random: Mix cputime from each thread that exits to the pool
[linux-block.git] / kernel / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13
14 /*
15  * Called after updating RLIMIT_CPU to run cpu timer and update
16  * tsk->signal->cputime_expires expiration cache if necessary. Needs
17  * siglock protection since other code may update expiration cache as
18  * well.
19  */
20 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
21 {
22         cputime_t cputime = secs_to_cputime(rlim_new);
23
24         spin_lock_irq(&task->sighand->siglock);
25         set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
26         spin_unlock_irq(&task->sighand->siglock);
27 }
28
29 static int check_clock(const clockid_t which_clock)
30 {
31         int error = 0;
32         struct task_struct *p;
33         const pid_t pid = CPUCLOCK_PID(which_clock);
34
35         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
36                 return -EINVAL;
37
38         if (pid == 0)
39                 return 0;
40
41         rcu_read_lock();
42         p = find_task_by_vpid(pid);
43         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
44                    same_thread_group(p, current) : has_group_leader_pid(p))) {
45                 error = -EINVAL;
46         }
47         rcu_read_unlock();
48
49         return error;
50 }
51
52 static inline union cpu_time_count
53 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
54 {
55         union cpu_time_count ret;
56         ret.sched = 0;          /* high half always zero when .cpu used */
57         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
58                 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
59         } else {
60                 ret.cpu = timespec_to_cputime(tp);
61         }
62         return ret;
63 }
64
65 static void sample_to_timespec(const clockid_t which_clock,
66                                union cpu_time_count cpu,
67                                struct timespec *tp)
68 {
69         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
70                 *tp = ns_to_timespec(cpu.sched);
71         else
72                 cputime_to_timespec(cpu.cpu, tp);
73 }
74
75 static inline int cpu_time_before(const clockid_t which_clock,
76                                   union cpu_time_count now,
77                                   union cpu_time_count then)
78 {
79         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
80                 return now.sched < then.sched;
81         }  else {
82                 return now.cpu < then.cpu;
83         }
84 }
85 static inline void cpu_time_add(const clockid_t which_clock,
86                                 union cpu_time_count *acc,
87                                 union cpu_time_count val)
88 {
89         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
90                 acc->sched += val.sched;
91         }  else {
92                 acc->cpu += val.cpu;
93         }
94 }
95 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
96                                                 union cpu_time_count a,
97                                                 union cpu_time_count b)
98 {
99         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
100                 a.sched -= b.sched;
101         }  else {
102                 a.cpu -= b.cpu;
103         }
104         return a;
105 }
106
107 /*
108  * Update expiry time from increment, and increase overrun count,
109  * given the current clock sample.
110  */
111 static void bump_cpu_timer(struct k_itimer *timer,
112                                   union cpu_time_count now)
113 {
114         int i;
115
116         if (timer->it.cpu.incr.sched == 0)
117                 return;
118
119         if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
120                 unsigned long long delta, incr;
121
122                 if (now.sched < timer->it.cpu.expires.sched)
123                         return;
124                 incr = timer->it.cpu.incr.sched;
125                 delta = now.sched + incr - timer->it.cpu.expires.sched;
126                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
127                 for (i = 0; incr < delta - incr; i++)
128                         incr = incr << 1;
129                 for (; i >= 0; incr >>= 1, i--) {
130                         if (delta < incr)
131                                 continue;
132                         timer->it.cpu.expires.sched += incr;
133                         timer->it_overrun += 1 << i;
134                         delta -= incr;
135                 }
136         } else {
137                 cputime_t delta, incr;
138
139                 if (now.cpu < timer->it.cpu.expires.cpu)
140                         return;
141                 incr = timer->it.cpu.incr.cpu;
142                 delta = now.cpu + incr - timer->it.cpu.expires.cpu;
143                 /* Don't use (incr*2 < delta), incr*2 might overflow. */
144                 for (i = 0; incr < delta - incr; i++)
145                              incr += incr;
146                 for (; i >= 0; incr = incr >> 1, i--) {
147                         if (delta < incr)
148                                 continue;
149                         timer->it.cpu.expires.cpu += incr;
150                         timer->it_overrun += 1 << i;
151                         delta -= incr;
152                 }
153         }
154 }
155
156 static inline cputime_t prof_ticks(struct task_struct *p)
157 {
158         return p->utime + p->stime;
159 }
160 static inline cputime_t virt_ticks(struct task_struct *p)
161 {
162         return p->utime;
163 }
164
165 static int
166 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
167 {
168         int error = check_clock(which_clock);
169         if (!error) {
170                 tp->tv_sec = 0;
171                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
172                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
173                         /*
174                          * If sched_clock is using a cycle counter, we
175                          * don't have any idea of its true resolution
176                          * exported, but it is much more than 1s/HZ.
177                          */
178                         tp->tv_nsec = 1;
179                 }
180         }
181         return error;
182 }
183
184 static int
185 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
186 {
187         /*
188          * You can never reset a CPU clock, but we check for other errors
189          * in the call before failing with EPERM.
190          */
191         int error = check_clock(which_clock);
192         if (error == 0) {
193                 error = -EPERM;
194         }
195         return error;
196 }
197
198
199 /*
200  * Sample a per-thread clock for the given task.
201  */
202 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
203                             union cpu_time_count *cpu)
204 {
205         switch (CPUCLOCK_WHICH(which_clock)) {
206         default:
207                 return -EINVAL;
208         case CPUCLOCK_PROF:
209                 cpu->cpu = prof_ticks(p);
210                 break;
211         case CPUCLOCK_VIRT:
212                 cpu->cpu = virt_ticks(p);
213                 break;
214         case CPUCLOCK_SCHED:
215                 cpu->sched = task_sched_runtime(p);
216                 break;
217         }
218         return 0;
219 }
220
221 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
222 {
223         struct signal_struct *sig = tsk->signal;
224         struct task_struct *t;
225
226         times->utime = sig->utime;
227         times->stime = sig->stime;
228         times->sum_exec_runtime = sig->sum_sched_runtime;
229
230         rcu_read_lock();
231         /* make sure we can trust tsk->thread_group list */
232         if (!likely(pid_alive(tsk)))
233                 goto out;
234
235         t = tsk;
236         do {
237                 times->utime += t->utime;
238                 times->stime += t->stime;
239                 times->sum_exec_runtime += task_sched_runtime(t);
240         } while_each_thread(tsk, t);
241 out:
242         rcu_read_unlock();
243 }
244
245 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
246 {
247         if (b->utime > a->utime)
248                 a->utime = b->utime;
249
250         if (b->stime > a->stime)
251                 a->stime = b->stime;
252
253         if (b->sum_exec_runtime > a->sum_exec_runtime)
254                 a->sum_exec_runtime = b->sum_exec_runtime;
255 }
256
257 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
258 {
259         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
260         struct task_cputime sum;
261         unsigned long flags;
262
263         if (!cputimer->running) {
264                 /*
265                  * The POSIX timer interface allows for absolute time expiry
266                  * values through the TIMER_ABSTIME flag, therefore we have
267                  * to synchronize the timer to the clock every time we start
268                  * it.
