sched/debug: Adjust newlines for better alignment
[linux-block.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/seq_file.h>
17 #include <linux/kallsyms.h>
18 #include <linux/utsname.h>
19 #include <linux/mempolicy.h>
20 #include <linux/debugfs.h>
21
22 #include "sched.h"
23
24 static DEFINE_SPINLOCK(sched_debug_lock);
25
26 /*
27  * This allows printing both to /proc/sched_debug and
28  * to the console
29  */
30 #define SEQ_printf(m, x...)                     \
31  do {                                           \
32         if (m)                                  \
33                 seq_printf(m, x);               \
34         else                                    \
35                 pr_cont(x);                     \
36  } while (0)
37
38 /*
39  * Ease the printing of nsec fields:
40  */
41 static long long nsec_high(unsigned long long nsec)
42 {
43         if ((long long)nsec < 0) {
44                 nsec = -nsec;
45                 do_div(nsec, 1000000);
46                 return -nsec;
47         }
48         do_div(nsec, 1000000);
49
50         return nsec;
51 }
52
53 static unsigned long nsec_low(unsigned long long nsec)
54 {
55         if ((long long)nsec < 0)
56                 nsec = -nsec;
57
58         return do_div(nsec, 1000000);
59 }
60
61 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
62
63 #define SCHED_FEAT(name, enabled)       \
64         #name ,
65
66 static const char * const sched_feat_names[] = {
67 #include "features.h"
68 };
69
70 #undef SCHED_FEAT
71
72 static int sched_feat_show(struct seq_file *m, void *v)
73 {
74         int i;
75
76         for (i = 0; i < __SCHED_FEAT_NR; i++) {
77                 if (!(sysctl_sched_features & (1UL << i)))
78                         seq_puts(m, "NO_");
79                 seq_printf(m, "%s ", sched_feat_names[i]);
80         }
81         seq_puts(m, "\n");
82
83         return 0;
84 }
85
86 #ifdef HAVE_JUMP_LABEL
87
88 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
89 #define jump_label_key__false STATIC_KEY_INIT_FALSE
90
91 #define SCHED_FEAT(name, enabled)       \
92         jump_label_key__##enabled ,
93
94 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
95 #include "features.h"
96 };
97
98 #undef SCHED_FEAT
99
100 static void sched_feat_disable(int i)
101 {
102         static_key_disable(&sched_feat_keys[i]);
103 }
104
105 static void sched_feat_enable(int i)
106 {
107         static_key_enable(&sched_feat_keys[i]);
108 }
109 #else
110 static void sched_feat_disable(int i) { };
111 static void sched_feat_enable(int i) { };
112 #endif /* HAVE_JUMP_LABEL */
113
114 static int sched_feat_set(char *cmp)
115 {
116         int i;
117         int neg = 0;
118
119         if (strncmp(cmp, "NO_", 3) == 0) {
120                 neg = 1;
121                 cmp += 3;
122         }
123
124         for (i = 0; i < __SCHED_FEAT_NR; i++) {
125                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
126                         if (neg) {
127                                 sysctl_sched_features &= ~(1UL << i);
128                                 sched_feat_disable(i);
129                         } else {
130                                 sysctl_sched_features |= (1UL << i);
131                                 sched_feat_enable(i);
132                         }
133                         break;
134                 }
135         }
136
137         return i;
138 }
139
140 static ssize_t
141 sched_feat_write(struct file *filp, const char __user *ubuf,
142                 size_t cnt, loff_t *ppos)
143 {
144         char buf[64];
145         char *cmp;
146         int i;
147         struct inode *inode;
148
149         if (cnt > 63)
150                 cnt = 63;
151
152         if (copy_from_user(&buf, ubuf, cnt))
153                 return -EFAULT;
154
155         buf[cnt] = 0;
156         cmp = strstrip(buf);
157
158         /* Ensure the static_key remains in a consistent state */
159         inode = file_inode(filp);
160         inode_lock(inode);
161         i = sched_feat_set(cmp);
162         inode_unlock(inode);
163         if (i == __SCHED_FEAT_NR)
164                 return -EINVAL;
165
166         *ppos += cnt;
167
168         return cnt;
169 }
170
171 static int sched_feat_open(struct inode *inode, struct file *filp)
172 {
173         return single_open(filp, sched_feat_show, NULL);
174 }
175
176 static const struct file_operations sched_feat_fops = {
177         .open           = sched_feat_open,
178         .write          = sched_feat_write,
179         .read           = seq_read,
180         .llseek         = seq_lseek,
181         .release        = single_release,
182 };
183
184 __read_mostly bool sched_debug_enabled;
185
186 static __init int sched_init_debug(void)
187 {
188         debugfs_create_file("sched_features", 0644, NULL, NULL,
189                         &sched_feat_fops);
190
191         debugfs_create_bool("sched_debug", 0644, NULL,
192                         &sched_debug_enabled);
193
194         return 0;
195 }
