relay: require non-NULL callbacks in relay_open()
[linux-block.git] / kernel / relay.c
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.rst for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  *      (mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31  * fault() vm_op implementation for relay file mapping.
32  */
33 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
34 {
35         struct page *page;
36         struct rchan_buf *buf = vmf->vma->vm_private_data;
37         pgoff_t pgoff = vmf->pgoff;
38
39         if (!buf)
40                 return VM_FAULT_OOM;
41
42         page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
43         if (!page)
44                 return VM_FAULT_SIGBUS;
45         get_page(page);
46         vmf->page = page;
47
48         return 0;
49 }
50
51 /*
52  * vm_ops for relay file mappings.
53  */
54 static const struct vm_operations_struct relay_file_mmap_ops = {
55         .fault = relay_buf_fault,
56 };
57
58 /*
59  * allocate an array of pointers of struct page
60  */
61 static struct page **relay_alloc_page_array(unsigned int n_pages)
62 {
63         const size_t pa_size = n_pages * sizeof(struct page *);
64         if (pa_size > PAGE_SIZE)
65                 return vzalloc(pa_size);
66         return kzalloc(pa_size, GFP_KERNEL);
67 }
68
69 /*
70  * free an array of pointers of struct page
71  */
72 static void relay_free_page_array(struct page **array)
73 {
74         kvfree(array);
75 }
76
77 /**
78  *      relay_mmap_buf: - mmap channel buffer to process address space
79  *      @buf: relay channel buffer
80  *      @vma: vm_area_struct describing memory to be mapped
81  *
82  *      Returns 0 if ok, negative on error
83  *
84  *      Caller should already have grabbed mmap_lock.
85  */
86 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
87 {
88         unsigned long length = vma->vm_end - vma->vm_start;
89
90         if (!buf)
91                 return -EBADF;
92
93         if (length != (unsigned long)buf->chan->alloc_size)
94                 return -EINVAL;
95
96         vma->vm_ops = &relay_file_mmap_ops;
97         vma->vm_flags |= VM_DONTEXPAND;
98         vma->vm_private_data = buf;
99
100         return 0;
101 }
102
103 /**
104  *      relay_alloc_buf - allocate a channel buffer
105  *      @buf: the buffer struct
106  *      @size: total size of the buffer
107  *
108  *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
109  *      passed in size will get page aligned, if it isn't already.
110  */
111 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
112 {
113         void *mem;
114         unsigned int i, j, n_pages;
115
116         *size = PAGE_ALIGN(*size);
117         n_pages = *size >> PAGE_SHIFT;
118
119         buf->page_array = relay_alloc_page_array(n_pages);
120         if (!buf->page_array)
121                 return NULL;
122
123         for (i = 0; i < n_pages; i++) {
124                 buf->page_array[i] = alloc_page(GFP_KERNEL);
125                 if (unlikely(!buf->page_array[i]))
126                         goto depopulate;
127                 set_page_private(buf->page_array[i], (unsigned long)buf);
128         }
129         mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
130         if (!mem)
131                 goto depopulate;
132
133         memset(mem, 0, *size);
134         buf->page_count = n_pages;
135         return mem;
136
137 depopulate:
138         for (j = 0; j < i; j++)
139                 __free_page(buf->page_array[j]);
140         relay_free_page_array(buf->page_array);
141         return NULL;
142 }
143
144 /**
145  *      relay_create_buf - allocate and initialize a channel buffer
146  *      @chan: the relay channel
147  *
148  *      Returns channel buffer if successful, %NULL otherwise.
149  */
150 static struct rchan_buf *relay_create_buf(struct rchan *chan)
151 {
152         struct rchan_buf *buf;
153
154         if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
155                 return NULL;
156
157         buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
158         if (!buf)
159                 return NULL;
160         buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
161                                      GFP_KERNEL);
162         if (!buf->padding)
163                 goto free_buf;
164
165         buf->start = relay_alloc_buf(buf, &chan->alloc_size);
166         if (!buf->start)
167                 goto free_buf;
168
169         buf->chan = chan;
170         kref_get(&buf->chan->kref);
171         return buf;
172
173 free_buf:
174         kfree(buf->padding);
175         kfree(buf);
176         return NULL;
177 }
178
179 /**
180  *      relay_destroy_channel - free the channel struct
181  *      @kref: target kernel reference that contains the relay channel
182  *
183  *      Should only be called from kref_put().
