Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19         struct gov_attr_set     attr_set;
20         unsigned int            rate_limit_us;
21 };
22
23 struct sugov_policy {
24         struct cpufreq_policy   *policy;
25
26         struct sugov_tunables   *tunables;
27         struct list_head        tunables_hook;
28
29         raw_spinlock_t          update_lock;    /* For shared policies */
30         u64                     last_freq_update_time;
31         s64                     freq_update_delay_ns;
32         unsigned int            next_freq;
33         unsigned int            cached_raw_freq;
34
35         /* The next fields are only needed if fast switch cannot be used: */
36         struct                  irq_work irq_work;
37         struct                  kthread_work work;
38         struct                  mutex work_lock;
39         struct                  kthread_worker worker;
40         struct task_struct      *thread;
41         bool                    work_in_progress;
42
43         bool                    need_freq_update;
44 };
45
46 struct sugov_cpu {
47         struct update_util_data update_util;
48         struct sugov_policy     *sg_policy;
49         unsigned int            cpu;
50
51         bool                    iowait_boost_pending;
52         unsigned int            iowait_boost;
53         u64                     last_update;
54
55         unsigned long           bw_dl;
56         unsigned long           max;
57
58         /* The field below is for single-CPU policies only: */
59 #ifdef CONFIG_NO_HZ_COMMON
60         unsigned long           saved_idle_calls;
61 #endif
62 };
63
64 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
65
66 /************************ Governor internals ***********************/
67
68 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
69 {
70         s64 delta_ns;
71
72         /*
73          * Since cpufreq_update_util() is called with rq->lock held for
74          * the @target_cpu, our per-CPU data is fully serialized.
75          *
76          * However, drivers cannot in general deal with cross-CPU
77          * requests, so while get_next_freq() will work, our
78          * sugov_update_commit() call may not for the fast switching platforms.
79          *
80          * Hence stop here for remote requests if they aren't supported
81          * by the hardware, as calculating the frequency is pointless if
82          * we cannot in fact act on it.
83          *
84          * For the slow switching platforms, the kthread is always scheduled on
85          * the right set of CPUs and any CPU can find the next frequency and
86          * schedule the kthread.
87          */
88         if (sg_policy->policy->fast_switch_enabled &&
89             !cpufreq_this_cpu_can_update(sg_policy->policy))
90                 return false;
91
92         if (unlikely(sg_policy->need_freq_update))
93                 return true;
94
95         delta_ns = time - sg_policy->last_freq_update_time;
96
97         return delta_ns >= sg_policy->freq_update_delay_ns;
98 }
99
100 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
101                                    unsigned int next_freq)
102 {
103         if (sg_policy->next_freq == next_freq)
104                 return false;
105
106         sg_policy->next_freq = next_freq;
107         sg_policy->last_freq_update_time = time;
108
109         return true;
110 }
111
112 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
113                               unsigned int next_freq)
114 {
115         struct cpufreq_policy *policy = sg_policy->policy;
116
117         if (!sugov_update_next_freq(sg_policy, time, next_freq))
118                 return;
119
120         next_freq = cpufreq_driver_fast_switch(policy, next_freq);
121         if (!next_freq)
122                 return;
123
124         policy->cur = next_freq;
125         trace_cpu_frequency(next_freq, smp_processor_id());
126 }
127
128 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
129                                   unsigned int next_freq)
130 {
131         if (!sugov_update_next_freq(sg_policy, time, next_freq))
132                 return;
133
134         if (!sg_policy->work_in_progress) {
135                 sg_policy->work_in_progress = true;
136                 irq_work_queue(&sg_policy->irq_work);
137         }
138 }
139
140 /**
141  * get_next_freq - Compute a new frequency for a given cpufreq policy.
142  * @sg_policy: schedutil policy object to compute the new frequency for.
143  * @util: Current CPU utilization.
144  * @max: CPU capacity.