196 late_initcall(sched_init_debug);
197
198 #ifdef CONFIG_SMP
199
200 #ifdef CONFIG_SYSCTL
201
202 static struct ctl_table sd_ctl_dir[] = {
203         {
204                 .procname       = "sched_domain",
205                 .mode           = 0555,
206         },
207         {}
208 };
209
210 static struct ctl_table sd_ctl_root[] = {
211         {
212                 .procname       = "kernel",
213                 .mode           = 0555,
214                 .child          = sd_ctl_dir,
215         },
216         {}
217 };
218
219 static struct ctl_table *sd_alloc_ctl_entry(int n)
220 {
221         struct ctl_table *entry =
222                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
223
224         return entry;
225 }
226
227 static void sd_free_ctl_entry(struct ctl_table **tablep)
228 {
229         struct ctl_table *entry;
230
231         /*
232          * In the intermediate directories, both the child directory and
233          * procname are dynamically allocated and could fail but the mode
234          * will always be set. In the lowest directory the names are
235          * static strings and all have proc handlers.
236          */
237         for (entry = *tablep; entry->mode; entry++) {
238                 if (entry->child)
239                         sd_free_ctl_entry(&entry->child);
240                 if (entry->proc_handler == NULL)
241                         kfree(entry->procname);
242         }
243
244         kfree(*tablep);
245         *tablep = NULL;
246 }
247
248 static int min_load_idx = 0;
249 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
250
251 static void
252 set_table_entry(struct ctl_table *entry,
253                 const char *procname, void *data, int maxlen,
254                 umode_t mode, proc_handler *proc_handler,
255                 bool load_idx)
256 {
257         entry->procname = procname;
258         entry->data = data;
259         entry->maxlen = maxlen;
260         entry->mode = mode;
261         entry->proc_handler = proc_handler;
262
263         if (load_idx) {
264                 entry->extra1 = &min_load_idx;
265                 entry->extra2 = &max_load_idx;
266         }
267 }
268
269 static struct ctl_table *
270 sd_alloc_ctl_domain_table(struct sched_domain *sd)
271 {
272         struct ctl_table *table = sd_alloc_ctl_entry(14);
273
274         if (table == NULL)
275                 return NULL;
276
277         set_table_entry(&table[0], "min_interval", &sd->min_interval,
278                 sizeof(long), 0644, proc_doulongvec_minmax, false);
279         set_table_entry(&table[1], "max_interval", &sd->max_interval,
280                 sizeof(long), 0644, proc_doulongvec_minmax, false);
281         set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
282                 sizeof(int), 0644, proc_dointvec_minmax, true);
283         set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
284                 sizeof(int), 0644, proc_dointvec_minmax, true);
285         set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
286                 sizeof(int), 0644, proc_dointvec_minmax, true);
287         set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
288                 sizeof(int), 0644, proc_dointvec_minmax, true);
289         set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
290                 sizeof(int), 0644, proc_dointvec_minmax, true);
291         set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
292                 sizeof(int), 0644, proc_dointvec_minmax, false);
293         set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
294                 sizeof(int), 0644, proc_dointvec_minmax, false);
295         set_table_entry(&table[9], "cache_nice_tries",
296                 &sd->cache_nice_tries,
297                 sizeof(int), 0644, proc_dointvec_minmax, false);
298         set_table_entry(&table[10], "flags", &sd->flags,
299                 sizeof(int), 0644, proc_dointvec_minmax, false);
300         set_table_entry(&table[11], "max_newidle_lb_cost",
301                 &sd->max_newidle_lb_cost,
302                 sizeof(long), 0644, proc_doulongvec_minmax, false);
303         set_table_entry(&table[12], "name", sd->name,
304                 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
305         /* &table[13] is terminator */
306
307         return table;
308 }
309
310 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
311 {
312         struct ctl_table *entry, *table;
313         struct sched_domain *sd;
314         int domain_num = 0, i;
315         char buf[32];
316
317         for_each_domain(cpu, sd)
318                 domain_num++;
319         entry = table = sd_alloc_ctl_entry(domain_num + 1);
320         if (table == NULL)
321                 return NULL;
322
323         i = 0;
324         for_each_domain(cpu, sd) {
325                 snprintf(buf, 32, "domain%d", i);
326                 entry->procname = kstrdup(buf, GFP_KERNEL);
327                 entry->mode = 0555;
