perfcounters: rename struct hw_perf_counter_ops into struct pmu
[linux-2.6-block.git] / kernel / perf_counter.c
1 /*
2  * Performance counter core code
3  *
4  *  Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6  *
7  *
8  *  For licensing details see kernel-base/COPYING
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33  * Each CPU has a list of per CPU counters:
34  */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 static atomic_t nr_mmap_tracking __read_mostly;
42 static atomic_t nr_munmap_tracking __read_mostly;
43 static atomic_t nr_comm_tracking __read_mostly;
44
45 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
46
47 /*
48  * Mutex for (sysadmin-configurable) counter reservations:
49  */
50 static DEFINE_MUTEX(perf_resource_mutex);
51
52 /*
53  * Architecture provided APIs - weak aliases:
54  */
55 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
56 {
57         return NULL;
58 }
59
60 u64 __weak hw_perf_save_disable(void)           { return 0; }
61 void __weak hw_perf_restore(u64 ctrl)           { barrier(); }
62 void __weak hw_perf_counter_setup(int cpu)      { barrier(); }
63 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
64                struct perf_cpu_context *cpuctx,
65                struct perf_counter_context *ctx, int cpu)
66 {
67         return 0;
68 }
69
70 void __weak perf_counter_print_debug(void)      { }
71
72 static void
73 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
74 {
75         struct perf_counter *group_leader = counter->group_leader;
76
77         /*
78          * Depending on whether it is a standalone or sibling counter,
79          * add it straight to the context's counter list, or to the group
80          * leader's sibling list:
81          */
82         if (counter->group_leader == counter)
83                 list_add_tail(&counter->list_entry, &ctx->counter_list);
84         else {
85                 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
86                 group_leader->nr_siblings++;
87         }
88
89         list_add_rcu(&counter->event_entry, &ctx->event_list);
90 }
91
92 static void
93 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
94 {
95         struct perf_counter *sibling, *tmp;
96
97         list_del_init(&counter->list_entry);
98         list_del_rcu(&counter->event_entry);
99
100         if (counter->group_leader != counter)
101                 counter->group_leader->nr_siblings--;
102
103         /*
104          * If this was a group counter with sibling counters then
105          * upgrade the siblings to singleton counters by adding them
106          * to the context list directly:
107          */
108         list_for_each_entry_safe(sibling, tmp,
109                                  &counter->sibling_list, list_entry) {
110
111                 list_move_tail(&sibling->list_entry, &ctx->counter_list);
112                 sibling->group_leader = sibling;
113         }
114 }
115
116 static void
117 counter_sched_out(struct perf_counter *counter,
118                   struct perf_cpu_context *cpuctx,
119                   struct perf_counter_context *ctx)
120 {
121         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
122                 return;
123
124         counter->state = PERF_COUNTER_STATE_INACTIVE;
125         counter->tstamp_stopped = ctx->time;
126         counter->pmu->disable(counter);
127         counter->oncpu = -1;
128
129         if (!is_software_counter(counter))
130                 cpuctx->active_oncpu--;
131         ctx->nr_active--;
132         if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
133                 cpuctx->exclusive = 0;
134 }
135
136 static void
137 group_sched_out(struct perf_counter *group_counter,
138                 struct perf_cpu_context *cpuctx,
139                 struct perf_counter_context *ctx)
140 {
141         struct perf_counter *counter;
142
143         if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
144                 return;
145
146         counter_sched_out(group_counter, cpuctx, ctx);
147
148         /*
149          * Schedule out siblings (if any):
150          */
151         list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
152                 counter_sched_out(counter, cpuctx, ctx);
153
154         if (group_counter->hw_event.exclusive)
155                 cpuctx->exclusive = 0;
156 }
157
158 /*
159  * Cross CPU call to remove a performance counter
160  *
161  * We disable the counter on the hardware level first. After that we
162  * remove it from the context list.
163  */
164 static void __perf_counter_remove_from_context(void *info)
165 {
166         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
167         struct perf_counter *counter = info;
168         struct perf_counter_context *ctx = counter->ctx;
169         unsigned long flags;
170         u64 perf_flags;
171
172         /*
173          * If this is a task context, we need to check whether it is
174          * the current task context of this cpu. If not it has been
175          * scheduled out before the smp call arrived.
176          */
177         if (ctx->task && cpuctx->task_ctx != ctx)
178                 return;
179
180         spin_lock_irqsave(&ctx->lock, flags);
181
182         counter_sched_out(counter, cpuctx, ctx);
183
184         counter->task = NULL;
185         ctx->nr_counters--;
186
187         /*
188          * Protect the list operation against NMI by disabling the
189          * counters on a global level. NOP for non NMI based counters.
