sched: Move all scheduler bits into kernel/sched/
[linux-2.6-block.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11
12 struct rt_bandwidth def_rt_bandwidth;
13
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15 {
16         struct rt_bandwidth *rt_b =
17                 container_of(timer, struct rt_bandwidth, rt_period_timer);
18         ktime_t now;
19         int overrun;
20         int idle = 0;
21
22         for (;;) {
23                 now = hrtimer_cb_get_time(timer);
24                 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25
26                 if (!overrun)
27                         break;
28
29                 idle = do_sched_rt_period_timer(rt_b, overrun);
30         }
31
32         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33 }
34
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36 {
37         rt_b->rt_period = ns_to_ktime(period);
38         rt_b->rt_runtime = runtime;
39
40         raw_spin_lock_init(&rt_b->rt_runtime_lock);
41
42         hrtimer_init(&rt_b->rt_period_timer,
43                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44         rt_b->rt_period_timer.function = sched_rt_period_timer;
45 }
46
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48 {
49         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50                 return;
51
52         if (hrtimer_active(&rt_b->rt_period_timer))
53                 return;
54
55         raw_spin_lock(&rt_b->rt_runtime_lock);
56         start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57         raw_spin_unlock(&rt_b->rt_runtime_lock);
58 }
59
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61 {
62         struct rt_prio_array *array;
63         int i;
64
65         array = &rt_rq->active;
66         for (i = 0; i < MAX_RT_PRIO; i++) {
67                 INIT_LIST_HEAD(array->queue + i);
68                 __clear_bit(i, array->bitmap);
69         }
70         /* delimiter for bitsearch: */
71         __set_bit(MAX_RT_PRIO, array->bitmap);
72
73 #if defined CONFIG_SMP
74         rt_rq->highest_prio.curr = MAX_RT_PRIO;
75         rt_rq->highest_prio.next = MAX_RT_PRIO;
76         rt_rq->rt_nr_migratory = 0;
77         rt_rq->overloaded = 0;
78         plist_head_init(&rt_rq->pushable_tasks);
79 #endif
80
81         rt_rq->rt_time = 0;
82         rt_rq->rt_throttled = 0;
83         rt_rq->rt_runtime = 0;
84         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85 }
86
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89 {
90         hrtimer_cancel(&rt_b->rt_period_timer);
91 }
92
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96 {
97 #ifdef CONFIG_SCHED_DEBUG
98         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100         return container_of(rt_se, struct task_struct, rt);
101 }
102
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104 {
105         return rt_rq->rq;
106 }
107
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109 {
110         return rt_se->rt_rq;
111 }
112
113 void free_rt_sched_group(struct task_group *tg)
114 {
115         int i;
116
117         if (tg->rt_se)
118                 destroy_rt_bandwidth(&tg->rt_bandwidth);
119
120         for_each_possible_cpu(i) {
121                 if (tg->rt_rq)
122                         kfree(tg->rt_rq[i]);
123                 if (tg->rt_se)
124                         kfree(tg->rt_se[i]);
125         }
126
127         kfree(tg->rt_rq);
128         kfree(tg->rt_se);
129 }
130
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132                 struct sched_rt_entity *rt_se, int cpu,
133                 struct sched_rt_entity *parent)
134 {
135         struct rq *rq = cpu_rq(cpu);
136
137         rt_rq->highest_prio.curr = MAX_RT_PRIO;
138         rt_rq->rt_nr_boosted = 0;
139         rt_rq->rq = rq;
140         rt_rq->tg = tg;
141
142         tg->rt_rq[cpu] = rt_rq;
143         tg->rt_se[cpu] = rt_se;
144
145         if (!rt_se)
146                 return;
147
148         if (!parent)
149                 rt_se->rt_rq = &rq->rt;
150         else
151                 rt_se->rt_rq = parent->my_q;
152
153         rt_se->my_q = rt_rq;
154         rt_se->parent = parent;
155         INIT_LIST_HEAD(&rt_se->run_list);
156 }
157
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159 {
160         struct rt_rq *rt_rq;
161         struct sched_rt_entity *rt_se;
162         int i;
163
164         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165         if (!tg->rt_rq)
166                 goto err;
167         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168         if (!tg->rt_se)
169                 goto err;
170
171         init_rt_bandwidth(&tg->rt_bandwidth,
172                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173
174         for_each_possible_cpu(i) {
175                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
176                                      GFP_KERNEL, cpu_to_node(i));
177                 if (!rt_rq)
178                         goto err;
179
180                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181                                      GFP_KERNEL, cpu_to_node(i));
182                 if (!rt_se)
183                         goto err_free_rq;
184
185                 init_rt_rq(rt_rq, cpu_rq(i));
186                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188         }
189
190         return 1;
191
192 err_free_rq:
193         kfree(rt_rq);
194 err:
195         return 0;
196 }
197
198 #else /* CONFIG_RT_GROUP_SCHED */
199
200 #define rt_entity_is_task(rt_se) (1)
201
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203 {
204         return container_of(rt_se, struct task_struct, rt);
205 }
206
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208 {
209         return container_of(rt_rq, struct rq, rt);
210 }
211
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213 {
214         struct task_struct *p = rt_task_of(rt_se);
215         struct rq *rq = task_rq(p);
216
217         return &rq->rt;
218 }
219
220 void free_rt_sched_group(struct task_group *tg) { }
221
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223 {
224         return 1;
225 }
226 #endif /* CONFIG_RT_GROUP_SCHED */
227
228 #ifdef CONFIG_SMP
229
230 static inline int rt_overloaded(struct rq *rq)
231 {
232         return atomic_read(&rq->rd->rto_count);
233 }
234
235 static inline void rt_set_overload(struct rq *rq)
236 {
237         if (!rq->online)
238                 return;
239
240         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
241         /*
242          * Make sure the mask is visible before we set
243          * the overload count. That is checked to determine
244          * if we should look at the mask. It would be a shame
245          * if we looked at the mask, but the mask was not
246          * updated yet.