328                 entry->child = sd_alloc_ctl_domain_table(sd);
329                 entry++;
330                 i++;
331         }
332         return table;
333 }
334
335 static cpumask_var_t sd_sysctl_cpus;
336 static struct ctl_table_header *sd_sysctl_header;
337
338 void register_sched_domain_sysctl(void)
339 {
340         static struct ctl_table *cpu_entries;
341         static struct ctl_table **cpu_idx;
342         char buf[32];
343         int i;
344
345         if (!cpu_entries) {
346                 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
347                 if (!cpu_entries)
348                         return;
349
350                 WARN_ON(sd_ctl_dir[0].child);
351                 sd_ctl_dir[0].child = cpu_entries;
352         }
353
354         if (!cpu_idx) {
355                 struct ctl_table *e = cpu_entries;
356
357                 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
358                 if (!cpu_idx)
359                         return;
360
361                 /* deal with sparse possible map */
362                 for_each_possible_cpu(i) {
363                         cpu_idx[i] = e;
364                         e++;
365                 }
366         }
367
368         if (!cpumask_available(sd_sysctl_cpus)) {
369                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
370                         return;
371
372                 /* init to possible to not have holes in @cpu_entries */
373                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
374         }
375
376         for_each_cpu(i, sd_sysctl_cpus) {
377                 struct ctl_table *e = cpu_idx[i];
378
379                 if (e->child)
380                         sd_free_ctl_entry(&e->child);
381
382                 if (!e->procname) {
383                         snprintf(buf, 32, "cpu%d", i);
384                         e->procname = kstrdup(buf, GFP_KERNEL);
385                 }
386                 e->mode = 0555;
387                 e->child = sd_alloc_ctl_cpu_table(i);
388
389                 __cpumask_clear_cpu(i, sd_sysctl_cpus);
390         }
391
392         WARN_ON(sd_sysctl_header);
393         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
394 }
395
396 void dirty_sched_domain_sysctl(int cpu)
397 {
398         if (cpumask_available(sd_sysctl_cpus))
399                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
400 }
401
402 /* may be called multiple times per register */
403 void unregister_sched_domain_sysctl(void)
404 {
405         unregister_sysctl_table(sd_sysctl_header);
406         sd_sysctl_header = NULL;
407 }
408 #endif /* CONFIG_SYSCTL */
409 #endif /* CONFIG_SMP */
410
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
413 {
414         struct sched_entity *se = tg->se[cpu];
415
416 #define P(F) \
417         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
418 #define P_SCHEDSTAT(F) \
419         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)schedstat_val(F))
420 #define PN(F) \
421         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
422 #define PN_SCHEDSTAT(F) \
423         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
424
425         if (!se)
426                 return;
427
428         PN(se->exec_start);
429         PN(se->vruntime);
430         PN(se->sum_exec_runtime);
431         if (schedstat_enabled()) {
432                 PN_SCHEDSTAT(se->statistics.wait_start);
433                 PN_SCHEDSTAT(se->statistics.sleep_start);
434                 PN_SCHEDSTAT(se->statistics.block_start);
435                 PN_SCHEDSTAT(se->statistics.sleep_max);
436                 PN_SCHEDSTAT(se->statistics.block_max);
437                 PN_SCHEDSTAT(se->statistics.exec_max);
438                 PN_SCHEDSTAT(se->statistics.slice_max);
439                 PN_SCHEDSTAT(se->statistics.wait_max);
440                 PN_SCHEDSTAT(se->statistics.wait_sum);
441                 P_SCHEDSTAT(se->statistics.wait_count);
442         }
443         P(se->load.weight);
444         P(se->runnable_weight);
445 #ifdef CONFIG_SMP
446         P(se->avg.load_avg);
447         P(se->avg.util_avg);
448         P(se->avg.runnable_load_avg);
449 #endif
450
451 #undef PN_SCHEDSTAT
452 #undef PN
453 #undef P_SCHEDSTAT
454 #undef P
455 }
456 #endif
457
458 #ifdef CONFIG_CGROUP_SCHED
459 static char group_path[PATH_MAX];
460
461 static char *task_group_path(struct task_group *tg)
462 {
463         if (autogroup_path(tg, group_path, PATH_MAX))
464                 return group_path;
465
466         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
467         return group_path;
468 }
469 #endif
470
471 static void
472 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
473 {
474         if (rq->curr == p)
475                 SEQ_printf(m, ">R");
476         else
477                 SEQ_printf(m, " %c", task_state_to_char(p));
478
479         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
480                 p->comm, task_pid_nr(p),
481                 SPLIT_NS(p->se.vruntime),