269                  */
270                 thread_group_cputime(tsk, &sum);
271                 raw_spin_lock_irqsave(&cputimer->lock, flags);
272                 cputimer->running = 1;
273                 update_gt_cputime(&cputimer->cputime, &sum);
274         } else
275                 raw_spin_lock_irqsave(&cputimer->lock, flags);
276         *times = cputimer->cputime;
277         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
278 }
279
280 /*
281  * Sample a process (thread group) clock for the given group_leader task.
282  * Must be called with tasklist_lock held for reading.
283  */
284 static int cpu_clock_sample_group(const clockid_t which_clock,
285                                   struct task_struct *p,
286                                   union cpu_time_count *cpu)
287 {
288         struct task_cputime cputime;
289
290         switch (CPUCLOCK_WHICH(which_clock)) {
291         default:
292                 return -EINVAL;
293         case CPUCLOCK_PROF:
294                 thread_group_cputime(p, &cputime);
295                 cpu->cpu = cputime.utime + cputime.stime;
296                 break;
297         case CPUCLOCK_VIRT:
298                 thread_group_cputime(p, &cputime);
299                 cpu->cpu = cputime.utime;
300                 break;
301         case CPUCLOCK_SCHED:
302                 thread_group_cputime(p, &cputime);
303                 cpu->sched = cputime.sum_exec_runtime;
304                 break;
305         }
306         return 0;
307 }
308
309
310 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
311 {
312         const pid_t pid = CPUCLOCK_PID(which_clock);
313         int error = -EINVAL;
314         union cpu_time_count rtn;
315
316         if (pid == 0) {
317                 /*
318                  * Special case constant value for our own clocks.
319                  * We don't have to do any lookup to find ourselves.
320                  */
321                 if (CPUCLOCK_PERTHREAD(which_clock)) {
322                         /*
323                          * Sampling just ourselves we can do with no locking.
324                          */
325                         error = cpu_clock_sample(which_clock,
326                                                  current, &rtn);
327                 } else {
328                         read_lock(&tasklist_lock);
329                         error = cpu_clock_sample_group(which_clock,
330                                                        current, &rtn);
331                         read_unlock(&tasklist_lock);
332                 }
333         } else {
334                 /*
335                  * Find the given PID, and validate that the caller
336                  * should be able to see it.
337                  */
338                 struct task_struct *p;
339                 rcu_read_lock();
340                 p = find_task_by_vpid(pid);
341                 if (p) {
342                         if (CPUCLOCK_PERTHREAD(which_clock)) {
343                                 if (same_thread_group(p, current)) {
344                                         error = cpu_clock_sample(which_clock,
345                                                                  p, &rtn);
346                                 }
347                         } else {
348                                 read_lock(&tasklist_lock);
349                                 if (thread_group_leader(p) && p->sighand) {
350                                         error =
351                                             cpu_clock_sample_group(which_clock,
352                                                                    p, &rtn);
353                                 }
354                                 read_unlock(&tasklist_lock);
355                         }
356                 }
357                 rcu_read_unlock();
358         }
359
360         if (error)
361                 return error;
362         sample_to_timespec(which_clock, rtn, tp);
363         return 0;
364 }
365
366
367 /*
368  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
369  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
370  * new timer already all-zeros initialized.
371  */
372 static int posix_cpu_timer_create(struct k_itimer *new_timer)
373 {
374         int ret = 0;
375         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
376         struct task_struct *p;
377
378         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
379                 return -EINVAL;
380
381         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
382
383         rcu_read_lock();
384         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
385                 if (pid == 0) {
386                         p = current;
387                 } else {
388                         p = find_task_by_vpid(pid);
389                         if (p && !same_thread_group(p, current))
390                                 p = NULL;
391                 }
392         } else {
393                 if (pid == 0) {
394                         p = current->group_leader;
395                 } else {
396                         p = find_task_by_vpid(pid);
397                         if (p && !has_group_leader_pid(p))
398                                 p = NULL;
399                 }
400         }
401         new_timer->it.cpu.task = p;
402         if (p) {
403                 get_task_struct(p);
404         } else {
405                 ret = -EINVAL;
406         }
407         rcu_read_unlock();
408
409         return ret;
410 }
411
412 /*
413  * Clean up a CPU-clock timer that is about to be destroyed.
414  * This is called from timer deletion with the timer already locked.
415  * If we return TIMER_RETRY, it's necessary to release the timer's lock
416  * and try again.  (This happens when the timer is in the middle of firing.)
417  */
418 static int posix_cpu_timer_del(struct k_itimer *timer)
419 {
420         struct task_struct *p = timer->it.cpu.task;
421         int ret = 0;
422
423         if (likely(p != NULL)) {
424                 read_lock(&tasklist_lock);
425                 if (unlikely(p->sighand == NULL)) {
426                         /*
427                          * We raced with the reaping of the task.
428                          * The deletion should have cleared us off the list.
429                          */
430                         BUG_ON(!list_empty(&timer->it.cpu.entry));
431                 } else {
432                         spin_lock(&p->sighand->siglock);
433                         if (timer->it.cpu.firing)
434                                 ret = TIMER_RETRY;
435                         else
436                                 list_del(&timer->it.cpu.entry);
437                         spin_unlock(&p->sighand->siglock);
438                 }
439                 read_unlock(&tasklist_lock);
440
441                 if (!ret)
442                         put_task_struct(p);
443         }
444
445         return ret;
446 }
447
448 /*
449  * Clean out CPU timers still ticking when a thread exited.  The task
450  * pointer is cleared, and the expiry time is replaced with the residual
451  * time for later timer_gettime calls to return.
