perf: Cleanup {start,commit,cancel}_txn details
[linux-2.6-block.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287         event->attach_state |= PERF_ATTACH_CONTEXT;
288
289         /*
290          * If we're a stand alone event or group leader, we go to the context
291          * list, group events are kept attached to the group so that
292          * perf_group_detach can, at all times, locate all siblings.
293          */
294         if (event->group_leader == event) {
295                 struct list_head *list;
296
297                 if (is_software_event(event))
298                         event->group_flags |= PERF_GROUP_SOFTWARE;
299
300                 list = ctx_group_list(event, ctx);
301                 list_add_tail(&event->group_entry, list);
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static void
406 event_sched_out(struct perf_event *event,
407                   struct perf_cpu_context *cpuctx,
408                   struct perf_event_context *ctx)
409 {
410         if (event->state != PERF_EVENT_STATE_ACTIVE)
411                 return;
412
413         event->state = PERF_EVENT_STATE_INACTIVE;
414         if (event->pending_disable) {
415                 event->pending_disable = 0;
416                 event->state = PERF_EVENT_STATE_OFF;
417         }
418         event->tstamp_stopped = ctx->time;
419         event->pmu->disable(event);
420         event->oncpu = -1;
421
422         if (!is_software_event(event))
423                 cpuctx->active_oncpu--;
424         ctx->nr_active--;
425         if (event->attr.exclusive || !cpuctx->active_oncpu)
426                 cpuctx->exclusive = 0;
427 }
428
429 static void
430 group_sched_out(struct perf_event *group_event,
431                 struct perf_cpu_context *cpuctx,
432                 struct perf_event_context *ctx)
433 {
434         struct perf_event *event;
435
436         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437                 return;
438
439         event_sched_out(group_event, cpuctx, ctx);
440
441         /*
442          * Schedule out siblings (if any):
443          */
444         list_for_each_entry(event, &group_event->sibling_list, group_entry)
445                 event_sched_out(event, cpuctx, ctx);
446
447         if (group_event->attr.exclusive)
448                 cpuctx->exclusive = 0;
449 }
450
451 /*
452  * Cross CPU call to remove a performance event
453  *
454  * We disable the event on the hardware level first. After that we
455  * remove it from the context list.
456  */
457 static void __perf_event_remove_from_context(void *info)
458 {
459         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460         struct perf_event *event = info;
461         struct perf_event_context *ctx = event->ctx;
462
463         /*
464          * If this is a task context, we need to check whether it is
465          * the current task context of this cpu. If not it has been
466          * scheduled out before the smp call arrived.
467          */
468         if (ctx->task && cpuctx->task_ctx != ctx)
469                 return;
470
471         raw_spin_lock(&ctx->lock);
472         /*
473          * Protect the list operation against NMI by disabling the
474          * events on a global level.
475          */
476         perf_disable();
477
478         event_sched_out(event, cpuctx, ctx);
479
480         list_del_event(event, ctx);
481
482         if (!ctx->task) {
483                 /*
484                  * Allow more per task events with respect to the
485                  * reservation:
486                  */
487                 cpuctx->max_pertask =
488                         min(perf_max_events - ctx->nr_events,
489                             perf_max_events - perf_reserved_percpu);
490         }
491
492         perf_enable();
493         raw_spin_unlock(&ctx->lock);
494 }
495
496
497 /*
498  * Remove the event from a task's (or a CPU's) list of events.
499  *
500  * Must be called with ctx->mutex held.
501  *
502  * CPU events are removed with a smp call. For task events we only
503  * call when the task is on a CPU.
504  *
505  * If event->ctx is a cloned context, callers must make sure that
506  * every task struct that event->ctx->task could possibly point to
507  * remains valid.  This is OK when called from perf_release since
508  * that only calls us on the top-level context, which can't be a clone.
509  * When called from perf_event_exit_task, it's OK because the
510  * context has been detached from its task.
511  */
512 static void perf_event_remove_from_context(struct perf_event *event)
513 {
514         struct perf_event_context *ctx = event->ctx;
515         struct task_struct *task = ctx->task;
516
517         if (!task) {
518                 /*
519                  * Per cpu events are removed via an smp call and
520                  * the removal is always successful.
521                  */
522                 smp_call_function_single(event->cpu,
523                                          __perf_event_remove_from_context,
524                                          event, 1);
525                 return;
526         }
527
528 retry:
529         task_oncpu_function_call(task, __perf_event_remove_from_context,
530                                  event);
531
532         raw_spin_lock_irq(&ctx->lock);
533         /*
534          * If the context is active we need to retry the smp call.
535          */
536         if (ctx->nr_active && !list_empty(&event->group_entry)) {
537                 raw_spin_unlock_irq(&ctx->lock);
538                 goto retry;
539         }
540
541         /*
542          * The lock prevents that this context is scheduled in so we
543          * can remove the event safely, if the call above did not
544          * succeed.
545          */
546         if (!list_empty(&event->group_entry))
547                 list_del_event(event, ctx);
548         raw_spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552  * Cross CPU call to disable a performance event
553  */
554 static void __perf_event_disable(void *info)
555 {
556         struct perf_event *event = info;
557         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558         struct perf_event_context *ctx = event->ctx;
559
560         /*
561          * If this is a per-task event, need to check whether this
562          * event's task is the current task on this cpu.
563          */
564         if (ctx->task && cpuctx->task_ctx != ctx)
565                 return;
566
567         raw_spin_lock(&ctx->lock);
568
569         /*
570          * If the event is on, turn it off.
571          * If it is in error state, leave it in error state.
572          */
573         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574                 update_context_time(ctx);
575                 update_group_times(event);
576                 if (event == event->group_leader)
577                         group_sched_out(event, cpuctx, ctx);
578                 else
579                         event_sched_out(event, cpuctx, ctx);
580                 event->state = PERF_EVENT_STATE_OFF;
581         }
582
583         raw_spin_unlock(&ctx->lock);
584 }
585
586 /*
587  * Disable a event.
588  *
589  * If event->ctx is a cloned context, callers must make sure that
590  * every task struct that event->ctx->task could possibly point to
591  * remains valid.  This condition is satisifed when called through
592  * perf_event_for_each_child or perf_event_for_each because they
593  * hold the top-level event's child_mutex, so any descendant that
594  * goes to exit will block in sync_child_event.
595  * When called from perf_pending_event it's OK because event->ctx
596  * is the current context on this CPU and preemption is disabled,
597  * hence we can't get into perf_event_task_sched_out for this context.
598  */
599 void perf_event_disable(struct perf_event *event)
600 {
601         struct perf_event_context *ctx = event->ctx;
602         struct task_struct *task = ctx->task;
603
604         if (!task) {
605                 /*
606                  * Disable the event on the cpu that it's on
607                  */
608                 smp_call_function_single(event->cpu, __perf_event_disable,
609                                          event, 1);
610                 return;
611         }
612
613  retry:
614         task_oncpu_function_call(task, __perf_event_disable, event);
615
616         raw_spin_lock_irq(&ctx->lock);
617         /*
618          * If the event is still active, we need to retry the cross-call.
619          */
620         if (event->state == PERF_EVENT_STATE_ACTIVE) {
621                 raw_spin_unlock_irq(&ctx->lock);
622                 goto retry;
623         }
624
625         /*
626          * Since we have the lock this context can't be scheduled
627          * in, so we can change the state safely.
628          */
629         if (event->state == PERF_EVENT_STATE_INACTIVE) {
630                 update_group_times(event);
631                 event->state = PERF_EVENT_STATE_OFF;
632         }
633
634         raw_spin_unlock_irq(&ctx->lock);
635 }
636
637 static int
638 event_sched_in(struct perf_event *event,
639                  struct perf_cpu_context *cpuctx,
640                  struct perf_event_context *ctx)
641 {
642         if (event->state <= PERF_EVENT_STATE_OFF)
643                 return 0;
644
645         event->state = PERF_EVENT_STATE_ACTIVE;
646         event->oncpu = smp_processor_id();
647         /*
648          * The new state must be visible before we turn it on in the hardware:
649          */
650         smp_wmb();
651
652         if (event->pmu->enable(event)) {
653                 event->state = PERF_EVENT_STATE_INACTIVE;
654                 event->oncpu = -1;
655                 return -EAGAIN;
656         }
657
658         event->tstamp_running += ctx->time - event->tstamp_stopped;
659
660         if (!is_software_event(event))
661                 cpuctx->active_oncpu++;
662         ctx->nr_active++;
663
664         if (event->attr.exclusive)
665                 cpuctx->exclusive = 1;
666
667         return 0;
668 }
669
670 static int
671 group_sched_in(struct perf_event *group_event,
672                struct perf_cpu_context *cpuctx,
673                struct perf_event_context *ctx)
674 {
675         struct perf_event *event, *partial_group = NULL;
676         const struct pmu *pmu = group_event->pmu;
677         bool txn = false;
678
679         if (group_event->state == PERF_EVENT_STATE_OFF)
680                 return 0;
681
682         /* Check if group transaction availabe */
683         if (pmu->start_txn)
684                 txn = true;
685
686         if (txn)
687                 pmu->start_txn(pmu);
688
689         if (event_sched_in(group_event, cpuctx, ctx)) {
690                 if (txn)
691                         pmu->cancel_txn(pmu);
692                 return -EAGAIN;
693         }
694
695         /*
696          * Schedule in siblings as one group (if any):
697          */
698         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699                 if (event_sched_in(event, cpuctx, ctx)) {
700                         partial_group = event;
701                         goto group_error;
702                 }
703         }
704
705         if (!txn || !pmu->commit_txn(pmu))
706                 return 0;
707
708 group_error:
709         /*
710          * Groups can be scheduled in as one unit only, so undo any
711          * partial group before returning:
712          */
713         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714                 if (event == partial_group)
715                         break;
716                 event_sched_out(event, cpuctx, ctx);
717         }
718         event_sched_out(group_event, cpuctx, ctx);
719
720         if (txn)
721                 pmu->cancel_txn(pmu);
722
723         return -EAGAIN;
724 }
725
726 /*
727  * Work out whether we can put this event group on the CPU now.
728  */
729 static int group_can_go_on(struct perf_event *event,
730                            struct perf_cpu_context *cpuctx,
731                            int can_add_hw)
732 {
733         /*
734          * Groups consisting entirely of software events can always go on.
735          */
736         if (event->group_flags & PERF_GROUP_SOFTWARE)
737                 return 1;
738         /*
739          * If an exclusive group is already on, no other hardware
740          * events can go on.
741          */
742         if (cpuctx->exclusive)
743                 return 0;
744         /*
745          * If this group is exclusive and there are already
746          * events on the CPU, it can't go on.
747          */
748         if (event->attr.exclusive && cpuctx->active_oncpu)
749                 return 0;
750         /*
751          * Otherwise, try to add it if all previous groups were able
752          * to go on.
753          */
754         return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758                                struct perf_event_context *ctx)
759 {
760         list_add_event(event, ctx);
761         perf_group_attach(event);
762         event->tstamp_enabled = ctx->time;
763         event->tstamp_running = ctx->time;
764         event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768  * Cross CPU call to install and enable a performance event
769  *
770  * Must be called with ctx->mutex held
771  */
772 static void __perf_install_in_context(void *info)
773 {
774         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775         struct perf_event *event = info;
776         struct perf_event_context *ctx = event->ctx;
777         struct perf_event *leader = event->group_leader;
778         int err;
779
780         /*
781          * If this is a task context, we need to check whether it is
782          * the current task context of this cpu. If not it has been
783          * scheduled out before the smp call arrived.
784          * Or possibly this is the right context but it isn't
785          * on this cpu because it had no events.
786          */
787         if (ctx->task && cpuctx->task_ctx != ctx) {
788                 if (cpuctx->task_ctx || ctx->task != current)
789                         return;
790                 cpuctx->task_ctx = ctx;
791         }
792
793         raw_spin_lock(&ctx->lock);
794         ctx->is_active = 1;
795         update_context_time(ctx);
796
797         /*
798          * Protect the list operation against NMI by disabling the
799          * events on a global level. NOP for non NMI based events.
800          */
801         perf_disable();
802
803         add_event_to_ctx(event, ctx);
804
805         if (event->cpu != -1 && event->cpu != smp_processor_id())
806                 goto unlock;
807
808         /*
809          * Don't put the event on if it is disabled or if
810          * it is in a group and the group isn't on.
811          */
812         if (event->state != PERF_EVENT_STATE_INACTIVE ||
813             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
814                 goto unlock;
815
816         /*
817          * An exclusive event can't go on if there are already active
818          * hardware events, and no hardware event can go on if there
819          * is already an exclusive event on.
820          */
821         if (!group_can_go_on(event, cpuctx, 1))
822                 err = -EEXIST;
823         else
824                 err = event_sched_in(event, cpuctx, ctx);
825
826         if (err) {
827                 /*
828                  * This event couldn't go on.  If it is in a group
829                  * then we have to pull the whole group off.
830                  * If the event group is pinned then put it in error state.
831                  */
832                 if (leader != event)
833                         group_sched_out(leader, cpuctx, ctx);
834                 if (leader->attr.pinned) {
835                         update_group_times(leader);
836                         leader->state = PERF_EVENT_STATE_ERROR;
837                 }
838         }
839
840         if (!err && !ctx->task && cpuctx->max_pertask)
841                 cpuctx->max_pertask--;
842
843  unlock:
844         perf_enable();
845
846         raw_spin_unlock(&ctx->lock);
847 }
848
849 /*
850  * Attach a performance event to a context
851  *
852  * First we add the event to the list with the hardware enable bit
853  * in event->hw_config cleared.
854  *
855  * If the event is attached to a task which is on a CPU we use a smp
856  * call to enable it in the task context. The task might have been
857  * scheduled away, but we check this in the smp call again.
858  *
859  * Must be called with ctx->mutex held.
860  */
861 static void
862 perf_install_in_context(struct perf_event_context *ctx,
863                         struct perf_event *event,
864                         int cpu)
865 {
866         struct task_struct *task = ctx->task;
867
868         if (!task) {
869                 /*
870                  * Per cpu events are installed via an smp call and
871                  * the install is always successful.
872                  */
873                 smp_call_function_single(cpu, __perf_install_in_context,
874                                          event, 1);
875                 return;
876         }
877
878 retry:
879         task_oncpu_function_call(task, __perf_install_in_context,
880                                  event);
881
882         raw_spin_lock_irq(&ctx->lock);
883         /*
884          * we need to retry the smp call.
885          */
886         if (ctx->is_active && list_empty(&event->group_entry)) {
887                 raw_spin_unlock_irq(&ctx->lock);
888                 goto retry;
889         }
890
891         /*
892          * The lock prevents that this context is scheduled in so we
893          * can add the event safely, if it the call above did not
894          * succeed.
895          */
896         if (list_empty(&event->group_entry))
897                 add_event_to_ctx(event, ctx);
898         raw_spin_unlock_irq(&ctx->lock);
899 }
900
901 /*
902  * Put a event into inactive state and update time fields.
903  * Enabling the leader of a group effectively enables all
904  * the group members that aren't explicitly disabled, so we
905  * have to update their ->tstamp_enabled also.
906  * Note: this works for group members as well as group leaders
907  * since the non-leader members' sibling_lists will be empty.
908  */
909 static void __perf_event_mark_enabled(struct perf_event *event,
910                                         struct perf_event_context *ctx)
911 {
912         struct perf_event *sub;
913
914         event->state = PERF_EVENT_STATE_INACTIVE;
915         event->tstamp_enabled = ctx->time - event->total_time_enabled;
916         list_for_each_entry(sub, &event->sibling_list, group_entry)
917                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
918                         sub->tstamp_enabled =
919                                 ctx->time - sub->total_time_enabled;
920 }
921
922 /*
923  * Cross CPU call to enable a performance event
924  */
925 static void __perf_event_enable(void *info)
926 {
927         struct perf_event *event = info;
928         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
929         struct perf_event_context *ctx = event->ctx;
930         struct perf_event *leader = event->group_leader;
931         int err;
932
933         /*
934          * If this is a per-task event, need to check whether this
935          * event's task is the current task on this cpu.
936          */
937         if (ctx->task && cpuctx->task_ctx != ctx) {
938                 if (cpuctx->task_ctx || ctx->task != current)
939                         return;
940                 cpuctx->task_ctx = ctx;
941         }
942
943         raw_spin_lock(&ctx->lock);
944         ctx->is_active = 1;
945         update_context_time(ctx);
946
947         if (event->state >= PERF_EVENT_STATE_INACTIVE)
948                 goto unlock;
949         __perf_event_mark_enabled(event, ctx);
950
951         if (event->cpu != -1 && event->cpu != smp_processor_id())
952                 goto unlock;
953
954         /*
955          * If the event is in a group and isn't the group leader,
956          * then don't put it on unless the group is on.
957          */
958         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
959                 goto unlock;
960
961         if (!group_can_go_on(event, cpuctx, 1)) {
962                 err = -EEXIST;
963         } else {
964                 perf_disable();
965                 if (event == leader)
966                         err = group_sched_in(event, cpuctx, ctx);
967                 else
968                         err = event_sched_in(event, cpuctx, ctx);
969                 perf_enable();
970         }
971
972         if (err) {
973                 /*
974                  * If this event can't go on and it's part of a
975                  * group, then the whole group has to come off.
976                  */
977                 if (leader != event)
978                         group_sched_out(leader, cpuctx, ctx);
979                 if (leader->attr.pinned) {
980                         update_group_times(leader);
981                         leader->state = PERF_EVENT_STATE_ERROR;
982                 }
983         }
984
985  unlock:
986         raw_spin_unlock(&ctx->lock);
987 }
988
989 /*
990  * Enable a event.
991  *
992  * If event->ctx is a cloned context, callers must make sure that
993  * every task struct that event->ctx->task could possibly point to
994  * remains valid.  This condition is satisfied when called through
995  * perf_event_for_each_child or perf_event_for_each as described
996  * for perf_event_disable.
997  */
998 void perf_event_enable(struct perf_event *event)
999 {
1000         struct perf_event_context *ctx = event->ctx;
1001         struct task_struct *task = ctx->task;
1002
1003         if (!task) {
1004                 /*
1005                  * Enable the event on the cpu that it's on
1006                  */
1007                 smp_call_function_single(event->cpu, __perf_event_enable,
1008                                          event, 1);
1009                 return;
1010         }
1011
1012         raw_spin_lock_irq(&ctx->lock);
1013         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014                 goto out;
1015
1016         /*
1017          * If the event is in error state, clear that first.
1018          * That way, if we see the event in error state below, we
1019          * know that it has gone back into error state, as distinct
1020          * from the task having been scheduled away before the
1021          * cross-call arrived.
1022          */
1023         if (event->state == PERF_EVENT_STATE_ERROR)
1024                 event->state = PERF_EVENT_STATE_OFF;
1025
1026  retry:
1027         raw_spin_unlock_irq(&ctx->lock);
1028         task_oncpu_function_call(task, __perf_event_enable, event);
1029
1030         raw_spin_lock_irq(&ctx->lock);
1031
1032         /*
1033          * If the context is active and the event is still off,
1034          * we need to retry the cross-call.
1035          */
1036         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037                 goto retry;
1038
1039         /*
1040          * Since we have the lock this context can't be scheduled
1041          * in, so we can change the state safely.
