overflow: Provide constant expression struct_size
[linux-block.git] / kernel / rcu / tree_nocb.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <mingo@elte.hu>
12  *         Paul E. McKenney <paulmck@linux.ibm.com>
13  *         Frederic Weisbecker <frederic@kernel.org>
14  */
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21         return lockdep_is_held(&rdp->nocb_lock);
22 }
23
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26         /* Race on early boot between thread creation and assignment */
27         if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28                 return true;
29
30         if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31                 if (in_task())
32                         return true;
33         return false;
34 }
35
36 /*
37  * Offload callback processing from the boot-time-specified set of CPUs
38  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39  * created that pull the callbacks from the corresponding CPU, wait for
40  * a grace period to elapse, and invoke the callbacks.  These kthreads
41  * are organized into GP kthreads, which manage incoming callbacks, wait for
42  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44  * do a wake_up() on their GP kthread when they insert a callback into any
45  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46  * in which case each kthread actively polls its CPU.  (Which isn't so great
47  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48  *
49  * This is intended to be used in conjunction with Frederic Weisbecker's
50  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51  * running CPU-bound user-mode computations.
52  *
53  * Offloading of callbacks can also be used as an energy-efficiency
54  * measure because CPUs with no RCU callbacks queued are more aggressive
55  * about entering dyntick-idle mode.
56  */
57
58
59 /*
60  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62  */
63
64 static bool rcu_nocb_is_setup;
65
66 static int __init rcu_nocb_setup(char *str)
67 {
68         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
69         if (*str == '=') {
70                 if (cpulist_parse(++str, rcu_nocb_mask)) {
71                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
72                         cpumask_setall(rcu_nocb_mask);
73                 }
74         }
75         rcu_nocb_is_setup = true;
76         return 1;
77 }
78 __setup("rcu_nocbs", rcu_nocb_setup);
79
80 static int __init parse_rcu_nocb_poll(char *arg)
81 {
82         rcu_nocb_poll = true;
83         return 0;
84 }
85 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
86
87 /*
88  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
89  * After all, the main point of bypassing is to avoid lock contention
90  * on ->nocb_lock, which only can happen at high call_rcu() rates.
91  */
92 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
93 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
94
95 /*
96  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
97  * lock isn't immediately available, increment ->nocb_lock_contended to
98  * flag the contention.
99  */
100 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
101         __acquires(&rdp->nocb_bypass_lock)
102 {
103         lockdep_assert_irqs_disabled();
104         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
105                 return;
106         atomic_inc(&rdp->nocb_lock_contended);
107         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
108         smp_mb__after_atomic(); /* atomic_inc() before lock. */
109         raw_spin_lock(&rdp->nocb_bypass_lock);
110         smp_mb__before_atomic(); /* atomic_dec() after lock. */
111         atomic_dec(&rdp->nocb_lock_contended);
112 }
113
114 /*
115  * Spinwait until the specified rcu_data structure's ->nocb_lock is
116  * not contended.  Please note that this is extremely special-purpose,
117  * relying on the fact that at most two kthreads and one CPU contend for
118  * this lock, and also that the two kthreads are guaranteed to have frequent
119  * grace-period-duration time intervals between successive acquisitions
120  * of the lock.  This allows us to use an extremely simple throttling
121  * mechanism, and further to apply it only to the CPU doing floods of
122  * call_rcu() invocations.  Don't try this at home!
123  */
124 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
125 {
126         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
127         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
128                 cpu_relax();
129 }
130
131 /*
132  * Conditionally acquire the specified rcu_data structure's
133  * ->nocb_bypass_lock.
134  */
135 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
136 {
137         lockdep_assert_irqs_disabled();
138         return raw_spin_trylock(&rdp->nocb_bypass_lock);
139 }
140
141 /*
142  * Release the specified rcu_data structure's ->nocb_bypass_lock.
143  */
144 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
145         __releases(&rdp->nocb_bypass_lock)
146 {
147         lockdep_assert_irqs_disabled();
148         raw_spin_unlock(&rdp->nocb_bypass_lock);
149 }
150
151 /*
152  * Acquire the specified rcu_data structure's ->nocb_lock, but only
153  * if it corresponds to a no-CBs CPU.
154  */
155 static void rcu_nocb_lock(struct rcu_data *rdp)
156 {
157         lockdep_assert_irqs_disabled();
158         if (!rcu_rdp_is_offloaded(rdp))
159                 return;
160         raw_spin_lock(&rdp->nocb_lock);
161 }
162
163 /*
164  * Release the specified rcu_data structure's ->nocb_lock, but only
165  * if it corresponds to a no-CBs CPU.
166  */
167 static void rcu_nocb_unlock(struct rcu_data *rdp)
168 {
169         if (rcu_rdp_is_offloaded(rdp)) {
170                 lockdep_assert_irqs_disabled();
171                 raw_spin_unlock(&rdp->nocb_lock);
172         }
173 }
174
175 /*
176  * Release the specified rcu_data structure's ->nocb_lock and restore
177  * interrupts, but only if it corresponds to a no-CBs CPU.
178  */
179 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
180                                        unsigned long flags)
181 {
182         if (rcu_rdp_is_offloaded(rdp)) {
183                 lockdep_assert_irqs_disabled();
184                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
185         } else {
186                 local_irq_restore(flags);
187         }
188 }
189
190 /* Lockdep check that ->cblist may be safely accessed. */
191 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
192 {
193         lockdep_assert_irqs_disabled();
194         if (rcu_rdp_is_offloaded(rdp))
195                 lockdep_assert_held(&rdp->nocb_lock);
196 }
197
198 /*
199  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
200  * grace period.