145  *
146  * If the utilization is frequency-invariant, choose the new frequency to be
147  * proportional to it, that is
148  *
149  * next_freq = C * max_freq * util / max
150  *
151  * Otherwise, approximate the would-be frequency-invariant utilization by
152  * util_raw * (curr_freq / max_freq) which leads to
153  *
154  * next_freq = C * curr_freq * util_raw / max
155  *
156  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
157  *
158  * The lowest driver-supported frequency which is equal or greater than the raw
159  * next_freq (as calculated above) is returned, subject to policy min/max and
160  * cpufreq driver limitations.
161  */
162 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
163                                   unsigned long util, unsigned long max)
164 {
165         struct cpufreq_policy *policy = sg_policy->policy;
166         unsigned int freq = arch_scale_freq_invariant() ?
167                                 policy->cpuinfo.max_freq : policy->cur;
168
169         freq = map_util_freq(util, freq, max);
170
171         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
172                 return sg_policy->next_freq;
173
174         sg_policy->need_freq_update = false;
175         sg_policy->cached_raw_freq = freq;
176         return cpufreq_driver_resolve_freq(policy, freq);
177 }
178
179 /*
180  * This function computes an effective utilization for the given CPU, to be
181  * used for frequency selection given the linear relation: f = u * f_max.
182  *
183  * The scheduler tracks the following metrics:
184  *
185  *   cpu_util_{cfs,rt,dl,irq}()
186  *   cpu_bw_dl()
187  *
188  * Where the cfs,rt and dl util numbers are tracked with the same metric and
189  * synchronized windows and are thus directly comparable.
190  *
191  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
192  * which excludes things like IRQ and steal-time. These latter are then accrued
193  * in the irq utilization.
194  *
195  * The DL bandwidth number otoh is not a measured metric but a value computed
196  * based on the task model parameters and gives the minimal utilization
197  * required to meet deadlines.
198  */
199 unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
200                                   unsigned long max, enum schedutil_type type)
201 {
202         unsigned long dl_util, util, irq;
203         struct rq *rq = cpu_rq(cpu);
204
205         if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
206                 return max;
207
208         /*
209          * Early check to see if IRQ/steal time saturates the CPU, can be
210          * because of inaccuracies in how we track these -- see
211          * update_irq_load_avg().
212          */
213         irq = cpu_util_irq(rq);
214         if (unlikely(irq >= max))
215                 return max;
216
217         /*
218          * Because the time spend on RT/DL tasks is visible as 'lost' time to
219          * CFS tasks and we use the same metric to track the effective
220          * utilization (PELT windows are synchronized) we can directly add them
221          * to obtain the CPU's actual utilization.
222          */
223         util = util_cfs;
224         util += cpu_util_rt(rq);
225
226         dl_util = cpu_util_dl(rq);
227
228         /*
229          * For frequency selection we do not make cpu_util_dl() a permanent part
230          * of this sum because we want to use cpu_bw_dl() later on, but we need
231          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
232          * that we select f_max when there is no idle time.
233          *
234          * NOTE: numerical errors or stop class might cause us to not quite hit
235          * saturation when we should -- something for later.
236          */
237         if (util + dl_util >= max)
238                 return max;
239
240         /*
241          * OTOH, for energy computation we need the estimated running time, so
242          * include util_dl and ignore dl_bw.
243          */
244         if (type == ENERGY_UTIL)
245                 util += dl_util;
246
247         /*
248          * There is still idle time; further improve the number by using the
249          * irq metric. Because IRQ/steal time is hidden from the task clock we
250          * need to scale the task numbers:
251          *
252          *              1 - irq
253          *   U' = irq + ------- * U
254          *                max
255          */
256         util = scale_irq_capacity(util, irq, max);
257         util += irq;
258
259         /*
260          * Bandwidth required by DEADLINE must always be granted while, for
261          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
262          * to gracefully reduce the frequency when no tasks show up for longer
263          * periods of time.