184  */
185 static void relay_destroy_channel(struct kref *kref)
186 {
187         struct rchan *chan = container_of(kref, struct rchan, kref);
188         free_percpu(chan->buf);
189         kfree(chan);
190 }
191
192 /**
193  *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
194  *      @buf: the buffer struct
195  */
196 static void relay_destroy_buf(struct rchan_buf *buf)
197 {
198         struct rchan *chan = buf->chan;
199         unsigned int i;
200
201         if (likely(buf->start)) {
202                 vunmap(buf->start);
203                 for (i = 0; i < buf->page_count; i++)
204                         __free_page(buf->page_array[i]);
205                 relay_free_page_array(buf->page_array);
206         }
207         *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
208         kfree(buf->padding);
209         kfree(buf);
210         kref_put(&chan->kref, relay_destroy_channel);
211 }
212
213 /**
214  *      relay_remove_buf - remove a channel buffer
215  *      @kref: target kernel reference that contains the relay buffer
216  *
217  *      Removes the file from the filesystem, which also frees the
218  *      rchan_buf_struct and the channel buffer.  Should only be called from
219  *      kref_put().
220  */
221 static void relay_remove_buf(struct kref *kref)
222 {
223         struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
224         relay_destroy_buf(buf);
225 }
226
227 /**
228  *      relay_buf_empty - boolean, is the channel buffer empty?
229  *      @buf: channel buffer
230  *
231  *      Returns 1 if the buffer is empty, 0 otherwise.
232  */
233 static int relay_buf_empty(struct rchan_buf *buf)
234 {
235         return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
236 }
237
238 /**
239  *      relay_buf_full - boolean, is the channel buffer full?
240  *      @buf: channel buffer
241  *
242  *      Returns 1 if the buffer is full, 0 otherwise.
243  */
244 int relay_buf_full(struct rchan_buf *buf)
245 {
246         size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
247         return (ready >= buf->chan->n_subbufs) ? 1 : 0;
248 }
249 EXPORT_SYMBOL_GPL(relay_buf_full);
250
251 /*
252  * High-level relay kernel API and associated functions.
253  */
254
255 /*
256  * rchan_callback implementations defining default channel behavior.  Used
257  * in place of corresponding NULL values in client callback struct.
258  */
259
260 /*
261  * subbuf_start() default callback.  Does nothing.
262  */
263 static int subbuf_start_default_callback (struct rchan_buf *buf,
264                                           void *subbuf,
265                                           void *prev_subbuf,
266                                           size_t prev_padding)
267 {
268         if (relay_buf_full(buf))
269                 return 0;
270
271         return 1;
272 }
273
274 /*
275  * create_buf_file_create() default callback.  Does nothing.
276  */
277 static struct dentry *create_buf_file_default_callback(const char *filename,
278                                                        struct dentry *parent,
279                                                        umode_t mode,
280                                                        struct rchan_buf *buf,
281                                                        int *is_global)
282 {
283         return NULL;
284 }
285
286 /*
287  * remove_buf_file() default callback.  Does nothing.
288  */
289 static int remove_buf_file_default_callback(struct dentry *dentry)
290 {
291         return -EINVAL;
292 }
293
294 /**
295  *      wakeup_readers - wake up readers waiting on a channel
296  *      @work: contains the channel buffer
297  *
298  *      This is the function used to defer reader waking
299  */
300 static void wakeup_readers(struct irq_work *work)
301 {
302         struct rchan_buf *buf;
303
304         buf = container_of(work, struct rchan_buf, wakeup_work);
305         wake_up_interruptible(&buf->read_wait);
306 }
307
308 /**
309  *      __relay_reset - reset a channel buffer
310  *      @buf: the channel buffer
311  *      @init: 1 if this is a first-time initialization
312  *
313  *      See relay_reset() for description of effect.
314  */
315 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
316 {
317         size_t i;
318
319         if (init) {
320                 init_waitqueue_head(&buf->read_wait);
321                 kref_init(&buf->kref);
322                 init_irq_work(&buf->wakeup_work, wakeup_readers);
323         } else {
324                 irq_work_sync(&buf->wakeup_work);
325         }
326
327         buf->subbufs_produced = 0;
328         buf->subbufs_consumed = 0;
329         buf->bytes_consumed = 0;
330         buf->finalized = 0;
331         buf->data = buf->start;
332         buf->offset = 0;
333
334         for (i = 0; i < buf->chan->n_subbufs; i++)
335                 buf->padding[i] = 0;
336
337         buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
338 }
339
340 /**
341  *      relay_reset - reset the channel
342  *      @chan: the channel
343  *
344  *      This has the effect of erasing all data from all channel buffers
345  *      and restarting the channel in its initial state.  The buffers
346  *      are not freed, so any mappings are still in effect.
347  *
348  *      NOTE. Care should be taken that the channel isn't actually
349  *      being used by anything when this call is made.