201  */
202 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
203 {
204         swake_up_all(sq);
205 }
206
207 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
208 {
209         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
210 }
211
212 static void rcu_init_one_nocb(struct rcu_node *rnp)
213 {
214         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
215         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
216 }
217
218 /* Is the specified CPU a no-CBs CPU? */
219 bool rcu_is_nocb_cpu(int cpu)
220 {
221         if (cpumask_available(rcu_nocb_mask))
222                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
223         return false;
224 }
225
226 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
227                            struct rcu_data *rdp,
228                            bool force, unsigned long flags)
229         __releases(rdp_gp->nocb_gp_lock)
230 {
231         bool needwake = false;
232
233         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
234                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
235                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
236                                     TPS("AlreadyAwake"));
237                 return false;
238         }
239
240         if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
241                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
242                 del_timer(&rdp_gp->nocb_timer);
243         }
244
245         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
246                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
247                 needwake = true;
248         }
249         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
250         if (needwake) {
251                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
252                 wake_up_process(rdp_gp->nocb_gp_kthread);
253         }
254
255         return needwake;
256 }
257
258 /*
259  * Kick the GP kthread for this NOCB group.
260  */
261 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
262 {
263         unsigned long flags;
264         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
265
266         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
267         return __wake_nocb_gp(rdp_gp, rdp, force, flags);
268 }
269
270 /*
271  * Arrange to wake the GP kthread for this NOCB group at some future
272  * time when it is safe to do so.
273  */
274 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
275                                const char *reason)
276 {
277         unsigned long flags;
278         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
279
280         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
281
282         /*
283          * Bypass wakeup overrides previous deferments. In case
284          * of callback storm, no need to wake up too early.
285          */
286         if (waketype == RCU_NOCB_WAKE_BYPASS) {
287                 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
288                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
289         } else {
290                 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
291                         mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
292                 if (rdp_gp->nocb_defer_wakeup < waketype)
293                         WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
294         }
295
296         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
297
298         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
299 }
300
301 /*
302  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
303  * However, if there is a callback to be enqueued and if ->nocb_bypass
304  * proves to be initially empty, just return false because the no-CB GP
305  * kthread may need to be awakened in this case.
306  *
307  * Note that this function always returns true if rhp is NULL.
308  */
309 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
310                                      unsigned long j)
311 {
312         struct rcu_cblist rcl;
313
314         WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
315         rcu_lockdep_assert_cblist_protected(rdp);
316         lockdep_assert_held(&rdp->nocb_bypass_lock);
317         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
318                 raw_spin_unlock(&rdp->nocb_bypass_lock);
319                 return false;
320         }
321         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
322         if (rhp)
323                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
324         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
325         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
326         WRITE_ONCE(rdp->nocb_bypass_first, j);
327         rcu_nocb_bypass_unlock(rdp);
328         return true;
329 }
330
331 /*
332  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
333  * However, if there is a callback to be enqueued and if ->nocb_bypass
334  * proves to be initially empty, just return false because the no-CB GP
335  * kthread may need to be awakened in this case.
336  *
337  * Note that this function always returns true if rhp is NULL.
338  */
339 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
340                                   unsigned long j)
341 {
342         if (!rcu_rdp_is_offloaded(rdp))
343                 return true;
344         rcu_lockdep_assert_cblist_protected(rdp);
345         rcu_nocb_bypass_lock(rdp);
346         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
347 }
348
349 /*
350  * If the ->nocb_bypass_lock is immediately available, flush the
351  * ->nocb_bypass queue into ->cblist.
352  */
353 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
354 {
355         rcu_lockdep_assert_cblist_protected(rdp);
356         if (!rcu_rdp_is_offloaded(rdp) ||
357             !rcu_nocb_bypass_trylock(rdp))
358                 return;
359         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
360 }
361
362 /*
363  * See whether it is appropriate to use the ->nocb_bypass list in order
364  * to control contention on ->nocb_lock.  A limited number of direct
365  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
366  * is non-empty, further callbacks must be placed into ->nocb_bypass,
367  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
368  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
369  * used if ->cblist is empty, because otherwise callbacks can be stranded
370  * on ->nocb_bypass because we cannot count on the current CPU ever again
371  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
372  * non-empty, the corresponding no-CBs grace-period kthread must not be
373  * in an indefinite sleep state.
374  *
375  * Finally, it is not permitted to use the bypass during early boot,
376  * as doing so would confuse the auto-initialization code.  Besides
377  * which, there is no point in worrying about lock contention while
378  * there is only one CPU in operation.
379  */
380 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
381                                 bool *was_alldone, unsigned long flags)
382 {
383         unsigned long c;
384         unsigned long cur_gp_seq;
385         unsigned long j = jiffies;
386         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
387
388         lockdep_assert_irqs_disabled();
389
390         // Pure softirq/rcuc based processing: no bypassing, no
391         // locking.
392         if (!rcu_rdp_is_offloaded(rdp)) {
393                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
394                 return false;
395         }
396
397         // In the process of (de-)offloading: no bypassing, but
398         // locking.
399         if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
400                 rcu_nocb_lock(rdp);
401                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
402                 return false; /* Not offloaded, no bypassing. */
403         }
404
405         // Don't use ->nocb_bypass during early boot.
406         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
407                 rcu_nocb_lock(rdp);
408                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
409                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
410                 return false;
411         }
412
413         // If we have advanced to a new jiffy, reset counts to allow
414         // moving back from ->nocb_bypass to ->cblist.
