1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
53 #include <asm/switch_to.h>
55 #include <uapi/linux/sched/types.h>
59 #include "autogroup.h"
62 * The initial- and re-scaling of tunables is configurable
66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
75 * Minimal preemption granularity for CPU-bound tasks:
77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
79 unsigned int sysctl_sched_base_slice = 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL;
82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL;
84 static int __init setup_sched_thermal_decay_shift(char *str)
86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93 * For asym packing, by default the lower numbered CPU has higher priority.
95 int __weak arch_asym_cpu_priority(int cpu)
101 * The margin used when comparing utilization with CPU capacity.
105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
108 * The margin used when comparing CPU capacities.
109 * is 'cap1' noticeably greater than 'cap2'
113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
116 #ifdef CONFIG_CFS_BANDWIDTH
118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
119 * each time a cfs_rq requests quota.
121 * Note: in the case that the slice exceeds the runtime remaining (either due
122 * to consumption or the quota being specified to be smaller than the slice)
123 * we will always only issue the remaining available time.
125 * (default: 5 msec, units: microseconds)
127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
130 #ifdef CONFIG_NUMA_BALANCING
131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136 static const struct ctl_table sched_fair_sysctls[] = {
137 #ifdef CONFIG_CFS_BANDWIDTH
139 .procname = "sched_cfs_bandwidth_slice_us",
140 .data = &sysctl_sched_cfs_bandwidth_slice,
141 .maxlen = sizeof(unsigned int),
143 .proc_handler = proc_dointvec_minmax,
144 .extra1 = SYSCTL_ONE,
147 #ifdef CONFIG_NUMA_BALANCING
149 .procname = "numa_balancing_promote_rate_limit_MBps",
150 .data = &sysctl_numa_balancing_promote_rate_limit,
151 .maxlen = sizeof(unsigned int),
153 .proc_handler = proc_dointvec_minmax,
154 .extra1 = SYSCTL_ZERO,
156 #endif /* CONFIG_NUMA_BALANCING */
159 static int __init sched_fair_sysctl_init(void)
161 register_sysctl_init("kernel", sched_fair_sysctls);
164 late_initcall(sched_fair_sysctl_init);
167 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
179 static inline void update_load_set(struct load_weight *lw, unsigned long w)
186 * Increase the granularity value when there are more CPUs,
187 * because with more CPUs the 'effective latency' as visible
188 * to users decreases. But the relationship is not linear,
189 * so pick a second-best guess by going with the log2 of the
192 * This idea comes from the SD scheduler of Con Kolivas:
194 static unsigned int get_update_sysctl_factor(void)
196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
199 switch (sysctl_sched_tunable_scaling) {
200 case SCHED_TUNABLESCALING_NONE:
203 case SCHED_TUNABLESCALING_LINEAR:
206 case SCHED_TUNABLESCALING_LOG:
208 factor = 1 + ilog2(cpus);
215 static void update_sysctl(void)
217 unsigned int factor = get_update_sysctl_factor();
219 #define SET_SYSCTL(name) \
220 (sysctl_##name = (factor) * normalized_sysctl_##name)
221 SET_SYSCTL(sched_base_slice);
225 void __init sched_init_granularity(void)
230 #define WMULT_CONST (~0U)
231 #define WMULT_SHIFT 32
233 static void __update_inv_weight(struct load_weight *lw)
237 if (likely(lw->inv_weight))
240 w = scale_load_down(lw->weight);
242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
244 else if (unlikely(!w))
245 lw->inv_weight = WMULT_CONST;
247 lw->inv_weight = WMULT_CONST / w;
251 * delta_exec * weight / lw.weight
253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
256 * we're guaranteed shift stays positive because inv_weight is guaranteed to
257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
260 * weight/lw.weight <= 1, and therefore our shift will also be positive.
262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
264 u64 fact = scale_load_down(weight);
265 u32 fact_hi = (u32)(fact >> 32);
266 int shift = WMULT_SHIFT;
269 __update_inv_weight(lw);
271 if (unlikely(fact_hi)) {
277 fact = mul_u32_u32(fact, lw->inv_weight);
279 fact_hi = (u32)(fact >> 32);
286 return mul_u64_u32_shr(delta_exec, fact, shift);
292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
294 if (unlikely(se->load.weight != NICE_0_LOAD))
295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300 const struct sched_class fair_sched_class;
302 /**************************************************************
303 * CFS operations on generic schedulable entities:
306 #ifdef CONFIG_FAIR_GROUP_SCHED
308 /* Walk up scheduling entities hierarchy */
309 #define for_each_sched_entity(se) \
310 for (; se; se = se->parent)
312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 struct rq *rq = rq_of(cfs_rq);
315 int cpu = cpu_of(rq);
318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
323 * Ensure we either appear before our parent (if already
324 * enqueued) or force our parent to appear after us when it is
325 * enqueued. The fact that we always enqueue bottom-up
326 * reduces this to two cases and a special case for the root
327 * cfs_rq. Furthermore, it also means that we will always reset
328 * tmp_alone_branch either when the branch is connected
329 * to a tree or when we reach the top of the tree
331 if (cfs_rq->tg->parent &&
332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
334 * If parent is already on the list, we add the child
335 * just before. Thanks to circular linked property of
336 * the list, this means to put the child at the tail
337 * of the list that starts by parent.
339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
342 * The branch is now connected to its tree so we can
343 * reset tmp_alone_branch to the beginning of the
346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
350 if (!cfs_rq->tg->parent) {
352 * cfs rq without parent should be put
353 * at the tail of the list.
355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
356 &rq->leaf_cfs_rq_list);
358 * We have reach the top of a tree so we can reset
359 * tmp_alone_branch to the beginning of the list.
361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 * The parent has not already been added so we want to
367 * make sure that it will be put after us.
368 * tmp_alone_branch points to the begin of the branch
369 * where we will add parent.
371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
373 * update tmp_alone_branch to points to the new begin
376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
382 if (cfs_rq->on_list) {
383 struct rq *rq = rq_of(cfs_rq);
386 * With cfs_rq being unthrottled/throttled during an enqueue,
387 * it can happen the tmp_alone_branch points to the leaf that
388 * we finally want to delete. In this case, tmp_alone_branch moves
389 * to the prev element but it will point to rq->leaf_cfs_rq_list
390 * at the end of the enqueue.
392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
402 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
405 /* Iterate through all leaf cfs_rq's on a runqueue */
406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
410 /* Do the two (enqueued) entities belong to the same group ? */
411 static inline struct cfs_rq *
412 is_same_group(struct sched_entity *se, struct sched_entity *pse)
414 if (se->cfs_rq == pse->cfs_rq)
420 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
426 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
428 int se_depth, pse_depth;
431 * preemption test can be made between sibling entities who are in the
432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
433 * both tasks until we find their ancestors who are siblings of common
437 /* First walk up until both entities are at same depth */
438 se_depth = (*se)->depth;
439 pse_depth = (*pse)->depth;
441 while (se_depth > pse_depth) {
443 *se = parent_entity(*se);
446 while (pse_depth > se_depth) {
448 *pse = parent_entity(*pse);
451 while (!is_same_group(*se, *pse)) {
452 *se = parent_entity(*se);
453 *pse = parent_entity(*pse);
457 static int tg_is_idle(struct task_group *tg)
462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
464 return cfs_rq->idle > 0;
467 static int se_is_idle(struct sched_entity *se)
469 if (entity_is_task(se))
470 return task_has_idle_policy(task_of(se));
471 return cfs_rq_is_idle(group_cfs_rq(se));
474 #else /* !CONFIG_FAIR_GROUP_SCHED */
476 #define for_each_sched_entity(se) \
477 for (; se; se = NULL)
479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
488 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
495 static inline struct sched_entity *parent_entity(struct sched_entity *se)
501 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
505 static inline int tg_is_idle(struct task_group *tg)
510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515 static int se_is_idle(struct sched_entity *se)
517 return task_has_idle_policy(task_of(se));
520 #endif /* CONFIG_FAIR_GROUP_SCHED */
522 static __always_inline
523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
525 /**************************************************************
526 * Scheduling class tree data structure manipulation methods:
529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
531 s64 delta = (s64)(vruntime - max_vruntime);
533 max_vruntime = vruntime;
538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
540 s64 delta = (s64)(vruntime - min_vruntime);
542 min_vruntime = vruntime;
547 static inline bool entity_before(const struct sched_entity *a,
548 const struct sched_entity *b)
551 * Tiebreak on vruntime seems unnecessary since it can
554 return (s64)(a->deadline - b->deadline) < 0;
557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 return (s64)(se->vruntime - cfs_rq->min_vruntime);
562 #define __node_2_se(node) \
563 rb_entry((node), struct sched_entity, run_node)
566 * Compute virtual time from the per-task service numbers:
568 * Fair schedulers conserve lag:
572 * Where lag_i is given by:
574 * lag_i = S - s_i = w_i * (V - v_i)
576 * Where S is the ideal service time and V is it's virtual time counterpart.
580 * \Sum w_i * (V - v_i) = 0
581 * \Sum w_i * V - w_i * v_i = 0
583 * From which we can solve an expression for V in v_i (which we have in
586 * \Sum v_i * w_i \Sum v_i * w_i
587 * V = -------------- = --------------
590 * Specifically, this is the weighted average of all entity virtual runtimes.
592 * [[ NOTE: this is only equal to the ideal scheduler under the condition
593 * that join/leave operations happen at lag_i = 0, otherwise the
594 * virtual time has non-contiguous motion equivalent to:
598 * Also see the comment in place_entity() that deals with this. ]]
600 * However, since v_i is u64, and the multiplication could easily overflow
601 * transform it into a relative form that uses smaller quantities:
603 * Substitute: v_i == (v_i - v0) + v0
605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
606 * V = ---------------------------- = --------------------- + v0
609 * Which we track using:
611 * v0 := cfs_rq->min_vruntime
612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
613 * \Sum w_i := cfs_rq->avg_load
615 * Since min_vruntime is a monotonic increasing variable that closely tracks
616 * the per-task service, these deltas: (v_i - v), will be in the order of the
617 * maximal (virtual) lag induced in the system due to quantisation.
619 * Also, we use scale_load_down() to reduce the size.
621 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 unsigned long weight = scale_load_down(se->load.weight);
627 s64 key = entity_key(cfs_rq, se);
629 cfs_rq->avg_vruntime += key * weight;
630 cfs_rq->avg_load += weight;
634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 unsigned long weight = scale_load_down(se->load.weight);
637 s64 key = entity_key(cfs_rq, se);
639 cfs_rq->avg_vruntime -= key * weight;
640 cfs_rq->avg_load -= weight;
644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
654 * For this to be so, the result of this function must have a left bias.
656 u64 avg_vruntime(struct cfs_rq *cfs_rq)
658 struct sched_entity *curr = cfs_rq->curr;
659 s64 avg = cfs_rq->avg_vruntime;
660 long load = cfs_rq->avg_load;
662 if (curr && curr->on_rq) {
663 unsigned long weight = scale_load_down(curr->load.weight);
665 avg += entity_key(cfs_rq, curr) * weight;
670 /* sign flips effective floor / ceiling */
673 avg = div_s64(avg, load);
676 return cfs_rq->min_vruntime + avg;
680 * lag_i = S - s_i = w_i * (V - v_i)
682 * However, since V is approximated by the weighted average of all entities it
683 * is possible -- by addition/removal/reweight to the tree -- to move V around
684 * and end up with a larger lag than we started with.
686 * Limit this to either double the slice length with a minimum of TICK_NSEC
687 * since that is the timing granularity.
689 * EEVDF gives the following limit for a steady state system:
691 * -r_max < lag < max(r_max, q)
693 * XXX could add max_slice to the augmented data to track this.
695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
699 WARN_ON_ONCE(!se->on_rq);
701 vlag = avg_vruntime(cfs_rq) - se->vruntime;
702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
704 se->vlag = clamp(vlag, -limit, limit);
708 * Entity is eligible once it received less service than it ought to have,
711 * lag_i = S - s_i = w_i*(V - v_i)
713 * lag_i >= 0 -> V >= v_i
716 * V = ------------------ + v
719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
722 * to the loss in precision caused by the division.
724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
726 struct sched_entity *curr = cfs_rq->curr;
727 s64 avg = cfs_rq->avg_vruntime;
728 long load = cfs_rq->avg_load;
730 if (curr && curr->on_rq) {
731 unsigned long weight = scale_load_down(curr->load.weight);
733 avg += entity_key(cfs_rq, curr) * weight;
737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
742 return vruntime_eligible(cfs_rq, se->vruntime);
745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
747 u64 min_vruntime = cfs_rq->min_vruntime;
749 * open coded max_vruntime() to allow updating avg_vruntime
751 s64 delta = (s64)(vruntime - min_vruntime);
753 avg_vruntime_update(cfs_rq, delta);
754 min_vruntime = vruntime;
759 static void update_min_vruntime(struct cfs_rq *cfs_rq)
761 struct sched_entity *se = __pick_root_entity(cfs_rq);
762 struct sched_entity *curr = cfs_rq->curr;
763 u64 vruntime = cfs_rq->min_vruntime;
767 vruntime = curr->vruntime;
774 vruntime = se->min_vruntime;
776 vruntime = min_vruntime(vruntime, se->min_vruntime);
779 /* ensure we never gain time by being placed backwards. */
780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
785 struct sched_entity *root = __pick_root_entity(cfs_rq);
786 struct sched_entity *curr = cfs_rq->curr;
787 u64 min_slice = ~0ULL;
789 if (curr && curr->on_rq)
790 min_slice = curr->slice;
793 min_slice = min(min_slice, root->min_slice);
798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
800 return entity_before(__node_2_se(a), __node_2_se(b));
803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
808 struct sched_entity *rse = __node_2_se(node);
809 if (vruntime_gt(min_vruntime, se, rse))
810 se->min_vruntime = rse->min_vruntime;
814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
817 struct sched_entity *rse = __node_2_se(node);
818 if (rse->min_slice < se->min_slice)
819 se->min_slice = rse->min_slice;
824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
828 u64 old_min_vruntime = se->min_vruntime;
829 u64 old_min_slice = se->min_slice;
830 struct rb_node *node = &se->run_node;
832 se->min_vruntime = se->vruntime;
833 __min_vruntime_update(se, node->rb_right);
834 __min_vruntime_update(se, node->rb_left);
836 se->min_slice = se->slice;
837 __min_slice_update(se, node->rb_right);
838 __min_slice_update(se, node->rb_left);
840 return se->min_vruntime == old_min_vruntime &&
841 se->min_slice == old_min_slice;
844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
845 run_node, min_vruntime, min_vruntime_update);
848 * Enqueue an entity into the rb-tree:
850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
852 avg_vruntime_add(cfs_rq, se);
853 se->min_vruntime = se->vruntime;
854 se->min_slice = se->slice;
855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
856 __entity_less, &min_vruntime_cb);
859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
863 avg_vruntime_sub(cfs_rq, se);
866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
873 return __node_2_se(root);
876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
883 return __node_2_se(left);
887 * HACK, stash a copy of deadline at the point of pick in vlag,
888 * which isn't used until dequeue.
890 static inline void set_protect_slice(struct sched_entity *se)
892 se->vlag = se->deadline;
895 static inline bool protect_slice(struct sched_entity *se)
897 return se->vlag == se->deadline;
900 static inline void cancel_protect_slice(struct sched_entity *se)
902 if (protect_slice(se))
903 se->vlag = se->deadline + 1;
907 * Earliest Eligible Virtual Deadline First
909 * In order to provide latency guarantees for different request sizes
910 * EEVDF selects the best runnable task from two criteria:
912 * 1) the task must be eligible (must be owed service)
914 * 2) from those tasks that meet 1), we select the one
915 * with the earliest virtual deadline.
917 * We can do this in O(log n) time due to an augmented RB-tree. The
918 * tree keeps the entries sorted on deadline, but also functions as a
919 * heap based on the vruntime by keeping:
921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
923 * Which allows tree pruning through eligibility.
925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
928 struct sched_entity *se = __pick_first_entity(cfs_rq);
929 struct sched_entity *curr = cfs_rq->curr;
930 struct sched_entity *best = NULL;
933 * We can safely skip eligibility check if there is only one entity
934 * in this cfs_rq, saving some cycles.
936 if (cfs_rq->nr_queued == 1)
937 return curr && curr->on_rq ? curr : se;
939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr))
945 /* Pick the leftmost entity if it's eligible */
946 if (se && entity_eligible(cfs_rq, se)) {
951 /* Heap search for the EEVD entity */
953 struct rb_node *left = node->rb_left;
956 * Eligible entities in left subtree are always better
957 * choices, since they have earlier deadlines.
959 if (left && vruntime_eligible(cfs_rq,
960 __node_2_se(left)->min_vruntime)) {
965 se = __node_2_se(node);
968 * The left subtree either is empty or has no eligible
969 * entity, so check the current node since it is the one
970 * with earliest deadline that might be eligible.
972 if (entity_eligible(cfs_rq, se)) {
977 node = node->rb_right;
980 if (!best || (curr && entity_before(curr, best)))
986 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
988 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
993 return __node_2_se(last);
996 /**************************************************************
997 * Scheduling class statistics methods:
1000 int sched_update_scaling(void)
1002 unsigned int factor = get_update_sysctl_factor();
1004 #define WRT_SYSCTL(name) \
1005 (normalized_sysctl_##name = sysctl_##name / (factor))
1006 WRT_SYSCTL(sched_base_slice);
1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1017 * this is probably good enough.
1019 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1021 if ((s64)(se->vruntime - se->deadline) < 0)
1025 * For EEVDF the virtual time slope is determined by w_i (iow.
1026 * nice) while the request time r_i is determined by
1027 * sysctl_sched_base_slice.
1029 if (!se->custom_slice)
1030 se->slice = sysctl_sched_base_slice;
1033 * EEVDF: vd_i = ve_i + r_i / w_i
1035 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1038 * The task has consumed its request, reschedule.
1046 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1047 static unsigned long task_h_load(struct task_struct *p);
1048 static unsigned long capacity_of(int cpu);
1050 /* Give new sched_entity start runnable values to heavy its load in infant time */
1051 void init_entity_runnable_average(struct sched_entity *se)
1053 struct sched_avg *sa = &se->avg;
1055 memset(sa, 0, sizeof(*sa));
1058 * Tasks are initialized with full load to be seen as heavy tasks until
1059 * they get a chance to stabilize to their real load level.
1060 * Group entities are initialized with zero load to reflect the fact that
1061 * nothing has been attached to the task group yet.
1063 if (entity_is_task(se))
1064 sa->load_avg = scale_load_down(se->load.weight);
1066 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1070 * With new tasks being created, their initial util_avgs are extrapolated
1071 * based on the cfs_rq's current util_avg:
1073 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1076 * However, in many cases, the above util_avg does not give a desired
1077 * value. Moreover, the sum of the util_avgs may be divergent, such
1078 * as when the series is a harmonic series.
1080 * To solve this problem, we also cap the util_avg of successive tasks to
1081 * only 1/2 of the left utilization budget:
1083 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1085 * where n denotes the nth task and cpu_scale the CPU capacity.
1087 * For example, for a CPU with 1024 of capacity, a simplest series from
1088 * the beginning would be like:
1090 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1091 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1093 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1094 * if util_avg > util_avg_cap.
1096 void post_init_entity_util_avg(struct task_struct *p)
1098 struct sched_entity *se = &p->se;
1099 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1100 struct sched_avg *sa = &se->avg;
1101 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1102 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1104 if (p->sched_class != &fair_sched_class) {
1106 * For !fair tasks do:
1108 update_cfs_rq_load_avg(now, cfs_rq);
1109 attach_entity_load_avg(cfs_rq, se);
1110 switched_from_fair(rq, p);
1112 * such that the next switched_to_fair() has the
1115 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1120 if (cfs_rq->avg.util_avg != 0) {
1121 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1122 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1124 if (sa->util_avg > cap)
1131 sa->runnable_avg = sa->util_avg;
1134 #else /* !CONFIG_SMP */
1135 void init_entity_runnable_average(struct sched_entity *se)
1138 void post_init_entity_util_avg(struct task_struct *p)
1141 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1144 #endif /* CONFIG_SMP */
1146 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1148 u64 now = rq_clock_task(rq);
1151 delta_exec = now - curr->exec_start;
1152 if (unlikely(delta_exec <= 0))
1155 curr->exec_start = now;
1156 curr->sum_exec_runtime += delta_exec;
1158 if (schedstat_enabled()) {
1159 struct sched_statistics *stats;
1161 stats = __schedstats_from_se(curr);
1162 __schedstat_set(stats->exec_max,
1163 max(delta_exec, stats->exec_max));
1169 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1171 trace_sched_stat_runtime(p, delta_exec);
1172 account_group_exec_runtime(p, delta_exec);
1173 cgroup_account_cputime(p, delta_exec);
1176 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1178 if (!sched_feat(PREEMPT_SHORT))
1181 if (curr->vlag == curr->deadline)
1184 return !entity_eligible(cfs_rq, curr);
1187 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1188 struct sched_entity *pse, struct sched_entity *se)
1190 if (!sched_feat(PREEMPT_SHORT))
1193 if (pse->slice >= se->slice)
1196 if (!entity_eligible(cfs_rq, pse))
1199 if (entity_before(pse, se))
1202 if (!entity_eligible(cfs_rq, se))
1209 * Used by other classes to account runtime.
1211 s64 update_curr_common(struct rq *rq)
1213 struct task_struct *donor = rq->donor;
1216 delta_exec = update_curr_se(rq, &donor->se);
1217 if (likely(delta_exec > 0))
1218 update_curr_task(donor, delta_exec);
1224 * Update the current task's runtime statistics.
1226 static void update_curr(struct cfs_rq *cfs_rq)
1228 struct sched_entity *curr = cfs_rq->curr;
1229 struct rq *rq = rq_of(cfs_rq);
1233 if (unlikely(!curr))
1236 delta_exec = update_curr_se(rq, curr);
1237 if (unlikely(delta_exec <= 0))
1240 curr->vruntime += calc_delta_fair(delta_exec, curr);
1241 resched = update_deadline(cfs_rq, curr);
1242 update_min_vruntime(cfs_rq);
1244 if (entity_is_task(curr)) {
1245 struct task_struct *p = task_of(curr);
1247 update_curr_task(p, delta_exec);
1250 * If the fair_server is active, we need to account for the
1251 * fair_server time whether or not the task is running on
1252 * behalf of fair_server or not:
1253 * - If the task is running on behalf of fair_server, we need
1254 * to limit its time based on the assigned runtime.
1255 * - Fair task that runs outside of fair_server should account
1256 * against fair_server such that it can account for this time
1257 * and possibly avoid running this period.
1259 if (dl_server_active(&rq->fair_server))
1260 dl_server_update(&rq->fair_server, delta_exec);
1263 account_cfs_rq_runtime(cfs_rq, delta_exec);
1265 if (cfs_rq->nr_queued == 1)
1268 if (resched || did_preempt_short(cfs_rq, curr)) {
1269 resched_curr_lazy(rq);
1270 clear_buddies(cfs_rq, curr);
1274 static void update_curr_fair(struct rq *rq)
1276 update_curr(cfs_rq_of(&rq->donor->se));
1280 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1282 struct sched_statistics *stats;
1283 struct task_struct *p = NULL;
1285 if (!schedstat_enabled())
1288 stats = __schedstats_from_se(se);
1290 if (entity_is_task(se))
1293 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1297 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1299 struct sched_statistics *stats;
1300 struct task_struct *p = NULL;
1302 if (!schedstat_enabled())
1305 stats = __schedstats_from_se(se);
1308 * When the sched_schedstat changes from 0 to 1, some sched se
1309 * maybe already in the runqueue, the se->statistics.wait_start
1310 * will be 0.So it will let the delta wrong. We need to avoid this
1313 if (unlikely(!schedstat_val(stats->wait_start)))
1316 if (entity_is_task(se))
1319 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1323 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1325 struct sched_statistics *stats;
1326 struct task_struct *tsk = NULL;
1328 if (!schedstat_enabled())
1331 stats = __schedstats_from_se(se);
1333 if (entity_is_task(se))
1336 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1340 * Task is being enqueued - update stats:
1343 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1345 if (!schedstat_enabled())
1349 * Are we enqueueing a waiting task? (for current tasks
1350 * a dequeue/enqueue event is a NOP)
1352 if (se != cfs_rq->curr)
1353 update_stats_wait_start_fair(cfs_rq, se);
1355 if (flags & ENQUEUE_WAKEUP)
1356 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1360 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1363 if (!schedstat_enabled())
1367 * Mark the end of the wait period if dequeueing a
1370 if (se != cfs_rq->curr)
1371 update_stats_wait_end_fair(cfs_rq, se);
1373 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1374 struct task_struct *tsk = task_of(se);
1377 /* XXX racy against TTWU */
1378 state = READ_ONCE(tsk->__state);
1379 if (state & TASK_INTERRUPTIBLE)
1380 __schedstat_set(tsk->stats.sleep_start,
1381 rq_clock(rq_of(cfs_rq)));
1382 if (state & TASK_UNINTERRUPTIBLE)
1383 __schedstat_set(tsk->stats.block_start,
1384 rq_clock(rq_of(cfs_rq)));
1389 * We are picking a new current task - update its stats:
1392 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1395 * We are starting a new run period:
1397 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1400 /**************************************************
1401 * Scheduling class queueing methods:
1404 static inline bool is_core_idle(int cpu)
1406 #ifdef CONFIG_SCHED_SMT
1409 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1413 if (!idle_cpu(sibling))
1422 #define NUMA_IMBALANCE_MIN 2
1425 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1428 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1429 * threshold. Above this threshold, individual tasks may be contending
1430 * for both memory bandwidth and any shared HT resources. This is an
1431 * approximation as the number of running tasks may not be related to
1432 * the number of busy CPUs due to sched_setaffinity.
1434 if (dst_running > imb_numa_nr)
1438 * Allow a small imbalance based on a simple pair of communicating
1439 * tasks that remain local when the destination is lightly loaded.
1441 if (imbalance <= NUMA_IMBALANCE_MIN)
1446 #endif /* CONFIG_NUMA */
1448 #ifdef CONFIG_NUMA_BALANCING
1450 * Approximate time to scan a full NUMA task in ms. The task scan period is
1451 * calculated based on the tasks virtual memory size and
1452 * numa_balancing_scan_size.
1454 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1455 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1457 /* Portion of address space to scan in MB */
1458 unsigned int sysctl_numa_balancing_scan_size = 256;
1460 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1461 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1463 /* The page with hint page fault latency < threshold in ms is considered hot */
1464 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1467 refcount_t refcount;
1469 spinlock_t lock; /* nr_tasks, tasks */
1474 struct rcu_head rcu;
1475 unsigned long total_faults;
1476 unsigned long max_faults_cpu;
1478 * faults[] array is split into two regions: faults_mem and faults_cpu.
1480 * Faults_cpu is used to decide whether memory should move
1481 * towards the CPU. As a consequence, these stats are weighted
1482 * more by CPU use than by memory faults.
1484 unsigned long faults[];
1488 * For functions that can be called in multiple contexts that permit reading
1489 * ->numa_group (see struct task_struct for locking rules).
1491 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1493 return rcu_dereference_check(p->numa_group, p == current ||
1494 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1497 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1499 return rcu_dereference_protected(p->numa_group, p == current);
1502 static inline unsigned long group_faults_priv(struct numa_group *ng);
1503 static inline unsigned long group_faults_shared(struct numa_group *ng);
1505 static unsigned int task_nr_scan_windows(struct task_struct *p)
1507 unsigned long rss = 0;
1508 unsigned long nr_scan_pages;
1511 * Calculations based on RSS as non-present and empty pages are skipped
1512 * by the PTE scanner and NUMA hinting faults should be trapped based
1515 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1516 rss = get_mm_rss(p->mm);
1518 rss = nr_scan_pages;
1520 rss = round_up(rss, nr_scan_pages);
1521 return rss / nr_scan_pages;
1524 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1525 #define MAX_SCAN_WINDOW 2560
1527 static unsigned int task_scan_min(struct task_struct *p)
1529 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1530 unsigned int scan, floor;
1531 unsigned int windows = 1;
1533 if (scan_size < MAX_SCAN_WINDOW)
1534 windows = MAX_SCAN_WINDOW / scan_size;
1535 floor = 1000 / windows;
1537 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1538 return max_t(unsigned int, floor, scan);
1541 static unsigned int task_scan_start(struct task_struct *p)
1543 unsigned long smin = task_scan_min(p);
1544 unsigned long period = smin;
1545 struct numa_group *ng;
1547 /* Scale the maximum scan period with the amount of shared memory. */
1549 ng = rcu_dereference(p->numa_group);
1551 unsigned long shared = group_faults_shared(ng);
1552 unsigned long private = group_faults_priv(ng);
1554 period *= refcount_read(&ng->refcount);
1555 period *= shared + 1;
1556 period /= private + shared + 1;
1560 return max(smin, period);
1563 static unsigned int task_scan_max(struct task_struct *p)
1565 unsigned long smin = task_scan_min(p);
1567 struct numa_group *ng;
1569 /* Watch for min being lower than max due to floor calculations */
1570 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1572 /* Scale the maximum scan period with the amount of shared memory. */
1573 ng = deref_curr_numa_group(p);
1575 unsigned long shared = group_faults_shared(ng);
1576 unsigned long private = group_faults_priv(ng);
1577 unsigned long period = smax;
1579 period *= refcount_read(&ng->refcount);
1580 period *= shared + 1;
1581 period /= private + shared + 1;
1583 smax = max(smax, period);
1586 return max(smin, smax);
1589 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1591 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1592 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1595 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1597 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1598 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1601 /* Shared or private faults. */
1602 #define NR_NUMA_HINT_FAULT_TYPES 2
1604 /* Memory and CPU locality */
1605 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1607 /* Averaged statistics, and temporary buffers. */
1608 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1610 pid_t task_numa_group_id(struct task_struct *p)
1612 struct numa_group *ng;
1616 ng = rcu_dereference(p->numa_group);
1625 * The averaged statistics, shared & private, memory & CPU,
1626 * occupy the first half of the array. The second half of the
1627 * array is for current counters, which are averaged into the
1628 * first set by task_numa_placement.
1630 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1632 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1635 static inline unsigned long task_faults(struct task_struct *p, int nid)
1637 if (!p->numa_faults)
1640 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1641 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1644 static inline unsigned long group_faults(struct task_struct *p, int nid)
1646 struct numa_group *ng = deref_task_numa_group(p);
1651 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1652 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1655 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1657 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1658 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1661 static inline unsigned long group_faults_priv(struct numa_group *ng)
1663 unsigned long faults = 0;
1666 for_each_online_node(node) {
1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1673 static inline unsigned long group_faults_shared(struct numa_group *ng)
1675 unsigned long faults = 0;
1678 for_each_online_node(node) {
1679 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1686 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1687 * considered part of a numa group's pseudo-interleaving set. Migrations
1688 * between these nodes are slowed down, to allow things to settle down.
1690 #define ACTIVE_NODE_FRACTION 3
1692 static bool numa_is_active_node(int nid, struct numa_group *ng)
1694 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1697 /* Handle placement on systems where not all nodes are directly connected. */
1698 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1699 int lim_dist, bool task)
1701 unsigned long score = 0;
1705 * All nodes are directly connected, and the same distance
1706 * from each other. No need for fancy placement algorithms.
1708 if (sched_numa_topology_type == NUMA_DIRECT)
1711 /* sched_max_numa_distance may be changed in parallel. */
1712 max_dist = READ_ONCE(sched_max_numa_distance);
1714 * This code is called for each node, introducing N^2 complexity,
1715 * which should be OK given the number of nodes rarely exceeds 8.
1717 for_each_online_node(node) {
1718 unsigned long faults;
1719 int dist = node_distance(nid, node);
1722 * The furthest away nodes in the system are not interesting
1723 * for placement; nid was already counted.
1725 if (dist >= max_dist || node == nid)
1729 * On systems with a backplane NUMA topology, compare groups
1730 * of nodes, and move tasks towards the group with the most
1731 * memory accesses. When comparing two nodes at distance
1732 * "hoplimit", only nodes closer by than "hoplimit" are part
1733 * of each group. Skip other nodes.
1735 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1738 /* Add up the faults from nearby nodes. */
1740 faults = task_faults(p, node);
1742 faults = group_faults(p, node);
1745 * On systems with a glueless mesh NUMA topology, there are
1746 * no fixed "groups of nodes". Instead, nodes that are not
1747 * directly connected bounce traffic through intermediate
1748 * nodes; a numa_group can occupy any set of nodes.
1749 * The further away a node is, the less the faults count.
1750 * This seems to result in good task placement.
1752 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1753 faults *= (max_dist - dist);
1754 faults /= (max_dist - LOCAL_DISTANCE);
1764 * These return the fraction of accesses done by a particular task, or
1765 * task group, on a particular numa node. The group weight is given a
1766 * larger multiplier, in order to group tasks together that are almost
1767 * evenly spread out between numa nodes.
1769 static inline unsigned long task_weight(struct task_struct *p, int nid,
1772 unsigned long faults, total_faults;
1774 if (!p->numa_faults)
1777 total_faults = p->total_numa_faults;
1782 faults = task_faults(p, nid);
1783 faults += score_nearby_nodes(p, nid, dist, true);
1785 return 1000 * faults / total_faults;
1788 static inline unsigned long group_weight(struct task_struct *p, int nid,
1791 struct numa_group *ng = deref_task_numa_group(p);
1792 unsigned long faults, total_faults;
1797 total_faults = ng->total_faults;
1802 faults = group_faults(p, nid);
1803 faults += score_nearby_nodes(p, nid, dist, false);
1805 return 1000 * faults / total_faults;
1809 * If memory tiering mode is enabled, cpupid of slow memory page is
1810 * used to record scan time instead of CPU and PID. When tiering mode
1811 * is disabled at run time, the scan time (in cpupid) will be
1812 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1813 * access out of array bound.
1815 static inline bool cpupid_valid(int cpupid)
1817 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1821 * For memory tiering mode, if there are enough free pages (more than
1822 * enough watermark defined here) in fast memory node, to take full
1823 * advantage of fast memory capacity, all recently accessed slow
1824 * memory pages will be migrated to fast memory node without
1825 * considering hot threshold.
1827 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1830 unsigned long enough_wmark;
1832 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1833 pgdat->node_present_pages >> 4);
1834 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1835 struct zone *zone = pgdat->node_zones + z;
1837 if (!populated_zone(zone))
1840 if (zone_watermark_ok(zone, 0,
1841 promo_wmark_pages(zone) + enough_wmark,
1849 * For memory tiering mode, when page tables are scanned, the scan
1850 * time will be recorded in struct page in addition to make page
1851 * PROT_NONE for slow memory page. So when the page is accessed, in
1852 * hint page fault handler, the hint page fault latency is calculated
1855 * hint page fault latency = hint page fault time - scan time
1857 * The smaller the hint page fault latency, the higher the possibility
1858 * for the page to be hot.
1860 static int numa_hint_fault_latency(struct folio *folio)
1862 int last_time, time;
1864 time = jiffies_to_msecs(jiffies);
1865 last_time = folio_xchg_access_time(folio, time);
1867 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1871 * For memory tiering mode, too high promotion/demotion throughput may
1872 * hurt application latency. So we provide a mechanism to rate limit
1873 * the number of pages that are tried to be promoted.
1875 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1876 unsigned long rate_limit, int nr)
1878 unsigned long nr_cand;
1879 unsigned int now, start;
1881 now = jiffies_to_msecs(jiffies);
1882 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1883 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1884 start = pgdat->nbp_rl_start;
1885 if (now - start > MSEC_PER_SEC &&
1886 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1887 pgdat->nbp_rl_nr_cand = nr_cand;
1888 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1893 #define NUMA_MIGRATION_ADJUST_STEPS 16
1895 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1896 unsigned long rate_limit,
1897 unsigned int ref_th)
1899 unsigned int now, start, th_period, unit_th, th;
1900 unsigned long nr_cand, ref_cand, diff_cand;
1902 now = jiffies_to_msecs(jiffies);
1903 th_period = sysctl_numa_balancing_scan_period_max;
1904 start = pgdat->nbp_th_start;
1905 if (now - start > th_period &&
1906 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1907 ref_cand = rate_limit *
1908 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1909 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1910 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1911 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1912 th = pgdat->nbp_threshold ? : ref_th;
1913 if (diff_cand > ref_cand * 11 / 10)
1914 th = max(th - unit_th, unit_th);
1915 else if (diff_cand < ref_cand * 9 / 10)
1916 th = min(th + unit_th, ref_th * 2);
1917 pgdat->nbp_th_nr_cand = nr_cand;
1918 pgdat->nbp_threshold = th;
1922 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1923 int src_nid, int dst_cpu)
1925 struct numa_group *ng = deref_curr_numa_group(p);
1926 int dst_nid = cpu_to_node(dst_cpu);
1927 int last_cpupid, this_cpupid;
1930 * Cannot migrate to memoryless nodes.
1932 if (!node_state(dst_nid, N_MEMORY))
1936 * The pages in slow memory node should be migrated according
1937 * to hot/cold instead of private/shared.
1939 if (folio_use_access_time(folio)) {
1940 struct pglist_data *pgdat;
1941 unsigned long rate_limit;
1942 unsigned int latency, th, def_th;
1944 pgdat = NODE_DATA(dst_nid);
1945 if (pgdat_free_space_enough(pgdat)) {
1946 /* workload changed, reset hot threshold */
1947 pgdat->nbp_threshold = 0;
1951 def_th = sysctl_numa_balancing_hot_threshold;
1952 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1954 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1956 th = pgdat->nbp_threshold ? : def_th;
1957 latency = numa_hint_fault_latency(folio);
1961 return !numa_promotion_rate_limit(pgdat, rate_limit,
1962 folio_nr_pages(folio));
1965 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1966 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1968 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1969 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1973 * Allow first faults or private faults to migrate immediately early in
1974 * the lifetime of a task. The magic number 4 is based on waiting for
1975 * two full passes of the "multi-stage node selection" test that is
1978 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1979 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1983 * Multi-stage node selection is used in conjunction with a periodic
1984 * migration fault to build a temporal task<->page relation. By using
1985 * a two-stage filter we remove short/unlikely relations.
