sched: Clean up and harmonize the coding style of the scheduler code base
[linux-2.6-block.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/proc_fs.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/task.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18 #include <linux/mempolicy.h>
19 #include <linux/debugfs.h>
20
21 #include "sched.h"
22
23 static DEFINE_SPINLOCK(sched_debug_lock);
24
25 /*
26  * This allows printing both to /proc/sched_debug and
27  * to the console
28  */
29 #define SEQ_printf(m, x...)                     \
30  do {                                           \
31         if (m)                                  \
32                 seq_printf(m, x);               \
33         else                                    \
34                 printk(x);                      \
35  } while (0)
36
37 /*
38  * Ease the printing of nsec fields:
39  */
40 static long long nsec_high(unsigned long long nsec)
41 {
42         if ((long long)nsec < 0) {
43                 nsec = -nsec;
44                 do_div(nsec, 1000000);
45                 return -nsec;
46         }
47         do_div(nsec, 1000000);
48
49         return nsec;
50 }
51
52 static unsigned long nsec_low(unsigned long long nsec)
53 {
54         if ((long long)nsec < 0)
55                 nsec = -nsec;
56
57         return do_div(nsec, 1000000);
58 }
59
60 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
61
62 #define SCHED_FEAT(name, enabled)       \
63         #name ,
64
65 static const char * const sched_feat_names[] = {
66 #include "features.h"
67 };
68
69 #undef SCHED_FEAT
70
71 static int sched_feat_show(struct seq_file *m, void *v)
72 {
73         int i;
74
75         for (i = 0; i < __SCHED_FEAT_NR; i++) {
76                 if (!(sysctl_sched_features & (1UL << i)))
77                         seq_puts(m, "NO_");
78                 seq_printf(m, "%s ", sched_feat_names[i]);
79         }
80         seq_puts(m, "\n");
81
82         return 0;
83 }
84
85 #ifdef HAVE_JUMP_LABEL
86
87 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
88 #define jump_label_key__false STATIC_KEY_INIT_FALSE
89
90 #define SCHED_FEAT(name, enabled)       \
91         jump_label_key__##enabled ,
92
93 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
94 #include "features.h"
95 };
96
97 #undef SCHED_FEAT
98
99 static void sched_feat_disable(int i)
100 {
101         static_key_disable(&sched_feat_keys[i]);
102 }
103
104 static void sched_feat_enable(int i)
105 {
106         static_key_enable(&sched_feat_keys[i]);
107 }
108 #else
109 static void sched_feat_disable(int i) { };
110 static void sched_feat_enable(int i) { };
111 #endif /* HAVE_JUMP_LABEL */
112
113 static int sched_feat_set(char *cmp)
114 {
115         int i;
116         int neg = 0;
117
118         if (strncmp(cmp, "NO_", 3) == 0) {
119                 neg = 1;
120                 cmp += 3;
121         }
122
123         for (i = 0; i < __SCHED_FEAT_NR; i++) {
124                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
125                         if (neg) {
126                                 sysctl_sched_features &= ~(1UL << i);
127                                 sched_feat_disable(i);
128                         } else {
129                                 sysctl_sched_features |= (1UL << i);
130                                 sched_feat_enable(i);
131                         }
132                         break;
133                 }
134         }
135
136         return i;
137 }
138
139 static ssize_t
140 sched_feat_write(struct file *filp, const char __user *ubuf,
141                 size_t cnt, loff_t *ppos)
142 {
143         char buf[64];
144         char *cmp;
145         int i;
146         struct inode *inode;
147
148         if (cnt > 63)
149                 cnt = 63;
150
151         if (copy_from_user(&buf, ubuf, cnt))
152                 return -EFAULT;
153
154         buf[cnt] = 0;
155         cmp = strstrip(buf);
156
157         /* Ensure the static_key remains in a consistent state */
158         inode = file_inode(filp);
159         inode_lock(inode);
160         i = sched_feat_set(cmp);
161         inode_unlock(inode);
162         if (i == __SCHED_FEAT_NR)
163                 return -EINVAL;
164
165         *ppos += cnt;
166
167         return cnt;
168 }
169
170 static int sched_feat_open(struct inode *inode, struct file *filp)
171 {
172         return single_open(filp, sched_feat_show, NULL);
173 }
174
175 static const struct file_operations sched_feat_fops = {
176         .open           = sched_feat_open,
177         .write          = sched_feat_write,
178         .read           = seq_read,
179         .llseek         = seq_lseek,
180         .release        = single_release,
181 };
182
183 __read_mostly bool sched_debug_enabled;
184
185 static __init int sched_init_debug(void)
186 {
187         debugfs_create_file("sched_features", 0644, NULL, NULL,
188                         &sched_feat_fops);
189
190         debugfs_create_bool("sched_debug", 0644, NULL,
191                         &sched_debug_enabled);
192
193         return 0;
194 }
195 late_initcall(sched_init_debug);
196
197 #ifdef CONFIG_SMP
198