264          *
265          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
266          * bw_dl as requested freq. However, cpufreq is not yet ready for such
267          * an interface. So, we only do the latter for now.
268          */
269         if (type == FREQUENCY_UTIL)
270                 util += cpu_bw_dl(rq);
271
272         return min(max, util);
273 }
274
275 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
276 {
277         struct rq *rq = cpu_rq(sg_cpu->cpu);
278         unsigned long util = cpu_util_cfs(rq);
279         unsigned long max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
280
281         sg_cpu->max = max;
282         sg_cpu->bw_dl = cpu_bw_dl(rq);
283
284         return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
285 }
286
287 /**
288  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
289  * @sg_cpu: the sugov data for the CPU to boost
290  * @time: the update time from the caller
291  * @set_iowait_boost: true if an IO boost has been requested
292  *
293  * The IO wait boost of a task is disabled after a tick since the last update
294  * of a CPU. If a new IO wait boost is requested after more then a tick, then
295  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
296  * efficiency by ignoring sporadic wakeups from IO.
297  */
298 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
299                                bool set_iowait_boost)
300 {
301         s64 delta_ns = time - sg_cpu->last_update;
302
303         /* Reset boost only if a tick has elapsed since last request */
304         if (delta_ns <= TICK_NSEC)
305                 return false;
306
307         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
308         sg_cpu->iowait_boost_pending = set_iowait_boost;
309
310         return true;
311 }
312
313 /**
314  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
315  * @sg_cpu: the sugov data for the CPU to boost
316  * @time: the update time from the caller
317  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
318  *
319  * Each time a task wakes up after an IO operation, the CPU utilization can be
320  * boosted to a certain utilization which doubles at each "frequent and
321  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
322  * of the maximum OPP.
323  *
324  * To keep doubling, an IO boost has to be requested at least once per tick,
325  * otherwise we restart from the utilization of the minimum OPP.
326  */
327 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
328                                unsigned int flags)
329 {
330         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
331
332         /* Reset boost if the CPU appears to have been idle enough */
333         if (sg_cpu->iowait_boost &&
334             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
335                 return;
336
337         /* Boost only tasks waking up after IO */
338         if (!set_iowait_boost)
339                 return;
340
341         /* Ensure boost doubles only one time at each request */
342         if (sg_cpu->iowait_boost_pending)
343                 return;
344         sg_cpu->iowait_boost_pending = true;
345
346         /* Double the boost at each request */
347         if (sg_cpu->iowait_boost) {
348                 sg_cpu->iowait_boost =
349                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
350                 return;
351         }
352
353         /* First wakeup after IO: start with minimum boost */
354         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
355 }
356
357 /**
358  * sugov_iowait_apply() - Apply the IO boost to a CPU.
359  * @sg_cpu: the sugov data for the cpu to boost
360  * @time: the update time from the caller
361  * @util: the utilization to (eventually) boost
362  * @max: the maximum value the utilization can be boosted to
363  *
364  * A CPU running a task which woken up after an IO operation can have its
365  * utilization boosted to speed up the completion of those IO operations.
366  * The IO boost value is increased each time a task wakes up from IO, in
367  * sugov_iowait_apply(), and it's instead decreased by this function,
368  * each time an increase has not been requested (!iowait_boost_pending).
369  *
370  * A CPU which also appears to have been idle for at least one tick has also
371  * its IO boost utilization reset.
372  *
373  * This mechanism is designed to boost high frequently IO waiting tasks, while
374  * being more conservative on tasks which does sporadic IO operations.
375  */
376 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
377                                         unsigned long util, unsigned long max)
378 {
379         unsigned long boost;
380
381         /* No boost currently required */
382         if (!sg_cpu->iowait_boost)
383                 return util;
384
385         /* Reset boost if the CPU appears to have been idle enough */
386         if (sugov_iowait_reset(sg_cpu, time, false))
387                 return util;
388
389         if (!sg_cpu->iowait_boost_pending) {
390                 /*
391                  * No boost pending; reduce the boost value.