1042          */
1043         if (event->state == PERF_EVENT_STATE_OFF)
1044                 __perf_event_mark_enabled(event, ctx);
1045
1046  out:
1047         raw_spin_unlock_irq(&ctx->lock);
1048 }
1049
1050 static int perf_event_refresh(struct perf_event *event, int refresh)
1051 {
1052         /*
1053          * not supported on inherited events
1054          */
1055         if (event->attr.inherit)
1056                 return -EINVAL;
1057
1058         atomic_add(refresh, &event->event_limit);
1059         perf_event_enable(event);
1060
1061         return 0;
1062 }
1063
1064 enum event_type_t {
1065         EVENT_FLEXIBLE = 0x1,
1066         EVENT_PINNED = 0x2,
1067         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1068 };
1069
1070 static void ctx_sched_out(struct perf_event_context *ctx,
1071                           struct perf_cpu_context *cpuctx,
1072                           enum event_type_t event_type)
1073 {
1074         struct perf_event *event;
1075
1076         raw_spin_lock(&ctx->lock);
1077         ctx->is_active = 0;
1078         if (likely(!ctx->nr_events))
1079                 goto out;
1080         update_context_time(ctx);
1081
1082         perf_disable();
1083         if (!ctx->nr_active)
1084                 goto out_enable;
1085
1086         if (event_type & EVENT_PINNED)
1087                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1088                         group_sched_out(event, cpuctx, ctx);
1089
1090         if (event_type & EVENT_FLEXIBLE)
1091                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1092                         group_sched_out(event, cpuctx, ctx);
1093
1094  out_enable:
1095         perf_enable();
1096  out:
1097         raw_spin_unlock(&ctx->lock);
1098 }
1099
1100 /*
1101  * Test whether two contexts are equivalent, i.e. whether they
1102  * have both been cloned from the same version of the same context
1103  * and they both have the same number of enabled events.
1104  * If the number of enabled events is the same, then the set
1105  * of enabled events should be the same, because these are both
1106  * inherited contexts, therefore we can't access individual events
1107  * in them directly with an fd; we can only enable/disable all
1108  * events via prctl, or enable/disable all events in a family
1109  * via ioctl, which will have the same effect on both contexts.
1110  */
1111 static int context_equiv(struct perf_event_context *ctx1,
1112                          struct perf_event_context *ctx2)
1113 {
1114         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115                 && ctx1->parent_gen == ctx2->parent_gen
1116                 && !ctx1->pin_count && !ctx2->pin_count;
1117 }
1118
1119 static void __perf_event_sync_stat(struct perf_event *event,
1120                                      struct perf_event *next_event)
1121 {
1122         u64 value;
1123
1124         if (!event->attr.inherit_stat)
1125                 return;
1126
1127         /*
1128          * Update the event value, we cannot use perf_event_read()
1129          * because we're in the middle of a context switch and have IRQs
1130          * disabled, which upsets smp_call_function_single(), however
1131          * we know the event must be on the current CPU, therefore we
1132          * don't need to use it.
1133          */
1134         switch (event->state) {
1135         case PERF_EVENT_STATE_ACTIVE:
1136                 event->pmu->read(event);
1137                 /* fall-through */
1138
1139         case PERF_EVENT_STATE_INACTIVE:
1140                 update_event_times(event);
1141                 break;
1142
1143         default:
1144                 break;
1145         }
1146
1147         /*
1148          * In order to keep per-task stats reliable we need to flip the event
1149          * values when we flip the contexts.
1150          */
1151         value = atomic64_read(&next_event->count);
1152         value = atomic64_xchg(&event->count, value);
1153         atomic64_set(&next_event->count, value);
1154
1155         swap(event->total_time_enabled, next_event->total_time_enabled);
1156         swap(event->total_time_running, next_event->total_time_running);
1157
1158         /*
1159          * Since we swizzled the values, update the user visible data too.
1160          */
1161         perf_event_update_userpage(event);
1162         perf_event_update_userpage(next_event);
1163 }
1164
1165 #define list_next_entry(pos, member) \
1166         list_entry(pos->member.next, typeof(*pos), member)
1167
1168 static void perf_event_sync_stat(struct perf_event_context *ctx,
1169                                    struct perf_event_context *next_ctx)
1170 {
1171         struct perf_event *event, *next_event;
1172
1173         if (!ctx->nr_stat)
1174                 return;
1175
1176         update_context_time(ctx);
1177
1178         event = list_first_entry(&ctx->event_list,
1179                                    struct perf_event, event_entry);
1180
1181         next_event = list_first_entry(&next_ctx->event_list,
1182                                         struct perf_event, event_entry);
1183
1184         while (&event->event_entry != &ctx->event_list &&
1185                &next_event->event_entry != &next_ctx->event_list) {
1186
1187                 __perf_event_sync_stat(event, next_event);
1188
1189                 event = list_next_entry(event, event_entry);
1190                 next_event = list_next_entry(next_event, event_entry);
1191         }
1192 }
1193
1194 /*
1195  * Called from scheduler to remove the events of the current task,
1196  * with interrupts disabled.
1197  *
1198  * We stop each event and update the event value in event->count.
1199  *
1200  * This does not protect us against NMI, but disable()
1201  * sets the disabled bit in the control field of event _before_
1202  * accessing the event control register. If a NMI hits, then it will
1203  * not restart the event.
1204  */
1205 void perf_event_task_sched_out(struct task_struct *task,
1206                                  struct task_struct *next)
1207 {
1208         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1209         struct perf_event_context *ctx = task->perf_event_ctxp;
1210         struct perf_event_context *next_ctx;
1211         struct perf_event_context *parent;
1212         int do_switch = 1;
1213
1214         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1215
1216         if (likely(!ctx || !cpuctx->task_ctx))
1217                 return;
1218
1219         rcu_read_lock();
1220         parent = rcu_dereference(ctx->parent_ctx);
1221         next_ctx = next->perf_event_ctxp;
1222         if (parent && next_ctx &&
1223             rcu_dereference(next_ctx->parent_ctx) == parent) {
1224                 /*
1225                  * Looks like the two contexts are clones, so we might be
1226                  * able to optimize the context switch.  We lock both
1227                  * contexts and check that they are clones under the
1228                  * lock (including re-checking that neither has been
1229                  * uncloned in the meantime).  It doesn't matter which
1230                  * order we take the locks because no other cpu could
1231                  * be trying to lock both of these tasks.
1232                  */
1233                 raw_spin_lock(&ctx->lock);
1234                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1235                 if (context_equiv(ctx, next_ctx)) {
1236                         /*
1237                          * XXX do we need a memory barrier of sorts
1238                          * wrt to rcu_dereference() of perf_event_ctxp
1239                          */
1240                         task->perf_event_ctxp = next_ctx;
1241                         next->perf_event_ctxp = ctx;
1242                         ctx->task = next;
1243                         next_ctx->task = task;
1244                         do_switch = 0;
1245
1246                         perf_event_sync_stat(ctx, next_ctx);
1247                 }
1248                 raw_spin_unlock(&next_ctx->lock);
1249                 raw_spin_unlock(&ctx->lock);
1250         }
1251         rcu_read_unlock();
1252
1253         if (do_switch) {
1254                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1255                 cpuctx->task_ctx = NULL;
1256         }
1257 }
1258
1259 static void task_ctx_sched_out(struct perf_event_context *ctx,
1260                                enum event_type_t event_type)
1261 {
1262         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1263
1264         if (!cpuctx->task_ctx)
1265                 return;
1266
1267         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1268                 return;
1269
1270         ctx_sched_out(ctx, cpuctx, event_type);
1271         cpuctx->task_ctx = NULL;
1272 }
1273
1274 /*
1275  * Called with IRQs disabled
1276  */
1277 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1278 {
1279         task_ctx_sched_out(ctx, EVENT_ALL);
1280 }
1281
1282 /*
1283  * Called with IRQs disabled
1284  */
1285 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1286                               enum event_type_t event_type)
1287 {
1288         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1289 }
1290
1291 static void
1292 ctx_pinned_sched_in(struct perf_event_context *ctx,
1293                     struct perf_cpu_context *cpuctx)
1294 {
1295         struct perf_event *event;
1296
1297         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1298                 if (event->state <= PERF_EVENT_STATE_OFF)
1299                         continue;
1300                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301                         continue;
1302
1303                 if (group_can_go_on(event, cpuctx, 1))
1304                         group_sched_in(event, cpuctx, ctx);
1305
1306                 /*
1307                  * If this pinned group hasn't been scheduled,
1308                  * put it in error state.
1309                  */
1310                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1311                         update_group_times(event);
1312                         event->state = PERF_EVENT_STATE_ERROR;
1313                 }
1314         }
1315 }
1316
1317 static void
1318 ctx_flexible_sched_in(struct perf_event_context *ctx,
1319                       struct perf_cpu_context *cpuctx)
1320 {
1321         struct perf_event *event;
1322         int can_add_hw = 1;
1323
1324         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1325                 /* Ignore events in OFF or ERROR state */
1326                 if (event->state <= PERF_EVENT_STATE_OFF)
1327                         continue;
1328                 /*
1329                  * Listen to the 'cpu' scheduling filter constraint
1330                  * of events:
1331                  */
1332                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1333                         continue;
1334
1335                 if (group_can_go_on(event, cpuctx, can_add_hw))
1336                         if (group_sched_in(event, cpuctx, ctx))
1337                                 can_add_hw = 0;
1338         }
1339 }
1340
1341 static void
1342 ctx_sched_in(struct perf_event_context *ctx,
1343              struct perf_cpu_context *cpuctx,
1344              enum event_type_t event_type)
1345 {
1346         raw_spin_lock(&ctx->lock);
1347         ctx->is_active = 1;
1348         if (likely(!ctx->nr_events))
1349                 goto out;
1350
1351         ctx->timestamp = perf_clock();
1352
1353         perf_disable();
1354
1355         /*
1356          * First go through the list and put on any pinned groups
1357          * in order to give them the best chance of going on.
1358          */
1359         if (event_type & EVENT_PINNED)
1360                 ctx_pinned_sched_in(ctx, cpuctx);
1361
1362         /* Then walk through the lower prio flexible groups */
1363         if (event_type & EVENT_FLEXIBLE)
1364                 ctx_flexible_sched_in(ctx, cpuctx);
1365
1366         perf_enable();
1367  out:
1368         raw_spin_unlock(&ctx->lock);
1369 }
1370
1371 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1372                              enum event_type_t event_type)
1373 {
1374         struct perf_event_context *ctx = &cpuctx->ctx;
1375
1376         ctx_sched_in(ctx, cpuctx, event_type);
1377 }
1378
1379 static void task_ctx_sched_in(struct task_struct *task,
1380                               enum event_type_t event_type)
1381 {
1382         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1383         struct perf_event_context *ctx = task->perf_event_ctxp;
1384
1385         if (likely(!ctx))
1386                 return;
1387         if (cpuctx->task_ctx == ctx)
1388                 return;
1389         ctx_sched_in(ctx, cpuctx, event_type);
1390         cpuctx->task_ctx = ctx;
1391 }
1392 /*
1393  * Called from scheduler to add the events of the current task
1394  * with interrupts disabled.
1395  *
1396  * We restore the event value and then enable it.
1397  *
1398  * This does not protect us against NMI, but enable()
1399  * sets the enabled bit in the control field of event _before_
1400  * accessing the event control register. If a NMI hits, then it will
1401  * keep the event running.
1402  */
1403 void perf_event_task_sched_in(struct task_struct *task)
1404 {
1405         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1406         struct perf_event_context *ctx = task->perf_event_ctxp;
1407
1408         if (likely(!ctx))
1409                 return;
1410
1411         if (cpuctx->task_ctx == ctx)
1412                 return;
1413
1414         perf_disable();
1415
1416         /*
1417          * We want to keep the following priority order:
1418          * cpu pinned (that don't need to move), task pinned,
1419          * cpu flexible, task flexible.
1420          */
1421         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1422
1423         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1424         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1425         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1426
1427         cpuctx->task_ctx = ctx;
1428
1429         perf_enable();
1430 }
1431
1432 #define MAX_INTERRUPTS (~0ULL)
1433
1434 static void perf_log_throttle(struct perf_event *event, int enable);
1435
1436 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1437 {
1438         u64 frequency = event->attr.sample_freq;
1439         u64 sec = NSEC_PER_SEC;
1440         u64 divisor, dividend;
1441
1442         int count_fls, nsec_fls, frequency_fls, sec_fls;
1443
1444         count_fls = fls64(count);
1445         nsec_fls = fls64(nsec);
1446         frequency_fls = fls64(frequency);
1447         sec_fls = 30;
1448
1449         /*
1450          * We got @count in @nsec, with a target of sample_freq HZ
1451          * the target period becomes:
1452          *
1453          *             @count * 10^9
1454          * period = -------------------
1455          *          @nsec * sample_freq
1456          *
1457          */
1458
1459         /*
1460          * Reduce accuracy by one bit such that @a and @b converge
1461          * to a similar magnitude.
1462          */
1463 #define REDUCE_FLS(a, b)                \
1464 do {                                    \
1465         if (a##_fls > b##_fls) {        \
1466                 a >>= 1;                \
1467                 a##_fls--;              \
1468         } else {                        \
1469                 b >>= 1;                \
1470                 b##_fls--;              \
1471         }                               \
1472 } while (0)
1473
1474         /*
1475          * Reduce accuracy until either term fits in a u64, then proceed with
1476          * the other, so that finally we can do a u64/u64 division.
1477          */
1478         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1479                 REDUCE_FLS(nsec, frequency);
1480                 REDUCE_FLS(sec, count);
1481         }
1482
1483         if (count_fls + sec_fls > 64) {
1484                 divisor = nsec * frequency;
1485
1486                 while (count_fls + sec_fls > 64) {
1487                         REDUCE_FLS(count, sec);
1488                         divisor >>= 1;
1489                 }
1490
1491                 dividend = count * sec;
1492         } else {
1493                 dividend = count * sec;
1494
1495                 while (nsec_fls + frequency_fls > 64) {
1496                         REDUCE_FLS(nsec, frequency);
1497                         dividend >>= 1;
1498                 }
1499
1500                 divisor = nsec * frequency;
1501         }
1502
1503         if (!divisor)
1504                 return dividend;
1505
1506         return div64_u64(dividend, divisor);
1507 }
1508
1509 static void perf_event_stop(struct perf_event *event)
1510 {
1511         if (!event->pmu->stop)
1512                 return event->pmu->disable(event);
1513
1514         return event->pmu->stop(event);
1515 }
1516
1517 static int perf_event_start(struct perf_event *event)
1518 {
1519         if (!event->pmu->start)
1520                 return event->pmu->enable(event);
1521
1522         return event->pmu->start(event);
1523 }
1524
1525 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526 {
1527         struct hw_perf_event *hwc = &event->hw;
1528         s64 period, sample_period;
1529         s64 delta;
1530
1531         period = perf_calculate_period(event, nsec, count);
1532
1533         delta = (s64)(period - hwc->sample_period);
1534         delta = (delta + 7) / 8; /* low pass filter */
1535
1536         sample_period = hwc->sample_period + delta;
1537
1538         if (!sample_period)
1539                 sample_period = 1;
1540
1541         hwc->sample_period = sample_period;
1542
1543         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1544                 perf_disable();
1545                 perf_event_stop(event);
1546                 atomic64_set(&hwc->period_left, 0);
1547                 perf_event_start(event);
1548                 perf_enable();
1549         }
1550 }
1551
1552 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1553 {
1554         struct perf_event *event;
1555         struct hw_perf_event *hwc;
1556         u64 interrupts, now;
1557         s64 delta;
1558
1559         raw_spin_lock(&ctx->lock);
1560         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1561                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1562                         continue;
1563
1564                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1565                         continue;
1566
1567                 hwc = &event->hw;
1568
1569                 interrupts = hwc->interrupts;
1570                 hwc->interrupts = 0;
1571
1572                 /*
1573                  * unthrottle events on the tick
1574                  */
1575                 if (interrupts == MAX_INTERRUPTS) {
1576                         perf_log_throttle(event, 1);
1577                         perf_disable();
1578                         event->pmu->unthrottle(event);
1579                         perf_enable();
1580                 }
1581
1582                 if (!event->attr.freq || !event->attr.sample_freq)
1583                         continue;
1584
1585                 perf_disable();
1586                 event->pmu->read(event);
1587                 now = atomic64_read(&event->count);
1588                 delta = now - hwc->freq_count_stamp;
1589                 hwc->freq_count_stamp = now;
1590
1591                 if (delta > 0)
1592                         perf_adjust_period(event, TICK_NSEC, delta);
1593                 perf_enable();
1594         }
1595         raw_spin_unlock(&ctx->lock);
1596 }
1597
1598 /*
1599  * Round-robin a context's events:
1600  */
1601 static void rotate_ctx(struct perf_event_context *ctx)
1602 {
1603         raw_spin_lock(&ctx->lock);
1604
1605         /* Rotate the first entry last of non-pinned groups */
1606         list_rotate_left(&ctx->flexible_groups);
1607
1608         raw_spin_unlock(&ctx->lock);
1609 }
1610
1611 void perf_event_task_tick(struct task_struct *curr)
1612 {
1613         struct perf_cpu_context *cpuctx;
1614         struct perf_event_context *ctx;
1615         int rotate = 0;
1616
1617         if (!atomic_read(&nr_events))
1618                 return;
1619
1620         cpuctx = &__get_cpu_var(perf_cpu_context);
1621         if (cpuctx->ctx.nr_events &&
1622             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1623                 rotate = 1;
1624
1625         ctx = curr->perf_event_ctxp;
1626         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1627                 rotate = 1;
1628
1629         perf_ctx_adjust_freq(&cpuctx->ctx);
1630         if (ctx)
1631                 perf_ctx_adjust_freq(ctx);
1632
1633         if (!rotate)
1634                 return;
1635
1636         perf_disable();
1637         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1638         if (ctx)
1639                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1640
1641         rotate_ctx(&cpuctx->ctx);
1642         if (ctx)
1643                 rotate_ctx(ctx);
1644
1645         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1646         if (ctx)
1647                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1648         perf_enable();
1649 }
1650
1651 static int event_enable_on_exec(struct perf_event *event,
1652                                 struct perf_event_context *ctx)
1653 {
1654         if (!event->attr.enable_on_exec)
1655                 return 0;
1656
1657         event->attr.enable_on_exec = 0;
1658         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1659                 return 0;
1660
1661         __perf_event_mark_enabled(event, ctx);
1662
1663         return 1;
1664 }
1665
1666 /*
1667  * Enable all of a task's events that have been marked enable-on-exec.
1668  * This expects task == current.
1669  */
1670 static void perf_event_enable_on_exec(struct task_struct *task)
1671 {
1672         struct perf_event_context *ctx;
1673         struct perf_event *event;
1674         unsigned long flags;
1675         int enabled = 0;
1676         int ret;
1677
1678         local_irq_save(flags);
1679         ctx = task->perf_event_ctxp;
1680         if (!ctx || !ctx->nr_events)
1681                 goto out;
1682
1683         __perf_event_task_sched_out(ctx);
1684
1685         raw_spin_lock(&ctx->lock);
1686
1687         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1688                 ret = event_enable_on_exec(event, ctx);
1689                 if (ret)
1690                         enabled = 1;
1691         }
1692
1693         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1694                 ret = event_enable_on_exec(event, ctx);
1695                 if (ret)
1696                         enabled = 1;
1697         }
1698
1699         /*
1700          * Unclone this context if we enabled any event.
1701          */
1702         if (enabled)
1703                 unclone_ctx(ctx);
1704
1705         raw_spin_unlock(&ctx->lock);
1706
1707         perf_event_task_sched_in(task);
1708  out:
1709         local_irq_restore(flags);
1710 }
1711
1712 /*
1713  * Cross CPU call to read the hardware event
1714  */
1715 static void __perf_event_read(void *info)
1716 {
1717         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1718         struct perf_event *event = info;
1719         struct perf_event_context *ctx = event->ctx;
1720
1721         /*
1722          * If this is a task context, we need to check whether it is
1723          * the current task context of this cpu.  If not it has been
1724          * scheduled out before the smp call arrived.  In that case
1725          * event->count would have been updated to a recent sample
1726          * when the event was scheduled out.