199 #ifdef CONFIG_SYSCTL
200
201 static struct ctl_table sd_ctl_dir[] = {
202         {
203                 .procname       = "sched_domain",
204                 .mode           = 0555,
205         },
206         {}
207 };
208
209 static struct ctl_table sd_ctl_root[] = {
210         {
211                 .procname       = "kernel",
212                 .mode           = 0555,
213                 .child          = sd_ctl_dir,
214         },
215         {}
216 };
217
218 static struct ctl_table *sd_alloc_ctl_entry(int n)
219 {
220         struct ctl_table *entry =
221                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
222
223         return entry;
224 }
225
226 static void sd_free_ctl_entry(struct ctl_table **tablep)
227 {
228         struct ctl_table *entry;
229
230         /*
231          * In the intermediate directories, both the child directory and
232          * procname are dynamically allocated and could fail but the mode
233          * will always be set. In the lowest directory the names are
234          * static strings and all have proc handlers.
235          */
236         for (entry = *tablep; entry->mode; entry++) {
237                 if (entry->child)
238                         sd_free_ctl_entry(&entry->child);
239                 if (entry->proc_handler == NULL)
240                         kfree(entry->procname);
241         }
242
243         kfree(*tablep);
244         *tablep = NULL;
245 }
246
247 static int min_load_idx = 0;
248 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
249
250 static void
251 set_table_entry(struct ctl_table *entry,
252                 const char *procname, void *data, int maxlen,
253                 umode_t mode, proc_handler *proc_handler,
254                 bool load_idx)
255 {
256         entry->procname = procname;
257         entry->data = data;
258         entry->maxlen = maxlen;
259         entry->mode = mode;
260         entry->proc_handler = proc_handler;
261
262         if (load_idx) {
263                 entry->extra1 = &min_load_idx;
264                 entry->extra2 = &max_load_idx;
265         }
266 }
267
268 static struct ctl_table *
269 sd_alloc_ctl_domain_table(struct sched_domain *sd)
270 {
271         struct ctl_table *table = sd_alloc_ctl_entry(14);
272
273         if (table == NULL)
274                 return NULL;
275
276         set_table_entry(&table[0] , "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
277         set_table_entry(&table[1] , "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
278         set_table_entry(&table[2] , "busy_idx",            &sd->busy_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
279         set_table_entry(&table[3] , "idle_idx",            &sd->idle_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
280         set_table_entry(&table[4] , "newidle_idx",         &sd->newidle_idx,         sizeof(int) , 0644, proc_dointvec_minmax,   true );
281         set_table_entry(&table[5] , "wake_idx",            &sd->wake_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
282         set_table_entry(&table[6] , "forkexec_idx",        &sd->forkexec_idx,        sizeof(int) , 0644, proc_dointvec_minmax,   true );
283         set_table_entry(&table[7] , "busy_factor",         &sd->busy_factor,         sizeof(int) , 0644, proc_dointvec_minmax,   false);
284         set_table_entry(&table[8] , "imbalance_pct",       &sd->imbalance_pct,       sizeof(int) , 0644, proc_dointvec_minmax,   false);
285         set_table_entry(&table[9] , "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
286         set_table_entry(&table[10], "flags",               &sd->flags,               sizeof(int) , 0644, proc_dointvec_minmax,   false);
287         set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
288         set_table_entry(&table[12], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring,          false);
289         /* &table[13] is terminator */
290
291         return table;
292 }
293
294 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
295 {
296         struct ctl_table *entry, *table;
297         struct sched_domain *sd;
298         int domain_num = 0, i;
299         char buf[32];
300
301         for_each_domain(cpu, sd)
302                 domain_num++;
303         entry = table = sd_alloc_ctl_entry(domain_num + 1);
304         if (table == NULL)
305                 return NULL;
306
307         i = 0;
308         for_each_domain(cpu, sd) {
309                 snprintf(buf, 32, "domain%d", i);
310                 entry->procname = kstrdup(buf, GFP_KERNEL);
311                 entry->mode = 0555;
312                 entry->child = sd_alloc_ctl_domain_table(sd);
313                 entry++;
314                 i++;
315         }
316         return table;
317 }
318
319 static cpumask_var_t            sd_sysctl_cpus;
320 static struct ctl_table_header  *sd_sysctl_header;
321
322 void register_sched_domain_sysctl(void)
323 {
324         static struct ctl_table *cpu_entries;
325         static struct ctl_table **cpu_idx;
326         char buf[32];
327         int i;
328
329         if (!cpu_entries) {
330                 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