392                  */
393                 sg_cpu->iowait_boost >>= 1;
394                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
395                         sg_cpu->iowait_boost = 0;
396                         return util;
397                 }
398         }
399
400         sg_cpu->iowait_boost_pending = false;
401
402         /*
403          * @util is already in capacity scale; convert iowait_boost
404          * into the same scale so we can compare.
405          */
406         boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
407         return max(boost, util);
408 }
409
410 #ifdef CONFIG_NO_HZ_COMMON
411 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
412 {
413         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
414         bool ret = idle_calls == sg_cpu->saved_idle_calls;
415
416         sg_cpu->saved_idle_calls = idle_calls;
417         return ret;
418 }
419 #else
420 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
421 #endif /* CONFIG_NO_HZ_COMMON */
422
423 /*
424  * Make sugov_should_update_freq() ignore the rate limit when DL
425  * has increased the utilization.
426  */
427 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
428 {
429         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
430                 sg_policy->need_freq_update = true;
431 }
432
433 static void sugov_update_single(struct update_util_data *hook, u64 time,
434                                 unsigned int flags)
435 {
436         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
437         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
438         unsigned long util, max;
439         unsigned int next_f;
440         bool busy;
441
442         sugov_iowait_boost(sg_cpu, time, flags);
443         sg_cpu->last_update = time;
444
445         ignore_dl_rate_limit(sg_cpu, sg_policy);
446
447         if (!sugov_should_update_freq(sg_policy, time))
448                 return;
449
450         busy = sugov_cpu_is_busy(sg_cpu);
451
452         util = sugov_get_util(sg_cpu);
453         max = sg_cpu->max;
454         util = sugov_iowait_apply(sg_cpu, time, util, max);
455         next_f = get_next_freq(sg_policy, util, max);
456         /*
457          * Do not reduce the frequency if the CPU has not been idle
458          * recently, as the reduction is likely to be premature then.
459          */
460         if (busy && next_f < sg_policy->next_freq) {
461                 next_f = sg_policy->next_freq;
462
463                 /* Reset cached freq as next_freq has changed */
464                 sg_policy->cached_raw_freq = 0;
465         }
466
467         /*
468          * This code runs under rq->lock for the target CPU, so it won't run
469          * concurrently on two different CPUs for the same target and it is not
470          * necessary to acquire the lock in the fast switch case.
471          */
472         if (sg_policy->policy->fast_switch_enabled) {
473                 sugov_fast_switch(sg_policy, time, next_f);
474         } else {
475                 raw_spin_lock(&sg_policy->update_lock);
476                 sugov_deferred_update(sg_policy, time, next_f);
477                 raw_spin_unlock(&sg_policy->update_lock);
478         }
479 }
480
481 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
482 {
483         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
484         struct cpufreq_policy *policy = sg_policy->policy;
485         unsigned long util = 0, max = 1;
486         unsigned int j;
487
488         for_each_cpu(j, policy->cpus) {
489                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
490                 unsigned long j_util, j_max;
491
492                 j_util = sugov_get_util(j_sg_cpu);
493                 j_max = j_sg_cpu->max;
494                 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
495
496                 if (j_util * max > j_max * util) {
497                         util = j_util;
498                         max = j_max;
499                 }
500         }
501
502         return get_next_freq(sg_policy, util, max);
503 }
504
505 static void
506 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
507 {
508         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
509         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
510         unsigned int next_f;
511
512         raw_spin_lock(&sg_policy->update_lock);
513
514         sugov_iowait_boost(sg_cpu, time, flags);
515         sg_cpu->last_update = time;
516
517         ignore_dl_rate_limit(sg_cpu, sg_policy);
518
519         if (sugov_should_update_freq(sg_policy, time)) {
520                 next_f = sugov_next_freq_shared(sg_cpu, time);
521
522                 if (sg_policy->policy->fast_switch_enabled)
523                         sugov_fast_switch(sg_policy, time, next_f);
524                 else
525                         sugov_deferred_update(sg_policy, time, next_f);
526         }
527
528         raw_spin_unlock(&sg_policy->update_lock);
529 }
530
531 static void sugov_work(struct kthread_work *work)
532 {
533         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
534         unsigned int freq;
535         unsigned long flags;
536
537         /*
538          * Hold sg_policy->update_lock shortly to handle the case where:
539          * incase sg_policy->next_freq is read here, and then updated by
540          * sugov_deferred_update() just before work_in_progress is set to false
541          * here, we may miss queueing the new update.