1727          */
1728         if (ctx->task && cpuctx->task_ctx != ctx)
1729                 return;
1730
1731         raw_spin_lock(&ctx->lock);
1732         update_context_time(ctx);
1733         update_event_times(event);
1734         raw_spin_unlock(&ctx->lock);
1735
1736         event->pmu->read(event);
1737 }
1738
1739 static u64 perf_event_read(struct perf_event *event)
1740 {
1741         /*
1742          * If event is enabled and currently active on a CPU, update the
1743          * value in the event structure:
1744          */
1745         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1746                 smp_call_function_single(event->oncpu,
1747                                          __perf_event_read, event, 1);
1748         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1749                 struct perf_event_context *ctx = event->ctx;
1750                 unsigned long flags;
1751
1752                 raw_spin_lock_irqsave(&ctx->lock, flags);
1753                 update_context_time(ctx);
1754                 update_event_times(event);
1755                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1756         }
1757
1758         return atomic64_read(&event->count);
1759 }
1760
1761 /*
1762  * Initialize the perf_event context in a task_struct:
1763  */
1764 static void
1765 __perf_event_init_context(struct perf_event_context *ctx,
1766                             struct task_struct *task)
1767 {
1768         raw_spin_lock_init(&ctx->lock);
1769         mutex_init(&ctx->mutex);
1770         INIT_LIST_HEAD(&ctx->pinned_groups);
1771         INIT_LIST_HEAD(&ctx->flexible_groups);
1772         INIT_LIST_HEAD(&ctx->event_list);
1773         atomic_set(&ctx->refcount, 1);
1774         ctx->task = task;
1775 }
1776
1777 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1778 {
1779         struct perf_event_context *ctx;
1780         struct perf_cpu_context *cpuctx;
1781         struct task_struct *task;
1782         unsigned long flags;
1783         int err;
1784
1785         if (pid == -1 && cpu != -1) {
1786                 /* Must be root to operate on a CPU event: */
1787                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1788                         return ERR_PTR(-EACCES);
1789
1790                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1791                         return ERR_PTR(-EINVAL);
1792
1793                 /*
1794                  * We could be clever and allow to attach a event to an
1795                  * offline CPU and activate it when the CPU comes up, but
1796                  * that's for later.
1797                  */
1798                 if (!cpu_online(cpu))
1799                         return ERR_PTR(-ENODEV);
1800
1801                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1802                 ctx = &cpuctx->ctx;
1803                 get_ctx(ctx);
1804
1805                 return ctx;
1806         }
1807
1808         rcu_read_lock();
1809         if (!pid)
1810                 task = current;
1811         else
1812                 task = find_task_by_vpid(pid);
1813         if (task)
1814                 get_task_struct(task);
1815         rcu_read_unlock();
1816
1817         if (!task)
1818                 return ERR_PTR(-ESRCH);
1819
1820         /*
1821          * Can't attach events to a dying task.
1822          */
1823         err = -ESRCH;
1824         if (task->flags & PF_EXITING)
1825                 goto errout;
1826
1827         /* Reuse ptrace permission checks for now. */
1828         err = -EACCES;
1829         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1830                 goto errout;
1831
1832  retry:
1833         ctx = perf_lock_task_context(task, &flags);
1834         if (ctx) {
1835                 unclone_ctx(ctx);
1836                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1837         }
1838
1839         if (!ctx) {
1840                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1841                 err = -ENOMEM;
1842                 if (!ctx)
1843                         goto errout;
1844                 __perf_event_init_context(ctx, task);
1845                 get_ctx(ctx);
1846                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1847                         /*
1848                          * We raced with some other task; use
1849                          * the context they set.
1850                          */
1851                         kfree(ctx);
1852                         goto retry;
1853                 }
1854                 get_task_struct(task);
1855         }
1856
1857         put_task_struct(task);
1858         return ctx;
1859
1860  errout:
1861         put_task_struct(task);
1862         return ERR_PTR(err);
1863 }
1864
1865 static void perf_event_free_filter(struct perf_event *event);
1866
1867 static void free_event_rcu(struct rcu_head *head)
1868 {
1869         struct perf_event *event;
1870
1871         event = container_of(head, struct perf_event, rcu_head);
1872         if (event->ns)
1873                 put_pid_ns(event->ns);
1874         perf_event_free_filter(event);
1875         kfree(event);
1876 }
1877
1878 static void perf_pending_sync(struct perf_event *event);
1879 static void perf_mmap_data_put(struct perf_mmap_data *data);
1880
1881 static void free_event(struct perf_event *event)
1882 {
1883         perf_pending_sync(event);
1884
1885         if (!event->parent) {
1886                 atomic_dec(&nr_events);
1887                 if (event->attr.mmap || event->attr.mmap_data)
1888                         atomic_dec(&nr_mmap_events);
1889                 if (event->attr.comm)
1890                         atomic_dec(&nr_comm_events);
1891                 if (event->attr.task)
1892                         atomic_dec(&nr_task_events);
1893         }
1894
1895         if (event->data) {
1896                 perf_mmap_data_put(event->data);
1897                 event->data = NULL;
1898         }
1899
1900         if (event->destroy)
1901                 event->destroy(event);
1902
1903         put_ctx(event->ctx);
1904         call_rcu(&event->rcu_head, free_event_rcu);
1905 }
1906
1907 int perf_event_release_kernel(struct perf_event *event)
1908 {
1909         struct perf_event_context *ctx = event->ctx;
1910
1911         /*
1912          * Remove from the PMU, can't get re-enabled since we got
1913          * here because the last ref went.
1914          */
1915         perf_event_disable(event);
1916
1917         WARN_ON_ONCE(ctx->parent_ctx);
1918         /*
1919          * There are two ways this annotation is useful:
1920          *
1921          *  1) there is a lock recursion from perf_event_exit_task
1922          *     see the comment there.
1923          *
1924          *  2) there is a lock-inversion with mmap_sem through
1925          *     perf_event_read_group(), which takes faults while
1926          *     holding ctx->mutex, however this is called after
1927          *     the last filedesc died, so there is no possibility
1928          *     to trigger the AB-BA case.
1929          */
1930         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1931         raw_spin_lock_irq(&ctx->lock);
1932         perf_group_detach(event);
1933         list_del_event(event, ctx);
1934         raw_spin_unlock_irq(&ctx->lock);
1935         mutex_unlock(&ctx->mutex);
1936
1937         mutex_lock(&event->owner->perf_event_mutex);
1938         list_del_init(&event->owner_entry);
1939         mutex_unlock(&event->owner->perf_event_mutex);
1940         put_task_struct(event->owner);
1941
1942         free_event(event);
1943
1944         return 0;
1945 }
1946 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1947
1948 /*
1949  * Called when the last reference to the file is gone.
1950  */
1951 static int perf_release(struct inode *inode, struct file *file)
1952 {
1953         struct perf_event *event = file->private_data;
1954
1955         file->private_data = NULL;
1956
1957         return perf_event_release_kernel(event);
1958 }
1959
1960 static int perf_event_read_size(struct perf_event *event)
1961 {
1962         int entry = sizeof(u64); /* value */
1963         int size = 0;
1964         int nr = 1;
1965
1966         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1967                 size += sizeof(u64);
1968
1969         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1970                 size += sizeof(u64);
1971
1972         if (event->attr.read_format & PERF_FORMAT_ID)
1973                 entry += sizeof(u64);
1974
1975         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1976                 nr += event->group_leader->nr_siblings;
1977                 size += sizeof(u64);
1978         }
1979
1980         size += entry * nr;
1981
1982         return size;
1983 }
1984
1985 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1986 {
1987         struct perf_event *child;
1988         u64 total = 0;
1989
1990         *enabled = 0;
1991         *running = 0;
1992
1993         mutex_lock(&event->child_mutex);
1994         total += perf_event_read(event);
1995         *enabled += event->total_time_enabled +
1996                         atomic64_read(&event->child_total_time_enabled);
1997         *running += event->total_time_running +
1998                         atomic64_read(&event->child_total_time_running);
1999
2000         list_for_each_entry(child, &event->child_list, child_list) {
2001                 total += perf_event_read(child);
2002                 *enabled += child->total_time_enabled;
2003                 *running += child->total_time_running;
2004         }
2005         mutex_unlock(&event->child_mutex);
2006
2007         return total;
2008 }
2009 EXPORT_SYMBOL_GPL(perf_event_read_value);
2010
2011 static int perf_event_read_group(struct perf_event *event,
2012                                    u64 read_format, char __user *buf)
2013 {
2014         struct perf_event *leader = event->group_leader, *sub;
2015         int n = 0, size = 0, ret = -EFAULT;
2016         struct perf_event_context *ctx = leader->ctx;
2017         u64 values[5];
2018         u64 count, enabled, running;
2019
2020         mutex_lock(&ctx->mutex);
2021         count = perf_event_read_value(leader, &enabled, &running);
2022
2023         values[n++] = 1 + leader->nr_siblings;
2024         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2025                 values[n++] = enabled;
2026         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2027                 values[n++] = running;
2028         values[n++] = count;
2029         if (read_format & PERF_FORMAT_ID)
2030                 values[n++] = primary_event_id(leader);
2031
2032         size = n * sizeof(u64);
2033
2034         if (copy_to_user(buf, values, size))
2035                 goto unlock;
2036
2037         ret = size;
2038
2039         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2040                 n = 0;
2041
2042                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2043                 if (read_format & PERF_FORMAT_ID)
2044                         values[n++] = primary_event_id(sub);
2045
2046                 size = n * sizeof(u64);
2047
2048                 if (copy_to_user(buf + ret, values, size)) {
2049                         ret = -EFAULT;
2050                         goto unlock;
2051                 }
2052
2053                 ret += size;
2054         }
2055 unlock:
2056         mutex_unlock(&ctx->mutex);
2057
2058         return ret;
2059 }
2060
2061 static int perf_event_read_one(struct perf_event *event,
2062                                  u64 read_format, char __user *buf)
2063 {
2064         u64 enabled, running;
2065         u64 values[4];
2066         int n = 0;
2067
2068         values[n++] = perf_event_read_value(event, &enabled, &running);
2069         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2070                 values[n++] = enabled;
2071         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2072                 values[n++] = running;
2073         if (read_format & PERF_FORMAT_ID)
2074                 values[n++] = primary_event_id(event);
2075
2076         if (copy_to_user(buf, values, n * sizeof(u64)))
2077                 return -EFAULT;
2078
2079         return n * sizeof(u64);
2080 }
2081
2082 /*
2083  * Read the performance event - simple non blocking version for now
2084  */
2085 static ssize_t
2086 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2087 {
2088         u64 read_format = event->attr.read_format;
2089         int ret;
2090
2091         /*
2092          * Return end-of-file for a read on a event that is in
2093          * error state (i.e. because it was pinned but it couldn't be
2094          * scheduled on to the CPU at some point).
2095          */
2096         if (event->state == PERF_EVENT_STATE_ERROR)
2097                 return 0;
2098
2099         if (count < perf_event_read_size(event))
2100                 return -ENOSPC;
2101
2102         WARN_ON_ONCE(event->ctx->parent_ctx);
2103         if (read_format & PERF_FORMAT_GROUP)
2104                 ret = perf_event_read_group(event, read_format, buf);
2105         else
2106                 ret = perf_event_read_one(event, read_format, buf);
2107
2108         return ret;
2109 }
2110
2111 static ssize_t
2112 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2113 {
2114         struct perf_event *event = file->private_data;
2115
2116         return perf_read_hw(event, buf, count);
2117 }
2118
2119 static unsigned int perf_poll(struct file *file, poll_table *wait)
2120 {
2121         struct perf_event *event = file->private_data;
2122         struct perf_mmap_data *data;
2123         unsigned int events = POLL_HUP;
2124
2125         rcu_read_lock();
2126         data = rcu_dereference(event->data);
2127         if (data)
2128                 events = atomic_xchg(&data->poll, 0);
2129         rcu_read_unlock();
2130
2131         poll_wait(file, &event->waitq, wait);
2132
2133         return events;
2134 }
2135
2136 static void perf_event_reset(struct perf_event *event)
2137 {
2138         (void)perf_event_read(event);
2139         atomic64_set(&event->count, 0);
2140         perf_event_update_userpage(event);
2141 }
2142
2143 /*
2144  * Holding the top-level event's child_mutex means that any
2145  * descendant process that has inherited this event will block
2146  * in sync_child_event if it goes to exit, thus satisfying the
2147  * task existence requirements of perf_event_enable/disable.
2148  */
2149 static void perf_event_for_each_child(struct perf_event *event,
2150                                         void (*func)(struct perf_event *))
2151 {
2152         struct perf_event *child;
2153
2154         WARN_ON_ONCE(event->ctx->parent_ctx);
2155         mutex_lock(&event->child_mutex);
2156         func(event);
2157         list_for_each_entry(child, &event->child_list, child_list)
2158                 func(child);
2159         mutex_unlock(&event->child_mutex);
2160 }
2161
2162 static void perf_event_for_each(struct perf_event *event,
2163                                   void (*func)(struct perf_event *))
2164 {
2165         struct perf_event_context *ctx = event->ctx;
2166         struct perf_event *sibling;
2167
2168         WARN_ON_ONCE(ctx->parent_ctx);
2169         mutex_lock(&ctx->mutex);
2170         event = event->group_leader;
2171
2172         perf_event_for_each_child(event, func);
2173         func(event);
2174         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2175                 perf_event_for_each_child(event, func);
2176         mutex_unlock(&ctx->mutex);
2177 }
2178
2179 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2180 {
2181         struct perf_event_context *ctx = event->ctx;
2182         unsigned long size;
2183         int ret = 0;
2184         u64 value;
2185
2186         if (!event->attr.sample_period)
2187                 return -EINVAL;
2188
2189         size = copy_from_user(&value, arg, sizeof(value));
2190         if (size != sizeof(value))
2191                 return -EFAULT;
2192
2193         if (!value)
2194                 return -EINVAL;
2195
2196         raw_spin_lock_irq(&ctx->lock);
2197         if (event->attr.freq) {
2198                 if (value > sysctl_perf_event_sample_rate) {
2199                         ret = -EINVAL;
2200                         goto unlock;
2201                 }
2202
2203                 event->attr.sample_freq = value;
2204         } else {
2205                 event->attr.sample_period = value;
2206                 event->hw.sample_period = value;
2207         }
2208 unlock:
2209         raw_spin_unlock_irq(&ctx->lock);
2210
2211         return ret;
2212 }
2213
2214 static const struct file_operations perf_fops;
2215
2216 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2217 {
2218         struct file *file;
2219
2220         file = fget_light(fd, fput_needed);
2221         if (!file)
2222                 return ERR_PTR(-EBADF);
2223
2224         if (file->f_op != &perf_fops) {
2225                 fput_light(file, *fput_needed);
2226                 *fput_needed = 0;
2227                 return ERR_PTR(-EBADF);
2228         }
2229
2230         return file->private_data;
2231 }
2232
2233 static int perf_event_set_output(struct perf_event *event,
2234                                  struct perf_event *output_event);
2235 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2236
2237 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2238 {
2239         struct perf_event *event = file->private_data;
2240         void (*func)(struct perf_event *);
2241         u32 flags = arg;
2242
2243         switch (cmd) {
2244         case PERF_EVENT_IOC_ENABLE:
2245                 func = perf_event_enable;
2246                 break;
2247         case PERF_EVENT_IOC_DISABLE:
2248                 func = perf_event_disable;
2249                 break;
2250         case PERF_EVENT_IOC_RESET:
2251                 func = perf_event_reset;
2252                 break;
2253
2254         case PERF_EVENT_IOC_REFRESH:
2255                 return perf_event_refresh(event, arg);
2256
2257         case PERF_EVENT_IOC_PERIOD:
2258                 return perf_event_period(event, (u64 __user *)arg);
2259
2260         case PERF_EVENT_IOC_SET_OUTPUT:
2261         {
2262                 struct perf_event *output_event = NULL;
2263                 int fput_needed = 0;
2264                 int ret;
2265
2266                 if (arg != -1) {
2267                         output_event = perf_fget_light(arg, &fput_needed);
2268                         if (IS_ERR(output_event))
2269                                 return PTR_ERR(output_event);
2270                 }
2271
2272                 ret = perf_event_set_output(event, output_event);
2273                 if (output_event)
2274                         fput_light(output_event->filp, fput_needed);
2275
2276                 return ret;
2277         }
2278
2279         case PERF_EVENT_IOC_SET_FILTER:
2280                 return perf_event_set_filter(event, (void __user *)arg);
2281
2282         default:
2283                 return -ENOTTY;
2284         }
2285
2286         if (flags & PERF_IOC_FLAG_GROUP)
2287                 perf_event_for_each(event, func);
2288         else
2289                 perf_event_for_each_child(event, func);
2290
2291         return 0;
2292 }
2293
2294 int perf_event_task_enable(void)
2295 {
2296         struct perf_event *event;
2297
2298         mutex_lock(&current->perf_event_mutex);
2299         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2300                 perf_event_for_each_child(event, perf_event_enable);
2301         mutex_unlock(&current->perf_event_mutex);
2302
2303         return 0;
2304 }
2305
2306 int perf_event_task_disable(void)
2307 {
2308         struct perf_event *event;
2309
2310         mutex_lock(&current->perf_event_mutex);
2311         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2312                 perf_event_for_each_child(event, perf_event_disable);
2313         mutex_unlock(&current->perf_event_mutex);
2314
2315         return 0;
2316 }
2317
2318 #ifndef PERF_EVENT_INDEX_OFFSET
2319 # define PERF_EVENT_INDEX_OFFSET 0
2320 #endif
2321
2322 static int perf_event_index(struct perf_event *event)
2323 {
2324         if (event->state != PERF_EVENT_STATE_ACTIVE)
2325                 return 0;
2326
2327         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2328 }
2329
2330 /*
2331  * Callers need to ensure there can be no nesting of this function, otherwise
2332  * the seqlock logic goes bad. We can not serialize this because the arch
2333  * code calls this from NMI context.
2334  */
2335 void perf_event_update_userpage(struct perf_event *event)
2336 {
2337         struct perf_event_mmap_page *userpg;
2338         struct perf_mmap_data *data;
2339
2340         rcu_read_lock();
2341         data = rcu_dereference(event->data);
2342         if (!data)
2343                 goto unlock;
2344
2345         userpg = data->user_page;
2346
2347         /*
2348          * Disable preemption so as to not let the corresponding user-space
2349          * spin too long if we get preempted.
2350          */
2351         preempt_disable();
2352         ++userpg->lock;
2353         barrier();
2354         userpg->index = perf_event_index(event);
2355         userpg->offset = atomic64_read(&event->count);
2356         if (event->state == PERF_EVENT_STATE_ACTIVE)
2357                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2358
2359         userpg->time_enabled = event->total_time_enabled +
2360                         atomic64_read(&event->child_total_time_enabled);
2361
2362         userpg->time_running = event->total_time_running +
2363                         atomic64_read(&event->child_total_time_running);
2364
2365         barrier();
2366         ++userpg->lock;
2367         preempt_enable();
2368 unlock:
2369         rcu_read_unlock();
2370 }
2371
2372 #ifndef CONFIG_PERF_USE_VMALLOC
2373
2374 /*
2375  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2376  */
2377
2378 static struct page *
2379 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2380 {
2381         if (pgoff > data->nr_pages)
2382                 return NULL;
2383
2384         if (pgoff == 0)
2385                 return virt_to_page(data->user_page);
2386
2387         return virt_to_page(data->data_pages[pgoff - 1]);
2388 }
2389
2390 static void *perf_mmap_alloc_page(int cpu)
2391 {
2392         struct page *page;
2393         int node;
2394
2395         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2396         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2397         if (!page)
2398                 return NULL;
2399
2400         return page_address(page);
2401 }
2402
2403 static struct perf_mmap_data *
2404 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2405 {
2406         struct perf_mmap_data *data;
2407         unsigned long size;
2408         int i;
2409
2410         size = sizeof(struct perf_mmap_data);
2411         size += nr_pages * sizeof(void *);
2412
2413         data = kzalloc(size, GFP_KERNEL);
2414         if (!data)
2415                 goto fail;
2416
2417         data->user_page = perf_mmap_alloc_page(event->cpu);
2418         if (!data->user_page)
2419                 goto fail_user_page;
2420
2421         for (i = 0; i < nr_pages; i++) {
2422                 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2423                 if (!data->data_pages[i])
2424                         goto fail_data_pages;
2425         }
2426
2427         data->nr_pages = nr_pages;
2428
2429         return data;
2430
2431 fail_data_pages:
2432         for (i--; i >= 0; i--)
2433                 free_page((unsigned long)data->data_pages[i]);
2434
2435         free_page((unsigned long)data->user_page);
2436
2437 fail_user_page:
2438         kfree(data);
2439
2440 fail:
2441         return NULL;
2442 }
2443
2444 static void perf_mmap_free_page(unsigned long addr)
2445 {
2446         struct page *page = virt_to_page((void *)addr);
2447
2448         page->mapping = NULL;
2449         __free_page(page);
2450 }
2451
2452 static void perf_mmap_data_free(struct perf_mmap_data *data)
2453 {
2454         int i;
2455
2456         perf_mmap_free_page((unsigned long)data->user_page);
2457         for (i = 0; i < data->nr_pages; i++)
2458                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2459         kfree(data);
2460 }
2461
2462 static inline int page_order(struct perf_mmap_data *data)
2463 {
2464         return 0;
2465 }
2466
2467 #else
2468
2469 /*
2470  * Back perf_mmap() with vmalloc memory.