350  */
351 void relay_reset(struct rchan *chan)
352 {
353         struct rchan_buf *buf;
354         unsigned int i;
355
356         if (!chan)
357                 return;
358
359         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
360                 __relay_reset(buf, 0);
361                 return;
362         }
363
364         mutex_lock(&relay_channels_mutex);
365         for_each_possible_cpu(i)
366                 if ((buf = *per_cpu_ptr(chan->buf, i)))
367                         __relay_reset(buf, 0);
368         mutex_unlock(&relay_channels_mutex);
369 }
370 EXPORT_SYMBOL_GPL(relay_reset);
371
372 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
373                                         struct dentry *dentry)
374 {
375         buf->dentry = dentry;
376         d_inode(buf->dentry)->i_size = buf->early_bytes;
377 }
378
379 static struct dentry *relay_create_buf_file(struct rchan *chan,
380                                             struct rchan_buf *buf,
381                                             unsigned int cpu)
382 {
383         struct dentry *dentry;
384         char *tmpname;
385
386         tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
387         if (!tmpname)
388                 return NULL;
389         snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
390
391         /* Create file in fs */
392         dentry = chan->cb->create_buf_file(tmpname, chan->parent,
393                                            S_IRUSR, buf,
394                                            &chan->is_global);
395         if (IS_ERR(dentry))
396                 dentry = NULL;
397
398         kfree(tmpname);
399
400         return dentry;
401 }
402
403 /*
404  *      relay_open_buf - create a new relay channel buffer
405  *
406  *      used by relay_open() and CPU hotplug.
407  */
408 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
409 {
410         struct rchan_buf *buf = NULL;
411         struct dentry *dentry;
412
413         if (chan->is_global)
414                 return *per_cpu_ptr(chan->buf, 0);
415
416         buf = relay_create_buf(chan);
417         if (!buf)
418                 return NULL;
419
420         if (chan->has_base_filename) {
421                 dentry = relay_create_buf_file(chan, buf, cpu);
422                 if (!dentry)
423                         goto free_buf;
424                 relay_set_buf_dentry(buf, dentry);
425         } else {
426                 /* Only retrieve global info, nothing more, nothing less */
427                 dentry = chan->cb->create_buf_file(NULL, NULL,
428                                                    S_IRUSR, buf,
429                                                    &chan->is_global);
430                 if (IS_ERR_OR_NULL(dentry))
431                         goto free_buf;
432         }
433
434         buf->cpu = cpu;
435         __relay_reset(buf, 1);
436
437         if(chan->is_global) {
438                 *per_cpu_ptr(chan->buf, 0) = buf;
439                 buf->cpu = 0;
440         }
441
442         return buf;
443
444 free_buf:
445         relay_destroy_buf(buf);
446         return NULL;
447 }
448
449 /**
450  *      relay_close_buf - close a channel buffer
451  *      @buf: channel buffer
452  *
453  *      Marks the buffer finalized and restores the default callbacks.
454  *      The channel buffer and channel buffer data structure are then freed
455  *      automatically when the last reference is given up.
456  */
457 static void relay_close_buf(struct rchan_buf *buf)
458 {
459         buf->finalized = 1;
460         irq_work_sync(&buf->wakeup_work);
461         buf->chan->cb->remove_buf_file(buf->dentry);
462         kref_put(&buf->kref, relay_remove_buf);
463 }
464
465 static void setup_callbacks(struct rchan *chan,
466                                    struct rchan_callbacks *cb)
467 {
468         if (!cb->subbuf_start)
469                 cb->subbuf_start = subbuf_start_default_callback;
470         if (!cb->create_buf_file)
471                 cb->create_buf_file = create_buf_file_default_callback;
472         if (!cb->remove_buf_file)
473                 cb->remove_buf_file = remove_buf_file_default_callback;
474         chan->cb = cb;
475 }
476
477 int relay_prepare_cpu(unsigned int cpu)
478 {
479         struct rchan *chan;
480         struct rchan_buf *buf;
481
482         mutex_lock(&relay_channels_mutex);
483         list_for_each_entry(chan, &relay_channels, list) {
484                 if ((buf = *per_cpu_ptr(chan->buf, cpu)))
485                         continue;
486                 buf = relay_open_buf(chan, cpu);
487                 if (!buf) {
488                         pr_err("relay: cpu %d buffer creation failed\n", cpu);
489                         mutex_unlock(&relay_channels_mutex);
490                         return -ENOMEM;
491                 }
492                 *per_cpu_ptr(chan->buf, cpu) = buf;
493         }
494         mutex_unlock(&relay_channels_mutex);
495         return 0;
496 }
497
498 /**
499  *      relay_open - create a new relay channel
500  *      @base_filename: base name of files to create, %NULL for buffering only
501  *      @parent: dentry of parent directory, %NULL for root directory or buffer
502  *      @subbuf_size: size of sub-buffers
503  *      @n_subbufs: number of sub-buffers
504  *      @cb: client callback functions
505  *      @private_data: user-defined data
506  *
507  *      Returns channel pointer if successful, %NULL otherwise.
508  *
509  *      Creates a channel buffer for each cpu using the sizes and
510  *      attributes specified.  The created channel buffer files
511  *      will be named base_filename0...base_filenameN-1.  File
512  *      permissions will be %S_IRUSR.