542          *
543          * Note: If a work was queued after the update_lock is released,
544          * sugov_work() will just be called again by kthread_work code; and the
545          * request will be proceed before the sugov thread sleeps.
546          */
547         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
548         freq = sg_policy->next_freq;
549         sg_policy->work_in_progress = false;
550         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
551
552         mutex_lock(&sg_policy->work_lock);
553         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
554         mutex_unlock(&sg_policy->work_lock);
555 }
556
557 static void sugov_irq_work(struct irq_work *irq_work)
558 {
559         struct sugov_policy *sg_policy;
560
561         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
562
563         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
564 }
565
566 /************************** sysfs interface ************************/
567
568 static struct sugov_tunables *global_tunables;
569 static DEFINE_MUTEX(global_tunables_lock);
570
571 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
572 {
573         return container_of(attr_set, struct sugov_tunables, attr_set);
574 }
575
576 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
577 {
578         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
579
580         return sprintf(buf, "%u\n", tunables->rate_limit_us);
581 }
582
583 static ssize_t
584 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
585 {
586         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
587         struct sugov_policy *sg_policy;
588         unsigned int rate_limit_us;
589
590         if (kstrtouint(buf, 10, &rate_limit_us))
591                 return -EINVAL;
592
593         tunables->rate_limit_us = rate_limit_us;
594
595         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
596                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
597
598         return count;
599 }
600
601 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
602
603 static struct attribute *sugov_attrs[] = {
604         &rate_limit_us.attr,
605         NULL
606 };
607 ATTRIBUTE_GROUPS(sugov);
608
609 static struct kobj_type sugov_tunables_ktype = {
610         .default_groups = sugov_groups,
611         .sysfs_ops = &governor_sysfs_ops,
612 };
613
614 /********************** cpufreq governor interface *********************/
615
616 struct cpufreq_governor schedutil_gov;
617
618 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
619 {
620         struct sugov_policy *sg_policy;
621
622         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
623         if (!sg_policy)
624                 return NULL;
625
626         sg_policy->policy = policy;
627         raw_spin_lock_init(&sg_policy->update_lock);
628         return sg_policy;
629 }
630
631 static void sugov_policy_free(struct sugov_policy *sg_policy)
632 {
633         kfree(sg_policy);
634 }
635
636 static int sugov_kthread_create(struct sugov_policy *sg_policy)
637 {
638         struct task_struct *thread;
639         struct sched_attr attr = {
640                 .size           = sizeof(struct sched_attr),
641                 .sched_policy   = SCHED_DEADLINE,
642                 .sched_flags    = SCHED_FLAG_SUGOV,
643                 .sched_nice     = 0,
644                 .sched_priority = 0,
645                 /*
646                  * Fake (unused) bandwidth; workaround to "fix"
647                  * priority inheritance.