415         if (j == rdp->nocb_nobypass_last) {
416                 c = rdp->nocb_nobypass_count + 1;
417         } else {
418                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
419                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
420                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
421                                  nocb_nobypass_lim_per_jiffy))
422                         c = 0;
423                 else if (c > nocb_nobypass_lim_per_jiffy)
424                         c = nocb_nobypass_lim_per_jiffy;
425         }
426         WRITE_ONCE(rdp->nocb_nobypass_count, c);
427
428         // If there hasn't yet been all that many ->cblist enqueues
429         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
430         // ->nocb_bypass first.
431         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
432                 rcu_nocb_lock(rdp);
433                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
434                 if (*was_alldone)
435                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
436                                             TPS("FirstQ"));
437                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
438                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
439                 return false; // Caller must enqueue the callback.
440         }
441
442         // If ->nocb_bypass has been used too long or is too full,
443         // flush ->nocb_bypass to ->cblist.
444         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
445             ncbs >= qhimark) {
446                 rcu_nocb_lock(rdp);
447                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
448                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
449                         if (*was_alldone)
450                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
451                                                     TPS("FirstQ"));
452                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
453                         return false; // Caller must enqueue the callback.
454                 }
455                 if (j != rdp->nocb_gp_adv_time &&
456                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
457                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
458                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
459                         rdp->nocb_gp_adv_time = j;
460                 }
461                 rcu_nocb_unlock_irqrestore(rdp, flags);
462                 return true; // Callback already enqueued.
463         }
464
465         // We need to use the bypass.
466         rcu_nocb_wait_contended(rdp);
467         rcu_nocb_bypass_lock(rdp);
468         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
469         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
470         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
471         if (!ncbs) {
472                 WRITE_ONCE(rdp->nocb_bypass_first, j);
473                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
474         }
475         rcu_nocb_bypass_unlock(rdp);
476         smp_mb(); /* Order enqueue before wake. */
477         if (ncbs) {
478                 local_irq_restore(flags);
479         } else {
480                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
481                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
482                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
483                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
484                                             TPS("FirstBQwake"));
485                         __call_rcu_nocb_wake(rdp, true, flags);
486                 } else {
487                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
488                                             TPS("FirstBQnoWake"));
489                         rcu_nocb_unlock_irqrestore(rdp, flags);
490                 }
491         }
492         return true; // Callback already enqueued.
493 }
494
495 /*
496  * Awaken the no-CBs grace-period kthread if needed, either due to it
497  * legitimately being asleep or due to overload conditions.
498  *
499  * If warranted, also wake up the kthread servicing this CPUs queues.
500  */
501 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
502                                  unsigned long flags)
503                                  __releases(rdp->nocb_lock)
504 {
505         unsigned long cur_gp_seq;
506         unsigned long j;
507         long len;
508         struct task_struct *t;
509
510         // If we are being polled or there is no kthread, just leave.
511         t = READ_ONCE(rdp->nocb_gp_kthread);
512         if (rcu_nocb_poll || !t) {
513                 rcu_nocb_unlock_irqrestore(rdp, flags);
514                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
515                                     TPS("WakeNotPoll"));
516                 return;
517         }
518         // Need to actually to a wakeup.
519         len = rcu_segcblist_n_cbs(&rdp->cblist);
520         if (was_alldone) {
521                 rdp->qlen_last_fqs_check = len;
522                 if (!irqs_disabled_flags(flags)) {
523                         /* ... if queue was empty ... */
524                         rcu_nocb_unlock_irqrestore(rdp, flags);
525                         wake_nocb_gp(rdp, false);
526                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
527                                             TPS("WakeEmpty"));
528                 } else {
529                         rcu_nocb_unlock_irqrestore(rdp, flags);
530                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
531                                            TPS("WakeEmptyIsDeferred"));
532                 }
533         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
534                 /* ... or if many callbacks queued. */
535                 rdp->qlen_last_fqs_check = len;
536                 j = jiffies;
537                 if (j != rdp->nocb_gp_adv_time &&
538                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
539                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
540                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
541                         rdp->nocb_gp_adv_time = j;
542                 }
543                 smp_mb(); /* Enqueue before timer_pending(). */
544                 if ((rdp->nocb_cb_sleep ||
545                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
546                     !timer_pending(&rdp->nocb_timer)) {
547                         rcu_nocb_unlock_irqrestore(rdp, flags);
548                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
549                                            TPS("WakeOvfIsDeferred"));
550                 } else {
551                         rcu_nocb_unlock_irqrestore(rdp, flags);
552                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
553                 }
554         } else {
555                 rcu_nocb_unlock_irqrestore(rdp, flags);
556                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
557         }
558 }
559
560 /*
561  * Check if we ignore this rdp.
562  *
563  * We check that without holding the nocb lock but
564  * we make sure not to miss a freshly offloaded rdp
565  * with the current ordering:
566  *
567  *  rdp_offload_toggle()        nocb_gp_enabled_cb()
568  * -------------------------   ----------------------------
569  *    WRITE flags                 LOCK nocb_gp_lock
570  *    LOCK nocb_gp_lock           READ/WRITE nocb_gp_sleep
571  *    READ/WRITE nocb_gp_sleep    UNLOCK nocb_gp_lock
572  *    UNLOCK nocb_gp_lock         READ flags
573  */
574 static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
575 {
576         u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
577
578         return rcu_segcblist_test_flags(&rdp->cblist, flags);
579 }
580
581 static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
582                                                      bool *needwake_state)
583 {
584         struct rcu_segcblist *cblist = &rdp->cblist;
585
586         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
587                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
588                         rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
589                         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
590                                 *needwake_state = true;
591                 }
592                 return false;
593         }
594
595         /*
596          * De-offloading. Clear our flag and notify the de-offload worker.
597          * We will ignore this rdp until it ever gets re-offloaded.
