task);
1921                 next_task = task;
1922                 goto retry;
1923         }
1924
1925         deactivate_task(rq, next_task, 0);
1926         set_task_cpu(next_task, lowest_rq->cpu);
1927         activate_task(lowest_rq, next_task, 0);
1928         ret = 1;
1929
1930         resched_curr(lowest_rq);
1931
1932         double_unlock_balance(rq, lowest_rq);
1933
1934 out:
1935         put_task_struct(next_task);
1936
1937         return ret;
1938 }
1939
1940 static void push_rt_tasks(struct rq *rq)
1941 {
1942         /* push_rt_task will return true if it moved an RT */
1943         while (push_rt_task(rq))
1944                 ;
1945 }
1946
1947 #ifdef HAVE_RT_PUSH_IPI
1948
1949 /*
1950  * When a high priority task schedules out from a CPU and a lower priority
1951  * task is scheduled in, a check is made to see if there's any RT tasks
1952  * on other CPUs that are waiting to run because a higher priority RT task
1953  * is currently running on its CPU. In this case, the CPU with multiple RT
1954  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1955  * up that may be able to run one of its non-running queued RT tasks.
1956  *
1957  * All CPUs with overloaded RT tasks need to be notified as there is currently
1958  * no way to know which of these CPUs have the highest priority task waiting
1959  * to run. Instead of trying to take a spinlock on each of these CPUs,
1960  * which has shown to cause large latency when done on machines with many
1961  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1962  * RT tasks waiting to run.
1963  *
1964  * Just sending an IPI to each of the CPUs is also an issue, as on large
1965  * count CPU machines, this can cause an IPI storm on a CPU, especially
1966  * if its the only CPU with multiple RT tasks queued, and a large number
1967  * of CPUs scheduling a lower priority task at the same time.
1968  *
1969  * Each root domain has its own irq work function that can iterate over
1970  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1971  * tassk must be checked if there's one or many CPUs that are lowering
1972  * their priority, there's a single irq work iterator that will try to
1973  * push off RT tasks that are waiting to run.
1974  *
1975  * When a CPU schedules a lower priority task, it will kick off the
1976  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1977  * As it only takes the first CPU that schedules a lower priority task
1978  * to start the process, the rto_start variable is incremented and if
1979  * the atomic result is one, then that CPU will try to take the rto_lock.
1980  * This prevents high contention on the lock as the process handles all
1981  * CPUs scheduling lower priority tasks.
1982  *
1983  * All CPUs that are scheduling a lower priority task will increment the
1984  * rt_loop_next variable. This will make sure that the irq work iterator
1985  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1986  * priority task, even if the iterator is in the middle of a scan. Incrementing
1987  * the rt_loop_next will cause the iterator to perform another scan.
1988  *
1989  */
1990 static int rto_next_cpu(struct root_domain *rd)
1991 {
1992         int next;
1993         int cpu;
1994
1995         /*
1996          * When starting the IPI RT pushing, the rto_cpu is set to -1,
1997          * rt_next_cpu() will simply return the first CPU found in
1998          * the rto_mask.
1999          *
2000          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2001          * will return the next CPU found in the rto_mask.
2002          *
2003          * If there are no more CPUs left in the rto_mask, then a check is made
2004          * against rto_loop and rto_loop_next. rto_loop is only updated with
2005          * the rto_lock held, but any CPU may increment the rto_loop_next
2006          * without any locking.
2007          */
2008         for (;;) {
2009
2010                 /* When rto_cpu is -1 this acts like cpumask_first() */
2011                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2012
2013                 rd->rto_cpu = cpu;
2014
2015                 if (cpu < nr_cpu_ids)
2016                         return cpu;
2017
2018                 rd->rto_cpu = -1;
2019
2020                 /*
2021                  * ACQUIRE ensures we see the @rto_mask changes
2022                  * made prior to the @next value observed.
2023                  *
2024                  * Matches WMB in rt_set_overload().