452  * This must be called with the siglock held.
453  */
454 static void cleanup_timers(struct list_head *head,
455                            cputime_t utime, cputime_t stime,
456                            unsigned long long sum_exec_runtime)
457 {
458         struct cpu_timer_list *timer, *next;
459         cputime_t ptime = utime + stime;
460
461         list_for_each_entry_safe(timer, next, head, entry) {
462                 list_del_init(&timer->entry);
463                 if (timer->expires.cpu < ptime) {
464                         timer->expires.cpu = 0;
465                 } else {
466                         timer->expires.cpu -= ptime;
467                 }
468         }
469
470         ++head;
471         list_for_each_entry_safe(timer, next, head, entry) {
472                 list_del_init(&timer->entry);
473                 if (timer->expires.cpu < utime) {
474                         timer->expires.cpu = 0;
475                 } else {
476                         timer->expires.cpu -= utime;
477                 }
478         }
479
480         ++head;
481         list_for_each_entry_safe(timer, next, head, entry) {
482                 list_del_init(&timer->entry);
483                 if (timer->expires.sched < sum_exec_runtime) {
484                         timer->expires.sched = 0;
485                 } else {
486                         timer->expires.sched -= sum_exec_runtime;
487                 }
488         }
489 }
490
491 /*
492  * These are both called with the siglock held, when the current thread
493  * is being reaped.  When the final (leader) thread in the group is reaped,
494  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
495  */
496 void posix_cpu_timers_exit(struct task_struct *tsk)
497 {
498         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
499                                                 sizeof(unsigned long long));
500         cleanup_timers(tsk->cpu_timers,
501                        tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
502
503 }
504 void posix_cpu_timers_exit_group(struct task_struct *tsk)
505 {
506         struct signal_struct *const sig = tsk->signal;
507
508         cleanup_timers(tsk->signal->cpu_timers,
509                        tsk->utime + sig->utime, tsk->stime + sig->stime,
510                        tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
511 }
512
513 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
514 {
515         /*
516          * That's all for this thread or process.
517          * We leave our residual in expires to be reported.
518          */
519         put_task_struct(timer->it.cpu.task);
520         timer->it.cpu.task = NULL;
521         timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
522                                              timer->it.cpu.expires,
523                                              now);
524 }
525
526 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
527 {
528         return expires == 0 || expires > new_exp;
529 }
530
531 /*
532  * Insert the timer on the appropriate list before any timers that
533  * expire later.  This must be called with the tasklist_lock held
534  * for reading, interrupts disabled and p->sighand->siglock taken.
535  */
536 static void arm_timer(struct k_itimer *timer)
537 {
538         struct task_struct *p = timer->it.cpu.task;
539         struct list_head *head, *listpos;
540         struct task_cputime *cputime_expires;
541         struct cpu_timer_list *const nt = &timer->it.cpu;
542         struct cpu_timer_list *next;
543
544         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
545                 head = p->cpu_timers;
546                 cputime_expires = &p->cputime_expires;
547         } else {
548                 head = p->signal->cpu_timers;
549                 cputime_expires = &p->signal->cputime_expires;
550         }
551         head += CPUCLOCK_WHICH(timer->it_clock);
552
553         listpos = head;
554         list_for_each_entry(next, head, entry) {
555                 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
556                         break;
557                 listpos = &next->entry;
558         }
559         list_add(&nt->entry, listpos);
560
561         if (listpos == head) {
562                 union cpu_time_count *exp = &nt->expires;
563
564                 /*
565                  * We are the new earliest-expiring POSIX 1.b timer, hence
566                  * need to update expiration cache. Take into account that
567                  * for process timers we share expiration cache with itimers
568                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
569                  */
570
571                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
572                 case CPUCLOCK_PROF:
573                         if (expires_gt(cputime_expires->prof_exp, exp->cpu))
574                                 cputime_expires->prof_exp = exp->cpu;
575                         break;
576                 case CPUCLOCK_VIRT:
577                         if (expires_gt(cputime_expires->virt_exp, exp->cpu))
578                                 cputime_expires->virt_exp = exp->cpu;
579                         break;
580                 case CPUCLOCK_SCHED:
581                         if (cputime_expires->sched_exp == 0 ||
582                             cputime_expires->sched_exp > exp->sched)
583                                 cputime_expires->sched_exp = exp->sched;
584                         break;
585                 }
586         }
587 }
588
589 /*
590  * The timer is locked, fire it and arrange for its reload.
591  */
592 static void cpu_timer_fire(struct k_itimer *timer)
593 {
594         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
595                 /*
596                  * User don't want any signal.
597                  */
598                 timer->it.cpu.expires.sched = 0;
599         } else if (unlikely(timer->sigq == NULL)) {
600                 /*
601                  * This a special case for clock_nanosleep,
602                  * not a normal timer from sys_timer_create.
603                  */
604                 wake_up_process(timer->it_process);
605                 timer->it.cpu.expires.sched = 0;
606         } else if (timer->it.cpu.incr.sched == 0) {
607                 /*
608                  * One-shot timer.  Clear it as soon as it's fired.
609                  */
610                 posix_timer_event(timer, 0);
611                 timer->it.cpu.expires.sched = 0;
612         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
613                 /*
614                  * The signal did not get queued because the signal
615                  * was ignored, so we won't get any callback to
616                  * reload the timer.  But we need to keep it
617                  * ticking in case the signal is deliverable next time.
618                  */
619                 posix_cpu_timer_schedule(timer);
620         }
621 }
622
623 /*
624  * Sample a process (thread group) timer for the given group_leader task.
625  * Must be called with tasklist_lock held for reading.
626  */
627 static int cpu_timer_sample_group(const clockid_t which_clock,
628                                   struct task_struct *p,
629                                   union cpu_time_count *cpu)
630 {
631         struct task_cputime cputime;
632
633         thread_group_cputimer(p, &cputime);
634         switch (CPUCLOCK_WHICH(which_clock)) {
635         default:
636                 return -EINVAL;
637         case CPUCLOCK_PROF:
638                 cpu->cpu = cputime.utime + cputime.stime;
639                 break;
640         case CPUCLOCK_VIRT:
641                 cpu->cpu = cputime.utime;
642                 break;
643         case CPUCLOCK_SCHED:
644                 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
645                 break;
646         }
647         return 0;
648 }
649
650 /*
651  * Guts of sys_timer_settime for CPU timers.
652  * This is called with the timer locked and interrupts disabled.
653  * If we return TIMER_RETRY, it's necessary to release the timer's lock
654  * and try again.  (This happens when the timer is in the middle of firing.)
655  */
656 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
657                                struct itimerspec *new, struct itimerspec *old)
658 {
659         struct task_struct *p = timer->it.cpu.task;
660         union cpu_time_count old_expires, new_expires, old_incr, val;
661         int ret;
662
663         if (unlikely(p == NULL)) {
664                 /*
665                  * Timer refers to a dead task's clock.
666                  */
667                 return -ESRCH;
668         }
669
670         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
671
672         read_lock(&tasklist_lock);
673         /*
674          * We need the tasklist_lock to protect against reaping that
675          * clears p->sighand.  If p has just been reaped, we can no
676          * longer get any information about it at all.
677          */
678         if (unlikely(p->sighand == NULL)) {
679                 read_unlock(&tasklist_lock);
680                 put_task_struct(p);
681                 timer->it.cpu.task = NULL;
682                 return -ESRCH;
683         }
684
685         /*
686          * Disarm any old timer after extracting its expiry time.
687          */
688         BUG_ON(!irqs_disabled());
689
690         ret = 0;
691         old_incr = timer->it.cpu.incr;
692         spin_lock(&p->sighand->siglock);
693         old_expires = timer->it.cpu.expires;
694         if (unlikely(timer->it.cpu.firing)) {
695                 timer->it.cpu.firing = -1;
696                 ret = TIMER_RETRY;
697         } else
698                 list_del_init(&timer->it.cpu.entry);
699
700         /*
701          * We need to sample the current value to convert the new
702          * value from to relative and absolute, and to convert the
703          * old value from absolute to relative.  To set a process
704          * timer, we need a sample to balance the thread expiry
705          * times (in arm_timer).  With an absolute time, we must
706          * check if it's already passed.  In short, we need a sample.
707          */
708         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
709                 cpu_clock_sample(timer->it_clock, p, &val);
710         } else {
711                 cpu_timer_sample_group(timer->it_clock, p, &val);
712         }
713
714         if (old) {
715                 if (old_expires.sched == 0) {
716                         old->it_value.tv_sec = 0;
717                         old->it_value.tv_nsec = 0;
718                 } else {
719                         /*
720                          * Update the timer in case it has
721                          * overrun already.  If it has,
722                          * we'll report it as having overrun
723                          * and with the next reloaded timer
724                          * already ticking, though we are
725                          * swallowing that pending
726                          * notification here to install the
727                          * new setting.
728                          */
729                         bump_cpu_timer(timer, val);
730                         if (cpu_time_before(timer->it_clock, val,
731                                             timer->it.cpu.expires)) {
732                                 old_expires = cpu_time_sub(
733                                         timer->it_clock,
734                                         timer->it.cpu.expires, val);
735                                 sample_to_timespec(timer->it_clock,
736                                                    old_expires,
737                                                    &old->it_value);
738                         } else {
739                                 old->it_value.tv_nsec = 1;
740                                 old->it_value.tv_sec = 0;
741                         }
742                 }
743         }
744
745         if (unlikely(ret)) {
746                 /*
747                  * We are colliding with the timer actually firing.
748                  * Punt after filling in the timer's old value, and
749                  * disable this firing since we are already reporting
750                  * it as an overrun (thanks to bump_cpu_timer above).
751                  */
752                 spin_unlock(&p->sighand->siglock);
753                 read_unlock(&tasklist_lock);
754                 goto out;
755         }
756
757         if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
758                 cpu_time_add(timer->it_clock, &new_expires, val);
759         }
760
761         /*
762          * Install the new expiry time (or zero).
763          * For a timer with no notification action, we don't actually
764          * arm the timer (we'll just fake it for timer_gettime).
765          */
766         timer->it.cpu.expires = new_expires;
767         if (new_expires.sched != 0 &&
768             cpu_time_before(timer->it_clock, val, new_expires)) {
769                 arm_timer(timer);
770         }
771
772         spin_unlock(&p->sighand->siglock);
773         read_unlock(&tasklist_lock);
774
775         /*
776          * Install the new reload setting, and
777          * set up the signal and overrun bookkeeping.
778          */
779         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
780                                                 &new->it_interval);
781
782         /*
783          * This acts as a modification timestamp for the timer,
784          * so any automatic reload attempt will punt on seeing
785          * that we have reset the timer manually.
786          */
787         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
788                 ~REQUEUE_PENDING;
789         timer->it_overrun_last = 0;
790         timer->it_overrun = -1;
791
792         if (new_expires.sched != 0 &&
793             !cpu_time_before(timer->it_clock, val, new_expires)) {
794                 /*
795                  * The designated time already passed, so we notify
796                  * immediately, even if the thread never runs to
797                  * accumulate more time on this clock.
798                  */
799                 cpu_timer_fire(timer);
800         }
801
802         ret = 0;
803  out:
804         if (old) {
805                 sample_to_timespec(timer->it_clock,
806                                    old_incr, &old->it_interval);
807         }
808         return ret;
809 }
810
811 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
812 {
813         union cpu_time_count now;
814         struct task_struct *p = timer->it.cpu.task;
815         int clear_dead;
816
817         /*
818          * Easy part: convert the reload time.
819          */
820         sample_to_timespec(timer->it_clock,
821                            timer->it.cpu.incr, &itp->it_interval);
822
823         if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
824                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
825                 return;
826         }
827
828         if (unlikely(p == NULL)) {
829                 /*
830                  * This task already died and the timer will never fire.
831                  * In this case, expires is actually the dead value.
832                  */
833         dead:
834                 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
835                                    &itp->it_value);
836                 return;
837         }
838
839         /*
840          * Sample the clock to take the difference with the expiry time.
841          */
842         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
843                 cpu_clock_sample(timer->it_clock, p, &now);
844                 clear_dead = p->exit_state;
845         } else {
846                 read_lock(&tasklist_lock);
847                 if (unlikely(p->sighand == NULL)) {
848                         /*
849                          * The process has been reaped.
850                          * We can't even collect a sample any more.
851                          * Call the timer disarmed, nothing else to do.
852                          */
853                         put_task_struct(p);
854                         timer->it.cpu.task = NULL;
855                         timer->it.cpu.expires.sched = 0;
856                         read_unlock(&tasklist_lock);
857                         goto dead;
858                 } else {
859                         cpu_timer_sample_group(timer->it_clock, p, &now);
860                         clear_dead = (unlikely(p->exit_state) &&
861                                       thread_group_empty(p));
862                 }
863                 read_unlock(&tasklist_lock);
864         }
865
866         if (unlikely(clear_dead)) {
867                 /*
868                  * We've noticed that the thread is dead, but
869                  * not yet reaped.  Take this opportunity to
870                  * drop our task ref.
871                  */
872                 clear_dead_task(timer, now);
873                 goto dead;
874         }
875
876         if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
877                 sample_to_timespec(timer->it_clock,
878                                    cpu_time_sub(timer->it_clock,
879                                                 timer->it.cpu.expires, now),
880                                    &itp->it_value);
881         } else {
882                 /*
883                  * The timer should have expired already, but the firing
884                  * hasn't taken place yet.  Say it's just about to expire.
885                  */
886                 itp->it_value.tv_nsec = 1;
887                 itp->it_value.tv_sec = 0;
888         }
889 }
890
891 /*
892  * Check for any per-thread CPU timers that have fired and move them off
893  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
894  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
895  */
896 static void check_thread_timers(struct task_struct *tsk,
897                                 struct list_head *firing)
898 {
899         int maxfire;
900         struct list_head *timers = tsk->cpu_timers;
901         struct signal_struct *const sig = tsk->signal;
902         unsigned long soft;
903
904         maxfire = 20;
905         tsk->cputime_expires.prof_exp = 0;
906         while (!list_empty(timers)) {
907                 struct cpu_timer_list *t = list_first_entry(timers,
908                                                       struct cpu_timer_list,
909                                                       entry);
910                 if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
911                         tsk->cputime_expires.prof_exp = t->expires.cpu;
912                         break;
913                 }
914                 t->firing = 1;
915                 list_move_tail(&t->entry, firing);
916         }
917
918         ++timers;
919         maxfire = 20;
920         tsk->cputime_expires.virt_exp = 0;
921         while (!list_empty(timers)) {
922                 struct cpu_timer_list *t = list_first_entry(timers,
923                                                       struct cpu_timer_list,
924                                                       entry);
925                 if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
926                         tsk->cputime_expires.virt_exp = t->expires.cpu;
927                         break;
928                 }
929                 t->firing = 1;
930                 list_move_tail(&t->entry, firing);
931         }
932
933         ++timers;
934         maxfire = 20;
935         tsk->cputime_expires.sched_exp = 0;
936         while (!list_empty(timers)) {
937                 struct cpu_timer_list *t = list_first_entry(timers,
938                                                       struct cpu_timer_list,
939                                                       entry);
940                 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
941                         tsk->cputime_expires.sched_exp = t->expires.sched;
942                         break;
943                 }
944                 t->firing = 1;
945                 list_move_tail(&t->entry, firing);
946         }
947
948         /*
949          * Check for the special case thread timers.
950          */
951         soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
952         if (soft != RLIM_INFINITY) {
953                 unsigned long hard =
954                         ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
955
956                 if (hard != RLIM_INFINITY &&
957                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
958                         /*
959                          * At the hard limit, we just die.
960                          * No need to calculate anything else now.
961                          */
962                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
963                         return;
964                 }
965                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
966                         /*
967                          * At the soft limit, send a SIGXCPU every second.
968                          */
969                         if (soft < hard) {
970                                 soft += USEC_PER_SEC;
971                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
972                         }
973                         printk(KERN_INFO
974                                 "RT Watchdog Timeout: %s[%d]\n",
975                                 tsk->comm, task_pid_nr(tsk));
976                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
977                 }
978         }
979 }
980
981 static void stop_process_timers(struct signal_struct *sig)
982 {
983         struct thread_group_cputimer *cputimer = &sig->cputimer;
984         unsigned long flags;
985
986         raw_spin_lock_irqsave(&cputimer->lock, flags);
987         cputimer->running = 0;
988         raw_spin_unlock_irqrestore(&cputimer->lock, flags);
989 }
990
991 static u32 onecputick;
992
993 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
994                              cputime_t *expires, cputime_t cur_time, int signo)
995 {
996         if (!it->expires)
997                 return;
998
999         if (cur_time >= it->expires) {
1000                 if (it->incr) {
1001                         it->expires += it->incr;
1002                         it->error += it->incr_error;
1003                         if (it->error >= onecputick) {
1004                                 it->expires -= cputime_one_jiffy;
1005                                 it->error -= onecputick;
1006                         }
1007                 } else {
1008                         it->expires = 0;
1009                 }
1010
1011                 trace_itimer_expire(signo == SIGPROF ?
1012                                     ITIMER_PROF : ITIMER_VIRTUAL,
1013                                     tsk->signal->leader_pid, cur_time);
1014                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1015         }
1016
1017         if (it->expires && (!*expires || it->expires < *expires)) {
1018                 *expires = it->expires;
1019         }
1020 }
1021
1022 /**
1023  * task_cputime_zero - Check a task_cputime struct for all zero fields.
1024  *
1025  * @cputime:    The struct to compare.
1026  *
1027  * Checks @cputime to see if all fields are zero.  Returns true if all fields
1028  * are zero, false if any field is nonzero.
1029  */
1030 static inline int task_cputime_zero(const struct task_cputime *cputime)
1031 {
1032         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
1033                 return 1;
1034         return 0;
1035 }
1036
1037 /*
1038  * Check for any per-thread CPU timers that have fired and move them
1039  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1040  * have already been taken off.
1041  */
1042 static void check_process_timers(struct task_struct *tsk,
1043                                  struct list_head *firing)
1044 {
1045         int maxfire;
1046         struct signal_struct *const sig = tsk->signal;
1047         cputime_t utime, ptime, virt_expires, prof_expires;
1048         unsigned long long sum_sched_runtime, sched_expires;
1049         struct list_head *timers = sig->cpu_timers;
1050         struct task_cputime cputime;
1051         unsigned long soft;
1052
1053         /*
1054          * Collect the current process totals.
1055          */
1056         thread_group_cputimer(tsk, &cputime);
1057         utime = cputime.utime;
1058         ptime = utime + cputime.stime;
1059         sum_sched_runtime = cputime.sum_exec_runtime;
1060         maxfire = 20;
1061         prof_expires = 0;
1062         while (!list_empty(timers)) {
1063                 struct cpu_timer_list *tl = list_first_entry(timers,
1064                                                       struct cpu_timer_list,
1065                                                       entry);
1066                 if (!--maxfire || ptime < tl->expires.cpu) {
1067                         prof_expires = tl->expires.cpu;
1068                         break;
1069                 }
1070                 tl->firing = 1;
1071                 list_move_tail(&tl->entry, firing);
1072         }
1073
1074         ++timers;
1075         maxfire = 20;
1076         virt_expires = 0;
1077         while (!list_empty(timers)) {
1078                 struct cpu_timer_list *tl = list_first_entry(timers,
1079                                                       struct cpu_timer_list,
1080                                                       entry);
1081                 if (!--maxfire || utime < tl->expires.cpu) {
1082                         virt_expires = tl->expires.cpu;
1083                         break;
1084                 }
1085                 tl->firing = 1;
1086                 list_move_tail(&tl->entry, firing);
1087         }
1088
1089         ++timers;
1090         maxfire = 20;
1091         sched_expires = 0;
1092         while (!list_empty(timers)) {
1093                 struct cpu_timer_list *tl = list_first_entry(timers,
1094                                                       struct cpu_timer_list,
1095                                                       entry);
1096                 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1097                         sched_expires = tl->expires.sched;
1098                         break;
1099                 }
1100                 tl->firing = 1;
1101                 list_move_tail(&tl->entry, firing);
1102         }
1103
1104         /*
1105          * Check for the special case process timers.
1106          */
1107         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1108                          SIGPROF);
1109         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1110                          SIGVTALRM);
1111         soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1112         if (soft != RLIM_INFINITY) {
1113                 unsigned long psecs = cputime_to_secs(ptime);
1114                 unsigned long hard =
1115                         ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1116                 cputime_t x;
1117                 if (psecs >= hard) {
1118                         /*
1119                          * At the hard limit, we just die.
1120                          * No need to calculate anything else now.
1121                          */
1122                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1123                         return;
1124                 }
1125                 if (psecs >= soft) {
1126                         /*
1127                          * At the soft limit, send a SIGXCPU every second.
1128                          */
1129                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1130                         if (soft < hard) {
1131                                 soft++;
1132                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1133                         }
1134                 }
1135                 x = secs_to_cputime(soft);
1136                 if (!prof_expires || x < prof_expires) {
1137                         prof_expires = x;
1138                 }
1139         }
1140
1141         sig->cputime_expires.prof_exp = prof_expires;
1142         sig->cputime_expires.virt_exp = virt_expires;
1143         sig->cputime_expires.sched_exp = sched_expires;
1144         if (task_cputime_zero(&sig->cputime_expires))
1145                 stop_process_timers(sig);
1146 }
1147
1148 /*
1149  * This is called from the signal code (via do_schedule_next_timer)
1150  * when the last timer signal was delivered and we have to reload the timer.
1151  */
1152 void posix_cpu_timer_schedule(struct k_itimer *timer)
1153 {
1154         struct task_struct *p = timer->it.cpu.task;
1155         union cpu_time_count now;
1156
1157         if (unlikely(p == NULL))
1158                 /*
1159                  * The task was cleaned up already, no future firings.
1160                  */
1161                 goto out;
1162
1163         /*
1164          * Fetch the current sample and update the timer's expiry time.
1165          */
1166         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1167                 cpu_clock_sample(timer->it_clock, p, &now);
1168                 bump_cpu_timer(timer, now);
1169                 if (unlikely(p->exit_state)) {
1170                         clear_dead_task(timer, now);
1171                         goto out;
1172                 }
1173                 read_lock(&tasklist_lock); /* arm_timer needs it.  */
1174                 spin_lock(&p->sighand->siglock);
1175         } else {
1176                 read_lock(&tasklist_lock);
1177                 if (unlikely(p->sighand == NULL)) {
1178                         /*
1179                          * The process has been reaped.
1180                          * We can't even collect a sample any more.
1181                          */
1182                         put_task_struct(p);
1183                         timer->it.cpu.task = p = NULL;
1184                         timer->it.cpu.expires.sched = 0;
1185                         goto out_unlock;
1186                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1187                         /*
1188                          * We've noticed that the thread is dead, but
1189                          * not yet reaped.  Take this opportunity to
1190                          * drop our task ref.
1191                          */
1192                         clear_dead_task(timer, now);
1193                         goto out_unlock;
1194                 }
1195                 spin_lock(&p->sighand->siglock);
1196                 cpu_timer_sample_group(timer->it_clock, p, &now);
1197                 bump_cpu_timer(timer, now);
1198                 /* Leave the tasklist_lock locked for the call below.  */
1199         }
1200
1201         /*
1202          * Now re-arm for the new expiry time.
1203          */
1204         BUG_ON(!irqs_disabled());
1205         arm_timer(timer);
1206         spin_unlock(&p->sighand->siglock);
1207
1208 out_unlock:
1209         read_unlock(&tasklist_lock);
1210
1211 out:
1212         timer->it_overrun_last = timer->it_overrun;
1213         timer->it_overrun = -1;
1214         ++timer->it_requeue_pending;
1215 }
1216
1217 /**
1218  * task_cputime_expired - Compare two task_cputime entities.
1219  *
1220  * @sample:     The task_cputime structure to be checked for expiration.
1221  * @expires:    Expiration times, against which @sample will be checked.
1222  *
1223  * Checks @sample against @expires to see if any field of @sample has expired.
1224  * Returns true if any field of the former is greater than the corresponding
1225  * field of the latter if the latter field is set.  Otherwise returns false.
1226  */
1227 static inline int task_cputime_expired(const struct task_cputime *sample,
1228                                         const struct task_cputime *expires)
1229 {
1230         if (expires->utime && sample->utime >= expires->utime)
1231                 return 1;
1232         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1233                 return 1;
1234         if (expires->sum_exec_runtime != 0 &&
1235             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1236                 return 1;
1237         return 0;
1238 }
1239
1240 /**
1241  * fastpath_timer_check - POSIX CPU timers fast path.
1242  *
1243  * @tsk:        The task (thread) being checked.
1244  *
1245  * Check the task and thread group timers.  If both are zero (there are no
1246  * timers set) return false.  Otherwise snapshot the task and thread group
1247  * timers and compare them with the corresponding expiration times.  Return
1248  * true if a timer has expired, else return false.
1249  */
1250 static inline int fastpath_timer_check(struct task_struct *tsk)
1251 {
1252         struct signal_struct *sig;
1253
1254         if (!task_cputime_zero(&tsk->cputime_expires)) {
1255                 struct task_cputime task_sample = {
1256                         .utime = tsk->utime,
1257                         .stime = tsk->stime,
1258                         .sum_exec_runtime = tsk->se.sum_exec_runtime
1259                 };
1260
1261                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1262                         return 1;
1263         }
1264
1265         sig = tsk->signal;
1266         if (sig->cputimer.running) {
1267                 struct task_cputime group_sample;
1268
1269                 raw_spin_lock(&sig->cputimer.lock);
1270                 group_sample = sig->cputimer.cputime;
1271                 raw_spin_unlock(&sig->cputimer.lock);
1272
1273                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1274                         return 1;
1275         }
1276
1277         return 0;
1278 }
1279
1280 /*
1281  * This is called from the timer interrupt handler.  The irq handler has
1282  * already updated our counts.  We need to check if any timers fire now.
1283  * Interrupts are disabled.
1284  */
1285 void run_posix_cpu_timers(struct task_struct *tsk)
1286 {
1287         LIST_HEAD(firing);
1288         struct k_itimer *timer, *next;
1289         unsigned long flags;
1290
1291         BUG_ON(!irqs_disabled());
1292
1293         /*
1294          * The fast path checks that there are no expired thread or thread
1295          * group timers.  If that's so, just return.
1296          */
1297         if (!fastpath_timer_check(tsk))
1298                 return;
1299
1300         if (!lock_task_sighand(tsk, &flags))
1301                 return;
1302         /*
1303          * Here we take off tsk->signal->cpu_timers[N] and
1304          * tsk->cpu_timers[N] all the timers that are firing, and
1305          * put them on the firing list.
1306          */
1307         check_thread_timers(tsk, &firing);
1308         /*
1309          * If there are any active process wide timers (POSIX 1.b, itimers,
1310          * RLIMIT_CPU) cputimer must be running.
1311          */
1312         if (tsk->signal->cputimer.running)
1313                 check_process_timers(tsk, &firing);
1314
1315         /*
1316          * We must release these locks before taking any timer's lock.
1317          * There is a potential race with timer deletion here, as the
1318          * siglock now protects our private firing list.  We have set
1319          * the firing flag in each timer, so that a deletion attempt
1320          * that gets the timer lock before we do will give it up and
1321          * spin until we've taken care of that timer below.
1322          */
1323         unlock_task_sighand(tsk, &flags);
1324
1325         /*
1326          * Now that all the timers on our list have the firing flag,
1327          * no one will touch their list entries but us.  We'll take
1328          * each timer's lock before clearing its firing flag, so no
1329          * timer call will interfere.
1330          */
1331         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1332                 int cpu_firing;
1333
1334                 spin_lock(&timer->it_lock);
1335                 list_del_init(&timer->it.cpu.entry);
1336                 cpu_firing = timer->it.cpu.firing;
1337                 timer->it.cpu.firing = 0;
1338                 /*
1339                  * The firing flag is -1 if we collided with a reset
1340                  * of the timer, which already reported this
1341                  * almost-firing as an overrun.  So don't generate an event.
1342                  */
1343                 if (likely(cpu_firing >= 0))
1344                         cpu_timer_fire(timer);
1345                 spin_unlock(&timer->it_lock);
1346         }
1347 }
1348
1349 /*
1350  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1351  * The tsk->sighand->siglock must be held by the caller.
1352  */
1353 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1354                            cputime_t *newval, cputime_t *oldval)
1355 {
1356         union cpu_time_count now;
1357
1358         BUG_ON(clock_idx == CPUCLOCK_SCHED);
1359         cpu_timer_sample_group(clock_idx, tsk, &now);
1360
1361         if (oldval) {
1362                 /*
1363                  * We are setting itimer. The *oldval is absolute and we update
1364                  * it to be relative, *newval argument is relative and we update
1365                  * it to be absolute.
1366                  */
1367                 if (*oldval) {
1368                         if (*oldval <= now.cpu) {
1369                                 /* Just about to fire. */
1370                                 *oldval = cputime_one_jiffy;
1371                         } else {
1372                                 *oldval -= now.cpu;
1373                         }
1374                 }
1375
1376                 if (!*newval)
1377                         return;
1378                 *newval += now.cpu;
1379         }
1380
1381         /*
1382          * Update expiration cache if we are the earliest timer, or eventually
1383          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1384          */
1385         switch (clock_idx) {
1386         case CPUCLOCK_PROF:
1387                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1388                         tsk->signal->cputime_expires.prof_exp = *newval;
1389                 break;
1390         case CPUCLOCK_VIRT:
1391                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1392                         tsk->signal->cputime_expires.virt_exp = *newval;
1393                 break;
1394         }
1395 }
1396
1397 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1398                             struct timespec *rqtp, struct itimerspec *it)
1399 {
1400         struct k_itimer timer;
1401         int error;
1402
1403         /*
1404          * Set up a temporary timer and then wait for it to go off.