598          */
599         WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
600         rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
601         if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
602                 *needwake_state = true;
603         return true;
604 }
605
606
607 /*
608  * No-CBs GP kthreads come here to wait for additional callbacks to show up
609  * or for grace periods to end.
610  */
611 static void nocb_gp_wait(struct rcu_data *my_rdp)
612 {
613         bool bypass = false;
614         long bypass_ncbs;
615         int __maybe_unused cpu = my_rdp->cpu;
616         unsigned long cur_gp_seq;
617         unsigned long flags;
618         bool gotcbs = false;
619         unsigned long j = jiffies;
620         bool needwait_gp = false; // This prevents actual uninitialized use.
621         bool needwake;
622         bool needwake_gp;
623         struct rcu_data *rdp;
624         struct rcu_node *rnp;
625         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
626         bool wasempty = false;
627
628         /*
629          * Each pass through the following loop checks for CBs and for the
630          * nearest grace period (if any) to wait for next.  The CB kthreads
631          * and the global grace-period kthread are awakened if needed.
632          */
633         WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
634         /*
635          * An rcu_data structure is removed from the list after its
636          * CPU is de-offloaded and added to the list before that CPU is
637          * (re-)offloaded.  If the following loop happens to be referencing
638          * that rcu_data structure during the time that the corresponding
639          * CPU is de-offloaded and then immediately re-offloaded, this
640          * loop's rdp pointer will be carried to the end of the list by
641          * the resulting pair of list operations.  This can cause the loop
642          * to skip over some of the rcu_data structures that were supposed
643          * to have been scanned.  Fortunately a new iteration through the
644          * entire loop is forced after a given CPU's rcu_data structure
645          * is added to the list, so the skipped-over rcu_data structures
646          * won't be ignored for long.
647          */
648         list_for_each_entry_rcu(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp, 1) {
649                 bool needwake_state = false;
650
651                 if (!nocb_gp_enabled_cb(rdp))
652                         continue;
653                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
654                 rcu_nocb_lock_irqsave(rdp, flags);
655                 if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
656                         rcu_nocb_unlock_irqrestore(rdp, flags);
657                         if (needwake_state)
658                                 swake_up_one(&rdp->nocb_state_wq);
659                         continue;
660                 }
661                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
662                 if (bypass_ncbs &&
663                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
664                      bypass_ncbs > 2 * qhimark)) {
665                         // Bypass full or old, so flush it.
666                         (void)rcu_nocb_try_flush_bypass(rdp, j);
667                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
668                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
669                         rcu_nocb_unlock_irqrestore(rdp, flags);
670                         if (needwake_state)
671                                 swake_up_one(&rdp->nocb_state_wq);
672                         continue; /* No callbacks here, try next. */
673                 }
674                 if (bypass_ncbs) {
675                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
676                                             TPS("Bypass"));
677                         bypass = true;
678                 }
679                 rnp = rdp->mynode;
680
681                 // Advance callbacks if helpful and low contention.
682                 needwake_gp = false;
683                 if (!rcu_segcblist_restempty(&rdp->cblist,
684                                              RCU_NEXT_READY_TAIL) ||
685                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
686                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
687                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
688                         needwake_gp = rcu_advance_cbs(rnp, rdp);
689                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
690                                                            RCU_NEXT_READY_TAIL);
691                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
692                 }
693                 // Need to wait on some grace period?
694                 WARN_ON_ONCE(wasempty &&
695                              !rcu_segcblist_restempty(&rdp->cblist,
696                                                       RCU_NEXT_READY_TAIL));
697                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
698                         if (!needwait_gp ||
699                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
700                                 wait_gp_seq = cur_gp_seq;
701                         needwait_gp = true;
702                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
703                                             TPS("NeedWaitGP"));
704                 }
705                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
706                         needwake = rdp->nocb_cb_sleep;
707                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
708                         smp_mb(); /* CB invocation -after- GP end. */
709                 } else {
710                         needwake = false;
711                 }
712                 rcu_nocb_unlock_irqrestore(rdp, flags);
713                 if (needwake) {
714                         swake_up_one(&rdp->nocb_cb_wq);
715                         gotcbs = true;
716                 }
717                 if (needwake_gp)
718                         rcu_gp_kthread_wake();
719                 if (needwake_state)
720                         swake_up_one(&rdp->nocb_state_wq);
721         }
722
723         my_rdp->nocb_gp_bypass = bypass;
724         my_rdp->nocb_gp_gp = needwait_gp;
725         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
726
727         if (bypass && !rcu_nocb_poll) {
728                 // At least one child with non-empty ->nocb_bypass, so set
729                 // timer in order to avoid stranding its callbacks.
730                 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
731                                    TPS("WakeBypassIsDeferred"));
732         }
733         if (rcu_nocb_poll) {
734                 /* Polling, so trace if first poll in the series. */
735                 if (gotcbs)
736                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
737                 schedule_timeout_idle(1);
738         } else if (!needwait_gp) {
739                 /* Wait for callbacks to appear. */
740                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
741                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
742                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
743                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
744         } else {
745                 rnp = my_rdp->mynode;
746                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
747                 swait_event_interruptible_exclusive(
748                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
749                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
750                         !READ_ONCE(my_rdp->nocb_gp_sleep));
751                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
752         }
753         if (!rcu_nocb_poll) {
754                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
755                 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
756                         WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
757                         del_timer(&my_rdp->nocb_timer);
758                 }
759                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
760                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
761         }
762         my_rdp->nocb_gp_seq = -1;
763         WARN_ON(signal_pending(current));
764 }
765
766 /*
767  * No-CBs grace-period-wait kthread.  There is one of these per group
768  * of CPUs, but only once at least one CPU in that group has come online
769  * at least once since boot.  This kthread checks for newly posted
770  * callbacks from any of the CPUs it is responsible for, waits for a
771  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
772  * that then have callback-invocation work to do.