190          */
191         perf_flags = hw_perf_save_disable();
192         list_del_counter(counter, ctx);
193         hw_perf_restore(perf_flags);
194
195         if (!ctx->task) {
196                 /*
197                  * Allow more per task counters with respect to the
198                  * reservation:
199                  */
200                 cpuctx->max_pertask =
201                         min(perf_max_counters - ctx->nr_counters,
202                             perf_max_counters - perf_reserved_percpu);
203         }
204
205         spin_unlock_irqrestore(&ctx->lock, flags);
206 }
207
208
209 /*
210  * Remove the counter from a task's (or a CPU's) list of counters.
211  *
212  * Must be called with counter->mutex and ctx->mutex held.
213  *
214  * CPU counters are removed with a smp call. For task counters we only
215  * call when the task is on a CPU.
216  */
217 static void perf_counter_remove_from_context(struct perf_counter *counter)
218 {
219         struct perf_counter_context *ctx = counter->ctx;
220         struct task_struct *task = ctx->task;
221
222         if (!task) {
223                 /*
224                  * Per cpu counters are removed via an smp call and
225                  * the removal is always sucessful.
226                  */
227                 smp_call_function_single(counter->cpu,
228                                          __perf_counter_remove_from_context,
229                                          counter, 1);
230                 return;
231         }
232
233 retry:
234         task_oncpu_function_call(task, __perf_counter_remove_from_context,
235                                  counter);
236
237         spin_lock_irq(&ctx->lock);
238         /*
239          * If the context is active we need to retry the smp call.
240          */
241         if (ctx->nr_active && !list_empty(&counter->list_entry)) {
242                 spin_unlock_irq(&ctx->lock);
243                 goto retry;
244         }
245
246         /*
247          * The lock prevents that this context is scheduled in so we
248          * can remove the counter safely, if the call above did not
249          * succeed.
250          */
251         if (!list_empty(&counter->list_entry)) {
252                 ctx->nr_counters--;
253                 list_del_counter(counter, ctx);
254                 counter->task = NULL;
255         }
256         spin_unlock_irq(&ctx->lock);
257 }
258
259 static inline u64 perf_clock(void)
260 {
261         return cpu_clock(smp_processor_id());
262 }
263
264 /*
265  * Update the record of the current time in a context.
266  */
267 static void update_context_time(struct perf_counter_context *ctx)
268 {
269         u64 now = perf_clock();
270
271         ctx->time += now - ctx->timestamp;
272         ctx->timestamp = now;
273 }
274
275 /*
276  * Update the total_time_enabled and total_time_running fields for a counter.
277  */
278 static void update_counter_times(struct perf_counter *counter)
279 {
280         struct perf_counter_context *ctx = counter->ctx;
281         u64 run_end;
282
283         if (counter->state < PERF_COUNTER_STATE_INACTIVE)
284                 return;
285
286         counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
287
288         if (counter->state == PERF_COUNTER_STATE_INACTIVE)
289                 run_end = counter->tstamp_stopped;
290         else
291                 run_end = ctx->time;
292
293         counter->total_time_running = run_end - counter->tstamp_running;
294 }
295
296 /*
297  * Update total_time_enabled and total_time_running for all counters in a group.
298  */
299 static void update_group_times(struct perf_counter *leader)
300 {
301         struct perf_counter *counter;
302
303         update_counter_times(leader);
304         list_for_each_entry(counter, &leader->sibling_list, list_entry)
305                 update_counter_times(counter);
306 }
307
308 /*
309  * Cross CPU call to disable a performance counter
310  */
311 static void __perf_counter_disable(void *info)
312 {
313         struct perf_counter *counter = info;
314         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
315         struct perf_counter_context *ctx = counter->ctx;
316         unsigned long flags;
317
318         /*
319          * If this is a per-task counter, need to check whether this
320          * counter's task is the current task on this cpu.
321          */
322         if (ctx->task && cpuctx->task_ctx != ctx)
323                 return;
324
325         spin_lock_irqsave(&ctx->lock, flags);
326
327         /*
328          * If the counter is on, turn it off.
329          * If it is in error state, leave it in error state.
330          */
331         if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
332                 update_context_time(ctx);
333                 update_counter_times(counter);
334                 if (counter == counter->group_leader)
335                         group_sched_out(counter, cpuctx, ctx);
336                 else
337                         counter_sched_out(counter, cpuctx, ctx);
338                 counter->state = PERF_COUNTER_STATE_OFF;
339         }
340
341         spin_unlock_irqrestore(&ctx->lock, flags);
342 }
343
344 /*
345  * Disable a counter.