482                 (long long)(p->nvcsw + p->nivcsw),
483                 p->prio);
484
485         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
486                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
487                 SPLIT_NS(p->se.sum_exec_runtime),
488                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
489
490 #ifdef CONFIG_NUMA_BALANCING
491         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
492 #endif
493 #ifdef CONFIG_CGROUP_SCHED
494         SEQ_printf(m, " %s", task_group_path(task_group(p)));
495 #endif
496
497         SEQ_printf(m, "\n");
498 }
499
500 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
501 {
502         struct task_struct *g, *p;
503
504         SEQ_printf(m, "\n");
505         SEQ_printf(m, "runnable tasks:\n");
506         SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
507                    "     wait-time             sum-exec        sum-sleep\n");
508         SEQ_printf(m, "-------------------------------------------------------"
509                    "----------------------------------------------------\n");
510
511         rcu_read_lock();
512         for_each_process_thread(g, p) {
513                 if (task_cpu(p) != rq_cpu)
514                         continue;
515
516                 print_task(m, rq, p);
517         }
518         rcu_read_unlock();
519 }
520
521 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
522 {
523         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
524                 spread, rq0_min_vruntime, spread0;
525         struct rq *rq = cpu_rq(cpu);
526         struct sched_entity *last;
527         unsigned long flags;
528
529 #ifdef CONFIG_FAIR_GROUP_SCHED
530         SEQ_printf(m, "\n");
531         SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
532 #else
533         SEQ_printf(m, "\n");
534         SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
535 #endif
536         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
537                         SPLIT_NS(cfs_rq->exec_clock));
538
539         raw_spin_lock_irqsave(&rq->lock, flags);
540         if (rb_first_cached(&cfs_rq->tasks_timeline))
541                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
542         last = __pick_last_entity(cfs_rq);
543         if (last)
544                 max_vruntime = last->vruntime;
545         min_vruntime = cfs_rq->min_vruntime;
546         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
547         raw_spin_unlock_irqrestore(&rq->lock, flags);
548         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
549                         SPLIT_NS(MIN_vruntime));
550         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
551                         SPLIT_NS(min_vruntime));
552         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
553                         SPLIT_NS(max_vruntime));
554         spread = max_vruntime - MIN_vruntime;
555         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
556                         SPLIT_NS(spread));
557         spread0 = min_vruntime - rq0_min_vruntime;
558         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
559                         SPLIT_NS(spread0));
560         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
561                         cfs_rq->nr_spread_over);
562         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
563         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
564 #ifdef CONFIG_SMP
565         SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
566         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
567                         cfs_rq->avg.load_avg);
568         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
569                         cfs_rq->avg.runnable_load_avg);
570         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
571                         cfs_rq->avg.util_avg);
572         SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
573                         cfs_rq->removed.load_avg);
574         SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
575                         cfs_rq->removed.util_avg);
576         SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
577                         cfs_rq->removed.runnable_sum);
578 #ifdef CONFIG_FAIR_GROUP_SCHED
579         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
580                         cfs_rq->tg_load_avg_contrib);
581         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
582                         atomic_long_read(&cfs_rq->tg->load_avg));
583 #endif
584 #endif
585 #ifdef CONFIG_CFS_BANDWIDTH
586         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
587                         cfs_rq->throttled);
588         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
589                         cfs_rq->throttle_count);
590 #endif
591
592 #ifdef CONFIG_FAIR_GROUP_SCHED
593         print_cfs_group_stats(m, cpu, cfs_rq->tg);
594 #endif
595 }
596