1987 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1988 * a task's usage of a particular page (n_p) per total usage of this
1989 * page (n_t) (in a given time-span) to a probability.
1991 * Our periodic faults will sample this probability and getting the
1992 * same result twice in a row, given these samples are fully
1993 * independent, is then given by P(n)^2, provided our sample period
1994 * is sufficiently short compared to the usage pattern.
1996 * This quadric squishes small probabilities, making it less likely we
1997 * act on an unlikely task<->page relation.
1999 if (!cpupid_pid_unset(last_cpupid) &&
2000 cpupid_to_nid(last_cpupid) != dst_nid)
2003 /* Always allow migrate on private faults */
2004 if (cpupid_match_pid(p, last_cpupid))
2007 /* A shared fault, but p->numa_group has not been set up yet. */
2012 * Destination node is much more heavily used than the source
2013 * node? Allow migration.
2015 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2016 ACTIVE_NODE_FRACTION)
2020 * Distribute memory according to CPU & memory use on each node,
2021 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2023 * faults_cpu(dst) 3 faults_cpu(src)
2024 * --------------- * - > ---------------
2025 * faults_mem(dst) 4 faults_mem(src)
2027 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2028 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2032 * 'numa_type' describes the node at the moment of load balancing.
2035 /* The node has spare capacity that can be used to run more tasks. */
2038 * The node is fully used and the tasks don't compete for more CPU
2039 * cycles. Nevertheless, some tasks might wait before running.
2043 * The node is overloaded and can't provide expected CPU cycles to all
2049 /* Cached statistics for all CPUs within a node */
2052 unsigned long runnable;
2054 /* Total compute capacity of CPUs on a node */
2055 unsigned long compute_capacity;
2056 unsigned int nr_running;
2057 unsigned int weight;
2058 enum numa_type node_type;
2062 struct task_numa_env {
2063 struct task_struct *p;
2065 int src_cpu, src_nid;
2066 int dst_cpu, dst_nid;
2069 struct numa_stats src_stats, dst_stats;
2074 struct task_struct *best_task;
2079 static unsigned long cpu_load(struct rq *rq);
2080 static unsigned long cpu_runnable(struct rq *rq);
2083 numa_type numa_classify(unsigned int imbalance_pct,
2084 struct numa_stats *ns)
2086 if ((ns->nr_running > ns->weight) &&
2087 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2088 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2089 return node_overloaded;
2091 if ((ns->nr_running < ns->weight) ||
2092 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2093 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2094 return node_has_spare;
2096 return node_fully_busy;
2099 #ifdef CONFIG_SCHED_SMT
2100 /* Forward declarations of select_idle_sibling helpers */
2101 static inline bool test_idle_cores(int cpu);
2102 static inline int numa_idle_core(int idle_core, int cpu)
2104 if (!static_branch_likely(&sched_smt_present) ||
2105 idle_core >= 0 || !test_idle_cores(cpu))
2109 * Prefer cores instead of packing HT siblings
2110 * and triggering future load balancing.
2112 if (is_core_idle(cpu))
2118 static inline int numa_idle_core(int idle_core, int cpu)
2125 * Gather all necessary information to make NUMA balancing placement
2126 * decisions that are compatible with standard load balancer. This
2127 * borrows code and logic from update_sg_lb_stats but sharing a
2128 * common implementation is impractical.
2130 static void update_numa_stats(struct task_numa_env *env,
2131 struct numa_stats *ns, int nid,
2134 int cpu, idle_core = -1;
2136 memset(ns, 0, sizeof(*ns));
2140 for_each_cpu(cpu, cpumask_of_node(nid)) {
2141 struct rq *rq = cpu_rq(cpu);
2143 ns->load += cpu_load(rq);
2144 ns->runnable += cpu_runnable(rq);
2145 ns->util += cpu_util_cfs(cpu);
2146 ns->nr_running += rq->cfs.h_nr_runnable;
2147 ns->compute_capacity += capacity_of(cpu);
2149 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2150 if (READ_ONCE(rq->numa_migrate_on) ||
2151 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2154 if (ns->idle_cpu == -1)
2157 idle_core = numa_idle_core(idle_core, cpu);
2162 ns->weight = cpumask_weight(cpumask_of_node(nid));
2164 ns->node_type = numa_classify(env->imbalance_pct, ns);
2167 ns->idle_cpu = idle_core;
2170 static void task_numa_assign(struct task_numa_env *env,
2171 struct task_struct *p, long imp)
2173 struct rq *rq = cpu_rq(env->dst_cpu);
2175 /* Check if run-queue part of active NUMA balance. */
2176 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2178 int start = env->dst_cpu;
2180 /* Find alternative idle CPU. */
2181 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2182 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2183 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2188 rq = cpu_rq(env->dst_cpu);
2189 if (!xchg(&rq->numa_migrate_on, 1))
2193 /* Failed to find an alternative idle CPU */
2199 * Clear previous best_cpu/rq numa-migrate flag, since task now
2200 * found a better CPU to move/swap.
2202 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2203 rq = cpu_rq(env->best_cpu);
2204 WRITE_ONCE(rq->numa_migrate_on, 0);
2208 put_task_struct(env->best_task);
2213 env->best_imp = imp;
2214 env->best_cpu = env->dst_cpu;
2217 static bool load_too_imbalanced(long src_load, long dst_load,
2218 struct task_numa_env *env)
2221 long orig_src_load, orig_dst_load;
2222 long src_capacity, dst_capacity;
2225 * The load is corrected for the CPU capacity available on each node.
2228 * ------------ vs ---------
2229 * src_capacity dst_capacity
2231 src_capacity = env->src_stats.compute_capacity;
2232 dst_capacity = env->dst_stats.compute_capacity;
2234 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2236 orig_src_load = env->src_stats.load;
2237 orig_dst_load = env->dst_stats.load;
2239 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2241 /* Would this change make things worse? */
2242 return (imb > old_imb);
2246 * Maximum NUMA importance can be 1998 (2*999);
2247 * SMALLIMP @ 30 would be close to 1998/64.
2248 * Used to deter task migration.
2253 * This checks if the overall compute and NUMA accesses of the system would
2254 * be improved if the source tasks was migrated to the target dst_cpu taking
2255 * into account that it might be best if task running on the dst_cpu should
2256 * be exchanged with the source task
2258 static bool task_numa_compare(struct task_numa_env *env,
2259 long taskimp, long groupimp, bool maymove)
2261 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2262 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2263 long imp = p_ng ? groupimp : taskimp;
2264 struct task_struct *cur;
2265 long src_load, dst_load;
2266 int dist = env->dist;
2269 bool stopsearch = false;
2271 if (READ_ONCE(dst_rq->numa_migrate_on))
2275 cur = rcu_dereference(dst_rq->curr);
2276 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
2281 * Because we have preemption enabled we can get migrated around and
2282 * end try selecting ourselves (current == env->p) as a swap candidate.
2284 if (cur == env->p) {
2290 if (maymove && moveimp >= env->best_imp)
2296 /* Skip this swap candidate if cannot move to the source cpu. */
2297 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2301 * Skip this swap candidate if it is not moving to its preferred
2302 * node and the best task is.
2304 if (env->best_task &&
2305 env->best_task->numa_preferred_nid == env->src_nid &&
2306 cur->numa_preferred_nid != env->src_nid) {
2311 * "imp" is the fault differential for the source task between the
2312 * source and destination node. Calculate the total differential for
2313 * the source task and potential destination task. The more negative
2314 * the value is, the more remote accesses that would be expected to
2315 * be incurred if the tasks were swapped.
2317 * If dst and source tasks are in the same NUMA group, or not
2318 * in any group then look only at task weights.
2320 cur_ng = rcu_dereference(cur->numa_group);
2321 if (cur_ng == p_ng) {
2323 * Do not swap within a group or between tasks that have
2324 * no group if there is spare capacity. Swapping does
2325 * not address the load imbalance and helps one task at
2326 * the cost of punishing another.
2328 if (env->dst_stats.node_type == node_has_spare)
2331 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2332 task_weight(cur, env->dst_nid, dist);
2334 * Add some hysteresis to prevent swapping the
2335 * tasks within a group over tiny differences.
2341 * Compare the group weights. If a task is all by itself
2342 * (not part of a group), use the task weight instead.
2345 imp += group_weight(cur, env->src_nid, dist) -
2346 group_weight(cur, env->dst_nid, dist);
2348 imp += task_weight(cur, env->src_nid, dist) -
2349 task_weight(cur, env->dst_nid, dist);
2352 /* Discourage picking a task already on its preferred node */
2353 if (cur->numa_preferred_nid == env->dst_nid)
2357 * Encourage picking a task that moves to its preferred node.
2358 * This potentially makes imp larger than it's maximum of
2359 * 1998 (see SMALLIMP and task_weight for why) but in this
2360 * case, it does not matter.
2362 if (cur->numa_preferred_nid == env->src_nid)
2365 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2372 * Prefer swapping with a task moving to its preferred node over a
2375 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2376 env->best_task->numa_preferred_nid != env->src_nid) {
2381 * If the NUMA importance is less than SMALLIMP,
2382 * task migration might only result in ping pong
2383 * of tasks and also hurt performance due to cache
2386 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2390 * In the overloaded case, try and keep the load balanced.
2392 load = task_h_load(env->p) - task_h_load(cur);
2396 dst_load = env->dst_stats.load + load;
2397 src_load = env->src_stats.load - load;
2399 if (load_too_imbalanced(src_load, dst_load, env))
2403 /* Evaluate an idle CPU for a task numa move. */
2405 int cpu = env->dst_stats.idle_cpu;
2407 /* Nothing cached so current CPU went idle since the search. */
2412 * If the CPU is no longer truly idle and the previous best CPU
2413 * is, keep using it.
2415 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2416 idle_cpu(env->best_cpu)) {
2417 cpu = env->best_cpu;
2423 task_numa_assign(env, cur, imp);
2426 * If a move to idle is allowed because there is capacity or load
2427 * balance improves then stop the search. While a better swap
2428 * candidate may exist, a search is not free.
2430 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2434 * If a swap candidate must be identified and the current best task
2435 * moves its preferred node then stop the search.
2437 if (!maymove && env->best_task &&
2438 env->best_task->numa_preferred_nid == env->src_nid) {
2447 static void task_numa_find_cpu(struct task_numa_env *env,
2448 long taskimp, long groupimp)
2450 bool maymove = false;
2454 * If dst node has spare capacity, then check if there is an
2455 * imbalance that would be overruled by the load balancer.
2457 if (env->dst_stats.node_type == node_has_spare) {
2458 unsigned int imbalance;
2459 int src_running, dst_running;
2462 * Would movement cause an imbalance? Note that if src has
2463 * more running tasks that the imbalance is ignored as the
2464 * move improves the imbalance from the perspective of the
2465 * CPU load balancer.
2467 src_running = env->src_stats.nr_running - 1;
2468 dst_running = env->dst_stats.nr_running + 1;
2469 imbalance = max(0, dst_running - src_running);
2470 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2473 /* Use idle CPU if there is no imbalance */
2476 if (env->dst_stats.idle_cpu >= 0) {
2477 env->dst_cpu = env->dst_stats.idle_cpu;
2478 task_numa_assign(env, NULL, 0);
2483 long src_load, dst_load, load;
2485 * If the improvement from just moving env->p direction is better
2486 * than swapping tasks around, check if a move is possible.
2488 load = task_h_load(env->p);
2489 dst_load = env->dst_stats.load + load;
2490 src_load = env->src_stats.load - load;
2491 maymove = !load_too_imbalanced(src_load, dst_load, env);
2494 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2495 /* Skip this CPU if the source task cannot migrate */
2496 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2500 if (task_numa_compare(env, taskimp, groupimp, maymove))
2505 static int task_numa_migrate(struct task_struct *p)
2507 struct task_numa_env env = {
2510 .src_cpu = task_cpu(p),
2511 .src_nid = task_node(p),
2513 .imbalance_pct = 112,
2519 unsigned long taskweight, groupweight;
2520 struct sched_domain *sd;
2521 long taskimp, groupimp;
2522 struct numa_group *ng;
2527 * Pick the lowest SD_NUMA domain, as that would have the smallest
2528 * imbalance and would be the first to start moving tasks about.
2530 * And we want to avoid any moving of tasks about, as that would create
2531 * random movement of tasks -- counter the numa conditions we're trying
2535 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2537 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2538 env.imb_numa_nr = sd->imb_numa_nr;
2543 * Cpusets can break the scheduler domain tree into smaller
2544 * balance domains, some of which do not cross NUMA boundaries.
2545 * Tasks that are "trapped" in such domains cannot be migrated
2546 * elsewhere, so there is no point in (re)trying.
2548 if (unlikely(!sd)) {
2549 sched_setnuma(p, task_node(p));
2553 env.dst_nid = p->numa_preferred_nid;
2554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2555 taskweight = task_weight(p, env.src_nid, dist);
2556 groupweight = group_weight(p, env.src_nid, dist);
2557 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2560 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2562 /* Try to find a spot on the preferred nid. */
2563 task_numa_find_cpu(&env, taskimp, groupimp);
2566 * Look at other nodes in these cases:
2567 * - there is no space available on the preferred_nid
2568 * - the task is part of a numa_group that is interleaved across
2569 * multiple NUMA nodes; in order to better consolidate the group,
2570 * we need to check other locations.
2572 ng = deref_curr_numa_group(p);
2573 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2574 for_each_node_state(nid, N_CPU) {
2575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2578 dist = node_distance(env.src_nid, env.dst_nid);
2579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2581 taskweight = task_weight(p, env.src_nid, dist);
2582 groupweight = group_weight(p, env.src_nid, dist);
2585 /* Only consider nodes where both task and groups benefit */
2586 taskimp = task_weight(p, nid, dist) - taskweight;
2587 groupimp = group_weight(p, nid, dist) - groupweight;
2588 if (taskimp < 0 && groupimp < 0)
2593 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2594 task_numa_find_cpu(&env, taskimp, groupimp);
2599 * If the task is part of a workload that spans multiple NUMA nodes,
2600 * and is migrating into one of the workload's active nodes, remember
2601 * this node as the task's preferred numa node, so the workload can
2603 * A task that migrated to a second choice node will be better off
2604 * trying for a better one later. Do not set the preferred node here.
2607 if (env.best_cpu == -1)
2610 nid = cpu_to_node(env.best_cpu);
2612 if (nid != p->numa_preferred_nid)
2613 sched_setnuma(p, nid);
2616 /* No better CPU than the current one was found. */
2617 if (env.best_cpu == -1) {
2618 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2622 best_rq = cpu_rq(env.best_cpu);
2623 if (env.best_task == NULL) {
2624 ret = migrate_task_to(p, env.best_cpu);
2625 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2627 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2631 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2632 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2635 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2636 put_task_struct(env.best_task);
2640 /* Attempt to migrate a task to a CPU on the preferred node. */
2641 static void numa_migrate_preferred(struct task_struct *p)
2643 unsigned long interval = HZ;
2645 /* This task has no NUMA fault statistics yet */
2646 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2649 /* Periodically retry migrating the task to the preferred node */
2650 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2651 p->numa_migrate_retry = jiffies + interval;
2653 /* Success if task is already running on preferred CPU */
2654 if (task_node(p) == p->numa_preferred_nid)
2657 /* Otherwise, try migrate to a CPU on the preferred node */
2658 task_numa_migrate(p);
2662 * Find out how many nodes the workload is actively running on. Do this by
2663 * tracking the nodes from which NUMA hinting faults are triggered. This can
2664 * be different from the set of nodes where the workload's memory is currently
2667 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2669 unsigned long faults, max_faults = 0;
2670 int nid, active_nodes = 0;
2672 for_each_node_state(nid, N_CPU) {
2673 faults = group_faults_cpu(numa_group, nid);
2674 if (faults > max_faults)
2675 max_faults = faults;
2678 for_each_node_state(nid, N_CPU) {
2679 faults = group_faults_cpu(numa_group, nid);
2680 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2684 numa_group->max_faults_cpu = max_faults;
2685 numa_group->active_nodes = active_nodes;
2689 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2690 * increments. The more local the fault statistics are, the higher the scan
2691 * period will be for the next scan window. If local/(local+remote) ratio is
2692 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2693 * the scan period will decrease. Aim for 70% local accesses.
2695 #define NUMA_PERIOD_SLOTS 10
2696 #define NUMA_PERIOD_THRESHOLD 7
2699 * Increase the scan period (slow down scanning) if the majority of
2700 * our memory is already on our local node, or if the majority of
2701 * the page accesses are shared with other processes.
2702 * Otherwise, decrease the scan period.
2704 static void update_task_scan_period(struct task_struct *p,
2705 unsigned long shared, unsigned long private)
2707 unsigned int period_slot;
2708 int lr_ratio, ps_ratio;
2711 unsigned long remote = p->numa_faults_locality[0];
2712 unsigned long local = p->numa_faults_locality[1];
2715 * If there were no record hinting faults then either the task is
2716 * completely idle or all activity is in areas that are not of interest
2717 * to automatic numa balancing. Related to that, if there were failed
2718 * migration then it implies we are migrating too quickly or the local
2719 * node is overloaded. In either case, scan slower
2721 if (local + shared == 0 || p->numa_faults_locality[2]) {
2722 p->numa_scan_period = min(p->numa_scan_period_max,
2723 p->numa_scan_period << 1);
2725 p->mm->numa_next_scan = jiffies +
2726 msecs_to_jiffies(p->numa_scan_period);
2732 * Prepare to scale scan period relative to the current period.
2733 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2734 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2735 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2737 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2738 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2739 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2741 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2743 * Most memory accesses are local. There is no need to
2744 * do fast NUMA scanning, since memory is already local.
2746 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2749 diff = slot * period_slot;
2750 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2752 * Most memory accesses are shared with other tasks.
2753 * There is no point in continuing fast NUMA scanning,
2754 * since other tasks may just move the memory elsewhere.
2756 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2759 diff = slot * period_slot;
2762 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2763 * yet they are not on the local NUMA node. Speed up
2764 * NUMA scanning to get the memory moved over.
2766 int ratio = max(lr_ratio, ps_ratio);
2767 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2770 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2771 task_scan_min(p), task_scan_max(p));
2772 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2776 * Get the fraction of time the task has been running since the last
2777 * NUMA placement cycle. The scheduler keeps similar statistics, but
2778 * decays those on a 32ms period, which is orders of magnitude off
2779 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2780 * stats only if the task is so new there are no NUMA statistics yet.
2782 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2784 u64 runtime, delta, now;
2785 /* Use the start of this time slice to avoid calculations. */
2786 now = p->se.exec_start;
2787 runtime = p->se.sum_exec_runtime;
2789 if (p->last_task_numa_placement) {
2790 delta = runtime - p->last_sum_exec_runtime;
2791 *period = now - p->last_task_numa_placement;
2793 /* Avoid time going backwards, prevent potential divide error: */
2794 if (unlikely((s64)*period < 0))
2797 delta = p->se.avg.load_sum;
2798 *period = LOAD_AVG_MAX;
2801 p->last_sum_exec_runtime = runtime;
2802 p->last_task_numa_placement = now;
2808 * Determine the preferred nid for a task in a numa_group. This needs to
2809 * be done in a way that produces consistent results with group_weight,
2810 * otherwise workloads might not converge.
2812 static int preferred_group_nid(struct task_struct *p, int nid)
2817 /* Direct connections between all NUMA nodes. */
2818 if (sched_numa_topology_type == NUMA_DIRECT)
2822 * On a system with glueless mesh NUMA topology, group_weight
2823 * scores nodes according to the number of NUMA hinting faults on
2824 * both the node itself, and on nearby nodes.
2826 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2827 unsigned long score, max_score = 0;
2828 int node, max_node = nid;
2830 dist = sched_max_numa_distance;
2832 for_each_node_state(node, N_CPU) {
2833 score = group_weight(p, node, dist);
2834 if (score > max_score) {
2843 * Finding the preferred nid in a system with NUMA backplane
2844 * interconnect topology is more involved. The goal is to locate
2845 * tasks from numa_groups near each other in the system, and
2846 * untangle workloads from different sides of the system. This requires
2847 * searching down the hierarchy of node groups, recursively searching
2848 * inside the highest scoring group of nodes. The nodemask tricks
2849 * keep the complexity of the search down.
2851 nodes = node_states[N_CPU];
2852 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2853 unsigned long max_faults = 0;
2854 nodemask_t max_group = NODE_MASK_NONE;
2857 /* Are there nodes at this distance from each other? */
2858 if (!find_numa_distance(dist))
2861 for_each_node_mask(a, nodes) {
2862 unsigned long faults = 0;
2863 nodemask_t this_group;
2864 nodes_clear(this_group);
2866 /* Sum group's NUMA faults; includes a==b case. */
2867 for_each_node_mask(b, nodes) {
2868 if (node_distance(a, b) < dist) {
2869 faults += group_faults(p, b);
2870 node_set(b, this_group);
2871 node_clear(b, nodes);
2875 /* Remember the top group. */
2876 if (faults > max_faults) {
2877 max_faults = faults;
2878 max_group = this_group;
2880 * subtle: at the smallest distance there is
2881 * just one node left in each "group", the
2882 * winner is the preferred nid.
2887 /* Next round, evaluate the nodes within max_group. */
2895 static void task_numa_placement(struct task_struct *p)
2897 int seq, nid, max_nid = NUMA_NO_NODE;
2898 unsigned long max_faults = 0;
2899 unsigned long fault_types[2] = { 0, 0 };
2900 unsigned long total_faults;
2901 u64 runtime, period;
2902 spinlock_t *group_lock = NULL;
2903 struct numa_group *ng;
2906 * The p->mm->numa_scan_seq field gets updated without
2907 * exclusive access. Use READ_ONCE() here to ensure
2908 * that the field is read in a single access:
2910 seq = READ_ONCE(p->mm->numa_scan_seq);
2911 if (p->numa_scan_seq == seq)
2913 p->numa_scan_seq = seq;
2914 p->numa_scan_period_max = task_scan_max(p);
2916 total_faults = p->numa_faults_locality[0] +
2917 p->numa_faults_locality[1];
2918 runtime = numa_get_avg_runtime(p, &period);
2920 /* If the task is part of a group prevent parallel updates to group stats */
2921 ng = deref_curr_numa_group(p);
2923 group_lock = &ng->lock;
2924 spin_lock_irq(group_lock);
2927 /* Find the node with the highest number of faults */
2928 for_each_online_node(nid) {
2929 /* Keep track of the offsets in numa_faults array */
2930 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2931 unsigned long faults = 0, group_faults = 0;
2934 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2935 long diff, f_diff, f_weight;
2937 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2938 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2939 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2940 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2942 /* Decay existing window, copy faults since last scan */
2943 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2944 fault_types[priv] += p->numa_faults[membuf_idx];
2945 p->numa_faults[membuf_idx] = 0;
2948 * Normalize the faults_from, so all tasks in a group
2949 * count according to CPU use, instead of by the raw
2950 * number of faults. Tasks with little runtime have
2951 * little over-all impact on throughput, and thus their
2952 * faults are less important.
2954 f_weight = div64_u64(runtime << 16, period + 1);
2955 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2957 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2958 p->numa_faults[cpubuf_idx] = 0;
2960 p->numa_faults[mem_idx] += diff;
2961 p->numa_faults[cpu_idx] += f_diff;
2962 faults += p->numa_faults[mem_idx];
2963 p->total_numa_faults += diff;
2966 * safe because we can only change our own group
2968 * mem_idx represents the offset for a given
2969 * nid and priv in a specific region because it
2970 * is at the beginning of the numa_faults array.
2972 ng->faults[mem_idx] += diff;
2973 ng->faults[cpu_idx] += f_diff;
2974 ng->total_faults += diff;
2975 group_faults += ng->faults[mem_idx];
2980 if (faults > max_faults) {
2981 max_faults = faults;
2984 } else if (group_faults > max_faults) {
2985 max_faults = group_faults;
2990 /* Cannot migrate task to CPU-less node */
2991 max_nid = numa_nearest_node(max_nid, N_CPU);
2994 numa_group_count_active_nodes(ng);
2995 spin_unlock_irq(group_lock);
2996 max_nid = preferred_group_nid(p, max_nid);
3000 /* Set the new preferred node */
3001 if (max_nid != p->numa_preferred_nid)
3002 sched_setnuma(p, max_nid);
3005 update_task_scan_period(p, fault_types[0], fault_types[1]);
3008 static inline int get_numa_group(struct numa_group *grp)
3010 return refcount_inc_not_zero(&grp->refcount);
3013 static inline void put_numa_group(struct numa_group *grp)
3015 if (refcount_dec_and_test(&grp->refcount))
3016 kfree_rcu(grp, rcu);
3019 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3022 struct numa_group *grp, *my_grp;
3023 struct task_struct *tsk;
3025 int cpu = cpupid_to_cpu(cpupid);
3028 if (unlikely(!deref_curr_numa_group(p))) {
3029 unsigned int size = sizeof(struct numa_group) +
3030 NR_NUMA_HINT_FAULT_STATS *
3031 nr_node_ids * sizeof(unsigned long);
3033 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3037 refcount_set(&grp->refcount, 1);
3038 grp->active_nodes = 1;
3039 grp->max_faults_cpu = 0;
3040 spin_lock_init(&grp->lock);
3043 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3044 grp->faults[i] = p->numa_faults[i];
3046 grp->total_faults = p->total_numa_faults;
3049 rcu_assign_pointer(p->numa_group, grp);
3053 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3055 if (!cpupid_match_pid(tsk, cpupid))
3058 grp = rcu_dereference(tsk->numa_group);
3062 my_grp = deref_curr_numa_group(p);
3067 * Only join the other group if its bigger; if we're the bigger group,
3068 * the other task will join us.
3070 if (my_grp->nr_tasks > grp->nr_tasks)
3074 * Tie-break on the grp address.
3076 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3079 /* Always join threads in the same process. */
3080 if (tsk->mm == current->mm)
3083 /* Simple filter to avoid false positives due to PID collisions */
3084 if (flags & TNF_SHARED)
3087 /* Update priv based on whether false sharing was detected */
3090 if (join && !get_numa_group(grp))
3098 WARN_ON_ONCE(irqs_disabled());
3099 double_lock_irq(&my_grp->lock, &grp->lock);
3101 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3102 my_grp->faults[i] -= p->numa_faults[i];
3103 grp->faults[i] += p->numa_faults[i];
3105 my_grp->total_faults -= p->total_numa_faults;
3106 grp->total_faults += p->total_numa_faults;
3111 spin_unlock(&my_grp->lock);
3112 spin_unlock_irq(&grp->lock);
3114 rcu_assign_pointer(p->numa_group, grp);
3116 put_numa_group(my_grp);
3125 * Get rid of NUMA statistics associated with a task (either current or dead).
3126 * If @final is set, the task is dead and has reached refcount zero, so we can
3127 * safely free all relevant data structures. Otherwise, there might be
3128 * concurrent reads from places like load balancing and procfs, and we should
3129 * reset the data back to default state without freeing ->numa_faults.
3131 void task_numa_free(struct task_struct *p, bool final)
3133 /* safe: p either is current or is being freed by current */
3134 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3135 unsigned long *numa_faults = p->numa_faults;
3136 unsigned long flags;
3143 spin_lock_irqsave(&grp->lock, flags);
3144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3145 grp->faults[i] -= p->numa_faults[i];
3146 grp->total_faults -= p->total_numa_faults;
3149 spin_unlock_irqrestore(&grp->lock, flags);
3150 RCU_INIT_POINTER(p->numa_group, NULL);
3151 put_numa_group(grp);
3155 p->numa_faults = NULL;
3158 p->total_numa_faults = 0;
3159 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3165 * Got a PROT_NONE fault for a page on @node.
3167 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3169 struct task_struct *p = current;
3170 bool migrated = flags & TNF_MIGRATED;
3171 int cpu_node = task_node(current);
3172 int local = !!(flags & TNF_FAULT_LOCAL);
3173 struct numa_group *ng;
3176 if (!static_branch_likely(&sched_numa_balancing))
3179 /* for example, ksmd faulting in a user's mm */
3184 * NUMA faults statistics are unnecessary for the slow memory
3185 * node for memory tiering mode.
3187 if (!node_is_toptier(mem_node) &&
3188 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3189 !cpupid_valid(last_cpupid)))
3192 /* Allocate buffer to track faults on a per-node basis */
3193 if (unlikely(!p->numa_faults)) {
3194 int size = sizeof(*p->numa_faults) *
3195 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3197 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3198 if (!p->numa_faults)
3201 p->total_numa_faults = 0;
3202 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3206 * First accesses are treated as private, otherwise consider accesses
3207 * to be private if the accessing pid has not changed
3209 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3212 priv = cpupid_match_pid(p, last_cpupid);
3213 if (!priv && !(flags & TNF_NO_GROUP))
3214 task_numa_group(p, last_cpupid, flags, &priv);
3218 * If a workload spans multiple NUMA nodes, a shared fault that
3219 * occurs wholly within the set of nodes that the workload is
3220 * actively using should be counted as local. This allows the
3221 * scan rate to slow down when a workload has settled down.
3223 ng = deref_curr_numa_group(p);
3224 if (!priv && !local && ng && ng->active_nodes > 1 &&
3225 numa_is_active_node(cpu_node, ng) &&
3226 numa_is_active_node(mem_node, ng))
3230 * Retry to migrate task to preferred node periodically, in case it
3231 * previously failed, or the scheduler moved us.
3233 if (time_after(jiffies, p->numa_migrate_retry)) {
3234 task_numa_placement(p);
3235 numa_migrate_preferred(p);
3239 p->numa_pages_migrated += pages;
3240 if (flags & TNF_MIGRATE_FAIL)
3241 p->numa_faults_locality[2] += pages;
3243 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3244 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3245 p->numa_faults_locality[local] += pages;
3248 static void reset_ptenuma_scan(struct task_struct *p)
3251 * We only did a read acquisition of the mmap sem, so
3252 * p->mm->numa_scan_seq is written to without exclusive access
3253 * and the update is not guaranteed to be atomic. That's not
3254 * much of an issue though, since this is just used for
3255 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3256 * expensive, to avoid any form of compiler optimizations:
3258 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3259 p->mm->numa_scan_offset = 0;
3262 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3266 * Allow unconditional access first two times, so that all the (pages)
3267 * of VMAs get prot_none fault introduced irrespective of accesses.
3268 * This is also done to avoid any side effect of task scanning
3269 * amplifying the unfairness of disjoint set of VMAs' access.
3271 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3274 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3275 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3279 * Complete a scan that has already started regardless of PID access, or
3280 * some VMAs may never be scanned in multi-threaded applications:
3282 if (mm->numa_scan_offset > vma->vm_start) {
3283 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3288 * This vma has not been accessed for a while, and if the number
3289 * the threads in the same process is low, which means no other
3290 * threads can help scan this vma, force a vma scan.
3292 if (READ_ONCE(mm->numa_scan_seq) >
3293 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3299 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3302 * The expensive part of numa migration is done from task_work context.
3303 * Triggered from task_tick_numa().
3305 static void task_numa_work(struct callback_head *work)
3307 unsigned long migrate, next_scan, now = jiffies;
3308 struct task_struct *p = current;
3309 struct mm_struct *mm = p->mm;
3310 u64 runtime = p->se.sum_exec_runtime;
3311 struct vm_area_struct *vma;
3312 unsigned long start, end;
3313 unsigned long nr_pte_updates = 0;
3314 long pages, virtpages;
3315 struct vma_iterator vmi;
3316 bool vma_pids_skipped;
3317 bool vma_pids_forced = false;
3319 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3323 * Who cares about NUMA placement when they're dying.
3325 * NOTE: make sure not to dereference p->mm before this check,
3326 * exit_task_work() happens _after_ exit_mm() so we could be called
3327 * without p->mm even though we still had it when we enqueued this
3330 if (p->flags & PF_EXITING)
3334 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
3335 * no page can be migrated.
3337 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
3338 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
3342 if (!mm->numa_next_scan) {
3343 mm->numa_next_scan = now +
3344 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3348 * Enforce maximal scan/migration frequency..
3350 migrate = mm->numa_next_scan;
3351 if (time_before(now, migrate))
3354 if (p->numa_scan_period == 0) {
3355 p->numa_scan_period_max = task_scan_max(p);
3356 p->numa_scan_period = task_scan_start(p);
3359 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3360 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3364 * Delay this task enough that another task of this mm will likely win
3365 * the next time around.
3367 p->node_stamp += 2 * TICK_NSEC;
3369 pages = sysctl_numa_balancing_scan_size;
3370 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3371 virtpages = pages * 8; /* Scan up to this much virtual space */
3376 if (!mmap_read_trylock(mm))
3380 * VMAs are skipped if the current PID has not trapped a fault within
3381 * the VMA recently. Allow scanning to be forced if there is no
3382 * suitable VMA remaining.
3384 vma_pids_skipped = false;
3387 start = mm->numa_scan_offset;
3388 vma_iter_init(&vmi, mm, start);
3389 vma = vma_next(&vmi);
3391 reset_ptenuma_scan(p);
3393 vma_iter_set(&vmi, start);
3394 vma = vma_next(&vmi);
3397 for (; vma; vma = vma_next(&vmi)) {
3398 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3399 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3400 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3405 * Shared library pages mapped by multiple processes are not
3406 * migrated as it is expected they are cache replicated. Avoid
3407 * hinting faults in read-only file-backed mappings or the vDSO
3408 * as migrating the pages will be of marginal benefit.
3411 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3412 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3417 * Skip inaccessible VMAs to avoid any confusion between
3418 * PROT_NONE and NUMA hinting PTEs
3420 if (!vma_is_accessible(vma)) {
3421 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3425 /* Initialise new per-VMA NUMAB state. */
3426 if (!vma->numab_state) {
3427 struct vma_numab_state *ptr;
3429 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3433 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3438 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3440 vma->numab_state->next_scan = now +
3441 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3443 /* Reset happens after 4 times scan delay of scan start */
3444 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3445 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3448 * Ensure prev_scan_seq does not match numa_scan_seq,
3449 * to prevent VMAs being skipped prematurely on the
3452 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3456 * Scanning the VMAs of short lived tasks add more overhead. So
3457 * delay the scan for new VMAs.
3459 if (mm->numa_scan_seq && time_before(jiffies,
3460 vma->numab_state->next_scan)) {
3461 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3465 /* RESET access PIDs regularly for old VMAs. */
3466 if (mm->numa_scan_seq &&
3467 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3468 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3469 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3470 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3471 vma->numab_state->pids_active[1] = 0;
3474 /* Do not rescan VMAs twice within the same sequence. */
3475 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3476 mm->numa_scan_offset = vma->vm_end;
3477 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3482 * Do not scan the VMA if task has not accessed it, unless no other
3483 * VMA candidate exists.
3485 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3486 vma_pids_skipped = true;
3487 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3492 start = max(start, vma->vm_start);
3493 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3494 end = min(end, vma->vm_end);
3495 nr_pte_updates = change_prot_numa(vma, start, end);
3498 * Try to scan sysctl_numa_balancing_size worth of
3499 * hpages that have at least one present PTE that
3500 * is not already PTE-numa. If the VMA contains
3501 * areas that are unused or already full of prot_numa
3502 * PTEs, scan up to virtpages, to skip through those
3506 pages -= (end - start) >> PAGE_SHIFT;
3507 virtpages -= (end - start) >> PAGE_SHIFT;
3510 if (pages <= 0 || virtpages <= 0)
3514 } while (end != vma->vm_end);
3516 /* VMA scan is complete, do not scan until next sequence. */
3517 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3520 * Only force scan within one VMA at a time, to limit the
3521 * cost of scanning a potentially uninteresting VMA.
3523 if (vma_pids_forced)
3528 * If no VMAs are remaining and VMAs were skipped due to the PID
3529 * not accessing the VMA previously, then force a scan to ensure
3532 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3533 vma_pids_forced = true;
3539 * It is possible to reach the end of the VMA list but the last few
3540 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3541 * would find the !migratable VMA on the next scan but not reset the
3542 * scanner to the start so check it now.
3545 mm->numa_scan_offset = start;
3547 reset_ptenuma_scan(p);
3548 mmap_read_unlock(mm);
3551 * Make sure tasks use at least 32x as much time to run other code
3552 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3553 * Usually update_task_scan_period slows down scanning enough; on an
3554 * overloaded system we need to limit overhead on a per task basis.
3556 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3557 u64 diff = p->se.sum_exec_runtime - runtime;
3558 p->node_stamp += 32 * diff;
3562 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3565 struct mm_struct *mm = p->mm;
3568 mm_users = atomic_read(&mm->mm_users);
3569 if (mm_users == 1) {
3570 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3571 mm->numa_scan_seq = 0;
3575 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3576 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3577 p->numa_migrate_retry = 0;
3578 /* Protect against double add, see task_tick_numa and task_numa_work */
3579 p->numa_work.next = &p->numa_work;
3580 p->numa_faults = NULL;
3581 p->numa_pages_migrated = 0;
3582 p->total_numa_faults = 0;
3583 RCU_INIT_POINTER(p->numa_group, NULL);
3584 p->last_task_numa_placement = 0;
3585 p->last_sum_exec_runtime = 0;
3587 init_task_work(&p->numa_work, task_numa_work);
3589 /* New address space, reset the preferred nid */
3590 if (!(clone_flags & CLONE_VM)) {
3591 p->numa_preferred_nid = NUMA_NO_NODE;
3596 * New thread, keep existing numa_preferred_nid which should be copied
3597 * already by arch_dup_task_struct but stagger when scans start.