773  */
774 static int rcu_nocb_gp_kthread(void *arg)
775 {
776         struct rcu_data *rdp = arg;
777
778         for (;;) {
779                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
780                 nocb_gp_wait(rdp);
781                 cond_resched_tasks_rcu_qs();
782         }
783         return 0;
784 }
785
786 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
787 {
788         u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
789
790         return rcu_segcblist_test_flags(&rdp->cblist, flags);
791 }
792
793 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
794 {
795         return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
796 }
797
798 /*
799  * Invoke any ready callbacks from the corresponding no-CBs CPU,
800  * then, if there are no more, wait for more to appear.
801  */
802 static void nocb_cb_wait(struct rcu_data *rdp)
803 {
804         struct rcu_segcblist *cblist = &rdp->cblist;
805         unsigned long cur_gp_seq;
806         unsigned long flags;
807         bool needwake_state = false;
808         bool needwake_gp = false;
809         bool can_sleep = true;
810         struct rcu_node *rnp = rdp->mynode;
811
812         do {
813                 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
814                                                     nocb_cb_wait_cond(rdp));
815
816                 // VVV Ensure CB invocation follows _sleep test.
817                 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
818                         WARN_ON(signal_pending(current));
819                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
820                 }
821         } while (!nocb_cb_can_run(rdp));
822
823
824         local_irq_save(flags);
825         rcu_momentary_dyntick_idle();
826         local_irq_restore(flags);
827         /*
828          * Disable BH to provide the expected environment.  Also, when
829          * transitioning to/from NOCB mode, a self-requeuing callback might
830          * be invoked from softirq.  A short grace period could cause both
831          * instances of this callback would execute concurrently.
832          */
833         local_bh_disable();
834         rcu_do_batch(rdp);
835         local_bh_enable();
836         lockdep_assert_irqs_enabled();
837         rcu_nocb_lock_irqsave(rdp, flags);
838         if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
839             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
840             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
841                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
842                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
843         }
844
845         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
846                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
847                         rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
848                         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
849                                 needwake_state = true;
850                 }
851                 if (rcu_segcblist_ready_cbs(cblist))
852                         can_sleep = false;
853         } else {
854                 /*
855                  * De-offloading. Clear our flag and notify the de-offload worker.
856                  * We won't touch the callbacks and keep sleeping until we ever
857                  * get re-offloaded.
858                  */
859                 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
860                 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
861                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
862                         needwake_state = true;
863         }
864
865         WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
866
867         if (rdp->nocb_cb_sleep)
868                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
869
870         rcu_nocb_unlock_irqrestore(rdp, flags);
871         if (needwake_gp)
872                 rcu_gp_kthread_wake();
873
874         if (needwake_state)
875                 swake_up_one(&rdp->nocb_state_wq);
876 }
877
878 /*
879  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
880  * nocb_cb_wait() to do the dirty work.
881  */
882 static int rcu_nocb_cb_kthread(void *arg)
883 {
884         struct rcu_data *rdp = arg;
885
886         // Each pass through this loop does one callback batch, and,
887         // if there are no more ready callbacks, waits for them.
888         for (;;) {
889                 nocb_cb_wait(rdp);
890                 cond_resched_tasks_rcu_qs();
891         }
892         return 0;
893 }
894
895 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
896 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
897 {
898         return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
899 }
900
901 /* Do a deferred wakeup of rcu_nocb_kthread(). */
902 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
903                                            struct rcu_data *rdp, int level,
904                                            unsigned long flags)
905         __releases(rdp_gp->nocb_gp_lock)
906 {
907         int ndw;
908         int ret;
909
910         if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
911                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
912                 return false;
913         }
914
915         ndw = rdp_gp->nocb_defer_wakeup;
916         ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
917         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
918
919         return ret;
920 }
921
922 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
923 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
924 {
925         unsigned long flags;
926         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
927
928         WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
929         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
930
931         raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
932         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
933         do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
934 }
935
936 /*
937  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
938  * This means we do an inexact common-case check.  Note that if
939  * we miss, ->nocb_timer will eventually clean things up.
940  */
941 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
942 {
943         unsigned long flags;
944         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
945
946         if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
947                 return false;
948
949         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
950         return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
951 }
952
953 void rcu_nocb_flush_deferred_wakeup(void)
954 {
955         do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
956 }
957 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
958
959 static int rdp_offload_toggle(struct rcu_data *rdp,
960                                bool offload, unsigned long flags)
961         __releases(rdp->nocb_lock)
962 {
963         struct rcu_segcblist *cblist = &rdp->cblist;
964         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
965         bool wake_gp = false;
966
967         rcu_segcblist_offload(cblist, offload);
968
969         if (rdp->nocb_cb_sleep)
970                 rdp->nocb_cb_sleep = false;
971         rcu_nocb_unlock_irqrestore(rdp, flags);
972
973         /*
974          * Ignore former value of nocb_cb_sleep and force wake up as it could
975          * have been spuriously set to false already.