2025                  */
2026                 next = atomic_read_acquire(&rd->rto_loop_next);
2027
2028                 if (rd->rto_loop == next)
2029                         break;
2030
2031                 rd->rto_loop = next;
2032         }
2033
2034         return -1;
2035 }
2036
2037 static inline bool rto_start_trylock(atomic_t *v)
2038 {
2039         return !atomic_cmpxchg_acquire(v, 0, 1);
2040 }
2041
2042 static inline void rto_start_unlock(atomic_t *v)
2043 {
2044         atomic_set_release(v, 0);
2045 }
2046
2047 static void tell_cpu_to_push(struct rq *rq)
2048 {
2049         int cpu = -1;
2050
2051         /* Keep the loop going if the IPI is currently active */
2052         atomic_inc(&rq->rd->rto_loop_next);
2053
2054         /* Only one CPU can initiate a loop at a time */
2055         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2056                 return;
2057
2058         raw_spin_lock(&rq->rd->rto_lock);
2059
2060         /*
2061          * The rto_cpu is updated under the lock, if it has a valid CPU
2062          * then the IPI is still running and will continue due to the
2063          * update to loop_next, and nothing needs to be done here.
2064          * Otherwise it is finishing up and an ipi needs to be sent.
2065          */
2066         if (rq->rd->rto_cpu < 0)
2067                 cpu = rto_next_cpu(rq->rd);
2068
2069         raw_spin_unlock(&rq->rd->rto_lock);
2070
2071         rto_start_unlock(&rq->rd->rto_loop_start);
2072
2073         if (cpu >= 0) {
2074                 /* Make sure the rd does not get freed while pushing */
2075                 sched_get_rd(rq->rd);
2076                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2077         }
2078 }
2079
2080 /* Called from hardirq context */
2081 void rto_push_irq_work_func(struct irq_work *work)
2082 {
2083         struct root_domain *rd =
2084                 container_of(work, struct root_domain, rto_push_work);
2085         struct rq *rq;
2086         int cpu;
2087
2088         rq = this_rq();
2089
2090         /*
2091          * We do not need to grab the lock to check for has_pushable_tasks.
2092          * When it gets updated, a check is made if a push is possible.
2093          */
2094         if (has_pushable_tasks(rq)) {
2095                 raw_spin_lock(&rq->lock);
2096                 push_rt_tasks(rq);
2097                 raw_spin_unlock(&rq->lock);
2098         }
2099
2100         raw_spin_lock(&rd->rto_lock);
2101
2102         /* Pass the IPI to the next rt overloaded queue */
2103         cpu = rto_next_cpu(rd);
2104
2105         raw_spin_unlock(&rd->rto_lock);
2106
2107         if (cpu < 0) {
2108                 sched_put_rd(rd);
2109                 return;
2110         }
2111
2112         /* Try the next RT overloaded CPU */
2113         irq_work_queue_on(&rd->rto_push_work, cpu);
2114 }
2115 #endif /* HAVE_RT_PUSH_IPI */
2116
2117 static void pull_rt_task(struct rq *this_rq)
2118 {
2119         int this_cpu = this_rq->cpu, cpu;
2120         bool resched = false;
2121         struct task_struct *p;
2122         struct rq *src_rq;
2123         int rt_overload_count = rt_overloaded(this_rq);
2124
2125         if (likely(!rt_overload_count))
2126                 return;
2127
2128         /*
2129          * Match the barrier from rt_set_overloaded; this guarantees that if we
2130          * see overloaded we must also see the rto_mask bit.
2131          */
2132         smp_rmb();
2133
2134         /* If we are the only overloaded CPU do nothing */
2135         if (rt_overload_count == 1 &&
2136             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2137                 return;
2138
2139 #ifdef HAVE_RT_PUSH_IPI
2140         if (sched_feat(RT_PUSH_IPI)) {
2141                 tell_cpu_to_push(this_rq);
2142                 return;
2143         }
2144 #endif
2145
2146         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2147                 if (this_cpu == cpu)
2148                         continue;
2149
2150                 src_rq = cpu_rq(cpu);
2151
2152                 /*
2153                  * Don't bother taking the src_rq->lock if the next highest
2154                  * task is known to be lower-priority than our current task.
2155                  * This may look racy, but if this value is about to go
2156                  * logically higher, the src_rq will push this task away.
2157                  * And if its going logically lower, we do not care
2158                  */
2159                 if (src_rq->rt.highest_prio.next >=
2160                     this_rq->rt.highest_prio.curr)
2161                         continue;
2162
2163                 /*
2164                  * We can potentially drop this_rq's lock in
2165                  * double_lock_balance, and another CPU could
2166                  * alter this_rq
2167                  */
2168                 double_lock_balance(this_rq, src_rq);
2169
2170                 /*
2171                  * We can pull only a task, which is pushable
2172                  * on its rq, and no others.