3602 delay = min_t(unsigned int, task_scan_max(current),
3603 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3604 delay += 2 * TICK_NSEC;
3605 p->node_stamp = delay;
3610 * Drive the periodic memory faults..
3612 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3614 struct callback_head *work = &curr->numa_work;
3618 * We don't care about NUMA placement if we don't have memory.
3620 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3624 * Using runtime rather than walltime has the dual advantage that
3625 * we (mostly) drive the selection from busy threads and that the
3626 * task needs to have done some actual work before we bother with
3629 now = curr->se.sum_exec_runtime;
3630 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3632 if (now > curr->node_stamp + period) {
3633 if (!curr->node_stamp)
3634 curr->numa_scan_period = task_scan_start(curr);
3635 curr->node_stamp += period;
3637 if (!time_before(jiffies, curr->mm->numa_next_scan))
3638 task_work_add(curr, work, TWA_RESUME);
3642 static void update_scan_period(struct task_struct *p, int new_cpu)
3644 int src_nid = cpu_to_node(task_cpu(p));
3645 int dst_nid = cpu_to_node(new_cpu);
3647 if (!static_branch_likely(&sched_numa_balancing))
3650 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3653 if (src_nid == dst_nid)
3657 * Allow resets if faults have been trapped before one scan
3658 * has completed. This is most likely due to a new task that
3659 * is pulled cross-node due to wakeups or load balancing.
3661 if (p->numa_scan_seq) {
3663 * Avoid scan adjustments if moving to the preferred
3664 * node or if the task was not previously running on
3665 * the preferred node.
3667 if (dst_nid == p->numa_preferred_nid ||
3668 (p->numa_preferred_nid != NUMA_NO_NODE &&
3669 src_nid != p->numa_preferred_nid))
3673 p->numa_scan_period = task_scan_start(p);
3677 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3681 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3685 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3689 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3693 #endif /* CONFIG_NUMA_BALANCING */
3696 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3698 update_load_add(&cfs_rq->load, se->load.weight);
3700 if (entity_is_task(se)) {
3701 struct rq *rq = rq_of(cfs_rq);
3703 account_numa_enqueue(rq, task_of(se));
3704 list_add(&se->group_node, &rq->cfs_tasks);
3707 cfs_rq->nr_queued++;
3711 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3713 update_load_sub(&cfs_rq->load, se->load.weight);
3715 if (entity_is_task(se)) {
3716 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3717 list_del_init(&se->group_node);
3720 cfs_rq->nr_queued--;
3724 * Signed add and clamp on underflow.
3726 * Explicitly do a load-store to ensure the intermediate value never hits
3727 * memory. This allows lockless observations without ever seeing the negative
3730 #define add_positive(_ptr, _val) do { \
3731 typeof(_ptr) ptr = (_ptr); \
3732 typeof(_val) val = (_val); \
3733 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3737 if (val < 0 && res > var) \
3740 WRITE_ONCE(*ptr, res); \
3744 * Unsigned subtract and clamp on underflow.
3746 * Explicitly do a load-store to ensure the intermediate value never hits
3747 * memory. This allows lockless observations without ever seeing the negative
3750 #define sub_positive(_ptr, _val) do { \
3751 typeof(_ptr) ptr = (_ptr); \
3752 typeof(*ptr) val = (_val); \
3753 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3757 WRITE_ONCE(*ptr, res); \
3761 * Remove and clamp on negative, from a local variable.
3763 * A variant of sub_positive(), which does not use explicit load-store
3764 * and is thus optimized for local variable updates.
3766 #define lsub_positive(_ptr, _val) do { \
3767 typeof(_ptr) ptr = (_ptr); \
3768 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3773 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3775 cfs_rq->avg.load_avg += se->avg.load_avg;
3776 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3780 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3782 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3783 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3784 /* See update_cfs_rq_load_avg() */
3785 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3786 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3790 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3792 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3795 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3797 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3798 unsigned long weight)
3800 bool curr = cfs_rq->curr == se;
3803 /* commit outstanding execution time */
3804 update_curr(cfs_rq);
3805 update_entity_lag(cfs_rq, se);
3806 se->deadline -= se->vruntime;
3807 se->rel_deadline = 1;
3808 cfs_rq->nr_queued--;
3810 __dequeue_entity(cfs_rq, se);
3811 update_load_sub(&cfs_rq->load, se->load.weight);
3813 dequeue_load_avg(cfs_rq, se);
3816 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3817 * we need to scale se->vlag when w_i changes.
3819 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3820 if (se->rel_deadline)
3821 se->deadline = div_s64(se->deadline * se->load.weight, weight);
3823 update_load_set(&se->load, weight);
3827 u32 divider = get_pelt_divider(&se->avg);
3829 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3833 enqueue_load_avg(cfs_rq, se);
3835 place_entity(cfs_rq, se, 0);
3836 update_load_add(&cfs_rq->load, se->load.weight);
3838 __enqueue_entity(cfs_rq, se);
3839 cfs_rq->nr_queued++;
3842 * The entity's vruntime has been adjusted, so let's check
3843 * whether the rq-wide min_vruntime needs updated too. Since
3844 * the calculations above require stable min_vruntime rather
3845 * than up-to-date one, we do the update at the end of the
3848 update_min_vruntime(cfs_rq);
3852 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3853 const struct load_weight *lw)
3855 struct sched_entity *se = &p->se;
3856 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3857 struct load_weight *load = &se->load;
3859 reweight_entity(cfs_rq, se, lw->weight);
3860 load->inv_weight = lw->inv_weight;
3863 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3865 #ifdef CONFIG_FAIR_GROUP_SCHED
3868 * All this does is approximate the hierarchical proportion which includes that
3869 * global sum we all love to hate.
3871 * That is, the weight of a group entity, is the proportional share of the
3872 * group weight based on the group runqueue weights. That is:
3874 * tg->weight * grq->load.weight
3875 * ge->load.weight = ----------------------------- (1)
3876 * \Sum grq->load.weight
3878 * Now, because computing that sum is prohibitively expensive to compute (been
3879 * there, done that) we approximate it with this average stuff. The average
3880 * moves slower and therefore the approximation is cheaper and more stable.
3882 * So instead of the above, we substitute:
3884 * grq->load.weight -> grq->avg.load_avg (2)
3886 * which yields the following:
3888 * tg->weight * grq->avg.load_avg
3889 * ge->load.weight = ------------------------------ (3)
3892 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3894 * That is shares_avg, and it is right (given the approximation (2)).
3896 * The problem with it is that because the average is slow -- it was designed
3897 * to be exactly that of course -- this leads to transients in boundary
3898 * conditions. In specific, the case where the group was idle and we start the
3899 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3900 * yielding bad latency etc..
3902 * Now, in that special case (1) reduces to:
3904 * tg->weight * grq->load.weight
3905 * ge->load.weight = ----------------------------- = tg->weight (4)
3908 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3910 * So what we do is modify our approximation (3) to approach (4) in the (near)
3915 * tg->weight * grq->load.weight
3916 * --------------------------------------------------- (5)
3917 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3919 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3920 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3923 * tg->weight * grq->load.weight
3924 * ge->load.weight = ----------------------------- (6)
3929 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3930 * max(grq->load.weight, grq->avg.load_avg)
3932 * And that is shares_weight and is icky. In the (near) UP case it approaches
3933 * (4) while in the normal case it approaches (3). It consistently
3934 * overestimates the ge->load.weight and therefore:
3936 * \Sum ge->load.weight >= tg->weight
3940 static long calc_group_shares(struct cfs_rq *cfs_rq)
3942 long tg_weight, tg_shares, load, shares;
3943 struct task_group *tg = cfs_rq->tg;
3945 tg_shares = READ_ONCE(tg->shares);
3947 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3949 tg_weight = atomic_long_read(&tg->load_avg);
3951 /* Ensure tg_weight >= load */
3952 tg_weight -= cfs_rq->tg_load_avg_contrib;
3955 shares = (tg_shares * load);
3957 shares /= tg_weight;
3960 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3961 * of a group with small tg->shares value. It is a floor value which is
3962 * assigned as a minimum load.weight to the sched_entity representing
3963 * the group on a CPU.
3965 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3966 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3967 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3968 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3971 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3973 #endif /* CONFIG_SMP */
3976 * Recomputes the group entity based on the current state of its group
3979 static void update_cfs_group(struct sched_entity *se)
3981 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3985 * When a group becomes empty, preserve its weight. This matters for
3988 if (!gcfs_rq || !gcfs_rq->load.weight)
3991 if (throttled_hierarchy(gcfs_rq))
3995 shares = READ_ONCE(gcfs_rq->tg->shares);
3997 shares = calc_group_shares(gcfs_rq);
3999 if (unlikely(se->load.weight != shares))
4000 reweight_entity(cfs_rq_of(se), se, shares);
4003 #else /* CONFIG_FAIR_GROUP_SCHED */
4004 static inline void update_cfs_group(struct sched_entity *se)
4007 #endif /* CONFIG_FAIR_GROUP_SCHED */
4009 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4011 struct rq *rq = rq_of(cfs_rq);
4013 if (&rq->cfs == cfs_rq) {
4015 * There are a few boundary cases this might miss but it should
4016 * get called often enough that that should (hopefully) not be
4019 * It will not get called when we go idle, because the idle
4020 * thread is a different class (!fair), nor will the utilization
4021 * number include things like RT tasks.
4023 * As is, the util number is not freq-invariant (we'd have to
4024 * implement arch_scale_freq_capacity() for that).
4026 * See cpu_util_cfs().
4028 cpufreq_update_util(rq, flags);
4033 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4041 if (sa->runnable_sum)
4045 * _avg must be null when _sum are null because _avg = _sum / divider
4046 * Make sure that rounding and/or propagation of PELT values never
4049 WARN_ON_ONCE(sa->load_avg ||
4056 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4058 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4059 cfs_rq->last_update_time_copy);
4061 #ifdef CONFIG_FAIR_GROUP_SCHED
4063 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4064 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4065 * bottom-up, we only have to test whether the cfs_rq before us on the list
4067 * If cfs_rq is not on the list, test whether a child needs its to be added to
4068 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4070 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4072 struct cfs_rq *prev_cfs_rq;
4073 struct list_head *prev;
4074 struct rq *rq = rq_of(cfs_rq);
4076 if (cfs_rq->on_list) {
4077 prev = cfs_rq->leaf_cfs_rq_list.prev;
4079 prev = rq->tmp_alone_branch;
4082 if (prev == &rq->leaf_cfs_rq_list)
4085 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4087 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4090 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4092 if (cfs_rq->load.weight)
4095 if (!load_avg_is_decayed(&cfs_rq->avg))
4098 if (child_cfs_rq_on_list(cfs_rq))
4105 * update_tg_load_avg - update the tg's load avg
4106 * @cfs_rq: the cfs_rq whose avg changed
4108 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4109 * However, because tg->load_avg is a global value there are performance
4112 * In order to avoid having to look at the other cfs_rq's, we use a
4113 * differential update where we store the last value we propagated. This in
4114 * turn allows skipping updates if the differential is 'small'.
4116 * Updating tg's load_avg is necessary before update_cfs_share().
4118 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4124 * No need to update load_avg for root_task_group as it is not used.
4126 if (cfs_rq->tg == &root_task_group)
4129 /* rq has been offline and doesn't contribute to the share anymore: */
4130 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4134 * For migration heavy workloads, access to tg->load_avg can be
4135 * unbound. Limit the update rate to at most once per ms.
4137 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4138 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4141 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4142 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4143 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4144 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4145 cfs_rq->last_update_tg_load_avg = now;
4149 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4155 * No need to update load_avg for root_task_group, as it is not used.
4157 if (cfs_rq->tg == &root_task_group)
4160 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4161 delta = 0 - cfs_rq->tg_load_avg_contrib;
4162 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4163 cfs_rq->tg_load_avg_contrib = 0;
4164 cfs_rq->last_update_tg_load_avg = now;
4167 /* CPU offline callback: */
4168 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4170 struct task_group *tg;
4172 lockdep_assert_rq_held(rq);
4175 * The rq clock has already been updated in
4176 * set_rq_offline(), so we should skip updating
4177 * the rq clock again in unthrottle_cfs_rq().
4179 rq_clock_start_loop_update(rq);
4182 list_for_each_entry_rcu(tg, &task_groups, list) {
4183 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4185 clear_tg_load_avg(cfs_rq);
4189 rq_clock_stop_loop_update(rq);
4193 * Called within set_task_rq() right before setting a task's CPU. The
4194 * caller only guarantees p->pi_lock is held; no other assumptions,
4195 * including the state of rq->lock, should be made.
4197 void set_task_rq_fair(struct sched_entity *se,
4198 struct cfs_rq *prev, struct cfs_rq *next)
4200 u64 p_last_update_time;
4201 u64 n_last_update_time;
4203 if (!sched_feat(ATTACH_AGE_LOAD))
4207 * We are supposed to update the task to "current" time, then its up to
4208 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4209 * getting what current time is, so simply throw away the out-of-date
4210 * time. This will result in the wakee task is less decayed, but giving
4211 * the wakee more load sounds not bad.
4213 if (!(se->avg.last_update_time && prev))
4216 p_last_update_time = cfs_rq_last_update_time(prev);
4217 n_last_update_time = cfs_rq_last_update_time(next);
4219 __update_load_avg_blocked_se(p_last_update_time, se);
4220 se->avg.last_update_time = n_last_update_time;
4224 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4225 * propagate its contribution. The key to this propagation is the invariant
4226 * that for each group:
4228 * ge->avg == grq->avg (1)
4230 * _IFF_ we look at the pure running and runnable sums. Because they
4231 * represent the very same entity, just at different points in the hierarchy.
4233 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4234 * and simply copies the running/runnable sum over (but still wrong, because
4235 * the group entity and group rq do not have their PELT windows aligned).
4237 * However, update_tg_cfs_load() is more complex. So we have:
4239 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4241 * And since, like util, the runnable part should be directly transferable,
4242 * the following would _appear_ to be the straight forward approach:
4244 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4246 * And per (1) we have:
4248 * ge->avg.runnable_avg == grq->avg.runnable_avg
4252 * ge->load.weight * grq->avg.load_avg
4253 * ge->avg.load_avg = ----------------------------------- (4)
4256 * Except that is wrong!
4258 * Because while for entities historical weight is not important and we
4259 * really only care about our future and therefore can consider a pure
4260 * runnable sum, runqueues can NOT do this.
4262 * We specifically want runqueues to have a load_avg that includes
4263 * historical weights. Those represent the blocked load, the load we expect
4264 * to (shortly) return to us. This only works by keeping the weights as
4265 * integral part of the sum. We therefore cannot decompose as per (3).
4267 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4268 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4269 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4270 * runnable section of these tasks overlap (or not). If they were to perfectly
4271 * align the rq as a whole would be runnable 2/3 of the time. If however we
4272 * always have at least 1 runnable task, the rq as a whole is always runnable.
4274 * So we'll have to approximate.. :/
4276 * Given the constraint:
4278 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4280 * We can construct a rule that adds runnable to a rq by assuming minimal
4283 * On removal, we'll assume each task is equally runnable; which yields:
4285 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4287 * XXX: only do this for the part of runnable > running ?
4291 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4293 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4294 u32 new_sum, divider;
4296 /* Nothing to update */
4301 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4302 * See ___update_load_avg() for details.
4304 divider = get_pelt_divider(&cfs_rq->avg);
4307 /* Set new sched_entity's utilization */
4308 se->avg.util_avg = gcfs_rq->avg.util_avg;
4309 new_sum = se->avg.util_avg * divider;
4310 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4311 se->avg.util_sum = new_sum;
4313 /* Update parent cfs_rq utilization */
4314 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4315 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4317 /* See update_cfs_rq_load_avg() */
4318 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4319 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4323 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4325 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4326 u32 new_sum, divider;
4328 /* Nothing to update */
4333 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4334 * See ___update_load_avg() for details.
4336 divider = get_pelt_divider(&cfs_rq->avg);
4338 /* Set new sched_entity's runnable */
4339 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4340 new_sum = se->avg.runnable_avg * divider;
4341 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4342 se->avg.runnable_sum = new_sum;
4344 /* Update parent cfs_rq runnable */
4345 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4346 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4347 /* See update_cfs_rq_load_avg() */
4348 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4349 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4353 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4355 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4356 unsigned long load_avg;
4364 gcfs_rq->prop_runnable_sum = 0;
4367 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4368 * See ___update_load_avg() for details.
4370 divider = get_pelt_divider(&cfs_rq->avg);
4372 if (runnable_sum >= 0) {
4374 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4375 * the CPU is saturated running == runnable.
4377 runnable_sum += se->avg.load_sum;
4378 runnable_sum = min_t(long, runnable_sum, divider);
4381 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4382 * assuming all tasks are equally runnable.
4384 if (scale_load_down(gcfs_rq->load.weight)) {
4385 load_sum = div_u64(gcfs_rq->avg.load_sum,
4386 scale_load_down(gcfs_rq->load.weight));
4389 /* But make sure to not inflate se's runnable */
4390 runnable_sum = min(se->avg.load_sum, load_sum);
4394 * runnable_sum can't be lower than running_sum
4395 * Rescale running sum to be in the same range as runnable sum
4396 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4397 * runnable_sum is in [0 : LOAD_AVG_MAX]
4399 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4400 runnable_sum = max(runnable_sum, running_sum);
4402 load_sum = se_weight(se) * runnable_sum;
4403 load_avg = div_u64(load_sum, divider);
4405 delta_avg = load_avg - se->avg.load_avg;
4409 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4411 se->avg.load_sum = runnable_sum;
4412 se->avg.load_avg = load_avg;
4413 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4414 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4415 /* See update_cfs_rq_load_avg() */
4416 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4417 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4420 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4422 cfs_rq->propagate = 1;
4423 cfs_rq->prop_runnable_sum += runnable_sum;
4426 /* Update task and its cfs_rq load average */
4427 static inline int propagate_entity_load_avg(struct sched_entity *se)
4429 struct cfs_rq *cfs_rq, *gcfs_rq;
4431 if (entity_is_task(se))
4434 gcfs_rq = group_cfs_rq(se);
4435 if (!gcfs_rq->propagate)
4438 gcfs_rq->propagate = 0;
4440 cfs_rq = cfs_rq_of(se);
4442 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4444 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4445 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4446 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4448 trace_pelt_cfs_tp(cfs_rq);
4449 trace_pelt_se_tp(se);
4455 * Check if we need to update the load and the utilization of a blocked
4458 static inline bool skip_blocked_update(struct sched_entity *se)
4460 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4463 * If sched_entity still have not zero load or utilization, we have to
4466 if (se->avg.load_avg || se->avg.util_avg)
4470 * If there is a pending propagation, we have to update the load and
4471 * the utilization of the sched_entity:
4473 if (gcfs_rq->propagate)
4477 * Otherwise, the load and the utilization of the sched_entity is
4478 * already zero and there is no pending propagation, so it will be a
4479 * waste of time to try to decay it:
4484 #else /* CONFIG_FAIR_GROUP_SCHED */
4486 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4488 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4490 static inline int propagate_entity_load_avg(struct sched_entity *se)
4495 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4497 #endif /* CONFIG_FAIR_GROUP_SCHED */
4499 #ifdef CONFIG_NO_HZ_COMMON
4500 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4502 u64 throttled = 0, now, lut;
4503 struct cfs_rq *cfs_rq;
4507 if (load_avg_is_decayed(&se->avg))
4510 cfs_rq = cfs_rq_of(se);
4514 is_idle = is_idle_task(rcu_dereference(rq->curr));
4518 * The lag estimation comes with a cost we don't want to pay all the
4519 * time. Hence, limiting to the case where the source CPU is idle and
4520 * we know we are at the greatest risk to have an outdated clock.
4526 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4528 * last_update_time (the cfs_rq's last_update_time)
4529 * = cfs_rq_clock_pelt()@cfs_rq_idle
4530 * = rq_clock_pelt()@cfs_rq_idle
4531 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4533 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4534 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4536 * rq_idle_lag (delta between now and rq's update)
4537 * = sched_clock_cpu() - rq_clock()@rq_idle
4539 * We can then write:
4541 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4542 * sched_clock_cpu() - rq_clock()@rq_idle
4544 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4545 * rq_clock()@rq_idle is rq->clock_idle
4546 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4547 * is cfs_rq->throttled_pelt_idle
4550 #ifdef CONFIG_CFS_BANDWIDTH
4551 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4552 /* The clock has been stopped for throttling */
4553 if (throttled == U64_MAX)
4556 now = u64_u32_load(rq->clock_pelt_idle);
4558 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4559 * is observed the old clock_pelt_idle value and the new clock_idle,
4560 * which lead to an underestimation. The opposite would lead to an
4564 lut = cfs_rq_last_update_time(cfs_rq);
4569 * cfs_rq->avg.last_update_time is more recent than our
4570 * estimation, let's use it.
4574 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4576 __update_load_avg_blocked_se(now, se);
4579 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4583 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4584 * @now: current time, as per cfs_rq_clock_pelt()
4585 * @cfs_rq: cfs_rq to update
4587 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4588 * avg. The immediate corollary is that all (fair) tasks must be attached.
4590 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4592 * Return: true if the load decayed or we removed load.
4594 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4595 * call update_tg_load_avg() when this function returns true.
4598 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4600 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4601 struct sched_avg *sa = &cfs_rq->avg;
4604 if (cfs_rq->removed.nr) {
4606 u32 divider = get_pelt_divider(&cfs_rq->avg);
4608 raw_spin_lock(&cfs_rq->removed.lock);
4609 swap(cfs_rq->removed.util_avg, removed_util);
4610 swap(cfs_rq->removed.load_avg, removed_load);
4611 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4612 cfs_rq->removed.nr = 0;
4613 raw_spin_unlock(&cfs_rq->removed.lock);
4616 sub_positive(&sa->load_avg, r);
4617 sub_positive(&sa->load_sum, r * divider);
4618 /* See sa->util_sum below */
4619 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4622 sub_positive(&sa->util_avg, r);
4623 sub_positive(&sa->util_sum, r * divider);
4625 * Because of rounding, se->util_sum might ends up being +1 more than
4626 * cfs->util_sum. Although this is not a problem by itself, detaching
4627 * a lot of tasks with the rounding problem between 2 updates of
4628 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4629 * cfs_util_avg is not.
4630 * Check that util_sum is still above its lower bound for the new
4631 * util_avg. Given that period_contrib might have moved since the last
4632 * sync, we are only sure that util_sum must be above or equal to
4633 * util_avg * minimum possible divider
4635 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4637 r = removed_runnable;
4638 sub_positive(&sa->runnable_avg, r);
4639 sub_positive(&sa->runnable_sum, r * divider);
4640 /* See sa->util_sum above */
4641 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4642 sa->runnable_avg * PELT_MIN_DIVIDER);
4645 * removed_runnable is the unweighted version of removed_load so we
4646 * can use it to estimate removed_load_sum.
4648 add_tg_cfs_propagate(cfs_rq,
4649 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4654 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4655 u64_u32_store_copy(sa->last_update_time,
4656 cfs_rq->last_update_time_copy,
4657 sa->last_update_time);
4662 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4663 * @cfs_rq: cfs_rq to attach to
4664 * @se: sched_entity to attach
4666 * Must call update_cfs_rq_load_avg() before this, since we rely on
4667 * cfs_rq->avg.last_update_time being current.
4669 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4672 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4673 * See ___update_load_avg() for details.
4675 u32 divider = get_pelt_divider(&cfs_rq->avg);
4678 * When we attach the @se to the @cfs_rq, we must align the decay
4679 * window because without that, really weird and wonderful things can
4684 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4685 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4688 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4689 * period_contrib. This isn't strictly correct, but since we're
4690 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4693 se->avg.util_sum = se->avg.util_avg * divider;
4695 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4697 se->avg.load_sum = se->avg.load_avg * divider;
4698 if (se_weight(se) < se->avg.load_sum)
4699 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4701 se->avg.load_sum = 1;
4703 enqueue_load_avg(cfs_rq, se);
4704 cfs_rq->avg.util_avg += se->avg.util_avg;
4705 cfs_rq->avg.util_sum += se->avg.util_sum;
4706 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4707 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4709 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4711 cfs_rq_util_change(cfs_rq, 0);
4713 trace_pelt_cfs_tp(cfs_rq);
4717 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4718 * @cfs_rq: cfs_rq to detach from
4719 * @se: sched_entity to detach
4721 * Must call update_cfs_rq_load_avg() before this, since we rely on
4722 * cfs_rq->avg.last_update_time being current.
4724 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4726 dequeue_load_avg(cfs_rq, se);
4727 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4728 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4729 /* See update_cfs_rq_load_avg() */
4730 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4731 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4733 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4734 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4735 /* See update_cfs_rq_load_avg() */
4736 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4737 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4739 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4741 cfs_rq_util_change(cfs_rq, 0);
4743 trace_pelt_cfs_tp(cfs_rq);
4747 * Optional action to be done while updating the load average
4749 #define UPDATE_TG 0x1
4750 #define SKIP_AGE_LOAD 0x2
4751 #define DO_ATTACH 0x4
4752 #define DO_DETACH 0x8
4754 /* Update task and its cfs_rq load average */
4755 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4757 u64 now = cfs_rq_clock_pelt(cfs_rq);
4761 * Track task load average for carrying it to new CPU after migrated, and
4762 * track group sched_entity load average for task_h_load calculation in migration
4764 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4765 __update_load_avg_se(now, cfs_rq, se);
4767 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4768 decayed |= propagate_entity_load_avg(se);
4770 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4773 * DO_ATTACH means we're here from enqueue_entity().
4774 * !last_update_time means we've passed through
4775 * migrate_task_rq_fair() indicating we migrated.
4777 * IOW we're enqueueing a task on a new CPU.
4779 attach_entity_load_avg(cfs_rq, se);
4780 update_tg_load_avg(cfs_rq);
4782 } else if (flags & DO_DETACH) {
4784 * DO_DETACH means we're here from dequeue_entity()
4785 * and we are migrating task out of the CPU.
4787 detach_entity_load_avg(cfs_rq, se);
4788 update_tg_load_avg(cfs_rq);
4789 } else if (decayed) {
4790 cfs_rq_util_change(cfs_rq, 0);
4792 if (flags & UPDATE_TG)
4793 update_tg_load_avg(cfs_rq);
4798 * Synchronize entity load avg of dequeued entity without locking
4801 static void sync_entity_load_avg(struct sched_entity *se)
4803 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4804 u64 last_update_time;
4806 last_update_time = cfs_rq_last_update_time(cfs_rq);
4807 __update_load_avg_blocked_se(last_update_time, se);
4811 * Task first catches up with cfs_rq, and then subtract
4812 * itself from the cfs_rq (task must be off the queue now).
4814 static void remove_entity_load_avg(struct sched_entity *se)
4816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4817 unsigned long flags;
4820 * tasks cannot exit without having gone through wake_up_new_task() ->
4821 * enqueue_task_fair() which will have added things to the cfs_rq,
4822 * so we can remove unconditionally.
4825 sync_entity_load_avg(se);
4827 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4828 ++cfs_rq->removed.nr;
4829 cfs_rq->removed.util_avg += se->avg.util_avg;
4830 cfs_rq->removed.load_avg += se->avg.load_avg;
4831 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4832 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4835 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4837 return cfs_rq->avg.runnable_avg;
4840 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4842 return cfs_rq->avg.load_avg;
4845 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4847 static inline unsigned long task_util(struct task_struct *p)
4849 return READ_ONCE(p->se.avg.util_avg);
4852 static inline unsigned long task_runnable(struct task_struct *p)
4854 return READ_ONCE(p->se.avg.runnable_avg);
4857 static inline unsigned long _task_util_est(struct task_struct *p)
4859 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4862 static inline unsigned long task_util_est(struct task_struct *p)
4864 return max(task_util(p), _task_util_est(p));
4867 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4868 struct task_struct *p)
4870 unsigned int enqueued;
4872 if (!sched_feat(UTIL_EST))
4875 /* Update root cfs_rq's estimated utilization */
4876 enqueued = cfs_rq->avg.util_est;
4877 enqueued += _task_util_est(p);
4878 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4880 trace_sched_util_est_cfs_tp(cfs_rq);
4883 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4884 struct task_struct *p)
4886 unsigned int enqueued;
4888 if (!sched_feat(UTIL_EST))
4891 /* Update root cfs_rq's estimated utilization */
4892 enqueued = cfs_rq->avg.util_est;
4893 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4894 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4896 trace_sched_util_est_cfs_tp(cfs_rq);
4899 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4901 static inline void util_est_update(struct cfs_rq *cfs_rq,
4902 struct task_struct *p,
4905 unsigned int ewma, dequeued, last_ewma_diff;
4907 if (!sched_feat(UTIL_EST))
4911 * Skip update of task's estimated utilization when the task has not
4912 * yet completed an activation, e.g. being migrated.
4917 /* Get current estimate of utilization */
4918 ewma = READ_ONCE(p->se.avg.util_est);
4921 * If the PELT values haven't changed since enqueue time,
4922 * skip the util_est update.
4924 if (ewma & UTIL_AVG_UNCHANGED)
4927 /* Get utilization at dequeue */
4928 dequeued = task_util(p);
4931 * Reset EWMA on utilization increases, the moving average is used only
4932 * to smooth utilization decreases.
4934 if (ewma <= dequeued) {
4940 * Skip update of task's estimated utilization when its members are
4941 * already ~1% close to its last activation value.
4943 last_ewma_diff = ewma - dequeued;
4944 if (last_ewma_diff < UTIL_EST_MARGIN)
4948 * To avoid underestimate of task utilization, skip updates of EWMA if
4949 * we cannot grant that thread got all CPU time it wanted.
4951 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4956 * Update Task's estimated utilization
4958 * When *p completes an activation we can consolidate another sample
4959 * of the task size. This is done by using this value to update the
4960 * Exponential Weighted Moving Average (EWMA):
4962 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4963 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4964 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4965 * = w * ( -last_ewma_diff ) + ewma(t-1)
4966 * = w * (-last_ewma_diff + ewma(t-1) / w)
4968 * Where 'w' is the weight of new samples, which is configured to be
4969 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4971 ewma <<= UTIL_EST_WEIGHT_SHIFT;
4972 ewma -= last_ewma_diff;
4973 ewma >>= UTIL_EST_WEIGHT_SHIFT;
4975 ewma |= UTIL_AVG_UNCHANGED;
4976 WRITE_ONCE(p->se.avg.util_est, ewma);
4978 trace_sched_util_est_se_tp(&p->se);
4981 static inline unsigned long get_actual_cpu_capacity(int cpu)
4983 unsigned long capacity = arch_scale_cpu_capacity(cpu);
4985 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4990 static inline int util_fits_cpu(unsigned long util,
4991 unsigned long uclamp_min,
4992 unsigned long uclamp_max,
4995 unsigned long capacity = capacity_of(cpu);
4996 unsigned long capacity_orig;
4997 bool fits, uclamp_max_fits;
5000 * Check if the real util fits without any uclamp boost/cap applied.
5002 fits = fits_capacity(util, capacity);
5004 if (!uclamp_is_used())
5008 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5009 * uclamp_max. We only care about capacity pressure (by using
5010 * capacity_of()) for comparing against the real util.
5012 * If a task is boosted to 1024 for example, we don't want a tiny
5013 * pressure to skew the check whether it fits a CPU or not.
5015 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5016 * should fit a little cpu even if there's some pressure.
5018 * Only exception is for HW or cpufreq pressure since it has a direct impact
5019 * on available OPP of the system.
5021 * We honour it for uclamp_min only as a drop in performance level
5022 * could result in not getting the requested minimum performance level.
5024 * For uclamp_max, we can tolerate a drop in performance level as the
5025 * goal is to cap the task. So it's okay if it's getting less.
5027 capacity_orig = arch_scale_cpu_capacity(cpu);
5030 * We want to force a task to fit a cpu as implied by uclamp_max.
5031 * But we do have some corner cases to cater for..
5037 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5040 * | | | | | | | (util somewhere in this region)
5043 * +----------------------------------------
5046 * In the above example if a task is capped to a specific performance
5047 * point, y, then when:
5049 * * util = 80% of x then it does not fit on CPU0 and should migrate
5051 * * util = 80% of y then it is forced to fit on CPU1 to honour
5052 * uclamp_max request.
5054 * which is what we're enforcing here. A task always fits if
5055 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5056 * the normal upmigration rules should withhold still.
5058 * Only exception is when we are on max capacity, then we need to be
5059 * careful not to block overutilized state. This is so because:
5061 * 1. There's no concept of capping at max_capacity! We can't go
5062 * beyond this performance level anyway.
5063 * 2. The system is being saturated when we're operating near
5064 * max capacity, it doesn't make sense to block overutilized.
5066 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5067 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5068 fits = fits || uclamp_max_fits;
5073 * | ___ (region a, capped, util >= uclamp_max)
5075 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5077 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5078 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5080 * | | | | | | | (region c, boosted, util < uclamp_min)
5081 * +----------------------------------------
5084 * a) If util > uclamp_max, then we're capped, we don't care about
5085 * actual fitness value here. We only care if uclamp_max fits
5086 * capacity without taking margin/pressure into account.
5087 * See comment above.
5089 * b) If uclamp_min <= util <= uclamp_max, then the normal
5090 * fits_capacity() rules apply. Except we need to ensure that we
5091 * enforce we remain within uclamp_max, see comment above.
5093 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5094 * need to take into account the boosted value fits the CPU without
5095 * taking margin/pressure into account.
5097 * Cases (a) and (b) are handled in the 'fits' variable already. We
5098 * just need to consider an extra check for case (c) after ensuring we
5099 * handle the case uclamp_min > uclamp_max.
5101 uclamp_min = min(uclamp_min, uclamp_max);
5102 if (fits && (util < uclamp_min) &&
5103 (uclamp_min > get_actual_cpu_capacity(cpu)))
5109 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5111 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5112 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5113 unsigned long util = task_util_est(p);
5115 * Return true only if the cpu fully fits the task requirements, which
5116 * include the utilization but also the performance hints.
5118 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5121 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5123 int cpu = cpu_of(rq);
5125 if (!sched_asym_cpucap_active())
5129 * Affinity allows us to go somewhere higher? Or are we on biggest
5130 * available CPU already? Or do we fit into this CPU ?
5132 if (!p || (p->nr_cpus_allowed == 1) ||
5133 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5134 task_fits_cpu(p, cpu)) {
5136 rq->misfit_task_load = 0;
5141 * Make sure that misfit_task_load will not be null even if
5142 * task_h_load() returns 0.
5144 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5147 #else /* CONFIG_SMP */
5149 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5151 return !cfs_rq->nr_queued;
5154 #define UPDATE_TG 0x0
5155 #define SKIP_AGE_LOAD 0x0
5156 #define DO_ATTACH 0x0
5157 #define DO_DETACH 0x0
5159 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5161 cfs_rq_util_change(cfs_rq, 0);
5164 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5167 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5169 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5171 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5177 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5180 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5183 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5185 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5187 #endif /* CONFIG_SMP */
5189 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5191 struct sched_entity *se = &p->se;
5193 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5194 if (attr->sched_runtime) {
5195 se->custom_slice = 1;
5196 se->slice = clamp_t(u64, attr->sched_runtime,
5197 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
5198 NSEC_PER_MSEC*100); /* HZ=100 / 10 */
5200 se->custom_slice = 0;
5201 se->slice = sysctl_sched_base_slice;
5206 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5208 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5211 if (!se->custom_slice)
5212 se->slice = sysctl_sched_base_slice;
5213 vslice = calc_delta_fair(se->slice, se);
5216 * Due to how V is constructed as the weighted average of entities,
5217 * adding tasks with positive lag, or removing tasks with negative lag
5218 * will move 'time' backwards, this can screw around with the lag of
5221 * EEVDF: placement strategy #1 / #2
5223 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5224 struct sched_entity *curr = cfs_rq->curr;
5230 * If we want to place a task and preserve lag, we have to
5231 * consider the effect of the new entity on the weighted
5232 * average and compensate for this, otherwise lag can quickly
5235 * Lag is defined as:
5237 * lag_i = S - s_i = w_i * (V - v_i)
5239 * To avoid the 'w_i' term all over the place, we only track
5242 * vl_i = V - v_i <=> v_i = V - vl_i
5244 * And we take V to be the weighted average of all v:
5246 * V = (\Sum w_j*v_j) / W
5248 * Where W is: \Sum w_j
5250 * Then, the weighted average after adding an entity with lag
5253 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5254 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5255 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5256 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5257 * = V - w_i*vl_i / (W + w_i)
5259 * And the actual lag after adding an entity with vl_i is:
5262 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5263 * = vl_i - w_i*vl_i / (W + w_i)
5265 * Which is strictly less than vl_i. So in order to preserve lag
5266 * we should inflate the lag before placement such that the
5267 * effective lag after placement comes out right.
5269 * As such, invert the above relation for vl'_i to get the vl_i
5270 * we need to use such that the lag after placement is the lag
5271 * we computed before dequeue.
5273 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5274 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5276 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5279 * vl_i = (W + w_i)*vl'_i / W
5281 load = cfs_rq->avg_load;
5282 if (curr && curr->on_rq)
5283 load += scale_load_down(curr->load.weight);
5285 lag *= load + scale_load_down(se->load.weight);
5286 if (WARN_ON_ONCE(!load))
5288 lag = div_s64(lag, load);
5291 se->vruntime = vruntime - lag;
5293 if (se->rel_deadline) {
5294 se->deadline += se->vruntime;
5295 se->rel_deadline = 0;
5300 * When joining the competition; the existing tasks will be,
5301 * on average, halfway through their slice, as such start tasks
5302 * off with half a slice to ease into the competition.
5304 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5308 * EEVDF: vd_i = ve_i + r_i/w_i
5310 se->deadline = se->vruntime + vslice;
5313 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5314 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5317 requeue_delayed_entity(struct sched_entity *se);
5320 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5322 bool curr = cfs_rq->curr == se;
5325 * If we're the current task, we must renormalise before calling
5329 place_entity(cfs_rq, se, flags);
5331 update_curr(cfs_rq);
5334 * When enqueuing a sched_entity, we must:
5335 * - Update loads to have both entity and cfs_rq synced with now.
5336 * - For group_entity, update its runnable_weight to reflect the new
5337 * h_nr_runnable of its group cfs_rq.
5338 * - For group_entity, update its weight to reflect the new share of
5340 * - Add its new weight to cfs_rq->load.weight
5342 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5343 se_update_runnable(se);
5345 * XXX update_load_avg() above will have attached us to the pelt sum;
5346 * but update_cfs_group() here will re-adjust the weight and have to
5347 * undo/redo all that. Seems wasteful.
5349 update_cfs_group(se);
5352 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5353 * we can place the entity.
5356 place_entity(cfs_rq, se, flags);
5358 account_entity_enqueue(cfs_rq, se);
5360 /* Entity has migrated, no longer consider this task hot */
5361 if (flags & ENQUEUE_MIGRATED)
5364 check_schedstat_required();
5365 update_stats_enqueue_fair(cfs_rq, se, flags);
5367 __enqueue_entity(cfs_rq, se);
5370 if (cfs_rq->nr_queued == 1) {
5371 check_enqueue_throttle(cfs_rq);
5372 if (!throttled_hierarchy(cfs_rq)) {
5373 list_add_leaf_cfs_rq(cfs_rq);
5375 #ifdef CONFIG_CFS_BANDWIDTH
5376 struct rq *rq = rq_of(cfs_rq);
5378 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5379 cfs_rq->throttled_clock = rq_clock(rq);
5380 if (!cfs_rq->throttled_clock_self)
5381 cfs_rq->throttled_clock_self = rq_clock(rq);
5387 static void __clear_buddies_next(struct sched_entity *se)
5389 for_each_sched_entity(se) {
5390 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5391 if (cfs_rq->next != se)
5394 cfs_rq->next = NULL;
5398 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5400 if (cfs_rq->next == se)
5401 __clear_buddies_next(se);
5404 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5406 static void set_delayed(struct sched_entity *se)
5408 se->sched_delayed = 1;
5411 * Delayed se of cfs_rq have no tasks queued on them.
5412 * Do not adjust h_nr_runnable since dequeue_entities()
5413 * will account it for blocked tasks.
5415 if (!entity_is_task(se))
5418 for_each_sched_entity(se) {
5419 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5421 cfs_rq->h_nr_runnable--;
5422 if (cfs_rq_throttled(cfs_rq))
5427 static void clear_delayed(struct sched_entity *se)
5429 se->sched_delayed = 0;
5432 * Delayed se of cfs_rq have no tasks queued on them.
5433 * Do not adjust h_nr_runnable since a dequeue has
5434 * already accounted for it or an enqueue of a task
5435 * below it will account for it in enqueue_task_fair().
5437 if (!entity_is_task(se))
5440 for_each_sched_entity(se) {
5441 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5443 cfs_rq->h_nr_runnable++;
5444 if (cfs_rq_throttled(cfs_rq))
5449 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5452 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5457 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5459 bool sleep = flags & DEQUEUE_SLEEP;
5460 int action = UPDATE_TG;
5462 update_curr(cfs_rq);
5463 clear_buddies(cfs_rq, se);
5465 if (flags & DEQUEUE_DELAYED) {
5466 WARN_ON_ONCE(!se->sched_delayed);
5470 * DELAY_DEQUEUE relies on spurious wakeups, special task
5471 * states must not suffer spurious wakeups, excempt them.
5473 if (flags & DEQUEUE_SPECIAL)
5476 WARN_ON_ONCE(delay && se->sched_delayed);
5478 if (sched_feat(DELAY_DEQUEUE) && delay &&
5479 !entity_eligible(cfs_rq, se)) {
5480 update_load_avg(cfs_rq, se, 0);
5486 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5487 action |= DO_DETACH;
5490 * When dequeuing a sched_entity, we must:
5491 * - Update loads to have both entity and cfs_rq synced with now.
5492 * - For group_entity, update its runnable_weight to reflect the new
5493 * h_nr_runnable of its group cfs_rq.
5494 * - Subtract its previous weight from cfs_rq->load.weight.
5495 * - For group entity, update its weight to reflect the new share
5496 * of its group cfs_rq.
5498 update_load_avg(cfs_rq, se, action);
5499 se_update_runnable(se);
5501 update_stats_dequeue_fair(cfs_rq, se, flags);
5503 update_entity_lag(cfs_rq, se);
5504 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5505 se->deadline -= se->vruntime;
5506 se->rel_deadline = 1;
5509 if (se != cfs_rq->curr)
5510 __dequeue_entity(cfs_rq, se);
5512 account_entity_dequeue(cfs_rq, se);
5514 /* return excess runtime on last dequeue */
5515 return_cfs_rq_runtime(cfs_rq);
5517 update_cfs_group(se);
5520 * Now advance min_vruntime if @se was the entity holding it back,
5521 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5522 * put back on, and if we advance min_vruntime, we'll be placed back
5523 * further than we started -- i.e. we'll be penalized.
5525 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5526 update_min_vruntime(cfs_rq);
5528 if (flags & DEQUEUE_DELAYED)
5529 finish_delayed_dequeue_entity(se);
5531 if (cfs_rq->nr_queued == 0)
5532 update_idle_cfs_rq_clock_pelt(cfs_rq);
5538 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5540 clear_buddies(cfs_rq, se);
5542 /* 'current' is not kept within the tree. */
5545 * Any task has to be enqueued before it get to execute on
5546 * a CPU. So account for the time it spent waiting on the
5549 update_stats_wait_end_fair(cfs_rq, se);
5550 __dequeue_entity(cfs_rq, se);
5551 update_load_avg(cfs_rq, se, UPDATE_TG);
5553 set_protect_slice(se);
5556 update_stats_curr_start(cfs_rq, se);
5557 WARN_ON_ONCE(cfs_rq->curr);
5561 * Track our maximum slice length, if the CPU's load is at
5562 * least twice that of our own weight (i.e. don't track it
5563 * when there are only lesser-weight tasks around):
5565 if (schedstat_enabled() &&
5566 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5567 struct sched_statistics *stats;
5569 stats = __schedstats_from_se(se);
5570 __schedstat_set(stats->slice_max,
5571 max((u64)stats->slice_max,
5572 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5575 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5578 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5581 * Pick the next process, keeping these things in mind, in this order:
5582 * 1) keep things fair between processes/task groups
5583 * 2) pick the "next" process, since someone really wants that to run
5584 * 3) pick the "last" process, for cache locality
5585 * 4) do not run the "skip" process, if something else is available
5587 static struct sched_entity *
5588 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5590 struct sched_entity *se;
5593 * Picking the ->next buddy will affect latency but not fairness.
5595 if (sched_feat(PICK_BUDDY) &&
5596 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5597 /* ->next will never be delayed */
5598 WARN_ON_ONCE(cfs_rq->next->sched_delayed);
5599 return cfs_rq->next;
5602 se = pick_eevdf(cfs_rq);
5603 if (se->sched_delayed) {
5604 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5606 * Must not reference @se again, see __block_task().
5613 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5615 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5618 * If still on the runqueue then deactivate_task()
5619 * was not called and update_curr() has to be done:
5622 update_curr(cfs_rq);
5624 /* throttle cfs_rqs exceeding runtime */
5625 check_cfs_rq_runtime(cfs_rq);
5628 update_stats_wait_start_fair(cfs_rq, prev);
5629 /* Put 'current' back into the tree. */
5630 __enqueue_entity(cfs_rq, prev);
5631 /* in !on_rq case, update occurred at dequeue */
5632 update_load_avg(cfs_rq, prev, 0);
5634 WARN_ON_ONCE(cfs_rq->curr != prev);
5635 cfs_rq->curr = NULL;
5639 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5642 * Update run-time statistics of the 'current'.
5644 update_curr(cfs_rq);
5647 * Ensure that runnable average is periodically updated.
5649 update_load_avg(cfs_rq, curr, UPDATE_TG);
5650 update_cfs_group(curr);
5652 #ifdef CONFIG_SCHED_HRTICK
5654 * queued ticks are scheduled to match the slice, so don't bother
5655 * validating it and just reschedule.
5658 resched_curr_lazy(rq_of(cfs_rq));
5665 /**************************************************
5666 * CFS bandwidth control machinery
5669 #ifdef CONFIG_CFS_BANDWIDTH
5671 #ifdef CONFIG_JUMP_LABEL
5672 static struct static_key __cfs_bandwidth_used;
5674 static inline bool cfs_bandwidth_used(void)
5676 return static_key_false(&__cfs_bandwidth_used);
5679 void cfs_bandwidth_usage_inc(void)
5681 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5684 void cfs_bandwidth_usage_dec(void)
5686 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5688 #else /* CONFIG_JUMP_LABEL */
5689 static bool cfs_bandwidth_used(void)
5694 void cfs_bandwidth_usage_inc(void) {}
5695 void cfs_bandwidth_usage_dec(void) {}
5696 #endif /* CONFIG_JUMP_LABEL */
5699 * default period for cfs group bandwidth.
5700 * default: 0.1s, units: nanoseconds
5702 static inline u64 default_cfs_period(void)
5704 return 100000000ULL;
5707 static inline u64 sched_cfs_bandwidth_slice(void)
5709 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5713 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5714 * directly instead of rq->clock to avoid adding additional synchronization
5717 * requires cfs_b->lock
5719 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5723 if (unlikely(cfs_b->quota == RUNTIME_INF))
5726 cfs_b->runtime += cfs_b->quota;
5727 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5729 cfs_b->burst_time += runtime;
5733 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5734 cfs_b->runtime_snap = cfs_b->runtime;
5737 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5739 return &tg->cfs_bandwidth;
5742 /* returns 0 on failure to allocate runtime */
5743 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5744 struct cfs_rq *cfs_rq, u64 target_runtime)
5746 u64 min_amount, amount = 0;
5748 lockdep_assert_held(&cfs_b->lock);
5750 /* note: this is a positive sum as runtime_remaining <= 0 */
5751 min_amount = target_runtime - cfs_rq->runtime_remaining;
5753 if (cfs_b->quota == RUNTIME_INF)
5754 amount = min_amount;
5756 start_cfs_bandwidth(cfs_b);
5758 if (cfs_b->runtime > 0) {
5759 amount = min(cfs_b->runtime, min_amount);
5760 cfs_b->runtime -= amount;
5765 cfs_rq->runtime_remaining += amount;
5767 return cfs_rq->runtime_remaining > 0;
5770 /* returns 0 on failure to allocate runtime */
5771 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5773 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5776 raw_spin_lock(&cfs_b->lock);
5777 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5778 raw_spin_unlock(&cfs_b->lock);
5783 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5785 /* dock delta_exec before expiring quota (as it could span periods) */
5786 cfs_rq->runtime_remaining -= delta_exec;
5788 if (likely(cfs_rq->runtime_remaining > 0))
5791 if (cfs_rq->throttled)
5794 * if we're unable to extend our runtime we resched so that the active
5795 * hierarchy can be throttled
5797 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5798 resched_curr(rq_of(cfs_rq));
5801 static __always_inline
5802 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5804 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5807 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5810 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5812 return cfs_bandwidth_used() && cfs_rq->throttled;
5815 /* check whether cfs_rq, or any parent, is throttled */
5816 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5818 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5822 * Ensure that neither of the group entities corresponding to src_cpu or
5823 * dest_cpu are members of a throttled hierarchy when performing group
5824 * load-balance operations.
5826 static inline int throttled_lb_pair(struct task_group *tg,
5827 int src_cpu, int dest_cpu)
5829 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5831 src_cfs_rq = tg->cfs_rq[src_cpu];
5832 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5834 return throttled_hierarchy(src_cfs_rq) ||
5835 throttled_hierarchy(dest_cfs_rq);
5838 static int tg_unthrottle_up(struct task_group *tg, void *data)
5840 struct rq *rq = data;
5841 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5843 cfs_rq->throttle_count--;
5844 if (!cfs_rq->throttle_count) {
5845 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5846 cfs_rq->throttled_clock_pelt;
5848 /* Add cfs_rq with load or one or more already running entities to the list */
5849 if (!cfs_rq_is_decayed(cfs_rq))
5850 list_add_leaf_cfs_rq(cfs_rq);
5852 if (cfs_rq->throttled_clock_self) {
5853 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5855 cfs_rq->throttled_clock_self = 0;
5857 if (WARN_ON_ONCE((s64)delta < 0))
5860 cfs_rq->throttled_clock_self_time += delta;
5867 static int tg_throttle_down(struct task_group *tg, void *data)
5869 struct rq *rq = data;
5870 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5872 /* group is entering throttled state, stop time */
5873 if (!cfs_rq->throttle_count) {
5874 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5875 list_del_leaf_cfs_rq(cfs_rq);
5877 WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5878 if (cfs_rq->nr_queued)
5879 cfs_rq->throttled_clock_self = rq_clock(rq);
5881 cfs_rq->throttle_count++;
5886 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5888 struct rq *rq = rq_of(cfs_rq);
5889 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5890 struct sched_entity *se;
5891 long queued_delta, runnable_delta, idle_delta, dequeue = 1;
5892 long rq_h_nr_queued = rq->cfs.h_nr_queued;
5894 raw_spin_lock(&cfs_b->lock);
5895 /* This will start the period timer if necessary */
5896 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5898 * We have raced with bandwidth becoming available, and if we
5899 * actually throttled the timer might not unthrottle us for an
5900 * entire period. We additionally needed to make sure that any
5901 * subsequent check_cfs_rq_runtime calls agree not to throttle
5902 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5903 * for 1ns of runtime rather than just check cfs_b.
5907 list_add_tail_rcu(&cfs_rq->throttled_list,
5908 &cfs_b->throttled_cfs_rq);
5910 raw_spin_unlock(&cfs_b->lock);
5913 return false; /* Throttle no longer required. */
5915 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5917 /* freeze hierarchy runnable averages while throttled */
5919 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5922 queued_delta = cfs_rq->h_nr_queued;
5923 runnable_delta = cfs_rq->h_nr_runnable;
5924 idle_delta = cfs_rq->h_nr_idle;
5925 for_each_sched_entity(se) {
5926 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5929 /* throttled entity or throttle-on-deactivate */
5934 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5935 * This avoids teaching dequeue_entities() about throttled
5936 * entities and keeps things relatively simple.
5938 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5939 if (se->sched_delayed)
5940 flags |= DEQUEUE_DELAYED;
5941 dequeue_entity(qcfs_rq, se, flags);
5943 if (cfs_rq_is_idle(group_cfs_rq(se)))
5944 idle_delta = cfs_rq->h_nr_queued;
5946 qcfs_rq->h_nr_queued -= queued_delta;
5947 qcfs_rq->h_nr_runnable -= runnable_delta;
5948 qcfs_rq->h_nr_idle -= idle_delta;
5950 if (qcfs_rq->load.weight) {
5951 /* Avoid re-evaluating load for this entity: */
5952 se = parent_entity(se);
5957 for_each_sched_entity(se) {
5958 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5959 /* throttled entity or throttle-on-deactivate */
5963 update_load_avg(qcfs_rq, se, 0);
5964 se_update_runnable(se);
5966 if (cfs_rq_is_idle(group_cfs_rq(se)))
5967 idle_delta = cfs_rq->h_nr_queued;
5969 qcfs_rq->h_nr_queued -= queued_delta;
5970 qcfs_rq->h_nr_runnable -= runnable_delta;
5971 qcfs_rq->h_nr_idle -= idle_delta;
5974 /* At this point se is NULL and we are at root level*/
5975 sub_nr_running(rq, queued_delta);
5977 /* Stop the fair server if throttling resulted in no runnable tasks */
5978 if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
5979 dl_server_stop(&rq->fair_server);
5982 * Note: distribution will already see us throttled via the
5983 * throttled-list. rq->lock protects completion.
5985 cfs_rq->throttled = 1;
5986 WARN_ON_ONCE(cfs_rq->throttled_clock);
5987 if (cfs_rq->nr_queued)
5988 cfs_rq->throttled_clock = rq_clock(rq);
5992 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5994 struct rq *rq = rq_of(cfs_rq);
5995 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5996 struct sched_entity *se;
5997 long queued_delta, runnable_delta, idle_delta;
5998 long rq_h_nr_queued = rq->cfs.h_nr_queued;
6000 se = cfs_rq->tg->se[cpu_of(rq)];
6002 cfs_rq->throttled = 0;
6004 update_rq_clock(rq);
6006 raw_spin_lock(&cfs_b->lock);
6007 if (cfs_rq->throttled_clock) {
6008 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6009 cfs_rq->throttled_clock = 0;
6011 list_del_rcu(&cfs_rq->throttled_list);
6012 raw_spin_unlock(&cfs_b->lock);
6014 /* update hierarchical throttle state */
6015 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6017 if (!cfs_rq->load.weight) {
6018 if (!cfs_rq->on_list)
6021 * Nothing to run but something to decay (on_list)?
6022 * Complete the branch.
6024 for_each_sched_entity(se) {
6025 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6028 goto unthrottle_throttle;
6031 queued_delta = cfs_rq->h_nr_queued;
6032 runnable_delta = cfs_rq->h_nr_runnable;
6033 idle_delta = cfs_rq->h_nr_idle;
6034 for_each_sched_entity(se) {
6035 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6037 /* Handle any unfinished DELAY_DEQUEUE business first. */
6038 if (se->sched_delayed) {
6039 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6041 dequeue_entity(qcfs_rq, se, flags);
6042 } else if (se->on_rq)
6044 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6046 if (cfs_rq_is_idle(group_cfs_rq(se)))
6047 idle_delta = cfs_rq->h_nr_queued;
6049 qcfs_rq->h_nr_queued += queued_delta;
6050 qcfs_rq->h_nr_runnable += runnable_delta;
6051 qcfs_rq->h_nr_idle += idle_delta;
6053 /* end evaluation on encountering a throttled cfs_rq */
6054 if (cfs_rq_throttled(qcfs_rq))
6055 goto unthrottle_throttle;
6058 for_each_sched_entity(se) {
6059 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6061 update_load_avg(qcfs_rq, se, UPDATE_TG);
6062 se_update_runnable(se);
6064 if (cfs_rq_is_idle(group_cfs_rq(se)))
6065 idle_delta = cfs_rq->h_nr_queued;
6067 qcfs_rq->h_nr_queued += queued_delta;
6068 qcfs_rq->h_nr_runnable += runnable_delta;
6069 qcfs_rq->h_nr_idle += idle_delta;
6071 /* end evaluation on encountering a throttled cfs_rq */
6072 if (cfs_rq_throttled(qcfs_rq))
6073 goto unthrottle_throttle;
6076 /* Start the fair server if un-throttling resulted in new runnable tasks */
6077 if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
6078 dl_server_start(&rq->fair_server);
6080 /* At this point se is NULL and we are at root level*/
6081 add_nr_running(rq, queued_delta);
6083 unthrottle_throttle:
6084 assert_list_leaf_cfs_rq(rq);
6086 /* Determine whether we need to wake up potentially idle CPU: */
6087 if (rq->curr == rq->idle && rq->cfs.nr_queued)
6092 static void __cfsb_csd_unthrottle(void *arg)
6094 struct cfs_rq *cursor, *tmp;
6095 struct rq *rq = arg;
6101 * Iterating over the list can trigger several call to
6102 * update_rq_clock() in unthrottle_cfs_rq().
6103 * Do it once and skip the potential next ones.
6105 update_rq_clock(rq);
6106 rq_clock_start_loop_update(rq);
6109 * Since we hold rq lock we're safe from concurrent manipulation of
6110 * the CSD list. However, this RCU critical section annotates the
6111 * fact that we pair with sched_free_group_rcu(), so that we cannot
6112 * race with group being freed in the window between removing it
6113 * from the list and advancing to the next entry in the list.
6117 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6118 throttled_csd_list) {
6119 list_del_init(&cursor->throttled_csd_list);
6121 if (cfs_rq_throttled(cursor))
6122 unthrottle_cfs_rq(cursor);
6127 rq_clock_stop_loop_update(rq);
6131 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6133 struct rq *rq = rq_of(cfs_rq);
6136 if (rq == this_rq()) {
6137 unthrottle_cfs_rq(cfs_rq);
6141 /* Already enqueued */
6142 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6145 first = list_empty(&rq->cfsb_csd_list);
6146 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6148 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6151 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6153 unthrottle_cfs_rq(cfs_rq);
6157 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6159 lockdep_assert_rq_held(rq_of(cfs_rq));
6161 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6162 cfs_rq->runtime_remaining <= 0))
6165 __unthrottle_cfs_rq_async(cfs_rq);
6168 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6170 int this_cpu = smp_processor_id();
6171 u64 runtime, remaining = 1;
6172 bool throttled = false;
6173 struct cfs_rq *cfs_rq, *tmp;
6176 LIST_HEAD(local_unthrottle);
6179 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6188 rq_lock_irqsave(rq, &rf);
6189 if (!cfs_rq_throttled(cfs_rq))
6192 /* Already queued for async unthrottle */
6193 if (!list_empty(&cfs_rq->throttled_csd_list))
6196 /* By the above checks, this should never be true */
6197 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6199 raw_spin_lock(&cfs_b->lock);
6200 runtime = -cfs_rq->runtime_remaining + 1;
6201 if (runtime > cfs_b->runtime)
6202 runtime = cfs_b->runtime;
6203 cfs_b->runtime -= runtime;
6204 remaining = cfs_b->runtime;
6205 raw_spin_unlock(&cfs_b->lock);
6207 cfs_rq->runtime_remaining += runtime;
6209 /* we check whether we're throttled above */
6210 if (cfs_rq->runtime_remaining > 0) {
6211 if (cpu_of(rq) != this_cpu) {
6212 unthrottle_cfs_rq_async(cfs_rq);
6215 * We currently only expect to be unthrottling
6216 * a single cfs_rq locally.
6218 WARN_ON_ONCE(!list_empty(&local_unthrottle));
6219 list_add_tail(&cfs_rq->throttled_csd_list,
6227 rq_unlock_irqrestore(rq, &rf);
6230 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6231 throttled_csd_list) {
6232 struct rq *rq = rq_of(cfs_rq);
6234 rq_lock_irqsave(rq, &rf);
6236 list_del_init(&cfs_rq->throttled_csd_list);
6238 if (cfs_rq_throttled(cfs_rq))
6239 unthrottle_cfs_rq(cfs_rq);
6241 rq_unlock_irqrestore(rq, &rf);
6243 WARN_ON_ONCE(!list_empty(&local_unthrottle));
6251 * Responsible for refilling a task_group's bandwidth and unthrottling its
6252 * cfs_rqs as appropriate. If there has been no activity within the last
6253 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6254 * used to track this state.
6256 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6260 /* no need to continue the timer with no bandwidth constraint */
6261 if (cfs_b->quota == RUNTIME_INF)
6262 goto out_deactivate;
6264 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6265 cfs_b->nr_periods += overrun;
6267 /* Refill extra burst quota even if cfs_b->idle */
6268 __refill_cfs_bandwidth_runtime(cfs_b);
6271 * idle depends on !throttled (for the case of a large deficit), and if
6272 * we're going inactive then everything else can be deferred
6274 if (cfs_b->idle && !throttled)
6275 goto out_deactivate;
6278 /* mark as potentially idle for the upcoming period */
6283 /* account preceding periods in which throttling occurred */
6284 cfs_b->nr_throttled += overrun;
6287 * This check is repeated as we release cfs_b->lock while we unthrottle.
6289 while (throttled && cfs_b->runtime > 0) {
6290 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6291 /* we can't nest cfs_b->lock while distributing bandwidth */
6292 throttled = distribute_cfs_runtime(cfs_b);
6293 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6297 * While we are ensured activity in the period following an
6298 * unthrottle, this also covers the case in which the new bandwidth is
6299 * insufficient to cover the existing bandwidth deficit. (Forcing the
6300 * timer to remain active while there are any throttled entities.)
6310 /* a cfs_rq won't donate quota below this amount */
6311 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6312 /* minimum remaining period time to redistribute slack quota */
6313 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6314 /* how long we wait to gather additional slack before distributing */
6315 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6318 * Are we near the end of the current quota period?
6320 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6321 * hrtimer base being cleared by hrtimer_start. In the case of
6322 * migrate_hrtimers, base is never cleared, so we are fine.
6324 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6326 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6329 /* if the call-back is running a quota refresh is already occurring */
6330 if (hrtimer_callback_running(refresh_timer))
6333 /* is a quota refresh about to occur? */
6334 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6335 if (remaining < (s64)min_expire)
6341 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6343 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6345 /* if there's a quota refresh soon don't bother with slack */
6346 if (runtime_refresh_within(cfs_b, min_left))
6349 /* don't push forwards an existing deferred unthrottle */
6350 if (cfs_b->slack_started)
6352 cfs_b->slack_started = true;
6354 hrtimer_start(&cfs_b->slack_timer,
6355 ns_to_ktime(cfs_bandwidth_slack_period),
6359 /* we know any runtime found here is valid as update_curr() precedes return */
6360 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6362 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6363 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6365 if (slack_runtime <= 0)
6368 raw_spin_lock(&cfs_b->lock);
6369 if (cfs_b->quota != RUNTIME_INF) {
6370 cfs_b->runtime += slack_runtime;
6372 /* we are under rq->lock, defer unthrottling using a timer */
6373 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6374 !list_empty(&cfs_b->throttled_cfs_rq))
6375 start_cfs_slack_bandwidth(cfs_b);
6377 raw_spin_unlock(&cfs_b->lock);
6379 /* even if it's not valid for return we don't want to try again */
6380 cfs_rq->runtime_remaining -= slack_runtime;
6383 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6385 if (!cfs_bandwidth_used())
6388 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6391 __return_cfs_rq_runtime(cfs_rq);
6395 * This is done with a timer (instead of inline with bandwidth return) since
6396 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6398 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6400 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6401 unsigned long flags;
6403 /* confirm we're still not at a refresh boundary */
6404 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6405 cfs_b->slack_started = false;
6407 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6408 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6412 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6413 runtime = cfs_b->runtime;
6415 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6420 distribute_cfs_runtime(cfs_b);
6424 * When a group wakes up we want to make sure that its quota is not already
6425 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6426 * runtime as update_curr() throttling can not trigger until it's on-rq.
6428 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6430 if (!cfs_bandwidth_used())
6433 /* an active group must be handled by the update_curr()->put() path */
6434 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6437 /* ensure the group is not already throttled */
6438 if (cfs_rq_throttled(cfs_rq))
6441 /* update runtime allocation */
6442 account_cfs_rq_runtime(cfs_rq, 0);
6443 if (cfs_rq->runtime_remaining <= 0)
6444 throttle_cfs_rq(cfs_rq);
6447 static void sync_throttle(struct task_group *tg, int cpu)
6449 struct cfs_rq *pcfs_rq, *cfs_rq;
6451 if (!cfs_bandwidth_used())
6457 cfs_rq = tg->cfs_rq[cpu];
6458 pcfs_rq = tg->parent->cfs_rq[cpu];
6460 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6461 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6464 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6465 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6467 if (!cfs_bandwidth_used())
6470 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6474 * it's possible for a throttled entity to be forced into a running
6475 * state (e.g. set_curr_task), in this case we're finished.
6477 if (cfs_rq_throttled(cfs_rq))
6480 return throttle_cfs_rq(cfs_rq);
6483 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6485 struct cfs_bandwidth *cfs_b =
6486 container_of(timer, struct cfs_bandwidth, slack_timer);
6488 do_sched_cfs_slack_timer(cfs_b);
6490 return HRTIMER_NORESTART;
6493 extern const u64 max_cfs_quota_period;
6495 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6497 struct cfs_bandwidth *cfs_b =
6498 container_of(timer, struct cfs_bandwidth, period_timer);
6499 unsigned long flags;
6504 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6506 overrun = hrtimer_forward_now(timer, cfs_b->period);
6510 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6513 u64 new, old = ktime_to_ns(cfs_b->period);
6516 * Grow period by a factor of 2 to avoid losing precision.
6517 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6521 if (new < max_cfs_quota_period) {
6522 cfs_b->period = ns_to_ktime(new);
6526 pr_warn_ratelimited(
6527 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6529 div_u64(new, NSEC_PER_USEC),
6530 div_u64(cfs_b->quota, NSEC_PER_USEC));
6532 pr_warn_ratelimited(
6533 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6535 div_u64(old, NSEC_PER_USEC),
6536 div_u64(cfs_b->quota, NSEC_PER_USEC));
6539 /* reset count so we don't come right back in here */
6544 cfs_b->period_active = 0;
6545 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6547 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6550 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6552 raw_spin_lock_init(&cfs_b->lock);
6554 cfs_b->quota = RUNTIME_INF;
6555 cfs_b->period = ns_to_ktime(default_cfs_period());
6557 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6559 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6560 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6561 HRTIMER_MODE_ABS_PINNED);
6563 /* Add a random offset so that timers interleave */
6564 hrtimer_set_expires(&cfs_b->period_timer,
6565 get_random_u32_below(cfs_b->period));
6566 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6568 cfs_b->slack_started = false;
6571 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6573 cfs_rq->runtime_enabled = 0;
6574 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6575 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6578 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6580 lockdep_assert_held(&cfs_b->lock);
6582 if (cfs_b->period_active)
6585 cfs_b->period_active = 1;
6586 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6587 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6590 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6592 int __maybe_unused i;
6594 /* init_cfs_bandwidth() was not called */
6595 if (!cfs_b->throttled_cfs_rq.next)
6598 hrtimer_cancel(&cfs_b->period_timer);
6599 hrtimer_cancel(&cfs_b->slack_timer);
6602 * It is possible that we still have some cfs_rq's pending on a CSD
6603 * list, though this race is very rare. In order for this to occur, we
6604 * must have raced with the last task leaving the group while there
6605 * exist throttled cfs_rq(s), and the period_timer must have queued the
6606 * CSD item but the remote cpu has not yet processed it. To handle this,
6607 * we can simply flush all pending CSD work inline here. We're
6608 * guaranteed at this point that no additional cfs_rq of this group can
6612 for_each_possible_cpu(i) {
6613 struct rq *rq = cpu_rq(i);
6614 unsigned long flags;
6616 if (list_empty(&rq->cfsb_csd_list))
6619 local_irq_save(flags);
6620 __cfsb_csd_unthrottle(rq);
6621 local_irq_restore(flags);
6627 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6629 * The race is harmless, since modifying bandwidth settings of unhooked group
6630 * bits doesn't do much.
6633 /* cpu online callback */
6634 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6636 struct task_group *tg;
6638 lockdep_assert_rq_held(rq);
6641 list_for_each_entry_rcu(tg, &task_groups, list) {
6642 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6643 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6645 raw_spin_lock(&cfs_b->lock);
6646 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6647 raw_spin_unlock(&cfs_b->lock);
6652 /* cpu offline callback */
6653 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6655 struct task_group *tg;
6657 lockdep_assert_rq_held(rq);
6659 // Do not unthrottle for an active CPU
6660 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6664 * The rq clock has already been updated in the
6665 * set_rq_offline(), so we should skip updating
6666 * the rq clock again in unthrottle_cfs_rq().
6668 rq_clock_start_loop_update(rq);
6671 list_for_each_entry_rcu(tg, &task_groups, list) {
6672 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6674 if (!cfs_rq->runtime_enabled)
6678 * Offline rq is schedulable till CPU is completely disabled
6679 * in take_cpu_down(), so we prevent new cfs throttling here.
6681 cfs_rq->runtime_enabled = 0;
6683 if (!cfs_rq_throttled(cfs_rq))
6687 * clock_task is not advancing so we just need to make sure
6688 * there's some valid quota amount
6690 cfs_rq->runtime_remaining = 1;
6691 unthrottle_cfs_rq(cfs_rq);
6695 rq_clock_stop_loop_update(rq);
6698 bool cfs_task_bw_constrained(struct task_struct *p)
6700 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6702 if (!cfs_bandwidth_used())
6705 if (cfs_rq->runtime_enabled ||
6706 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6712 #ifdef CONFIG_NO_HZ_FULL
6713 /* called from pick_next_task_fair() */
6714 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6716 int cpu = cpu_of(rq);
6718 if (!cfs_bandwidth_used())
6721 if (!tick_nohz_full_cpu(cpu))
6724 if (rq->nr_running != 1)
6728 * We know there is only one task runnable and we've just picked it. The
6729 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6730 * be otherwise able to stop the tick. Just need to check if we are using
6731 * bandwidth control.
6733 if (cfs_task_bw_constrained(p))
6734 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6738 #else /* CONFIG_CFS_BANDWIDTH */
6740 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6741 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6742 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6743 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6744 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6746 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6751 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6756 static inline int throttled_lb_pair(struct task_group *tg,
6757 int src_cpu, int dest_cpu)
6762 #ifdef CONFIG_FAIR_GROUP_SCHED
6763 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6764 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6767 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6771 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6772 static inline void update_runtime_enabled(struct rq *rq) {}
6773 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6774 #ifdef CONFIG_CGROUP_SCHED
6775 bool cfs_task_bw_constrained(struct task_struct *p)
6780 #endif /* CONFIG_CFS_BANDWIDTH */
6782 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6783 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6786 /**************************************************
6787 * CFS operations on tasks:
6790 #ifdef CONFIG_SCHED_HRTICK
6791 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6793 struct sched_entity *se = &p->se;
6795 WARN_ON_ONCE(task_rq(p) != rq);
6797 if (rq->cfs.h_nr_queued > 1) {
6798 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6799 u64 slice = se->slice;
6800 s64 delta = slice - ran;
6803 if (task_current_donor(rq, p))
6807 hrtick_start(rq, delta);
6812 * called from enqueue/dequeue and updates the hrtick when the
6813 * current task is from our class and nr_running is low enough
6816 static void hrtick_update(struct rq *rq)
6818 struct task_struct *donor = rq->donor;
6820 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6823 hrtick_start_fair(rq, donor);
6825 #else /* !CONFIG_SCHED_HRTICK */
6827 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6831 static inline void hrtick_update(struct rq *rq)
6837 static inline bool cpu_overutilized(int cpu)
6839 unsigned long rq_util_min, rq_util_max;
6841 if (!sched_energy_enabled())
6844 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6845 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6847 /* Return true only if the utilization doesn't fit CPU's capacity */
6848 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6852 * overutilized value make sense only if EAS is enabled
6854 static inline bool is_rd_overutilized(struct root_domain *rd)
6856 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6859 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6861 if (!sched_energy_enabled())
6864 WRITE_ONCE(rd->overutilized, flag);
6865 trace_sched_overutilized_tp(rd, flag);
6868 static inline void check_update_overutilized_status(struct rq *rq)
6871 * overutilized field is used for load balancing decisions only
6872 * if energy aware scheduler is being used
6875 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6876 set_rd_overutilized(rq->rd, 1);
6879 static inline void check_update_overutilized_status(struct rq *rq) { }
6882 /* Runqueue only has SCHED_IDLE tasks enqueued */
6883 static int sched_idle_rq(struct rq *rq)
6885 return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6890 static int sched_idle_cpu(int cpu)
6892 return sched_idle_rq(cpu_rq(cpu));
6897 requeue_delayed_entity(struct sched_entity *se)
6899 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6902 * se->sched_delayed should imply: se->on_rq == 1.
6903 * Because a delayed entity is one that is still on
6904 * the runqueue competing until elegibility.
6906 WARN_ON_ONCE(!se->sched_delayed);
6907 WARN_ON_ONCE(!se->on_rq);
6909 if (sched_feat(DELAY_ZERO)) {
6910 update_entity_lag(cfs_rq, se);
6912 cfs_rq->nr_queued--;
6913 if (se != cfs_rq->curr)
6914 __dequeue_entity(cfs_rq, se);
6916 place_entity(cfs_rq, se, 0);
6917 if (se != cfs_rq->curr)
6918 __enqueue_entity(cfs_rq, se);
6919 cfs_rq->nr_queued++;
6923 update_load_avg(cfs_rq, se, 0);
6928 * The enqueue_task method is called before nr_running is
6929 * increased. Here we update the fair scheduling stats and
6930 * then put the task into the rbtree:
6933 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6935 struct cfs_rq *cfs_rq;
6936 struct sched_entity *se = &p->se;
6937 int h_nr_idle = task_has_idle_policy(p);
6938 int h_nr_runnable = 1;
6939 int task_new = !(flags & ENQUEUE_WAKEUP);
6940 int rq_h_nr_queued = rq->cfs.h_nr_queued;
6944 * The code below (indirectly) updates schedutil which looks at
6945 * the cfs_rq utilization to select a frequency.
6946 * Let's add the task's estimated utilization to the cfs_rq's
6947 * estimated utilization, before we update schedutil.
6949 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
6950 util_est_enqueue(&rq->cfs, p);
6952 if (flags & ENQUEUE_DELAYED) {
6953 requeue_delayed_entity(se);
6958 * If in_iowait is set, the code below may not trigger any cpufreq
6959 * utilization updates, so do it here explicitly with the IOWAIT flag
6963 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6965 if (task_new && se->sched_delayed)
6968 for_each_sched_entity(se) {
6970 if (se->sched_delayed)
6971 requeue_delayed_entity(se);
6974 cfs_rq = cfs_rq_of(se);
6977 * Basically set the slice of group entries to the min_slice of
6978 * their respective cfs_rq. This ensures the group can service
6979 * its entities in the desired time-frame.
6983 se->custom_slice = 1;
6985 enqueue_entity(cfs_rq, se, flags);
6986 slice = cfs_rq_min_slice(cfs_rq);
6988 cfs_rq->h_nr_runnable += h_nr_runnable;
6989 cfs_rq->h_nr_queued++;
6990 cfs_rq->h_nr_idle += h_nr_idle;
6992 if (cfs_rq_is_idle(cfs_rq))
6995 /* end evaluation on encountering a throttled cfs_rq */
6996 if (cfs_rq_throttled(cfs_rq))
6997 goto enqueue_throttle;
6999 flags = ENQUEUE_WAKEUP;
7002 for_each_sched_entity(se) {
7003 cfs_rq = cfs_rq_of(se);
7005 update_load_avg(cfs_rq, se, UPDATE_TG);
7006 se_update_runnable(se);
7007 update_cfs_group(se);
7010 if (se != cfs_rq->curr)
7011 min_vruntime_cb_propagate(&se->run_node, NULL);
7012 slice = cfs_rq_min_slice(cfs_rq);
7014 cfs_rq->h_nr_runnable += h_nr_runnable;
7015 cfs_rq->h_nr_queued++;
7016 cfs_rq->h_nr_idle += h_nr_idle;
7018 if (cfs_rq_is_idle(cfs_rq))
7021 /* end evaluation on encountering a throttled cfs_rq */
7022 if (cfs_rq_throttled(cfs_rq))
7023 goto enqueue_throttle;
7026 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7027 /* Account for idle runtime */
7028 if (!rq->nr_running)
7029 dl_server_update_idle_time(rq, rq->curr);
7030 dl_server_start(&rq->fair_server);
7033 /* At this point se is NULL and we are at root level*/
7034 add_nr_running(rq, 1);
7037 * Since new tasks are assigned an initial util_avg equal to
7038 * half of the spare capacity of their CPU, tiny tasks have the
7039 * ability to cross the overutilized threshold, which will
7040 * result in the load balancer ruining all the task placement
7041 * done by EAS. As a way to mitigate that effect, do not account
7042 * for the first enqueue operation of new tasks during the
7043 * overutilized flag detection.
7045 * A better way of solving this problem would be to wait for
7046 * the PELT signals of tasks to converge before taking them
7047 * into account, but that is not straightforward to implement,
7048 * and the following generally works well enough in practice.
7051 check_update_overutilized_status(rq);
7054 assert_list_leaf_cfs_rq(rq);
7059 static void set_next_buddy(struct sched_entity *se);
7062 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7063 * failing half-way through and resume the dequeue later.
7066 * -1 - dequeue delayed
7067 * 0 - dequeue throttled
7068 * 1 - dequeue complete
7070 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7072 bool was_sched_idle = sched_idle_rq(rq);
7073 int rq_h_nr_queued = rq->cfs.h_nr_queued;
7074 bool task_sleep = flags & DEQUEUE_SLEEP;
7075 bool task_delayed = flags & DEQUEUE_DELAYED;
7076 struct task_struct *p = NULL;
7078 int h_nr_queued = 0;
7079 int h_nr_runnable = 0;
7080 struct cfs_rq *cfs_rq;
7083 if (entity_is_task(se)) {
7086 h_nr_idle = task_has_idle_policy(p);
7087 if (task_sleep || task_delayed || !se->sched_delayed)
7091 for_each_sched_entity(se) {
7092 cfs_rq = cfs_rq_of(se);
7094 if (!dequeue_entity(cfs_rq, se, flags)) {
7095 if (p && &p->se == se)
7098 slice = cfs_rq_min_slice(cfs_rq);
7102 cfs_rq->h_nr_runnable -= h_nr_runnable;
7103 cfs_rq->h_nr_queued -= h_nr_queued;
7104 cfs_rq->h_nr_idle -= h_nr_idle;
7106 if (cfs_rq_is_idle(cfs_rq))
7107 h_nr_idle = h_nr_queued;
7109 /* end evaluation on encountering a throttled cfs_rq */
7110 if (cfs_rq_throttled(cfs_rq))
7113 /* Don't dequeue parent if it has other entities besides us */
7114 if (cfs_rq->load.weight) {
7115 slice = cfs_rq_min_slice(cfs_rq);
7117 /* Avoid re-evaluating load for this entity: */
7118 se = parent_entity(se);
7120 * Bias pick_next to pick a task from this cfs_rq, as
7121 * p is sleeping when it is within its sched_slice.
7123 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7127 flags |= DEQUEUE_SLEEP;
7128 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7131 for_each_sched_entity(se) {
7132 cfs_rq = cfs_rq_of(se);
7134 update_load_avg(cfs_rq, se, UPDATE_TG);
7135 se_update_runnable(se);
7136 update_cfs_group(se);
7139 if (se != cfs_rq->curr)
7140 min_vruntime_cb_propagate(&se->run_node, NULL);
7141 slice = cfs_rq_min_slice(cfs_rq);
7143 cfs_rq->h_nr_runnable -= h_nr_runnable;
7144 cfs_rq->h_nr_queued -= h_nr_queued;
7145 cfs_rq->h_nr_idle -= h_nr_idle;
7147 if (cfs_rq_is_idle(cfs_rq))
7148 h_nr_idle = h_nr_queued;
7150 /* end evaluation on encountering a throttled cfs_rq */
7151 if (cfs_rq_throttled(cfs_rq))
7155 sub_nr_running(rq, h_nr_queued);
7157 if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
7158 dl_server_stop(&rq->fair_server);
7160 /* balance early to pull high priority tasks */
7161 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7162 rq->next_balance = jiffies;
7164 if (p && task_delayed) {
7165 WARN_ON_ONCE(!task_sleep);
7166 WARN_ON_ONCE(p->on_rq != 1);
7168 /* Fix-up what dequeue_task_fair() skipped */
7172 * Fix-up what block_task() skipped.
7174 * Must be last, @p might not be valid after this.
7176 __block_task(rq, p);
7183 * The dequeue_task method is called before nr_running is
7184 * decreased. We remove the task from the rbtree and
7185 * update the fair scheduling stats:
7187 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7189 if (!p->se.sched_delayed)
7190 util_est_dequeue(&rq->cfs, p);
7192 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7193 if (dequeue_entities(rq, &p->se, flags) < 0)
7197 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7204 static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
7206 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
7211 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7212 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7213 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7214 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7216 #ifdef CONFIG_NO_HZ_COMMON
7219 cpumask_var_t idle_cpus_mask;
7221 int has_blocked; /* Idle CPUS has blocked load */
7222 int needs_update; /* Newly idle CPUs need their next_balance collated */
7223 unsigned long next_balance; /* in jiffy units */
7224 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7225 } nohz ____cacheline_aligned;
7227 #endif /* CONFIG_NO_HZ_COMMON */
7229 static unsigned long cpu_load(struct rq *rq)
7231 return cfs_rq_load_avg(&rq->cfs);
7235 * cpu_load_without - compute CPU load without any contributions from *p
7236 * @cpu: the CPU which load is requested
7237 * @p: the task which load should be discounted
7239 * The load of a CPU is defined by the load of tasks currently enqueued on that
7240 * CPU as well as tasks which are currently sleeping after an execution on that
7243 * This method returns the load of the specified CPU by discounting the load of
7244 * the specified task, whenever the task is currently contributing to the CPU
7247 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7249 struct cfs_rq *cfs_rq;
7252 /* Task has no contribution or is new */
7253 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7254 return cpu_load(rq);
7257 load = READ_ONCE(cfs_rq->avg.load_avg);
7259 /* Discount task's util from CPU's util */
7260 lsub_positive(&load, task_h_load(p));
7265 static unsigned long cpu_runnable(struct rq *rq)
7267 return cfs_rq_runnable_avg(&rq->cfs);
7270 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7272 struct cfs_rq *cfs_rq;
7273 unsigned int runnable;
7275 /* Task has no contribution or is new */
7276 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7277 return cpu_runnable(rq);
7280 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7282 /* Discount task's runnable from CPU's runnable */
7283 lsub_positive(&runnable, p->se.avg.runnable_avg);
7288 static unsigned long capacity_of(int cpu)
7290 return cpu_rq(cpu)->cpu_capacity;
7293 static void record_wakee(struct task_struct *p)
7296 * Only decay a single time; tasks that have less then 1 wakeup per
7297 * jiffy will not have built up many flips.
7299 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7300 current->wakee_flips >>= 1;
7301 current->wakee_flip_decay_ts = jiffies;
7304 if (current->last_wakee != p) {
7305 current->last_wakee = p;
7306 current->wakee_flips++;
7311 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7313 * A waker of many should wake a different task than the one last awakened
7314 * at a frequency roughly N times higher than one of its wakees.
7316 * In order to determine whether we should let the load spread vs consolidating
7317 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7318 * partner, and a factor of lls_size higher frequency in the other.
7320 * With both conditions met, we can be relatively sure that the relationship is
7321 * non-monogamous, with partner count exceeding socket size.
7323 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7324 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7327 static int wake_wide(struct task_struct *p)
7329 unsigned int master = current->wakee_flips;
7330 unsigned int slave = p->wakee_flips;
7331 int factor = __this_cpu_read(sd_llc_size);
7334 swap(master, slave);
7335 if (slave < factor || master < slave * factor)
7341 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7342 * soonest. For the purpose of speed we only consider the waking and previous
7345 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7346 * cache-affine and is (or will be) idle.
7348 * wake_affine_weight() - considers the weight to reflect the average
7349 * scheduling latency of the CPUs. This seems to work
7350 * for the overloaded case.
7353 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7356 * If this_cpu is idle, it implies the wakeup is from interrupt
7357 * context. Only allow the move if cache is shared. Otherwise an
7358 * interrupt intensive workload could force all tasks onto one
7359 * node depending on the IO topology or IRQ affinity settings.
7361 * If the prev_cpu is idle and cache affine then avoid a migration.
7362 * There is no guarantee that the cache hot data from an interrupt
7363 * is more important than cache hot data on the prev_cpu and from
7364 * a cpufreq perspective, it's better to have higher utilisation
7367 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7368 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7371 struct rq *rq = cpu_rq(this_cpu);
7373 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
7377 if (available_idle_cpu(prev_cpu))
7380 return nr_cpumask_bits;
7384 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7385 int this_cpu, int prev_cpu, int sync)
7387 s64 this_eff_load, prev_eff_load;
7388 unsigned long task_load;
7390 this_eff_load = cpu_load(cpu_rq(this_cpu));
7393 unsigned long current_load = task_h_load(current);
7395 if (current_load > this_eff_load)
7398 this_eff_load -= current_load;
7401 task_load = task_h_load(p);
7403 this_eff_load += task_load;
7404 if (sched_feat(WA_BIAS))
7405 this_eff_load *= 100;
7406 this_eff_load *= capacity_of(prev_cpu);
7408 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7409 prev_eff_load -= task_load;
7410 if (sched_feat(WA_BIAS))
7411 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7412 prev_eff_load *= capacity_of(this_cpu);
7415 * If sync, adjust the weight of prev_eff_load such that if
7416 * prev_eff == this_eff that select_idle_sibling() will consider
7417 * stacking the wakee on top of the waker if no other CPU is
7423 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7426 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7427 int this_cpu, int prev_cpu, int sync)
7429 int target = nr_cpumask_bits;
7431 if (sched_feat(WA_IDLE))
7432 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7434 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7435 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7437 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7438 if (target != this_cpu)
7441 schedstat_inc(sd->ttwu_move_affine);
7442 schedstat_inc(p->stats.nr_wakeups_affine);
7446 static struct sched_group *
7447 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7450 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7453 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7455 unsigned long load, min_load = ULONG_MAX;
7456 unsigned int min_exit_latency = UINT_MAX;
7457 u64 latest_idle_timestamp = 0;
7458 int least_loaded_cpu = this_cpu;
7459 int shallowest_idle_cpu = -1;
7462 /* Check if we have any choice: */
7463 if (group->group_weight == 1)
7464 return cpumask_first(sched_group_span(group));
7466 /* Traverse only the allowed CPUs */
7467 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7468 struct rq *rq = cpu_rq(i);
7470 if (!sched_core_cookie_match(rq, p))
7473 if (sched_idle_cpu(i))
7476 if (available_idle_cpu(i)) {
7477 struct cpuidle_state *idle = idle_get_state(rq);
7478 if (idle && idle->exit_latency < min_exit_latency) {
7480 * We give priority to a CPU whose idle state
7481 * has the smallest exit latency irrespective
7482 * of any idle timestamp.
7484 min_exit_latency = idle->exit_latency;
7485 latest_idle_timestamp = rq->idle_stamp;
7486 shallowest_idle_cpu = i;
7487 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7488 rq->idle_stamp > latest_idle_timestamp) {
7490 * If equal or no active idle state, then
7491 * the most recently idled CPU might have
7494 latest_idle_timestamp = rq->idle_stamp;
7495 shallowest_idle_cpu = i;
7497 } else if (shallowest_idle_cpu == -1) {
7498 load = cpu_load(cpu_rq(i));
7499 if (load < min_load) {
7501 least_loaded_cpu = i;
7506 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7509 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7510 int cpu, int prev_cpu, int sd_flag)
7514 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7518 * We need task's util for cpu_util_without, sync it up to
7519 * prev_cpu's last_update_time.
7521 if (!(sd_flag & SD_BALANCE_FORK))
7522 sync_entity_load_avg(&p->se);
7525 struct sched_group *group;
7526 struct sched_domain *tmp;
7529 if (!(sd->flags & sd_flag)) {
7534 group = sched_balance_find_dst_group(sd, p, cpu);
7540 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7541 if (new_cpu == cpu) {
7542 /* Now try balancing at a lower domain level of 'cpu': */
7547 /* Now try balancing at a lower domain level of 'new_cpu': */
7549 weight = sd->span_weight;
7551 for_each_domain(cpu, tmp) {
7552 if (weight <= tmp->span_weight)
7554 if (tmp->flags & sd_flag)
7562 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7564 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7565 sched_cpu_cookie_match(cpu_rq(cpu), p))
7571 #ifdef CONFIG_SCHED_SMT
7572 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7573 EXPORT_SYMBOL_GPL(sched_smt_present);
7575 static inline void set_idle_cores(int cpu, int val)
7577 struct sched_domain_shared *sds;
7579 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7581 WRITE_ONCE(sds->has_idle_cores, val);
7584 static inline bool test_idle_cores(int cpu)
7586 struct sched_domain_shared *sds;
7588 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7590 return READ_ONCE(sds->has_idle_cores);
7596 * Scans the local SMT mask to see if the entire core is idle, and records this
7597 * information in sd_llc_shared->has_idle_cores.
7599 * Since SMT siblings share all cache levels, inspecting this limited remote
7600 * state should be fairly cheap.
7602 void __update_idle_core(struct rq *rq)
7604 int core = cpu_of(rq);
7608 if (test_idle_cores(core))
7611 for_each_cpu(cpu, cpu_smt_mask(core)) {
7615 if (!available_idle_cpu(cpu))
7619 set_idle_cores(core, 1);
7625 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7626 * there are no idle cores left in the system; tracked through
7627 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7629 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7634 for_each_cpu(cpu, cpu_smt_mask(core)) {
7635 if (!available_idle_cpu(cpu)) {
7637 if (*idle_cpu == -1) {
7638 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7646 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7653 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7658 * Scan the local SMT mask for idle CPUs.
7660 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7664 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7668 * Check if the CPU is in the LLC scheduling domain of @target.
7669 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7671 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7673 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7680 #else /* CONFIG_SCHED_SMT */
7682 static inline void set_idle_cores(int cpu, int val)
7686 static inline bool test_idle_cores(int cpu)
7691 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7693 return __select_idle_cpu(core, p);
7696 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7701 #endif /* CONFIG_SCHED_SMT */
7704 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7705 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7706 * average idle time for this rq (as found in rq->avg_idle).
7708 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7710 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7711 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7712 struct sched_domain_shared *sd_share;
7714 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7716 if (sched_feat(SIS_UTIL)) {
7717 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7719 /* because !--nr is the condition to stop scan */
7720 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7721 /* overloaded LLC is unlikely to have idle cpu/core */
7727 if (static_branch_unlikely(&sched_cluster_active)) {
7728 struct sched_group *sg = sd->groups;
7730 if (sg->flags & SD_CLUSTER) {
7731 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7732 if (!cpumask_test_cpu(cpu, cpus))
7735 if (has_idle_core) {
7736 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7737 if ((unsigned int)i < nr_cpumask_bits)
7742 idle_cpu = __select_idle_cpu(cpu, p);
7743 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7747 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7751 for_each_cpu_wrap(cpu, cpus, target + 1) {
7752 if (has_idle_core) {
7753 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7754 if ((unsigned int)i < nr_cpumask_bits)
7760 idle_cpu = __select_idle_cpu(cpu, p);
7761 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7767 set_idle_cores(target, false);
7773 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7774 * the task fits. If no CPU is big enough, but there are idle ones, try to
7775 * maximize capacity.
7778 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7780 unsigned long task_util, util_min, util_max, best_cap = 0;
7781 int fits, best_fits = 0;
7782 int cpu, best_cpu = -1;
7783 struct cpumask *cpus;
7785 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7786 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7788 task_util = task_util_est(p);
7789 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7790 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7792 for_each_cpu_wrap(cpu, cpus, target) {
7793 unsigned long cpu_cap = capacity_of(cpu);
7795 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7798 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7800 /* This CPU fits with all requirements */
7804 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7805 * Look for the CPU with best capacity.
7808 cpu_cap = get_actual_cpu_capacity(cpu);
7811 * First, select CPU which fits better (-1 being better than 0).
7812 * Then, select the one with best capacity at same level.
7814 if ((fits < best_fits) ||
7815 ((fits == best_fits) && (cpu_cap > best_cap))) {
7825 static inline bool asym_fits_cpu(unsigned long util,
7826 unsigned long util_min,
7827 unsigned long util_max,
7830 if (sched_asym_cpucap_active())
7832 * Return true only if the cpu fully fits the task requirements
7833 * which include the utilization and the performance hints.
7835 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7841 * Try and locate an idle core/thread in the LLC cache domain.
7843 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7845 bool has_idle_core = false;
7846 struct sched_domain *sd;
7847 unsigned long task_util, util_min, util_max;
7848 int i, recent_used_cpu, prev_aff = -1;
7851 * On asymmetric system, update task utilization because we will check
7852 * that the task fits with CPU's capacity.
7854 if (sched_asym_cpucap_active()) {
7855 sync_entity_load_avg(&p->se);
7856 task_util = task_util_est(p);
7857 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7858 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7862 * per-cpu select_rq_mask usage
7864 lockdep_assert_irqs_disabled();
7866 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7867 asym_fits_cpu(task_util, util_min, util_max, target))
7871 * If the previous CPU is cache affine and idle, don't be stupid:
7873 if (prev != target && cpus_share_cache(prev, target) &&
7874 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7875 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7877 if (!static_branch_unlikely(&sched_cluster_active) ||
7878 cpus_share_resources(prev, target))
7885 * Allow a per-cpu kthread to stack with the wakee if the
7886 * kworker thread and the tasks previous CPUs are the same.
7887 * The assumption is that the wakee queued work for the
7888 * per-cpu kthread that is now complete and the wakeup is
7889 * essentially a sync wakeup. An obvious example of this
7890 * pattern is IO completions.
7892 if (is_per_cpu_kthread(current) &&
7894 prev == smp_processor_id() &&
7895 this_rq()->nr_running <= 1 &&
7896 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7900 /* Check a recently used CPU as a potential idle candidate: */
7901 recent_used_cpu = p->recent_used_cpu;
7902 p->recent_used_cpu = prev;
7903 if (recent_used_cpu != prev &&
7904 recent_used_cpu != target &&
7905 cpus_share_cache(recent_used_cpu, target) &&
7906 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7907 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7908 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7910 if (!static_branch_unlikely(&sched_cluster_active) ||
7911 cpus_share_resources(recent_used_cpu, target))
7912 return recent_used_cpu;
7915 recent_used_cpu = -1;
7919 * For asymmetric CPU capacity systems, our domain of interest is
7920 * sd_asym_cpucapacity rather than sd_llc.
7922 if (sched_asym_cpucap_active()) {
7923 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7925 * On an asymmetric CPU capacity system where an exclusive
7926 * cpuset defines a symmetric island (i.e. one unique
7927 * capacity_orig value through the cpuset), the key will be set
7928 * but the CPUs within that cpuset will not have a domain with
7929 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7933 i = select_idle_capacity(p, sd, target);
7934 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7938 sd = rcu_dereference(per_cpu(sd_llc, target));
7942 if (sched_smt_active()) {
7943 has_idle_core = test_idle_cores(target);
7945 if (!has_idle_core && cpus_share_cache(prev, target)) {
7946 i = select_idle_smt(p, sd, prev);
7947 if ((unsigned int)i < nr_cpumask_bits)
7952 i = select_idle_cpu(p, sd, has_idle_core, target);
7953 if ((unsigned)i < nr_cpumask_bits)
7957 * For cluster machines which have lower sharing cache like L2 or
7958 * LLC Tag, we tend to find an idle CPU in the target's cluster
7959 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7960 * use them if possible when no idle CPU found in select_idle_cpu().
7962 if ((unsigned int)prev_aff < nr_cpumask_bits)
7964 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7965 return recent_used_cpu;
7971 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7972 * @cpu: the CPU to get the utilization for
7973 * @p: task for which the CPU utilization should be predicted or NULL
7974 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7975 * @boost: 1 to enable boosting, otherwise 0
7977 * The unit of the return value must be the same as the one of CPU capacity
7978 * so that CPU utilization can be compared with CPU capacity.
7980 * CPU utilization is the sum of running time of runnable tasks plus the
7981 * recent utilization of currently non-runnable tasks on that CPU.
7982 * It represents the amount of CPU capacity currently used by CFS tasks in
7983 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7984 * capacity at f_max.
7986 * The estimated CPU utilization is defined as the maximum between CPU
7987 * utilization and sum of the estimated utilization of the currently
7988 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7989 * previously-executed tasks, which helps better deduce how busy a CPU will
7990 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7991 * of such a task would be significantly decayed at this point of time.
7993 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7994 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7995 * utilization. Boosting is implemented in cpu_util() so that internal
7996 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7997 * latter via cpu_util_cfs_boost().
7999 * CPU utilization can be higher than the current CPU capacity
8000 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8001 * of rounding errors as well as task migrations or wakeups of new tasks.
8002 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8003 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8004 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8005 * capacity. CPU utilization is allowed to overshoot current CPU capacity
8006 * though since this is useful for predicting the CPU capacity required
8007 * after task migrations (scheduler-driven DVFS).
8009 * Return: (Boosted) (estimated) utilization for the specified CPU.
8011 static unsigned long
8012 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8014 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8015 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8016 unsigned long runnable;
8019 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8020 util = max(util, runnable);
8024 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8025 * contribution. If @p migrates from another CPU to @cpu add its
8026 * contribution. In all the other cases @cpu is not impacted by the
8027 * migration so its util_avg is already correct.
8029 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8030 lsub_positive(&util, task_util(p));
8031 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8032 util += task_util(p);
8034 if (sched_feat(UTIL_EST)) {
8035 unsigned long util_est;
8037 util_est = READ_ONCE(cfs_rq->avg.util_est);
8040 * During wake-up @p isn't enqueued yet and doesn't contribute
8041 * to any cpu_rq(cpu)->cfs.avg.util_est.
8042 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8043 * has been enqueued.
8045 * During exec (@dst_cpu = -1) @p is enqueued and does
8046 * contribute to cpu_rq(cpu)->cfs.util_est.
8047 * Remove it to "simulate" cpu_util without @p's contribution.
8049 * Despite the task_on_rq_queued(@p) check there is still a
8050 * small window for a possible race when an exec
8051 * select_task_rq_fair() races with LB's detach_task().
8055 * p->on_rq = TASK_ON_RQ_MIGRATING;
8056 * -------------------------------- A
8058 * dequeue_task_fair() + Race Time
8059 * util_est_dequeue() /
8060 * -------------------------------- B
8062 * The additional check "current == p" is required to further
8063 * reduce the race window.
8066 util_est += _task_util_est(p);
8067 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8068 lsub_positive(&util_est, _task_util_est(p));
8070 util = max(util, util_est);
8073 return min(util, arch_scale_cpu_capacity(cpu));
8076 unsigned long cpu_util_cfs(int cpu)
8078 return cpu_util(cpu, NULL, -1, 0);
8081 unsigned long cpu_util_cfs_boost(int cpu)
8083 return cpu_util(cpu, NULL, -1, 1);
8087 * cpu_util_without: compute cpu utilization without any contributions from *p
8088 * @cpu: the CPU which utilization is requested
8089 * @p: the task which utilization should be discounted
8091 * The utilization of a CPU is defined by the utilization of tasks currently
8092 * enqueued on that CPU as well as tasks which are currently sleeping after an
8093 * execution on that CPU.
8095 * This method returns the utilization of the specified CPU by discounting the
8096 * utilization of the specified task, whenever the task is currently
8097 * contributing to the CPU utilization.
8099 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8101 /* Task has no contribution or is new */
8102 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8105 return cpu_util(cpu, p, -1, 0);
8109 * This function computes an effective utilization for the given CPU, to be
8110 * used for frequency selection given the linear relation: f = u * f_max.
8112 * The scheduler tracks the following metrics:
8114 * cpu_util_{cfs,rt,dl,irq}()
8117 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8118 * synchronized windows and are thus directly comparable.
8120 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8121 * which excludes things like IRQ and steal-time. These latter are then accrued
8122 * in the IRQ utilization.
8124 * The DL bandwidth number OTOH is not a measured metric but a value computed
8125 * based on the task model parameters and gives the minimal utilization
8126 * required to meet deadlines.
8128 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8132 unsigned long util, irq, scale;
8133 struct rq *rq = cpu_rq(cpu);
8135 scale = arch_scale_cpu_capacity(cpu);
8138 * Early check to see if IRQ/steal time saturates the CPU, can be
8139 * because of inaccuracies in how we track these -- see
8140 * update_irq_load_avg().
8142 irq = cpu_util_irq(rq);
8143 if (unlikely(irq >= scale)) {
8153 * The minimum utilization returns the highest level between:
8154 * - the computed DL bandwidth needed with the IRQ pressure which
8155 * steals time to the deadline task.
8156 * - The minimum performance requirement for CFS and/or RT.
8158 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8161 * When an RT task is runnable and uclamp is not used, we must
8162 * ensure that the task will run at maximum compute capacity.
8164 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8165 *min = max(*min, scale);
8169 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8170 * CFS tasks and we use the same metric to track the effective
8171 * utilization (PELT windows are synchronized) we can directly add them
8172 * to obtain the CPU's actual utilization.
8174 util = util_cfs + cpu_util_rt(rq);
8175 util += cpu_util_dl(rq);
8178 * The maximum hint is a soft bandwidth requirement, which can be lower
8179 * than the actual utilization because of uclamp_max requirements.
8182 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8188 * There is still idle time; further improve the number by using the
8189 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8190 * need to scale the task numbers:
8193 * U' = irq + --------- * U
8196 util = scale_irq_capacity(util, irq, scale);
8199 return min(scale, util);
8202 unsigned long sched_cpu_util(int cpu)
8204 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8208 * energy_env - Utilization landscape for energy estimation.
8209 * @task_busy_time: Utilization contribution by the task for which we test the
8210 * placement. Given by eenv_task_busy_time().
8211 * @pd_busy_time: Utilization of the whole perf domain without the task
8212 * contribution. Given by eenv_pd_busy_time().
8213 * @cpu_cap: Maximum CPU capacity for the perf domain.
8214 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8217 unsigned long task_busy_time;
8218 unsigned long pd_busy_time;
8219 unsigned long cpu_cap;
8220 unsigned long pd_cap;
8224 * Compute the task busy time for compute_energy(). This time cannot be
8225 * injected directly into effective_cpu_util() because of the IRQ scaling.
8226 * The latter only makes sense with the most recent CPUs where the task has
8229 static inline void eenv_task_busy_time(struct energy_env *eenv,
8230 struct task_struct *p, int prev_cpu)
8232 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8233 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8235 if (unlikely(irq >= max_cap))
8236 busy_time = max_cap;
8238 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8240 eenv->task_busy_time = busy_time;
8244 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8245 * utilization for each @pd_cpus, it however doesn't take into account
8246 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8247 * scale the EM reported power consumption at the (eventually clamped)
8250 * The contribution of the task @p for which we want to estimate the
8251 * energy cost is removed (by cpu_util()) and must be calculated
8252 * separately (see eenv_task_busy_time). This ensures:
8254 * - A stable PD utilization, no matter which CPU of that PD we want to place
8257 * - A fair comparison between CPUs as the task contribution (task_util())
8258 * will always be the same no matter which CPU utilization we rely on
8259 * (util_avg or util_est).
8261 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8262 * exceed @eenv->pd_cap.
8264 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8265 struct cpumask *pd_cpus,
8266 struct task_struct *p)
8268 unsigned long busy_time = 0;
8271 for_each_cpu(cpu, pd_cpus) {
8272 unsigned long util = cpu_util(cpu, p, -1, 0);
8274 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8277 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8281 * Compute the maximum utilization for compute_energy() when the task @p
8282 * is placed on the cpu @dst_cpu.
8284 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8285 * exceed @eenv->cpu_cap.
8287 static inline unsigned long
8288 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8289 struct task_struct *p, int dst_cpu)
8291 unsigned long max_util = 0;
8294 for_each_cpu(cpu, pd_cpus) {
8295 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8296 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8297 unsigned long eff_util, min, max;
8300 * Performance domain frequency: utilization clamping
8301 * must be considered since it affects the selection
8302 * of the performance domain frequency.
8303 * NOTE: in case RT tasks are running, by default the min
8304 * utilization can be max OPP.
8306 eff_util = effective_cpu_util(cpu, util, &min, &max);
8308 /* Task's uclamp can modify min and max value */
8309 if (tsk && uclamp_is_used()) {
8310 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8313 * If there is no active max uclamp constraint,
8314 * directly use task's one, otherwise keep max.
8316 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8317 max = uclamp_eff_value(p, UCLAMP_MAX);
8319 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8322 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8323 max_util = max(max_util, eff_util);
8326 return min(max_util, eenv->cpu_cap);
8330 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8331 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8332 * contribution is ignored.
8334 static inline unsigned long
8335 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8336 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8338 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8339 unsigned long busy_time = eenv->pd_busy_time;
8340 unsigned long energy;
8343 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8345 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8347 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8353 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8354 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8355 * spare capacity in each performance domain and uses it as a potential
8356 * candidate to execute the task. Then, it uses the Energy Model to figure
8357 * out which of the CPU candidates is the most energy-efficient.
8359 * The rationale for this heuristic is as follows. In a performance domain,
8360 * all the most energy efficient CPU candidates (according to the Energy
8361 * Model) are those for which we'll request a low frequency. When there are
8362 * several CPUs for which the frequency request will be the same, we don't
8363 * have enough data to break the tie between them, because the Energy Model
8364 * only includes active power costs. With this model, if we assume that
8365 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8366 * the maximum spare capacity in a performance domain is guaranteed to be among
8367 * the best candidates of the performance domain.
8369 * In practice, it could be preferable from an energy standpoint to pack
8370 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8371 * but that could also hurt our chances to go cluster idle, and we have no
8372 * ways to tell with the current Energy Model if this is actually a good
8373 * idea or not. So, find_energy_efficient_cpu() basically favors
8374 * cluster-packing, and spreading inside a cluster. That should at least be
8375 * a good thing for latency, and this is consistent with the idea that most
8376 * of the energy savings of EAS come from the asymmetry of the system, and
8377 * not so much from breaking the tie between identical CPUs. That's also the
8378 * reason why EAS is enabled in the topology code only for systems where
8379 * SD_ASYM_CPUCAPACITY is set.
8381 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8382 * they don't have any useful utilization data yet and it's not possible to
8383 * forecast their impact on energy consumption. Consequently, they will be
8384 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8385 * to be energy-inefficient in some use-cases. The alternative would be to
8386 * bias new tasks towards specific types of CPUs first, or to try to infer
8387 * their util_avg from the parent task, but those heuristics could hurt
8388 * other use-cases too. So, until someone finds a better way to solve this,
8389 * let's keep things simple by re-using the existing slow path.
8391 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8393 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8394 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8395 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8396 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8397 struct root_domain *rd = this_rq()->rd;
8398 int cpu, best_energy_cpu, target = -1;
8399 int prev_fits = -1, best_fits = -1;
8400 unsigned long best_actual_cap = 0;
8401 unsigned long prev_actual_cap = 0;
8402 struct sched_domain *sd;
8403 struct perf_domain *pd;
8404 struct energy_env eenv;
8407 pd = rcu_dereference(rd->pd);
8412 * Energy-aware wake-up happens on the lowest sched_domain starting
8413 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8415 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8416 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8423 sync_entity_load_avg(&p->se);
8424 if (!task_util_est(p) && p_util_min == 0)
8427 eenv_task_busy_time(&eenv, p, prev_cpu);
8429 for (; pd; pd = pd->next) {
8430 unsigned long util_min = p_util_min, util_max = p_util_max;
8431 unsigned long cpu_cap, cpu_actual_cap, util;
8432 long prev_spare_cap = -1, max_spare_cap = -1;
8433 unsigned long rq_util_min, rq_util_max;
8434 unsigned long cur_delta, base_energy;
8435 int max_spare_cap_cpu = -1;
8436 int fits, max_fits = -1;
8438 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8440 if (cpumask_empty(cpus))
8443 /* Account external pressure for the energy estimation */
8444 cpu = cpumask_first(cpus);
8445 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8447 eenv.cpu_cap = cpu_actual_cap;
8450 for_each_cpu(cpu, cpus) {
8451 struct rq *rq = cpu_rq(cpu);
8453 eenv.pd_cap += cpu_actual_cap;
8455 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8458 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8461 util = cpu_util(cpu, p, cpu, 0);
8462 cpu_cap = capacity_of(cpu);
8465 * Skip CPUs that cannot satisfy the capacity request.
8466 * IOW, placing the task there would make the CPU
8467 * overutilized. Take uclamp into account to see how
8468 * much capacity we can get out of the CPU; this is
8469 * aligned with sched_cpu_util().
8471 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8473 * Open code uclamp_rq_util_with() except for
8474 * the clamp() part. I.e.: apply max aggregation
8475 * only. util_fits_cpu() logic requires to
8476 * operate on non clamped util but must use the
8477 * max-aggregated uclamp_{min, max}.
8479 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8480 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8482 util_min = max(rq_util_min, p_util_min);
8483 util_max = max(rq_util_max, p_util_max);
8486 fits = util_fits_cpu(util, util_min, util_max, cpu);
8490 lsub_positive(&cpu_cap, util);
8492 if (cpu == prev_cpu) {
8493 /* Always use prev_cpu as a candidate. */
8494 prev_spare_cap = cpu_cap;
8496 } else if ((fits > max_fits) ||
8497 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8499 * Find the CPU with the maximum spare capacity
8500 * among the remaining CPUs in the performance
8503 max_spare_cap = cpu_cap;
8504 max_spare_cap_cpu = cpu;
8509 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8512 eenv_pd_busy_time(&eenv, cpus, p);
8513 /* Compute the 'base' energy of the pd, without @p */
8514 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8516 /* Evaluate the energy impact of using prev_cpu. */
8517 if (prev_spare_cap > -1) {
8518 prev_delta = compute_energy(&eenv, pd, cpus, p,
8520 /* CPU utilization has changed */
8521 if (prev_delta < base_energy)
8523 prev_delta -= base_energy;
8524 prev_actual_cap = cpu_actual_cap;
8525 best_delta = min(best_delta, prev_delta);
8528 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8529 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8530 /* Current best energy cpu fits better */
8531 if (max_fits < best_fits)
8535 * Both don't fit performance hint (i.e. uclamp_min)
8536 * but best energy cpu has better capacity.
8538 if ((max_fits < 0) &&
8539 (cpu_actual_cap <= best_actual_cap))
8542 cur_delta = compute_energy(&eenv, pd, cpus, p,
8544 /* CPU utilization has changed */
8545 if (cur_delta < base_energy)
8547 cur_delta -= base_energy;
8550 * Both fit for the task but best energy cpu has lower
8553 if ((max_fits > 0) && (best_fits > 0) &&
8554 (cur_delta >= best_delta))
8557 best_delta = cur_delta;
8558 best_energy_cpu = max_spare_cap_cpu;
8559 best_fits = max_fits;
8560 best_actual_cap = cpu_actual_cap;
8565 if ((best_fits > prev_fits) ||
8566 ((best_fits > 0) && (best_delta < prev_delta)) ||
8567 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8568 target = best_energy_cpu;
8579 * select_task_rq_fair: Select target runqueue for the waking task in domains
8580 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8581 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8583 * Balances load by selecting the idlest CPU in the idlest group, or under
8584 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8586 * Returns the target CPU number.
8589 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8591 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8592 struct sched_domain *tmp, *sd = NULL;
8593 int cpu = smp_processor_id();
8594 int new_cpu = prev_cpu;
8595 int want_affine = 0;
8596 /* SD_flags and WF_flags share the first nibble */
8597 int sd_flag = wake_flags & 0xF;
8600 * required for stable ->cpus_allowed
8602 lockdep_assert_held(&p->pi_lock);
8603 if (wake_flags & WF_TTWU) {
8606 if ((wake_flags & WF_CURRENT_CPU) &&
8607 cpumask_test_cpu(cpu, p->cpus_ptr))
8610 if (!is_rd_overutilized(this_rq()->rd)) {
8611 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8617 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8621 for_each_domain(cpu, tmp) {
8623 * If both 'cpu' and 'prev_cpu' are part of this domain,
8624 * cpu is a valid SD_WAKE_AFFINE target.
8626 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8627 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8628 if (cpu != prev_cpu)
8629 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8631 sd = NULL; /* Prefer wake_affine over balance flags */
8636 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8637 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8638 * will usually go to the fast path.
8640 if (tmp->flags & sd_flag)
8642 else if (!want_affine)
8648 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8649 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8651 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8659 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8660 * cfs_rq_of(p) references at time of call are still valid and identify the
8661 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8663 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8665 struct sched_entity *se = &p->se;
8667 if (!task_on_rq_migrating(p)) {
8668 remove_entity_load_avg(se);
8671 * Here, the task's PELT values have been updated according to
8672 * the current rq's clock. But if that clock hasn't been
8673 * updated in a while, a substantial idle time will be missed,
8674 * leading to an inflation after wake-up on the new rq.
8676 * Estimate the missing time from the cfs_rq last_update_time
8677 * and update sched_avg to improve the PELT continuity after
8680 migrate_se_pelt_lag(se);
8683 /* Tell new CPU we are migrated */
8684 se->avg.last_update_time = 0;
8686 update_scan_period(p, new_cpu);
8689 static void task_dead_fair(struct task_struct *p)
8691 struct sched_entity *se = &p->se;
8693 if (se->sched_delayed) {
8697 rq = task_rq_lock(p, &rf);
8698 if (se->sched_delayed) {
8699 update_rq_clock(rq);
8700 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8702 task_rq_unlock(rq, p, &rf);
8705 remove_entity_load_avg(se);
8709 * Set the max capacity the task is allowed to run at for misfit detection.
8711 static void set_task_max_allowed_capacity(struct task_struct *p)
8713 struct asym_cap_data *entry;
8715 if (!sched_asym_cpucap_active())
8719 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8722 cpumask = cpu_capacity_span(entry);
8723 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8726 p->max_allowed_capacity = entry->capacity;
8732 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8734 set_cpus_allowed_common(p, ctx);
8735 set_task_max_allowed_capacity(p);
8739 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8741 if (sched_fair_runnable(rq))
8744 return sched_balance_newidle(rq, rf) != 0;
8747 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8748 #endif /* CONFIG_SMP */
8750 static void set_next_buddy(struct sched_entity *se)
8752 for_each_sched_entity(se) {
8753 if (WARN_ON_ONCE(!se->on_rq))
8757 cfs_rq_of(se)->next = se;
8762 * Preempt the current task with a newly woken task if needed:
8764 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8766 struct task_struct *donor = rq->donor;
8767 struct sched_entity *se = &donor->se, *pse = &p->se;
8768 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8769 int cse_is_idle, pse_is_idle;
8771 if (unlikely(se == pse))
8775 * This is possible from callers such as attach_tasks(), in which we
8776 * unconditionally wakeup_preempt() after an enqueue (which may have
8777 * lead to a throttle). This both saves work and prevents false
8778 * next-buddy nomination below.
8780 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8783 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8784 set_next_buddy(pse);
8788 * We can come here with TIF_NEED_RESCHED already set from new task
8791 * Note: this also catches the edge-case of curr being in a throttled
8792 * group (e.g. via set_curr_task), since update_curr() (in the
8793 * enqueue of curr) will have resulted in resched being set. This
8794 * prevents us from potentially nominating it as a false LAST_BUDDY
8797 if (test_tsk_need_resched(rq->curr))
8800 if (!sched_feat(WAKEUP_PREEMPTION))
8803 find_matching_se(&se, &pse);
8806 cse_is_idle = se_is_idle(se);
8807 pse_is_idle = se_is_idle(pse);
8810 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8811 * in the inverse case).
8813 if (cse_is_idle && !pse_is_idle) {
8815 * When non-idle entity preempt an idle entity,
8816 * don't give idle entity slice protection.
8818 cancel_protect_slice(se);
8822 if (cse_is_idle != pse_is_idle)
8826 * BATCH and IDLE tasks do not preempt others.
8828 if (unlikely(!normal_policy(p->policy)))
8831 cfs_rq = cfs_rq_of(se);
8832 update_curr(cfs_rq);
8834 * If @p has a shorter slice than current and @p is eligible, override
8835 * current's slice protection in order to allow preemption.
8837 * Note that even if @p does not turn out to be the most eligible
8838 * task at this moment, current's slice protection will be lost.
8840 if (do_preempt_short(cfs_rq, pse, se))
8841 cancel_protect_slice(se);
8844 * If @p has become the most eligible task, force preemption.
8846 if (pick_eevdf(cfs_rq) == pse)
8852 resched_curr_lazy(rq);
8855 static struct task_struct *pick_task_fair(struct rq *rq)
8857 struct sched_entity *se;
8858 struct cfs_rq *cfs_rq;
8862 if (!cfs_rq->nr_queued)
8866 /* Might not have done put_prev_entity() */
8867 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8868 update_curr(cfs_rq);
8870 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8873 se = pick_next_entity(rq, cfs_rq);
8876 cfs_rq = group_cfs_rq(se);
8882 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8883 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8885 struct task_struct *
8886 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8888 struct sched_entity *se;
8889 struct task_struct *p;
8893 p = pick_task_fair(rq);
8898 #ifdef CONFIG_FAIR_GROUP_SCHED
8899 if (prev->sched_class != &fair_sched_class)
8902 __put_prev_set_next_dl_server(rq, prev, p);
8905 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8906 * likely that a next task is from the same cgroup as the current.
8908 * Therefore attempt to avoid putting and setting the entire cgroup
8909 * hierarchy, only change the part that actually changes.
8911 * Since we haven't yet done put_prev_entity and if the selected task
8912 * is a different task than we started out with, try and touch the
8913 * least amount of cfs_rqs.
8916 struct sched_entity *pse = &prev->se;
8917 struct cfs_rq *cfs_rq;
8919 while (!(cfs_rq = is_same_group(se, pse))) {
8920 int se_depth = se->depth;
8921 int pse_depth = pse->depth;
8923 if (se_depth <= pse_depth) {
8924 put_prev_entity(cfs_rq_of(pse), pse);
8925 pse = parent_entity(pse);
8927 if (se_depth >= pse_depth) {
8928 set_next_entity(cfs_rq_of(se), se);
8929 se = parent_entity(se);
8933 put_prev_entity(cfs_rq, pse);
8934 set_next_entity(cfs_rq, se);
8936 __set_next_task_fair(rq, p, true);
8943 put_prev_set_next_task(rq, prev, p);
8950 new_tasks = sched_balance_newidle(rq, rf);
8953 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8954 * possible for any higher priority task to appear. In that case we
8955 * must re-start the pick_next_entity() loop.
8964 * rq is about to be idle, check if we need to update the
8965 * lost_idle_time of clock_pelt
8967 update_idle_rq_clock_pelt(rq);
8972 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8974 return pick_next_task_fair(rq, prev, NULL);
8977 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8979 return !!dl_se->rq->cfs.nr_queued;
8982 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8984 return pick_task_fair(dl_se->rq);
8987 void fair_server_init(struct rq *rq)
8989 struct sched_dl_entity *dl_se = &rq->fair_server;
8991 init_dl_entity(dl_se);
8993 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8997 * Account for a descheduled task:
8999 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
9001 struct sched_entity *se = &prev->se;
9002 struct cfs_rq *cfs_rq;
9004 for_each_sched_entity(se) {
9005 cfs_rq = cfs_rq_of(se);
9006 put_prev_entity(cfs_rq, se);
9011 * sched_yield() is very simple
9013 static void yield_task_fair(struct rq *rq)
9015 struct task_struct *curr = rq->curr;
9016 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9017 struct sched_entity *se = &curr->se;
9020 * Are we the only task in the tree?
9022 if (unlikely(rq->nr_running == 1))
9025 clear_buddies(cfs_rq, se);
9027 update_rq_clock(rq);
9029 * Update run-time statistics of the 'current'.
9031 update_curr(cfs_rq);
9033 * Tell update_rq_clock() that we've just updated,
9034 * so we don't do microscopic update in schedule()
9035 * and double the fastpath cost.
9037 rq_clock_skip_update(rq);
9039 se->deadline += calc_delta_fair(se->slice, se);
9042 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9044 struct sched_entity *se = &p->se;
9046 /* throttled hierarchies are not runnable */
9047 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9050 /* Tell the scheduler that we'd really like se to run next. */
9053 yield_task_fair(rq);
9059 /**************************************************
9060 * Fair scheduling class load-balancing methods.
9064 * The purpose of load-balancing is to achieve the same basic fairness the
9065 * per-CPU scheduler provides, namely provide a proportional amount of compute
9066 * time to each task. This is expressed in the following equation:
9068 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9070 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9071 * W_i,0 is defined as:
9073 * W_i,0 = \Sum_j w_i,j (2)
9075 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9076 * is derived from the nice value as per sched_prio_to_weight[].
9078 * The weight average is an exponential decay average of the instantaneous
9081 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9083 * C_i is the compute capacity of CPU i, typically it is the
9084 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9085 * can also include other factors [XXX].
9087 * To achieve this balance we define a measure of imbalance which follows
9088 * directly from (1):
9090 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9092 * We them move tasks around to minimize the imbalance. In the continuous
9093 * function space it is obvious this converges, in the discrete case we get
9094 * a few fun cases generally called infeasible weight scenarios.
9097 * - infeasible weights;
9098 * - local vs global optima in the discrete case. ]
9103 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9104 * for all i,j solution, we create a tree of CPUs that follows the hardware
9105 * topology where each level pairs two lower groups (or better). This results
9106 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9107 * tree to only the first of the previous level and we decrease the frequency
9108 * of load-balance at each level inversely proportional to the number of CPUs in
9114 * \Sum { --- * --- * 2^i } = O(n) (5)
9116 * `- size of each group
9117 * | | `- number of CPUs doing load-balance
9119 * `- sum over all levels
9121 * Coupled with a limit on how many tasks we can migrate every balance pass,
9122 * this makes (5) the runtime complexity of the balancer.
9124 * An important property here is that each CPU is still (indirectly) connected
9125 * to every other CPU in at most O(log n) steps:
9127 * The adjacency matrix of the resulting graph is given by:
9130 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9133 * And you'll find that:
9135 * A^(log_2 n)_i,j != 0 for all i,j (7)
9137 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9138 * The task movement gives a factor of O(m), giving a convergence complexity
9141 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9146 * In order to avoid CPUs going idle while there's still work to do, new idle
9147 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9148 * tree itself instead of relying on other CPUs to bring it work.
9150 * This adds some complexity to both (5) and (8) but it reduces the total idle
9158 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9161 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9166 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9168 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9170 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9173 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9174 * rewrite all of this once again.]
9177 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9179 enum fbq_type { regular, remote, all };
9182 * 'group_type' describes the group of CPUs at the moment of load balancing.
9184 * The enum is ordered by pulling priority, with the group with lowest priority
9185 * first so the group_type can simply be compared when selecting the busiest
9186 * group. See update_sd_pick_busiest().
9189 /* The group has spare capacity that can be used to run more tasks. */
9190 group_has_spare = 0,
9192 * The group is fully used and the tasks don't compete for more CPU
9193 * cycles. Nevertheless, some tasks might wait before running.
9197 * One task doesn't fit with CPU's capacity and must be migrated to a
9198 * more powerful CPU.
9202 * Balance SMT group that's fully busy. Can benefit from migration
9203 * a task on SMT with busy sibling to another CPU on idle core.
9207 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9208 * and the task should be migrated to it instead of running on the
9213 * The tasks' affinity constraints previously prevented the scheduler
9214 * from balancing the load across the system.
9218 * The CPU is overloaded and can't provide expected CPU cycles to all
9224 enum migration_type {
9231 #define LBF_ALL_PINNED 0x01
9232 #define LBF_NEED_BREAK 0x02
9233 #define LBF_DST_PINNED 0x04
9234 #define LBF_SOME_PINNED 0x08
9235 #define LBF_ACTIVE_LB 0x10
9238 struct sched_domain *sd;
9246 struct cpumask *dst_grpmask;
9248 enum cpu_idle_type idle;
9250 /* The set of CPUs under consideration for load-balancing */
9251 struct cpumask *cpus;
9256 unsigned int loop_break;
9257 unsigned int loop_max;
9259 enum fbq_type fbq_type;
9260 enum migration_type migration_type;
9261 struct list_head tasks;
9265 * Is this task likely cache-hot:
9267 static int task_hot(struct task_struct *p, struct lb_env *env)
9271 lockdep_assert_rq_held(env->src_rq);
9273 if (p->sched_class != &fair_sched_class)
9276 if (unlikely(task_has_idle_policy(p)))
9279 /* SMT siblings share cache */
9280 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9284 * Buddy candidates are cache hot:
9286 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9287 (&p->se == cfs_rq_of(&p->se)->next))
9290 if (sysctl_sched_migration_cost == -1)
9294 * Don't migrate task if the task's cookie does not match
9295 * with the destination CPU's core cookie.
9297 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9300 if (sysctl_sched_migration_cost == 0)
9303 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9305 return delta < (s64)sysctl_sched_migration_cost;
9308 #ifdef CONFIG_NUMA_BALANCING
9310 * Returns a positive value, if task migration degrades locality.
9311 * Returns 0, if task migration is not affected by locality.
9312 * Returns a negative value, if task migration improves locality i.e migration preferred.
9314 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9316 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9317 unsigned long src_weight, dst_weight;
9318 int src_nid, dst_nid, dist;
9320 if (!static_branch_likely(&sched_numa_balancing))
9323 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9326 src_nid = cpu_to_node(env->src_cpu);
9327 dst_nid = cpu_to_node(env->dst_cpu);
9329 if (src_nid == dst_nid)
9332 /* Migrating away from the preferred node is always bad. */
9333 if (src_nid == p->numa_preferred_nid) {
9334 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9340 /* Encourage migration to the preferred node. */
9341 if (dst_nid == p->numa_preferred_nid)
9344 /* Leaving a core idle is often worse than degrading locality. */
9345 if (env->idle == CPU_IDLE)
9348 dist = node_distance(src_nid, dst_nid);
9350 src_weight = group_weight(p, src_nid, dist);
9351 dst_weight = group_weight(p, dst_nid, dist);
9353 src_weight = task_weight(p, src_nid, dist);
9354 dst_weight = task_weight(p, dst_nid, dist);
9357 return src_weight - dst_weight;
9361 static inline long migrate_degrades_locality(struct task_struct *p,
9369 * Check whether the task is ineligible on the destination cpu
9371 * When the PLACE_LAG scheduling feature is enabled and
9372 * dst_cfs_rq->nr_queued is greater than 1, if the task
9373 * is ineligible, it will also be ineligible when
9374 * it is migrated to the destination cpu.
9376 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9378 struct cfs_rq *dst_cfs_rq;
9380 #ifdef CONFIG_FAIR_GROUP_SCHED
9381 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9383 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9385 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9386 !entity_eligible(task_cfs_rq(p), &p->se))
9393 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9396 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9400 lockdep_assert_rq_held(env->src_rq);
9401 if (p->sched_task_hot)
9402 p->sched_task_hot = 0;
9405 * We do not migrate tasks that are:
9406 * 1) delayed dequeued unless we migrate load, or
9407 * 2) throttled_lb_pair, or
9408 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9409 * 4) running (obviously), or
9410 * 5) are cache-hot on their current CPU.
9412 if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9415 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9419 * We want to prioritize the migration of eligible tasks.
9420 * For ineligible tasks we soft-limit them and only allow
9421 * them to migrate when nr_balance_failed is non-zero to
9422 * avoid load-balancing trying very hard to balance the load.
9424 if (!env->sd->nr_balance_failed &&
9425 task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9428 /* Disregard percpu kthreads; they are where they need to be. */
9429 if (kthread_is_per_cpu(p))
9432 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9435 schedstat_inc(p->stats.nr_failed_migrations_affine);
9437 env->flags |= LBF_SOME_PINNED;
9440 * Remember if this task can be migrated to any other CPU in
9441 * our sched_group. We may want to revisit it if we couldn't
9442 * meet load balance goals by pulling other tasks on src_cpu.
9444 * Avoid computing new_dst_cpu
9446 * - if we have already computed one in current iteration
9447 * - if it's an active balance
9449 if (env->idle == CPU_NEWLY_IDLE ||
9450 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9453 /* Prevent to re-select dst_cpu via env's CPUs: */
9454 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9456 if (cpu < nr_cpu_ids) {
9457 env->flags |= LBF_DST_PINNED;
9458 env->new_dst_cpu = cpu;
9464 /* Record that we found at least one task that could run on dst_cpu */
9465 env->flags &= ~LBF_ALL_PINNED;
9467 if (task_on_cpu(env->src_rq, p)) {
9468 schedstat_inc(p->stats.nr_failed_migrations_running);
9473 * Aggressive migration if:
9475 * 2) destination numa is preferred
9476 * 3) task is cache cold, or
9477 * 4) too many balance attempts have failed.
9479 if (env->flags & LBF_ACTIVE_LB)
9482 degrades = migrate_degrades_locality(p, env);
9484 hot = task_hot(p, env);
9488 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9490 p->sched_task_hot = 1;
9494 schedstat_inc(p->stats.nr_failed_migrations_hot);
9499 * detach_task() -- detach the task for the migration specified in env
9501 static void detach_task(struct task_struct *p, struct lb_env *env)
9503 lockdep_assert_rq_held(env->src_rq);
9505 if (p->sched_task_hot) {
9506 p->sched_task_hot = 0;
9507 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9508 schedstat_inc(p->stats.nr_forced_migrations);
9511 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9512 set_task_cpu(p, env->dst_cpu);
9516 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9517 * part of active balancing operations within "domain".
9519 * Returns a task if successful and NULL otherwise.
9521 static struct task_struct *detach_one_task(struct lb_env *env)
9523 struct task_struct *p;
9525 lockdep_assert_rq_held(env->src_rq);
9527 list_for_each_entry_reverse(p,
9528 &env->src_rq->cfs_tasks, se.group_node) {
9529 if (!can_migrate_task(p, env))
9532 detach_task(p, env);
9535 * Right now, this is only the second place where
9536 * lb_gained[env->idle] is updated (other is detach_tasks)
9537 * so we can safely collect stats here rather than
9538 * inside detach_tasks().
9540 schedstat_inc(env->sd->lb_gained[env->idle]);
9547 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9548 * busiest_rq, as part of a balancing operation within domain "sd".
9550 * Returns number of detached tasks if successful and 0 otherwise.
9552 static int detach_tasks(struct lb_env *env)
9554 struct list_head *tasks = &env->src_rq->cfs_tasks;
9555 unsigned long util, load;
9556 struct task_struct *p;
9559 lockdep_assert_rq_held(env->src_rq);
9562 * Source run queue has been emptied by another CPU, clear
9563 * LBF_ALL_PINNED flag as we will not test any task.
9565 if (env->src_rq->nr_running <= 1) {
9566 env->flags &= ~LBF_ALL_PINNED;
9570 if (env->imbalance <= 0)
9573 while (!list_empty(tasks)) {
9575 * We don't want to steal all, otherwise we may be treated likewise,
9576 * which could at worst lead to a livelock crash.
9578 if (env->idle && env->src_rq->nr_running <= 1)
9582 /* We've more or less seen every task there is, call it quits */
9583 if (env->loop > env->loop_max)
9586 /* take a breather every nr_migrate tasks */
9587 if (env->loop > env->loop_break) {
9588 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9589 env->flags |= LBF_NEED_BREAK;
9593 p = list_last_entry(tasks, struct task_struct, se.group_node);
9595 if (!can_migrate_task(p, env))
9598 switch (env->migration_type) {
9601 * Depending of the number of CPUs and tasks and the
9602 * cgroup hierarchy, task_h_load() can return a null
9603 * value. Make sure that env->imbalance decreases
9604 * otherwise detach_tasks() will stop only after
9605 * detaching up to loop_max tasks.
9607 load = max_t(unsigned long, task_h_load(p), 1);
9609 if (sched_feat(LB_MIN) &&
9610 load < 16 && !env->sd->nr_balance_failed)
9614 * Make sure that we don't migrate too much load.
9615 * Nevertheless, let relax the constraint if
9616 * scheduler fails to find a good waiting task to
9619 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9622 env->imbalance -= load;
9626 util = task_util_est(p);
9628 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9631 env->imbalance -= util;
9638 case migrate_misfit:
9639 /* This is not a misfit task */
9640 if (task_fits_cpu(p, env->src_cpu))
9647 detach_task(p, env);
9648 list_add(&p->se.group_node, &env->tasks);
9652 #ifdef CONFIG_PREEMPTION
9654 * NEWIDLE balancing is a source of latency, so preemptible
9655 * kernels will stop after the first task is detached to minimize
9656 * the critical section.
9658 if (env->idle == CPU_NEWLY_IDLE)
9663 * We only want to steal up to the prescribed amount of
9666 if (env->imbalance <= 0)
9671 if (p->sched_task_hot)
9672 schedstat_inc(p->stats.nr_failed_migrations_hot);
9674 list_move(&p->se.group_node, tasks);
9678 * Right now, this is one of only two places we collect this stat
9679 * so we can safely collect detach_one_task() stats here rather
9680 * than inside detach_one_task().
9682 schedstat_add(env->sd->lb_gained[env->idle], detached);
9688 * attach_task() -- attach the task detached by detach_task() to its new rq.
9690 static void attach_task(struct rq *rq, struct task_struct *p)
9692 lockdep_assert_rq_held(rq);
9694 WARN_ON_ONCE(task_rq(p) != rq);
9695 activate_task(rq, p, ENQUEUE_NOCLOCK);
9696 wakeup_preempt(rq, p, 0);
9700 * attach_one_task() -- attaches the task returned from detach_one_task() to
9703 static void attach_one_task(struct rq *rq, struct task_struct *p)
9708 update_rq_clock(rq);
9714 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9717 static void attach_tasks(struct lb_env *env)
9719 struct list_head *tasks = &env->tasks;
9720 struct task_struct *p;
9723 rq_lock(env->dst_rq, &rf);
9724 update_rq_clock(env->dst_rq);
9726 while (!list_empty(tasks)) {
9727 p = list_first_entry(tasks, struct task_struct, se.group_node);
9728 list_del_init(&p->se.group_node);
9730 attach_task(env->dst_rq, p);
9733 rq_unlock(env->dst_rq, &rf);
9736 #ifdef CONFIG_NO_HZ_COMMON
9737 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9739 if (cfs_rq->avg.load_avg)
9742 if (cfs_rq->avg.util_avg)
9748 static inline bool others_have_blocked(struct rq *rq)
9750 if (cpu_util_rt(rq))
9753 if (cpu_util_dl(rq))
9756 if (hw_load_avg(rq))
9759 if (cpu_util_irq(rq))
9765 static inline void update_blocked_load_tick(struct rq *rq)
9767 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9770 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9773 rq->has_blocked_load = 0;
9776 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9777 static inline bool others_have_blocked(struct rq *rq) { return false; }
9778 static inline void update_blocked_load_tick(struct rq *rq) {}
9779 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9782 static bool __update_blocked_others(struct rq *rq, bool *done)
9787 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9788 * DL and IRQ signals have been updated before updating CFS.
9790 updated = update_other_load_avgs(rq);
9792 if (others_have_blocked(rq))
9798 #ifdef CONFIG_FAIR_GROUP_SCHED
9800 static bool __update_blocked_fair(struct rq *rq, bool *done)
9802 struct cfs_rq *cfs_rq, *pos;
9803 bool decayed = false;
9804 int cpu = cpu_of(rq);
9807 * Iterates the task_group tree in a bottom up fashion, see
9808 * list_add_leaf_cfs_rq() for details.
9810 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9811 struct sched_entity *se;
9813 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9814 update_tg_load_avg(cfs_rq);
9816 if (cfs_rq->nr_queued == 0)
9817 update_idle_cfs_rq_clock_pelt(cfs_rq);
9819 if (cfs_rq == &rq->cfs)
9823 /* Propagate pending load changes to the parent, if any: */
9824 se = cfs_rq->tg->se[cpu];
9825 if (se && !skip_blocked_update(se))
9826 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9829 * There can be a lot of idle CPU cgroups. Don't let fully
9830 * decayed cfs_rqs linger on the list.
9832 if (cfs_rq_is_decayed(cfs_rq))
9833 list_del_leaf_cfs_rq(cfs_rq);
9835 /* Don't need periodic decay once load/util_avg are null */
9836 if (cfs_rq_has_blocked(cfs_rq))
9844 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9845 * This needs to be done in a top-down fashion because the load of a child
9846 * group is a fraction of its parents load.
9848 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9850 struct rq *rq = rq_of(cfs_rq);
9851 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9852 unsigned long now = jiffies;
9855 if (cfs_rq->last_h_load_update == now)
9858 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9859 for_each_sched_entity(se) {
9860 cfs_rq = cfs_rq_of(se);
9861 WRITE_ONCE(cfs_rq->h_load_next, se);
9862 if (cfs_rq->last_h_load_update == now)
9867 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9868 cfs_rq->last_h_load_update = now;
9871 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9872 load = cfs_rq->h_load;
9873 load = div64_ul(load * se->avg.load_avg,
9874 cfs_rq_load_avg(cfs_rq) + 1);
9875 cfs_rq = group_cfs_rq(se);
9876 cfs_rq->h_load = load;
9877 cfs_rq->last_h_load_update = now;
9881 static unsigned long task_h_load(struct task_struct *p)
9883 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9885 update_cfs_rq_h_load(cfs_rq);
9886 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9887 cfs_rq_load_avg(cfs_rq) + 1);
9890 static bool __update_blocked_fair(struct rq *rq, bool *done)
9892 struct cfs_rq *cfs_rq = &rq->cfs;
9895 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9896 if (cfs_rq_has_blocked(cfs_rq))
9902 static unsigned long task_h_load(struct task_struct *p)
9904 return p->se.avg.load_avg;
9908 static void sched_balance_update_blocked_averages(int cpu)
9910 bool decayed = false, done = true;
9911 struct rq *rq = cpu_rq(cpu);
9914 rq_lock_irqsave(rq, &rf);
9915 update_blocked_load_tick(rq);
9916 update_rq_clock(rq);
9918 decayed |= __update_blocked_others(rq, &done);
9919 decayed |= __update_blocked_fair(rq, &done);
9921 update_blocked_load_status(rq, !done);
9923 cpufreq_update_util(rq, 0);
9924 rq_unlock_irqrestore(rq, &rf);
9927 /********** Helpers for sched_balance_find_src_group ************************/
9930 * sg_lb_stats - stats of a sched_group required for load-balancing:
9932 struct sg_lb_stats {
9933 unsigned long avg_load; /* Avg load over the CPUs of the group */
9934 unsigned long group_load; /* Total load over the CPUs of the group */
9935 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9936 unsigned long group_util; /* Total utilization over the CPUs of the group */
9937 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9938 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9939 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9940 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9941 unsigned int group_weight;
9942 enum group_type group_type;
9943 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9944 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9945 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9946 #ifdef CONFIG_NUMA_BALANCING
9947 unsigned int nr_numa_running;
9948 unsigned int nr_preferred_running;
9953 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9955 struct sd_lb_stats {
9956 struct sched_group *busiest; /* Busiest group in this sd */
9957 struct sched_group *local; /* Local group in this sd */
9958 unsigned long total_load; /* Total load of all groups in sd */
9959 unsigned long total_capacity; /* Total capacity of all groups in sd */
9960 unsigned long avg_load; /* Average load across all groups in sd */
9961 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9963 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9964 struct sg_lb_stats local_stat; /* Statistics of the local group */
9967 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9970 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9971 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9972 * We must however set busiest_stat::group_type and
9973 * busiest_stat::idle_cpus to the worst busiest group because
9974 * update_sd_pick_busiest() reads these before assignment.
9976 *sds = (struct sd_lb_stats){
9980 .total_capacity = 0UL,
9982 .idle_cpus = UINT_MAX,
9983 .group_type = group_has_spare,
9988 static unsigned long scale_rt_capacity(int cpu)
9990 unsigned long max = get_actual_cpu_capacity(cpu);
9991 struct rq *rq = cpu_rq(cpu);
9992 unsigned long used, free;
9995 irq = cpu_util_irq(rq);
9997 if (unlikely(irq >= max))
10001 * avg_rt.util_avg and avg_dl.util_avg track binary signals
10002 * (running and not running) with weights 0 and 1024 respectively.
10004 used = cpu_util_rt(rq);
10005 used += cpu_util_dl(rq);
10007 if (unlikely(used >= max))
10012 return scale_irq_capacity(free, irq, max);
10015 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10017 unsigned long capacity = scale_rt_capacity(cpu);
10018 struct sched_group *sdg = sd->groups;
10023 cpu_rq(cpu)->cpu_capacity = capacity;
10024 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10026 sdg->sgc->capacity = capacity;
10027 sdg->sgc->min_capacity = capacity;
10028 sdg->sgc->max_capacity = capacity;
10031 void update_group_capacity(struct sched_domain *sd, int cpu)
10033 struct sched_domain *child = sd->child;
10034 struct sched_group *group, *sdg = sd->groups;
10035 unsigned long capacity, min_capacity, max_capacity;
10036 unsigned long interval;
10038 interval = msecs_to_jiffies(sd->balance_interval);
10039 interval = clamp(interval, 1UL, max_load_balance_interval);
10040 sdg->sgc->next_update = jiffies + interval;
10043 update_cpu_capacity(sd, cpu);
10048 min_capacity = ULONG_MAX;
10051 if (child->flags & SD_OVERLAP) {
10053 * SD_OVERLAP domains cannot assume that child groups
10054 * span the current group.
10057 for_each_cpu(cpu, sched_group_span(sdg)) {
10058 unsigned long cpu_cap = capacity_of(cpu);
10060 capacity += cpu_cap;
10061 min_capacity = min(cpu_cap, min_capacity);
10062 max_capacity = max(cpu_cap, max_capacity);
10066 * !SD_OVERLAP domains can assume that child groups
10067 * span the current group.
10070 group = child->groups;
10072 struct sched_group_capacity *sgc = group->sgc;
10074 capacity += sgc->capacity;
10075 min_capacity = min(sgc->min_capacity, min_capacity);
10076 max_capacity = max(sgc->max_capacity, max_capacity);
10077 group = group->next;
10078 } while (group != child->groups);
10081 sdg->sgc->capacity = capacity;
10082 sdg->sgc->min_capacity = min_capacity;
10083 sdg->sgc->max_capacity = max_capacity;
10087 * Check whether the capacity of the rq has been noticeably reduced by side
10088 * activity. The imbalance_pct is used for the threshold.
10089 * Return true is the capacity is reduced
10092 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10094 return ((rq->cpu_capacity * sd->imbalance_pct) <
10095 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10098 /* Check if the rq has a misfit task */
10099 static inline bool check_misfit_status(struct rq *rq)
10101 return rq->misfit_task_load;
10105 * Group imbalance indicates (and tries to solve) the problem where balancing
10106 * groups is inadequate due to ->cpus_ptr constraints.
10108 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10109 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10112 * { 0 1 2 3 } { 4 5 6 7 }
10115 * If we were to balance group-wise we'd place two tasks in the first group and
10116 * two tasks in the second group. Clearly this is undesired as it will overload
10117 * cpu 3 and leave one of the CPUs in the second group unused.
10119 * The current solution to this issue is detecting the skew in the first group
10120 * by noticing the lower domain failed to reach balance and had difficulty
10121 * moving tasks due to affinity constraints.
10123 * When this is so detected; this group becomes a candidate for busiest; see
10124 * update_sd_pick_busiest(). And calculate_imbalance() and
10125 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10126 * to create an effective group imbalance.
10128 * This is a somewhat tricky proposition since the next run might not find the
10129 * group imbalance and decide the groups need to be balanced again. A most
10130 * subtle and fragile situation.
10133 static inline int sg_imbalanced(struct sched_group *group)
10135 return group->sgc->imbalance;
10139 * group_has_capacity returns true if the group has spare capacity that could
10140 * be used by some tasks.
10141 * We consider that a group has spare capacity if the number of task is
10142 * smaller than the number of CPUs or if the utilization is lower than the
10143 * available capacity for CFS tasks.
10144 * For the latter, we use a threshold to stabilize the state, to take into
10145 * account the variance of the tasks' load and to return true if the available
10146 * capacity in meaningful for the load balancer.
10147 * As an example, an available capacity of 1% can appear but it doesn't make
10148 * any benefit for the load balance.
10151 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10153 if (sgs->sum_nr_running < sgs->group_weight)
10156 if ((sgs->group_capacity * imbalance_pct) <
10157 (sgs->group_runnable * 100))
10160 if ((sgs->group_capacity * 100) >
10161 (sgs->group_util * imbalance_pct))
10168 * group_is_overloaded returns true if the group has more tasks than it can
10170 * group_is_overloaded is not equals to !group_has_capacity because a group
10171 * with the exact right number of tasks, has no more spare capacity but is not
10172 * overloaded so both group_has_capacity and group_is_overloaded return
10176 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10178 if (sgs->sum_nr_running <= sgs->group_weight)
10181 if ((sgs->group_capacity * 100) <
10182 (sgs->group_util * imbalance_pct))
10185 if ((sgs->group_capacity * imbalance_pct) <
10186 (sgs->group_runnable * 100))
10193 group_type group_classify(unsigned int imbalance_pct,
10194 struct sched_group *group,
10195 struct sg_lb_stats *sgs)
10197 if (group_is_overloaded(imbalance_pct, sgs))
10198 return group_overloaded;
10200 if (sg_imbalanced(group))
10201 return group_imbalanced;
10203 if (sgs->group_asym_packing)
10204 return group_asym_packing;
10206 if (sgs->group_smt_balance)
10207 return group_smt_balance;
10209 if (sgs->group_misfit_task_load)
10210 return group_misfit_task;
10212 if (!group_has_capacity(imbalance_pct, sgs))
10213 return group_fully_busy;
10215 return group_has_spare;
10219 * sched_use_asym_prio - Check whether asym_packing priority must be used
10220 * @sd: The scheduling domain of the load balancing
10223 * Always use CPU priority when balancing load between SMT siblings. When
10224 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10225 * use CPU priority if the whole core is idle.
10227 * Returns: True if the priority of @cpu must be followed. False otherwise.
10229 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10231 if (!(sd->flags & SD_ASYM_PACKING))
10234 if (!sched_smt_active())
10237 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10240 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10243 * First check if @dst_cpu can do asym_packing load balance. Only do it
10244 * if it has higher priority than @src_cpu.
10246 return sched_use_asym_prio(sd, dst_cpu) &&
10247 sched_asym_prefer(dst_cpu, src_cpu);
10251 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10252 * @env: The load balancing environment
10253 * @sgs: Load-balancing statistics of the candidate busiest group
10254 * @group: The candidate busiest group
10256 * @env::dst_cpu can do asym_packing if it has higher priority than the
10257 * preferred CPU of @group.
10259 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10263 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10266 * CPU priorities do not make sense for SMT cores with more than one
10269 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10270 (sgs->group_weight - sgs->idle_cpus != 1))
10273 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
10276 /* One group has more than one SMT CPU while the other group does not */
10277 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10278 struct sched_group *sg2)
10283 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10284 (sg2->flags & SD_SHARE_CPUCAPACITY);
10287 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10288 struct sched_group *group)
10294 * For SMT source group, it is better to move a task
10295 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10296 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10299 if (group->flags & SD_SHARE_CPUCAPACITY &&
10300 sgs->sum_h_nr_running > 1)
10306 static inline long sibling_imbalance(struct lb_env *env,
10307 struct sd_lb_stats *sds,
10308 struct sg_lb_stats *busiest,
10309 struct sg_lb_stats *local)
10311 int ncores_busiest, ncores_local;
10314 if (!env->idle || !busiest->sum_nr_running)
10317 ncores_busiest = sds->busiest->cores;
10318 ncores_local = sds->local->cores;
10320 if (ncores_busiest == ncores_local) {
10321 imbalance = busiest->sum_nr_running;
10322 lsub_positive(&imbalance, local->sum_nr_running);
10326 /* Balance such that nr_running/ncores ratio are same on both groups */
10327 imbalance = ncores_local * busiest->sum_nr_running;
10328 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10329 /* Normalize imbalance and do rounding on normalization */
10330 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10331 imbalance /= ncores_local + ncores_busiest;
10333 /* Take advantage of resource in an empty sched group */
10334 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10335 busiest->sum_nr_running > 1)
10342 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10345 * When there is more than 1 task, the group_overloaded case already
10346 * takes care of cpu with reduced capacity
10348 if (rq->cfs.h_nr_runnable != 1)
10351 return check_cpu_capacity(rq, sd);
10355 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10356 * @env: The load balancing environment.
10357 * @sds: Load-balancing data with statistics of the local group.
10358 * @group: sched_group whose statistics are to be updated.
10359 * @sgs: variable to hold the statistics for this group.
10360 * @sg_overloaded: sched_group is overloaded
10361 * @sg_overutilized: sched_group is overutilized
10363 static inline void update_sg_lb_stats(struct lb_env *env,
10364 struct sd_lb_stats *sds,
10365 struct sched_group *group,
10366 struct sg_lb_stats *sgs,
10367 bool *sg_overloaded,
10368 bool *sg_overutilized)
10370 int i, nr_running, local_group, sd_flags = env->sd->flags;
10371 bool balancing_at_rd = !env->sd->parent;
10373 memset(sgs, 0, sizeof(*sgs));
10375 local_group = group == sds->local;
10377 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10378 struct rq *rq = cpu_rq(i);
10379 unsigned long load = cpu_load(rq);
10381 sgs->group_load += load;
10382 sgs->group_util += cpu_util_cfs(i);
10383 sgs->group_runnable += cpu_runnable(rq);
10384 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10386 nr_running = rq->nr_running;
10387 sgs->sum_nr_running += nr_running;
10389 if (cpu_overutilized(i))
10390 *sg_overutilized = 1;
10393 * No need to call idle_cpu() if nr_running is not 0
10395 if (!nr_running && idle_cpu(i)) {
10397 /* Idle cpu can't have misfit task */
10401 /* Overload indicator is only updated at root domain */
10402 if (balancing_at_rd && nr_running > 1)
10403 *sg_overloaded = 1;
10405 #ifdef CONFIG_NUMA_BALANCING
10406 /* Only fbq_classify_group() uses this to classify NUMA groups */
10407 if (sd_flags & SD_NUMA) {
10408 sgs->nr_numa_running += rq->nr_numa_running;
10409 sgs->nr_preferred_running += rq->nr_preferred_running;
10415 if (sd_flags & SD_ASYM_CPUCAPACITY) {
10416 /* Check for a misfit task on the cpu */
10417 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10418 sgs->group_misfit_task_load = rq->misfit_task_load;
10419 *sg_overloaded = 1;
10421 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10422 /* Check for a task running on a CPU with reduced capacity */
10423 if (sgs->group_misfit_task_load < load)
10424 sgs->group_misfit_task_load = load;
10428 sgs->group_capacity = group->sgc->capacity;
10430 sgs->group_weight = group->group_weight;
10432 /* Check if dst CPU is idle and preferred to this group */
10433 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10434 sched_group_asym(env, sgs, group))
10435 sgs->group_asym_packing = 1;
10437 /* Check for loaded SMT group to be balanced to dst CPU */
10438 if (!local_group && smt_balance(env, sgs, group))
10439 sgs->group_smt_balance = 1;
10441 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10443 /* Computing avg_load makes sense only when group is overloaded */
10444 if (sgs->group_type == group_overloaded)
10445 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10446 sgs->group_capacity;
10450 * update_sd_pick_busiest - return 1 on busiest group
10451 * @env: The load balancing environment.
10452 * @sds: sched_domain statistics
10453 * @sg: sched_group candidate to be checked for being the busiest
10454 * @sgs: sched_group statistics
10456 * Determine if @sg is a busier group than the previously selected
10459 * Return: %true if @sg is a busier group than the previously selected
10460 * busiest group. %false otherwise.
10462 static bool update_sd_pick_busiest(struct lb_env *env,
10463 struct sd_lb_stats *sds,
10464 struct sched_group *sg,
10465 struct sg_lb_stats *sgs)
10467 struct sg_lb_stats *busiest = &sds->busiest_stat;
10469 /* Make sure that there is at least one task to pull */
10470 if (!sgs->sum_h_nr_running)
10474 * Don't try to pull misfit tasks we can't help.
10475 * We can use max_capacity here as reduction in capacity on some
10476 * CPUs in the group should either be possible to resolve
10477 * internally or be covered by avg_load imbalance (eventually).
10479 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10480 (sgs->group_type == group_misfit_task) &&
10481 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10482 sds->local_stat.group_type != group_has_spare))
10485 if (sgs->group_type > busiest->group_type)
10488 if (sgs->group_type < busiest->group_type)
10492 * The candidate and the current busiest group are the same type of
10493 * group. Let check which one is the busiest according to the type.
10496 switch (sgs->group_type) {
10497 case group_overloaded:
10498 /* Select the overloaded group with highest avg_load. */
10499 return sgs->avg_load > busiest->avg_load;
10501 case group_imbalanced:
10503 * Select the 1st imbalanced group as we don't have any way to
10504 * choose one more than another.
10508 case group_asym_packing:
10509 /* Prefer to move from lowest priority CPU's work */
10510 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
10511 READ_ONCE(sg->asym_prefer_cpu));
10513 case group_misfit_task:
10515 * If we have more than one misfit sg go with the biggest
10518 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10520 case group_smt_balance:
10522 * Check if we have spare CPUs on either SMT group to
10523 * choose has spare or fully busy handling.
10525 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10530 case group_fully_busy:
10532 * Select the fully busy group with highest avg_load. In
10533 * theory, there is no need to pull task from such kind of
10534 * group because tasks have all compute capacity that they need
10535 * but we can still improve the overall throughput by reducing
10536 * contention when accessing shared HW resources.
10538 * XXX for now avg_load is not computed and always 0 so we
10539 * select the 1st one, except if @sg is composed of SMT
10543 if (sgs->avg_load < busiest->avg_load)
10546 if (sgs->avg_load == busiest->avg_load) {
10548 * SMT sched groups need more help than non-SMT groups.
10549 * If @sg happens to also be SMT, either choice is good.
10551 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10557 case group_has_spare:
10559 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10560 * as we do not want to pull task off SMT core with one task
10561 * and make the core idle.
10563 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10564 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10572 * Select not overloaded group with lowest number of idle CPUs
10573 * and highest number of running tasks. We could also compare
10574 * the spare capacity which is more stable but it can end up
10575 * that the group has less spare capacity but finally more idle
10576 * CPUs which means less opportunity to pull tasks.
10578 if (sgs->idle_cpus > busiest->idle_cpus)
10580 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10581 (sgs->sum_nr_running <= busiest->sum_nr_running))
10588 * Candidate sg has no more than one task per CPU and has higher
10589 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10590 * throughput. Maximize throughput, power/energy consequences are not
10593 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10594 (sgs->group_type <= group_fully_busy) &&
10595 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10601 #ifdef CONFIG_NUMA_BALANCING
10602 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10604 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10606 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10611 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10613 if (rq->nr_running > rq->nr_numa_running)
10615 if (rq->nr_running > rq->nr_preferred_running)
10620 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10625 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10629 #endif /* CONFIG_NUMA_BALANCING */
10632 struct sg_lb_stats;
10635 * task_running_on_cpu - return 1 if @p is running on @cpu.
10638 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10640 /* Task has no contribution or is new */
10641 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10644 if (task_on_rq_queued(p))
10651 * idle_cpu_without - would a given CPU be idle without p ?
10652 * @cpu: the processor on which idleness is tested.
10653 * @p: task which should be ignored.
10655 * Return: 1 if the CPU would be idle. 0 otherwise.
10657 static int idle_cpu_without(int cpu, struct task_struct *p)
10659 struct rq *rq = cpu_rq(cpu);
10661 if (rq->curr != rq->idle && rq->curr != p)
10665 * rq->nr_running can't be used but an updated version without the
10666 * impact of p on cpu must be used instead. The updated nr_running
10667 * be computed and tested before calling idle_cpu_without().
10670 if (rq->ttwu_pending)
10677 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10678 * @sd: The sched_domain level to look for idlest group.
10679 * @group: sched_group whose statistics are to be updated.
10680 * @sgs: variable to hold the statistics for this group.
10681 * @p: The task for which we look for the idlest group/CPU.
10683 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10684 struct sched_group *group,
10685 struct sg_lb_stats *sgs,
10686 struct task_struct *p)
10690 memset(sgs, 0, sizeof(*sgs));
10692 /* Assume that task can't fit any CPU of the group */
10693 if (sd->flags & SD_ASYM_CPUCAPACITY)
10694 sgs->group_misfit_task_load = 1;
10696 for_each_cpu(i, sched_group_span(group)) {
10697 struct rq *rq = cpu_rq(i);
10698 unsigned int local;
10700 sgs->group_load += cpu_load_without(rq, p);
10701 sgs->group_util += cpu_util_without(i, p);
10702 sgs->group_runnable += cpu_runnable_without(rq, p);
10703 local = task_running_on_cpu(i, p);
10704 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10706 nr_running = rq->nr_running - local;
10707 sgs->sum_nr_running += nr_running;
10710 * No need to call idle_cpu_without() if nr_running is not 0
10712 if (!nr_running && idle_cpu_without(i, p))
10715 /* Check if task fits in the CPU */
10716 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10717 sgs->group_misfit_task_load &&
10718 task_fits_cpu(p, i))
10719 sgs->group_misfit_task_load = 0;
10723 sgs->group_capacity = group->sgc->capacity;
10725 sgs->group_weight = group->group_weight;
10727 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10730 * Computing avg_load makes sense only when group is fully busy or
10733 if (sgs->group_type == group_fully_busy ||
10734 sgs->group_type == group_overloaded)
10735 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10736 sgs->group_capacity;
10739 static bool update_pick_idlest(struct sched_group *idlest,
10740 struct sg_lb_stats *idlest_sgs,
10741 struct sched_group *group,
10742 struct sg_lb_stats *sgs)
10744 if (sgs->group_type < idlest_sgs->group_type)
10747 if (sgs->group_type > idlest_sgs->group_type)
10751 * The candidate and the current idlest group are the same type of
10752 * group. Let check which one is the idlest according to the type.
10755 switch (sgs->group_type) {
10756 case group_overloaded:
10757 case group_fully_busy:
10758 /* Select the group with lowest avg_load. */
10759 if (idlest_sgs->avg_load <= sgs->avg_load)
10763 case group_imbalanced:
10764 case group_asym_packing:
10765 case group_smt_balance:
10766 /* Those types are not used in the slow wakeup path */
10769 case group_misfit_task:
10770 /* Select group with the highest max capacity */
10771 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10775 case group_has_spare:
10776 /* Select group with most idle CPUs */
10777 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10780 /* Select group with lowest group_util */
10781 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10782 idlest_sgs->group_util <= sgs->group_util)
10792 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10795 * Assumes p is allowed on at least one CPU in sd.
10797 static struct sched_group *
10798 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10800 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10801 struct sg_lb_stats local_sgs, tmp_sgs;
10802 struct sg_lb_stats *sgs;
10803 unsigned long imbalance;
10804 struct sg_lb_stats idlest_sgs = {
10805 .avg_load = UINT_MAX,
10806 .group_type = group_overloaded,
10812 /* Skip over this group if it has no CPUs allowed */
10813 if (!cpumask_intersects(sched_group_span(group),
10817 /* Skip over this group if no cookie matched */
10818 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10821 local_group = cpumask_test_cpu(this_cpu,
10822 sched_group_span(group));
10831 update_sg_wakeup_stats(sd, group, sgs, p);
10833 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10838 } while (group = group->next, group != sd->groups);
10841 /* There is no idlest group to push tasks to */
10845 /* The local group has been skipped because of CPU affinity */
10850 * If the local group is idler than the selected idlest group
10851 * don't try and push the task.
10853 if (local_sgs.group_type < idlest_sgs.group_type)
10857 * If the local group is busier than the selected idlest group
10858 * try and push the task.
10860 if (local_sgs.group_type > idlest_sgs.group_type)
10863 switch (local_sgs.group_type) {
10864 case group_overloaded:
10865 case group_fully_busy:
10867 /* Calculate allowed imbalance based on load */
10868 imbalance = scale_load_down(NICE_0_LOAD) *
10869 (sd->imbalance_pct-100) / 100;
10872 * When comparing groups across NUMA domains, it's possible for
10873 * the local domain to be very lightly loaded relative to the
10874 * remote domains but "imbalance" skews the comparison making
10875 * remote CPUs look much more favourable. When considering
10876 * cross-domain, add imbalance to the load on the remote node
10877 * and consider staying local.
10880 if ((sd->flags & SD_NUMA) &&
10881 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10885 * If the local group is less loaded than the selected
10886 * idlest group don't try and push any tasks.
10888 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10891 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10895 case group_imbalanced:
10896 case group_asym_packing:
10897 case group_smt_balance:
10898 /* Those type are not used in the slow wakeup path */
10901 case group_misfit_task:
10902 /* Select group with the highest max capacity */
10903 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10907 case group_has_spare:
10909 if (sd->flags & SD_NUMA) {
10910 int imb_numa_nr = sd->imb_numa_nr;
10911 #ifdef CONFIG_NUMA_BALANCING
10914 * If there is spare capacity at NUMA, try to select
10915 * the preferred node
10917 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10920 idlest_cpu = cpumask_first(sched_group_span(idlest));
10921 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10923 #endif /* CONFIG_NUMA_BALANCING */
10925 * Otherwise, keep the task close to the wakeup source
10926 * and improve locality if the number of running tasks
10927 * would remain below threshold where an imbalance is
10928 * allowed while accounting for the possibility the
10929 * task is pinned to a subset of CPUs. If there is a
10930 * real need of migration, periodic load balance will
10933 if (p->nr_cpus_allowed != NR_CPUS) {
10934 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10936 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10937 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10940 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10941 if (!adjust_numa_imbalance(imbalance,
10942 local_sgs.sum_nr_running + 1,
10947 #endif /* CONFIG_NUMA */
10950 * Select group with highest number of idle CPUs. We could also
10951 * compare the utilization which is more stable but it can end
10952 * up that the group has less spare capacity but finally more
10953 * idle CPUs which means more opportunity to run task.
10955 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10963 static void update_idle_cpu_scan(struct lb_env *env,
10964 unsigned long sum_util)
10966 struct sched_domain_shared *sd_share;
10967 int llc_weight, pct;
10970 * Update the number of CPUs to scan in LLC domain, which could
10971 * be used as a hint in select_idle_cpu(). The update of sd_share
10972 * could be expensive because it is within a shared cache line.
10973 * So the write of this hint only occurs during periodic load
10974 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10975 * can fire way more frequently than the former.
10977 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10980 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10981 if (env->sd->span_weight != llc_weight)
10984 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10989 * The number of CPUs to search drops as sum_util increases, when
10990 * sum_util hits 85% or above, the scan stops.
10991 * The reason to choose 85% as the threshold is because this is the
10992 * imbalance_pct(117) when a LLC sched group is overloaded.
10994 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10995 * and y'= y / SCHED_CAPACITY_SCALE
10997 * x is the ratio of sum_util compared to the CPU capacity:
10998 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10999 * y' is the ratio of CPUs to be scanned in the LLC domain,
11000 * and the number of CPUs to scan is calculated by:
11002 * nr_scan = llc_weight * y' [2]
11004 * When x hits the threshold of overloaded, AKA, when
11005 * x = 100 / pct, y drops to 0. According to [1],
11006 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
11008 * Scale x by SCHED_CAPACITY_SCALE:
11009 * x' = sum_util / llc_weight; [3]
11011 * and finally [1] becomes:
11012 * y = SCHED_CAPACITY_SCALE -
11013 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
11018 do_div(x, llc_weight);
11021 pct = env->sd->imbalance_pct;
11022 tmp = x * x * pct * pct;
11023 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11024 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11025 y = SCHED_CAPACITY_SCALE - tmp;
11029 do_div(y, SCHED_CAPACITY_SCALE);
11030 if ((int)y != sd_share->nr_idle_scan)
11031 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11035 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11036 * @env: The load balancing environment.
11037 * @sds: variable to hold the statistics for this sched_domain.
11040 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11042 struct sched_group *sg = env->sd->groups;
11043 struct sg_lb_stats *local = &sds->local_stat;
11044 struct sg_lb_stats tmp_sgs;
11045 unsigned long sum_util = 0;
11046 bool sg_overloaded = 0, sg_overutilized = 0;
11049 struct sg_lb_stats *sgs = &tmp_sgs;
11052 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11057 if (env->idle != CPU_NEWLY_IDLE ||
11058 time_after_eq(jiffies, sg->sgc->next_update))
11059 update_group_capacity(env->sd, env->dst_cpu);
11062 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11064 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11066 sds->busiest_stat = *sgs;
11069 /* Now, start updating sd_lb_stats */
11070 sds->total_load += sgs->group_load;
11071 sds->total_capacity += sgs->group_capacity;
11073 sum_util += sgs->group_util;
11075 } while (sg != env->sd->groups);
11078 * Indicate that the child domain of the busiest group prefers tasks
11079 * go to a child's sibling domains first. NB the flags of a sched group
11080 * are those of the child domain.
11083 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11086 if (env->sd->flags & SD_NUMA)
11087 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11089 if (!env->sd->parent) {
11090 /* update overload indicator if we are at root domain */
11091 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11093 /* Update over-utilization (tipping point, U >= 0) indicator */
11094 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11095 } else if (sg_overutilized) {
11096 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11099 update_idle_cpu_scan(env, sum_util);
11103 * calculate_imbalance - Calculate the amount of imbalance present within the
11104 * groups of a given sched_domain during load balance.
11105 * @env: load balance environment
11106 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11108 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11110 struct sg_lb_stats *local, *busiest;
11112 local = &sds->local_stat;
11113 busiest = &sds->busiest_stat;
11115 if (busiest->group_type == group_misfit_task) {
11116 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11117 /* Set imbalance to allow misfit tasks to be balanced. */
11118 env->migration_type = migrate_misfit;
11119 env->imbalance = 1;
11122 * Set load imbalance to allow moving task from cpu
11123 * with reduced capacity.
11125 env->migration_type = migrate_load;
11126 env->imbalance = busiest->group_misfit_task_load;
11131 if (busiest->group_type == group_asym_packing) {
11133 * In case of asym capacity, we will try to migrate all load to
11134 * the preferred CPU.
11136 env->migration_type = migrate_task;
11137 env->imbalance = busiest->sum_h_nr_running;
11141 if (busiest->group_type == group_smt_balance) {
11142 /* Reduce number of tasks sharing CPU capacity */
11143 env->migration_type = migrate_task;
11144 env->imbalance = 1;
11148 if (busiest->group_type == group_imbalanced) {
11150 * In the group_imb case we cannot rely on group-wide averages
11151 * to ensure CPU-load equilibrium, try to move any task to fix
11152 * the imbalance. The next load balance will take care of
11153 * balancing back the system.
11155 env->migration_type = migrate_task;
11156 env->imbalance = 1;
11161 * Try to use spare capacity of local group without overloading it or
11162 * emptying busiest.
11164 if (local->group_type == group_has_spare) {
11165 if ((busiest->group_type > group_fully_busy) &&
11166 !(env->sd->flags & SD_SHARE_LLC)) {
11168 * If busiest is overloaded, try to fill spare
11169 * capacity. This might end up creating spare capacity
11170 * in busiest or busiest still being overloaded but
11171 * there is no simple way to directly compute the
11172 * amount of load to migrate in order to balance the
11175 env->migration_type = migrate_util;
11176 env->imbalance = max(local->group_capacity, local->group_util) -
11180 * In some cases, the group's utilization is max or even
11181 * higher than capacity because of migrations but the
11182 * local CPU is (newly) idle. There is at least one
11183 * waiting task in this overloaded busiest group. Let's
11186 if (env->idle && env->imbalance == 0) {
11187 env->migration_type = migrate_task;
11188 env->imbalance = 1;
11194 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11196 * When prefer sibling, evenly spread running tasks on
11199 env->migration_type = migrate_task;
11200 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11204 * If there is no overload, we just want to even the number of
11207 env->migration_type = migrate_task;
11208 env->imbalance = max_t(long, 0,
11209 (local->idle_cpus - busiest->idle_cpus));
11213 /* Consider allowing a small imbalance between NUMA groups */
11214 if (env->sd->flags & SD_NUMA) {
11215 env->imbalance = adjust_numa_imbalance(env->imbalance,
11216 local->sum_nr_running + 1,
11217 env->sd->imb_numa_nr);
11221 /* Number of tasks to move to restore balance */
11222 env->imbalance >>= 1;
11228 * Local is fully busy but has to take more load to relieve the
11231 if (local->group_type < group_overloaded) {
11233 * Local will become overloaded so the avg_load metrics are
11237 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11238 local->group_capacity;
11241 * If the local group is more loaded than the selected
11242 * busiest group don't try to pull any tasks.
11244 if (local->avg_load >= busiest->avg_load) {
11245 env->imbalance = 0;
11249 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11250 sds->total_capacity;
11253 * If the local group is more loaded than the average system
11254 * load, don't try to pull any tasks.
11256 if (local->avg_load >= sds->avg_load) {
11257 env->imbalance = 0;
11264 * Both group are or will become overloaded and we're trying to get all
11265 * the CPUs to the average_load, so we don't want to push ourselves
11266 * above the average load, nor do we wish to reduce the max loaded CPU
11267 * below the average load. At the same time, we also don't want to
11268 * reduce the group load below the group capacity. Thus we look for
11269 * the minimum possible imbalance.
11271 env->migration_type = migrate_load;
11272 env->imbalance = min(
11273 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11274 (sds->avg_load - local->avg_load) * local->group_capacity
11275 ) / SCHED_CAPACITY_SCALE;
11278 /******* sched_balance_find_src_group() helpers end here *********************/
11281 * Decision matrix according to the local and busiest group type:
11283 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11284 * has_spare nr_idle balanced N/A N/A balanced balanced
11285 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11286 * misfit_task force N/A N/A N/A N/A N/A
11287 * asym_packing force force N/A N/A force force
11288 * imbalanced force force N/A N/A force force
11289 * overloaded force force N/A N/A force avg_load
11291 * N/A : Not Applicable because already filtered while updating
11293 * balanced : The system is balanced for these 2 groups.
11294 * force : Calculate the imbalance as load migration is probably needed.
11295 * avg_load : Only if imbalance is significant enough.
11296 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11297 * different in groups.
11301 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11302 * if there is an imbalance.
11303 * @env: The load balancing environment.
11305 * Also calculates the amount of runnable load which should be moved
11306 * to restore balance.
11308 * Return: - The busiest group if imbalance exists.
11310 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11312 struct sg_lb_stats *local, *busiest;
11313 struct sd_lb_stats sds;
11315 init_sd_lb_stats(&sds);
11318 * Compute the various statistics relevant for load balancing at
11321 update_sd_lb_stats(env, &sds);
11323 /* There is no busy sibling group to pull tasks from */
11327 busiest = &sds.busiest_stat;
11329 /* Misfit tasks should be dealt with regardless of the avg load */
11330 if (busiest->group_type == group_misfit_task)
11331 goto force_balance;
11333 if (!is_rd_overutilized(env->dst_rq->rd) &&
11334 rcu_dereference(env->dst_rq->rd->pd))
11337 /* ASYM feature bypasses nice load balance check */
11338 if (busiest->group_type == group_asym_packing)
11339 goto force_balance;
11342 * If the busiest group is imbalanced the below checks don't
11343 * work because they assume all things are equal, which typically
11344 * isn't true due to cpus_ptr constraints and the like.
11346 if (busiest->group_type == group_imbalanced)
11347 goto force_balance;
11349 local = &sds.local_stat;
11351 * If the local group is busier than the selected busiest group
11352 * don't try and pull any tasks.
11354 if (local->group_type > busiest->group_type)
11358 * When groups are overloaded, use the avg_load to ensure fairness
11361 if (local->group_type == group_overloaded) {
11363 * If the local group is more loaded than the selected
11364 * busiest group don't try to pull any tasks.
11366 if (local->avg_load >= busiest->avg_load)
11369 /* XXX broken for overlapping NUMA groups */
11370 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11371 sds.total_capacity;
11374 * Don't pull any tasks if this group is already above the
11375 * domain average load.
11377 if (local->avg_load >= sds.avg_load)
11381 * If the busiest group is more loaded, use imbalance_pct to be
11384 if (100 * busiest->avg_load <=
11385 env->sd->imbalance_pct * local->avg_load)
11390 * Try to move all excess tasks to a sibling domain of the busiest
11391 * group's child domain.
11393 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11394 sibling_imbalance(env, &sds, busiest, local) > 1)
11395 goto force_balance;
11397 if (busiest->group_type != group_overloaded) {
11400 * If the busiest group is not overloaded (and as a
11401 * result the local one too) but this CPU is already
11402 * busy, let another idle CPU try to pull task.
11407 if (busiest->group_type == group_smt_balance &&
11408 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11409 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11410 goto force_balance;
11413 if (busiest->group_weight > 1 &&
11414 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11416 * If the busiest group is not overloaded
11417 * and there is no imbalance between this and busiest
11418 * group wrt idle CPUs, it is balanced. The imbalance
11419 * becomes significant if the diff is greater than 1
11420 * otherwise we might end up to just move the imbalance
11421 * on another group. Of course this applies only if
11422 * there is more than 1 CPU per group.
11427 if (busiest->sum_h_nr_running == 1) {
11429 * busiest doesn't have any tasks waiting to run
11436 /* Looks like there is an imbalance. Compute it */
11437 calculate_imbalance(env, &sds);
11438 return env->imbalance ? sds.busiest : NULL;
11441 env->imbalance = 0;
11446 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11448 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11449 struct sched_group *group)
11451 struct rq *busiest = NULL, *rq;
11452 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11453 unsigned int busiest_nr = 0;
11456 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11457 unsigned long capacity, load, util;
11458 unsigned int nr_running;
11462 rt = fbq_classify_rq(rq);
11465 * We classify groups/runqueues into three groups:
11466 * - regular: there are !numa tasks
11467 * - remote: there are numa tasks that run on the 'wrong' node
11468 * - all: there is no distinction
11470 * In order to avoid migrating ideally placed numa tasks,
11471 * ignore those when there's better options.
11473 * If we ignore the actual busiest queue to migrate another
11474 * task, the next balance pass can still reduce the busiest
11475 * queue by moving tasks around inside the node.
11477 * If we cannot move enough load due to this classification
11478 * the next pass will adjust the group classification and
11479 * allow migration of more tasks.
11481 * Both cases only affect the total convergence complexity.
11483 if (rt > env->fbq_type)
11486 nr_running = rq->cfs.h_nr_runnable;
11490 capacity = capacity_of(i);
11493 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11494 * eventually lead to active_balancing high->low capacity.
11495 * Higher per-CPU capacity is considered better than balancing
11498 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11499 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11504 * Make sure we only pull tasks from a CPU of lower priority
11505 * when balancing between SMT siblings.
11507 * If balancing between cores, let lower priority CPUs help
11508 * SMT cores with more than one busy sibling.
11510 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11513 switch (env->migration_type) {
11516 * When comparing with load imbalance, use cpu_load()
11517 * which is not scaled with the CPU capacity.
11519 load = cpu_load(rq);
11521 if (nr_running == 1 && load > env->imbalance &&
11522 !check_cpu_capacity(rq, env->sd))
11526 * For the load comparisons with the other CPUs,
11527 * consider the cpu_load() scaled with the CPU
11528 * capacity, so that the load can be moved away
11529 * from the CPU that is potentially running at a
11532 * Thus we're looking for max(load_i / capacity_i),
11533 * crosswise multiplication to rid ourselves of the
11534 * division works out to:
11535 * load_i * capacity_j > load_j * capacity_i;
11536 * where j is our previous maximum.
11538 if (load * busiest_capacity > busiest_load * capacity) {
11539 busiest_load = load;
11540 busiest_capacity = capacity;
11546 util = cpu_util_cfs_boost(i);
11549 * Don't try to pull utilization from a CPU with one
11550 * running task. Whatever its utilization, we will fail
11553 if (nr_running <= 1)
11556 if (busiest_util < util) {
11557 busiest_util = util;
11563 if (busiest_nr < nr_running) {
11564 busiest_nr = nr_running;
11569 case migrate_misfit:
11571 * For ASYM_CPUCAPACITY domains with misfit tasks we
11572 * simply seek the "biggest" misfit task.
11574 if (rq->misfit_task_load > busiest_load) {
11575 busiest_load = rq->misfit_task_load;
11588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11589 * so long as it is large enough.
11591 #define MAX_PINNED_INTERVAL 512
11594 asym_active_balance(struct lb_env *env)
11597 * ASYM_PACKING needs to force migrate tasks from busy but lower
11598 * priority CPUs in order to pack all tasks in the highest priority
11599 * CPUs. When done between cores, do it only if the whole core if the
11600 * whole core is idle.
11602 * If @env::src_cpu is an SMT core with busy siblings, let
11603 * the lower priority @env::dst_cpu help it. Do not follow
11606 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11607 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11608 !sched_use_asym_prio(env->sd, env->src_cpu));
11612 imbalanced_active_balance(struct lb_env *env)
11614 struct sched_domain *sd = env->sd;
11617 * The imbalanced case includes the case of pinned tasks preventing a fair
11618 * distribution of the load on the system but also the even distribution of the
11619 * threads on a system with spare capacity
11621 if ((env->migration_type == migrate_task) &&
11622 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11628 static int need_active_balance(struct lb_env *env)
11630 struct sched_domain *sd = env->sd;
11632 if (asym_active_balance(env))
11635 if (imbalanced_active_balance(env))
11639 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11640 * It's worth migrating the task if the src_cpu's capacity is reduced
11641 * because of other sched_class or IRQs if more capacity stays
11642 * available on dst_cpu.
11645 (env->src_rq->cfs.h_nr_runnable == 1)) {
11646 if ((check_cpu_capacity(env->src_rq, sd)) &&
11647 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11651 if (env->migration_type == migrate_misfit)
11657 static int active_load_balance_cpu_stop(void *data);
11659 static int should_we_balance(struct lb_env *env)
11661 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11662 struct sched_group *sg = env->sd->groups;
11663 int cpu, idle_smt = -1;
11666 * Ensure the balancing environment is consistent; can happen
11667 * when the softirq triggers 'during' hotplug.
11669 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11673 * In the newly idle case, we will allow all the CPUs
11674 * to do the newly idle load balance.
11676 * However, we bail out if we already have tasks or a wakeup pending,
11677 * to optimize wakeup latency.
11679 if (env->idle == CPU_NEWLY_IDLE) {
11680 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11685 cpumask_copy(swb_cpus, group_balance_mask(sg));
11686 /* Try to find first idle CPU */
11687 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11688 if (!idle_cpu(cpu))
11692 * Don't balance to idle SMT in busy core right away when
11693 * balancing cores, but remember the first idle SMT CPU for
11694 * later consideration. Find CPU on an idle core first.
11696 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11697 if (idle_smt == -1)
11700 * If the core is not idle, and first SMT sibling which is
11701 * idle has been found, then its not needed to check other
11702 * SMT siblings for idleness:
11704 #ifdef CONFIG_SCHED_SMT
11705 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11711 * Are we the first idle core in a non-SMT domain or higher,
11712 * or the first idle CPU in a SMT domain?
11714 return cpu == env->dst_cpu;
11717 /* Are we the first idle CPU with busy siblings? */
11718 if (idle_smt != -1)
11719 return idle_smt == env->dst_cpu;
11721 /* Are we the first CPU of this group ? */
11722 return group_balance_cpu(sg) == env->dst_cpu;
11725 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11726 enum cpu_idle_type idle)
11728 if (!schedstat_enabled())
11731 switch (env->migration_type) {
11733 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11736 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11739 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11741 case migrate_misfit:
11742 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11748 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11749 * tasks if there is an imbalance.
11751 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11752 struct sched_domain *sd, enum cpu_idle_type idle,
11753 int *continue_balancing)
11755 int ld_moved, cur_ld_moved, active_balance = 0;
11756 struct sched_domain *sd_parent = sd->parent;
11757 struct sched_group *group;
11758 struct rq *busiest;
11759 struct rq_flags rf;
11760 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11761 struct lb_env env = {
11763 .dst_cpu = this_cpu,
11765 .dst_grpmask = group_balance_mask(sd->groups),
11767 .loop_break = SCHED_NR_MIGRATE_BREAK,
11770 .tasks = LIST_HEAD_INIT(env.tasks),
11773 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11775 schedstat_inc(sd->lb_count[idle]);
11778 if (!should_we_balance(&env)) {
11779 *continue_balancing = 0;
11783 group = sched_balance_find_src_group(&env);
11785 schedstat_inc(sd->lb_nobusyg[idle]);
11789 busiest = sched_balance_find_src_rq(&env, group);
11791 schedstat_inc(sd->lb_nobusyq[idle]);
11795 WARN_ON_ONCE(busiest == env.dst_rq);
11797 update_lb_imbalance_stat(&env, sd, idle);
11799 env.src_cpu = busiest->cpu;
11800 env.src_rq = busiest;
11803 /* Clear this flag as soon as we find a pullable task */
11804 env.flags |= LBF_ALL_PINNED;
11805 if (busiest->nr_running > 1) {
11807 * Attempt to move tasks. If sched_balance_find_src_group has found
11808 * an imbalance but busiest->nr_running <= 1, the group is
11809 * still unbalanced. ld_moved simply stays zero, so it is
11810 * correctly treated as an imbalance.
11812 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11815 rq_lock_irqsave(busiest, &rf);
11816 update_rq_clock(busiest);
11819 * cur_ld_moved - load moved in current iteration
11820 * ld_moved - cumulative load moved across iterations
11822 cur_ld_moved = detach_tasks(&env);
11825 * We've detached some tasks from busiest_rq. Every
11826 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11827 * unlock busiest->lock, and we are able to be sure
11828 * that nobody can manipulate the tasks in parallel.
11829 * See task_rq_lock() family for the details.
11832 rq_unlock(busiest, &rf);
11834 if (cur_ld_moved) {
11835 attach_tasks(&env);
11836 ld_moved += cur_ld_moved;
11839 local_irq_restore(rf.flags);
11841 if (env.flags & LBF_NEED_BREAK) {
11842 env.flags &= ~LBF_NEED_BREAK;
11847 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11848 * us and move them to an alternate dst_cpu in our sched_group
11849 * where they can run. The upper limit on how many times we
11850 * iterate on same src_cpu is dependent on number of CPUs in our
11853 * This changes load balance semantics a bit on who can move
11854 * load to a given_cpu. In addition to the given_cpu itself
11855 * (or a ilb_cpu acting on its behalf where given_cpu is
11856 * nohz-idle), we now have balance_cpu in a position to move
11857 * load to given_cpu. In rare situations, this may cause
11858 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11859 * _independently_ and at _same_ time to move some load to
11860 * given_cpu) causing excess load to be moved to given_cpu.
11861 * This however should not happen so much in practice and
11862 * moreover subsequent load balance cycles should correct the
11863 * excess load moved.
11865 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11867 /* Prevent to re-select dst_cpu via env's CPUs */
11868 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11870 env.dst_rq = cpu_rq(env.new_dst_cpu);
11871 env.dst_cpu = env.new_dst_cpu;
11872 env.flags &= ~LBF_DST_PINNED;
11874 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11877 * Go back to "more_balance" rather than "redo" since we
11878 * need to continue with same src_cpu.
11884 * We failed to reach balance because of affinity.
11887 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11889 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11890 *group_imbalance = 1;
11893 /* All tasks on this runqueue were pinned by CPU affinity */
11894 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11895 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11897 * Attempting to continue load balancing at the current
11898 * sched_domain level only makes sense if there are
11899 * active CPUs remaining as possible busiest CPUs to
11900 * pull load from which are not contained within the
11901 * destination group that is receiving any migrated
11904 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11906 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11909 goto out_all_pinned;
11914 schedstat_inc(sd->lb_failed[idle]);
11916 * Increment the failure counter only on periodic balance.
11917 * We do not want newidle balance, which can be very
11918 * frequent, pollute the failure counter causing
11919 * excessive cache_hot migrations and active balances.
11921 * Similarly for migration_misfit which is not related to
11922 * load/util migration, don't pollute nr_balance_failed.
11924 if (idle != CPU_NEWLY_IDLE &&
11925 env.migration_type != migrate_misfit)
11926 sd->nr_balance_failed++;
11928 if (need_active_balance(&env)) {
11929 unsigned long flags;
11931 raw_spin_rq_lock_irqsave(busiest, flags);
11934 * Don't kick the active_load_balance_cpu_stop,
11935 * if the curr task on busiest CPU can't be
11936 * moved to this_cpu:
11938 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11939 raw_spin_rq_unlock_irqrestore(busiest, flags);
11940 goto out_one_pinned;
11943 /* Record that we found at least one task that could run on this_cpu */
11944 env.flags &= ~LBF_ALL_PINNED;
11947 * ->active_balance synchronizes accesses to
11948 * ->active_balance_work. Once set, it's cleared
11949 * only after active load balance is finished.
11951 if (!busiest->active_balance) {
11952 busiest->active_balance = 1;
11953 busiest->push_cpu = this_cpu;
11954 active_balance = 1;
11958 raw_spin_rq_unlock_irqrestore(busiest, flags);
11959 if (active_balance) {
11960 stop_one_cpu_nowait(cpu_of(busiest),
11961 active_load_balance_cpu_stop, busiest,
11962 &busiest->active_balance_work);
11967 sd->nr_balance_failed = 0;
11970 if (likely(!active_balance) || need_active_balance(&env)) {
11971 /* We were unbalanced, so reset the balancing interval */
11972 sd->balance_interval = sd->min_interval;
11979 * We reach balance although we may have faced some affinity
11980 * constraints. Clear the imbalance flag only if other tasks got
11981 * a chance to move and fix the imbalance.
11983 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11984 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11986 if (*group_imbalance)
11987 *group_imbalance = 0;
11992 * We reach balance because all tasks are pinned at this level so
11993 * we can't migrate them. Let the imbalance flag set so parent level
11994 * can try to migrate them.
11996 schedstat_inc(sd->lb_balanced[idle]);
11998 sd->nr_balance_failed = 0;
12004 * sched_balance_newidle() disregards balance intervals, so we could
12005 * repeatedly reach this code, which would lead to balance_interval
12006 * skyrocketing in a short amount of time. Skip the balance_interval
12007 * increase logic to avoid that.
12009 * Similarly misfit migration which is not necessarily an indication of
12010 * the system being busy and requires lb to backoff to let it settle
12013 if (env.idle == CPU_NEWLY_IDLE ||
12014 env.migration_type == migrate_misfit)
12017 /* tune up the balancing interval */
12018 if ((env.flags & LBF_ALL_PINNED &&
12019 sd->balance_interval < MAX_PINNED_INTERVAL) ||
12020 sd->balance_interval < sd->max_interval)
12021 sd->balance_interval *= 2;
12026 static inline unsigned long
12027 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12029 unsigned long interval = sd->balance_interval;
12032 interval *= sd->busy_factor;
12034 /* scale ms to jiffies */
12035 interval = msecs_to_jiffies(interval);
12038 * Reduce likelihood of busy balancing at higher domains racing with
12039 * balancing at lower domains by preventing their balancing periods
12040 * from being multiples of each other.
12045 interval = clamp(interval, 1UL, max_load_balance_interval);
12051 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12053 unsigned long interval, next;
12055 /* used by idle balance, so cpu_busy = 0 */
12056 interval = get_sd_balance_interval(sd, 0);
12057 next = sd->last_balance + interval;
12059 if (time_after(*next_balance, next))
12060 *next_balance = next;
12064 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12065 * running tasks off the busiest CPU onto idle CPUs. It requires at
12066 * least 1 task to be running on each physical CPU where possible, and
12067 * avoids physical / logical imbalances.
12069 static int active_load_balance_cpu_stop(void *data)
12071 struct rq *busiest_rq = data;
12072 int busiest_cpu = cpu_of(busiest_rq);
12073 int target_cpu = busiest_rq->push_cpu;
12074 struct rq *target_rq = cpu_rq(target_cpu);
12075 struct sched_domain *sd;
12076 struct task_struct *p = NULL;
12077 struct rq_flags rf;
12079 rq_lock_irq(busiest_rq, &rf);
12081 * Between queueing the stop-work and running it is a hole in which
12082 * CPUs can become inactive. We should not move tasks from or to
12085 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12088 /* Make sure the requested CPU hasn't gone down in the meantime: */
12089 if (unlikely(busiest_cpu != smp_processor_id() ||
12090 !busiest_rq->active_balance))
12093 /* Is there any task to move? */
12094 if (busiest_rq->nr_running <= 1)
12098 * This condition is "impossible", if it occurs
12099 * we need to fix it. Originally reported by
12100 * Bjorn Helgaas on a 128-CPU setup.
12102 WARN_ON_ONCE(busiest_rq == target_rq);
12104 /* Search for an sd spanning us and the target CPU. */
12106 for_each_domain(target_cpu, sd) {
12107 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12112 struct lb_env env = {
12114 .dst_cpu = target_cpu,
12115 .dst_rq = target_rq,
12116 .src_cpu = busiest_rq->cpu,
12117 .src_rq = busiest_rq,
12119 .flags = LBF_ACTIVE_LB,
12122 schedstat_inc(sd->alb_count);
12123 update_rq_clock(busiest_rq);
12125 p = detach_one_task(&env);
12127 schedstat_inc(sd->alb_pushed);
12128 /* Active balancing done, reset the failure counter. */
12129 sd->nr_balance_failed = 0;
12131 schedstat_inc(sd->alb_failed);
12136 busiest_rq->active_balance = 0;
12137 rq_unlock(busiest_rq, &rf);
12140 attach_one_task(target_rq, p);
12142 local_irq_enable();
12148 * This flag serializes load-balancing passes over large domains
12149 * (above the NODE topology level) - only one load-balancing instance
12150 * may run at a time, to reduce overhead on very large systems with
12151 * lots of CPUs and large NUMA distances.
12153 * - Note that load-balancing passes triggered while another one
12154 * is executing are skipped and not re-tried.
12156 * - Also note that this does not serialize rebalance_domains()
12157 * execution, as non-SD_SERIALIZE domains will still be
12158 * load-balanced in parallel.
12160 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12163 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12164 * This trades load-balance latency on larger machines for less cross talk.
12166 void update_max_interval(void)
12168 max_load_balance_interval = HZ*num_online_cpus()/10;
12171 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12173 if (cost > sd->max_newidle_lb_cost) {
12175 * Track max cost of a domain to make sure to not delay the
12176 * next wakeup on the CPU.
12178 sd->max_newidle_lb_cost = cost;
12179 sd->last_decay_max_lb_cost = jiffies;
12180 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12182 * Decay the newidle max times by ~1% per second to ensure that
12183 * it is not outdated and the current max cost is actually
12186 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12187 sd->last_decay_max_lb_cost = jiffies;
12196 * It checks each scheduling domain to see if it is due to be balanced,
12197 * and initiates a balancing operation if so.
12199 * Balancing parameters are set up in init_sched_domains.
12201 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12203 int continue_balancing = 1;
12205 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12206 unsigned long interval;
12207 struct sched_domain *sd;
12208 /* Earliest time when we have to do rebalance again */
12209 unsigned long next_balance = jiffies + 60*HZ;
12210 int update_next_balance = 0;
12211 int need_serialize, need_decay = 0;
12215 for_each_domain(cpu, sd) {
12217 * Decay the newidle max times here because this is a regular
12218 * visit to all the domains.
12220 need_decay = update_newidle_cost(sd, 0);
12221 max_cost += sd->max_newidle_lb_cost;
12224 * Stop the load balance at this level. There is another
12225 * CPU in our sched group which is doing load balancing more
12228 if (!continue_balancing) {
12234 interval = get_sd_balance_interval(sd, busy);
12236 need_serialize = sd->flags & SD_SERIALIZE;
12237 if (need_serialize) {
12238 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12242 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12243 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12245 * The LBF_DST_PINNED logic could have changed
12246 * env->dst_cpu, so we can't know our idle
12247 * state even if we migrated tasks. Update it.
12249 idle = idle_cpu(cpu);
12250 busy = !idle && !sched_idle_cpu(cpu);
12252 sd->last_balance = jiffies;
12253 interval = get_sd_balance_interval(sd, busy);
12255 if (need_serialize)
12256 atomic_set_release(&sched_balance_running, 0);
12258 if (time_after(next_balance, sd->last_balance + interval)) {
12259 next_balance = sd->last_balance + interval;
12260 update_next_balance = 1;
12265 * Ensure the rq-wide value also decays but keep it at a
12266 * reasonable floor to avoid funnies with rq->avg_idle.
12268 rq->max_idle_balance_cost =
12269 max((u64)sysctl_sched_migration_cost, max_cost);
12274 * next_balance will be updated only when there is a need.
12275 * When the cpu is attached to null domain for ex, it will not be
12278 if (likely(update_next_balance))
12279 rq->next_balance = next_balance;
12283 static inline int on_null_domain(struct rq *rq)
12285 return unlikely(!rcu_dereference_sched(rq->sd));
12288 #ifdef CONFIG_NO_HZ_COMMON
12290 * NOHZ idle load balancing (ILB) details:
12292 * - When one of the busy CPUs notices that there may be an idle rebalancing
12293 * needed, they will kick the idle load balancer, which then does idle
12294 * load balancing for all the idle CPUs.
12296 static inline int find_new_ilb(void)
12298 const struct cpumask *hk_mask;
12301 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12303 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12305 if (ilb_cpu == smp_processor_id())
12308 if (idle_cpu(ilb_cpu))
12316 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12317 * SMP function call (IPI).
12319 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12320 * (if there is one).
12322 static void kick_ilb(unsigned int flags)
12327 * Increase nohz.next_balance only when if full ilb is triggered but
12328 * not if we only update stats.
12330 if (flags & NOHZ_BALANCE_KICK)
12331 nohz.next_balance = jiffies+1;
12333 ilb_cpu = find_new_ilb();
12338 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12339 * i.e. all bits in flags are already set in ilb_cpu.
12341 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12345 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12346 * the first flag owns it; cleared by nohz_csd_func().
12348 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12349 if (flags & NOHZ_KICK_MASK)
12353 * This way we generate an IPI on the target CPU which
12354 * is idle, and the softirq performing NOHZ idle load balancing
12355 * will be run before returning from the IPI.
12357 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12361 * Current decision point for kicking the idle load balancer in the presence
12362 * of idle CPUs in the system.
12364 static void nohz_balancer_kick(struct rq *rq)
12366 unsigned long now = jiffies;
12367 struct sched_domain_shared *sds;
12368 struct sched_domain *sd;
12369 int nr_busy, i, cpu = rq->cpu;
12370 unsigned int flags = 0;
12372 if (unlikely(rq->idle_balance))
12376 * We may be recently in ticked or tickless idle mode. At the first
12377 * busy tick after returning from idle, we will update the busy stats.
12379 nohz_balance_exit_idle(rq);
12382 * None are in tickless mode and hence no need for NOHZ idle load
12385 if (likely(!atomic_read(&nohz.nr_cpus)))
12388 if (READ_ONCE(nohz.has_blocked) &&
12389 time_after(now, READ_ONCE(nohz.next_blocked)))
12390 flags = NOHZ_STATS_KICK;
12392 if (time_before(now, nohz.next_balance))
12395 if (rq->nr_running >= 2) {
12396 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12402 sd = rcu_dereference(rq->sd);
12405 * If there's a runnable CFS task and the current CPU has reduced
12406 * capacity, kick the ILB to see if there's a better CPU to run on:
12408 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12409 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12414 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12417 * When ASYM_PACKING; see if there's a more preferred CPU
12418 * currently idle; in which case, kick the ILB to move tasks
12421 * When balancing between cores, all the SMT siblings of the
12422 * preferred CPU must be idle.
12424 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12425 if (sched_asym(sd, i, cpu)) {
12426 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12432 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12435 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12436 * to run the misfit task on.
12438 if (check_misfit_status(rq)) {
12439 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12444 * For asymmetric systems, we do not want to nicely balance
12445 * cache use, instead we want to embrace asymmetry and only
12446 * ensure tasks have enough CPU capacity.
12448 * Skip the LLC logic because it's not relevant in that case.
12453 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12456 * If there is an imbalance between LLC domains (IOW we could
12457 * increase the overall cache utilization), we need a less-loaded LLC
12458 * domain to pull some load from. Likewise, we may need to spread
12459 * load within the current LLC domain (e.g. packed SMT cores but
12460 * other CPUs are idle). We can't really know from here how busy
12461 * the others are - so just get a NOHZ balance going if it looks
12462 * like this LLC domain has tasks we could move.
12464 nr_busy = atomic_read(&sds->nr_busy_cpus);
12466 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12473 if (READ_ONCE(nohz.needs_update))
12474 flags |= NOHZ_NEXT_KICK;
12480 static void set_cpu_sd_state_busy(int cpu)
12482 struct sched_domain *sd;
12485 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12487 if (!sd || !sd->nohz_idle)
12491 atomic_inc(&sd->shared->nr_busy_cpus);
12496 void nohz_balance_exit_idle(struct rq *rq)
12498 WARN_ON_ONCE(rq != this_rq());
12500 if (likely(!rq->nohz_tick_stopped))
12503 rq->nohz_tick_stopped = 0;
12504 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12505 atomic_dec(&nohz.nr_cpus);
12507 set_cpu_sd_state_busy(rq->cpu);
12510 static void set_cpu_sd_state_idle(int cpu)
12512 struct sched_domain *sd;
12515 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12517 if (!sd || sd->nohz_idle)
12521 atomic_dec(&sd->shared->nr_busy_cpus);
12527 * This routine will record that the CPU is going idle with tick stopped.
12528 * This info will be used in performing idle load balancing in the future.
12530 void nohz_balance_enter_idle(int cpu)
12532 struct rq *rq = cpu_rq(cpu);
12534 WARN_ON_ONCE(cpu != smp_processor_id());
12536 /* If this CPU is going down, then nothing needs to be done: */
12537 if (!cpu_active(cpu))
12541 * Can be set safely without rq->lock held
12542 * If a clear happens, it will have evaluated last additions because
12543 * rq->lock is held during the check and the clear
12545 rq->has_blocked_load = 1;
12548 * The tick is still stopped but load could have been added in the
12549 * meantime. We set the nohz.has_blocked flag to trig a check of the
12550 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12551 * of nohz.has_blocked can only happen after checking the new load
12553 if (rq->nohz_tick_stopped)
12556 /* If we're a completely isolated CPU, we don't play: */
12557 if (on_null_domain(rq))
12560 rq->nohz_tick_stopped = 1;
12562 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12563 atomic_inc(&nohz.nr_cpus);
12566 * Ensures that if nohz_idle_balance() fails to observe our
12567 * @idle_cpus_mask store, it must observe the @has_blocked
12568 * and @needs_update stores.
12570 smp_mb__after_atomic();
12572 set_cpu_sd_state_idle(cpu);
12574 WRITE_ONCE(nohz.needs_update, 1);
12577 * Each time a cpu enter idle, we assume that it has blocked load and
12578 * enable the periodic update of the load of idle CPUs
12580 WRITE_ONCE(nohz.has_blocked, 1);
12583 static bool update_nohz_stats(struct rq *rq)
12585 unsigned int cpu = rq->cpu;
12587 if (!rq->has_blocked_load)
12590 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12593 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12596 sched_balance_update_blocked_averages(cpu);
12598 return rq->has_blocked_load;
12602 * Internal function that runs load balance for all idle CPUs. The load balance
12603 * can be a simple update of blocked load or a complete load balance with
12604 * tasks movement depending of flags.
12606 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12608 /* Earliest time when we have to do rebalance again */
12609 unsigned long now = jiffies;
12610 unsigned long next_balance = now + 60*HZ;
12611 bool has_blocked_load = false;
12612 int update_next_balance = 0;
12613 int this_cpu = this_rq->cpu;
12617 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12620 * We assume there will be no idle load after this update and clear
12621 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12622 * set the has_blocked flag and trigger another update of idle load.
12623 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12624 * setting the flag, we are sure to not clear the state and not
12625 * check the load of an idle cpu.
12627 * Same applies to idle_cpus_mask vs needs_update.
12629 if (flags & NOHZ_STATS_KICK)
12630 WRITE_ONCE(nohz.has_blocked, 0);
12631 if (flags & NOHZ_NEXT_KICK)
12632 WRITE_ONCE(nohz.needs_update, 0);
12635 * Ensures that if we miss the CPU, we must see the has_blocked
12636 * store from nohz_balance_enter_idle().
12641 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12642 * chance for other idle cpu to pull load.
12644 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12645 if (!idle_cpu(balance_cpu))
12649 * If this CPU gets work to do, stop the load balancing
12650 * work being done for other CPUs. Next load
12651 * balancing owner will pick it up.
12653 if (!idle_cpu(this_cpu) && need_resched()) {
12654 if (flags & NOHZ_STATS_KICK)
12655 has_blocked_load = true;
12656 if (flags & NOHZ_NEXT_KICK)
12657 WRITE_ONCE(nohz.needs_update, 1);
12661 rq = cpu_rq(balance_cpu);
12663 if (flags & NOHZ_STATS_KICK)
12664 has_blocked_load |= update_nohz_stats(rq);
12667 * If time for next balance is due,
12670 if (time_after_eq(jiffies, rq->next_balance)) {
12671 struct rq_flags rf;
12673 rq_lock_irqsave(rq, &rf);
12674 update_rq_clock(rq);
12675 rq_unlock_irqrestore(rq, &rf);
12677 if (flags & NOHZ_BALANCE_KICK)
12678 sched_balance_domains(rq, CPU_IDLE);
12681 if (time_after(next_balance, rq->next_balance)) {
12682 next_balance = rq->next_balance;
12683 update_next_balance = 1;
12688 * next_balance will be updated only when there is a need.
12689 * When the CPU is attached to null domain for ex, it will not be
12692 if (likely(update_next_balance))
12693 nohz.next_balance = next_balance;
12695 if (flags & NOHZ_STATS_KICK)
12696 WRITE_ONCE(nohz.next_blocked,
12697 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12700 /* There is still blocked load, enable periodic update */
12701 if (has_blocked_load)
12702 WRITE_ONCE(nohz.has_blocked, 1);
12706 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12707 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12709 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12711 unsigned int flags = this_rq->nohz_idle_balance;
12716 this_rq->nohz_idle_balance = 0;
12718 if (idle != CPU_IDLE)
12721 _nohz_idle_balance(this_rq, flags);
12727 * Check if we need to directly run the ILB for updating blocked load before
12728 * entering idle state. Here we run ILB directly without issuing IPIs.
12730 * Note that when this function is called, the tick may not yet be stopped on
12731 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12732 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12733 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12734 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12735 * called from this function on (this) CPU that's not yet in the mask. That's
12736 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12737 * updating the blocked load of already idle CPUs without waking up one of
12738 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12739 * cpu about to enter idle, because it can take a long time.
12741 void nohz_run_idle_balance(int cpu)
12743 unsigned int flags;
12745 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12748 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12749 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12751 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12752 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12755 static void nohz_newidle_balance(struct rq *this_rq)
12757 int this_cpu = this_rq->cpu;
12759 /* Will wake up very soon. No time for doing anything else*/
12760 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12763 /* Don't need to update blocked load of idle CPUs*/
12764 if (!READ_ONCE(nohz.has_blocked) ||
12765 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12769 * Set the need to trigger ILB in order to update blocked load
12770 * before entering idle state.
12772 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12775 #else /* !CONFIG_NO_HZ_COMMON */
12776 static inline void nohz_balancer_kick(struct rq *rq) { }
12778 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12783 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12784 #endif /* CONFIG_NO_HZ_COMMON */
12787 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12788 * idle. Attempts to pull tasks from other CPUs.
12791 * < 0 - we released the lock and there are !fair tasks present
12792 * 0 - failed, no new tasks
12793 * > 0 - success, new (fair) tasks present
12795 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12797 unsigned long next_balance = jiffies + HZ;
12798 int this_cpu = this_rq->cpu;
12799 int continue_balancing = 1;
12800 u64 t0, t1, curr_cost = 0;
12801 struct sched_domain *sd;
12802 int pulled_task = 0;
12804 update_misfit_status(NULL, this_rq);
12807 * There is a task waiting to run. No need to search for one.
12808 * Return 0; the task will be enqueued when switching to idle.
12810 if (this_rq->ttwu_pending)
12814 * We must set idle_stamp _before_ calling sched_balance_rq()
12815 * for CPU_NEWLY_IDLE, such that we measure the this duration
12818 this_rq->idle_stamp = rq_clock(this_rq);
12821 * Do not pull tasks towards !active CPUs...
12823 if (!cpu_active(this_cpu))
12827 * This is OK, because current is on_cpu, which avoids it being picked
12828 * for load-balance and preemption/IRQs are still disabled avoiding
12829 * further scheduler activity on it and we're being very careful to
12830 * re-start the picking loop.
12832 rq_unpin_lock(this_rq, rf);
12835 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12837 if (!get_rd_overloaded(this_rq->rd) ||
12838 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12841 update_next_balance(sd, &next_balance);
12848 raw_spin_rq_unlock(this_rq);
12850 t0 = sched_clock_cpu(this_cpu);
12851 sched_balance_update_blocked_averages(this_cpu);
12854 for_each_domain(this_cpu, sd) {
12857 update_next_balance(sd, &next_balance);
12859 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12862 if (sd->flags & SD_BALANCE_NEWIDLE) {
12864 pulled_task = sched_balance_rq(this_cpu, this_rq,
12865 sd, CPU_NEWLY_IDLE,
12866 &continue_balancing);
12868 t1 = sched_clock_cpu(this_cpu);
12869 domain_cost = t1 - t0;
12870 update_newidle_cost(sd, domain_cost);
12872 curr_cost += domain_cost;
12877 * Stop searching for tasks to pull if there are
12878 * now runnable tasks on this rq.
12880 if (pulled_task || !continue_balancing)
12885 raw_spin_rq_lock(this_rq);
12887 if (curr_cost > this_rq->max_idle_balance_cost)
12888 this_rq->max_idle_balance_cost = curr_cost;
12891 * While browsing the domains, we released the rq lock, a task could
12892 * have been enqueued in the meantime. Since we're not going idle,
12893 * pretend we pulled a task.
12895 if (this_rq->cfs.h_nr_queued && !pulled_task)
12898 /* Is there a task of a high priority class? */
12899 if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12903 /* Move the next balance forward */
12904 if (time_after(this_rq->next_balance, next_balance))
12905 this_rq->next_balance = next_balance;
12908 this_rq->idle_stamp = 0;
12910 nohz_newidle_balance(this_rq);
12912 rq_repin_lock(this_rq, rf);
12914 return pulled_task;
12918 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12920 * - directly from the local sched_tick() for periodic load balancing
12922 * - indirectly from a remote sched_tick() for NOHZ idle balancing
12923 * through the SMP cross-call nohz_csd_func()
12925 static __latent_entropy void sched_balance_softirq(void)
12927 struct rq *this_rq = this_rq();
12928 enum cpu_idle_type idle = this_rq->idle_balance;
12930 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12931 * balancing on behalf of the other idle CPUs whose ticks are
12932 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12933 * give the idle CPUs a chance to load balance. Else we may
12934 * load balance only within the local sched_domain hierarchy
12935 * and abort nohz_idle_balance altogether if we pull some load.
12937 if (nohz_idle_balance(this_rq, idle))
12940 /* normal load balance */
12941 sched_balance_update_blocked_averages(this_rq->cpu);
12942 sched_balance_domains(this_rq, idle);
12946 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12948 void sched_balance_trigger(struct rq *rq)
12951 * Don't need to rebalance while attached to NULL domain or
12952 * runqueue CPU is not active
12954 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12957 if (time_after_eq(jiffies, rq->next_balance))
12958 raise_softirq(SCHED_SOFTIRQ);
12960 nohz_balancer_kick(rq);
12963 static void rq_online_fair(struct rq *rq)
12967 update_runtime_enabled(rq);
12970 static void rq_offline_fair(struct rq *rq)
12974 /* Ensure any throttled groups are reachable by pick_next_task */
12975 unthrottle_offline_cfs_rqs(rq);
12977 /* Ensure that we remove rq contribution to group share: */
12978 clear_tg_offline_cfs_rqs(rq);
12981 #endif /* CONFIG_SMP */
12983 #ifdef CONFIG_SCHED_CORE
12985 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12987 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12988 u64 slice = se->slice;
12990 return (rtime * min_nr_tasks > slice);
12993 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
12994 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12996 if (!sched_core_enabled(rq))
13000 * If runqueue has only one task which used up its slice and
13001 * if the sibling is forced idle, then trigger schedule to
13002 * give forced idle task a chance.
13004 * sched_slice() considers only this active rq and it gets the
13005 * whole slice. But during force idle, we have siblings acting
13006 * like a single runqueue and hence we need to consider runnable
13007 * tasks on this CPU and the forced idle CPU. Ideally, we should
13008 * go through the forced idle rq, but that would be a perf hit.
13009 * We can assume that the forced idle CPU has at least
13010 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13011 * if we need to give up the CPU.
13013 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13014 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13019 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13021 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13024 for_each_sched_entity(se) {
13025 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13028 if (cfs_rq->forceidle_seq == fi_seq)
13030 cfs_rq->forceidle_seq = fi_seq;
13033 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13037 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13039 struct sched_entity *se = &p->se;
13041 if (p->sched_class != &fair_sched_class)
13044 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13047 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13050 struct rq *rq = task_rq(a);
13051 const struct sched_entity *sea = &a->se;
13052 const struct sched_entity *seb = &b->se;
13053 struct cfs_rq *cfs_rqa;
13054 struct cfs_rq *cfs_rqb;
13057 WARN_ON_ONCE(task_rq(b)->core != rq->core);
13059 #ifdef CONFIG_FAIR_GROUP_SCHED
13061 * Find an se in the hierarchy for tasks a and b, such that the se's
13062 * are immediate siblings.
13064 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13065 int sea_depth = sea->depth;
13066 int seb_depth = seb->depth;
13068 if (sea_depth >= seb_depth)
13069 sea = parent_entity(sea);
13070 if (sea_depth <= seb_depth)
13071 seb = parent_entity(seb);
13074 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13075 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13077 cfs_rqa = sea->cfs_rq;
13078 cfs_rqb = seb->cfs_rq;
13080 cfs_rqa = &task_rq(a)->cfs;
13081 cfs_rqb = &task_rq(b)->cfs;
13085 * Find delta after normalizing se's vruntime with its cfs_rq's
13086 * min_vruntime_fi, which would have been updated in prior calls
13087 * to se_fi_update().
13089 delta = (s64)(sea->vruntime - seb->vruntime) +
13090 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13095 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13097 struct cfs_rq *cfs_rq;
13099 #ifdef CONFIG_FAIR_GROUP_SCHED
13100 cfs_rq = task_group(p)->cfs_rq[cpu];
13102 cfs_rq = &cpu_rq(cpu)->cfs;
13104 return throttled_hierarchy(cfs_rq);
13107 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13111 * scheduler tick hitting a task of our scheduling class.
13113 * NOTE: This function can be called remotely by the tick offload that
13114 * goes along full dynticks. Therefore no local assumption can be made
13115 * and everything must be accessed through the @rq and @curr passed in
13118 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13120 struct cfs_rq *cfs_rq;
13121 struct sched_entity *se = &curr->se;
13123 for_each_sched_entity(se) {
13124 cfs_rq = cfs_rq_of(se);
13125 entity_tick(cfs_rq, se, queued);
13128 if (static_branch_unlikely(&sched_numa_balancing))
13129 task_tick_numa(rq, curr);
13131 update_misfit_status(curr, rq);
13132 check_update_overutilized_status(task_rq(curr));
13134 task_tick_core(rq, curr);
13138 * called on fork with the child task as argument from the parent's context
13139 * - child not yet on the tasklist
13140 * - preemption disabled
13142 static void task_fork_fair(struct task_struct *p)
13144 set_task_max_allowed_capacity(p);
13148 * Priority of the task has changed. Check to see if we preempt
13149 * the current task.
13152 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13154 if (!task_on_rq_queued(p))
13157 if (rq->cfs.nr_queued == 1)
13161 * Reschedule if we are currently running on this runqueue and
13162 * our priority decreased, or if we are not currently running on
13163 * this runqueue and our priority is higher than the current's
13165 if (task_current_donor(rq, p)) {
13166 if (p->prio > oldprio)
13169 wakeup_preempt(rq, p, 0);
13172 #ifdef CONFIG_FAIR_GROUP_SCHED
13174 * Propagate the changes of the sched_entity across the tg tree to make it
13175 * visible to the root
13177 static void propagate_entity_cfs_rq(struct sched_entity *se)
13179 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13181 if (cfs_rq_throttled(cfs_rq))
13184 if (!throttled_hierarchy(cfs_rq))
13185 list_add_leaf_cfs_rq(cfs_rq);
13187 /* Start to propagate at parent */
13190 for_each_sched_entity(se) {
13191 cfs_rq = cfs_rq_of(se);
13193 update_load_avg(cfs_rq, se, UPDATE_TG);
13195 if (cfs_rq_throttled(cfs_rq))
13198 if (!throttled_hierarchy(cfs_rq))
13199 list_add_leaf_cfs_rq(cfs_rq);
13203 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13206 static void detach_entity_cfs_rq(struct sched_entity *se)
13208 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13212 * In case the task sched_avg hasn't been attached:
13213 * - A forked task which hasn't been woken up by wake_up_new_task().
13214 * - A task which has been woken up by try_to_wake_up() but is
13215 * waiting for actually being woken up by sched_ttwu_pending().
13217 if (!se->avg.last_update_time)
13221 /* Catch up with the cfs_rq and remove our load when we leave */
13222 update_load_avg(cfs_rq, se, 0);
13223 detach_entity_load_avg(cfs_rq, se);
13224 update_tg_load_avg(cfs_rq);
13225 propagate_entity_cfs_rq(se);
13228 static void attach_entity_cfs_rq(struct sched_entity *se)
13230 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13232 /* Synchronize entity with its cfs_rq */
13233 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13234 attach_entity_load_avg(cfs_rq, se);
13235 update_tg_load_avg(cfs_rq);
13236 propagate_entity_cfs_rq(se);
13239 static void detach_task_cfs_rq(struct task_struct *p)
13241 struct sched_entity *se = &p->se;
13243 detach_entity_cfs_rq(se);
13246 static void attach_task_cfs_rq(struct task_struct *p)
13248 struct sched_entity *se = &p->se;
13250 attach_entity_cfs_rq(se);
13253 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13255 detach_task_cfs_rq(p);
13258 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13260 WARN_ON_ONCE(p->se.sched_delayed);
13262 attach_task_cfs_rq(p);
13264 set_task_max_allowed_capacity(p);
13266 if (task_on_rq_queued(p)) {
13268 * We were most likely switched from sched_rt, so
13269 * kick off the schedule if running, otherwise just see
13270 * if we can still preempt the current task.
13272 if (task_current_donor(rq, p))
13275 wakeup_preempt(rq, p, 0);
13279 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13281 struct sched_entity *se = &p->se;
13284 if (task_on_rq_queued(p)) {
13286 * Move the next running task to the front of the list, so our
13287 * cfs_tasks list becomes MRU one.
13289 list_move(&se->group_node, &rq->cfs_tasks);
13295 WARN_ON_ONCE(se->sched_delayed);
13297 if (hrtick_enabled_fair(rq))
13298 hrtick_start_fair(rq, p);
13300 update_misfit_status(p, rq);
13301 sched_fair_update_stop_tick(rq, p);
13305 * Account for a task changing its policy or group.
13307 * This routine is mostly called to set cfs_rq->curr field when a task
13308 * migrates between groups/classes.
13310 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13312 struct sched_entity *se = &p->se;
13314 for_each_sched_entity(se) {
13315 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13317 set_next_entity(cfs_rq, se);
13318 /* ensure bandwidth has been allocated on our new cfs_rq */
13319 account_cfs_rq_runtime(cfs_rq, 0);
13322 __set_next_task_fair(rq, p, first);
13325 void init_cfs_rq(struct cfs_rq *cfs_rq)
13327 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13328 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13330 raw_spin_lock_init(&cfs_rq->removed.lock);
13334 #ifdef CONFIG_FAIR_GROUP_SCHED
13335 static void task_change_group_fair(struct task_struct *p)
13338 * We couldn't detach or attach a forked task which
13339 * hasn't been woken up by wake_up_new_task().
13341 if (READ_ONCE(p->__state) == TASK_NEW)
13344 detach_task_cfs_rq(p);
13347 /* Tell se's cfs_rq has been changed -- migrated */
13348 p->se.avg.last_update_time = 0;
13350 set_task_rq(p, task_cpu(p));
13351 attach_task_cfs_rq(p);
13354 void free_fair_sched_group(struct task_group *tg)
13358 for_each_possible_cpu(i) {
13360 kfree(tg->cfs_rq[i]);
13369 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13371 struct sched_entity *se;
13372 struct cfs_rq *cfs_rq;
13375 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13378 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13382 tg->shares = NICE_0_LOAD;
13384 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13386 for_each_possible_cpu(i) {
13387 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13388 GFP_KERNEL, cpu_to_node(i));
13392 se = kzalloc_node(sizeof(struct sched_entity_stats),
13393 GFP_KERNEL, cpu_to_node(i));
13397 init_cfs_rq(cfs_rq);
13398 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13399 init_entity_runnable_average(se);
13410 void online_fair_sched_group(struct task_group *tg)
13412 struct sched_entity *se;
13413 struct rq_flags rf;
13417 for_each_possible_cpu(i) {
13420 rq_lock_irq(rq, &rf);
13421 update_rq_clock(rq);
13422 attach_entity_cfs_rq(se);
13423 sync_throttle(tg, i);
13424 rq_unlock_irq(rq, &rf);
13428 void unregister_fair_sched_group(struct task_group *tg)
13432 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13434 for_each_possible_cpu(cpu) {
13435 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13436 struct sched_entity *se = tg->se[cpu];
13437 struct rq *rq = cpu_rq(cpu);
13440 if (se->sched_delayed) {
13441 guard(rq_lock_irqsave)(rq);
13442 if (se->sched_delayed) {
13443 update_rq_clock(rq);
13444 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13446 list_del_leaf_cfs_rq(cfs_rq);
13448 remove_entity_load_avg(se);
13452 * Only empty task groups can be destroyed; so we can speculatively
13453 * check on_list without danger of it being re-added.
13455 if (cfs_rq->on_list) {
13456 guard(rq_lock_irqsave)(rq);
13457 list_del_leaf_cfs_rq(cfs_rq);
13462 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13463 struct sched_entity *se, int cpu,
13464 struct sched_entity *parent)
13466 struct rq *rq = cpu_rq(cpu);
13470 init_cfs_rq_runtime(cfs_rq);
13472 tg->cfs_rq[cpu] = cfs_rq;
13475 /* se could be NULL for root_task_group */
13480 se->cfs_rq = &rq->cfs;
13483 se->cfs_rq = parent->my_q;
13484 se->depth = parent->depth + 1;
13488 /* guarantee group entities always have weight */
13489 update_load_set(&se->load, NICE_0_LOAD);
13490 se->parent = parent;
13493 static DEFINE_MUTEX(shares_mutex);
13495 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13499 lockdep_assert_held(&shares_mutex);
13502 * We can't change the weight of the root cgroup.
13507 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13509 if (tg->shares == shares)
13512 tg->shares = shares;
13513 for_each_possible_cpu(i) {
13514 struct rq *rq = cpu_rq(i);
13515 struct sched_entity *se = tg->se[i];
13516 struct rq_flags rf;
13518 /* Propagate contribution to hierarchy */
13519 rq_lock_irqsave(rq, &rf);
13520 update_rq_clock(rq);
13521 for_each_sched_entity(se) {
13522 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13523 update_cfs_group(se);
13525 rq_unlock_irqrestore(rq, &rf);
13531 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13535 mutex_lock(&shares_mutex);
13536 if (tg_is_idle(tg))
13539 ret = __sched_group_set_shares(tg, shares);
13540 mutex_unlock(&shares_mutex);
13545 int sched_group_set_idle(struct task_group *tg, long idle)
13549 if (tg == &root_task_group)
13552 if (idle < 0 || idle > 1)
13555 mutex_lock(&shares_mutex);
13557 if (tg->idle == idle) {
13558 mutex_unlock(&shares_mutex);
13564 for_each_possible_cpu(i) {
13565 struct rq *rq = cpu_rq(i);
13566 struct sched_entity *se = tg->se[i];
13567 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13568 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13569 long idle_task_delta;
13570 struct rq_flags rf;
13572 rq_lock_irqsave(rq, &rf);
13574 grp_cfs_rq->idle = idle;
13575 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13578 idle_task_delta = grp_cfs_rq->h_nr_queued -
13579 grp_cfs_rq->h_nr_idle;
13580 if (!cfs_rq_is_idle(grp_cfs_rq))
13581 idle_task_delta *= -1;
13583 for_each_sched_entity(se) {
13584 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13589 cfs_rq->h_nr_idle += idle_task_delta;
13591 /* Already accounted at parent level and above. */
13592 if (cfs_rq_is_idle(cfs_rq))
13597 rq_unlock_irqrestore(rq, &rf);
13600 /* Idle groups have minimum weight. */
13601 if (tg_is_idle(tg))
13602 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13604 __sched_group_set_shares(tg, NICE_0_LOAD);
13606 mutex_unlock(&shares_mutex);
13610 #endif /* CONFIG_FAIR_GROUP_SCHED */
13613 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13615 struct sched_entity *se = &task->se;
13616 unsigned int rr_interval = 0;
13619 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13622 if (rq->cfs.load.weight)
13623 rr_interval = NS_TO_JIFFIES(se->slice);
13625 return rr_interval;
13629 * All the scheduling class methods:
13631 DEFINE_SCHED_CLASS(fair) = {
13633 .enqueue_task = enqueue_task_fair,
13634 .dequeue_task = dequeue_task_fair,
13635 .yield_task = yield_task_fair,
13636 .yield_to_task = yield_to_task_fair,
13638 .wakeup_preempt = check_preempt_wakeup_fair,
13640 .pick_task = pick_task_fair,
13641 .pick_next_task = __pick_next_task_fair,
13642 .put_prev_task = put_prev_task_fair,
13643 .set_next_task = set_next_task_fair,
13646 .balance = balance_fair,
13647 .select_task_rq = select_task_rq_fair,
13648 .migrate_task_rq = migrate_task_rq_fair,
13650 .rq_online = rq_online_fair,
13651 .rq_offline = rq_offline_fair,
13653 .task_dead = task_dead_fair,
13654 .set_cpus_allowed = set_cpus_allowed_fair,
13657 .task_tick = task_tick_fair,
13658 .task_fork = task_fork_fair,
13660 .reweight_task = reweight_task_fair,
13661 .prio_changed = prio_changed_fair,
13662 .switched_from = switched_from_fair,
13663 .switched_to = switched_to_fair,
13665 .get_rr_interval = get_rr_interval_fair,
13667 .update_curr = update_curr_fair,
13669 #ifdef CONFIG_FAIR_GROUP_SCHED
13670 .task_change_group = task_change_group_fair,
13673 #ifdef CONFIG_SCHED_CORE
13674 .task_is_throttled = task_is_throttled_fair,
13677 #ifdef CONFIG_UCLAMP_TASK
13678 .uclamp_enabled = 1,
13682 void print_cfs_stats(struct seq_file *m, int cpu)
13684 struct cfs_rq *cfs_rq, *pos;
13687 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13688 print_cfs_rq(m, cpu, cfs_rq);
13692 #ifdef CONFIG_NUMA_BALANCING
13693 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13696 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13697 struct numa_group *ng;
13700 ng = rcu_dereference(p->numa_group);
13701 for_each_online_node(node) {
13702 if (p->numa_faults) {
13703 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13704 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13707 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13708 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13710 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13714 #endif /* CONFIG_NUMA_BALANCING */
13716 __init void init_sched_fair_class(void)
13721 for_each_possible_cpu(i) {
13722 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13723 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13724 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13725 GFP_KERNEL, cpu_to_node(i));
13727 #ifdef CONFIG_CFS_BANDWIDTH
13728 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13729 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13733 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13735 #ifdef CONFIG_NO_HZ_COMMON
13736 nohz.next_balance = jiffies;
13737 nohz.next_blocked = jiffies;
13738 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);