976          */
977         swake_up_one(&rdp->nocb_cb_wq);
978
979         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
980         if (rdp_gp->nocb_gp_sleep) {
981                 rdp_gp->nocb_gp_sleep = false;
982                 wake_gp = true;
983         }
984         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
985
986         if (wake_gp)
987                 wake_up_process(rdp_gp->nocb_gp_kthread);
988
989         return 0;
990 }
991
992 static long rcu_nocb_rdp_deoffload(void *arg)
993 {
994         struct rcu_data *rdp = arg;
995         struct rcu_segcblist *cblist = &rdp->cblist;
996         unsigned long flags;
997         int ret;
998
999         WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1000
1001         pr_info("De-offloading %d\n", rdp->cpu);
1002
1003         rcu_nocb_lock_irqsave(rdp, flags);
1004         /*
1005          * Flush once and for all now. This suffices because we are
1006          * running on the target CPU holding ->nocb_lock (thus having
1007          * interrupts disabled), and because rdp_offload_toggle()
1008          * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1009          * Thus future calls to rcu_segcblist_completely_offloaded() will
1010          * return false, which means that future calls to rcu_nocb_try_bypass()
1011          * will refuse to put anything into the bypass.
1012          */
1013         WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
1014         /*
1015          * Start with invoking rcu_core() early. This way if the current thread
1016          * happens to preempt an ongoing call to rcu_core() in the middle,
1017          * leaving some work dismissed because rcu_core() still thinks the rdp is
1018          * completely offloaded, we are guaranteed a nearby future instance of
1019          * rcu_core() to catch up.
1020          */
1021         rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1022         invoke_rcu_core();
1023         ret = rdp_offload_toggle(rdp, false, flags);
1024         swait_event_exclusive(rdp->nocb_state_wq,
1025                               !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
1026                                                         SEGCBLIST_KTHREAD_GP));
1027         /* Stop nocb_gp_wait() from iterating over this structure. */
1028         list_del_rcu(&rdp->nocb_entry_rdp);
1029         /*
1030          * Lock one last time to acquire latest callback updates from kthreads
1031          * so we can later handle callbacks locally without locking.
1032          */
1033         rcu_nocb_lock_irqsave(rdp, flags);
1034         /*
1035          * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1036          * lock is released but how about being paranoid for once?
1037          */
1038         rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1039         /*
1040          * Without SEGCBLIST_LOCKING, we can't use
1041          * rcu_nocb_unlock_irqrestore() anymore.
1042          */
1043         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1044
1045         /* Sanity check */
1046         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1047
1048
1049         return ret;
1050 }
1051
1052 int rcu_nocb_cpu_deoffload(int cpu)
1053 {
1054         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1055         int ret = 0;
1056
1057         mutex_lock(&rcu_state.barrier_mutex);
1058         cpus_read_lock();
1059         if (rcu_rdp_is_offloaded(rdp)) {
1060                 if (cpu_online(cpu)) {
1061                         ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1062                         if (!ret)
1063                                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
1064                 } else {
1065                         pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
1066                         ret = -EINVAL;
1067                 }
1068         }
1069         cpus_read_unlock();
1070         mutex_unlock(&rcu_state.barrier_mutex);
1071
1072         return ret;
1073 }
1074 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1075
1076 static long rcu_nocb_rdp_offload(void *arg)
1077 {
1078         struct rcu_data *rdp = arg;
1079         struct rcu_segcblist *cblist = &rdp->cblist;
1080         unsigned long flags;
1081         int ret;
1082
1083         WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1084         /*
1085          * For now we only support re-offload, ie: the rdp must have been
1086          * offloaded on boot first.
1087          */
1088         if (!rdp->nocb_gp_rdp)
1089                 return -EINVAL;
1090
1091         pr_info("Offloading %d\n", rdp->cpu);
1092
1093         /*
1094          * Cause future nocb_gp_wait() invocations to iterate over
1095          * structure, resetting ->nocb_gp_sleep and waking up the related
1096          * "rcuog".  Since nocb_gp_wait() in turn locks ->nocb_gp_lock
1097          * before setting ->nocb_gp_sleep again, we are guaranteed to
1098          * iterate this newly added structure before "rcuog" goes to
1099          * sleep again.
1100          */
1101         list_add_tail_rcu(&rdp->nocb_entry_rdp, &rdp->nocb_gp_rdp->nocb_head_rdp);
1102
1103         /*
1104          * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1105          * is set.
1106          */
1107         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1108
1109         /*
1110          * We didn't take the nocb lock while working on the
1111          * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1112          * Every modifications that have been done previously on
1113          * rdp->cblist must be visible remotely by the nocb kthreads
1114          * upon wake up after reading the cblist flags.
1115          *
1116          * The layout against nocb_lock enforces that ordering:
1117          *
1118          *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1119          * -------------------------   ----------------------------
1120          *      WRITE callbacks           rcu_nocb_lock()
1121          *      rcu_nocb_lock()           READ flags
1122          *      WRITE flags               READ callbacks
1123          *      rcu_nocb_unlock()         rcu_nocb_unlock()
1124          */
1125         ret = rdp_offload_toggle(rdp, true, flags);
1126         swait_event_exclusive(rdp->nocb_state_wq,
1127                               rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1128                               rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1129
1130         /*
1131          * All kthreads are ready to work, we can finally relieve rcu_core() and
1132          * enable nocb bypass.