648                  */
649                 .sched_runtime  =  1000000,
650                 .sched_deadline = 10000000,
651                 .sched_period   = 10000000,
652         };
653         struct cpufreq_policy *policy = sg_policy->policy;
654         int ret;
655
656         /* kthread only required for slow path */
657         if (policy->fast_switch_enabled)
658                 return 0;
659
660         kthread_init_work(&sg_policy->work, sugov_work);
661         kthread_init_worker(&sg_policy->worker);
662         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
663                                 "sugov:%d",
664                                 cpumask_first(policy->related_cpus));
665         if (IS_ERR(thread)) {
666                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
667                 return PTR_ERR(thread);
668         }
669
670         ret = sched_setattr_nocheck(thread, &attr);
671         if (ret) {
672                 kthread_stop(thread);
673                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
674                 return ret;
675         }
676
677         sg_policy->thread = thread;
678         kthread_bind_mask(thread, policy->related_cpus);
679         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
680         mutex_init(&sg_policy->work_lock);
681
682         wake_up_process(thread);
683
684         return 0;
685 }
686
687 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
688 {
689         /* kthread only required for slow path */
690         if (sg_policy->policy->fast_switch_enabled)
691                 return;
692
693         kthread_flush_worker(&sg_policy->worker);
694         kthread_stop(sg_policy->thread);
695         mutex_destroy(&sg_policy->work_lock);
696 }
697
698 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
699 {
700         struct sugov_tunables *tunables;
701
702         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
703         if (tunables) {
704                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
705                 if (!have_governor_per_policy())
706                         global_tunables = tunables;
707         }
708         return tunables;
709 }
710
711 static void sugov_tunables_free(struct sugov_tunables *tunables)
712 {
713         if (!have_governor_per_policy())
714                 global_tunables = NULL;
715
716         kfree(tunables);
717 }
718
719 static int sugov_init(struct cpufreq_policy *policy)
720 {
721         struct sugov_policy *sg_policy;
722         struct sugov_tunables *tunables;
723         int ret = 0;
724
725         /* State should be equivalent to EXIT */
726         if (policy->governor_data)
727                 return -EBUSY;
728
729         cpufreq_enable_fast_switch(policy);
730
731         sg_policy = sugov_policy_alloc(policy);
732         if (!sg_policy) {
733                 ret = -ENOMEM;
734                 goto disable_fast_switch;
735         }
736
737         ret = sugov_kthread_create(sg_policy);
738         if (ret)
739                 goto free_sg_policy;
740
741         mutex_lock(&global_tunables_lock);
742
743         if (global_tunables) {
744                 if (WARN_ON(have_governor_per_policy())) {
745                         ret = -EINVAL;
746                         goto stop_kthread;
747                 }
748                 policy->governor_data = sg_policy;
749                 sg_policy->tunables = global_tunables;
750
751                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
752                 goto out;
753         }
754
755         tunables = sugov_tunables_alloc(sg_policy);
756         if (!tunables) {
757                 ret = -ENOMEM;
758                 goto stop_kthread;
759         }
760
761         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
762
763         policy->governor_data = sg_policy;
764         sg_policy->tunables = tunables;
765
766         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
767                                    get_governor_parent_kobj(policy), "%s",
768                                    schedutil_gov.name);
769         if (ret)
770                 goto fail;
771
772 out:
773         mutex_unlock(&global_tunables_lock);
774         return 0;
775
776 fail:
777         kobject_put(&tunables->attr_set.kobj);
778         policy->governor_data = NULL;
779         sugov_tunables_free(tunables);
780
781 stop_kthread:
782         sugov_kthread_stop(sg_policy);
783         mutex_unlock(&global_tunables_lock);
784
785 free_sg_policy:
786         sugov_policy_free(sg_policy);
787
788 disable_fast_switch:
789         cpufreq_disable_fast_switch(policy);
790
791         pr_err("initialization failed (error %d)\n", ret);
792         return ret;
793 }
794
795 static void sugov_exit(struct cpufreq_policy *policy)
796 {
797         struct sugov_policy *sg_policy = policy->governor_data;
798         struct sugov_tunables *tunables = sg_policy->tunables;
799         unsigned int count;
800
801         mutex_lock(&global_tunables_lock);
802
803         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
804         policy->governor_data = NULL;
805         if (!count)
806                 sugov_tunables_free(tunables);
807
808         mutex_unlock(&global_tunables_lock);
809
810         sugov_kthread_stop(sg_policy);
811         sugov_policy_free(sg_policy);
812         cpufreq_disable_fast_switch(policy);
813 }
814
815 static int sugov_start(struct cpufreq_policy *policy)
816 {
817         struct sugov_policy *sg_policy = policy->governor_data;
818         unsigned int cpu;
819
820         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
821         sg_policy->last_freq_update_time        = 0;
822         sg_policy->next_freq                    = 0;
823         sg_policy->work_in_progress             = false;
824         sg_policy->need_freq_update             = false;
825         sg_policy->cached_raw_freq              = 0;
826
827         for_each_cpu(cpu, policy->cpus) {
828                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
829
830                 memset(sg_cpu, 0, sizeof(*sg_cpu));
831                 sg_cpu->cpu                     = cpu;
832                 sg_cpu->sg_policy               = sg_policy;
833         }
834
835         for_each_cpu(cpu, policy->cpus) {
836                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
837
838                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
839                                              policy_is_shared(policy) ?