597 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
598 {
599 #ifdef CONFIG_RT_GROUP_SCHED
600         SEQ_printf(m, "\n");
601         SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
602 #else
603         SEQ_printf(m, "\n");
604         SEQ_printf(m, "rt_rq[%d]:\n", cpu);
605 #endif
606
607 #define P(x) \
608         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
609 #define PU(x) \
610         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
611 #define PN(x) \
612         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
613
614         PU(rt_nr_running);
615 #ifdef CONFIG_SMP
616         PU(rt_nr_migratory);
617 #endif
618         P(rt_throttled);
619         PN(rt_time);
620         PN(rt_runtime);
621
622 #undef PN
623 #undef PU
624 #undef P
625 }
626
627 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
628 {
629         struct dl_bw *dl_bw;
630
631         SEQ_printf(m, "\n");
632         SEQ_printf(m, "dl_rq[%d]:\n", cpu);
633
634 #define PU(x) \
635         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
636
637         PU(dl_nr_running);
638 #ifdef CONFIG_SMP
639         PU(dl_nr_migratory);
640         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
641 #else
642         dl_bw = &dl_rq->dl_bw;
643 #endif
644         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
645         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
646
647 #undef PU
648 }
649
650 extern __read_mostly int sched_clock_running;
651
652 static void print_cpu(struct seq_file *m, int cpu)
653 {
654         struct rq *rq = cpu_rq(cpu);
655         unsigned long flags;
656
657 #ifdef CONFIG_X86
658         {
659                 unsigned int freq = cpu_khz ? : 1;
660
661                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
662                            cpu, freq / 1000, (freq % 1000));
663         }
664 #else
665         SEQ_printf(m, "cpu#%d\n", cpu);
666 #endif
667
668 #define P(x)                                                            \
669 do {                                                                    \
670         if (sizeof(rq->x) == 4)                                         \
671                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
672         else                                                            \
673                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
674 } while (0)
675
676 #define PN(x) \
677         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
678
679         P(nr_running);
680         SEQ_printf(m, "  .%-30s: %lu\n", "load",
681                    rq->load.weight);
682         P(nr_switches);
683         P(nr_load_updates);
684         P(nr_uninterruptible);
685         PN(next_balance);
686         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
687         PN(clock);
688         PN(clock_task);
689         P(cpu_load[0]);
690         P(cpu_load[1]);
691         P(cpu_load[2]);
692         P(cpu_load[3]);
693         P(cpu_load[4]);
694 #undef P
695 #undef PN
696
697 #ifdef CONFIG_SMP
698 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
699         P64(avg_idle);
700         P64(max_idle_balance_cost);
701 #undef P64
702 #endif
703
704 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
705         if (schedstat_enabled()) {
706                 P(yld_count);
707                 P(sched_count);
708                 P(sched_goidle);
709                 P(ttwu_count);
710                 P(ttwu_local);
711         }
712 #undef P
713
714         spin_lock_irqsave(&sched_debug_lock, flags);
715         print_cfs_stats(m, cpu);
716         print_rt_stats(m, cpu);
717         print_dl_stats(m, cpu);
718
719         print_rq(m, rq, cpu);
720         spin_unlock_irqrestore(&sched_debug_lock, flags);
721         SEQ_printf(m, "\n");
722 }
723
724 static const char *sched_tunable_scaling_names[] = {
725         "none",
726         "logaritmic",
727         "linear"
728 };
729
730 static void sched_debug_header(struct seq_file *m)
731 {
732         u64 ktime, sched_clk, cpu_clk;
733         unsigned long flags;
734
735         local_irq_save(flags);
736         ktime = ktime_to_ns(ktime_get());
737         sched_clk = sched_clock();
738         cpu_clk = local_clock();
739         local_irq_restore(flags);
740
741         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
742                 init_utsname()->release,
743                 (int)strcspn(init_utsname()->version, " "),
744                 init_utsname()->version);
745
746 #define P(x) \
747         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
748 #define PN(x) \
749         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
750         PN(ktime);
751         PN(sched_clk);
752         PN(cpu_clk);
753         P(jiffies);
754 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
755         P(sched_clock_stable());
756 #endif
757 #undef PN
758 #undef P
759
760         SEQ_printf(m, "\n");
761         SEQ_printf(m, "sysctl_sched\n");
762