346  */
347 static void perf_counter_disable(struct perf_counter *counter)
348 {
349         struct perf_counter_context *ctx = counter->ctx;
350         struct task_struct *task = ctx->task;
351
352         if (!task) {
353                 /*
354                  * Disable the counter on the cpu that it's on
355                  */
356                 smp_call_function_single(counter->cpu, __perf_counter_disable,
357                                          counter, 1);
358                 return;
359         }
360
361  retry:
362         task_oncpu_function_call(task, __perf_counter_disable, counter);
363
364         spin_lock_irq(&ctx->lock);
365         /*
366          * If the counter is still active, we need to retry the cross-call.
367          */
368         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
369                 spin_unlock_irq(&ctx->lock);
370                 goto retry;
371         }
372
373         /*
374          * Since we have the lock this context can't be scheduled
375          * in, so we can change the state safely.
376          */
377         if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
378                 update_counter_times(counter);
379                 counter->state = PERF_COUNTER_STATE_OFF;
380         }
381
382         spin_unlock_irq(&ctx->lock);
383 }
384
385 /*
386  * Disable a counter and all its children.
387  */
388 static void perf_counter_disable_family(struct perf_counter *counter)
389 {
390         struct perf_counter *child;
391
392         perf_counter_disable(counter);
393
394         /*
395          * Lock the mutex to protect the list of children
396          */
397         mutex_lock(&counter->mutex);
398         list_for_each_entry(child, &counter->child_list, child_list)
399                 perf_counter_disable(child);
400         mutex_unlock(&counter->mutex);
401 }
402
403 static int
404 counter_sched_in(struct perf_counter *counter,
405                  struct perf_cpu_context *cpuctx,
406                  struct perf_counter_context *ctx,
407                  int cpu)
408 {
409         if (counter->state <= PERF_COUNTER_STATE_OFF)
410                 return 0;
411
412         counter->state = PERF_COUNTER_STATE_ACTIVE;
413         counter->oncpu = cpu;   /* TODO: put 'cpu' into cpuctx->cpu */
414         /*
415          * The new state must be visible before we turn it on in the hardware:
416          */
417         smp_wmb();
418
419         if (counter->pmu->enable(counter)) {
420                 counter->state = PERF_COUNTER_STATE_INACTIVE;
421                 counter->oncpu = -1;
422                 return -EAGAIN;
423         }
424
425         counter->tstamp_running += ctx->time - counter->tstamp_stopped;
426
427         if (!is_software_counter(counter))
428                 cpuctx->active_oncpu++;
429         ctx->nr_active++;
430
431         if (counter->hw_event.exclusive)
432                 cpuctx->exclusive = 1;
433
434         return 0;
435 }
436
437 /*
438  * Return 1 for a group consisting entirely of software counters,
439  * 0 if the group contains any hardware counters.
440  */
441 static int is_software_only_group(struct perf_counter *leader)
442 {
443         struct perf_counter *counter;
444
445         if (!is_software_counter(leader))
446                 return 0;
447
448         list_for_each_entry(counter, &leader->sibling_list, list_entry)
449                 if (!is_software_counter(counter))
450                         return 0;
451
452         return 1;
453 }
454
455 /*
456  * Work out whether we can put this counter group on the CPU now.
457  */
458 static int group_can_go_on(struct perf_counter *counter,
459                            struct perf_cpu_context *cpuctx,
460                            int can_add_hw)
461 {
462         /*
463          * Groups consisting entirely of software counters can always go on.
464          */
465         if (is_software_only_group(counter))
466                 return 1;
467         /*
468          * If an exclusive group is already on, no other hardware
469          * counters can go on.
470          */
471         if (cpuctx->exclusive)
472                 return 0;
473         /*
474          * If this group is exclusive and there are already
475          * counters on the CPU, it can't go on.
476          */
477         if (counter->hw_event.exclusive && cpuctx->active_oncpu)
478                 return 0;
479         /*
480          * Otherwise, try to add it if all previous groups were able
481          * to go on.
482          */
483         return can_add_hw;
484 }
485
486 static void add_counter_to_ctx(struct perf_counter *counter,
487                                struct perf_counter_context *ctx)
488 {
489         list_add_counter(counter, ctx);
490         ctx->nr_counters++;
491         counter->prev_state = PERF_COUNTER_STATE_OFF;
492         counter->tstamp_enabled = ctx->time;
493         counter->tstamp_running = ctx->time;
494         counter->tstamp_stopped = ctx->time;
495 }
496
497 /*
498  * Cross CPU call to install and enable a performance counter
499  */
500 static void __perf_install_in_context(void *info)
501 {
502         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
503         struct perf_counter *counter = info;
504         struct perf_counter_context *ctx = counter->ctx;
505         struct perf_counter *leader = counter->group_leader;
506         int cpu = smp_processor_id();
507         unsigned long flags;
508         u64 perf_flags;
509         int err;
510
511         /*
512          * If this is a task context, we need to check whether it is
513          * the current task context of this cpu. If not it has been
514          * scheduled out before the smp call arrived.