513  *
514  *      If opening a buffer (@parent = NULL) that you later wish to register
515  *      in a filesystem, call relay_late_setup_files() once the @parent dentry
516  *      is available.
517  */
518 struct rchan *relay_open(const char *base_filename,
519                          struct dentry *parent,
520                          size_t subbuf_size,
521                          size_t n_subbufs,
522                          struct rchan_callbacks *cb,
523                          void *private_data)
524 {
525         unsigned int i;
526         struct rchan *chan;
527         struct rchan_buf *buf;
528
529         if (!(subbuf_size && n_subbufs))
530                 return NULL;
531         if (subbuf_size > UINT_MAX / n_subbufs)
532                 return NULL;
533         if (!cb)
534                 return NULL;
535
536         chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
537         if (!chan)
538                 return NULL;
539
540         chan->buf = alloc_percpu(struct rchan_buf *);
541         if (!chan->buf) {
542                 kfree(chan);
543                 return NULL;
544         }
545
546         chan->version = RELAYFS_CHANNEL_VERSION;
547         chan->n_subbufs = n_subbufs;
548         chan->subbuf_size = subbuf_size;
549         chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
550         chan->parent = parent;
551         chan->private_data = private_data;
552         if (base_filename) {
553                 chan->has_base_filename = 1;
554                 strlcpy(chan->base_filename, base_filename, NAME_MAX);
555         }
556         setup_callbacks(chan, cb);
557         kref_init(&chan->kref);
558
559         mutex_lock(&relay_channels_mutex);
560         for_each_online_cpu(i) {
561                 buf = relay_open_buf(chan, i);
562                 if (!buf)
563                         goto free_bufs;
564                 *per_cpu_ptr(chan->buf, i) = buf;
565         }
566         list_add(&chan->list, &relay_channels);
567         mutex_unlock(&relay_channels_mutex);
568
569         return chan;
570
571 free_bufs:
572         for_each_possible_cpu(i) {
573                 if ((buf = *per_cpu_ptr(chan->buf, i)))
574                         relay_close_buf(buf);
575         }
576
577         kref_put(&chan->kref, relay_destroy_channel);
578         mutex_unlock(&relay_channels_mutex);
579         return NULL;
580 }
581 EXPORT_SYMBOL_GPL(relay_open);
582
583 struct rchan_percpu_buf_dispatcher {
584         struct rchan_buf *buf;
585         struct dentry *dentry;
586 };
587
588 /* Called in atomic context. */
589 static void __relay_set_buf_dentry(void *info)
590 {
591         struct rchan_percpu_buf_dispatcher *p = info;
592
593         relay_set_buf_dentry(p->buf, p->dentry);
594 }
595
596 /**
597  *      relay_late_setup_files - triggers file creation
598  *      @chan: channel to operate on
599  *      @base_filename: base name of files to create
600  *      @parent: dentry of parent directory, %NULL for root directory
601  *
602  *      Returns 0 if successful, non-zero otherwise.
603  *
604  *      Use to setup files for a previously buffer-only channel created
605  *      by relay_open() with a NULL parent dentry.
606  *
607  *      For example, this is useful for perfomring early tracing in kernel,
608  *      before VFS is up and then exposing the early results once the dentry
609  *      is available.
610  */
611 int relay_late_setup_files(struct rchan *chan,
612                            const char *base_filename,
613                            struct dentry *parent)
614 {
615         int err = 0;
616         unsigned int i, curr_cpu;
617         unsigned long flags;
618         struct dentry *dentry;
619         struct rchan_buf *buf;
620         struct rchan_percpu_buf_dispatcher disp;
621
622         if (!chan || !base_filename)
623                 return -EINVAL;
624
625         strlcpy(chan->base_filename, base_filename, NAME_MAX);
626
627         mutex_lock(&relay_channels_mutex);
628         /* Is chan already set up? */
629         if (unlikely(chan->has_base_filename)) {
630                 mutex_unlock(&relay_channels_mutex);
631                 return -EEXIST;
632         }
633         chan->has_base_filename = 1;
634         chan->parent = parent;
635
636         if (chan->is_global) {
637                 err = -EINVAL;
638                 buf = *per_cpu_ptr(chan->buf, 0);
639                 if (!WARN_ON_ONCE(!buf)) {
640                         dentry = relay_create_buf_file(chan, buf, 0);
641                         if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
642                                 relay_set_buf_dentry(buf, dentry);
643                                 err = 0;
644                         }
645                 }
646                 mutex_unlock(&relay_channels_mutex);
647                 return err;
648         }
649
650         curr_cpu = get_cpu();
651         /*
652          * The CPU hotplug notifier ran before us and created buffers with
653          * no files associated. So it's safe to call relay_setup_buf_file()
654          * on all currently online CPUs.