331                 if (!cpu_entries)
332                         return;
333
334                 WARN_ON(sd_ctl_dir[0].child);
335                 sd_ctl_dir[0].child = cpu_entries;
336         }
337
338         if (!cpu_idx) {
339                 struct ctl_table *e = cpu_entries;
340
341                 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
342                 if (!cpu_idx)
343                         return;
344
345                 /* deal with sparse possible map */
346                 for_each_possible_cpu(i) {
347                         cpu_idx[i] = e;
348                         e++;
349                 }
350         }
351
352         if (!cpumask_available(sd_sysctl_cpus)) {
353                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
354                         return;
355
356                 /* init to possible to not have holes in @cpu_entries */
357                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
358         }
359
360         for_each_cpu(i, sd_sysctl_cpus) {
361                 struct ctl_table *e = cpu_idx[i];
362
363                 if (e->child)
364                         sd_free_ctl_entry(&e->child);
365
366                 if (!e->procname) {
367                         snprintf(buf, 32, "cpu%d", i);
368                         e->procname = kstrdup(buf, GFP_KERNEL);
369                 }
370                 e->mode = 0555;
371                 e->child = sd_alloc_ctl_cpu_table(i);
372
373                 __cpumask_clear_cpu(i, sd_sysctl_cpus);
374         }
375
376         WARN_ON(sd_sysctl_header);
377         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
378 }
379
380 void dirty_sched_domain_sysctl(int cpu)
381 {
382         if (cpumask_available(sd_sysctl_cpus))
383                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
384 }
385
386 /* may be called multiple times per register */
387 void unregister_sched_domain_sysctl(void)
388 {
389         unregister_sysctl_table(sd_sysctl_header);
390         sd_sysctl_header = NULL;
391 }
392 #endif /* CONFIG_SYSCTL */
393 #endif /* CONFIG_SMP */
394
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
397 {
398         struct sched_entity *se = tg->se[cpu];
399
400 #define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
401 #define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
402 #define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
403 #define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
404
405         if (!se)
406                 return;
407
408         PN(se->exec_start);
409         PN(se->vruntime);
410         PN(se->sum_exec_runtime);
411
412         if (schedstat_enabled()) {
413                 PN_SCHEDSTAT(se->statistics.wait_start);
414                 PN_SCHEDSTAT(se->statistics.sleep_start);
415                 PN_SCHEDSTAT(se->statistics.block_start);
416                 PN_SCHEDSTAT(se->statistics.sleep_max);
417                 PN_SCHEDSTAT(se->statistics.block_max);
418                 PN_SCHEDSTAT(se->statistics.exec_max);
419                 PN_SCHEDSTAT(se->statistics.slice_max);
420                 PN_SCHEDSTAT(se->statistics.wait_max);
421                 PN_SCHEDSTAT(se->statistics.wait_sum);
422                 P_SCHEDSTAT(se->statistics.wait_count);
423         }
424
425         P(se->load.weight);
426         P(se->runnable_weight);
427 #ifdef CONFIG_SMP
428         P(se->avg.load_avg);
429         P(se->avg.util_avg);
430         P(se->avg.runnable_load_avg);
431 #endif
432
433 #undef PN_SCHEDSTAT
434 #undef PN
435 #undef P_SCHEDSTAT
436 #undef P
437 }
438 #endif
439
440 #ifdef CONFIG_CGROUP_SCHED
441 static char group_path[PATH_MAX];
442
443 static char *task_group_path(struct task_group *tg)
444 {
445         if (autogroup_path(tg, group_path, PATH_MAX))
446                 return group_path;
447
448         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
449
450         return group_path;
451 }
452 #endif
453
454 static void
455 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
456 {
457         if (rq->curr == p)
458                 SEQ_printf(m, ">R");
459         else
460                 SEQ_printf(m, " %c", task_state_to_char(p));
461
462         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
463                 p->comm, task_pid_nr(p),
464                 SPLIT_NS(p->se.vruntime),
465                 (long long)(p->nvcsw + p->nivcsw),
466                 p->prio);
467
468         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
469                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
470                 SPLIT_NS(p->se.sum_exec_runtime),
471                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
472
473 #ifdef CONFIG_NUMA_BALANCING
474         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
475 #endif
476 #ifdef CONFIG_CGROUP_SCHED
477         SEQ_printf(m, " %s", task_group_path(task_group(p)));
478 #endif
479
480         SEQ_printf(m, "\n");
481 }
482
483 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
484 {
485         struct task_struct *g, *p;
486
487         SEQ_printf(m,
488         "\nrunnable tasks:\n"
489         " S           task   PID         tree-key  switches  prio"
490         "     wait-time             sum-exec        sum-sleep\n"
491         "-------------------------------------------------------"
492         "----------------------------------------------------\n");
493
494         rcu_read_lock();
495         for_each_process_thread(g, p) {
496                 if (task_cpu(p) != rq_cpu)
497                         continue;
498
499                 print_task(m, rq, p);
500         }
501         rcu_read_unlock();
502 }
503
504 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
505 {
506         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
507                 spread, rq0_min_vruntime, spread0;
508         struct rq *rq = cpu_rq(cpu);
509         struct sched_entity *last;
510         unsigned long flags;
511
512 #ifdef CONFIG_FAIR_GROUP_SCHED
513         SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
514 #else
515         SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
516 #endif
517         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
518                         SPLIT_NS(cfs_rq->exec_clock));
519
520         raw_spin_lock_irqsave(&rq->lock, flags);
521         if (rb_first_cached(&cfs_rq->tasks_timeline))
522                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
523         last = __pick_last_entity(cfs_rq);
524         if (last)
525                 max_vruntime = last->vruntime;
526         min_vruntime = cfs_rq->min_vruntime;
527         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
528         raw_spin_unlock_irqrestore(&rq->lock, flags);
529         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
530                         SPLIT_NS(MIN_vruntime));
531         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
532                         SPLIT_NS(min_vruntime));
533         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
534                         SPLIT_NS(max_vruntime));
535         spread = max_vruntime - MIN_vruntime;
536         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
537                         SPLIT_NS(spread));
538         spread0 = min_vruntime - rq0_min_vruntime;
539         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
540                         SPLIT_NS(spread0));
541         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
542                         cfs_rq->nr_spread_over);
543         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
544         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
545 #ifdef CONFIG_SMP
546         SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
547         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
548                         cfs_rq->avg.load_avg);
549         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
550                         cfs_rq->avg.runnable_load_avg);
551         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
552                         cfs_rq->avg.util_avg);
553         SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
554                         cfs_rq->removed.load_avg);
555         SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
556                         cfs_rq->removed.util_avg);
557         SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
558                         cfs_rq->removed.runnable_sum);
559 #ifdef CONFIG_FAIR_GROUP_SCHED
560         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
561                         cfs_rq->tg_load_avg_contrib);
562         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
563                         atomic_long_read(&cfs_rq->tg->load_avg));
564 #endif
565 #endif
566 #ifdef CONFIG_CFS_BANDWIDTH
567         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
568                         cfs_rq->throttled);
569         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
570                         cfs_rq->throttle_count);
571 #endif
572
573 #ifdef CONFIG_FAIR_GROUP_SCHED
574         print_cfs_group_stats(m, cpu, cfs_rq->tg);
575 #endif
576 }
577
578 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
579 {
580 #ifdef CONFIG_RT_GROUP_SCHED
581         SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
582 #else
583         SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
584 #endif
585
586 #define P(x) \
587         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
588 #define PU(x) \
589         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
590 #define PN(x) \
591         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
592
593         PU(rt_nr_running);
594 #ifdef CONFIG_SMP
595         PU(rt_nr_migratory);
596 #endif
597         P(rt_throttled);
598         PN(rt_time);
599         PN(rt_runtime);
600
601 #undef PN
602 #undef PU
603 #undef P
604 }
605
606 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
607 {
608         struct dl_bw *dl_bw;
609
610         SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
611
612 #define PU(x) \
613         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
614
615         PU(dl_nr_running);
616 #ifdef CONFIG_SMP
617         PU(dl_nr_migratory);
618         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
619 #else
620         dl_bw = &dl_rq->dl_bw;
621 #endif
622         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
623         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
624
625 #undef PU
626 }
627
628 extern __read_mostly int sched_clock_running;
629
630 static void print_cpu(struct seq_file *m, int cpu)
631 {
632         struct rq *rq = cpu_rq(cpu);
633         unsigned long flags;
634
635 #ifdef CONFIG_X86
636         {
637                 unsigned int freq = cpu_khz ? : 1;
638
639                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
640                            cpu, freq / 1000, (freq % 1000));
641         }
642 #else
643         SEQ_printf(m, "cpu#%d\n", cpu);
644 #endif
645
646 #define P(x)                                                            \
647 do {                                                                    \
648         if (sizeof(rq->x) == 4)                                         \
649                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
650         else                                                            \
651                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
652 } while (0)
653
654 #define PN(x) \
655         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
656
657         P(nr_running);
658         SEQ_printf(m, "  .%-30s: %lu\n", "load",
659                    rq->load.weight);
660         P(nr_switches);
661         P(nr_load_updates);
662         P(nr_uninterruptible);
663         PN(next_balance);
664         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
665         PN(clock);
666         PN(clock_task);
667         P(cpu_load[0]);
668         P(cpu_load[1]);
669         P(cpu_load[2]);
670         P(cpu_load[3]);
671         P(cpu_load[4]);
672 #undef P
673 #undef PN
674
675 #ifdef CONFIG_SMP
676 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
677         P64(avg_idle);
678         P64(max_idle_balance_cost);
679 #undef P64
680 #endif
681
682 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
683         if (schedstat_enabled()) {
684                 P(yld_count);
685                 P(sched_count);
686                 P(sched_goidle);
687                 P(ttwu_count);
688                 P(ttwu_local);
689         }
690 #undef P
691
692         spin_lock_irqsave(&sched_debug_lock, flags);
693         print_cfs_stats(m, cpu);
694         print_rt_stats(m, cpu);
695         print_dl_stats(m, cpu);
696
697         print_rq(m, rq, cpu);
698         spin_unlock_irqrestore(&sched_debug_lock, flags);
699         SEQ_printf(m, "\n");
700 }
701
702 static const char *sched_tunable_scaling_names[] = {
703         "none",
704         "logaritmic",
705         "linear"
706 };
707
708 static void sched_debug_header(struct seq_file *m)
709 {
710         u64 ktime, sched_clk, cpu_clk;
711         unsigned long flags;
712
713         local_irq_save(flags);
714         ktime = ktime_to_ns(ktime_get());
715         sched_clk = sched_clock();
716         cpu_clk = local_clock();
717         local_irq_restore(flags);
718
719         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
720                 init_utsname()->release,
721                 (int)strcspn(init_utsname()->version, " "),
722                 init_utsname()->version);
723
724 #define P(x) \
725         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
726 #define PN(x) \
727         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
728         PN(ktime);
729         PN(sched_clk);
730         PN(cpu_clk);
731         P(jiffies);
732 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
733         P(sched_clock_stable());
734 #endif
735 #undef PN
736 #undef P
737
738         SEQ_printf(m, "\n");
739         SEQ_printf(m, "sysctl_sched\n");
740
741 #define P(x) \
742         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
743 #define PN(x) \
744         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
745         PN(sysctl_sched_latency);
746         PN(sysctl_sched_min_granularity);
747         PN(sysctl_sched_wakeup_granularity);
748         P(sysctl_sched_child_runs_first);
749         P(sysctl_sched_features);
750 #undef PN
751 #undef P
752
753         SEQ_printf(m, "  .%-40s: %d (%s)\n",
754                 "sysctl_sched_tunable_scaling",
755                 sysctl_sched_tunable_scaling,
756                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
757         SEQ_printf(m, "\n");
758 }
759
760 static int sched_debug_show(struct seq_file *m, void *v)
761 {
762         int cpu = (unsigned long)(v - 2);
763
764         if (cpu != -1)
765                 print_cpu(m, cpu);
766         else
767                 sched_debug_header(m);
768
769         return 0;
770 }
771
772 void sysrq_sched_debug_show(void)
773 {
774         int cpu;
775
776         sched_debug_header(NULL);
777         for_each_online_cpu(cpu)
778                 print_cpu(NULL, cpu);
779
780 }
781
782 /*
783  * This itererator needs some explanation.