515          */
516         if (ctx->task && cpuctx->task_ctx != ctx)
517                 return;
518
519         spin_lock_irqsave(&ctx->lock, flags);
520         update_context_time(ctx);
521
522         /*
523          * Protect the list operation against NMI by disabling the
524          * counters on a global level. NOP for non NMI based counters.
525          */
526         perf_flags = hw_perf_save_disable();
527
528         add_counter_to_ctx(counter, ctx);
529
530         /*
531          * Don't put the counter on if it is disabled or if
532          * it is in a group and the group isn't on.
533          */
534         if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
535             (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
536                 goto unlock;
537
538         /*
539          * An exclusive counter can't go on if there are already active
540          * hardware counters, and no hardware counter can go on if there
541          * is already an exclusive counter on.
542          */
543         if (!group_can_go_on(counter, cpuctx, 1))
544                 err = -EEXIST;
545         else
546                 err = counter_sched_in(counter, cpuctx, ctx, cpu);
547
548         if (err) {
549                 /*
550                  * This counter couldn't go on.  If it is in a group
551                  * then we have to pull the whole group off.
552                  * If the counter group is pinned then put it in error state.
553                  */
554                 if (leader != counter)
555                         group_sched_out(leader, cpuctx, ctx);
556                 if (leader->hw_event.pinned) {
557                         update_group_times(leader);
558                         leader->state = PERF_COUNTER_STATE_ERROR;
559                 }
560         }
561
562         if (!err && !ctx->task && cpuctx->max_pertask)
563                 cpuctx->max_pertask--;
564
565  unlock:
566         hw_perf_restore(perf_flags);
567
568         spin_unlock_irqrestore(&ctx->lock, flags);
569 }
570
571 /*
572  * Attach a performance counter to a context
573  *
574  * First we add the counter to the list with the hardware enable bit
575  * in counter->hw_config cleared.
576  *
577  * If the counter is attached to a task which is on a CPU we use a smp
578  * call to enable it in the task context. The task might have been
579  * scheduled away, but we check this in the smp call again.
580  *
581  * Must be called with ctx->mutex held.
582  */
583 static void
584 perf_install_in_context(struct perf_counter_context *ctx,
585                         struct perf_counter *counter,
586                         int cpu)
587 {
588         struct task_struct *task = ctx->task;
589
590         if (!task) {
591                 /*
592                  * Per cpu counters are installed via an smp call and
593                  * the install is always sucessful.
594                  */
595                 smp_call_function_single(cpu, __perf_install_in_context,
596                                          counter, 1);
597                 return;
598         }
599
600         counter->task = task;
601 retry:
602         task_oncpu_function_call(task, __perf_install_in_context,
603                                  counter);
604
605         spin_lock_irq(&ctx->lock);
606         /*
607          * we need to retry the smp call.
608          */
609         if (ctx->is_active && list_empty(&counter->list_entry)) {
610                 spin_unlock_irq(&ctx->lock);
611                 goto retry;
612         }
613
614         /*
615          * The lock prevents that this context is scheduled in so we
616          * can add the counter safely, if it the call above did not
617          * succeed.
618          */
619         if (list_empty(&counter->list_entry))
620                 add_counter_to_ctx(counter, ctx);
621         spin_unlock_irq(&ctx->lock);
622 }
623
624 /*
625  * Cross CPU call to enable a performance counter
626  */
627 static void __perf_counter_enable(void *info)
628 {
629         struct perf_counter *counter = info;
630         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
631         struct perf_counter_context *ctx = counter->ctx;
632         struct perf_counter *leader = counter->group_leader;
633         unsigned long flags;
634         int err;
635
636         /*
637          * If this is a per-task counter, need to check whether this
638          * counter's task is the current task on this cpu.
639          */
640         if (ctx->task && cpuctx->task_ctx != ctx)
641                 return;
642
643         spin_lock_irqsave(&ctx->lock, flags);
644         update_context_time(ctx);
645
646         counter->prev_state = counter->state;
647         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
648                 goto unlock;
649         counter->state = PERF_COUNTER_STATE_INACTIVE;
650         counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
651
652         /*
653          * If the counter is in a group and isn't the group leader,
654          * then don't put it on unless the group is on.