2471  *
2472  * Required for architectures that have d-cache aliasing issues.
2473  */
2474
2475 static inline int page_order(struct perf_mmap_data *data)
2476 {
2477         return data->page_order;
2478 }
2479
2480 static struct page *
2481 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2482 {
2483         if (pgoff > (1UL << page_order(data)))
2484                 return NULL;
2485
2486         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2487 }
2488
2489 static void perf_mmap_unmark_page(void *addr)
2490 {
2491         struct page *page = vmalloc_to_page(addr);
2492
2493         page->mapping = NULL;
2494 }
2495
2496 static void perf_mmap_data_free_work(struct work_struct *work)
2497 {
2498         struct perf_mmap_data *data;
2499         void *base;
2500         int i, nr;
2501
2502         data = container_of(work, struct perf_mmap_data, work);
2503         nr = 1 << page_order(data);
2504
2505         base = data->user_page;
2506         for (i = 0; i < nr + 1; i++)
2507                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2508
2509         vfree(base);
2510         kfree(data);
2511 }
2512
2513 static void perf_mmap_data_free(struct perf_mmap_data *data)
2514 {
2515         schedule_work(&data->work);
2516 }
2517
2518 static struct perf_mmap_data *
2519 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2520 {
2521         struct perf_mmap_data *data;
2522         unsigned long size;
2523         void *all_buf;
2524
2525         size = sizeof(struct perf_mmap_data);
2526         size += sizeof(void *);
2527
2528         data = kzalloc(size, GFP_KERNEL);
2529         if (!data)
2530                 goto fail;
2531
2532         INIT_WORK(&data->work, perf_mmap_data_free_work);
2533
2534         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2535         if (!all_buf)
2536                 goto fail_all_buf;
2537
2538         data->user_page = all_buf;
2539         data->data_pages[0] = all_buf + PAGE_SIZE;
2540         data->page_order = ilog2(nr_pages);
2541         data->nr_pages = 1;
2542
2543         return data;
2544
2545 fail_all_buf:
2546         kfree(data);
2547
2548 fail:
2549         return NULL;
2550 }
2551
2552 #endif
2553
2554 static unsigned long perf_data_size(struct perf_mmap_data *data)
2555 {
2556         return data->nr_pages << (PAGE_SHIFT + page_order(data));
2557 }
2558
2559 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2560 {
2561         struct perf_event *event = vma->vm_file->private_data;
2562         struct perf_mmap_data *data;
2563         int ret = VM_FAULT_SIGBUS;
2564
2565         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2566                 if (vmf->pgoff == 0)
2567                         ret = 0;
2568                 return ret;
2569         }
2570
2571         rcu_read_lock();
2572         data = rcu_dereference(event->data);
2573         if (!data)
2574                 goto unlock;
2575
2576         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2577                 goto unlock;
2578
2579         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2580         if (!vmf->page)
2581                 goto unlock;
2582
2583         get_page(vmf->page);
2584         vmf->page->mapping = vma->vm_file->f_mapping;
2585         vmf->page->index   = vmf->pgoff;
2586
2587         ret = 0;
2588 unlock:
2589         rcu_read_unlock();
2590
2591         return ret;
2592 }
2593
2594 static void
2595 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2596 {
2597         long max_size = perf_data_size(data);
2598
2599         if (event->attr.watermark) {
2600                 data->watermark = min_t(long, max_size,
2601                                         event->attr.wakeup_watermark);
2602         }
2603
2604         if (!data->watermark)
2605                 data->watermark = max_size / 2;
2606
2607         atomic_set(&data->refcount, 1);
2608         rcu_assign_pointer(event->data, data);
2609 }
2610
2611 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2612 {
2613         struct perf_mmap_data *data;
2614
2615         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2616         perf_mmap_data_free(data);
2617 }
2618
2619 static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
2620 {
2621         struct perf_mmap_data *data;
2622
2623         rcu_read_lock();
2624         data = rcu_dereference(event->data);
2625         if (data) {
2626                 if (!atomic_inc_not_zero(&data->refcount))
2627                         data = NULL;
2628         }
2629         rcu_read_unlock();
2630
2631         return data;
2632 }
2633
2634 static void perf_mmap_data_put(struct perf_mmap_data *data)
2635 {
2636         if (!atomic_dec_and_test(&data->refcount))
2637                 return;
2638
2639         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2640 }
2641
2642 static void perf_mmap_open(struct vm_area_struct *vma)
2643 {
2644         struct perf_event *event = vma->vm_file->private_data;
2645
2646         atomic_inc(&event->mmap_count);
2647 }
2648
2649 static void perf_mmap_close(struct vm_area_struct *vma)
2650 {
2651         struct perf_event *event = vma->vm_file->private_data;
2652
2653         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2654                 unsigned long size = perf_data_size(event->data);
2655                 struct user_struct *user = event->mmap_user;
2656                 struct perf_mmap_data *data = event->data;
2657
2658                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2659                 vma->vm_mm->locked_vm -= event->mmap_locked;
2660                 rcu_assign_pointer(event->data, NULL);
2661                 mutex_unlock(&event->mmap_mutex);
2662
2663                 perf_mmap_data_put(data);
2664                 free_uid(user);
2665         }
2666 }
2667
2668 static const struct vm_operations_struct perf_mmap_vmops = {
2669         .open           = perf_mmap_open,
2670         .close          = perf_mmap_close,
2671         .fault          = perf_mmap_fault,
2672         .page_mkwrite   = perf_mmap_fault,
2673 };
2674
2675 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2676 {
2677         struct perf_event *event = file->private_data;
2678         unsigned long user_locked, user_lock_limit;
2679         struct user_struct *user = current_user();
2680         unsigned long locked, lock_limit;
2681         struct perf_mmap_data *data;
2682         unsigned long vma_size;
2683         unsigned long nr_pages;
2684         long user_extra, extra;
2685         int ret = 0;
2686
2687         /*
2688          * Don't allow mmap() of inherited per-task counters. This would
2689          * create a performance issue due to all children writing to the
2690          * same buffer.
2691          */
2692         if (event->cpu == -1 && event->attr.inherit)
2693                 return -EINVAL;
2694
2695         if (!(vma->vm_flags & VM_SHARED))
2696                 return -EINVAL;
2697
2698         vma_size = vma->vm_end - vma->vm_start;
2699         nr_pages = (vma_size / PAGE_SIZE) - 1;
2700
2701         /*
2702          * If we have data pages ensure they're a power-of-two number, so we
2703          * can do bitmasks instead of modulo.
2704          */
2705         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2706                 return -EINVAL;
2707
2708         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2709                 return -EINVAL;
2710
2711         if (vma->vm_pgoff != 0)
2712                 return -EINVAL;
2713
2714         WARN_ON_ONCE(event->ctx->parent_ctx);
2715         mutex_lock(&event->mmap_mutex);
2716         if (event->data) {
2717                 if (event->data->nr_pages == nr_pages)
2718                         atomic_inc(&event->data->refcount);
2719                 else
2720                         ret = -EINVAL;
2721                 goto unlock;
2722         }
2723
2724         user_extra = nr_pages + 1;
2725         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2726
2727         /*
2728          * Increase the limit linearly with more CPUs:
2729          */
2730         user_lock_limit *= num_online_cpus();
2731
2732         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2733
2734         extra = 0;
2735         if (user_locked > user_lock_limit)
2736                 extra = user_locked - user_lock_limit;
2737
2738         lock_limit = rlimit(RLIMIT_MEMLOCK);
2739         lock_limit >>= PAGE_SHIFT;
2740         locked = vma->vm_mm->locked_vm + extra;
2741
2742         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2743                 !capable(CAP_IPC_LOCK)) {
2744                 ret = -EPERM;
2745                 goto unlock;
2746         }
2747
2748         WARN_ON(event->data);
2749
2750         data = perf_mmap_data_alloc(event, nr_pages);
2751         if (!data) {
2752                 ret = -ENOMEM;
2753                 goto unlock;
2754         }
2755
2756         perf_mmap_data_init(event, data);
2757         if (vma->vm_flags & VM_WRITE)
2758                 event->data->writable = 1;
2759
2760         atomic_long_add(user_extra, &user->locked_vm);
2761         event->mmap_locked = extra;
2762         event->mmap_user = get_current_user();
2763         vma->vm_mm->locked_vm += event->mmap_locked;
2764
2765 unlock:
2766         if (!ret)
2767                 atomic_inc(&event->mmap_count);
2768         mutex_unlock(&event->mmap_mutex);
2769
2770         vma->vm_flags |= VM_RESERVED;
2771         vma->vm_ops = &perf_mmap_vmops;
2772
2773         return ret;
2774 }
2775
2776 static int perf_fasync(int fd, struct file *filp, int on)
2777 {
2778         struct inode *inode = filp->f_path.dentry->d_inode;
2779         struct perf_event *event = filp->private_data;
2780         int retval;
2781
2782         mutex_lock(&inode->i_mutex);
2783         retval = fasync_helper(fd, filp, on, &event->fasync);
2784         mutex_unlock(&inode->i_mutex);
2785
2786         if (retval < 0)
2787                 return retval;
2788
2789         return 0;
2790 }
2791
2792 static const struct file_operations perf_fops = {
2793         .llseek                 = no_llseek,
2794         .release                = perf_release,
2795         .read                   = perf_read,
2796         .poll                   = perf_poll,
2797         .unlocked_ioctl         = perf_ioctl,
2798         .compat_ioctl           = perf_ioctl,
2799         .mmap                   = perf_mmap,
2800         .fasync                 = perf_fasync,
2801 };
2802
2803 /*
2804  * Perf event wakeup
2805  *
2806  * If there's data, ensure we set the poll() state and publish everything
2807  * to user-space before waking everybody up.
2808  */
2809
2810 void perf_event_wakeup(struct perf_event *event)
2811 {
2812         wake_up_all(&event->waitq);
2813
2814         if (event->pending_kill) {
2815                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2816                 event->pending_kill = 0;
2817         }
2818 }
2819
2820 /*
2821  * Pending wakeups
2822  *
2823  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2824  *
2825  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2826  * single linked list and use cmpxchg() to add entries lockless.
2827  */
2828
2829 static void perf_pending_event(struct perf_pending_entry *entry)
2830 {
2831         struct perf_event *event = container_of(entry,
2832                         struct perf_event, pending);
2833
2834         if (event->pending_disable) {
2835                 event->pending_disable = 0;
2836                 __perf_event_disable(event);
2837         }
2838
2839         if (event->pending_wakeup) {
2840                 event->pending_wakeup = 0;
2841                 perf_event_wakeup(event);
2842         }
2843 }
2844
2845 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2846
2847 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2848         PENDING_TAIL,
2849 };
2850
2851 static void perf_pending_queue(struct perf_pending_entry *entry,
2852                                void (*func)(struct perf_pending_entry *))
2853 {
2854         struct perf_pending_entry **head;
2855
2856         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2857                 return;
2858
2859         entry->func = func;
2860
2861         head = &get_cpu_var(perf_pending_head);
2862
2863         do {
2864                 entry->next = *head;
2865         } while (cmpxchg(head, entry->next, entry) != entry->next);
2866
2867         set_perf_event_pending();
2868
2869         put_cpu_var(perf_pending_head);
2870 }
2871
2872 static int __perf_pending_run(void)
2873 {
2874         struct perf_pending_entry *list;
2875         int nr = 0;
2876
2877         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2878         while (list != PENDING_TAIL) {
2879                 void (*func)(struct perf_pending_entry *);
2880                 struct perf_pending_entry *entry = list;
2881
2882                 list = list->next;
2883
2884                 func = entry->func;
2885                 entry->next = NULL;
2886                 /*
2887                  * Ensure we observe the unqueue before we issue the wakeup,
2888                  * so that we won't be waiting forever.
2889                  * -- see perf_not_pending().
2890                  */
2891                 smp_wmb();
2892
2893                 func(entry);
2894                 nr++;
2895         }
2896
2897         return nr;
2898 }
2899
2900 static inline int perf_not_pending(struct perf_event *event)
2901 {
2902         /*
2903          * If we flush on whatever cpu we run, there is a chance we don't
2904          * need to wait.
2905          */
2906         get_cpu();
2907         __perf_pending_run();
2908         put_cpu();
2909
2910         /*
2911          * Ensure we see the proper queue state before going to sleep
2912          * so that we do not miss the wakeup. -- see perf_pending_handle()
2913          */
2914         smp_rmb();
2915         return event->pending.next == NULL;
2916 }
2917
2918 static void perf_pending_sync(struct perf_event *event)
2919 {
2920         wait_event(event->waitq, perf_not_pending(event));
2921 }
2922
2923 void perf_event_do_pending(void)
2924 {
2925         __perf_pending_run();
2926 }
2927
2928 /*
2929  * Callchain support -- arch specific
2930  */
2931
2932 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2933 {
2934         return NULL;
2935 }
2936
2937 __weak
2938 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2939 {
2940 }
2941
2942
2943 /*
2944  * We assume there is only KVM supporting the callbacks.
2945  * Later on, we might change it to a list if there is
2946  * another virtualization implementation supporting the callbacks.
2947  */
2948 struct perf_guest_info_callbacks *perf_guest_cbs;
2949
2950 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2951 {
2952         perf_guest_cbs = cbs;
2953         return 0;
2954 }
2955 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2956
2957 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2958 {
2959         perf_guest_cbs = NULL;
2960         return 0;
2961 }
2962 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2963
2964 /*
2965  * Output
2966  */
2967 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2968                               unsigned long offset, unsigned long head)
2969 {
2970         unsigned long mask;
2971
2972         if (!data->writable)
2973                 return true;
2974
2975         mask = perf_data_size(data) - 1;
2976
2977         offset = (offset - tail) & mask;
2978         head   = (head   - tail) & mask;
2979
2980         if ((int)(head - offset) < 0)
2981                 return false;
2982
2983         return true;
2984 }
2985
2986 static void perf_output_wakeup(struct perf_output_handle *handle)
2987 {
2988         atomic_set(&handle->data->poll, POLL_IN);
2989
2990         if (handle->nmi) {
2991                 handle->event->pending_wakeup = 1;
2992                 perf_pending_queue(&handle->event->pending,
2993                                    perf_pending_event);
2994         } else
2995                 perf_event_wakeup(handle->event);
2996 }
2997
2998 /*
2999  * We need to ensure a later event_id doesn't publish a head when a former
3000  * event isn't done writing. However since we need to deal with NMIs we
3001  * cannot fully serialize things.
3002  *
3003  * We only publish the head (and generate a wakeup) when the outer-most
3004  * event completes.
3005  */
3006 static void perf_output_get_handle(struct perf_output_handle *handle)
3007 {
3008         struct perf_mmap_data *data = handle->data;
3009
3010         preempt_disable();
3011         local_inc(&data->nest);
3012         handle->wakeup = local_read(&data->wakeup);
3013 }
3014
3015 static void perf_output_put_handle(struct perf_output_handle *handle)
3016 {
3017         struct perf_mmap_data *data = handle->data;
3018         unsigned long head;
3019
3020 again:
3021         head = local_read(&data->head);
3022
3023         /*
3024          * IRQ/NMI can happen here, which means we can miss a head update.
3025          */
3026
3027         if (!local_dec_and_test(&data->nest))
3028                 goto out;
3029
3030         /*
3031          * Publish the known good head. Rely on the full barrier implied
3032          * by atomic_dec_and_test() order the data->head read and this
3033          * write.
3034          */
3035         data->user_page->data_head = head;
3036
3037         /*
3038          * Now check if we missed an update, rely on the (compiler)
3039          * barrier in atomic_dec_and_test() to re-read data->head.
3040          */
3041         if (unlikely(head != local_read(&data->head))) {
3042                 local_inc(&data->nest);
3043                 goto again;
3044         }
3045
3046         if (handle->wakeup != local_read(&data->wakeup))
3047                 perf_output_wakeup(handle);
3048
3049  out:
3050         preempt_enable();
3051 }
3052
3053 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3054                       const void *buf, unsigned int len)
3055 {
3056         do {
3057                 unsigned long size = min_t(unsigned long, handle->size, len);
3058
3059                 memcpy(handle->addr, buf, size);
3060
3061                 len -= size;
3062                 handle->addr += size;
3063                 buf += size;
3064                 handle->size -= size;
3065                 if (!handle->size) {
3066                         struct perf_mmap_data *data = handle->data;
3067
3068                         handle->page++;
3069                         handle->page &= data->nr_pages - 1;
3070                         handle->addr = data->data_pages[handle->page];
3071                         handle->size = PAGE_SIZE << page_order(data);
3072                 }
3073         } while (len);
3074 }
3075
3076 int perf_output_begin(struct perf_output_handle *handle,
3077                       struct perf_event *event, unsigned int size,
3078                       int nmi, int sample)
3079 {
3080         struct perf_mmap_data *data;
3081         unsigned long tail, offset, head;
3082         int have_lost;
3083         struct {
3084                 struct perf_event_header header;
3085                 u64                      id;
3086                 u64                      lost;
3087         } lost_event;
3088
3089         rcu_read_lock();
3090         /*
3091          * For inherited events we send all the output towards the parent.
3092          */
3093         if (event->parent)
3094                 event = event->parent;
3095
3096         data = rcu_dereference(event->data);
3097         if (!data)
3098                 goto out;
3099
3100         handle->data    = data;
3101         handle->event   = event;
3102         handle->nmi     = nmi;
3103         handle->sample  = sample;
3104
3105         if (!data->nr_pages)
3106                 goto out;
3107
3108         have_lost = local_read(&data->lost);
3109         if (have_lost)
3110                 size += sizeof(lost_event);
3111
3112         perf_output_get_handle(handle);
3113
3114         do {
3115                 /*
3116                  * Userspace could choose to issue a mb() before updating the
3117                  * tail pointer. So that all reads will be completed before the
3118                  * write is issued.