2173                  */
2174                 p = pick_highest_pushable_task(src_rq, this_cpu);
2175
2176                 /*
2177                  * Do we have an RT task that preempts
2178                  * the to-be-scheduled task?
2179                  */
2180                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2181                         WARN_ON(p == src_rq->curr);
2182                         WARN_ON(!task_on_rq_queued(p));
2183
2184                         /*
2185                          * There's a chance that p is higher in priority
2186                          * than what's currently running on its CPU.
2187                          * This is just that p is wakeing up and hasn't
2188                          * had a chance to schedule. We only pull
2189                          * p if it is lower in priority than the
2190                          * current task on the run queue
2191                          */
2192                         if (p->prio < src_rq->curr->prio)
2193                                 goto skip;
2194
2195                         resched = true;
2196
2197                         deactivate_task(src_rq, p, 0);
2198                         set_task_cpu(p, this_cpu);
2199                         activate_task(this_rq, p, 0);
2200                         /*
2201                          * We continue with the search, just in
2202                          * case there's an even higher prio task
2203                          * in another runqueue. (low likelihood
2204                          * but possible)
2205                          */
2206                 }
2207 skip:
2208                 double_unlock_balance(this_rq, src_rq);
2209         }
2210
2211         if (resched)
2212                 resched_curr(this_rq);
2213 }
2214
2215 /*
2216  * If we are not running and we are not going to reschedule soon, we should
2217  * try to push tasks away now
2218  */
2219 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2220 {
2221         bool need_to_push = !task_running(rq, p) &&
2222                             !test_tsk_need_resched(rq->curr) &&
2223                             p->nr_cpus_allowed > 1 &&
2224                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2225                             (rq->curr->nr_cpus_allowed < 2 ||
2226                              rq->curr->prio <= p->prio);
2227
2228         if (need_to_push)
2229                 push_rt_tasks(rq);
2230 }
2231
2232 /* Assumes rq->lock is held */
2233 static void rq_online_rt(struct rq *rq)
2234 {
2235         if (rq->rt.overloaded)
2236                 rt_set_overload(rq);
2237
2238         __enable_runtime(rq);
2239
2240         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2241 }
2242
2243 /* Assumes rq->lock is held */
2244 static void rq_offline_rt(struct rq *rq)
2245 {
2246         if (rq->rt.overloaded)
2247                 rt_clear_overload(rq);
2248
2249         __disable_runtime(rq);
2250
2251         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2252 }
2253
2254 /*
2255  * When switch from the rt queue, we bring ourselves to a position
2256  * that we might want to pull RT tasks from other runqueues.
2257  */
2258 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2259 {
2260         /*
2261          * If there are other RT tasks then we will reschedule
2262          * and the scheduling of the other RT tasks will handle
2263          * the balancing. But if we are the last RT task
2264          * we may need to handle the pulling of RT tasks
2265          * now.
2266          */
2267         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2268                 return;
2269
2270         rt_queue_pull_task(rq);
2271 }
2272
2273 void __init init_sched_rt_class(void)
2274 {
2275         unsigned int i;
2276
2277         for_each_possible_cpu(i) {
2278                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2279                                         GFP_KERNEL, cpu_to_node(i));
2280         }
2281 }
2282 #endif /* CONFIG_SMP */
2283
2284 /*
2285  * When switching a task to RT, we may overload the runqueue
2286  * with RT tasks. In this case we try to push them off to
2287  * other runqueues.
2288  */
2289 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2290 {
2291         /*
2292          * If we are already running, then there's nothing
2293          * that needs to be done. But if we are not running
2294          * we may need to preempt the current running task.
2295          * If that current running task is also an RT task
2296          * then see if we can move to another run queue.
2297          */
2298         if (task_on_rq_queued(p) && rq->curr != p) {
2299 #ifdef CONFIG_SMP
2300                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2301                         rt_queue_push_tasks(rq);
2302 #endif /* CONFIG_SMP */
2303                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2304                         resched_curr(rq);
2305         }
2306 }
2307
2308 /*
2309  * Priority of the task has changed. This may cause
2310  * us to initiate a push or pull.
2311  */
2312 static void
2313 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2314 {
2315         if (!task_on_rq_queued(p))
2316                 return;
2317
2318         if (rq->curr == p) {
2319 #ifdef CONFIG_SMP
2320                 /*
2321                  * If our priority decreases while running, we
2322                  * may need to pull tasks to this runqueue.