784  * It returns 1 for the header position.
785  * This means 2 is CPU 0.
786  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
787  * to use cpumask_* to iterate over the CPUs.
788  */
789 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
790 {
791         unsigned long n = *offset;
792
793         if (n == 0)
794                 return (void *) 1;
795
796         n--;
797
798         if (n > 0)
799                 n = cpumask_next(n - 1, cpu_online_mask);
800         else
801                 n = cpumask_first(cpu_online_mask);
802
803         *offset = n + 1;
804
805         if (n < nr_cpu_ids)
806                 return (void *)(unsigned long)(n + 2);
807
808         return NULL;
809 }
810
811 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
812 {
813         (*offset)++;
814         return sched_debug_start(file, offset);
815 }
816
817 static void sched_debug_stop(struct seq_file *file, void *data)
818 {
819 }
820
821 static const struct seq_operations sched_debug_sops = {
822         .start          = sched_debug_start,
823         .next           = sched_debug_next,
824         .stop           = sched_debug_stop,
825         .show           = sched_debug_show,
826 };
827
828 static int sched_debug_release(struct inode *inode, struct file *file)
829 {
830         seq_release(inode, file);
831
832         return 0;
833 }
834
835 static int sched_debug_open(struct inode *inode, struct file *filp)
836 {
837         int ret = 0;
838
839         ret = seq_open(filp, &sched_debug_sops);
840
841         return ret;
842 }
843
844 static const struct file_operations sched_debug_fops = {
845         .open           = sched_debug_open,
846         .read           = seq_read,
847         .llseek         = seq_lseek,
848         .release        = sched_debug_release,
849 };
850
851 static int __init init_sched_debug_procfs(void)
852 {
853         struct proc_dir_entry *pe;
854
855         pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
856         if (!pe)
857                 return -ENOMEM;
858         return 0;
859 }
860
861 __initcall(init_sched_debug_procfs);
862
863 #define __P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)F)
864 #define   P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)p->F)
865 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
866 #define   PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
867
868
869 #ifdef CONFIG_NUMA_BALANCING
870 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
871                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
872 {
873         SEQ_printf(m, "numa_faults node=%d ", node);
874         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
875         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
876 }
877 #endif
878
879
880 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
881 {
882 #ifdef CONFIG_NUMA_BALANCING
883         struct mempolicy *pol;
884
885         if (p->mm)
886                 P(mm->numa_scan_seq);
887
888         task_lock(p);
889         pol = p->mempolicy;
890         if (pol && !(pol->flags & MPOL_F_MORON))
891                 pol = NULL;
892         mpol_get(pol);
893         task_unlock(p);
894
895         P(numa_pages_migrated);
896         P(numa_preferred_nid);
897         P(total_numa_faults);
898         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
899                         task_node(p), task_numa_group_id(p));
900         show_numa_stats(p, m);
901         mpol_put(pol);
902 #endif
903 }
904
905 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
906                                                   struct seq_file *m)
907 {
908         unsigned long nr_switches;
909
910         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
911                                                 get_nr_threads(p));
912         SEQ_printf(m,
913                 "---------------------------------------------------------"
914                 "----------\n");
915 #define __P(F) \
916         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
917 #define P(F) \
918         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
919 #define P_SCHEDSTAT(F) \
920         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
921 #define __PN(F) \
922         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
923 #define PN(F) \