655          */
656         for_each_online_cpu(i) {
657                 buf = *per_cpu_ptr(chan->buf, i);
658                 if (unlikely(!buf)) {
659                         WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
660                         err = -EINVAL;
661                         break;
662                 }
663
664                 dentry = relay_create_buf_file(chan, buf, i);
665                 if (unlikely(!dentry)) {
666                         err = -EINVAL;
667                         break;
668                 }
669
670                 if (curr_cpu == i) {
671                         local_irq_save(flags);
672                         relay_set_buf_dentry(buf, dentry);
673                         local_irq_restore(flags);
674                 } else {
675                         disp.buf = buf;
676                         disp.dentry = dentry;
677                         smp_mb();
678                         /* relay_channels_mutex must be held, so wait. */
679                         err = smp_call_function_single(i,
680                                                        __relay_set_buf_dentry,
681                                                        &disp, 1);
682                 }
683                 if (unlikely(err))
684                         break;
685         }
686         put_cpu();
687         mutex_unlock(&relay_channels_mutex);
688
689         return err;
690 }
691 EXPORT_SYMBOL_GPL(relay_late_setup_files);
692
693 /**
694  *      relay_switch_subbuf - switch to a new sub-buffer
695  *      @buf: channel buffer
696  *      @length: size of current event
697  *
698  *      Returns either the length passed in or 0 if full.
699  *
700  *      Performs sub-buffer-switch tasks such as invoking callbacks,
701  *      updating padding counts, waking up readers, etc.
702  */
703 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
704 {
705         void *old, *new;
706         size_t old_subbuf, new_subbuf;
707
708         if (unlikely(length > buf->chan->subbuf_size))
709                 goto toobig;
710
711         if (buf->offset != buf->chan->subbuf_size + 1) {
712                 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
713                 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
714                 buf->padding[old_subbuf] = buf->prev_padding;
715                 buf->subbufs_produced++;
716                 if (buf->dentry)
717                         d_inode(buf->dentry)->i_size +=
718                                 buf->chan->subbuf_size -
719                                 buf->padding[old_subbuf];
720                 else
721                         buf->early_bytes += buf->chan->subbuf_size -
722                                             buf->padding[old_subbuf];
723                 smp_mb();
724                 if (waitqueue_active(&buf->read_wait)) {
725                         /*
726                          * Calling wake_up_interruptible() from here
727                          * will deadlock if we happen to be logging
728                          * from the scheduler (trying to re-grab
729                          * rq->lock), so defer it.
730                          */
731                         irq_work_queue(&buf->wakeup_work);
732                 }
733         }
734
735         old = buf->data;
736         new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
737         new = buf->start + new_subbuf * buf->chan->subbuf_size;
738         buf->offset = 0;
739         if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
740                 buf->offset = buf->chan->subbuf_size + 1;
741                 return 0;
742         }
743         buf->data = new;
744         buf->padding[new_subbuf] = 0;
745
746         if (unlikely(length + buf->offset > buf->chan->subbuf_size))
747                 goto toobig;
748
749         return length;
750
751 toobig:
752         buf->chan->last_toobig = length;
753         return 0;
754 }
755 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
756
757 /**
758  *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
759  *      @chan: the channel
760  *      @cpu: the cpu associated with the channel buffer to update
761  *      @subbufs_consumed: number of sub-buffers to add to current buf's count
762  *
763  *      Adds to the channel buffer's consumed sub-buffer count.
764  *      subbufs_consumed should be the number of sub-buffers newly consumed,
765  *      not the total consumed.
766  *
767  *      NOTE. Kernel clients don't need to call this function if the channel
768  *      mode is 'overwrite'.
769  */
770 void relay_subbufs_consumed(struct rchan *chan,
771                             unsigned int cpu,
772                             size_t subbufs_consumed)
773 {
774         struct rchan_buf *buf;
775
776         if (!chan || cpu >= NR_CPUS)
777                 return;
778
779         buf = *per_cpu_ptr(chan->buf, cpu);
780         if (!buf || subbufs_consumed > chan->n_subbufs)
781                 return;
782
783         if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
784                 buf->subbufs_consumed = buf->subbufs_produced;
785         else
786                 buf->subbufs_consumed += subbufs_consumed;
787 }
788 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
789
790 /**
791  *      relay_close - close the channel
792  *      @chan: the channel
793  *
794  *      Closes all channel buffers and frees the channel.
795  */
796 void relay_close(struct rchan *chan)
797 {
798         struct rchan_buf *buf;
799         unsigned int i;
800
801         if (!chan)
802                 return;
803
804         mutex_lock(&relay_channels_mutex);
805         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
806                 relay_close_buf(buf);
807         else
808                 for_each_possible_cpu(i)
809                         if ((buf = *per_cpu_ptr(chan->buf, i)))
810                                 relay_close_buf(buf);
811
812         if (chan->last_toobig)
813                 printk(KERN_WARNING "relay: one or more items not logged "
814                        "[item size (%zd) > sub-buffer size (%zd)]\n",
815                        chan->last_toobig, chan->subbuf_size);
816
817         list_del(&chan->list);
818         kref_put(&chan->kref, relay_destroy_channel);
819         mutex_unlock(&relay_channels_mutex);
820 }
821 EXPORT_SYMBOL_GPL(relay_close);
822
823 /**
824  *      relay_flush - close the channel
825  *      @chan: the channel
826  *
827  *      Flushes all channel buffers, i.e. forces buffer switch.