247          */
248         wmb();
249         atomic_inc(&rq->rd->rto_count);
250 }
251
252 static inline void rt_clear_overload(struct rq *rq)
253 {
254         if (!rq->online)
255                 return;
256
257         /* the order here really doesn't matter */
258         atomic_dec(&rq->rd->rto_count);
259         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
260 }
261
262 static void update_rt_migration(struct rt_rq *rt_rq)
263 {
264         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265                 if (!rt_rq->overloaded) {
266                         rt_set_overload(rq_of_rt_rq(rt_rq));
267                         rt_rq->overloaded = 1;
268                 }
269         } else if (rt_rq->overloaded) {
270                 rt_clear_overload(rq_of_rt_rq(rt_rq));
271                 rt_rq->overloaded = 0;
272         }
273 }
274
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277         if (!rt_entity_is_task(rt_se))
278                 return;
279
280         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
281
282         rt_rq->rt_nr_total++;
283         if (rt_se->nr_cpus_allowed > 1)
284                 rt_rq->rt_nr_migratory++;
285
286         update_rt_migration(rt_rq);
287 }
288
289 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
290 {
291         if (!rt_entity_is_task(rt_se))
292                 return;
293
294         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
295
296         rt_rq->rt_nr_total--;
297         if (rt_se->nr_cpus_allowed > 1)
298                 rt_rq->rt_nr_migratory--;
299
300         update_rt_migration(rt_rq);
301 }
302
303 static inline int has_pushable_tasks(struct rq *rq)
304 {
305         return !plist_head_empty(&rq->rt.pushable_tasks);
306 }
307
308 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
309 {
310         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
311         plist_node_init(&p->pushable_tasks, p->prio);
312         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
313
314         /* Update the highest prio pushable task */
315         if (p->prio < rq->rt.highest_prio.next)
316                 rq->rt.highest_prio.next = p->prio;
317 }
318
319 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
320 {
321         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
322
323         /* Update the new highest prio pushable task */
324         if (has_pushable_tasks(rq)) {
325                 p = plist_first_entry(&rq->rt.pushable_tasks,
326                                       struct task_struct, pushable_tasks);
327                 rq->rt.highest_prio.next = p->prio;
328         } else
329                 rq->rt.highest_prio.next = MAX_RT_PRIO;
330 }
331
332 #else
333
334 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
335 {
336 }
337
338 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
339 {
340 }
341
342 static inline
343 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345 }
346
347 static inline
348 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
349 {
350 }
351
352 #endif /* CONFIG_SMP */
353
354 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
355 {
356         return !list_empty(&rt_se->run_list);
357 }
358
359 #ifdef CONFIG_RT_GROUP_SCHED
360
361 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
362 {
363         if (!rt_rq->tg)
364                 return RUNTIME_INF;
365
366         return rt_rq->rt_runtime;
367 }
368
369 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
370 {
371         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
372 }
373
374 typedef struct task_group *rt_rq_iter_t;
375
376 static inline struct task_group *next_task_group(struct task_group *tg)
377 {
378         do {
379                 tg = list_entry_rcu(tg->list.next,
380                         typeof(struct task_group), list);
381         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
382
383         if (&tg->list == &task_groups)
384                 tg = NULL;
385
386         return tg;
387 }
388
389 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
390         for (iter = container_of(&task_groups, typeof(*iter), list);    \
391                 (iter = next_task_group(iter)) &&                       \
392                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
393
394 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
395 {
396         list_add_rcu(&rt_rq->leaf_rt_rq_list,
397                         &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
398 }
399
400 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
401 {
402         list_del_rcu(&rt_rq->leaf_rt_rq_list);
403 }
404
405 #define for_each_leaf_rt_rq(rt_rq, rq) \
406         list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
407
408 #define for_each_sched_rt_entity(rt_se) \
409         for (; rt_se; rt_se = rt_se->parent)
410
411 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
412 {
413         return rt_se->my_q;
414 }
415
416 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
417 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
418
419 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
420 {
421         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
422         struct sched_rt_entity *rt_se;
423
424         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
425
426         rt_se = rt_rq->tg->rt_se[cpu];
427
428         if (rt_rq->rt_nr_running) {
429                 if (rt_se && !on_rt_rq(rt_se))
430                         enqueue_rt_entity(rt_se, false);
431                 if (rt_rq->highest_prio.curr < curr->prio)
432                         resched_task(curr);
433         }
434 }
435
436 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
437 {
438         struct sched_rt_entity *rt_se;
439         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
440
441         rt_se = rt_rq->tg->rt_se[cpu];
442
443         if (rt_se && on_rt_rq(rt_se))
444                 dequeue_rt_entity(rt_se);
445 }
446
447 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
448 {
449         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
450 }
451
452 static int rt_se_boosted(struct sched_rt_entity *rt_se)
453 {
454         struct rt_rq *rt_rq = group_rt_rq(rt_se);
455         struct task_struct *p;
456
457         if (rt_rq)
458                 return !!rt_rq->rt_nr_boosted;
459
460         p = rt_task_of(rt_se);
461         return p->prio != p->normal_prio;
462 }
463
464 #ifdef CONFIG_SMP
465 static inline const struct cpumask *sched_rt_period_mask(void)
466 {
467         return cpu_rq(smp_processor_id())->rd->span;
468 }
469 #else
470 static inline const struct cpumask *sched_rt_period_mask(void)
471 {
472         return cpu_online_mask;
473 }
474 #endif
475
476 static inline
477 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
478 {
479         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
480 }
481
482 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
483 {
484         return &rt_rq->tg->rt_bandwidth;
485 }
486
487 #else /* !CONFIG_RT_GROUP_SCHED */
488
489 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
490 {
491         return rt_rq->rt_runtime;
492 }
493
494 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
495 {
496         return ktime_to_ns(def_rt_bandwidth.rt_period);
497 }
498
499 typedef struct rt_rq *rt_rq_iter_t;
500
501 #define for_each_rt_rq(rt_rq, iter, rq) \
502         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
503
504 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
505 {
506 }
507
508 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
509 {
510 }
511
512 #define for_each_leaf_rt_rq(rt_rq, rq) \
513         for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
514
515 #define for_each_sched_rt_entity(rt_se) \
516         for (; rt_se; rt_se = NULL)
517
518 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
519 {
520         return NULL;
521 }
522
523 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
524 {
525         if (rt_rq->rt_nr_running)
526                 resched_task(rq_of_rt_rq(rt_rq)->curr);
527 }
528
529 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
530 {
531 }
532
533 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
534 {
535         return rt_rq->rt_throttled;
536 }
537
538 static inline const struct cpumask *sched_rt_period_mask(void)
539 {
540         return cpu_online_mask;
541 }
542
543 static inline
544 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
545 {
546         return &cpu_rq(cpu)->rt;
547 }
548
549 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
550 {
551         return &def_rt_bandwidth;
552 }
553
554 #endif /* CONFIG_RT_GROUP_SCHED */
555
556 #ifdef CONFIG_SMP
557 /*
558  * We ran out of runtime, see if we can borrow some from our neighbours.
559  */
560 static int do_balance_runtime(struct rt_rq *rt_rq)
561 {
562         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
563         struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
564         int i, weight, more = 0;
565         u64 rt_period;
566
567         weight = cpumask_weight(rd->span);
568
569         raw_spin_lock(&rt_b->rt_runtime_lock);
570         rt_period = ktime_to_ns(rt_b->rt_period);
571         for_each_cpu(i, rd->span) {
572                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
573                 s64 diff;
574
575                 if (iter == rt_rq)
576                         continue;
577
578                 raw_spin_lock(&iter->rt_runtime_lock);
579                 /*
580                  * Either all rqs have inf runtime and there's nothing to steal
581                  * or __disable_runtime() below sets a specific rq to inf to
582                  * indicate its been disabled and disalow stealing.
583                  */
584                 if (iter->rt_runtime == RUNTIME_INF)
585                         goto next;
586
587                 /*
588                  * From runqueues with spare time, take 1/n part of their
589                  * spare time, but no more than our period.