924         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
925 #define PN_SCHEDSTAT(F) \
926         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
927
928         PN(se.exec_start);
929         PN(se.vruntime);
930         PN(se.sum_exec_runtime);
931
932         nr_switches = p->nvcsw + p->nivcsw;
933
934         P(se.nr_migrations);
935
936         if (schedstat_enabled()) {
937                 u64 avg_atom, avg_per_cpu;
938
939                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
940                 PN_SCHEDSTAT(se.statistics.wait_start);
941                 PN_SCHEDSTAT(se.statistics.sleep_start);
942                 PN_SCHEDSTAT(se.statistics.block_start);
943                 PN_SCHEDSTAT(se.statistics.sleep_max);
944                 PN_SCHEDSTAT(se.statistics.block_max);
945                 PN_SCHEDSTAT(se.statistics.exec_max);
946                 PN_SCHEDSTAT(se.statistics.slice_max);
947                 PN_SCHEDSTAT(se.statistics.wait_max);
948                 PN_SCHEDSTAT(se.statistics.wait_sum);
949                 P_SCHEDSTAT(se.statistics.wait_count);
950                 PN_SCHEDSTAT(se.statistics.iowait_sum);
951                 P_SCHEDSTAT(se.statistics.iowait_count);
952                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
953                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
954                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
955                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
956                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
957                 P_SCHEDSTAT(se.statistics.nr_wakeups);
958                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
959                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
960                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
961                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
962                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
963                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
964                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
965                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
966
967                 avg_atom = p->se.sum_exec_runtime;
968                 if (nr_switches)
969                         avg_atom = div64_ul(avg_atom, nr_switches);
970                 else
971                         avg_atom = -1LL;
972
973                 avg_per_cpu = p->se.sum_exec_runtime;
974                 if (p->se.nr_migrations) {
975                         avg_per_cpu = div64_u64(avg_per_cpu,
976                                                 p->se.nr_migrations);
977                 } else {
978                         avg_per_cpu = -1LL;
979                 }
980
981                 __PN(avg_atom);
982                 __PN(avg_per_cpu);
983         }
984
985         __P(nr_switches);
986         SEQ_printf(m, "%-45s:%21Ld\n",
987                    "nr_voluntary_switches", (long long)p->nvcsw);
988         SEQ_printf(m, "%-45s:%21Ld\n",
989                    "nr_involuntary_switches", (long long)p->nivcsw);
990
991         P(se.load.weight);
992         P(se.runnable_weight);
993 #ifdef CONFIG_SMP
994         P(se.avg.load_sum);
995         P(se.avg.runnable_load_sum);
996         P(se.avg.util_sum);
997         P(se.avg.load_avg);
998         P(se.avg.runnable_load_avg);
999         P(se.avg.util_avg);
1000         P(se.avg.last_update_time);
1001 #endif
1002         P(policy);
1003         P(prio);
1004         if (p->policy == SCHED_DEADLINE) {
1005                 P(dl.runtime);
1006                 P(dl.deadline);
1007         }
1008 #undef PN_SCHEDSTAT
1009 #undef PN
1010 #undef __PN
1011 #undef P_SCHEDSTAT
1012 #undef P
1013 #undef __P
1014
1015         {
1016                 unsigned int this_cpu = raw_smp_processor_id();
1017                 u64 t0, t1;
1018
1019                 t0 = cpu_clock(this_cpu);
1020                 t1 = cpu_clock(this_cpu);
1021                 SEQ_printf(m, "%-45s:%21Ld\n",
1022                            "clock-delta", (long long)(t1-t0));
1023         }
1024
1025         sched_show_numa(p, m);
1026 }
1027
1028 void proc_sched_set_task(struct task_struct *p)
1029 {
1030 #ifdef CONFIG_SCHEDSTATS
1031         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1032 #endif
1033 }