1133          */
1134         rcu_nocb_lock_irqsave(rdp, flags);
1135         rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1136         rcu_nocb_unlock_irqrestore(rdp, flags);
1137
1138         return ret;
1139 }
1140
1141 int rcu_nocb_cpu_offload(int cpu)
1142 {
1143         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1144         int ret = 0;
1145
1146         mutex_lock(&rcu_state.barrier_mutex);
1147         cpus_read_lock();
1148         if (!rcu_rdp_is_offloaded(rdp)) {
1149                 if (cpu_online(cpu)) {
1150                         ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1151                         if (!ret)
1152                                 cpumask_set_cpu(cpu, rcu_nocb_mask);
1153                 } else {
1154                         pr_info("NOCB: Can't CB-offload an offline CPU\n");
1155                         ret = -EINVAL;
1156                 }
1157         }
1158         cpus_read_unlock();
1159         mutex_unlock(&rcu_state.barrier_mutex);
1160
1161         return ret;
1162 }
1163 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1164
1165 void __init rcu_init_nohz(void)
1166 {
1167         int cpu;
1168         bool need_rcu_nocb_mask = false;
1169         struct rcu_data *rdp;
1170
1171 #if defined(CONFIG_NO_HZ_FULL)
1172         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
1173                 need_rcu_nocb_mask = true;
1174 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1175
1176         if (need_rcu_nocb_mask) {
1177                 if (!cpumask_available(rcu_nocb_mask)) {
1178                         if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1179                                 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1180                                 return;
1181                         }
1182                 }
1183                 rcu_nocb_is_setup = true;
1184         }
1185
1186         if (!rcu_nocb_is_setup)
1187                 return;
1188
1189 #if defined(CONFIG_NO_HZ_FULL)
1190         if (tick_nohz_full_running)
1191                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
1192 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
1193
1194         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1195                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1196                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1197                             rcu_nocb_mask);
1198         }
1199         if (cpumask_empty(rcu_nocb_mask))
1200                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1201         else
1202                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1203                         cpumask_pr_args(rcu_nocb_mask));
1204         if (rcu_nocb_poll)
1205                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1206
1207         for_each_cpu(cpu, rcu_nocb_mask) {
1208                 rdp = per_cpu_ptr(&rcu_data, cpu);
1209                 if (rcu_segcblist_empty(&rdp->cblist))
1210                         rcu_segcblist_init(&rdp->cblist);
1211                 rcu_segcblist_offload(&rdp->cblist, true);
1212                 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1213                 rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1214         }
1215         rcu_organize_nocb_kthreads();
1216 }
1217
1218 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1219 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1220 {
1221         init_swait_queue_head(&rdp->nocb_cb_wq);
1222         init_swait_queue_head(&rdp->nocb_gp_wq);
1223         init_swait_queue_head(&rdp->nocb_state_wq);
1224         raw_spin_lock_init(&rdp->nocb_lock);
1225         raw_spin_lock_init(&rdp->nocb_bypass_lock);
1226         raw_spin_lock_init(&rdp->nocb_gp_lock);
1227         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1228         rcu_cblist_init(&rdp->nocb_bypass);
1229 }
1230
1231 /*
1232  * If the specified CPU is a no-CBs CPU that does not already have its
1233  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1234  * for this CPU's group has not yet been created, spawn it as well.
1235  */
1236 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1237 {
1238         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1239         struct rcu_data *rdp_gp;
1240         struct task_struct *t;
1241
1242         if (!rcu_scheduler_fully_active || !rcu_nocb_is_setup)
1243                 return;
1244
1245         /* If there already is an rcuo kthread, then nothing to do. */
1246         if (rdp->nocb_cb_kthread)
1247                 return;
1248
1249         /* If we didn't spawn the GP kthread first, reorganize! */
1250         rdp_gp = rdp->nocb_gp_rdp;
1251         if (!rdp_gp->nocb_gp_kthread) {
1252                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1253                                 "rcuog/%d", rdp_gp->cpu);
1254                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
1255                         return;
1256                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1257         }
1258
1259         /* Spawn the kthread for this CPU. */
1260         t = kthread_run(rcu_nocb_cb_kthread, rdp,
1261                         "rcuo%c/%d", rcu_state.abbr, cpu);
1262         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1263                 return;
1264         WRITE_ONCE(rdp->nocb_cb_kthread, t);
1265         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1266 }
1267
1268 /*
1269  * Once the scheduler is running, spawn rcuo kthreads for all online
1270  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
1271  * non-boot CPUs come online -- if this changes, we will need to add
1272  * some mutual exclusion.
1273  */
1274 static void __init rcu_spawn_nocb_kthreads(void)
1275 {
1276         int cpu;
1277
1278         if (rcu_nocb_is_setup) {
1279                 for_each_online_cpu(cpu)
1280                         rcu_spawn_cpu_nocb_kthread(cpu);
1281         }
1282 }
1283
1284 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1285 static int rcu_nocb_gp_stride = -1;
1286 module_param(rcu_nocb_gp_stride, int, 0444);
1287
1288 /*
1289  * Initialize GP-CB relationships for all no-CBs CPU.
1290  */
1291 static void __init rcu_organize_nocb_kthreads(void)
1292 {
1293         int cpu;
1294         bool firsttime = true;
1295         bool gotnocbs = false;
1296         bool gotnocbscbs = true;
1297         int ls = rcu_nocb_gp_stride;
1298         int nl = 0;  /* Next GP kthread. */
1299         struct rcu_data *rdp;
1300         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1301
1302         if (!cpumask_available(rcu_nocb_mask))
1303                 return;
1304         if (ls == -1) {
1305                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1306                 rcu_nocb_gp_stride = ls;
1307         }
1308
1309         /*
1310          * Each pass through this loop sets up one rcu_data structure.