763 #define P(x) \
764         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
765 #define PN(x) \
766         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
767         PN(sysctl_sched_latency);
768         PN(sysctl_sched_min_granularity);
769         PN(sysctl_sched_wakeup_granularity);
770         P(sysctl_sched_child_runs_first);
771         P(sysctl_sched_features);
772 #undef PN
773 #undef P
774
775         SEQ_printf(m, "  .%-40s: %d (%s)\n",
776                 "sysctl_sched_tunable_scaling",
777                 sysctl_sched_tunable_scaling,
778                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
779         SEQ_printf(m, "\n");
780 }
781
782 static int sched_debug_show(struct seq_file *m, void *v)
783 {
784         int cpu = (unsigned long)(v - 2);
785
786         if (cpu != -1)
787                 print_cpu(m, cpu);
788         else
789                 sched_debug_header(m);
790
791         return 0;
792 }
793
794 void sysrq_sched_debug_show(void)
795 {
796         int cpu;
797
798         sched_debug_header(NULL);
799         for_each_online_cpu(cpu)
800                 print_cpu(NULL, cpu);
801
802 }
803
804 /*
805  * This itererator needs some explanation.
806  * It returns 1 for the header position.
807  * This means 2 is cpu 0.
808  * In a hotplugged system some cpus, including cpu 0, may be missing so we have
809  * to use cpumask_* to iterate over the cpus.
810  */
811 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
812 {
813         unsigned long n = *offset;
814
815         if (n == 0)
816                 return (void *) 1;
817
818         n--;
819
820         if (n > 0)
821                 n = cpumask_next(n - 1, cpu_online_mask);
822         else
823                 n = cpumask_first(cpu_online_mask);
824
825         *offset = n + 1;
826
827         if (n < nr_cpu_ids)
828                 return (void *)(unsigned long)(n + 2);
829         return NULL;
830 }
831
832 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
833 {
834         (*offset)++;
835         return sched_debug_start(file, offset);
836 }
837
838 static void sched_debug_stop(struct seq_file *file, void *data)
839 {
840 }
841
842 static const struct seq_operations sched_debug_sops = {
843         .start = sched_debug_start,
844         .next = sched_debug_next,
845         .stop = sched_debug_stop,
846         .show = sched_debug_show,
847 };
848
849 static int sched_debug_release(struct inode *inode, struct file *file)
850 {
851         seq_release(inode, file);
852
853         return 0;
854 }
855
856 static int sched_debug_open(struct inode *inode, struct file *filp)
857 {
858         int ret = 0;
859
860         ret = seq_open(filp, &sched_debug_sops);
861
862         return ret;
863 }
864
865 static const struct file_operations sched_debug_fops = {
866         .open           = sched_debug_open,
867         .read           = seq_read,
868         .llseek         = seq_lseek,
869         .release        = sched_debug_release,
870 };
871
872 static int __init init_sched_debug_procfs(void)
873 {
874         struct proc_dir_entry *pe;
875
876         pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
877         if (!pe)
878                 return -ENOMEM;
879         return 0;
880 }
881
882 __initcall(init_sched_debug_procfs);
883
884 #define __P(F) \
885         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
886 #define P(F) \
887         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
888 #define __PN(F) \
889         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
890 #define PN(F) \
891         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
892
893
894 #ifdef CONFIG_NUMA_BALANCING
895 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
896                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
897 {
898         SEQ_printf(m, "numa_faults node=%d ", node);
899         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
900         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
901 }
902 #endif
903
904
905 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
906 {
907 #ifdef CONFIG_NUMA_BALANCING
908         struct mempolicy *pol;
909
910         if (p->mm)
911                 P(mm->numa_scan_seq);
912
913         task_lock(p);
914         pol = p->mempolicy;
915         if (pol && !(pol->flags & MPOL_F_MORON))
916                 pol = NULL;
917         mpol_get(pol);
918         task_unlock(p);
919
920         P(numa_pages_migrated);
921         P(numa_preferred_nid);
922         P(total_numa_faults);
923         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
924                         task_node(p), task_numa_group_id(p));
925         show_numa_stats(p, m);
926         mpol_put(pol);
927 #endif
928 }
929
930 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
931                                                   struct seq_file *m)
932 {
933         unsigned long nr_switches;
934
935         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