1405          */
1406         memset(&timer, 0, sizeof timer);
1407         spin_lock_init(&timer.it_lock);
1408         timer.it_clock = which_clock;
1409         timer.it_overrun = -1;
1410         error = posix_cpu_timer_create(&timer);
1411         timer.it_process = current;
1412         if (!error) {
1413                 static struct itimerspec zero_it;
1414
1415                 memset(it, 0, sizeof *it);
1416                 it->it_value = *rqtp;
1417
1418                 spin_lock_irq(&timer.it_lock);
1419                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1420                 if (error) {
1421                         spin_unlock_irq(&timer.it_lock);
1422                         return error;
1423                 }
1424
1425                 while (!signal_pending(current)) {
1426                         if (timer.it.cpu.expires.sched == 0) {
1427                                 /*
1428                                  * Our timer fired and was reset.
1429                                  */
1430                                 spin_unlock_irq(&timer.it_lock);
1431                                 return 0;
1432                         }
1433
1434                         /*
1435                          * Block until cpu_timer_fire (or a signal) wakes us.
1436                          */
1437                         __set_current_state(TASK_INTERRUPTIBLE);
1438                         spin_unlock_irq(&timer.it_lock);
1439                         schedule();
1440                         spin_lock_irq(&timer.it_lock);
1441                 }
1442
1443                 /*
1444                  * We were interrupted by a signal.
1445                  */
1446                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1447                 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1448                 spin_unlock_irq(&timer.it_lock);
1449
1450                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1451                         /*
1452                          * It actually did fire already.
1453                          */
1454                         return 0;
1455                 }
1456
1457                 error = -ERESTART_RESTARTBLOCK;
1458         }
1459
1460         return error;
1461 }
1462
1463 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1464
1465 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1466                             struct timespec *rqtp, struct timespec __user *rmtp)
1467 {
1468         struct restart_block *restart_block =
1469                 &current_thread_info()->restart_block;
1470         struct itimerspec it;
1471         int error;
1472
1473         /*
1474          * Diagnose required errors first.
1475          */
1476         if (CPUCLOCK_PERTHREAD(which_clock) &&
1477             (CPUCLOCK_PID(which_clock) == 0 ||
1478              CPUCLOCK_PID(which_clock) == current->pid))
1479                 return -EINVAL;
1480
1481         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1482
1483         if (error == -ERESTART_RESTARTBLOCK) {
1484
1485                 if (flags & TIMER_ABSTIME)
1486                         return -ERESTARTNOHAND;
1487                 /*
1488                  * Report back to the user the time still remaining.
1489                  */
1490                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1491                         return -EFAULT;
1492
1493                 restart_block->fn = posix_cpu_nsleep_restart;
1494                 restart_block->nanosleep.clockid = which_clock;
1495                 restart_block->nanosleep.rmtp = rmtp;
1496                 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1497         }
1498         return error;
1499 }
1500
1501 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1502 {
1503         clockid_t which_clock = restart_block->nanosleep.clockid;
1504         struct timespec t;
1505         struct itimerspec it;
1506         int error;
1507
1508         t = ns_to_timespec(restart_block->nanosleep.expires);
1509
1510         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1511
1512         if (error == -ERESTART_RESTARTBLOCK) {
1513                 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1514                 /*
1515                  * Report back to the user the time still remaining.
1516                  */
1517                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1518                         return -EFAULT;
1519
1520                 restart_block->nanosleep.expires = timespec_to_ns(&t);
1521         }
1522         return error;
1523
1524 }
1525
1526 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1527 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1528
1529 static int process_cpu_clock_getres(const clockid_t which_clock,
1530                                     struct timespec *tp)
1531 {
1532         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1533 }
1534 static int process_cpu_clock_get(const clockid_t which_clock,
1535                                  struct timespec *tp)
1536 {
1537         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1538 }
1539 static int process_cpu_timer_create(struct k_itimer *timer)
1540 {
1541         timer->it_clock = PROCESS_CLOCK;
1542         return posix_cpu_timer_create(timer);
1543 }
1544 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1545                               struct timespec *rqtp,
1546                               struct timespec __user *rmtp)
1547 {
1548         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1549 }
1550 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1551 {
1552         return -EINVAL;
1553 }
1554 static int thread_cpu_clock_getres(const clockid_t which_clock,
1555                                    struct timespec *tp)
1556 {
1557         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1558 }
1559 static int thread_cpu_clock_get(const clockid_t which_clock,
1560                                 struct timespec *tp)
1561 {
1562         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1563 }
1564 static int thread_cpu_timer_create(struct k_itimer *timer)
1565 {
1566         timer->it_clock = THREAD_CLOCK;
1567         return posix_cpu_timer_create(timer);
1568 }
1569
1570 struct k_clock clock_posix_cpu = {
1571         .clock_getres   = posix_cpu_clock_getres,
1572         .clock_set      = posix_cpu_clock_set,
1573         .clock_get      = posix_cpu_clock_get,
1574         .timer_create   = posix_cpu_timer_create,
1575         .nsleep         = posix_cpu_nsleep,
1576         .nsleep_restart = posix_cpu_nsleep_restart,
1577         .timer_set      = posix_cpu_timer_set,
1578         .timer_del      = posix_cpu_timer_del,
1579         .timer_get      = posix_cpu_timer_get,
1580 };
1581
1582 static __init int init_posix_cpu_timers(void)
1583 {
1584         struct k_clock process = {
1585                 .clock_getres   = process_cpu_clock_getres,
1586                 .clock_get      = process_cpu_clock_get,
1587                 .timer_create   = process_cpu_timer_create,
1588                 .nsleep         = process_cpu_nsleep,
1589                 .nsleep_restart = process_cpu_nsleep_restart,
1590         };
1591         struct k_clock thread = {
1592                 .clock_getres   = thread_cpu_clock_getres,
1593                 .clock_get      = thread_cpu_clock_get,
1594                 .timer_create   = thread_cpu_timer_create,
1595         };
1596         struct timespec ts;
1597
1598         posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1599         posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1600
1601         cputime_to_timespec(cputime_one_jiffy, &ts);
1602         onecputick = ts.tv_nsec;
1603         WARN_ON(ts.tv_sec != 0);
1604
1605         return 0;
1606 }
1607 __initcall(init_posix_cpu_timers);