2323                  */
2324                 if (oldprio < p->prio)
2325                         rt_queue_pull_task(rq);
2326
2327                 /*
2328                  * If there's a higher priority task waiting to run
2329                  * then reschedule.
2330                  */
2331                 if (p->prio > rq->rt.highest_prio.curr)
2332                         resched_curr(rq);
2333 #else
2334                 /* For UP simply resched on drop of prio */
2335                 if (oldprio < p->prio)
2336                         resched_curr(rq);
2337 #endif /* CONFIG_SMP */
2338         } else {
2339                 /*
2340                  * This task is not running, but if it is
2341                  * greater than the current running task
2342                  * then reschedule.
2343                  */
2344                 if (p->prio < rq->curr->prio)
2345                         resched_curr(rq);
2346         }
2347 }
2348
2349 #ifdef CONFIG_POSIX_TIMERS
2350 static void watchdog(struct rq *rq, struct task_struct *p)
2351 {
2352         unsigned long soft, hard;
2353
2354         /* max may change after cur was read, this will be fixed next tick */
2355         soft = task_rlimit(p, RLIMIT_RTTIME);
2356         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2357
2358         if (soft != RLIM_INFINITY) {
2359                 unsigned long next;
2360
2361                 if (p->rt.watchdog_stamp != jiffies) {
2362                         p->rt.timeout++;
2363                         p->rt.watchdog_stamp = jiffies;
2364                 }
2365
2366                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2367                 if (p->rt.timeout > next) {
2368                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2369                                                     p->se.sum_exec_runtime);
2370                 }
2371         }
2372 }
2373 #else
2374 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2375 #endif
2376
2377 /*
2378  * scheduler tick hitting a task of our scheduling class.
2379  *
2380  * NOTE: This function can be called remotely by the tick offload that
2381  * goes along full dynticks. Therefore no local assumption can be made
2382  * and everything must be accessed through the @rq and @curr passed in
2383  * parameters.
2384  */
2385 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2386 {
2387         struct sched_rt_entity *rt_se = &p->rt;
2388
2389         update_curr_rt(rq);
2390         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2391
2392         watchdog(rq, p);
2393
2394         /*
2395          * RR tasks need a special form of timeslice management.
2396          * FIFO tasks have no timeslices.
2397          */
2398         if (p->policy != SCHED_RR)
2399                 return;
2400
2401         if (--p->rt.time_slice)
2402                 return;
2403
2404         p->rt.time_slice = sched_rr_timeslice;
2405
2406         /*
2407          * Requeue to the end of queue if we (and all of our ancestors) are not
2408          * the only element on the queue
2409          */
2410         for_each_sched_rt_entity(rt_se) {
2411                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2412                         requeue_task_rt(rq, p, 0);
2413                         resched_curr(rq);
2414                         return;
2415                 }
2416         }
2417 }
2418
2419 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2420 {
2421         /*
2422          * Time slice is 0 for SCHED_FIFO tasks
2423          */
2424         if (task->policy == SCHED_RR)
2425                 return sched_rr_timeslice;
2426         else
2427                 return 0;
2428 }
2429
2430 const struct sched_class rt_sched_class = {
2431         .next                   = &fair_sched_class,
2432         .enqueue_task           = enqueue_task_rt,
2433         .dequeue_task           = dequeue_task_rt,
2434         .yield_task             = yield_task_rt,
2435
2436         .check_preempt_curr     = check_preempt_curr_rt,
2437
2438         .pick_next_task         = pick_next_task_rt,
2439         .put_prev_task          = put_prev_task_rt,
2440         .set_next_task          = set_next_task_rt,
2441
2442 #ifdef CONFIG_SMP
2443         .balance                = balance_rt,
2444         .select_task_rq         = select_task_rq_rt,
2445         .set_cpus_allowed       = set_cpus_allowed_common,
2446         .rq_online              = rq_online_rt,
2447         .rq_offline             = rq_offline_rt,
2448         .task_woken             = task_woken_rt,
2449         .switched_from          = switched_from_rt,
2450 #endif
2451
2452         .task_tick              = task_tick_rt,
2453
2454         .get_rr_interval        = get_rr_interval_rt,
2455
2456         .prio_changed           = prio_changed_rt,
2457         .switched_to            = switched_to_rt,
2458
2459         .update_curr            = update_curr_rt,
2460
2461 #ifdef CONFIG_UCLAMP_TASK
2462         .uclamp_enabled         = 1,
2463 #endif
2464 };
2465
2466 #ifdef CONFIG_RT_GROUP_SCHED
2467 /*
2468  * Ensure that the real time constraints are schedulable.
2469  */
2470 static DEFINE_MUTEX(rt_constraints_mutex);
2471
2472 static inline int tg_has_rt_tasks(struct task_group *tg)
2473 {
2474         struct task_struct *task;
2475         struct css_task_iter it;
2476         int ret = 0;
2477
2478         /*
2479          * Autogroups do not have RT tasks; see autogroup_create().
2480          */
2481         if (task_group_is_autogroup(tg))
2482                 return 0;
2483
2484         css_task_iter_start(&tg->css, 0, &it);
2485         while (!ret && (task = css_task_iter_next(&it)))
2486                 ret |= rt_task(task);
2487         css_task_iter_end(&it);
2488
2489         return ret;
2490 }
2491
2492 struct rt_schedulable_data {
2493         struct task_group *tg;
2494         u64 rt_period;
2495         u64 rt_runtime;
2496 };
2497
2498 static int tg_rt_schedulable(struct task_group *tg, void *data)
2499 {
2500         struct rt_schedulable_data *d = data;
2501         struct task_group *child;
2502         unsigned long total, sum = 0;
2503         u64 period, runtime;
2504
2505         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2506         runtime = tg->rt_bandwidth.rt_runtime;
2507
2508         if (tg == d->tg) {
2509                 period = d->rt_period;
2510                 runtime = d->rt_runtime;
2511         }
2512
2513         /*
2514          * Cannot have more runtime than the period.
2515          */
2516         if (runtime > period && runtime != RUNTIME_INF)
2517                 return -EINVAL;
2518
2519         /*
2520          * Ensure we don't starve existing RT tasks if runtime turns zero.
2521          */
2522         if (rt_bandwidth_enabled() && !runtime &&
2523             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2524                 return -EBUSY;
2525
2526         total = to_ratio(period, runtime);
2527
2528         /*
2529          * Nobody can have more than the global setting allows.
2530          */
2531         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2532                 return -EINVAL;
2533
2534         /*
2535          * The sum of our children's runtime should not exceed our own.
2536          */
2537         list_for_each_entry_rcu(child, &tg->children, siblings) {
2538                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2539                 runtime = child->rt_bandwidth.rt_runtime;
2540
2541                 if (child == d->tg) {
2542                         period = d->rt_period;
2543                         runtime = d->rt_runtime;
2544                 }
2545
2546                 sum += to_ratio(period, runtime);
2547         }
2548
2549         if (sum > total)
2550                 return -EINVAL;
2551
2552         return 0;
2553 }
2554
2555 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2556 {
2557         int ret;
2558
2559         struct rt_schedulable_data data = {
2560                 .tg = tg,
2561                 .rt_period = period,
2562                 .rt_runtime = runtime,
2563         };
2564
2565         rcu_read_lock();
2566         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2567         rcu_read_unlock();
2568
2569         return ret;
2570 }
2571
2572 static int tg_set_rt_bandwidth(struct task_group *tg,
2573                 u64 rt_period, u64 rt_runtime)
2574 {
2575         int i, err = 0;
2576
2577         /*
2578          * Disallowing the root group RT runtime is BAD, it would disallow the
2579          * kernel creating (and or operating) RT threads.