3119                  */
3120                 tail = ACCESS_ONCE(data->user_page->data_tail);
3121                 smp_rmb();
3122                 offset = head = local_read(&data->head);
3123                 head += size;
3124                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3125                         goto fail;
3126         } while (local_cmpxchg(&data->head, offset, head) != offset);
3127
3128         if (head - local_read(&data->wakeup) > data->watermark)
3129                 local_add(data->watermark, &data->wakeup);
3130
3131         handle->page = offset >> (PAGE_SHIFT + page_order(data));
3132         handle->page &= data->nr_pages - 1;
3133         handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3134         handle->addr = data->data_pages[handle->page];
3135         handle->addr += handle->size;
3136         handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3137
3138         if (have_lost) {
3139                 lost_event.header.type = PERF_RECORD_LOST;
3140                 lost_event.header.misc = 0;
3141                 lost_event.header.size = sizeof(lost_event);
3142                 lost_event.id          = event->id;
3143                 lost_event.lost        = local_xchg(&data->lost, 0);
3144
3145                 perf_output_put(handle, lost_event);
3146         }
3147
3148         return 0;
3149
3150 fail:
3151         local_inc(&data->lost);
3152         perf_output_put_handle(handle);
3153 out:
3154         rcu_read_unlock();
3155
3156         return -ENOSPC;
3157 }
3158
3159 void perf_output_end(struct perf_output_handle *handle)
3160 {
3161         struct perf_event *event = handle->event;
3162         struct perf_mmap_data *data = handle->data;
3163
3164         int wakeup_events = event->attr.wakeup_events;
3165
3166         if (handle->sample && wakeup_events) {
3167                 int events = local_inc_return(&data->events);
3168                 if (events >= wakeup_events) {
3169                         local_sub(wakeup_events, &data->events);
3170                         local_inc(&data->wakeup);
3171                 }
3172         }
3173
3174         perf_output_put_handle(handle);
3175         rcu_read_unlock();
3176 }
3177
3178 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3179 {
3180         /*
3181          * only top level events have the pid namespace they were created in
3182          */
3183         if (event->parent)
3184                 event = event->parent;
3185
3186         return task_tgid_nr_ns(p, event->ns);
3187 }
3188
3189 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3190 {
3191         /*
3192          * only top level events have the pid namespace they were created in
3193          */
3194         if (event->parent)
3195                 event = event->parent;
3196
3197         return task_pid_nr_ns(p, event->ns);
3198 }
3199
3200 static void perf_output_read_one(struct perf_output_handle *handle,
3201                                  struct perf_event *event)
3202 {
3203         u64 read_format = event->attr.read_format;
3204         u64 values[4];
3205         int n = 0;
3206
3207         values[n++] = atomic64_read(&event->count);
3208         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3209                 values[n++] = event->total_time_enabled +
3210                         atomic64_read(&event->child_total_time_enabled);
3211         }
3212         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3213                 values[n++] = event->total_time_running +
3214                         atomic64_read(&event->child_total_time_running);
3215         }
3216         if (read_format & PERF_FORMAT_ID)
3217                 values[n++] = primary_event_id(event);
3218
3219         perf_output_copy(handle, values, n * sizeof(u64));
3220 }
3221
3222 /*
3223  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3224  */
3225 static void perf_output_read_group(struct perf_output_handle *handle,
3226                             struct perf_event *event)
3227 {
3228         struct perf_event *leader = event->group_leader, *sub;
3229         u64 read_format = event->attr.read_format;
3230         u64 values[5];
3231         int n = 0;
3232
3233         values[n++] = 1 + leader->nr_siblings;
3234
3235         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3236                 values[n++] = leader->total_time_enabled;
3237
3238         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3239                 values[n++] = leader->total_time_running;
3240
3241         if (leader != event)
3242                 leader->pmu->read(leader);
3243
3244         values[n++] = atomic64_read(&leader->count);
3245         if (read_format & PERF_FORMAT_ID)
3246                 values[n++] = primary_event_id(leader);
3247
3248         perf_output_copy(handle, values, n * sizeof(u64));
3249
3250         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3251                 n = 0;
3252
3253                 if (sub != event)
3254                         sub->pmu->read(sub);
3255
3256                 values[n++] = atomic64_read(&sub->count);
3257                 if (read_format & PERF_FORMAT_ID)
3258                         values[n++] = primary_event_id(sub);
3259
3260                 perf_output_copy(handle, values, n * sizeof(u64));
3261         }
3262 }
3263
3264 static void perf_output_read(struct perf_output_handle *handle,
3265                              struct perf_event *event)
3266 {
3267         if (event->attr.read_format & PERF_FORMAT_GROUP)
3268                 perf_output_read_group(handle, event);
3269         else
3270                 perf_output_read_one(handle, event);
3271 }
3272
3273 void perf_output_sample(struct perf_output_handle *handle,
3274                         struct perf_event_header *header,
3275                         struct perf_sample_data *data,
3276                         struct perf_event *event)
3277 {
3278         u64 sample_type = data->type;
3279
3280         perf_output_put(handle, *header);
3281
3282         if (sample_type & PERF_SAMPLE_IP)
3283                 perf_output_put(handle, data->ip);
3284
3285         if (sample_type & PERF_SAMPLE_TID)
3286                 perf_output_put(handle, data->tid_entry);
3287
3288         if (sample_type & PERF_SAMPLE_TIME)
3289                 perf_output_put(handle, data->time);
3290
3291         if (sample_type & PERF_SAMPLE_ADDR)
3292                 perf_output_put(handle, data->addr);
3293
3294         if (sample_type & PERF_SAMPLE_ID)
3295                 perf_output_put(handle, data->id);
3296
3297         if (sample_type & PERF_SAMPLE_STREAM_ID)
3298                 perf_output_put(handle, data->stream_id);
3299
3300         if (sample_type & PERF_SAMPLE_CPU)
3301                 perf_output_put(handle, data->cpu_entry);
3302
3303         if (sample_type & PERF_SAMPLE_PERIOD)
3304                 perf_output_put(handle, data->period);
3305
3306         if (sample_type & PERF_SAMPLE_READ)
3307                 perf_output_read(handle, event);
3308
3309         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3310                 if (data->callchain) {
3311                         int size = 1;
3312
3313                         if (data->callchain)
3314                                 size += data->callchain->nr;
3315
3316                         size *= sizeof(u64);
3317
3318                         perf_output_copy(handle, data->callchain, size);
3319                 } else {
3320                         u64 nr = 0;
3321                         perf_output_put(handle, nr);
3322                 }
3323         }
3324
3325         if (sample_type & PERF_SAMPLE_RAW) {
3326                 if (data->raw) {
3327                         perf_output_put(handle, data->raw->size);
3328                         perf_output_copy(handle, data->raw->data,
3329                                          data->raw->size);
3330                 } else {
3331                         struct {
3332                                 u32     size;
3333                                 u32     data;
3334                         } raw = {
3335                                 .size = sizeof(u32),
3336                                 .data = 0,
3337                         };
3338                         perf_output_put(handle, raw);
3339                 }
3340         }
3341 }
3342
3343 void perf_prepare_sample(struct perf_event_header *header,
3344                          struct perf_sample_data *data,
3345                          struct perf_event *event,
3346                          struct pt_regs *regs)
3347 {
3348         u64 sample_type = event->attr.sample_type;
3349
3350         data->type = sample_type;
3351
3352         header->type = PERF_RECORD_SAMPLE;
3353         header->size = sizeof(*header);
3354
3355         header->misc = 0;
3356         header->misc |= perf_misc_flags(regs);
3357
3358         if (sample_type & PERF_SAMPLE_IP) {
3359                 data->ip = perf_instruction_pointer(regs);
3360
3361                 header->size += sizeof(data->ip);
3362         }
3363
3364         if (sample_type & PERF_SAMPLE_TID) {
3365                 /* namespace issues */
3366                 data->tid_entry.pid = perf_event_pid(event, current);
3367                 data->tid_entry.tid = perf_event_tid(event, current);
3368
3369                 header->size += sizeof(data->tid_entry);
3370         }
3371
3372         if (sample_type & PERF_SAMPLE_TIME) {
3373                 data->time = perf_clock();
3374
3375                 header->size += sizeof(data->time);
3376         }
3377
3378         if (sample_type & PERF_SAMPLE_ADDR)
3379                 header->size += sizeof(data->addr);
3380
3381         if (sample_type & PERF_SAMPLE_ID) {
3382                 data->id = primary_event_id(event);
3383
3384                 header->size += sizeof(data->id);
3385         }
3386
3387         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3388                 data->stream_id = event->id;
3389
3390                 header->size += sizeof(data->stream_id);
3391         }
3392
3393         if (sample_type & PERF_SAMPLE_CPU) {
3394                 data->cpu_entry.cpu             = raw_smp_processor_id();
3395                 data->cpu_entry.reserved        = 0;
3396
3397                 header->size += sizeof(data->cpu_entry);
3398         }
3399
3400         if (sample_type & PERF_SAMPLE_PERIOD)
3401                 header->size += sizeof(data->period);
3402
3403         if (sample_type & PERF_SAMPLE_READ)
3404                 header->size += perf_event_read_size(event);
3405
3406         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3407                 int size = 1;
3408
3409                 data->callchain = perf_callchain(regs);
3410
3411                 if (data->callchain)
3412                         size += data->callchain->nr;
3413
3414                 header->size += size * sizeof(u64);
3415         }
3416
3417         if (sample_type & PERF_SAMPLE_RAW) {
3418                 int size = sizeof(u32);
3419
3420                 if (data->raw)
3421                         size += data->raw->size;
3422                 else
3423                         size += sizeof(u32);
3424
3425                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3426                 header->size += size;
3427         }
3428 }
3429
3430 static void perf_event_output(struct perf_event *event, int nmi,
3431                                 struct perf_sample_data *data,
3432                                 struct pt_regs *regs)
3433 {
3434         struct perf_output_handle handle;
3435         struct perf_event_header header;
3436
3437         perf_prepare_sample(&header, data, event, regs);
3438
3439         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3440                 return;
3441
3442         perf_output_sample(&handle, &header, data, event);
3443
3444         perf_output_end(&handle);
3445 }
3446
3447 /*
3448  * read event_id
3449  */
3450
3451 struct perf_read_event {
3452         struct perf_event_header        header;
3453
3454         u32                             pid;
3455         u32                             tid;
3456 };
3457
3458 static void
3459 perf_event_read_event(struct perf_event *event,
3460                         struct task_struct *task)
3461 {
3462         struct perf_output_handle handle;
3463         struct perf_read_event read_event = {
3464                 .header = {
3465                         .type = PERF_RECORD_READ,
3466                         .misc = 0,
3467                         .size = sizeof(read_event) + perf_event_read_size(event),
3468                 },
3469                 .pid = perf_event_pid(event, task),
3470                 .tid = perf_event_tid(event, task),
3471         };
3472         int ret;
3473
3474         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3475         if (ret)
3476                 return;
3477
3478         perf_output_put(&handle, read_event);
3479         perf_output_read(&handle, event);
3480
3481         perf_output_end(&handle);
3482 }
3483
3484 /*
3485  * task tracking -- fork/exit
3486  *
3487  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3488  */
3489
3490 struct perf_task_event {
3491         struct task_struct              *task;
3492         struct perf_event_context       *task_ctx;
3493
3494         struct {
3495                 struct perf_event_header        header;
3496
3497                 u32                             pid;
3498                 u32                             ppid;
3499                 u32                             tid;
3500                 u32                             ptid;
3501                 u64                             time;
3502         } event_id;
3503 };
3504
3505 static void perf_event_task_output(struct perf_event *event,
3506                                      struct perf_task_event *task_event)
3507 {
3508         struct perf_output_handle handle;
3509         struct task_struct *task = task_event->task;
3510         int size, ret;
3511
3512         size  = task_event->event_id.header.size;
3513         ret = perf_output_begin(&handle, event, size, 0, 0);
3514
3515         if (ret)
3516                 return;
3517
3518         task_event->event_id.pid = perf_event_pid(event, task);
3519         task_event->event_id.ppid = perf_event_pid(event, current);
3520
3521         task_event->event_id.tid = perf_event_tid(event, task);
3522         task_event->event_id.ptid = perf_event_tid(event, current);
3523
3524         perf_output_put(&handle, task_event->event_id);
3525
3526         perf_output_end(&handle);
3527 }
3528
3529 static int perf_event_task_match(struct perf_event *event)
3530 {
3531         if (event->state < PERF_EVENT_STATE_INACTIVE)
3532                 return 0;
3533
3534         if (event->cpu != -1 && event->cpu != smp_processor_id())
3535                 return 0;
3536
3537         if (event->attr.comm || event->attr.mmap ||
3538             event->attr.mmap_data || event->attr.task)
3539                 return 1;
3540
3541         return 0;
3542 }
3543
3544 static void perf_event_task_ctx(struct perf_event_context *ctx,
3545                                   struct perf_task_event *task_event)
3546 {
3547         struct perf_event *event;
3548
3549         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3550                 if (perf_event_task_match(event))
3551                         perf_event_task_output(event, task_event);
3552         }
3553 }
3554
3555 static void perf_event_task_event(struct perf_task_event *task_event)
3556 {
3557         struct perf_cpu_context *cpuctx;
3558         struct perf_event_context *ctx = task_event->task_ctx;
3559
3560         rcu_read_lock();
3561         cpuctx = &get_cpu_var(perf_cpu_context);
3562         perf_event_task_ctx(&cpuctx->ctx, task_event);
3563         if (!ctx)
3564                 ctx = rcu_dereference(current->perf_event_ctxp);
3565         if (ctx)
3566                 perf_event_task_ctx(ctx, task_event);
3567         put_cpu_var(perf_cpu_context);
3568         rcu_read_unlock();
3569 }
3570
3571 static void perf_event_task(struct task_struct *task,
3572                               struct perf_event_context *task_ctx,
3573                               int new)
3574 {
3575         struct perf_task_event task_event;
3576
3577         if (!atomic_read(&nr_comm_events) &&
3578             !atomic_read(&nr_mmap_events) &&
3579             !atomic_read(&nr_task_events))
3580                 return;
3581
3582         task_event = (struct perf_task_event){
3583                 .task     = task,
3584                 .task_ctx = task_ctx,
3585                 .event_id    = {
3586                         .header = {
3587                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3588                                 .misc = 0,
3589                                 .size = sizeof(task_event.event_id),
3590                         },
3591                         /* .pid  */
3592                         /* .ppid */
3593                         /* .tid  */
3594                         /* .ptid */
3595                         .time = perf_clock(),
3596                 },
3597         };
3598
3599         perf_event_task_event(&task_event);
3600 }
3601
3602 void perf_event_fork(struct task_struct *task)
3603 {
3604         perf_event_task(task, NULL, 1);
3605 }
3606
3607 /*
3608  * comm tracking
3609  */
3610
3611 struct perf_comm_event {
3612         struct task_struct      *task;
3613         char                    *comm;
3614         int                     comm_size;
3615
3616         struct {
3617                 struct perf_event_header        header;
3618
3619                 u32                             pid;
3620                 u32                             tid;
3621         } event_id;
3622 };
3623
3624 static void perf_event_comm_output(struct perf_event *event,
3625                                      struct perf_comm_event *comm_event)
3626 {
3627         struct perf_output_handle handle;
3628         int size = comm_event->event_id.header.size;
3629         int ret = perf_output_begin(&handle, event, size, 0, 0);
3630
3631         if (ret)
3632                 return;
3633
3634         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3635         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3636
3637         perf_output_put(&handle, comm_event->event_id);
3638         perf_output_copy(&handle, comm_event->comm,
3639                                    comm_event->comm_size);
3640         perf_output_end(&handle);
3641 }
3642
3643 static int perf_event_comm_match(struct perf_event *event)
3644 {
3645         if (event->state < PERF_EVENT_STATE_INACTIVE)
3646                 return 0;
3647
3648         if (event->cpu != -1 && event->cpu != smp_processor_id())
3649                 return 0;
3650
3651         if (event->attr.comm)
3652                 return 1;
3653
3654         return 0;
3655 }
3656
3657 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3658                                   struct perf_comm_event *comm_event)
3659 {
3660         struct perf_event *event;
3661
3662         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3663                 if (perf_event_comm_match(event))
3664                         perf_event_comm_output(event, comm_event);
3665         }
3666 }
3667
3668 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3669 {
3670         struct perf_cpu_context *cpuctx;
3671         struct perf_event_context *ctx;
3672         unsigned int size;
3673         char comm[TASK_COMM_LEN];
3674
3675         memset(comm, 0, sizeof(comm));
3676         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3677         size = ALIGN(strlen(comm)+1, sizeof(u64));
3678
3679         comm_event->comm = comm;
3680         comm_event->comm_size = size;
3681
3682         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3683
3684         rcu_read_lock();
3685         cpuctx = &get_cpu_var(perf_cpu_context);
3686         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3687         ctx = rcu_dereference(current->perf_event_ctxp);
3688         if (ctx)
3689                 perf_event_comm_ctx(ctx, comm_event);
3690         put_cpu_var(perf_cpu_context);
3691         rcu_read_unlock();
3692 }
3693
3694 void perf_event_comm(struct task_struct *task)
3695 {
3696         struct perf_comm_event comm_event;
3697
3698         if (task->perf_event_ctxp)
3699                 perf_event_enable_on_exec(task);
3700
3701         if (!atomic_read(&nr_comm_events))
3702                 return;
3703
3704         comm_event = (struct perf_comm_event){
3705                 .task   = task,
3706                 /* .comm      */
3707                 /* .comm_size */
3708                 .event_id  = {
3709                         .header = {
3710                                 .type = PERF_RECORD_COMM,
3711                                 .misc = 0,
3712                                 /* .size */
3713                         },
3714                         /* .pid */
3715                         /* .tid */
3716                 },
3717         };
3718
3719         perf_event_comm_event(&comm_event);
3720 }
3721
3722 /*
3723  * mmap tracking
3724  */
3725
3726 struct perf_mmap_event {
3727         struct vm_area_struct   *vma;
3728
3729         const char              *file_name;
3730         int                     file_size;
3731
3732         struct {
3733                 struct perf_event_header        header;
3734
3735                 u32                             pid;
3736                 u32                             tid;
3737                 u64                             start;
3738                 u64                             len;
3739                 u64                             pgoff;
3740         } event_id;
3741 };
3742
3743 static void perf_event_mmap_output(struct perf_event *event,
3744                                      struct perf_mmap_event *mmap_event)
3745 {
3746         struct perf_output_handle handle;
3747         int size = mmap_event->event_id.header.size;
3748         int ret = perf_output_begin(&handle, event, size, 0, 0);
3749
3750         if (ret)
3751                 return;
3752
3753         mmap_event->event_id.pid = perf_event_pid(event, current);
3754         mmap_event->event_id.tid = perf_event_tid(event, current);
3755
3756         perf_output_put(&handle, mmap_event->event_id);
3757         perf_output_copy(&handle, mmap_event->file_name,
3758                                    mmap_event->file_size);
3759         perf_output_end(&handle);
3760 }
3761
3762 static int perf_event_mmap_match(struct perf_event *event,
3763                                    struct perf_mmap_event *mmap_event,
3764                                    int executable)
3765 {
3766         if (event->state < PERF_EVENT_STATE_INACTIVE)
3767                 return 0;
3768
3769         if (event->cpu != -1 && event->cpu != smp_processor_id())
3770                 return 0;
3771
3772         if ((!executable && event->attr.mmap_data) ||
3773             (executable && event->attr.mmap))
3774                 return 1;
3775
3776         return 0;
3777 }
3778
3779 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3780                                   struct perf_mmap_event *mmap_event,
3781                                   int executable)
3782 {
3783         struct perf_event *event;
3784
3785         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3786                 if (perf_event_mmap_match(event, mmap_event, executable))
3787                         perf_event_mmap_output(event, mmap_event);
3788         }
3789 }
3790
3791 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3792 {
3793         struct perf_cpu_context *cpuctx;
3794         struct perf_event_context *ctx;
3795         struct vm_area_struct *vma = mmap_event->vma;
3796         struct file *file = vma->vm_file;
3797         unsigned int size;
3798         char tmp[16];
3799         char *buf = NULL;
3800         const char *name;
3801
3802         memset(tmp, 0, sizeof(tmp));
3803
3804         if (file) {
3805                 /*
3806                  * d_path works from the end of the buffer backwards, so we
3807                  * need to add enough zero bytes after the string to handle
3808                  * the 64bit alignment we do later.
3809                  */
3810                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3811                 if (!buf) {
3812                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3813                         goto got_name;
3814                 }
3815                 name = d_path(&file->f_path, buf, PATH_MAX);
3816                 if (IS_ERR(name)) {
3817                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3818                         goto got_name;
3819                 }
3820         } else {
3821                 if (arch_vma_name(mmap_event->vma)) {
3822                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3823                                        sizeof(tmp));
3824                         goto got_name;
3825                 }
3826
3827                 if (!vma->vm_mm) {
3828                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3829                         goto got_name;
3830                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3831                                 vma->vm_end >= vma->vm_mm->brk) {
3832                         name = strncpy(tmp, "[heap]", sizeof(tmp));
3833                         goto got_name;
3834                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3835                                 vma->vm_end >= vma->vm_mm->start_stack) {
3836                         name = strncpy(tmp, "[stack]", sizeof(tmp));
3837                         goto got_name;
3838                 }
3839
3840                 name = strncpy(tmp, "//anon", sizeof(tmp));
3841                 goto got_name;
3842         }
3843
3844 got_name:
3845         size = ALIGN(strlen(name)+1, sizeof(u64));
3846
3847         mmap_event->file_name = name;
3848         mmap_event->file_size = size;
3849
3850         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3851
3852         rcu_read_lock();
3853         cpuctx = &get_cpu_var(perf_cpu_context);
3854         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3855         ctx = rcu_dereference(current->perf_event_ctxp);
3856         if (ctx)
3857                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3858         put_cpu_var(perf_cpu_context);
3859         rcu_read_unlock();
3860
3861         kfree(buf);
3862 }
3863
3864 void perf_event_mmap(struct vm_area_struct *vma)
3865 {
3866         struct perf_mmap_event mmap_event;
3867
3868         if (!atomic_read(&nr_mmap_events))
3869                 return;
3870
3871         mmap_event = (struct perf_mmap_event){
3872                 .vma    = vma,
3873                 /* .file_name */
3874                 /* .file_size */
3875                 .event_id  = {
3876                         .header = {
3877                                 .type = PERF_RECORD_MMAP,
3878                                 .misc = PERF_RECORD_MISC_USER,
3879                                 /* .size */
3880                         },
3881                         /* .pid */
3882                         /* .tid */
3883                         .start  = vma->vm_start,
3884                         .len    = vma->vm_end - vma->vm_start,
3885                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3886                 },
3887         };
3888
3889         perf_event_mmap_event(&mmap_event);
3890 }
3891
3892 /*
3893  * IRQ throttle logging
3894  */
3895
3896 static void perf_log_throttle(struct perf_event *event, int enable)
3897 {
3898         struct perf_output_handle handle;
3899         int ret;
3900
3901         struct {
3902                 struct perf_event_header        header;
3903                 u64                             time;
3904                 u64                             id;
3905                 u64                             stream_id;
3906         } throttle_event = {
3907                 .header = {
3908                         .type = PERF_RECORD_THROTTLE,
3909                         .misc = 0,
3910                         .size = sizeof(throttle_event),
3911                 },
3912                 .time           = perf_clock(),
3913                 .id             = primary_event_id(event),
3914                 .stream_id      = event->id,
3915         };
3916
3917         if (enable)
3918                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3919
3920         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3921         if (ret)
3922                 return;
3923
3924         perf_output_put(&handle, throttle_event);
3925         perf_output_end(&handle);
3926 }
3927
3928 /*
3929  * Generic event overflow handling, sampling.
3930  */
3931
3932 static int __perf_event_overflow(struct perf_event *event, int nmi,
3933                                    int throttle, struct perf_sample_data *data,
3934                                    struct pt_regs *regs)
3935 {
3936         int events = atomic_read(&event->event_limit);
3937         struct hw_perf_event *hwc = &event->hw;
3938         int ret = 0;
3939
3940         throttle = (throttle && event->pmu->unthrottle != NULL);
3941
3942         if (!throttle) {
3943                 hwc->interrupts++;
3944         } else {
3945                 if (hwc->interrupts != MAX_INTERRUPTS) {
3946                         hwc->interrupts++;
3947                         if (HZ * hwc->interrupts >
3948                                         (u64)sysctl_perf_event_sample_rate) {
3949                                 hwc->interrupts = MAX_INTERRUPTS;
3950                                 perf_log_throttle(event, 0);
3951                                 ret = 1;
3952                         }
3953                 } else {
3954                         /*
3955                          * Keep re-disabling events even though on the previous
3956                          * pass we disabled it - just in case we raced with a
3957                          * sched-in and the event got enabled again:
3958                          */
3959                         ret = 1;
3960                 }
3961         }
3962
3963         if (event->attr.freq) {
3964                 u64 now = perf_clock();
3965                 s64 delta = now - hwc->freq_time_stamp;
3966
3967                 hwc->freq_time_stamp = now;
3968
3969                 if (delta > 0 && delta < 2*TICK_NSEC)
3970                         perf_adjust_period(event, delta, hwc->last_period);
3971         }
3972
3973         /*
3974          * XXX event_limit might not quite work as expected on inherited
3975          * events
3976          */
3977
3978         event->pending_kill = POLL_IN;
3979         if (events && atomic_dec_and_test(&event->event_limit)) {
3980                 ret = 1;
3981                 event->pending_kill = POLL_HUP;
3982                 if (nmi) {
3983                         event->pending_disable = 1;
3984                         perf_pending_queue(&event->pending,
3985                                            perf_pending_event);
3986                 } else
3987                         perf_event_disable(event);
3988         }
3989
3990         if (event->overflow_handler)
3991                 event->overflow_handler(event, nmi, data, regs);
3992         else
3993                 perf_event_output(event, nmi, data, regs);
3994
3995         return ret;
3996 }
3997
3998 int perf_event_overflow(struct perf_event *event, int nmi,
3999                           struct perf_sample_data *data,
4000                           struct pt_regs *regs)
4001 {
4002         return __perf_event_overflow(event, nmi, 1, data, regs);
4003 }
4004
4005 /*
4006  * Generic software event infrastructure
4007  */
4008
4009 /*
4010  * We directly increment event->count and keep a second value in
4011  * event->hw.period_left to count intervals. This period event
4012  * is kept in the range [-sample_period, 0] so that we can use the
4013  * sign as trigger.
4014  */
4015
4016 static u64 perf_swevent_set_period(struct perf_event *event)
4017 {
4018         struct hw_perf_event *hwc = &event->hw;
4019         u64 period = hwc->last_period;
4020         u64 nr, offset;
4021         s64 old, val;
4022
4023         hwc->last_period = hwc->sample_period;
4024
4025 again:
4026         old = val = atomic64_read(&hwc->period_left);
4027         if (val < 0)
4028                 return 0;
4029
4030         nr = div64_u64(period + val, period);
4031         offset = nr * period;
4032         val -= offset;
4033         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
4034                 goto again;
4035
4036         return nr;
4037 }
4038
4039 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4040                                     int nmi, struct perf_sample_data *data,
4041                                     struct pt_regs *regs)
4042 {
4043         struct hw_perf_event *hwc = &event->hw;
4044         int throttle = 0;
4045
4046         data->period = event->hw.last_period;
4047         if (!overflow)
4048                 overflow = perf_swevent_set_period(event);
4049
4050         if (hwc->interrupts == MAX_INTERRUPTS)
4051                 return;
4052
4053         for (; overflow; overflow--) {
4054                 if (__perf_event_overflow(event, nmi, throttle,
4055                                             data, regs)) {
4056                         /*
4057                          * We inhibit the overflow from happening when
4058                          * hwc->interrupts == MAX_INTERRUPTS.
4059                          */
4060                         break;
4061                 }
4062                 throttle = 1;
4063         }
4064 }
4065
4066 static void perf_swevent_add(struct perf_event *event, u64 nr,
4067                                int nmi, struct perf_sample_data *data,
4068                                struct pt_regs *regs)
4069 {
4070         struct hw_perf_event *hwc = &event->hw;
4071
4072         atomic64_add(nr, &event->count);
4073
4074         if (!regs)
4075                 return;
4076
4077         if (!hwc->sample_period)
4078                 return;
4079
4080         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4081                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4082
4083         if (atomic64_add_negative(nr, &hwc->period_left))
4084                 return;
4085
4086         perf_swevent_overflow(event, 0, nmi, data, regs);
4087 }
4088
4089 static int perf_exclude_event(struct perf_event *event,
4090                               struct pt_regs *regs)
4091 {
4092         if (regs) {
4093                 if (event->attr.exclude_user && user_mode(regs))
4094                         return 1;
4095
4096                 if (event->attr.exclude_kernel && !user_mode(regs))
4097                         return 1;
4098         }
4099
4100         return 0;
4101 }
4102
4103 static int perf_swevent_match(struct perf_event *event,
4104                                 enum perf_type_id type,
4105                                 u32 event_id,
4106                                 struct perf_sample_data *data,
4107                                 struct pt_regs *regs)
4108 {
4109         if (event->attr.type != type)
4110                 return 0;
4111
4112         if (event->attr.config != event_id)
4113                 return 0;
4114
4115         if (perf_exclude_event(event, regs))
4116                 return 0;
4117
4118         return 1;
4119 }
4120
4121 static inline u64 swevent_hash(u64 type, u32 event_id)
4122 {
4123         u64 val = event_id | (type << 32);
4124
4125         return hash_64(val, SWEVENT_HLIST_BITS);
4126 }
4127
4128 static inline struct hlist_head *
4129 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4130 {
4131         u64 hash = swevent_hash(type, event_id);
4132
4133         return &hlist->heads[hash];
4134 }
4135
4136 /* For the read side: events when they trigger */
4137 static inline struct hlist_head *
4138 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4139 {
4140         struct swevent_hlist *hlist;
4141
4142         hlist = rcu_dereference(ctx->swevent_hlist);
4143         if (!hlist)
4144                 return NULL;
4145
4146         return __find_swevent_head(hlist, type, event_id);
4147 }
4148
4149 /* For the event head insertion and removal in the hlist */
4150 static inline struct hlist_head *
4151 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4152 {
4153         struct swevent_hlist *hlist;
4154         u32 event_id = event->attr.config;
4155         u64 type = event->attr.type;
4156
4157         /*
4158          * Event scheduling is always serialized against hlist allocation
4159          * and release. Which makes the protected version suitable here.
4160          * The context lock guarantees that.
4161          */
4162         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4163                                           lockdep_is_held(&event->ctx->lock));
4164         if (!hlist)
4165                 return NULL;
4166
4167         return __find_swevent_head(hlist, type, event_id);
4168 }
4169
4170 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4171                                     u64 nr, int nmi,
4172                                     struct perf_sample_data *data,
4173                                     struct pt_regs *regs)
4174 {
4175         struct perf_cpu_context *cpuctx;
4176         struct perf_event *event;
4177         struct hlist_node *node;
4178         struct hlist_head *head;
4179
4180         cpuctx = &__get_cpu_var(perf_cpu_context);
4181
4182         rcu_read_lock();
4183
4184         head = find_swevent_head_rcu(cpuctx, type, event_id);
4185
4186         if (!head)
4187                 goto end;
4188
4189         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4190                 if (perf_swevent_match(event, type, event_id, data, regs))
4191                         perf_swevent_add(event, nr, nmi, data, regs);
4192         }
4193 end:
4194         rcu_read_unlock();
4195 }
4196
4197 int perf_swevent_get_recursion_context(void)
4198 {
4199         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4200         int rctx;
4201
4202         if (in_nmi())
4203                 rctx = 3;
4204         else if (in_irq())
4205                 rctx = 2;
4206         else if (in_softirq())
4207                 rctx = 1;
4208         else
4209                 rctx = 0;
4210
4211         if (cpuctx->recursion[rctx])
4212                 return -1;
4213
4214         cpuctx->recursion[rctx]++;
4215         barrier();
4216
4217         return rctx;
4218 }
4219 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4220
4221 void inline perf_swevent_put_recursion_context(int rctx)
4222 {
4223         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4224         barrier();
4225         cpuctx->recursion[rctx]--;
4226 }
4227
4228 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4229                             struct pt_regs *regs, u64 addr)
4230 {
4231         struct perf_sample_data data;
4232         int rctx;
4233
4234         preempt_disable_notrace();
4235         rctx = perf_swevent_get_recursion_context();
4236         if (rctx < 0)
4237                 return;
4238
4239         perf_sample_data_init(&data, addr);
4240
4241         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4242
4243         perf_swevent_put_recursion_context(rctx);
4244         preempt_enable_notrace();
4245 }
4246
4247 static void perf_swevent_read(struct perf_event *event)
4248 {
4249 }
4250
4251 static int perf_swevent_enable(struct perf_event *event)
4252 {
4253         struct hw_perf_event *hwc = &event->hw;
4254         struct perf_cpu_context *cpuctx;
4255         struct hlist_head *head;
4256
4257         cpuctx = &__get_cpu_var(perf_cpu_context);
4258
4259         if (hwc->sample_period) {
4260                 hwc->last_period = hwc->sample_period;
4261                 perf_swevent_set_period(event);
4262         }
4263
4264         head = find_swevent_head(cpuctx, event);
4265         if (WARN_ON_ONCE(!head))
4266                 return -EINVAL;
4267
4268         hlist_add_head_rcu(&event->hlist_entry, head);
4269
4270         return 0;
4271 }
4272
4273 static void perf_swevent_disable(struct perf_event *event)
4274 {
4275         hlist_del_rcu(&event->hlist_entry);
4276 }
4277
4278 static void perf_swevent_void(struct perf_event *event)
4279 {
4280 }
4281
4282 static int perf_swevent_int(struct perf_event *event)
4283 {
4284         return 0;
4285 }
4286
4287 static const struct pmu perf_ops_generic = {
4288         .enable         = perf_swevent_enable,
4289         .disable        = perf_swevent_disable,
4290         .start          = perf_swevent_int,
4291         .stop           = perf_swevent_void,
4292         .read           = perf_swevent_read,
4293         .unthrottle     = perf_swevent_void, /* hwc->interrupts already reset */
4294 };
4295
4296 /*
4297  * hrtimer based swevent callback
4298  */
4299
4300 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4301 {
4302         enum hrtimer_restart ret = HRTIMER_RESTART;
4303         struct perf_sample_data data;
4304         struct pt_regs *regs;
4305         struct perf_event *event;
4306         u64 period;
4307
4308         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4309         event->pmu->read(event);
4310
4311         perf_sample_data_init(&data, 0);
4312         data.period = event->hw.last_period;
4313         regs = get_irq_regs();
4314
4315         if (regs && !perf_exclude_event(event, regs)) {
4316                 if (!(event->attr.exclude_idle && current->pid == 0))
4317                         if (perf_event_overflow(event, 0, &data, regs))
4318                                 ret = HRTIMER_NORESTART;
4319         }
4320
4321         period = max_t(u64, 10000, event->hw.sample_period);
4322         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4323
4324         return ret;
4325 }
4326
4327 static void perf_swevent_start_hrtimer(struct perf_event *event)
4328 {
4329         struct hw_perf_event *hwc = &event->hw;
4330
4331         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4332         hwc->hrtimer.function = perf_swevent_hrtimer;
4333         if (hwc->sample_period) {
4334                 u64 period;
4335
4336                 if (hwc->remaining) {
4337                         if (hwc->remaining < 0)
4338                                 period = 10000;
4339                         else
4340                                 period = hwc->remaining;
4341                         hwc->remaining = 0;
4342                 } else {
4343                         period = max_t(u64, 10000, hwc->sample_period);
4344                 }
4345                 __hrtimer_start_range_ns(&hwc->hrtimer,
4346                                 ns_to_ktime(period), 0,
4347                                 HRTIMER_MODE_REL, 0);
4348         }
4349 }
4350
4351 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4352 {
4353         struct hw_perf_event *hwc = &event->hw;
4354
4355         if (hwc->sample_period) {
4356                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4357                 hwc->remaining = ktime_to_ns(remaining);
4358
4359                 hrtimer_cancel(&hwc->hrtimer);
4360         }
4361 }
4362
4363 /*
4364  * Software event: cpu wall time clock
4365  */
4366
4367 static void cpu_clock_perf_event_update(struct perf_event *event)
4368 {
4369         int cpu = raw_smp_processor_id();
4370         s64 prev;
4371         u64 now;
4372
4373         now = cpu_clock(cpu);
4374         prev = atomic64_xchg(&event->hw.prev_count, now);
4375         atomic64_add(now - prev, &event->count);
4376 }
4377
4378 static int cpu_clock_perf_event_enable(struct perf_event *event)
4379 {
4380         struct hw_perf_event *hwc = &event->hw;
4381         int cpu = raw_smp_processor_id();
4382
4383         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4384         perf_swevent_start_hrtimer(event);
4385
4386         return 0;
4387 }
4388
4389 static void cpu_clock_perf_event_disable(struct perf_event *event)
4390 {
4391         perf_swevent_cancel_hrtimer(event);
4392         cpu_clock_perf_event_update(event);
4393 }
4394
4395 static void cpu_clock_perf_event_read(struct perf_event *event)
4396 {
4397         cpu_clock_perf_event_update(event);
4398 }
4399
4400 static const struct pmu perf_ops_cpu_clock = {
4401         .enable         = cpu_clock_perf_event_enable,
4402         .disable        = cpu_clock_perf_event_disable,
4403         .read           = cpu_clock_perf_event_read,
4404 };
4405
4406 /*
4407  * Software event: task time clock
4408  */
4409
4410 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4411 {
4412         u64 prev;
4413         s64 delta;
4414
4415         prev = atomic64_xchg(&event->hw.prev_count, now);
4416         delta = now - prev;
4417         atomic64_add(delta, &event->count);
4418 }
4419
4420 static int task_clock_perf_event_enable(struct perf_event *event)
4421 {
4422         struct hw_perf_event *hwc = &event->hw;
4423         u64 now;
4424
4425         now = event->ctx->time;
4426
4427         atomic64_set(&hwc->prev_count, now);
4428
4429         perf_swevent_start_hrtimer(event);
4430
4431         return 0;
4432 }
4433
4434 static void task_clock_perf_event_disable(struct perf_event *event)
4435 {
4436         perf_swevent_cancel_hrtimer(event);
4437         task_clock_perf_event_update(event, event->ctx->time);
4438
4439 }
4440
4441 static void task_clock_perf_event_read(struct perf_event *event)
4442 {
4443         u64 time;
4444
4445         if (!in_nmi()) {
4446                 update_context_time(event->ctx);
4447                 time = event->ctx->time;
4448         } else {
4449                 u64 now = perf_clock();
4450                 u64 delta = now - event->ctx->timestamp;
4451                 time = event->ctx->time + delta;
4452         }
4453
4454         task_clock_perf_event_update(event, time);
4455 }
4456
4457 static const struct pmu perf_ops_task_clock = {
4458         .enable         = task_clock_perf_event_enable,
4459         .disable        = task_clock_perf_event_disable,
4460         .read           = task_clock_perf_event_read,
4461 };
4462
4463 /* Deref the hlist from the update side */
4464 static inline struct swevent_hlist *
4465 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4466 {
4467         return rcu_dereference_protected(cpuctx->swevent_hlist,
4468                                          lockdep_is_held(&cpuctx->hlist_mutex));
4469 }
4470
4471 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4472 {
4473         struct swevent_hlist *hlist;
4474
4475         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4476         kfree(hlist);
4477 }
4478
4479 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4480 {
4481         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4482
4483         if (!hlist)
4484                 return;
4485
4486         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4487         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4488 }
4489
4490 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4491 {
4492         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4493
4494         mutex_lock(&cpuctx->hlist_mutex);
4495
4496         if (!--cpuctx->hlist_refcount)
4497                 swevent_hlist_release(cpuctx);
4498
4499         mutex_unlock(&cpuctx->hlist_mutex);
4500 }
4501
4502 static void swevent_hlist_put(struct perf_event *event)
4503 {
4504         int cpu;
4505
4506         if (event->cpu != -1) {
4507                 swevent_hlist_put_cpu(event, event->cpu);
4508                 return;
4509         }
4510
4511         for_each_possible_cpu(cpu)
4512                 swevent_hlist_put_cpu(event, cpu);
4513 }
4514
4515 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4516 {
4517         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4518         int err = 0;
4519
4520         mutex_lock(&cpuctx->hlist_mutex);
4521
4522         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4523                 struct swevent_hlist *hlist;
4524
4525                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4526                 if (!hlist) {
4527                         err = -ENOMEM;
4528                         goto exit;
4529                 }
4530                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4531         }
4532         cpuctx->hlist_refcount++;
4533  exit:
4534         mutex_unlock(&cpuctx->hlist_mutex);
4535
4536         return err;
4537 }
4538
4539 static int swevent_hlist_get(struct perf_event *event)
4540 {
4541         int err;
4542         int cpu, failed_cpu;
4543
4544         if (event->cpu != -1)
4545                 return swevent_hlist_get_cpu(event, event->cpu);
4546
4547         get_online_cpus();
4548         for_each_possible_cpu(cpu) {
4549                 err = swevent_hlist_get_cpu(event, cpu);
4550                 if (err) {
4551                         failed_cpu = cpu;
4552                         goto fail;
4553                 }
4554         }
4555         put_online_cpus();
4556
4557         return 0;
4558  fail:
4559         for_each_possible_cpu(cpu) {
4560                 if (cpu == failed_cpu)
4561                         break;
4562                 swevent_hlist_put_cpu(event, cpu);
4563         }
4564
4565         put_online_cpus();
4566         return err;
4567 }
4568
4569 #ifdef CONFIG_EVENT_TRACING
4570
4571 static const struct pmu perf_ops_tracepoint = {
4572         .enable         = perf_trace_enable,
4573         .disable        = perf_trace_disable,
4574         .start          = perf_swevent_int,
4575         .stop           = perf_swevent_void,
4576         .read           = perf_swevent_read,
4577         .unthrottle     = perf_swevent_void,
4578 };
4579
4580 static int perf_tp_filter_match(struct perf_event *event,
4581                                 struct perf_sample_data *data)
4582 {
4583         void *record = data->raw->data;
4584
4585         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4586                 return 1;
4587         return 0;
4588 }
4589
4590 static int perf_tp_event_match(struct perf_event *event,
4591                                 struct perf_sample_data *data,
4592                                 struct pt_regs *regs)
4593 {
4594         /*
4595          * All tracepoints are from kernel-space.
4596          */
4597         if (event->attr.exclude_kernel)
4598                 return 0;
4599
4600         if (!perf_tp_filter_match(event, data))
4601                 return 0;
4602
4603         return 1;
4604 }
4605
4606 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4607                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4608 {
4609         struct perf_sample_data data;
4610         struct perf_event *event;
4611         struct hlist_node *node;
4612
4613         struct perf_raw_record raw = {
4614                 .size = entry_size,
4615                 .data = record,
4616         };
4617
4618         perf_sample_data_init(&data, addr);
4619         data.raw = &raw;
4620
4621         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4622                 if (perf_tp_event_match(event, &data, regs))
4623                         perf_swevent_add(event, count, 1, &data, regs);
4624         }
4625
4626         perf_swevent_put_recursion_context(rctx);
4627 }
4628 EXPORT_SYMBOL_GPL(perf_tp_event);
4629
4630 static void tp_perf_event_destroy(struct perf_event *event)
4631 {
4632         perf_trace_destroy(event);
4633 }
4634
4635 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4636 {
4637         int err;
4638
4639         /*
4640          * Raw tracepoint data is a severe data leak, only allow root to
4641          * have these.
4642          */
4643         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4644                         perf_paranoid_tracepoint_raw() &&
4645                         !capable(CAP_SYS_ADMIN))
4646                 return ERR_PTR(-EPERM);
4647
4648         err = perf_trace_init(event);
4649         if (err)
4650                 return NULL;
4651
4652         event->destroy = tp_perf_event_destroy;
4653
4654         return &perf_ops_tracepoint;
4655 }
4656
4657 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4658 {
4659         char *filter_str;
4660         int ret;
4661
4662         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4663                 return -EINVAL;
4664
4665         filter_str = strndup_user(arg, PAGE_SIZE);
4666         if (IS_ERR(filter_str))
4667                 return PTR_ERR(filter_str);
4668
4669         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4670
4671         kfree(filter_str);
4672         return ret;
4673 }
4674
4675 static void perf_event_free_filter(struct perf_event *event)
4676 {
4677         ftrace_profile_free_filter(event);
4678 }
4679
4680 #else
4681
4682 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4683 {
4684         return NULL;
4685 }
4686
4687 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4688 {
4689         return -ENOENT;
4690 }
4691
4692 static void perf_event_free_filter(struct perf_event *event)
4693 {
4694 }
4695
4696 #endif /* CONFIG_EVENT_TRACING */
4697
4698 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4699 static void bp_perf_event_destroy(struct perf_event *event)
4700 {
4701         release_bp_slot(event);
4702 }
4703
4704 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4705 {
4706         int err;
4707
4708         err = register_perf_hw_breakpoint(bp);
4709         if (err)
4710                 return ERR_PTR(err);
4711
4712         bp->destroy = bp_perf_event_destroy;
4713
4714         return &perf_ops_bp;
4715 }
4716
4717 void perf_bp_event(struct perf_event *bp, void *data)
4718 {
4719         struct perf_sample_data sample;
4720         struct pt_regs *regs = data;
4721
4722         perf_sample_data_init(&sample, bp->attr.bp_addr);
4723
4724         if (!perf_exclude_event(bp, regs))
4725                 perf_swevent_add(bp, 1, 1, &sample, regs);
4726 }
4727 #else
4728 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4729 {
4730         return NULL;
4731 }
4732
4733 void perf_bp_event(struct perf_event *bp, void *regs)
4734 {
4735 }
4736 #endif
4737
4738 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4739
4740 static void sw_perf_event_destroy(struct perf_event *event)
4741 {
4742         u64 event_id = event->attr.config;
4743
4744         WARN_ON(event->parent);
4745
4746         atomic_dec(&perf_swevent_enabled[event_id]);
4747         swevent_hlist_put(event);
4748 }
4749
4750 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4751 {
4752         const struct pmu *pmu = NULL;
4753         u64 event_id = event->attr.config;
4754
4755         /*
4756          * Software events (currently) can't in general distinguish
4757          * between user, kernel and hypervisor events.
4758          * However, context switches and cpu migrations are considered
4759          * to be kernel events, and page faults are never hypervisor
4760          * events.
4761          */
4762         switch (event_id) {
4763         case PERF_COUNT_SW_CPU_CLOCK:
4764                 pmu = &perf_ops_cpu_clock;
4765
4766                 break;
4767         case PERF_COUNT_SW_TASK_CLOCK:
4768                 /*
4769                  * If the user instantiates this as a per-cpu event,
4770                  * use the cpu_clock event instead.
4771                  */
4772                 if (event->ctx->task)
4773                         pmu = &perf_ops_task_clock;
4774                 else
4775                         pmu = &perf_ops_cpu_clock;
4776
4777                 break;
4778         case PERF_COUNT_SW_PAGE_FAULTS:
4779         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4780         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4781         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4782         case PERF_COUNT_SW_CPU_MIGRATIONS:
4783         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4784         case PERF_COUNT_SW_EMULATION_FAULTS:
4785                 if (!event->parent) {
4786                         int err;
4787
4788                         err = swevent_hlist_get(event);
4789                         if (err)
4790                                 return ERR_PTR(err);
4791
4792                         atomic_inc(&perf_swevent_enabled[event_id]);
4793                         event->destroy = sw_perf_event_destroy;
4794                 }
4795                 pmu = &perf_ops_generic;
4796                 break;
4797         }
4798
4799         return pmu;
4800 }
4801
4802 /*
4803  * Allocate and initialize a event structure
4804  */
4805 static struct perf_event *
4806 perf_event_alloc(struct perf_event_attr *attr,
4807                    int cpu,
4808                    struct perf_event_context *ctx,
4809                    struct perf_event *group_leader,
4810                    struct perf_event *parent_event,
4811                    perf_overflow_handler_t overflow_handler,
4812                    gfp_t gfpflags)
4813 {
4814         const struct pmu *pmu;
4815         struct perf_event *event;
4816         struct hw_perf_event *hwc;
4817         long err;
4818
4819         event = kzalloc(sizeof(*event), gfpflags);
4820         if (!event)
4821                 return ERR_PTR(-ENOMEM);
4822
4823         /*
4824          * Single events are their own group leaders, with an
4825          * empty sibling list:
4826          */
4827         if (!group_leader)
4828                 group_leader = event;
4829
4830         mutex_init(&event->child_mutex);
4831         INIT_LIST_HEAD(&event->child_list);
4832
4833         INIT_LIST_HEAD(&event->group_entry);
4834         INIT_LIST_HEAD(&event->event_entry);
4835         INIT_LIST_HEAD(&event->sibling_list);
4836         init_waitqueue_head(&event->waitq);
4837
4838         mutex_init(&event->mmap_mutex);
4839
4840         event->cpu              = cpu;
4841         event->attr             = *attr;
4842         event->group_leader     = group_leader;
4843         event->pmu              = NULL;
4844         event->ctx              = ctx;
4845         event->oncpu            = -1;
4846
4847         event->parent           = parent_event;
4848
4849         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4850         event->id               = atomic64_inc_return(&perf_event_id);
4851
4852         event->state            = PERF_EVENT_STATE_INACTIVE;
4853
4854         if (!overflow_handler && parent_event)
4855                 overflow_handler = parent_event->overflow_handler;
4856         
4857         event->overflow_handler = overflow_handler;
4858
4859         if (attr->disabled)
4860                 event->state = PERF_EVENT_STATE_OFF;
4861
4862         pmu = NULL;
4863
4864         hwc = &event->hw;
4865         hwc->sample_period = attr->sample_period;
4866         if (attr->freq && attr->sample_freq)
4867                 hwc->sample_period = 1;
4868         hwc->last_period = hwc->sample_period;
4869
4870         atomic64_set(&hwc->period_left, hwc->sample_period);
4871
4872         /*
4873          * we currently do not support PERF_FORMAT_GROUP on inherited events
4874          */
4875         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4876                 goto done;
4877
4878         switch (attr->type) {
4879         case PERF_TYPE_RAW:
4880         case PERF_TYPE_HARDWARE:
4881         case PERF_TYPE_HW_CACHE:
4882                 pmu = hw_perf_event_init(event);
4883                 break;
4884
4885         case PERF_TYPE_SOFTWARE:
4886                 pmu = sw_perf_event_init(event);
4887                 break;
4888
4889         case PERF_TYPE_TRACEPOINT:
4890                 pmu = tp_perf_event_init(event);
4891                 break;
4892
4893         case PERF_TYPE_BREAKPOINT:
4894                 pmu = bp_perf_event_init(event);
4895                 break;
4896
4897
4898         default:
4899                 break;
4900         }
4901 done:
4902         err = 0;
4903         if (!pmu)
4904                 err = -EINVAL;
4905         else if (IS_ERR(pmu))
4906                 err = PTR_ERR(pmu);
4907
4908         if (err) {
4909                 if (event->ns)
4910                         put_pid_ns(event->ns);
4911                 kfree(event);
4912                 return ERR_PTR(err);
4913         }
4914
4915         event->pmu = pmu;
4916
4917         if (!event->parent) {
4918                 atomic_inc(&nr_events);
4919                 if (event->attr.mmap || event->attr.mmap_data)
4920                         atomic_inc(&nr_mmap_events);
4921                 if (event->attr.comm)
4922                         atomic_inc(&nr_comm_events);
4923                 if (event->attr.task)
4924                         atomic_inc(&nr_task_events);
4925         }
4926
4927         return event;
4928 }
4929
4930 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4931                           struct perf_event_attr *attr)
4932 {
4933         u32 size;
4934         int ret;
4935
4936         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4937                 return -EFAULT;
4938
4939         /*
4940          * zero the full structure, so that a short copy will be nice.
4941          */
4942         memset(attr, 0, sizeof(*attr));
4943
4944         ret = get_user(size, &uattr->size);
4945         if (ret)
4946                 return ret;
4947
4948         if (size > PAGE_SIZE)   /* silly large */
4949                 goto err_size;
4950
4951         if (!size)              /* abi compat */
4952                 size = PERF_ATTR_SIZE_VER0;
4953
4954         if (size < PERF_ATTR_SIZE_VER0)
4955                 goto err_size;
4956
4957         /*
4958          * If we're handed a bigger struct than we know of,
4959          * ensure all the unknown bits are 0 - i.e. new
4960          * user-space does not rely on any kernel feature
4961          * extensions we dont know about yet.
4962          */
4963         if (size > sizeof(*attr)) {
4964                 unsigned char __user *addr;
4965                 unsigned char __user *end;
4966                 unsigned char val;
4967
4968                 addr = (void __user *)uattr + sizeof(*attr);
4969                 end  = (void __user *)uattr + size;
4970
4971                 for (; addr < end; addr++) {
4972                         ret = get_user(val, addr);
4973                         if (ret)
4974                                 return ret;
4975                         if (val)
4976                                 goto err_size;
4977                 }
4978                 size = sizeof(*attr);
4979         }
4980
4981         ret = copy_from_user(attr, uattr, size);
4982         if (ret)
4983                 return -EFAULT;
4984
4985         /*
4986          * If the type exists, the corresponding creation will verify
4987          * the attr->config.
4988          */
4989         if (attr->type >= PERF_TYPE_MAX)
4990                 return -EINVAL;
4991
4992         if (attr->__reserved_1)
4993                 return -EINVAL;
4994
4995         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4996                 return -EINVAL;
4997
4998         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4999                 return -EINVAL;
5000
5001 out:
5002         return ret;
5003
5004 err_size:
5005         put_user(sizeof(*attr), &uattr->size);
5006         ret = -E2BIG;
5007         goto out;
5008 }
5009
5010 static int
5011 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5012 {
5013         struct perf_mmap_data *data = NULL, *old_data = NULL;
5014         int ret = -EINVAL;
5015
5016         if (!output_event)
5017                 goto set;
5018
5019         /* don't allow circular references */
5020         if (event == output_event)
5021                 goto out;
5022
5023         /*
5024          * Don't allow cross-cpu buffers
5025          */
5026         if (output_event->cpu != event->cpu)
5027                 goto out;
5028
5029         /*
5030          * If its not a per-cpu buffer, it must be the same task.
5031          */
5032         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5033                 goto out;
5034
5035 set:
5036         mutex_lock(&event->mmap_mutex);
5037         /* Can't redirect output if we've got an active mmap() */
5038         if (atomic_read(&event->mmap_count))
5039                 goto unlock;
5040
5041         if (output_event) {
5042                 /* get the buffer we want to redirect to */
5043                 data = perf_mmap_data_get(output_event);
5044                 if (!data)
5045                         goto unlock;
5046         }
5047
5048         old_data = event->data;
5049         rcu_assign_pointer(event->data, data);
5050         ret = 0;
5051 unlock:
5052         mutex_unlock(&event->mmap_mutex);
5053
5054         if (old_data)
5055                 perf_mmap_data_put(old_data);
5056 out:
5057         return ret;
5058 }
5059
5060 /**
5061  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5062  *
5063  * @attr_uptr:  event_id type attributes for monitoring/sampling
5064  * @pid:                target pid
5065  * @cpu:                target cpu
5066  * @group_fd:           group leader event fd
5067  */
5068 SYSCALL_DEFINE5(perf_event_open,
5069                 struct perf_event_attr __user *, attr_uptr,
5070                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5071 {
5072         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5073         struct perf_event_attr attr;
5074         struct perf_event_context *ctx;
5075         struct file *event_file = NULL;
5076         struct file *group_file = NULL;
5077         int event_fd;
5078         int fput_needed = 0;
5079         int err;
5080
5081         /* for future expandability... */
5082         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5083                 return -EINVAL;
5084
5085         err = perf_copy_attr(attr_uptr, &attr);
5086         if (err)
5087                 return err;
5088
5089         if (!attr.exclude_kernel) {
5090                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5091                         return -EACCES;
5092         }
5093
5094         if (attr.freq) {
5095                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5096                         return -EINVAL;
5097         }
5098
5099         event_fd = get_unused_fd_flags(O_RDWR);
5100         if (event_fd < 0)
5101                 return event_fd;
5102
5103         /*
5104          * Get the target context (task or percpu):
5105          */
5106         ctx = find_get_context(pid, cpu);
5107         if (IS_ERR(ctx)) {
5108                 err = PTR_ERR(ctx);
5109                 goto err_fd;
5110         }
5111
5112         if (group_fd != -1) {
5113                 group_leader = perf_fget_light(group_fd, &fput_needed);
5114                 if (IS_ERR(group_leader)) {
5115                         err = PTR_ERR(group_leader);
5116                         goto err_put_context;
5117                 }
5118                 group_file = group_leader->filp;
5119                 if (flags & PERF_FLAG_FD_OUTPUT)
5120                         output_event = group_leader;
5121                 if (flags & PERF_FLAG_FD_NO_GROUP)
5122                         group_leader = NULL;
5123         }
5124
5125         /*
5126          * Look up the group leader (we will attach this event to it):
5127          */
5128         if (group_leader) {
5129                 err = -EINVAL;
5130
5131                 /*
5132                  * Do not allow a recursive hierarchy (this new sibling
5133                  * becoming part of another group-sibling):
5134                  */
5135                 if (group_leader->group_leader != group_leader)
5136                         goto err_put_context;
5137                 /*
5138                  * Do not allow to attach to a group in a different
5139                  * task or CPU context:
5140                  */
5141                 if (group_leader->ctx != ctx)
5142                         goto err_put_context;
5143                 /*
5144                  * Only a group leader can be exclusive or pinned
5145                  */
5146                 if (attr.exclusive || attr.pinned)
5147                         goto err_put_context;
5148         }
5149
5150         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5151                                      NULL, NULL, GFP_KERNEL);
5152         if (IS_ERR(event)) {
5153                 err = PTR_ERR(event);
5154                 goto err_put_context;
5155         }
5156
5157         if (output_event) {
5158                 err = perf_event_set_output(event, output_event);
5159                 if (err)
5160                         goto err_free_put_context;
5161         }
5162
5163         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5164         if (IS_ERR(event_file)) {
5165                 err = PTR_ERR(event_file);
5166                 goto err_free_put_context;
5167         }
5168
5169         event->filp = event_file;
5170         WARN_ON_ONCE(ctx->parent_ctx);
5171         mutex_lock(&ctx->mutex);
5172         perf_install_in_context(ctx, event, cpu);
5173         ++ctx->generation;
5174         mutex_unlock(&ctx->mutex);
5175
5176         event->owner = current;
5177         get_task_struct(current);
5178         mutex_lock(&current->perf_event_mutex);
5179         list_add_tail(&event->owner_entry, &current->perf_event_list);
5180         mutex_unlock(&current->perf_event_mutex);
5181
5182         /*
5183          * Drop the reference on the group_event after placing the
5184          * new event on the sibling_list. This ensures destruction
5185          * of the group leader will find the pointer to itself in
5186          * perf_group_detach().