1311          * Should the corresponding CPU come online in the future, then
1312          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1313          */
1314         for_each_possible_cpu(cpu) {
1315                 rdp = per_cpu_ptr(&rcu_data, cpu);
1316                 if (rdp->cpu >= nl) {
1317                         /* New GP kthread, set up for CBs & next GP. */
1318                         gotnocbs = true;
1319                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1320                         rdp_gp = rdp;
1321                         INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1322                         if (dump_tree) {
1323                                 if (!firsttime)
1324                                         pr_cont("%s\n", gotnocbscbs
1325                                                         ? "" : " (self only)");
1326                                 gotnocbscbs = false;
1327                                 firsttime = false;
1328                                 pr_alert("%s: No-CB GP kthread CPU %d:",
1329                                          __func__, cpu);
1330                         }
1331                 } else {
1332                         /* Another CB kthread, link to previous GP kthread. */
1333                         gotnocbscbs = true;
1334                         if (dump_tree)
1335                                 pr_cont(" %d", cpu);
1336                 }
1337                 rdp->nocb_gp_rdp = rdp_gp;
1338                 if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1339                         list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1340         }
1341         if (gotnocbs && dump_tree)
1342                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1343 }
1344
1345 /*
1346  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1347  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1348  */
1349 void rcu_bind_current_to_nocb(void)
1350 {
1351         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
1352                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1353 }
1354 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1355
1356 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1357 #ifdef CONFIG_SMP
1358 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1359 {
1360         return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1361 }
1362 #else // #ifdef CONFIG_SMP
1363 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1364 {
1365         return "";
1366 }
1367 #endif // #else #ifdef CONFIG_SMP
1368
1369 /*
1370  * Dump out nocb grace-period kthread state for the specified rcu_data
1371  * structure.
1372  */
1373 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1374 {
1375         struct rcu_node *rnp = rdp->mynode;
1376
1377         pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1378                 rdp->cpu,
1379                 "kK"[!!rdp->nocb_gp_kthread],
1380                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1381                 "dD"[!!rdp->nocb_defer_wakeup],
1382                 "tT"[timer_pending(&rdp->nocb_timer)],
1383                 "sS"[!!rdp->nocb_gp_sleep],
1384                 ".W"[swait_active(&rdp->nocb_gp_wq)],
1385                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
1386                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
1387                 ".B"[!!rdp->nocb_gp_bypass],
1388                 ".G"[!!rdp->nocb_gp_gp],
1389                 (long)rdp->nocb_gp_seq,
1390                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1391                 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1392                 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1393                 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1394 }
1395
1396 /* Dump out nocb kthread state for the specified rcu_data structure. */
1397 static void show_rcu_nocb_state(struct rcu_data *rdp)
1398 {
1399         char bufw[20];
1400         char bufr[20];
1401         struct rcu_data *nocb_next_rdp;
1402         struct rcu_segcblist *rsclp = &rdp->cblist;
1403         bool waslocked;
1404         bool wassleep;
1405
1406         if (rdp->nocb_gp_rdp == rdp)
1407                 show_rcu_nocb_gp_state(rdp);
1408
1409         nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1410                                               &rdp->nocb_entry_rdp,
1411                                               typeof(*rdp),
1412                                               nocb_entry_rdp);
1413
1414         sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1415         sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1416         pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1417                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
1418                 nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1419                 "kK"[!!rdp->nocb_cb_kthread],
1420                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1421                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1422                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1423                 "sS"[!!rdp->nocb_cb_sleep],
1424                 ".W"[swait_active(&rdp->nocb_cb_wq)],
1425                 jiffies - rdp->nocb_bypass_first,
1426                 jiffies - rdp->nocb_nobypass_last,
1427                 rdp->nocb_nobypass_count,
1428                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
1429                 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1430                 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1431                 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1432                 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1433                 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1434                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1435                 rcu_segcblist_n_cbs(&rdp->cblist),
1436                 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1437                 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1438                 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1439
1440         /* It is OK for GP kthreads to have GP state. */
1441         if (rdp->nocb_gp_rdp == rdp)
1442                 return;
1443
1444         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1445         wassleep = swait_active(&rdp->nocb_gp_wq);
1446         if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1447                 return;  /* Nothing untoward. */
1448
1449         pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1450                 "lL"[waslocked],
1451                 "dD"[!!rdp->nocb_defer_wakeup],
1452                 "sS"[!!rdp->nocb_gp_sleep],
1453                 ".W"[wassleep]);
1454 }
1455
1456 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1457
1458 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1459 {
1460         return 0;
1461 }
1462
1463 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1464 {
1465         return false;
1466 }
1467
1468 /* No ->nocb_lock to acquire.  */
1469 static void rcu_nocb_lock(struct rcu_data *rdp)
1470 {
1471 }
1472
1473 /* No ->nocb_lock to release.  */
1474 static void rcu_nocb_unlock(struct rcu_data *rdp)
1475 {
1476 }
1477
1478 /* No ->nocb_lock to release.  */
1479 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1480                                        unsigned long flags)
1481 {
1482         local_irq_restore(flags);
1483 }
1484
1485 /* Lockdep check that ->cblist may be safely accessed. */
1486 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1487 {
1488         lockdep_assert_irqs_disabled();
1489 }
1490
1491 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1492 {
1493 }
1494
1495 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1496 {
1497         return NULL;
1498 }
1499
1500 static void rcu_init_one_nocb(struct rcu_node *rnp)
1501 {
1502 }
1503
1504 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1505                                   unsigned long j)
1506 {
1507         return true;
1508 }
1509
1510 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1511                                 bool *was_alldone, unsigned long flags)
1512 {
1513         return false;
1514 }
1515
1516 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1517                                  unsigned long flags)
1518 {
1519         WARN_ON_ONCE(1);  /* Should be dead code! */
1520 }
1521
1522 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1523 {
1524 }
1525
1526 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1527 {
1528         return false;
1529 }
1530
1531 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1532 {
1533         return false;
1534 }
1535
1536 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1537 {
1538 }
1539
1540 static void __init rcu_spawn_nocb_kthreads(void)
1541 {
1542 }
1543
1544 static void show_rcu_nocb_state(struct rcu_data *rdp)
1545 {
1546 }
1547
1548 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */