f11a7c2af778cd1148988d8beb433c956517ce82
[linux-2.6-block.git] / kernel / rcu / refscale.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9
10 #define pr_fmt(fmt) fmt
11
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/seq_buf.h>
32 #include <linux/spinlock.h>
33 #include <linux/smp.h>
34 #include <linux/stat.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/torture.h>
38 #include <linux/types.h>
39 #include <linux/sched/clock.h>
40
41 #include "rcu.h"
42
43 #define SCALE_FLAG "-ref-scale: "
44
45 #define SCALEOUT(s, x...) \
46         pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
47
48 #define VERBOSE_SCALEOUT(s, x...) \
49         do { \
50                 if (verbose) \
51                         pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
52         } while (0)
53
54 static atomic_t verbose_batch_ctr;
55
56 #define VERBOSE_SCALEOUT_BATCH(s, x...)                                                 \
57 do {                                                                                    \
58         if (verbose &&                                                                  \
59             (verbose_batched <= 0 ||                                                    \
60              !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {             \
61                 schedule_timeout_uninterruptible(1);                                    \
62                 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);                     \
63         }                                                                               \
64 } while (0)
65
66 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
67
68 MODULE_DESCRIPTION("Scalability test for object reference mechanisms");
69 MODULE_LICENSE("GPL");
70 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
71
72 static char *scale_type = "rcu";
73 module_param(scale_type, charp, 0444);
74 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
75
76 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
77 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
78
79 // Number of seconds to extend warm-up and cool-down for multiple guest OSes
80 torture_param(long, guest_os_delay, 0,
81               "Number of seconds to extend warm-up/cool-down for multiple guest OSes.");
82 // Wait until there are multiple CPUs before starting test.
83 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
84               "Holdoff time before test start (s)");
85 // Number of typesafe_lookup structures, that is, the degree of concurrency.
86 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
87 // Number of loops per experiment, all readers execute operations concurrently.
88 torture_param(long, loops, 10000, "Number of loops per experiment.");
89 // Number of readers, with -1 defaulting to about 75% of the CPUs.
90 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
91 // Number of runs.
92 torture_param(int, nruns, 30, "Number of experiments to run.");
93 // Reader delay in nanoseconds, 0 for no delay.
94 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
95
96 #ifdef MODULE
97 # define REFSCALE_SHUTDOWN 0
98 #else
99 # define REFSCALE_SHUTDOWN 1
100 #endif
101
102 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
103               "Shutdown at end of scalability tests.");
104
105 struct reader_task {
106         struct task_struct *task;
107         int start_reader;
108         wait_queue_head_t wq;
109         u64 last_duration_ns;
110 };
111
112 static struct task_struct *shutdown_task;
113 static wait_queue_head_t shutdown_wq;
114
115 static struct task_struct *main_task;
116 static wait_queue_head_t main_wq;
117 static int shutdown_start;
118
119 static struct reader_task *reader_tasks;
120
121 // Number of readers that are part of the current experiment.
122 static atomic_t nreaders_exp;
123
124 // Use to wait for all threads to start.
125 static atomic_t n_init;
126 static atomic_t n_started;
127 static atomic_t n_warmedup;
128 static atomic_t n_cooleddown;
129
130 // Track which experiment is currently running.
131 static int exp_idx;
132
133 // Operations vector for selecting different types of tests.
134 struct ref_scale_ops {
135         bool (*init)(void);
136         void (*cleanup)(void);
137         void (*readsection)(const int nloops);
138         void (*delaysection)(const int nloops, const int udl, const int ndl);
139         const char *name;
140 };
141
142 static const struct ref_scale_ops *cur_ops;
143
144 static void un_delay(const int udl, const int ndl)
145 {
146         if (udl)
147                 udelay(udl);
148         if (ndl)
149                 ndelay(ndl);
150 }
151
152 static void ref_rcu_read_section(const int nloops)
153 {
154         int i;
155
156         for (i = nloops; i >= 0; i--) {
157                 rcu_read_lock();
158                 rcu_read_unlock();
159         }
160 }
161
162 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
163 {
164         int i;
165
166         for (i = nloops; i >= 0; i--) {
167                 rcu_read_lock();
168                 un_delay(udl, ndl);
169                 rcu_read_unlock();
170         }
171 }
172
173 static bool rcu_sync_scale_init(void)
174 {
175         return true;
176 }
177
178 static const struct ref_scale_ops rcu_ops = {
179         .init           = rcu_sync_scale_init,
180         .readsection    = ref_rcu_read_section,
181         .delaysection   = ref_rcu_delay_section,
182         .name           = "rcu"
183 };
184
185 // Definitions for SRCU ref scale testing.
186 DEFINE_STATIC_SRCU(srcu_refctl_scale);
187 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
188
189 static void srcu_ref_scale_read_section(const int nloops)
190 {
191         int i;
192         int idx;
193
194         for (i = nloops; i >= 0; i--) {
195                 idx = srcu_read_lock(srcu_ctlp);
196                 srcu_read_unlock(srcu_ctlp, idx);
197         }
198 }
199
200 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
201 {
202         int i;
203         int idx;
204
205         for (i = nloops; i >= 0; i--) {
206                 idx = srcu_read_lock(srcu_ctlp);
207                 un_delay(udl, ndl);
208                 srcu_read_unlock(srcu_ctlp, idx);
209         }
210 }
211
212 static const struct ref_scale_ops srcu_ops = {
213         .init           = rcu_sync_scale_init,
214         .readsection    = srcu_ref_scale_read_section,
215         .delaysection   = srcu_ref_scale_delay_section,
216         .name           = "srcu"
217 };
218
219 static void srcu_fast_ref_scale_read_section(const int nloops)
220 {
221         int i;
222         struct srcu_ctr __percpu *scp;
223
224         for (i = nloops; i >= 0; i--) {
225                 scp = srcu_read_lock_fast(srcu_ctlp);
226                 srcu_read_unlock_fast(srcu_ctlp, scp);
227         }
228 }
229
230 static void srcu_fast_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
231 {
232         int i;
233         struct srcu_ctr __percpu *scp;
234
235         for (i = nloops; i >= 0; i--) {
236                 scp = srcu_read_lock_fast(srcu_ctlp);
237                 un_delay(udl, ndl);
238                 srcu_read_unlock_fast(srcu_ctlp, scp);
239         }
240 }
241
242 static const struct ref_scale_ops srcu_fast_ops = {
243         .init           = rcu_sync_scale_init,
244         .readsection    = srcu_fast_ref_scale_read_section,
245         .delaysection   = srcu_fast_ref_scale_delay_section,
246         .name           = "srcu-fast"
247 };
248
249 static void srcu_lite_ref_scale_read_section(const int nloops)
250 {
251         int i;
252         int idx;
253
254         for (i = nloops; i >= 0; i--) {
255                 idx = srcu_read_lock_lite(srcu_ctlp);
256                 srcu_read_unlock_lite(srcu_ctlp, idx);
257         }
258 }
259
260 static void srcu_lite_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
261 {
262         int i;
263         int idx;
264
265         for (i = nloops; i >= 0; i--) {
266                 idx = srcu_read_lock_lite(srcu_ctlp);
267                 un_delay(udl, ndl);
268                 srcu_read_unlock_lite(srcu_ctlp, idx);
269         }
270 }
271
272 static const struct ref_scale_ops srcu_lite_ops = {
273         .init           = rcu_sync_scale_init,
274         .readsection    = srcu_lite_ref_scale_read_section,
275         .delaysection   = srcu_lite_ref_scale_delay_section,
276         .name           = "srcu-lite"
277 };
278
279 #ifdef CONFIG_TASKS_RCU
280
281 // Definitions for RCU Tasks ref scale testing: Empty read markers.
282 // These definitions also work for RCU Rude readers.
283 static void rcu_tasks_ref_scale_read_section(const int nloops)
284 {
285         int i;
286
287         for (i = nloops; i >= 0; i--)
288                 continue;
289 }
290
291 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
292 {
293         int i;
294
295         for (i = nloops; i >= 0; i--)
296                 un_delay(udl, ndl);
297 }
298
299 static const struct ref_scale_ops rcu_tasks_ops = {
300         .init           = rcu_sync_scale_init,
301         .readsection    = rcu_tasks_ref_scale_read_section,
302         .delaysection   = rcu_tasks_ref_scale_delay_section,
303         .name           = "rcu-tasks"
304 };
305
306 #define RCU_TASKS_OPS &rcu_tasks_ops,
307
308 #else // #ifdef CONFIG_TASKS_RCU
309
310 #define RCU_TASKS_OPS
311
312 #endif // #else // #ifdef CONFIG_TASKS_RCU
313
314 #ifdef CONFIG_TASKS_TRACE_RCU
315
316 // Definitions for RCU Tasks Trace ref scale testing.
317 static void rcu_trace_ref_scale_read_section(const int nloops)
318 {
319         int i;
320
321         for (i = nloops; i >= 0; i--) {
322                 rcu_read_lock_trace();
323                 rcu_read_unlock_trace();
324         }
325 }
326
327 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
328 {
329         int i;
330
331         for (i = nloops; i >= 0; i--) {
332                 rcu_read_lock_trace();
333                 un_delay(udl, ndl);
334                 rcu_read_unlock_trace();
335         }
336 }
337
338 static const struct ref_scale_ops rcu_trace_ops = {
339         .init           = rcu_sync_scale_init,
340         .readsection    = rcu_trace_ref_scale_read_section,
341         .delaysection   = rcu_trace_ref_scale_delay_section,
342         .name           = "rcu-trace"
343 };
344
345 #define RCU_TRACE_OPS &rcu_trace_ops,
346
347 #else // #ifdef CONFIG_TASKS_TRACE_RCU
348
349 #define RCU_TRACE_OPS
350
351 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
352
353 // Definitions for reference count
354 static atomic_t refcnt;
355
356 static void ref_refcnt_section(const int nloops)
357 {
358         int i;
359
360         for (i = nloops; i >= 0; i--) {
361                 atomic_inc(&refcnt);
362                 atomic_dec(&refcnt);
363         }
364 }
365
366 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
367 {
368         int i;
369
370         for (i = nloops; i >= 0; i--) {
371                 atomic_inc(&refcnt);
372                 un_delay(udl, ndl);
373                 atomic_dec(&refcnt);
374         }
375 }
376
377 static const struct ref_scale_ops refcnt_ops = {
378         .init           = rcu_sync_scale_init,
379         .readsection    = ref_refcnt_section,
380         .delaysection   = ref_refcnt_delay_section,
381         .name           = "refcnt"
382 };
383
384 // Definitions for rwlock
385 static rwlock_t test_rwlock;
386
387 static bool ref_rwlock_init(void)
388 {
389         rwlock_init(&test_rwlock);
390         return true;
391 }
392
393 static void ref_rwlock_section(const int nloops)
394 {
395         int i;
396
397         for (i = nloops; i >= 0; i--) {
398                 read_lock(&test_rwlock);
399                 read_unlock(&test_rwlock);
400         }
401 }
402
403 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
404 {
405         int i;
406
407         for (i = nloops; i >= 0; i--) {
408                 read_lock(&test_rwlock);
409                 un_delay(udl, ndl);
410                 read_unlock(&test_rwlock);
411         }
412 }
413
414 static const struct ref_scale_ops rwlock_ops = {
415         .init           = ref_rwlock_init,
416         .readsection    = ref_rwlock_section,
417         .delaysection   = ref_rwlock_delay_section,
418         .name           = "rwlock"
419 };
420
421 // Definitions for rwsem
422 static struct rw_semaphore test_rwsem;
423
424 static bool ref_rwsem_init(void)
425 {
426         init_rwsem(&test_rwsem);
427         return true;
428 }
429
430 static void ref_rwsem_section(const int nloops)
431 {
432         int i;
433
434         for (i = nloops; i >= 0; i--) {
435                 down_read(&test_rwsem);
436                 up_read(&test_rwsem);
437         }
438 }
439
440 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
441 {
442         int i;
443
444         for (i = nloops; i >= 0; i--) {
445                 down_read(&test_rwsem);
446                 un_delay(udl, ndl);
447                 up_read(&test_rwsem);
448         }
449 }
450
451 static const struct ref_scale_ops rwsem_ops = {
452         .init           = ref_rwsem_init,
453         .readsection    = ref_rwsem_section,
454         .delaysection   = ref_rwsem_delay_section,
455         .name           = "rwsem"
456 };
457
458 // Definitions for global spinlock
459 static DEFINE_RAW_SPINLOCK(test_lock);
460
461 static void ref_lock_section(const int nloops)
462 {
463         int i;
464
465         preempt_disable();
466         for (i = nloops; i >= 0; i--) {
467                 raw_spin_lock(&test_lock);
468                 raw_spin_unlock(&test_lock);
469         }
470         preempt_enable();
471 }
472
473 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
474 {
475         int i;
476
477         preempt_disable();
478         for (i = nloops; i >= 0; i--) {
479                 raw_spin_lock(&test_lock);
480                 un_delay(udl, ndl);
481                 raw_spin_unlock(&test_lock);
482         }
483         preempt_enable();
484 }
485
486 static const struct ref_scale_ops lock_ops = {
487         .readsection    = ref_lock_section,
488         .delaysection   = ref_lock_delay_section,
489         .name           = "lock"
490 };
491
492 // Definitions for global irq-save spinlock
493
494 static void ref_lock_irq_section(const int nloops)
495 {
496         unsigned long flags;
497         int i;
498
499         preempt_disable();
500         for (i = nloops; i >= 0; i--) {
501                 raw_spin_lock_irqsave(&test_lock, flags);
502                 raw_spin_unlock_irqrestore(&test_lock, flags);
503         }
504         preempt_enable();
505 }
506
507 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
508 {
509         unsigned long flags;
510         int i;
511
512         preempt_disable();
513         for (i = nloops; i >= 0; i--) {
514                 raw_spin_lock_irqsave(&test_lock, flags);
515                 un_delay(udl, ndl);
516                 raw_spin_unlock_irqrestore(&test_lock, flags);
517         }
518         preempt_enable();
519 }
520
521 static const struct ref_scale_ops lock_irq_ops = {
522         .readsection    = ref_lock_irq_section,
523         .delaysection   = ref_lock_irq_delay_section,
524         .name           = "lock-irq"
525 };
526
527 // Definitions acquire-release.
528 static DEFINE_PER_CPU(unsigned long, test_acqrel);
529
530 static void ref_acqrel_section(const int nloops)
531 {
532         unsigned long x;
533         int i;
534
535         preempt_disable();
536         for (i = nloops; i >= 0; i--) {
537                 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
538                 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
539         }
540         preempt_enable();
541 }
542
543 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
544 {
545         unsigned long x;
546         int i;
547
548         preempt_disable();
549         for (i = nloops; i >= 0; i--) {
550                 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
551                 un_delay(udl, ndl);
552                 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
553         }
554         preempt_enable();
555 }
556
557 static const struct ref_scale_ops acqrel_ops = {
558         .readsection    = ref_acqrel_section,
559         .delaysection   = ref_acqrel_delay_section,
560         .name           = "acqrel"
561 };
562
563 static volatile u64 stopopts;
564
565 static void ref_sched_clock_section(const int nloops)
566 {
567         u64 x = 0;
568         int i;
569
570         preempt_disable();
571         for (i = nloops; i >= 0; i--)
572                 x += sched_clock();
573         preempt_enable();
574         stopopts = x;
575 }
576
577 static void ref_sched_clock_delay_section(const int nloops, const int udl, const int ndl)
578 {
579         u64 x = 0;
580         int i;
581
582         preempt_disable();
583         for (i = nloops; i >= 0; i--) {
584                 x += sched_clock();
585                 un_delay(udl, ndl);
586         }
587         preempt_enable();
588         stopopts = x;
589 }
590
591 static const struct ref_scale_ops sched_clock_ops = {
592         .readsection    = ref_sched_clock_section,
593         .delaysection   = ref_sched_clock_delay_section,
594         .name           = "sched-clock"
595 };
596
597
598 static void ref_clock_section(const int nloops)
599 {
600         u64 x = 0;
601         int i;
602
603         preempt_disable();
604         for (i = nloops; i >= 0; i--)
605                 x += ktime_get_real_fast_ns();
606         preempt_enable();
607         stopopts = x;
608 }
609
610 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
611 {
612         u64 x = 0;
613         int i;
614
615         preempt_disable();
616         for (i = nloops; i >= 0; i--) {
617                 x += ktime_get_real_fast_ns();
618                 un_delay(udl, ndl);
619         }
620         preempt_enable();
621         stopopts = x;
622 }
623
624 static const struct ref_scale_ops clock_ops = {
625         .readsection    = ref_clock_section,
626         .delaysection   = ref_clock_delay_section,
627         .name           = "clock"
628 };
629
630 static void ref_jiffies_section(const int nloops)
631 {
632         u64 x = 0;
633         int i;
634
635         preempt_disable();
636         for (i = nloops; i >= 0; i--)
637                 x += jiffies;
638         preempt_enable();
639         stopopts = x;
640 }
641
642 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
643 {
644         u64 x = 0;
645         int i;
646
647         preempt_disable();
648         for (i = nloops; i >= 0; i--) {
649                 x += jiffies;
650                 un_delay(udl, ndl);
651         }
652         preempt_enable();
653         stopopts = x;
654 }
655
656 static const struct ref_scale_ops jiffies_ops = {
657         .readsection    = ref_jiffies_section,
658         .delaysection   = ref_jiffies_delay_section,
659         .name           = "jiffies"
660 };
661
662 ////////////////////////////////////////////////////////////////////////
663 //
664 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
665 //
666
667 // Item to look up in a typesafe manner.  Array of pointers to these.
668 struct refscale_typesafe {
669         atomic_t rts_refctr;  // Used by all flavors
670         spinlock_t rts_lock;
671         seqlock_t rts_seqlock;
672         unsigned int a;
673         unsigned int b;
674 };
675
676 static struct kmem_cache *typesafe_kmem_cachep;
677 static struct refscale_typesafe **rtsarray;
678 static long rtsarray_size;
679 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
680 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
681 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
682
683 // Conditionally acquire an explicit in-structure reference count.
684 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
685 {
686         return atomic_inc_not_zero(&rtsp->rts_refctr);
687 }
688
689 // Unconditionally release an explicit in-structure reference count.
690 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
691 {
692         if (!atomic_dec_return(&rtsp->rts_refctr)) {
693                 WRITE_ONCE(rtsp->a, rtsp->a + 1);
694                 kmem_cache_free(typesafe_kmem_cachep, rtsp);
695         }
696         return true;
697 }
698
699 // Unconditionally acquire an explicit in-structure spinlock.
700 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
701 {
702         spin_lock(&rtsp->rts_lock);
703         return true;
704 }
705
706 // Unconditionally release an explicit in-structure spinlock.
707 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
708 {
709         spin_unlock(&rtsp->rts_lock);
710         return true;
711 }
712
713 // Unconditionally acquire an explicit in-structure sequence lock.
714 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
715 {
716         *start = read_seqbegin(&rtsp->rts_seqlock);
717         return true;
718 }
719
720 // Conditionally release an explicit in-structure sequence lock.  Return
721 // true if this release was successful, that is, if no retry is required.
722 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
723 {
724         return !read_seqretry(&rtsp->rts_seqlock, start);
725 }
726
727 // Do a read-side critical section with the specified delay in
728 // microseconds and nanoseconds inserted so as to increase probability
729 // of failure.
730 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
731 {
732         unsigned int a;
733         unsigned int b;
734         int i;
735         long idx;
736         struct refscale_typesafe *rtsp;
737         unsigned int start;
738
739         for (i = nloops; i >= 0; i--) {
740                 preempt_disable();
741                 idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
742                 preempt_enable();
743 retry:
744                 rcu_read_lock();
745                 rtsp = rcu_dereference(rtsarray[idx]);
746                 a = READ_ONCE(rtsp->a);
747                 if (!rts_acquire(rtsp, &start)) {
748                         rcu_read_unlock();
749                         goto retry;
750                 }
751                 if (a != READ_ONCE(rtsp->a)) {
752                         (void)rts_release(rtsp, start);
753                         rcu_read_unlock();
754                         goto retry;
755                 }
756                 un_delay(udl, ndl);
757                 b = READ_ONCE(rtsp->a);
758                 // Remember, seqlock read-side release can fail.
759                 if (!rts_release(rtsp, start)) {
760                         rcu_read_unlock();
761                         goto retry;
762                 }
763                 WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
764                 b = rtsp->b;
765                 rcu_read_unlock();
766                 WARN_ON_ONCE(a * a != b);
767         }
768 }
769
770 // Because the acquisition and release methods are expensive, there
771 // is no point in optimizing away the un_delay() function's two checks.
772 // Thus simply define typesafe_read_section() as a simple wrapper around
773 // typesafe_delay_section().
774 static void typesafe_read_section(const int nloops)
775 {
776         typesafe_delay_section(nloops, 0, 0);
777 }
778
779 // Allocate and initialize one refscale_typesafe structure.
780 static struct refscale_typesafe *typesafe_alloc_one(void)
781 {
782         struct refscale_typesafe *rtsp;
783
784         rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
785         if (!rtsp)
786                 return NULL;
787         atomic_set(&rtsp->rts_refctr, 1);
788         WRITE_ONCE(rtsp->a, rtsp->a + 1);
789         WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
790         return rtsp;
791 }
792
793 // Slab-allocator constructor for refscale_typesafe structures created
794 // out of a new slab of system memory.
795 static void refscale_typesafe_ctor(void *rtsp_in)
796 {
797         struct refscale_typesafe *rtsp = rtsp_in;
798
799         spin_lock_init(&rtsp->rts_lock);
800         seqlock_init(&rtsp->rts_seqlock);
801         preempt_disable();
802         rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
803         preempt_enable();
804 }
805
806 static const struct ref_scale_ops typesafe_ref_ops;
807 static const struct ref_scale_ops typesafe_lock_ops;
808 static const struct ref_scale_ops typesafe_seqlock_ops;
809
810 // Initialize for a typesafe test.
811 static bool typesafe_init(void)
812 {
813         long idx;
814         long si = lookup_instances;
815
816         typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
817                                                  sizeof(struct refscale_typesafe), sizeof(void *),
818                                                  SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
819         if (!typesafe_kmem_cachep)
820                 return false;
821         if (si < 0)
822                 si = -si * nr_cpu_ids;
823         else if (si == 0)
824                 si = nr_cpu_ids;
825         rtsarray_size = si;
826         rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
827         if (!rtsarray)
828                 return false;
829         for (idx = 0; idx < rtsarray_size; idx++) {
830                 rtsarray[idx] = typesafe_alloc_one();
831                 if (!rtsarray[idx])
832                         return false;
833         }
834         if (cur_ops == &typesafe_ref_ops) {
835                 rts_acquire = typesafe_ref_acquire;
836                 rts_release = typesafe_ref_release;
837         } else if (cur_ops == &typesafe_lock_ops) {
838                 rts_acquire = typesafe_lock_acquire;
839                 rts_release = typesafe_lock_release;
840         } else if (cur_ops == &typesafe_seqlock_ops) {
841                 rts_acquire = typesafe_seqlock_acquire;
842                 rts_release = typesafe_seqlock_release;
843         } else {
844                 WARN_ON_ONCE(1);
845                 return false;
846         }
847         return true;
848 }
849
850 // Clean up after a typesafe test.
851 static void typesafe_cleanup(void)
852 {
853         long idx;
854
855         if (rtsarray) {
856                 for (idx = 0; idx < rtsarray_size; idx++)
857                         kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
858                 kfree(rtsarray);
859                 rtsarray = NULL;
860                 rtsarray_size = 0;
861         }
862         kmem_cache_destroy(typesafe_kmem_cachep);
863         typesafe_kmem_cachep = NULL;
864         rts_acquire = NULL;
865         rts_release = NULL;
866 }
867
868 // The typesafe_init() function distinguishes these structures by address.
869 static const struct ref_scale_ops typesafe_ref_ops = {
870         .init           = typesafe_init,
871         .cleanup        = typesafe_cleanup,
872         .readsection    = typesafe_read_section,
873         .delaysection   = typesafe_delay_section,
874         .name           = "typesafe_ref"
875 };
876
877 static const struct ref_scale_ops typesafe_lock_ops = {
878         .init           = typesafe_init,
879         .cleanup        = typesafe_cleanup,
880         .readsection    = typesafe_read_section,
881         .delaysection   = typesafe_delay_section,
882         .name           = "typesafe_lock"
883 };
884
885 static const struct ref_scale_ops typesafe_seqlock_ops = {
886         .init           = typesafe_init,
887         .cleanup        = typesafe_cleanup,
888         .readsection    = typesafe_read_section,
889         .delaysection   = typesafe_delay_section,
890         .name           = "typesafe_seqlock"
891 };
892
893 static void rcu_scale_one_reader(void)
894 {
895         if (readdelay <= 0)
896                 cur_ops->readsection(loops);
897         else
898                 cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
899 }
900
901 // Warm up cache, or, if needed run a series of rcu_scale_one_reader()
902 // to allow multiple rcuscale guest OSes to collect mutually valid data.
903 static void rcu_scale_warm_cool(void)
904 {
905         unsigned long jdone = jiffies + (guest_os_delay > 0 ? guest_os_delay * HZ : -1);
906
907         do {
908                 rcu_scale_one_reader();
909                 cond_resched();
910         } while (time_before(jiffies, jdone));
911 }
912
913 // Reader kthread.  Repeatedly does empty RCU read-side
914 // critical section, minimizing update-side interference.
915 static int
916 ref_scale_reader(void *arg)
917 {
918         unsigned long flags;
919         long me = (long)arg;
920         struct reader_task *rt = &(reader_tasks[me]);
921         u64 start;
922         s64 duration;
923
924         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
925         WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
926         set_user_nice(current, MAX_NICE);
927         atomic_inc(&n_init);
928         if (holdoff)
929                 schedule_timeout_interruptible(holdoff * HZ);
930 repeat:
931         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
932
933         // Wait for signal that this reader can start.
934         wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
935                            torture_must_stop());
936
937         if (torture_must_stop())
938                 goto end;
939
940         // Make sure that the CPU is affinitized appropriately during testing.
941         WARN_ON_ONCE(raw_smp_processor_id() != me % nr_cpu_ids);
942
943         WRITE_ONCE(rt->start_reader, 0);
944         if (!atomic_dec_return(&n_started))
945                 while (atomic_read_acquire(&n_started))
946                         cpu_relax();
947
948         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
949
950
951         // To reduce noise, do an initial cache-warming invocation, check
952         // in, and then keep warming until everyone has checked in.
953         rcu_scale_one_reader();
954         if (!atomic_dec_return(&n_warmedup))
955                 while (atomic_read_acquire(&n_warmedup))
956                         rcu_scale_one_reader();
957         // Also keep interrupts disabled.  This also has the effect
958         // of preventing entries into slow path for rcu_read_unlock().
959         local_irq_save(flags);
960         start = ktime_get_mono_fast_ns();
961
962         rcu_scale_one_reader();
963
964         duration = ktime_get_mono_fast_ns() - start;
965         local_irq_restore(flags);
966
967         rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
968         // To reduce runtime-skew noise, do maintain-load invocations until
969         // everyone is done.
970         if (!atomic_dec_return(&n_cooleddown))
971                 while (atomic_read_acquire(&n_cooleddown))
972                         rcu_scale_one_reader();
973
974         if (atomic_dec_and_test(&nreaders_exp))
975                 wake_up(&main_wq);
976
977         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
978                                 me, exp_idx, atomic_read(&nreaders_exp));
979
980         if (!torture_must_stop())
981                 goto repeat;
982 end:
983         torture_kthread_stopping("ref_scale_reader");
984         return 0;
985 }
986
987 static void reset_readers(void)
988 {
989         int i;
990         struct reader_task *rt;
991
992         for (i = 0; i < nreaders; i++) {
993                 rt = &(reader_tasks[i]);
994
995                 rt->last_duration_ns = 0;
996         }
997 }
998
999 // Print the results of each reader and return the sum of all their durations.
1000 static u64 process_durations(int n)
1001 {
1002         int i;
1003         struct reader_task *rt;
1004         struct seq_buf s;
1005         char *buf;
1006         u64 sum = 0;
1007
1008         buf = kmalloc(800 + 64, GFP_KERNEL);
1009         if (!buf)
1010                 return 0;
1011         seq_buf_init(&s, buf, 800 + 64);
1012
1013         seq_buf_printf(&s, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
1014                        exp_idx);
1015
1016         for (i = 0; i < n && !torture_must_stop(); i++) {
1017                 rt = &(reader_tasks[i]);
1018
1019                 if (i % 5 == 0)
1020                         seq_buf_putc(&s, '\n');
1021
1022                 if (seq_buf_used(&s) >= 800) {
1023                         pr_alert("%s", seq_buf_str(&s));
1024                         seq_buf_clear(&s);
1025                 }
1026
1027                 seq_buf_printf(&s, "%d: %llu\t", i, rt->last_duration_ns);
1028
1029                 sum += rt->last_duration_ns;
1030         }
1031         pr_alert("%s\n", seq_buf_str(&s));
1032
1033         kfree(buf);
1034         return sum;
1035 }
1036
1037 // The main_func is the main orchestrator, it performs a bunch of
1038 // experiments.  For every experiment, it orders all the readers
1039 // involved to start and waits for them to finish the experiment. It
1040 // then reads their timestamps and starts the next experiment. Each
1041 // experiment progresses from 1 concurrent reader to N of them at which
1042 // point all the timestamps are printed.
1043 static int main_func(void *arg)
1044 {
1045         int exp, r;
1046         char buf1[64];
1047         char *buf;
1048         u64 *result_avg;
1049
1050         set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
1051         set_user_nice(current, MAX_NICE);
1052
1053         VERBOSE_SCALEOUT("main_func task started");
1054         result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
1055         buf = kzalloc(800 + 64, GFP_KERNEL);
1056         if (!result_avg || !buf) {
1057                 SCALEOUT_ERRSTRING("out of memory");
1058                 goto oom_exit;
1059         }
1060         if (holdoff)
1061                 schedule_timeout_interruptible(holdoff * HZ);
1062
1063         // Wait for all threads to start.
1064         atomic_inc(&n_init);
1065         while (atomic_read(&n_init) < nreaders + 1)
1066                 schedule_timeout_uninterruptible(1);
1067
1068         // Start exp readers up per experiment
1069         rcu_scale_warm_cool();
1070         for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
1071                 if (torture_must_stop())
1072                         goto end;
1073
1074                 reset_readers();
1075                 atomic_set(&nreaders_exp, nreaders);
1076                 atomic_set(&n_started, nreaders);
1077                 atomic_set(&n_warmedup, nreaders);
1078                 atomic_set(&n_cooleddown, nreaders);
1079
1080                 exp_idx = exp;
1081
1082                 for (r = 0; r < nreaders; r++) {
1083                         smp_store_release(&reader_tasks[r].start_reader, 1);
1084                         wake_up(&reader_tasks[r].wq);
1085                 }
1086
1087                 VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
1088                                 nreaders);
1089
1090                 wait_event(main_wq,
1091                            !atomic_read(&nreaders_exp) || torture_must_stop());
1092
1093                 VERBOSE_SCALEOUT("main_func: experiment ended");
1094
1095                 if (torture_must_stop())
1096                         goto end;
1097
1098                 result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
1099         }
1100         rcu_scale_warm_cool();
1101
1102         // Print the average of all experiments
1103         SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
1104
1105         pr_alert("Runs\tTime(ns)\n");
1106         for (exp = 0; exp < nruns; exp++) {
1107                 u64 avg;
1108                 u32 rem;
1109
1110                 avg = div_u64_rem(result_avg[exp], 1000, &rem);
1111                 sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
1112                 strcat(buf, buf1);
1113                 if (strlen(buf) >= 800) {
1114                         pr_alert("%s", buf);
1115                         buf[0] = 0;
1116                 }
1117         }
1118
1119         pr_alert("%s", buf);
1120
1121 oom_exit:
1122         // This will shutdown everything including us.
1123         if (shutdown) {
1124                 shutdown_start = 1;
1125                 wake_up(&shutdown_wq);
1126         }
1127
1128         // Wait for torture to stop us
1129         while (!torture_must_stop())
1130                 schedule_timeout_uninterruptible(1);
1131
1132 end:
1133         torture_kthread_stopping("main_func");
1134         kfree(result_avg);
1135         kfree(buf);
1136         return 0;
1137 }
1138
1139 static void
1140 ref_scale_print_module_parms(const struct ref_scale_ops *cur_ops, const char *tag)
1141 {
1142         pr_alert("%s" SCALE_FLAG
1143                  "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1144                  verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1145 }
1146
1147 static void
1148 ref_scale_cleanup(void)
1149 {
1150         int i;
1151
1152         if (torture_cleanup_begin())
1153                 return;
1154
1155         if (!cur_ops) {
1156                 torture_cleanup_end();
1157                 return;
1158         }
1159
1160         if (reader_tasks) {
1161                 for (i = 0; i < nreaders; i++)
1162                         torture_stop_kthread("ref_scale_reader",
1163                                              reader_tasks[i].task);
1164         }
1165         kfree(reader_tasks);
1166
1167         torture_stop_kthread("main_task", main_task);
1168         kfree(main_task);
1169
1170         // Do scale-type-specific cleanup operations.
1171         if (cur_ops->cleanup != NULL)
1172                 cur_ops->cleanup();
1173
1174         torture_cleanup_end();
1175 }
1176
1177 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1178 static int
1179 ref_scale_shutdown(void *arg)
1180 {
1181         wait_event_idle(shutdown_wq, shutdown_start);
1182
1183         smp_mb(); // Wake before output.
1184         ref_scale_cleanup();
1185         kernel_power_off();
1186
1187         return -EINVAL;
1188 }
1189
1190 static int __init
1191 ref_scale_init(void)
1192 {
1193         long i;
1194         int firsterr = 0;
1195         static const struct ref_scale_ops *scale_ops[] = {
1196                 &rcu_ops, &srcu_ops, &srcu_fast_ops, &srcu_lite_ops, RCU_TRACE_OPS RCU_TASKS_OPS
1197                 &refcnt_ops, &rwlock_ops, &rwsem_ops, &lock_ops, &lock_irq_ops,
1198                 &acqrel_ops, &sched_clock_ops, &clock_ops, &jiffies_ops,
1199                 &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1200         };
1201
1202         if (!torture_init_begin(scale_type, verbose))
1203                 return -EBUSY;
1204
1205         for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1206                 cur_ops = scale_ops[i];
1207                 if (strcmp(scale_type, cur_ops->name) == 0)
1208                         break;
1209         }
1210         if (i == ARRAY_SIZE(scale_ops)) {
1211                 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1212                 pr_alert("rcu-scale types:");
1213                 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1214                         pr_cont(" %s", scale_ops[i]->name);
1215                 pr_cont("\n");
1216                 firsterr = -EINVAL;
1217                 cur_ops = NULL;
1218                 goto unwind;
1219         }
1220         if (cur_ops->init)
1221                 if (!cur_ops->init()) {
1222                         firsterr = -EUCLEAN;
1223                         goto unwind;
1224                 }
1225
1226         ref_scale_print_module_parms(cur_ops, "Start of test");
1227
1228         // Shutdown task
1229         if (shutdown) {
1230                 init_waitqueue_head(&shutdown_wq);
1231                 firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1232                                                   shutdown_task);
1233                 if (torture_init_error(firsterr))
1234                         goto unwind;
1235                 schedule_timeout_uninterruptible(1);
1236         }
1237
1238         // Reader tasks (default to ~75% of online CPUs).
1239         if (nreaders < 0)
1240                 nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1241         if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1242                 loops = 1;
1243         if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1244                 nreaders = 1;
1245         if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1246                 nruns = 1;
1247         reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1248                                GFP_KERNEL);
1249         if (!reader_tasks) {
1250                 SCALEOUT_ERRSTRING("out of memory");
1251                 firsterr = -ENOMEM;
1252                 goto unwind;
1253         }
1254
1255         VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1256
1257         for (i = 0; i < nreaders; i++) {
1258                 init_waitqueue_head(&reader_tasks[i].wq);
1259                 firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1260                                                   reader_tasks[i].task);
1261                 if (torture_init_error(firsterr))
1262                         goto unwind;
1263         }
1264
1265         // Main Task
1266         init_waitqueue_head(&main_wq);
1267         firsterr = torture_create_kthread(main_func, NULL, main_task);
1268         if (torture_init_error(firsterr))
1269                 goto unwind;
1270
1271         torture_init_end();
1272         return 0;
1273
1274 unwind:
1275         torture_init_end();
1276         ref_scale_cleanup();
1277         if (shutdown) {
1278                 WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1279                 kernel_power_off();
1280         }
1281         return firsterr;
1282 }
1283
1284 module_init(ref_scale_init);
1285 module_exit(ref_scale_cleanup);