5187          */
5188         fput_light(group_file, fput_needed);
5189         fd_install(event_fd, event_file);
5190         return event_fd;
5191
5192 err_free_put_context:
5193         free_event(event);
5194 err_put_context:
5195         fput_light(group_file, fput_needed);
5196         put_ctx(ctx);
5197 err_fd:
5198         put_unused_fd(event_fd);
5199         return err;
5200 }
5201
5202 /**
5203  * perf_event_create_kernel_counter
5204  *
5205  * @attr: attributes of the counter to create
5206  * @cpu: cpu in which the counter is bound
5207  * @pid: task to profile
5208  */
5209 struct perf_event *
5210 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5211                                  pid_t pid,
5212                                  perf_overflow_handler_t overflow_handler)
5213 {
5214         struct perf_event *event;
5215         struct perf_event_context *ctx;
5216         int err;
5217
5218         /*
5219          * Get the target context (task or percpu):
5220          */
5221
5222         ctx = find_get_context(pid, cpu);
5223         if (IS_ERR(ctx)) {
5224                 err = PTR_ERR(ctx);
5225                 goto err_exit;
5226         }
5227
5228         event = perf_event_alloc(attr, cpu, ctx, NULL,
5229                                  NULL, overflow_handler, GFP_KERNEL);
5230         if (IS_ERR(event)) {
5231                 err = PTR_ERR(event);
5232                 goto err_put_context;
5233         }
5234
5235         event->filp = NULL;
5236         WARN_ON_ONCE(ctx->parent_ctx);
5237         mutex_lock(&ctx->mutex);
5238         perf_install_in_context(ctx, event, cpu);
5239         ++ctx->generation;
5240         mutex_unlock(&ctx->mutex);
5241
5242         event->owner = current;
5243         get_task_struct(current);
5244         mutex_lock(&current->perf_event_mutex);
5245         list_add_tail(&event->owner_entry, &current->perf_event_list);
5246         mutex_unlock(&current->perf_event_mutex);
5247
5248         return event;
5249
5250  err_put_context:
5251         put_ctx(ctx);
5252  err_exit:
5253         return ERR_PTR(err);
5254 }
5255 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5256
5257 /*
5258  * inherit a event from parent task to child task:
5259  */
5260 static struct perf_event *
5261 inherit_event(struct perf_event *parent_event,
5262               struct task_struct *parent,
5263               struct perf_event_context *parent_ctx,
5264               struct task_struct *child,
5265               struct perf_event *group_leader,
5266               struct perf_event_context *child_ctx)
5267 {
5268         struct perf_event *child_event;
5269
5270         /*
5271          * Instead of creating recursive hierarchies of events,
5272          * we link inherited events back to the original parent,
5273          * which has a filp for sure, which we use as the reference
5274          * count:
5275          */
5276         if (parent_event->parent)
5277                 parent_event = parent_event->parent;
5278
5279         child_event = perf_event_alloc(&parent_event->attr,
5280                                            parent_event->cpu, child_ctx,
5281                                            group_leader, parent_event,
5282                                            NULL, GFP_KERNEL);
5283         if (IS_ERR(child_event))
5284                 return child_event;
5285         get_ctx(child_ctx);
5286
5287         /*
5288          * Make the child state follow the state of the parent event,
5289          * not its attr.disabled bit.  We hold the parent's mutex,
5290          * so we won't race with perf_event_{en, dis}able_family.
5291          */
5292         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5293                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5294         else
5295                 child_event->state = PERF_EVENT_STATE_OFF;
5296
5297         if (parent_event->attr.freq) {
5298                 u64 sample_period = parent_event->hw.sample_period;
5299                 struct hw_perf_event *hwc = &child_event->hw;
5300
5301                 hwc->sample_period = sample_period;
5302                 hwc->last_period   = sample_period;
5303
5304                 atomic64_set(&hwc->period_left, sample_period);
5305         }
5306
5307         child_event->overflow_handler = parent_event->overflow_handler;
5308
5309         /*
5310          * Link it up in the child's context:
5311          */
5312         add_event_to_ctx(child_event, child_ctx);
5313
5314         /*
5315          * Get a reference to the parent filp - we will fput it
5316          * when the child event exits. This is safe to do because
5317          * we are in the parent and we know that the filp still
5318          * exists and has a nonzero count:
5319          */
5320         atomic_long_inc(&parent_event->filp->f_count);
5321
5322         /*
5323          * Link this into the parent event's child list
5324          */
5325         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5326         mutex_lock(&parent_event->child_mutex);
5327         list_add_tail(&child_event->child_list, &parent_event->child_list);
5328         mutex_unlock(&parent_event->child_mutex);
5329
5330         return child_event;
5331 }
5332
5333 static int inherit_group(struct perf_event *parent_event,
5334               struct task_struct *parent,
5335               struct perf_event_context *parent_ctx,
5336               struct task_struct *child,
5337               struct perf_event_context *child_ctx)
5338 {
5339         struct perf_event *leader;
5340         struct perf_event *sub;
5341         struct perf_event *child_ctr;
5342
5343         leader = inherit_event(parent_event, parent, parent_ctx,
5344                                  child, NULL, child_ctx);
5345         if (IS_ERR(leader))
5346                 return PTR_ERR(leader);
5347         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5348                 child_ctr = inherit_event(sub, parent, parent_ctx,
5349                                             child, leader, child_ctx);
5350                 if (IS_ERR(child_ctr))
5351                         return PTR_ERR(child_ctr);
5352         }
5353         return 0;
5354 }
5355
5356 static void sync_child_event(struct perf_event *child_event,
5357                                struct task_struct *child)
5358 {
5359         struct perf_event *parent_event = child_event->parent;
5360         u64 child_val;
5361
5362         if (child_event->attr.inherit_stat)
5363                 perf_event_read_event(child_event, child);
5364
5365         child_val = atomic64_read(&child_event->count);
5366
5367         /*
5368          * Add back the child's count to the parent's count:
5369          */
5370         atomic64_add(child_val, &parent_event->count);
5371         atomic64_add(child_event->total_time_enabled,
5372                      &parent_event->child_total_time_enabled);
5373         atomic64_add(child_event->total_time_running,
5374                      &parent_event->child_total_time_running);
5375
5376         /*
5377          * Remove this event from the parent's list
5378          */
5379         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5380         mutex_lock(&parent_event->child_mutex);
5381         list_del_init(&child_event->child_list);
5382         mutex_unlock(&parent_event->child_mutex);
5383
5384         /*
5385          * Release the parent event, if this was the last
5386          * reference to it.
5387          */
5388         fput(parent_event->filp);
5389 }
5390
5391 static void
5392 __perf_event_exit_task(struct perf_event *child_event,
5393                          struct perf_event_context *child_ctx,
5394                          struct task_struct *child)
5395 {
5396         struct perf_event *parent_event;
5397
5398         perf_event_remove_from_context(child_event);
5399
5400         parent_event = child_event->parent;
5401         /*
5402          * It can happen that parent exits first, and has events
5403          * that are still around due to the child reference. These
5404          * events need to be zapped - but otherwise linger.
5405          */
5406         if (parent_event) {
5407                 sync_child_event(child_event, child);
5408                 free_event(child_event);
5409         }
5410 }
5411
5412 /*
5413  * When a child task exits, feed back event values to parent events.
5414  */
5415 void perf_event_exit_task(struct task_struct *child)
5416 {
5417         struct perf_event *child_event, *tmp;
5418         struct perf_event_context *child_ctx;
5419         unsigned long flags;
5420
5421         if (likely(!child->perf_event_ctxp)) {
5422                 perf_event_task(child, NULL, 0);
5423                 return;
5424         }
5425
5426         local_irq_save(flags);
5427         /*
5428          * We can't reschedule here because interrupts are disabled,
5429          * and either child is current or it is a task that can't be
5430          * scheduled, so we are now safe from rescheduling changing
5431          * our context.
5432          */
5433         child_ctx = child->perf_event_ctxp;
5434         __perf_event_task_sched_out(child_ctx);
5435
5436         /*
5437          * Take the context lock here so that if find_get_context is
5438          * reading child->perf_event_ctxp, we wait until it has
5439          * incremented the context's refcount before we do put_ctx below.
5440          */
5441         raw_spin_lock(&child_ctx->lock);
5442         child->perf_event_ctxp = NULL;
5443         /*
5444          * If this context is a clone; unclone it so it can't get
5445          * swapped to another process while we're removing all
5446          * the events from it.
5447          */
5448         unclone_ctx(child_ctx);
5449         update_context_time(child_ctx);
5450         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5451
5452         /*
5453          * Report the task dead after unscheduling the events so that we
5454          * won't get any samples after PERF_RECORD_EXIT. We can however still
5455          * get a few PERF_RECORD_READ events.
5456          */
5457         perf_event_task(child, child_ctx, 0);
5458
5459         /*
5460          * We can recurse on the same lock type through:
5461          *
5462          *   __perf_event_exit_task()
5463          *     sync_child_event()
5464          *       fput(parent_event->filp)
5465          *         perf_release()
5466          *           mutex_lock(&ctx->mutex)
5467          *
5468          * But since its the parent context it won't be the same instance.
5469          */
5470         mutex_lock(&child_ctx->mutex);
5471
5472 again:
5473         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5474                                  group_entry)
5475                 __perf_event_exit_task(child_event, child_ctx, child);
5476
5477         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5478                                  group_entry)
5479                 __perf_event_exit_task(child_event, child_ctx, child);
5480
5481         /*
5482          * If the last event was a group event, it will have appended all
5483          * its siblings to the list, but we obtained 'tmp' before that which
5484          * will still point to the list head terminating the iteration.
5485          */
5486         if (!list_empty(&child_ctx->pinned_groups) ||
5487             !list_empty(&child_ctx->flexible_groups))
5488                 goto again;
5489
5490         mutex_unlock(&child_ctx->mutex);
5491
5492         put_ctx(child_ctx);
5493 }
5494
5495 static void perf_free_event(struct perf_event *event,
5496                             struct perf_event_context *ctx)
5497 {
5498         struct perf_event *parent = event->parent;
5499
5500         if (WARN_ON_ONCE(!parent))
5501                 return;
5502
5503         mutex_lock(&parent->child_mutex);
5504         list_del_init(&event->child_list);
5505         mutex_unlock(&parent->child_mutex);
5506
5507         fput(parent->filp);
5508
5509         perf_group_detach(event);
5510         list_del_event(event, ctx);
5511         free_event(event);
5512 }
5513
5514 /*
5515  * free an unexposed, unused context as created by inheritance by
5516  * init_task below, used by fork() in case of fail.
5517  */
5518 void perf_event_free_task(struct task_struct *task)
5519 {
5520         struct perf_event_context *ctx = task->perf_event_ctxp;
5521         struct perf_event *event, *tmp;
5522
5523         if (!ctx)
5524                 return;
5525
5526         mutex_lock(&ctx->mutex);
5527 again:
5528         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5529                 perf_free_event(event, ctx);
5530
5531         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5532                                  group_entry)
5533                 perf_free_event(event, ctx);
5534
5535         if (!list_empty(&ctx->pinned_groups) ||
5536             !list_empty(&ctx->flexible_groups))
5537                 goto again;
5538
5539         mutex_unlock(&ctx->mutex);
5540
5541         put_ctx(ctx);
5542 }
5543
5544 static int
5545 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5546                    struct perf_event_context *parent_ctx,
5547                    struct task_struct *child,
5548                    int *inherited_all)
5549 {
5550         int ret;
5551         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5552
5553         if (!event->attr.inherit) {
5554                 *inherited_all = 0;
5555                 return 0;
5556         }
5557
5558         if (!child_ctx) {
5559                 /*
5560                  * This is executed from the parent task context, so
5561                  * inherit events that have been marked for cloning.
5562                  * First allocate and initialize a context for the
5563                  * child.
5564                  */
5565
5566                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5567                                     GFP_KERNEL);
5568                 if (!child_ctx)
5569                         return -ENOMEM;
5570
5571                 __perf_event_init_context(child_ctx, child);
5572                 child->perf_event_ctxp = child_ctx;
5573                 get_task_struct(child);
5574         }
5575
5576         ret = inherit_group(event, parent, parent_ctx,
5577                             child, child_ctx);
5578
5579         if (ret)
5580                 *inherited_all = 0;
5581
5582         return ret;
5583 }
5584
5585
5586 /*
5587  * Initialize the perf_event context in task_struct
5588  */
5589 int perf_event_init_task(struct task_struct *child)
5590 {
5591         struct perf_event_context *child_ctx, *parent_ctx;
5592         struct perf_event_context *cloned_ctx;
5593         struct perf_event *event;
5594         struct task_struct *parent = current;
5595         int inherited_all = 1;
5596         int ret = 0;
5597
5598         child->perf_event_ctxp = NULL;
5599
5600         mutex_init(&child->perf_event_mutex);
5601         INIT_LIST_HEAD(&child->perf_event_list);
5602
5603         if (likely(!parent->perf_event_ctxp))
5604                 return 0;
5605
5606         /*
5607          * If the parent's context is a clone, pin it so it won't get
5608          * swapped under us.
5609          */
5610         parent_ctx = perf_pin_task_context(parent);
5611
5612         /*
5613          * No need to check if parent_ctx != NULL here; since we saw
5614          * it non-NULL earlier, the only reason for it to become NULL
5615          * is if we exit, and since we're currently in the middle of
5616          * a fork we can't be exiting at the same time.
5617          */
5618
5619         /*
5620          * Lock the parent list. No need to lock the child - not PID
5621          * hashed yet and not running, so nobody can access it.
5622          */
5623         mutex_lock(&parent_ctx->mutex);
5624
5625         /*
5626          * We dont have to disable NMIs - we are only looking at
5627          * the list, not manipulating it:
5628          */
5629         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5630                 ret = inherit_task_group(event, parent, parent_ctx, child,
5631                                          &inherited_all);
5632                 if (ret)
5633                         break;
5634         }
5635
5636         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5637                 ret = inherit_task_group(event, parent, parent_ctx, child,
5638                                          &inherited_all);
5639                 if (ret)
5640                         break;
5641         }
5642
5643         child_ctx = child->perf_event_ctxp;
5644
5645         if (child_ctx && inherited_all) {
5646                 /*
5647                  * Mark the child context as a clone of the parent
5648                  * context, or of whatever the parent is a clone of.
5649                  * Note that if the parent is a clone, it could get
5650                  * uncloned at any point, but that doesn't matter
5651                  * because the list of events and the generation
5652                  * count can't have changed since we took the mutex.
5653                  */
5654                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5655                 if (cloned_ctx) {
5656                         child_ctx->parent_ctx = cloned_ctx;
5657                         child_ctx->parent_gen = parent_ctx->parent_gen;
5658                 } else {
5659                         child_ctx->parent_ctx = parent_ctx;
5660                         child_ctx->parent_gen = parent_ctx->generation;
5661                 }
5662                 get_ctx(child_ctx->parent_ctx);
5663         }
5664
5665         mutex_unlock(&parent_ctx->mutex);
5666
5667         perf_unpin_context(parent_ctx);
5668
5669         return ret;
5670 }
5671
5672 static void __init perf_event_init_all_cpus(void)
5673 {
5674         int cpu;
5675         struct perf_cpu_context *cpuctx;
5676
5677         for_each_possible_cpu(cpu) {
5678                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5679                 mutex_init(&cpuctx->hlist_mutex);
5680                 __perf_event_init_context(&cpuctx->ctx, NULL);
5681         }
5682 }
5683
5684 static void __cpuinit perf_event_init_cpu(int cpu)
5685 {
5686         struct perf_cpu_context *cpuctx;
5687
5688         cpuctx = &per_cpu(perf_cpu_context, cpu);
5689
5690         spin_lock(&perf_resource_lock);
5691         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5692         spin_unlock(&perf_resource_lock);
5693
5694         mutex_lock(&cpuctx->hlist_mutex);
5695         if (cpuctx->hlist_refcount > 0) {
5696                 struct swevent_hlist *hlist;
5697
5698                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5699                 WARN_ON_ONCE(!hlist);
5700                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5701         }
5702         mutex_unlock(&cpuctx->hlist_mutex);
5703 }
5704
5705 #ifdef CONFIG_HOTPLUG_CPU
5706 static void __perf_event_exit_cpu(void *info)
5707 {
5708         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5709         struct perf_event_context *ctx = &cpuctx->ctx;
5710         struct perf_event *event, *tmp;
5711
5712         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5713                 __perf_event_remove_from_context(event);
5714         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5715                 __perf_event_remove_from_context(event);
5716 }
5717 static void perf_event_exit_cpu(int cpu)
5718 {
5719         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5720         struct perf_event_context *ctx = &cpuctx->ctx;
5721
5722         mutex_lock(&cpuctx->hlist_mutex);
5723         swevent_hlist_release(cpuctx);
5724         mutex_unlock(&cpuctx->hlist_mutex);
5725
5726         mutex_lock(&ctx->mutex);
5727         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5728         mutex_unlock(&ctx->mutex);
5729 }
5730 #else
5731 static inline void perf_event_exit_cpu(int cpu) { }
5732 #endif
5733
5734 static int __cpuinit
5735 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5736 {
5737         unsigned int cpu = (long)hcpu;
5738
5739         switch (action) {
5740
5741         case CPU_UP_PREPARE:
5742         case CPU_UP_PREPARE_FROZEN:
5743                 perf_event_init_cpu(cpu);
5744                 break;
5745
5746         case CPU_DOWN_PREPARE:
5747         case CPU_DOWN_PREPARE_FROZEN:
5748                 perf_event_exit_cpu(cpu);
5749                 break;
5750
5751         default:
5752                 break;
5753         }
5754
5755         return NOTIFY_OK;
5756 }
5757
5758 /*
5759  * This has to have a higher priority than migration_notifier in sched.c.
5760  */
5761 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5762         .notifier_call          = perf_cpu_notify,
5763         .priority               = 20,
5764 };
5765
5766 void __init perf_event_init(void)
5767 {
5768         perf_event_init_all_cpus();
5769         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5770                         (void *)(long)smp_processor_id());
5771         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5772                         (void *)(long)smp_processor_id());
5773         register_cpu_notifier(&perf_cpu_nb);
5774 }
5775
5776 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5777                                         struct sysdev_class_attribute *attr,
5778                                         char *buf)
5779 {
5780         return sprintf(buf, "%d\n", perf_reserved_percpu);
5781 }
5782
5783 static ssize_t
5784 perf_set_reserve_percpu(struct sysdev_class *class,
5785                         struct sysdev_class_attribute *attr,
5786                         const char *buf,
5787                         size_t count)
5788 {
5789         struct perf_cpu_context *cpuctx;
5790         unsigned long val;
5791         int err, cpu, mpt;
5792
5793         err = strict_strtoul(buf, 10, &val);
5794         if (err)
5795                 return err;
5796         if (val > perf_max_events)
5797                 return -EINVAL;
5798
5799         spin_lock(&perf_resource_lock);
5800         perf_reserved_percpu = val;
5801         for_each_online_cpu(cpu) {
5802                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5803                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5804                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5805                           perf_max_events - perf_reserved_percpu);
5806                 cpuctx->max_pertask = mpt;
5807                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5808         }
5809         spin_unlock(&perf_resource_lock);
5810
5811         return count;
5812 }
5813
5814 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5815                                     struct sysdev_class_attribute *attr,
5816                                     char *buf)
5817 {
5818         return sprintf(buf, "%d\n", perf_overcommit);
5819 }
5820
5821 static ssize_t
5822 perf_set_overcommit(struct sysdev_class *class,
5823                     struct sysdev_class_attribute *attr,
5824                     const char *buf, size_t count)
5825 {
5826         unsigned long val;
5827         int err;
5828
5829         err = strict_strtoul(buf, 10, &val);
5830         if (err)
5831                 return err;
5832         if (val > 1)
5833                 return -EINVAL;
5834
5835         spin_lock(&perf_resource_lock);
5836         perf_overcommit = val;
5837         spin_unlock(&perf_resource_lock);
5838
5839         return count;
5840 }
5841
5842 static SYSDEV_CLASS_ATTR(
5843                                 reserve_percpu,
5844                                 0644,
5845                                 perf_show_reserve_percpu,
5846                                 perf_set_reserve_percpu
5847                         );
5848
5849 static SYSDEV_CLASS_ATTR(
5850                                 overcommit,
5851                                 0644,
5852                                 perf_show_overcommit,
5853                                 perf_set_overcommit
5854                         );
5855
5856 static struct attribute *perfclass_attrs[] = {
5857         &attr_reserve_percpu.attr,
5858         &attr_overcommit.attr,
5859         NULL
5860 };
5861
5862 static struct attribute_group perfclass_attr_group = {
5863         .attrs                  = perfclass_attrs,
5864         .name                   = "perf_events",
5865 };
5866
5867 static int __init perf_event_sysfs_init(void)
5868 {
5869         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5870                                   &perfclass_attr_group);
5871 }
5872 device_initcall(perf_event_sysfs_init);