828  */
829 void relay_flush(struct rchan *chan)
830 {
831         struct rchan_buf *buf;
832         unsigned int i;
833
834         if (!chan)
835                 return;
836
837         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
838                 relay_switch_subbuf(buf, 0);
839                 return;
840         }
841
842         mutex_lock(&relay_channels_mutex);
843         for_each_possible_cpu(i)
844                 if ((buf = *per_cpu_ptr(chan->buf, i)))
845                         relay_switch_subbuf(buf, 0);
846         mutex_unlock(&relay_channels_mutex);
847 }
848 EXPORT_SYMBOL_GPL(relay_flush);
849
850 /**
851  *      relay_file_open - open file op for relay files
852  *      @inode: the inode
853  *      @filp: the file
854  *
855  *      Increments the channel buffer refcount.
856  */
857 static int relay_file_open(struct inode *inode, struct file *filp)
858 {
859         struct rchan_buf *buf = inode->i_private;
860         kref_get(&buf->kref);
861         filp->private_data = buf;
862
863         return nonseekable_open(inode, filp);
864 }
865
866 /**
867  *      relay_file_mmap - mmap file op for relay files
868  *      @filp: the file
869  *      @vma: the vma describing what to map
870  *
871  *      Calls upon relay_mmap_buf() to map the file into user space.
872  */
873 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
874 {
875         struct rchan_buf *buf = filp->private_data;
876         return relay_mmap_buf(buf, vma);
877 }
878
879 /**
880  *      relay_file_poll - poll file op for relay files
881  *      @filp: the file
882  *      @wait: poll table
883  *
884  *      Poll implemention.
885  */
886 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
887 {
888         __poll_t mask = 0;
889         struct rchan_buf *buf = filp->private_data;
890
891         if (buf->finalized)
892                 return EPOLLERR;
893
894         if (filp->f_mode & FMODE_READ) {
895                 poll_wait(filp, &buf->read_wait, wait);
896                 if (!relay_buf_empty(buf))
897                         mask |= EPOLLIN | EPOLLRDNORM;
898         }
899
900         return mask;
901 }
902
903 /**
904  *      relay_file_release - release file op for relay files
905  *      @inode: the inode
906  *      @filp: the file
907  *
908  *      Decrements the channel refcount, as the filesystem is
909  *      no longer using it.
910  */
911 static int relay_file_release(struct inode *inode, struct file *filp)
912 {
913         struct rchan_buf *buf = filp->private_data;
914         kref_put(&buf->kref, relay_remove_buf);
915
916         return 0;
917 }
918
919 /*
920  *      relay_file_read_consume - update the consumed count for the buffer
921  */
922 static void relay_file_read_consume(struct rchan_buf *buf,
923                                     size_t read_pos,
924                                     size_t bytes_consumed)
925 {
926         size_t subbuf_size = buf->chan->subbuf_size;
927         size_t n_subbufs = buf->chan->n_subbufs;
928         size_t read_subbuf;
929
930         if (buf->subbufs_produced == buf->subbufs_consumed &&
931             buf->offset == buf->bytes_consumed)
932                 return;
933
934         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
935                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
936                 buf->bytes_consumed = 0;
937         }
938
939         buf->bytes_consumed += bytes_consumed;
940         if (!read_pos)
941                 read_subbuf = buf->subbufs_consumed % n_subbufs;
942         else
943                 read_subbuf = read_pos / buf->chan->subbuf_size;
944         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
945                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
946                     (buf->offset == subbuf_size))
947                         return;
948                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
949                 buf->bytes_consumed = 0;
950         }
951 }
952
953 /*
954  *      relay_file_read_avail - boolean, are there unconsumed bytes available?