590                  */
591                 diff = iter->rt_runtime - iter->rt_time;
592                 if (diff > 0) {
593                         diff = div_u64((u64)diff, weight);
594                         if (rt_rq->rt_runtime + diff > rt_period)
595                                 diff = rt_period - rt_rq->rt_runtime;
596                         iter->rt_runtime -= diff;
597                         rt_rq->rt_runtime += diff;
598                         more = 1;
599                         if (rt_rq->rt_runtime == rt_period) {
600                                 raw_spin_unlock(&iter->rt_runtime_lock);
601                                 break;
602                         }
603                 }
604 next:
605                 raw_spin_unlock(&iter->rt_runtime_lock);
606         }
607         raw_spin_unlock(&rt_b->rt_runtime_lock);
608
609         return more;
610 }
611
612 /*
613  * Ensure this RQ takes back all the runtime it lend to its neighbours.
614  */
615 static void __disable_runtime(struct rq *rq)
616 {
617         struct root_domain *rd = rq->rd;
618         rt_rq_iter_t iter;
619         struct rt_rq *rt_rq;
620
621         if (unlikely(!scheduler_running))
622                 return;
623
624         for_each_rt_rq(rt_rq, iter, rq) {
625                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
626                 s64 want;
627                 int i;
628
629                 raw_spin_lock(&rt_b->rt_runtime_lock);
630                 raw_spin_lock(&rt_rq->rt_runtime_lock);
631                 /*
632                  * Either we're all inf and nobody needs to borrow, or we're
633                  * already disabled and thus have nothing to do, or we have
634                  * exactly the right amount of runtime to take out.
635                  */
636                 if (rt_rq->rt_runtime == RUNTIME_INF ||
637                                 rt_rq->rt_runtime == rt_b->rt_runtime)
638                         goto balanced;
639                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
640
641                 /*
642                  * Calculate the difference between what we started out with
643                  * and what we current have, that's the amount of runtime
644                  * we lend and now have to reclaim.
645                  */
646                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
647
648                 /*
649                  * Greedy reclaim, take back as much as we can.
650                  */
651                 for_each_cpu(i, rd->span) {
652                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
653                         s64 diff;
654
655                         /*
656                          * Can't reclaim from ourselves or disabled runqueues.
657                          */
658                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
659                                 continue;
660
661                         raw_spin_lock(&iter->rt_runtime_lock);
662                         if (want > 0) {
663                                 diff = min_t(s64, iter->rt_runtime, want);
664                                 iter->rt_runtime -= diff;
665                                 want -= diff;
666                         } else {
667                                 iter->rt_runtime -= want;
668                                 want -= want;
669                         }
670                         raw_spin_unlock(&iter->rt_runtime_lock);
671
672                         if (!want)
673                                 break;
674                 }
675
676                 raw_spin_lock(&rt_rq->rt_runtime_lock);
677                 /*
678                  * We cannot be left wanting - that would mean some runtime
679                  * leaked out of the system.
680                  */
681                 BUG_ON(want);
682 balanced:
683                 /*
684                  * Disable all the borrow logic by pretending we have inf
685                  * runtime - in which case borrowing doesn't make sense.
686                  */
687                 rt_rq->rt_runtime = RUNTIME_INF;
688                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
689                 raw_spin_unlock(&rt_b->rt_runtime_lock);
690         }
691 }
692
693 static void disable_runtime(struct rq *rq)
694 {
695         unsigned long flags;
696
697         raw_spin_lock_irqsave(&rq->lock, flags);
698         __disable_runtime(rq);
699         raw_spin_unlock_irqrestore(&rq->lock, flags);
700 }
701
702 static void __enable_runtime(struct rq *rq)
703 {
704         rt_rq_iter_t iter;
705         struct rt_rq *rt_rq;
706
707         if (unlikely(!scheduler_running))
708                 return;
709
710         /*
711          * Reset each runqueue's bandwidth settings
712          */
713         for_each_rt_rq(rt_rq, iter, rq) {
714                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
715
716                 raw_spin_lock(&rt_b->rt_runtime_lock);
717                 raw_spin_lock(&rt_rq->rt_runtime_lock);
718                 rt_rq->rt_runtime = rt_b->rt_runtime;
719                 rt_rq->rt_time = 0;
720                 rt_rq->rt_throttled = 0;
721                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
722                 raw_spin_unlock(&rt_b->rt_runtime_lock);
723         }
724 }
725
726 static void enable_runtime(struct rq *rq)
727 {
728         unsigned long flags;
729
730         raw_spin_lock_irqsave(&rq->lock, flags);
731         __enable_runtime(rq);
732         raw_spin_unlock_irqrestore(&rq->lock, flags);
733 }
734
735 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
736 {
737         int cpu = (int)(long)hcpu;
738
739         switch (action) {
740         case CPU_DOWN_PREPARE:
741         case CPU_DOWN_PREPARE_FROZEN:
742                 disable_runtime(cpu_rq(cpu));
743                 return NOTIFY_OK;
744
745         case CPU_DOWN_FAILED:
746         case CPU_DOWN_FAILED_FROZEN:
747         case CPU_ONLINE:
748         case CPU_ONLINE_FROZEN:
749                 enable_runtime(cpu_rq(cpu));
750                 return NOTIFY_OK;
751
752         default:
753                 return NOTIFY_DONE;
754         }
755 }
756
757 static int balance_runtime(struct rt_rq *rt_rq)
758 {
759         int more = 0;
760
761         if (!sched_feat(RT_RUNTIME_SHARE))
762                 return more;
763
764         if (rt_rq->rt_time > rt_rq->rt_runtime) {
765                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
766                 more = do_balance_runtime(rt_rq);
767                 raw_spin_lock(&rt_rq->rt_runtime_lock);
768         }
769
770         return more;
771 }
772 #else /* !CONFIG_SMP */
773 static inline int balance_runtime(struct rt_rq *rt_rq)
774 {
775         return 0;
776 }
777 #endif /* CONFIG_SMP */
778
779 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
780 {
781         int i, idle = 1;
782         const struct cpumask *span;
783
784         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
785                 return 1;
786
787         span = sched_rt_period_mask();
788         for_each_cpu(i, span) {
789                 int enqueue = 0;
790                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
791                 struct rq *rq = rq_of_rt_rq(rt_rq);
792
793                 raw_spin_lock(&rq->lock);
794                 if (rt_rq->rt_time) {
795                         u64 runtime;
796
797                         raw_spin_lock(&rt_rq->rt_runtime_lock);
798                         if (rt_rq->rt_throttled)
799                                 balance_runtime(rt_rq);
800                         runtime = rt_rq->rt_runtime;
801                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
802                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
803                                 rt_rq->rt_throttled = 0;
804                                 enqueue = 1;
805
806                                 /*
807                                  * Force a clock update if the CPU was idle,
808                                  * lest wakeup -> unthrottle time accumulate.