936                                                 get_nr_threads(p));
937         SEQ_printf(m,
938                 "---------------------------------------------------------"
939                 "----------\n");
940 #define __P(F) \
941         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
942 #define P(F) \
943         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
944 #define P_SCHEDSTAT(F) \
945         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
946 #define __PN(F) \
947         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
948 #define PN(F) \
949         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
950 #define PN_SCHEDSTAT(F) \
951         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
952
953         PN(se.exec_start);
954         PN(se.vruntime);
955         PN(se.sum_exec_runtime);
956
957         nr_switches = p->nvcsw + p->nivcsw;
958
959         P(se.nr_migrations);
960
961         if (schedstat_enabled()) {
962                 u64 avg_atom, avg_per_cpu;
963
964                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
965                 PN_SCHEDSTAT(se.statistics.wait_start);
966                 PN_SCHEDSTAT(se.statistics.sleep_start);
967                 PN_SCHEDSTAT(se.statistics.block_start);
968                 PN_SCHEDSTAT(se.statistics.sleep_max);
969                 PN_SCHEDSTAT(se.statistics.block_max);
970                 PN_SCHEDSTAT(se.statistics.exec_max);
971                 PN_SCHEDSTAT(se.statistics.slice_max);
972                 PN_SCHEDSTAT(se.statistics.wait_max);
973                 PN_SCHEDSTAT(se.statistics.wait_sum);
974                 P_SCHEDSTAT(se.statistics.wait_count);
975                 PN_SCHEDSTAT(se.statistics.iowait_sum);
976                 P_SCHEDSTAT(se.statistics.iowait_count);
977                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
978                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
979                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
980                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
981                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
982                 P_SCHEDSTAT(se.statistics.nr_wakeups);
983                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
984                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
985                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
986                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
987                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
988                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
989                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
990                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
991
992                 avg_atom = p->se.sum_exec_runtime;
993                 if (nr_switches)
994                         avg_atom = div64_ul(avg_atom, nr_switches);
995                 else
996                         avg_atom = -1LL;
997
998                 avg_per_cpu = p->se.sum_exec_runtime;
999                 if (p->se.nr_migrations) {
1000                         avg_per_cpu = div64_u64(avg_per_cpu,
1001                                                 p->se.nr_migrations);
1002                 } else {
1003                         avg_per_cpu = -1LL;
1004                 }
1005
1006                 __PN(avg_atom);
1007                 __PN(avg_per_cpu);
1008         }
1009
1010         __P(nr_switches);
1011         SEQ_printf(m, "%-45s:%21Ld\n",
1012                    "nr_voluntary_switches", (long long)p->nvcsw);
1013         SEQ_printf(m, "%-45s:%21Ld\n",
1014                    "nr_involuntary_switches", (long long)p->nivcsw);
1015
1016         P(se.load.weight);
1017         P(se.runnable_weight);
1018 #ifdef CONFIG_SMP
1019         P(se.avg.load_sum);
1020         P(se.avg.runnable_load_sum);
1021         P(se.avg.util_sum);
1022         P(se.avg.load_avg);
1023         P(se.avg.runnable_load_avg);
1024         P(se.avg.util_avg);
1025         P(se.avg.last_update_time);
1026 #endif
1027         P(policy);
1028         P(prio);
1029         if (p->policy == SCHED_DEADLINE) {
1030                 P(dl.runtime);
1031                 P(dl.deadline);
1032         }
1033 #undef PN_SCHEDSTAT
1034 #undef PN
1035 #undef __PN
1036 #undef P_SCHEDSTAT
1037 #undef P
1038 #undef __P
1039
1040         {
1041                 unsigned int this_cpu = raw_smp_processor_id();
1042                 u64 t0, t1;
1043
1044                 t0 = cpu_clock(this_cpu);
1045                 t1 = cpu_clock(this_cpu);
1046                 SEQ_printf(m, "%-45s:%21Ld\n",
1047                            "clock-delta", (long long)(t1-t0));
1048         }
1049
1050         sched_show_numa(p, m);
1051 }
1052
1053 void proc_sched_set_task(struct task_struct *p)
1054 {
1055 #ifdef CONFIG_SCHEDSTATS
1056         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1057 #endif
1058 }