955  */
956 static int relay_file_read_avail(struct rchan_buf *buf)
957 {
958         size_t subbuf_size = buf->chan->subbuf_size;
959         size_t n_subbufs = buf->chan->n_subbufs;
960         size_t produced = buf->subbufs_produced;
961         size_t consumed;
962
963         relay_file_read_consume(buf, 0, 0);
964
965         consumed = buf->subbufs_consumed;
966
967         if (unlikely(buf->offset > subbuf_size)) {
968                 if (produced == consumed)
969                         return 0;
970                 return 1;
971         }
972
973         if (unlikely(produced - consumed >= n_subbufs)) {
974                 consumed = produced - n_subbufs + 1;
975                 buf->subbufs_consumed = consumed;
976                 buf->bytes_consumed = 0;
977         }
978
979         produced = (produced % n_subbufs) * subbuf_size + buf->offset;
980         consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
981
982         if (consumed > produced)
983                 produced += n_subbufs * subbuf_size;
984
985         if (consumed == produced) {
986                 if (buf->offset == subbuf_size &&
987                     buf->subbufs_produced > buf->subbufs_consumed)
988                         return 1;
989                 return 0;
990         }
991
992         return 1;
993 }
994
995 /**
996  *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
997  *      @read_pos: file read position
998  *      @buf: relay channel buffer
999  */
1000 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1001                                            struct rchan_buf *buf)
1002 {
1003         size_t padding, avail = 0;
1004         size_t read_subbuf, read_offset, write_subbuf, write_offset;
1005         size_t subbuf_size = buf->chan->subbuf_size;
1006
1007         write_subbuf = (buf->data - buf->start) / subbuf_size;
1008         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1009         read_subbuf = read_pos / subbuf_size;
1010         read_offset = read_pos % subbuf_size;
1011         padding = buf->padding[read_subbuf];
1012
1013         if (read_subbuf == write_subbuf) {
1014                 if (read_offset + padding < write_offset)
1015                         avail = write_offset - (read_offset + padding);
1016         } else
1017                 avail = (subbuf_size - padding) - read_offset;
1018
1019         return avail;
1020 }
1021
1022 /**
1023  *      relay_file_read_start_pos - find the first available byte to read
1024  *      @buf: relay channel buffer
1025  *
1026  *      If the read_pos is in the middle of padding, return the
1027  *      position of the first actually available byte, otherwise
1028  *      return the original value.
1029  */
1030 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
1031 {
1032         size_t read_subbuf, padding, padding_start, padding_end;
1033         size_t subbuf_size = buf->chan->subbuf_size;
1034         size_t n_subbufs = buf->chan->n_subbufs;
1035         size_t consumed = buf->subbufs_consumed % n_subbufs;
1036         size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
1037
1038         read_subbuf = read_pos / subbuf_size;
1039         padding = buf->padding[read_subbuf];
1040         padding_start = (read_subbuf + 1) * subbuf_size - padding;
1041         padding_end = (read_subbuf + 1) * subbuf_size;
1042         if (read_pos >= padding_start && read_pos < padding_end) {
1043                 read_subbuf = (read_subbuf + 1) % n_subbufs;
1044                 read_pos = read_subbuf * subbuf_size;
1045         }
1046
1047         return read_pos;
1048 }
1049
1050 /**
1051  *      relay_file_read_end_pos - return the new read position
1052  *      @read_pos: file read position
1053  *      @buf: relay channel buffer
1054  *      @count: number of bytes to be read
1055  */
1056 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1057                                       size_t read_pos,
1058                                       size_t count)
1059 {
1060         size_t read_subbuf, padding, end_pos;
1061         size_t subbuf_size = buf->chan->subbuf_size;
1062         size_t n_subbufs = buf->chan->n_subbufs;
1063
1064         read_subbuf = read_pos / subbuf_size;
1065         padding = buf->padding[read_subbuf];
1066         if (read_pos % subbuf_size + count + padding == subbuf_size)
1067                 end_pos = (read_subbuf + 1) * subbuf_size;
1068         else
1069                 end_pos = read_pos + count;
1070         if (end_pos >= subbuf_size * n_subbufs)
1071                 end_pos = 0;
1072
1073         return end_pos;
1074 }
1075
1076 static ssize_t relay_file_read(struct file *filp,
1077                                char __user *buffer,
1078                                size_t count,
1079                                loff_t *ppos)
1080 {
1081         struct rchan_buf *buf = filp->private_data;
1082         size_t read_start, avail;
1083         size_t written = 0;
1084         int ret;
1085
1086         if (!count)
1087                 return 0;
1088
1089         inode_lock(file_inode(filp));
1090         do {
1091                 void *from;
1092
1093                 if (!relay_file_read_avail(buf))
1094                         break;
1095
1096                 read_start = relay_file_read_start_pos(buf);
1097                 avail = relay_file_read_subbuf_avail(read_start, buf);
1098                 if (!avail)
1099                         break;
1100
1101                 avail = min(count, avail);
1102                 from = buf->start + read_start;
1103                 ret = avail;
1104                 if (copy_to_user(buffer, from, avail))
1105                         break;
1106
1107                 buffer += ret;
1108                 written += ret;
1109                 count -= ret;
1110
1111                 relay_file_read_consume(buf, read_start, ret);
1112                 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1113         } while (count);
1114         inode_unlock(file_inode(filp));
1115
1116         return written;
1117 }
1118
1119 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1120 {
1121         rbuf->bytes_consumed += bytes_consumed;
1122