840                                                         sugov_update_shared :
841                                                         sugov_update_single);
842         }
843         return 0;
844 }
845
846 static void sugov_stop(struct cpufreq_policy *policy)
847 {
848         struct sugov_policy *sg_policy = policy->governor_data;
849         unsigned int cpu;
850
851         for_each_cpu(cpu, policy->cpus)
852                 cpufreq_remove_update_util_hook(cpu);
853
854         synchronize_rcu();
855
856         if (!policy->fast_switch_enabled) {
857                 irq_work_sync(&sg_policy->irq_work);
858                 kthread_cancel_work_sync(&sg_policy->work);
859         }
860 }
861
862 static void sugov_limits(struct cpufreq_policy *policy)
863 {
864         struct sugov_policy *sg_policy = policy->governor_data;
865
866         if (!policy->fast_switch_enabled) {
867                 mutex_lock(&sg_policy->work_lock);
868                 cpufreq_policy_apply_limits(policy);
869                 mutex_unlock(&sg_policy->work_lock);
870         }
871
872         sg_policy->need_freq_update = true;
873 }
874
875 struct cpufreq_governor schedutil_gov = {
876         .name                   = "schedutil",
877         .owner                  = THIS_MODULE,
878         .dynamic_switching      = true,
879         .init                   = sugov_init,
880         .exit                   = sugov_exit,
881         .start                  = sugov_start,
882         .stop                   = sugov_stop,
883         .limits                 = sugov_limits,
884 };
885
886 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
887 struct cpufreq_governor *cpufreq_default_governor(void)
888 {
889         return &schedutil_gov;
890 }
891 #endif
892
893 static int __init sugov_register(void)
894 {
895         return cpufreq_register_governor(&schedutil_gov);
896 }
897 fs_initcall(sugov_register);
898
899 #ifdef CONFIG_ENERGY_MODEL
900 extern bool sched_energy_update;
901 extern struct mutex sched_energy_mutex;
902
903 static void rebuild_sd_workfn(struct work_struct *work)
904 {
905         mutex_lock(&sched_energy_mutex);
906         sched_energy_update = true;
907         rebuild_sched_domains();
908         sched_energy_update = false;
909         mutex_unlock(&sched_energy_mutex);
910 }
911 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
912
913 /*
914  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
915  * on governor changes to make sure the scheduler knows about it.
916  */
917 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
918                                   struct cpufreq_governor *old_gov)
919 {
920         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
921                 /*
922                  * When called from the cpufreq_register_driver() path, the
923                  * cpu_hotplug_lock is already held, so use a work item to
924                  * avoid nested locking in rebuild_sched_domains().
925                  */
926                 schedule_work(&rebuild_sd_work);
927         }
928
929 }
930 #endif