809                                  */
810                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
811                                         rq->skip_clock_update = -1;
812                         }
813                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
814                                 idle = 0;
815                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
816                 } else if (rt_rq->rt_nr_running) {
817                         idle = 0;
818                         if (!rt_rq_throttled(rt_rq))
819                                 enqueue = 1;
820                 }
821
822                 if (enqueue)
823                         sched_rt_rq_enqueue(rt_rq);
824                 raw_spin_unlock(&rq->lock);
825         }
826
827         return idle;
828 }
829
830 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
831 {
832 #ifdef CONFIG_RT_GROUP_SCHED
833         struct rt_rq *rt_rq = group_rt_rq(rt_se);
834
835         if (rt_rq)
836                 return rt_rq->highest_prio.curr;
837 #endif
838
839         return rt_task_of(rt_se)->prio;
840 }
841
842 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
843 {
844         u64 runtime = sched_rt_runtime(rt_rq);
845
846         if (rt_rq->rt_throttled)
847                 return rt_rq_throttled(rt_rq);
848
849         if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
850                 return 0;
851
852         balance_runtime(rt_rq);
853         runtime = sched_rt_runtime(rt_rq);
854         if (runtime == RUNTIME_INF)
855                 return 0;
856
857         if (rt_rq->rt_time > runtime) {
858                 rt_rq->rt_throttled = 1;
859                 printk_once(KERN_WARNING "sched: RT throttling activated\n");
860                 if (rt_rq_throttled(rt_rq)) {
861                         sched_rt_rq_dequeue(rt_rq);
862                         return 1;
863                 }
864         }
865
866         return 0;
867 }
868
869 /*
870  * Update the current task's runtime statistics. Skip current tasks that
871  * are not in our scheduling class.
872  */
873 static void update_curr_rt(struct rq *rq)
874 {
875         struct task_struct *curr = rq->curr;
876         struct sched_rt_entity *rt_se = &curr->rt;
877         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
878         u64 delta_exec;
879
880         if (curr->sched_class != &rt_sched_class)
881                 return;
882
883         delta_exec = rq->clock_task - curr->se.exec_start;
884         if (unlikely((s64)delta_exec < 0))
885                 delta_exec = 0;
886
887         schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
888
889         curr->se.sum_exec_runtime += delta_exec;
890         account_group_exec_runtime(curr, delta_exec);
891
892         curr->se.exec_start = rq->clock_task;
893         cpuacct_charge(curr, delta_exec);
894
895         sched_rt_avg_update(rq, delta_exec);
896
897         if (!rt_bandwidth_enabled())
898                 return;
899
900         for_each_sched_rt_entity(rt_se) {
901                 rt_rq = rt_rq_of_se(rt_se);
902
903                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
904                         raw_spin_lock(&rt_rq->rt_runtime_lock);
905                         rt_rq->rt_time += delta_exec;
906                         if (sched_rt_runtime_exceeded(rt_rq))
907                                 resched_task(curr);
908                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
909                 }
910         }
911 }
912
913 #if defined CONFIG_SMP
914
915 static void
916 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
917 {
918         struct rq *rq = rq_of_rt_rq(rt_rq);
919
920         if (rq->online && prio < prev_prio)
921                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
922 }
923
924 static void
925 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
926 {
927         struct rq *rq = rq_of_rt_rq(rt_rq);
928
929         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
930                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
931 }
932
933 #else /* CONFIG_SMP */
934
935 static inline
936 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
937 static inline
938 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
939
940 #endif /* CONFIG_SMP */
941
942 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
943 static void
944 inc_rt_prio(struct rt_rq *rt_rq, int prio)
945 {
946         int prev_prio = rt_rq->highest_prio.curr;
947
948         if (prio < prev_prio)
949                 rt_rq->highest_prio.curr = prio;
950
951         inc_rt_prio_smp(rt_rq, prio, prev_prio);
952 }
953
954 static void
955 dec_rt_prio(struct rt_rq *rt_rq, int prio)
956 {
957         int prev_prio = rt_rq->highest_prio.curr;
958
959         if (rt_rq->rt_nr_running) {
960
961                 WARN_ON(prio < prev_prio);
962
963                 /*
964                  * This may have been our highest task, and therefore
965                  * we may have some recomputation to do
966                  */
967                 if (prio == prev_prio) {
968                         struct rt_prio_array *array = &rt_rq->active;
969
970                         rt_rq->highest_prio.curr =
971                                 sched_find_first_bit(array->bitmap);
972                 }
973
974         } else
975                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
976
977         dec_rt_prio_smp(rt_rq, prio, prev_prio);
978 }
979
980 #else
981
982 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
983 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
984
985 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
986
987 #ifdef CONFIG_RT_GROUP_SCHED
988
989 static void
990 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
991 {
992         if (rt_se_boosted(rt_se))
993                 rt_rq->rt_nr_boosted++;
994
995         if (rt_rq->tg)
996                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
997 }
998
999 static void
1000 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1001 {
1002         if (rt_se_boosted(rt_se))
1003                 rt_rq->rt_nr_boosted--;
1004
1005         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1006 }
1007
1008 #else /* CONFIG_RT_GROUP_SCHED */
1009
1010 static void
1011 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1012 {
1013         start_rt_bandwidth(&def_rt_bandwidth);
1014 }
1015
1016 static inline
1017 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1018
1019 #endif /* CONFIG_RT_GROUP_SCHED */
1020
1021 static inline
1022 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1023 {
1024         int prio = rt_se_prio(rt_se);
1025
1026         WARN_ON(!rt_prio(prio));
1027         rt_rq->rt_nr_running++;
1028
1029         inc_rt_prio(rt_rq, prio);
1030         inc_rt_migration(rt_se, rt_rq);
1031         inc_rt_group(rt_se, rt_rq);
1032 }
1033
1034 static inline
1035 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1036 {
1037         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1038         WARN_ON(!rt_rq->rt_nr_running);
1039         rt_rq->rt_nr_running--;
1040
1041         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1042         dec_rt_migration(rt_se, rt_rq);
1043         dec_rt_group(rt_se, rt_rq);
1044 }
1045
1046 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1047 {
1048         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1049         struct rt_prio_array *array = &rt_rq->active;
1050         struct rt_rq *group_rq = group_rt_rq(rt_se);
1051         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1052
1053         /*
1054          * Don't enqueue the group if its throttled, or when empty.
1055          * The latter is a consequence of the former when a child group
1056          * get throttled and the current group doesn't have any other
1057          * active members.
1058          */
1059         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1060                 return;
1061
1062         if (!rt_rq->rt_nr_running)
1063                 list_add_leaf_rt_rq(rt_rq);
1064
1065         if (head)
1066                 list_add(&rt_se->run_list, queue);
1067         else
1068                 list_add_tail(&rt_se->run_list, queue);
1069         __set_bit(rt_se_prio(rt_se), array->bitmap);
1070
1071         inc_rt_tasks(rt_se, rt_rq);
1072 }
1073
1074 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1075 {
1076         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1077         struct rt_prio_array *array = &rt_rq->active;
1078
1079         list_del_init(&rt_se->run_list);
1080         if (list_empty(array->queue + rt_se_prio(rt_se)))
1081                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1082
1083         dec_rt_tasks(rt_se, rt_rq);
1084         if (!rt_rq->rt_nr_running)
1085                 list_del_leaf_rt_rq(rt_rq);
1086 }
1087
1088 /*
1089  * Because the prio of an upper entry depends on the lower
1090  * entries, we must remove entries top - down.
1091  */
1092 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1093 {
1094         struct sched_rt_entity *back = NULL;
1095
1096         for_each_sched_rt_entity(rt_se) {
1097                 rt_se->back = back;
1098                 back = rt_se;
1099         }
1100
1101         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1102                 if (on_rt_rq(rt_se))
1103                         __dequeue_rt_entity(rt_se);
1104         }
1105 }
1106
1107 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1108 {
1109         dequeue_rt_stack(rt_se);
1110         for_each_sched_rt_entity(rt_se)
1111                 __enqueue_rt_entity(rt_se, head);
1112 }
1113
1114 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1115 {
1116         dequeue_rt_stack(rt_se);
1117
1118         for_each_sched_rt_entity(rt_se) {
1119                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1120
1121                 if (rt_rq && rt_rq->rt_nr_running)
1122                         __enqueue_rt_entity(rt_se, false);
1123         }
1124 }
1125
1126 /*
1127  * Adding/removing a task to/from a priority array:
1128  */
1129 static void
1130 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1131 {
1132         struct sched_rt_entity *rt_se = &p->rt;
1133
1134         if (flags & ENQUEUE_WAKEUP)
1135                 rt_se->timeout = 0;
1136
1137         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1138
1139         if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
1140                 enqueue_pushable_task(rq, p);
1141
1142         inc_nr_running(rq);
1143 }
1144
1145 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1146 {
1147         struct sched_rt_entity *rt_se = &p->rt;
1148
1149         update_curr_rt(rq);
1150         dequeue_rt_entity(rt_se);
1151
1152         dequeue_pushable_task(rq, p);
1153
1154         dec_nr_running(rq);
1155 }
1156
1157 /*
1158  * Put task to the head or the end of the run list without the overhead of
1159  * dequeue followed by enqueue.
1160  */
1161 static void
1162 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1163 {
1164         if (on_rt_rq(rt_se)) {
1165                 struct rt_prio_array *array = &rt_rq->active;
1166                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1167
1168                 if (head)
1169                         list_move(&rt_se->run_list, queue);
1170                 else
1171                         list_move_tail(&rt_se->run_list, queue);
1172         }
1173 }
1174
1175 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1176 {
1177         struct sched_rt_entity *rt_se = &p->rt;
1178         struct rt_rq *rt_rq;
1179
1180         for_each_sched_rt_entity(rt_se) {
1181                 rt_rq = rt_rq_of_se(rt_se);
1182                 requeue_rt_entity(rt_rq, rt_se, head);
1183         }
1184 }
1185
1186 static void yield_task_rt(struct rq *rq)
1187 {
1188         requeue_task_rt(rq, rq->curr, 0);
1189 }
1190
1191 #ifdef CONFIG_SMP
1192 static int find_lowest_rq(struct task_struct *task);
1193
1194 static int
1195 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1196 {
1197         struct task_struct *curr;
1198         struct rq *rq;
1199         int cpu;
1200
1201         cpu = task_cpu(p);
1202
1203         /* For anything but wake ups, just return the task_cpu */
1204         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1205                 goto out;
1206
1207         rq = cpu_rq(cpu);
1208
1209         rcu_read_lock();
1210         curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1211
1212         /*
1213          * If the current task on @p's runqueue is an RT task, then
1214          * try to see if we can wake this RT task up on another
1215          * runqueue. Otherwise simply start this RT task
1216          * on its current runqueue.
1217          *
1218          * We want to avoid overloading runqueues. If the woken
1219          * task is a higher priority, then it will stay on this CPU
1220          * and the lower prio task should be moved to another CPU.
1221          * Even though this will probably make the lower prio task
1222          * lose its cache, we do not want to bounce a higher task
1223          * around just because it gave up its CPU, perhaps for a
1224          * lock?
1225          *
1226          * For equal prio tasks, we just let the scheduler sort it out.
1227          *
1228          * Otherwise, just let it ride on the affined RQ and the
1229          * post-schedule router will push the preempted task away
1230          *
1231          * This test is optimistic, if we get it wrong the load-balancer
1232          * will have to sort it out.
1233          */
1234         if (curr && unlikely(rt_task(curr)) &&
1235             (curr->rt.nr_cpus_allowed < 2 ||
1236              curr->prio <= p->prio) &&
1237             (p->rt.nr_cpus_allowed > 1)) {
1238                 int target = find_lowest_rq(p);
1239
1240                 if (target != -1)
1241                         cpu = target;
1242         }
1243         rcu_read_unlock();
1244
1245 out:
1246         return cpu;
1247 }
1248
1249 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1250 {
1251         if (rq->curr->rt.nr_cpus_allowed == 1)
1252                 return;
1253
1254         if (p->rt.nr_cpus_allowed != 1
1255             && cpupri_find(&rq->rd->cpupri, p, NULL))
1256                 return;
1257
1258         if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1259                 return;
1260
1261         /*
1262          * There appears to be other cpus that can accept
1263          * current and none to run 'p', so lets reschedule
1264          * to try and push current away:
1265          */
1266         requeue_task_rt(rq, p, 1);
1267         resched_task(rq->curr);
1268 }
1269
1270 #endif /* CONFIG_SMP */
1271
1272 /*
1273  * Preempt the current task with a newly woken task if needed:
1274  */
1275 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1276 {
1277         if (p->prio < rq->curr->prio) {
1278                 resched_task(rq->curr);
1279                 return;
1280         }
1281
1282 #ifdef CONFIG_SMP
1283         /*
1284          * If:
1285          *
1286          * - the newly woken task is of equal priority to the current task
1287          * - the newly woken task is non-migratable while current is migratable
1288          * - current will be preempted on the next reschedule
1289          *
1290          * we should check to see if current can readily move to a different
1291          * cpu.  If so, we will reschedule to allow the push logic to try
1292          * to move current somewhere else, making room for our non-migratable
1293          * task.
1294          */
1295         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1296                 check_preempt_equal_prio(rq, p);
1297 #endif
1298 }
1299
1300 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1301                                                    struct rt_rq *rt_rq)
1302 {
1303         struct rt_prio_array *array = &rt_rq->active;
1304         struct sched_rt_entity *next = NULL;
1305         struct list_head *queue;
1306         int idx;
1307
1308         idx = sched_find_first_bit(array->bitmap);
1309         BUG_ON(idx >= MAX_RT_PRIO);
1310
1311         queue = array->queue + idx;
1312         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1313
1314         return next;
1315 }
1316
1317 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1318 {
1319         struct sched_rt_entity *rt_se;
1320         struct task_struct *p;
1321         struct rt_rq *rt_rq;
1322
1323         rt_rq = &rq->rt;
1324
1325         if (!rt_rq->rt_nr_running)
1326                 return NULL;
1327
1328         if (rt_rq_throttled(rt_rq))
1329                 return NULL;
1330
1331         do {
1332                 rt_se = pick_next_rt_entity(rq, rt_rq);
1333                 BUG_ON(!rt_se);
1334                 rt_rq = group_rt_rq(rt_se);
1335         } while (rt_rq);
1336
1337         p = rt_task_of(rt_se);
1338         p->se.exec_start = rq->clock_task;
1339
1340         return p;
1341 }
1342
1343 static struct task_struct *pick_next_task_rt(struct rq *rq)
1344 {
1345         struct task_struct *p = _pick_next_task_rt(rq);
1346
1347         /* The running task is never eligible for pushing */
1348         if (p)
1349                 dequeue_pushable_task(rq, p);
1350
1351 #ifdef CONFIG_SMP
1352         /*
1353          * We detect this state here so that we can avoid taking the RQ
1354          * lock again later if there is no need to push
1355          */
1356         rq->post_schedule = has_pushable_tasks(rq);
1357 #endif
1358
1359         return p;
1360 }
1361
1362 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1363 {
1364         update_curr_rt(rq);
1365
1366         /*
1367          * The previous task needs to be made eligible for pushing
1368          * if it is still active
1369          */
1370         if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1371                 enqueue_pushable_task(rq, p);
1372 }
1373
1374 #ifdef CONFIG_SMP
1375
1376 /* Only try algorithms three times */
1377 #define RT_MAX_TRIES 3
1378
1379 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1380 {
1381         if (!task_running(rq, p) &&
1382             (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1383             (p->rt.nr_cpus_allowed > 1))
1384                 return 1;
1385         return 0;
1386 }
1387
1388 /* Return the second highest RT task, NULL otherwise */
1389 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1390 {
1391         struct task_struct *next = NULL;
1392         struct sched_rt_entity *rt_se;
1393         struct rt_prio_array *array;
1394         struct rt_rq *rt_rq;
1395         int idx;
1396
1397         for_each_leaf_rt_rq(rt_rq, rq) {
1398                 array = &rt_rq->active;
1399                 idx = sched_find_first_bit(array->bitmap);
1400 next_idx:
1401                 if (idx >= MAX_RT_PRIO)
1402                         continue;
1403                 if (next && next->prio < idx)
1404                         continue;
1405                 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1406                         struct task_struct *p;
1407
1408                         if (!rt_entity_is_task(rt_se))
1409                                 continue;
1410
1411                         p = rt_task_of(rt_se);
1412                         if (pick_rt_task(rq, p, cpu)) {
1413                                 next = p;
1414                                 break;
1415                         }
1416                 }
1417                 if (!next) {
1418                         idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1419                         goto next_idx;
1420                 }
1421         }
1422
1423         return next;
1424 }
1425
1426 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1427
1428 static int find_lowest_rq(struct task_struct *task)
1429 {
1430         struct sched_domain *sd;
1431         struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1432         int this_cpu = smp_processor_id();
1433         int cpu      = task_cpu(task);
1434
1435         /* Make sure the mask is initialized first */
1436         if (unlikely(!lowest_mask))
1437                 return -1;
1438
1439         if (task->rt.nr_cpus_allowed == 1)
1440                 return -1; /* No other targets possible */
1441
1442         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1443                 return -1; /* No targets found */
1444
1445         /*
1446          * At this point we have built a mask of cpus representing the
1447          * lowest priority tasks in the system.  Now we want to elect
1448          * the best one based on our affinity and topology.
1449          *
1450          * We prioritize the last cpu that the task executed on since
1451          * it is most likely cache-hot in that location.
1452          */
1453         if (cpumask_test_cpu(cpu, lowest_mask))
1454                 return cpu;
1455
1456         /*
1457          * Otherwise, we consult the sched_domains span maps to figure
1458          * out which cpu is logically closest to our hot cache data.
1459          */
1460         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1461                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1462
1463         rcu_read_lock();
1464         for_each_domain(cpu, sd) {
1465                 if (sd->flags & SD_WAKE_AFFINE) {
1466                         int best_cpu;
1467
1468                         /*
1469                          * "this_cpu" is cheaper to preempt than a
1470                          * remote processor.
1471                          */
1472                         if (this_cpu != -1 &&
1473                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1474                                 rcu_read_unlock();
1475                                 return this_cpu;
1476                         }
1477
1478                         best_cpu = cpumask_first_and(lowest_mask,
1479                                                      sched_domain_span(sd));
1480                         if (best_cpu < nr_cpu_ids) {
1481                                 rcu_read_unlock();
1482                                 return best_cpu;
1483                         }
1484                 }
1485         }
1486         rcu_read_unlock();
1487
1488         /*
1489          * And finally, if there were no matches within the domains
1490          * just give the caller *something* to work with from the compatible
1491          * locations.
1492          */
1493         if (this_cpu != -1)
1494                 return this_cpu;
1495
1496         cpu = cpumask_any(lowest_mask);
1497         if (cpu < nr_cpu_ids)
1498                 return cpu;
1499         return -1;
1500 }
1501
1502 /* Will lock the rq it finds */
1503 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1504 {
1505         struct rq *lowest_rq = NULL;
1506         int tries;
1507         int cpu;
1508
1509         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1510                 cpu = find_lowest_rq(task);
1511
1512                 if ((cpu == -1) || (cpu == rq->cpu))
1513                         break;
1514
1515                 lowest_rq = cpu_rq(cpu);
1516
1517                 /* if the prio of this runqueue changed, try again */
1518                 if (double_lock_balance(rq, lowest_rq)) {
1519                         /*
1520                          * We had to unlock the run queue. In
1521                          * the mean time, task could have
1522                          * migrated already or had its affinity changed.
1523                          * Also make sure that it wasn't scheduled on its rq.
1524                          */
1525                         if (unlikely(task_rq(task) != rq ||
1526                                      !cpumask_test_cpu(lowest_rq->cpu,
1527                                                        tsk_cpus_allowed(task)) ||
1528                                      task_running(rq, task) ||
1529                                      !task->on_rq)) {
1530
1531                                 raw_spin_unlock(&lowest_rq->lock);
1532                                 lowest_rq = NULL;
1533                                 break;
1534                         }
1535                 }
1536
1537                 /* If this rq is still suitable use it. */
1538                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1539                         break;
1540
1541                 /* try again */
1542                 double_unlock_balance(rq, lowest_rq);
1543                 lowest_rq = NULL;
1544         }
1545
1546         return lowest_rq;
1547 }
1548
1549 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1550 {
1551         struct task_struct *p;
1552
1553         if (!has_pushable_tasks(rq))
1554                 return NULL;
1555
1556         p = plist_first_entry(&rq->rt.pushable_tasks,
1557                               struct task_struct, pushable_tasks);
1558
1559         BUG_ON(rq->cpu != task_cpu(p));
1560         BUG_ON(task_current(rq, p));
1561         BUG_ON(p->rt.nr_cpus_allowed <= 1);
1562
1563         BUG_ON(!p->on_rq);
1564         BUG_ON(!rt_task(p));
1565
1566         return p;
1567 }
1568
1569 /*
1570  * If the current CPU has more than one RT task, see if the non
1571  * running task can migrate over to a CPU that is running a task
1572  * of lesser priority.
1573  */
1574 static int push_rt_task(struct rq *rq)
1575 {
1576         struct task_struct *next_task;
1577         struct rq *lowest_rq;
1578         int ret = 0;
1579
1580         if (!rq->rt.overloaded)
1581                 return 0;
1582
1583         next_task = pick_next_pushable_task(rq);
1584         if (!next_task)
1585                 return 0;
1586
1587 retry:
1588         if (unlikely(next_task == rq->curr)) {
1589                 WARN_ON(1);
1590                 return 0;
1591         }
1592
1593         /*
1594          * It's possible that the next_task slipped in of
1595          * higher priority than current. If that's the case
1596          * just reschedule current.
1597          */
1598         if (unlikely(next_task->prio < rq->curr->prio)) {
1599                 resched_task(rq->curr);
1600                 return 0;
1601         }
1602
1603         /* We might release rq lock */
1604         get_task_struct(next_task);
1605
1606         /* find_lock_lowest_rq locks the rq if found */
1607         lowest_rq = find_lock_lowest_rq(next_task, rq);
1608         if (!lowest_rq) {
1609                 struct task_struct *task;
1610                 /*
1611                  * find_lock_lowest_rq releases rq->lock
1612                  * so it is possible that next_task has migrated.
1613                  *
1614                  * We need to make sure that the task is still on the same
1615                  * run-queue and is also still the next task eligible for
1616                  * pushing.
1617                  */
1618                 task = pick_next_pushable_task(rq);
1619                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1620                         /*
1621                          * The task hasn't migrated, and is still the next
1622                          * eligible task, but we failed to find a run-queue
1623                          * to push it to.  Do not retry in this case, since
1624                          * other cpus will pull from us when ready.
1625                          */
1626                         goto out;
1627                 }
1628
1629                 if (!task)
1630                         /* No more tasks, just exit */
1631                         goto out;
1632
1633                 /*
1634                  * Something has shifted, try again.
1635                  */
1636                 put_task_struct(next_task);
1637                 next_task = task;
1638                 goto retry;
1639         }
1640
1641         deactivate_task(rq, next_task, 0);
1642         set_task_cpu(next_task, lowest_rq->cpu);
1643         activate_task(lowest_rq, next_task, 0);
1644         ret = 1;
1645
1646         resched_task(lowest_rq->curr);
1647
1648         double_unlock_balance(rq, lowest_rq);
1649
1650 out:
1651         put_task_struct(next_task);
1652
1653         return ret;
1654 }
1655
1656 static void push_rt_tasks(struct rq *rq)
1657 {
1658         /* push_rt_task will return true if it moved an RT */
1659         while (push_rt_task(rq))
1660                 ;
1661 }
1662
1663 static int pull_rt_task(struct rq *this_rq)
1664 {
1665         int this_cpu = this_rq->cpu, ret = 0, cpu;
1666         struct task_struct *p;
1667         struct rq *src_rq;
1668
1669         if (likely(!rt_overloaded(this_rq)))
1670                 return 0;
1671
1672         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1673                 if (this_cpu == cpu)
1674                         continue;
1675
1676                 src_rq = cpu_rq(cpu);
1677
1678                 /*
1679                  * Don't bother taking the src_rq->lock if the next highest
1680                  * task is known to be lower-priority than our current task.
1681                  * This may look racy, but if this value is about to go
1682                  * logically higher, the src_rq will push this task away.
1683                  * And if its going logically lower, we do not care
1684                  */
1685                 if (src_rq->rt.highest_prio.next >=
1686                     this_rq->rt.highest_prio.curr)
1687                         continue;
1688
1689                 /*
1690                  * We can potentially drop this_rq's lock in
1691                  * double_lock_balance, and another CPU could
1692                  * alter this_rq
1693                  */
1694                 double_lock_balance(this_rq, src_rq);
1695
1696                 /*
1697                  * Are there still pullable RT tasks?
1698                  */
1699                 if (src_rq->rt.rt_nr_running <= 1)
1700                         goto skip;
1701
1702                 p = pick_next_highest_task_rt(src_rq, this_cpu);
1703
1704                 /*
1705                  * Do we have an RT task that preempts
1706                  * the to-be-scheduled task?
1707                  */
1708                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1709                         WARN_ON(p == src_rq->curr);
1710                         WARN_ON(!p->on_rq);
1711
1712                         /*
1713                          * There's a chance that p is higher in priority
1714                          * than what's currently running on its cpu.
1715                          * This is just that p is wakeing up and hasn't
1716                          * had a chance to schedule. We only pull
1717                          * p if it is lower in priority than the
1718                          * current task on the run queue
1719                          */
1720                         if (p->prio < src_rq->curr->prio)
1721                                 goto skip;
1722
1723                         ret = 1;
1724
1725                         deactivate_task(src_rq, p, 0);
1726                         set_task_cpu(p, this_cpu);
1727                         activate_task(this_rq, p, 0);
1728                         /*
1729                          * We continue with the search, just in
1730                          * case there's an even higher prio task
1731                          * in another runqueue. (low likelihood
1732                          * but possible)
1733                          */
1734                 }
1735 skip:
1736                 double_unlock_balance(this_rq, src_rq);
1737         }
1738
1739         return ret;
1740 }
1741
1742 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1743 {
1744         /* Try to pull RT tasks here if we lower this rq's prio */
1745         if (rq->rt.highest_prio.curr > prev->prio)
1746                 pull_rt_task(rq);
1747 }
1748
1749 static void post_schedule_rt(struct rq *rq)
1750 {
1751         push_rt_tasks(rq);
1752 }
1753
1754 /*
1755  * If we are not running and we are not going to reschedule soon, we should
1756  * try to push tasks away now
1757  */
1758 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1759 {
1760         if (!task_running(rq, p) &&
1761             !test_tsk_need_resched(rq->curr) &&
1762             has_pushable_tasks(rq) &&
1763             p->rt.nr_cpus_allowed > 1 &&
1764             rt_task(rq->curr) &&
1765             (rq->curr->rt.nr_cpus_allowed < 2 ||
1766              rq->curr->prio <= p->prio))
1767                 push_rt_tasks(rq);
1768 }
1769
1770 static void set_cpus_allowed_rt(struct task_struct *p,
1771                                 const struct cpumask *new_mask)
1772 {
1773         int weight = cpumask_weight(new_mask);
1774
1775         BUG_ON(!rt_task(p));
1776
1777         /*
1778          * Update the migration status of the RQ if we have an RT task
1779          * which is running AND changing its weight value.
1780          */
1781         if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1782                 struct rq *rq = task_rq(p);
1783
1784                 if (!task_current(rq, p)) {
1785                         /*
1786                          * Make sure we dequeue this task from the pushable list
1787                          * before going further.  It will either remain off of
1788                          * the list because we are no longer pushable, or it
1789                          * will be requeued.
1790                          */
1791                         if (p->rt.nr_cpus_allowed > 1)
1792                                 dequeue_pushable_task(rq, p);
1793
1794                         /*
1795                          * Requeue if our weight is changing and still > 1
1796                          */
1797                         if (weight > 1)
1798                                 enqueue_pushable_task(rq, p);
1799
1800                 }
1801
1802                 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1803                         rq->rt.rt_nr_migratory++;
1804                 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1805                         BUG_ON(!rq->rt.rt_nr_migratory);
1806                         rq->rt.rt_nr_migratory--;
1807                 }
1808
1809                 update_rt_migration(&rq->rt);
1810         }
1811 }
1812
1813 /* Assumes rq->lock is held */
1814 static void rq_online_rt(struct rq *rq)
1815 {
1816         if (rq->rt.overloaded)
1817                 rt_set_overload(rq);
1818
1819         __enable_runtime(rq);
1820
1821         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1822 }
1823
1824 /* Assumes rq->lock is held */
1825 static void rq_offline_rt(struct rq *rq)
1826 {
1827         if (rq->rt.overloaded)
1828                 rt_clear_overload(rq);
1829
1830         __disable_runtime(rq);
1831
1832         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1833 }
1834
1835 /*
1836  * When switch from the rt queue, we bring ourselves to a position
1837  * that we might want to pull RT tasks from other runqueues.
1838  */
1839 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1840 {
1841         /*
1842          * If there are other RT tasks then we will reschedule
1843          * and the scheduling of the other RT tasks will handle
1844          * the balancing. But if we are the last RT task
1845          * we may need to handle the pulling of RT tasks
1846          * now.
1847          */
1848         if (p->on_rq && !rq->rt.rt_nr_running)
1849                 pull_rt_task(rq);
1850 }
1851
1852 void init_sched_rt_class(void)
1853 {
1854         unsigned int i;
1855
1856         for_each_possible_cpu(i) {
1857                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1858                                         GFP_KERNEL, cpu_to_node(i));
1859         }
1860 }
1861 #endif /* CONFIG_SMP */
1862
1863 /*
1864  * When switching a task to RT, we may overload the runqueue
1865  * with RT tasks. In this case we try to push them off to
1866  * other runqueues.
1867  */
1868 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1869 {
1870         int check_resched = 1;
1871
1872         /*
1873          * If we are already running, then there's nothing
1874          * that needs to be done. But if we are not running
1875          * we may need to preempt the current running task.
1876          * If that current running task is also an RT task
1877          * then see if we can move to another run queue.
1878          */
1879         if (p->on_rq && rq->curr != p) {
1880 #ifdef CONFIG_SMP
1881                 if (rq->rt.overloaded && push_rt_task(rq) &&
1882                     /* Don't resched if we changed runqueues */
1883                     rq != task_rq(p))
1884                         check_resched = 0;
1885 #endif /* CONFIG_SMP */
1886                 if (check_resched && p->prio < rq->curr->prio)
1887                         resched_task(rq->curr);
1888         }
1889 }
1890
1891 /*
1892  * Priority of the task has changed. This may cause
1893  * us to initiate a push or pull.
1894  */
1895 static void
1896 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1897 {
1898         if (!p->on_rq)
1899                 return;
1900
1901         if (rq->curr == p) {
1902 #ifdef CONFIG_SMP
1903                 /*
1904                  * If our priority decreases while running, we
1905                  * may need to pull tasks to this runqueue.
1906                  */
1907                 if (oldprio < p->prio)
1908                         pull_rt_task(rq);
1909                 /*
1910                  * If there's a higher priority task waiting to run
1911                  * then reschedule. Note, the above pull_rt_task
1912                  * can release the rq lock and p could migrate.
1913                  * Only reschedule if p is still on the same runqueue.
1914                  */
1915                 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1916                         resched_task(p);
1917 #else
1918                 /* For UP simply resched on drop of prio */
1919                 if (oldprio < p->prio)
1920                         resched_task(p);
1921 #endif /* CONFIG_SMP */
1922         } else {
1923                 /*
1924                  * This task is not running, but if it is
1925                  * greater than the current running task
1926                  * then reschedule.
1927                  */
1928                 if (p->prio < rq->curr->prio)
1929                         resched_task(rq->curr);
1930         }
1931 }
1932
1933 static void watchdog(struct rq *rq, struct task_struct *p)
1934 {
1935         unsigned long soft, hard;
1936
1937         /* max may change after cur was read, this will be fixed next tick */
1938         soft = task_rlimit(p, RLIMIT_RTTIME);
1939         hard = task_rlimit_max(p, RLIMIT_RTTIME);
1940
1941         if (soft != RLIM_INFINITY) {
1942                 unsigned long next;
1943
1944                 p->rt.timeout++;
1945                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1946                 if (p->rt.timeout > next)
1947                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1948         }
1949 }
1950
1951 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1952 {
1953         update_curr_rt(rq);
1954
1955         watchdog(rq, p);
1956
1957         /*
1958          * RR tasks need a special form of timeslice management.
1959          * FIFO tasks have no timeslices.
1960          */
1961         if (p->policy != SCHED_RR)
1962                 return;
1963
1964         if (--p->rt.time_slice)
1965                 return;
1966
1967         p->rt.time_slice = DEF_TIMESLICE;
1968
1969         /*
1970          * Requeue to the end of queue if we are not the only element
1971          * on the queue:
1972          */
1973         if (p->rt.run_list.prev != p->rt.run_list.next) {
1974                 requeue_task_rt(rq, p, 0);
1975                 set_tsk_need_resched(p);
1976         }
1977 }
1978
1979 static void set_curr_task_rt(struct rq *rq)
1980 {
1981         struct task_struct *p = rq->curr;
1982
1983         p->se.exec_start = rq->clock_task;
1984
1985         /* The running task is never eligible for pushing */
1986         dequeue_pushable_task(rq, p);
1987 }
1988
1989 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1990 {
1991         /*
1992          * Time slice is 0 for SCHED_FIFO tasks
1993          */
1994         if (task->policy == SCHED_RR)
1995                 return DEF_TIMESLICE;
1996         else
1997                 return 0;
1998 }
1999
2000 const struct sched_class rt_sched_class = {
2001         .next                   = &fair_sched_class,
2002         .enqueue_task           = enqueue_task_rt,
2003         .dequeue_task           = dequeue_task_rt,
2004         .yield_task             = yield_task_rt,
2005
2006         .check_preempt_curr     = check_preempt_curr_rt,
2007
2008         .pick_next_task         = pick_next_task_rt,
2009         .put_prev_task          = put_prev_task_rt,
2010
2011 #ifdef CONFIG_SMP
2012         .select_task_rq         = select_task_rq_rt,
2013
2014         .set_cpus_allowed       = set_cpus_allowed_rt,
2015         .rq_online              = rq_online_rt,
2016         .rq_offline             = rq_offline_rt,
2017         .pre_schedule           = pre_schedule_rt,
2018         .post_schedule          = post_schedule_rt,
2019         .task_woken             = task_woken_rt,
2020         .switched_from          = switched_from_rt,
2021 #endif
2022
2023         .set_curr_task          = set_curr_task_rt,
2024         .task_tick              = task_tick_rt,
2025
2026         .get_rr_interval        = get_rr_interval_rt,
2027
2028         .prio_changed           = prio_changed_rt,
2029         .switched_to            = switched_to_rt,
2030 };
2031
2032 #ifdef CONFIG_SCHED_DEBUG
2033 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2034
2035 void print_rt_stats(struct seq_file *m, int cpu)
2036 {
2037         rt_rq_iter_t iter;
2038         struct rt_rq *rt_rq;
2039
2040         rcu_read_lock();
2041         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2042                 print_rt_rq(m, cpu, rt_rq);
2043         rcu_read_unlock();
2044 }
2045 #endif /* CONFIG_SCHED_DEBUG */