1123         if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1124                 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1125                 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1126         }
1127 }
1128
1129 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1130                                    struct pipe_buffer *buf)
1131 {
1132         struct rchan_buf *rbuf;
1133
1134         rbuf = (struct rchan_buf *)page_private(buf->page);
1135         relay_consume_bytes(rbuf, buf->private);
1136 }
1137
1138 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1139         .release        = relay_pipe_buf_release,
1140         .try_steal      = generic_pipe_buf_try_steal,
1141         .get            = generic_pipe_buf_get,
1142 };
1143
1144 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1145 {
1146 }
1147
1148 /*
1149  *      subbuf_splice_actor - splice up to one subbuf's worth of data
1150  */
1151 static ssize_t subbuf_splice_actor(struct file *in,
1152                                loff_t *ppos,
1153                                struct pipe_inode_info *pipe,
1154                                size_t len,
1155                                unsigned int flags,
1156                                int *nonpad_ret)
1157 {
1158         unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1159         struct rchan_buf *rbuf = in->private_data;
1160         unsigned int subbuf_size = rbuf->chan->subbuf_size;
1161         uint64_t pos = (uint64_t) *ppos;
1162         uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1163         size_t read_start = (size_t) do_div(pos, alloc_size);
1164         size_t read_subbuf = read_start / subbuf_size;
1165         size_t padding = rbuf->padding[read_subbuf];
1166         size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1167         struct page *pages[PIPE_DEF_BUFFERS];
1168         struct partial_page partial[PIPE_DEF_BUFFERS];
1169         struct splice_pipe_desc spd = {
1170                 .pages = pages,
1171                 .nr_pages = 0,
1172                 .nr_pages_max = PIPE_DEF_BUFFERS,
1173                 .partial = partial,
1174                 .ops = &relay_pipe_buf_ops,
1175                 .spd_release = relay_page_release,
1176         };
1177         ssize_t ret;
1178
1179         if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1180                 return 0;
1181         if (splice_grow_spd(pipe, &spd))
1182                 return -ENOMEM;
1183
1184         /*
1185          * Adjust read len, if longer than what is available
1186          */
1187         if (len > (subbuf_size - read_start % subbuf_size))
1188                 len = subbuf_size - read_start % subbuf_size;
1189
1190         subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1191         pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1192         poff = read_start & ~PAGE_MASK;
1193         nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1194
1195         for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1196                 unsigned int this_len, this_end, private;
1197                 unsigned int cur_pos = read_start + total_len;
1198
1199                 if (!len)
1200                         break;
1201
1202                 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1203                 private = this_len;
1204
1205                 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1206                 spd.partial[spd.nr_pages].offset = poff;
1207
1208                 this_end = cur_pos + this_len;
1209                 if (this_end >= nonpad_end) {
1210                         this_len = nonpad_end - cur_pos;
1211                         private = this_len + padding;
1212                 }
1213                 spd.partial[spd.nr_pages].len = this_len;
1214                 spd.partial[spd.nr_pages].private = private;
1215
1216                 len -= this_len;
1217                 total_len += this_len;
1218                 poff = 0;
1219                 pidx = (pidx + 1) % subbuf_pages;
1220
1221                 if (this_end >= nonpad_end) {
1222                         spd.nr_pages++;
1223                         break;
1224                 }
1225         }
1226
1227         ret = 0;
1228         if (!spd.nr_pages)
1229                 goto out;
1230
1231         ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1232         if (ret < 0 || ret < total_len)
1233                 goto out;
1234
1235         if (read_start + ret == nonpad_end)
1236                 ret += padding;
1237
1238 out:
1239         splice_shrink_spd(&spd);
1240         return ret;
1241 }
1242
1243 static ssize_t relay_file_splice_read(struct file *in,
1244                                       loff_t *ppos,
1245                                       struct pipe_inode_info *pipe,
1246                                       size_t len,
1247                                       unsigned int flags)
1248 {
1249         ssize_t spliced;
1250         int ret;
1251         int nonpad_ret = 0;
1252
1253         ret = 0;
1254         spliced = 0;
1255
1256         while (len && !spliced) {
1257                 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1258                 if (ret < 0)
1259                         break;
1260                 else if (!ret) {
1261                         if (flags & SPLICE_F_NONBLOCK)
1262                                 ret = -EAGAIN;
1263                         break;
1264                 }
1265
1266                 *ppos += ret;
1267                 if (ret > len)
1268                         len = 0;
1269                 else
1270                         len -= ret;
1271                 spliced += nonpad_ret;
1272                 nonpad_ret = 0;
1273         }
1274
1275         if (spliced)
1276                 return spliced;
1277
1278         return ret;
1279 }
1280
1281 const struct file_operations relay_file_operations = {
1282         .open           = relay_file_open,
1283         .poll           = relay_file_poll,
1284         .mmap           = relay_file_mmap,
1285         .read           = relay_file_read,
1286         .llseek         = no_llseek,
1287         .release        = relay_file_release,
1288         .splice_read    = relay_file_splice_read,
1289 };
1290 EXPORT_SYMBOL_GPL(relay_file_operations);