2580          */
2581         if (tg == &root_task_group && rt_runtime == 0)
2582                 return -EINVAL;
2583
2584         /* No period doesn't make any sense. */
2585         if (rt_period == 0)
2586                 return -EINVAL;
2587
2588         mutex_lock(&rt_constraints_mutex);
2589         err = __rt_schedulable(tg, rt_period, rt_runtime);
2590         if (err)
2591                 goto unlock;
2592
2593         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2594         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2595         tg->rt_bandwidth.rt_runtime = rt_runtime;
2596
2597         for_each_possible_cpu(i) {
2598                 struct rt_rq *rt_rq = tg->rt_rq[i];
2599
2600                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2601                 rt_rq->rt_runtime = rt_runtime;
2602                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2603         }
2604         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2605 unlock:
2606         mutex_unlock(&rt_constraints_mutex);
2607
2608         return err;
2609 }
2610
2611 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2612 {
2613         u64 rt_runtime, rt_period;
2614
2615         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2616         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2617         if (rt_runtime_us < 0)
2618                 rt_runtime = RUNTIME_INF;
2619         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2620                 return -EINVAL;
2621
2622         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2623 }
2624
2625 long sched_group_rt_runtime(struct task_group *tg)
2626 {
2627         u64 rt_runtime_us;
2628
2629         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2630                 return -1;
2631
2632         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2633         do_div(rt_runtime_us, NSEC_PER_USEC);
2634         return rt_runtime_us;
2635 }
2636
2637 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2638 {
2639         u64 rt_runtime, rt_period;
2640
2641         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2642                 return -EINVAL;
2643
2644         rt_period = rt_period_us * NSEC_PER_USEC;
2645         rt_runtime = tg->rt_bandwidth.rt_runtime;
2646
2647         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2648 }
2649
2650 long sched_group_rt_period(struct task_group *tg)
2651 {
2652         u64 rt_period_us;
2653
2654         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2655         do_div(rt_period_us, NSEC_PER_USEC);
2656         return rt_period_us;
2657 }
2658
2659 static int sched_rt_global_constraints(void)
2660 {
2661         int ret = 0;
2662
2663         mutex_lock(&rt_constraints_mutex);
2664         ret = __rt_schedulable(NULL, 0, 0);
2665         mutex_unlock(&rt_constraints_mutex);
2666
2667         return ret;
2668 }
2669
2670 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2671 {
2672         /* Don't accept realtime tasks when there is no way for them to run */
2673         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2674                 return 0;
2675
2676         return 1;
2677 }
2678
2679 #else /* !CONFIG_RT_GROUP_SCHED */
2680 static int sched_rt_global_constraints(void)
2681 {
2682         unsigned long flags;
2683         int i;
2684
2685         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2686         for_each_possible_cpu(i) {
2687                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2688
2689                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2690                 rt_rq->rt_runtime = global_rt_runtime();
2691                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2692         }
2693         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2694
2695         return 0;
2696 }
2697 #endif /* CONFIG_RT_GROUP_SCHED */
2698
2699 static int sched_rt_global_validate(void)
2700 {
2701         if (sysctl_sched_rt_period <= 0)
2702                 return -EINVAL;
2703
2704         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2705                 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2706                 return -EINVAL;
2707
2708         return 0;
2709 }
2710
2711 static void sched_rt_do_global(void)
2712 {
2713         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2714         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2715 }
2716
2717 int sched_rt_handler(struct ctl_table *table, int write,
2718                 void __user *buffer, size_t *lenp,
2719                 loff_t *ppos)
2720 {
2721         int old_period, old_runtime;
2722         static DEFINE_MUTEX(mutex);
2723         int ret;
2724
2725         mutex_lock(&mutex);
2726         old_period = sysctl_sched_rt_period;
2727         old_runtime = sysctl_sched_rt_runtime;
2728
2729         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2730
2731         if (!ret && write) {
2732                 ret = sched_rt_global_validate();
2733                 if (ret)
2734                         goto undo;
2735
2736                 ret = sched_dl_global_validate();
2737                 if (ret)
2738                         goto undo;
2739
2740                 ret = sched_rt_global_constraints();
2741                 if (ret)
2742                         goto undo;
2743
2744                 sched_rt_do_global();
2745                 sched_dl_do_global();
2746         }
2747         if (0) {
2748 undo:
2749                 sysctl_sched_rt_period = old_period;
2750                 sysctl_sched_rt_runtime = old_runtime;
2751         }
2752         mutex_unlock(&mutex);
2753
2754         return ret;
2755 }
2756
2757 int sched_rr_handler(struct ctl_table *table, int write,
2758                 void __user *buffer, size_t *lenp,
2759                 loff_t *ppos)
2760 {
2761         int ret;
2762         static DEFINE_MUTEX(mutex);
2763
2764         mutex_lock(&mutex);
2765         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2766         /*
2767          * Make sure that internally we keep jiffies.
2768          * Also, writing zero resets the timeslice to default:
2769          */
2770         if (!ret && write) {
2771                 sched_rr_timeslice =
2772                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2773                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2774         }
2775         mutex_unlock(&mutex);
2776
2777         return ret;
2778 }
2779
2780 #ifdef CONFIG_SCHED_DEBUG
2781 void print_rt_stats(struct seq_file *m, int cpu)
2782 {
2783         rt_rq_iter_t iter;
2784         struct rt_rq *rt_rq;
2785
2786         rcu_read_lock();
2787         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2788                 print_rt_rq(m, cpu, rt_rq);
2789         rcu_read_unlock();
2790 }
2791 #endif /* CONFIG_SCHED_DEBUG */