655          */
656         if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
657                 goto unlock;
658
659         if (!group_can_go_on(counter, cpuctx, 1))
660                 err = -EEXIST;
661         else
662                 err = counter_sched_in(counter, cpuctx, ctx,
663                                        smp_processor_id());
664
665         if (err) {
666                 /*
667                  * If this counter can't go on and it's part of a
668                  * group, then the whole group has to come off.
669                  */
670                 if (leader != counter)
671                         group_sched_out(leader, cpuctx, ctx);
672                 if (leader->hw_event.pinned) {
673                         update_group_times(leader);
674                         leader->state = PERF_COUNTER_STATE_ERROR;
675                 }
676         }
677
678  unlock:
679         spin_unlock_irqrestore(&ctx->lock, flags);
680 }
681
682 /*
683  * Enable a counter.
684  */
685 static void perf_counter_enable(struct perf_counter *counter)
686 {
687         struct perf_counter_context *ctx = counter->ctx;
688         struct task_struct *task = ctx->task;
689
690         if (!task) {
691                 /*
692                  * Enable the counter on the cpu that it's on
693                  */
694                 smp_call_function_single(counter->cpu, __perf_counter_enable,
695                                          counter, 1);
696                 return;
697         }
698
699         spin_lock_irq(&ctx->lock);
700         if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
701                 goto out;
702
703         /*
704          * If the counter is in error state, clear that first.
705          * That way, if we see the counter in error state below, we
706          * know that it has gone back into error state, as distinct
707          * from the task having been scheduled away before the
708          * cross-call arrived.
709          */
710         if (counter->state == PERF_COUNTER_STATE_ERROR)
711                 counter->state = PERF_COUNTER_STATE_OFF;
712
713  retry:
714         spin_unlock_irq(&ctx->lock);
715         task_oncpu_function_call(task, __perf_counter_enable, counter);
716
717         spin_lock_irq(&ctx->lock);
718
719         /*
720          * If the context is active and the counter is still off,
721          * we need to retry the cross-call.
722          */
723         if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
724                 goto retry;
725
726         /*
727          * Since we have the lock this context can't be scheduled
728          * in, so we can change the state safely.
729          */
730         if (counter->state == PERF_COUNTER_STATE_OFF) {
731                 counter->state = PERF_COUNTER_STATE_INACTIVE;
732                 counter->tstamp_enabled =
733                         ctx->time - counter->total_time_enabled;
734         }
735  out:
736         spin_unlock_irq(&ctx->lock);
737 }
738
739 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
740 {
741         atomic_add(refresh, &counter->event_limit);
742         perf_counter_enable(counter);
743 }
744
745 /*
746  * Enable a counter and all its children.
747  */
748 static void perf_counter_enable_family(struct perf_counter *counter)
749 {
750         struct perf_counter *child;
751
752         perf_counter_enable(counter);
753
754         /*
755          * Lock the mutex to protect the list of children
756          */
757         mutex_lock(&counter->mutex);
758         list_for_each_entry(child, &counter->child_list, child_list)
759                 perf_counter_enable(child);
760         mutex_unlock(&counter->mutex);
761 }
762
763 void __perf_counter_sched_out(struct perf_counter_context *ctx,
764                               struct perf_cpu_context *cpuctx)
765 {
766         struct perf_counter *counter;
767         u64 flags;
768
769         spin_lock(&ctx->lock);
770         ctx->is_active = 0;
771         if (likely(!ctx->nr_counters))
772                 goto out;
773         update_context_time(ctx);
774
775         flags = hw_perf_save_disable();
776         if (ctx->nr_active) {
777                 list_for_each_entry(counter, &ctx->counter_list, list_entry)
778                         group_sched_out(counter, cpuctx, ctx);
779         }
780         hw_perf_restore(flags);
781  out:
782         spin_unlock(&ctx->lock);
783 }
784
785 /*
786  * Called from scheduler to remove the counters of the current task,
787  * with interrupts disabled.
788  *
789  * We stop each counter and update the counter value in counter->count.
790  *
791  * This does not protect us against NMI, but disable()
792  * sets the disabled bit in the control field of counter _before_
793  * accessing the counter control register. If a NMI hits, then it will
794  * not restart the counter.
795  */
796 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
797 {
798         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
799         struct perf_counter_context *ctx = &task->perf_counter_ctx;
800         struct pt_regs *regs;
801
802         if (likely(!cpuctx->task_ctx))
803                 return;
804
805         update_context_time(ctx);
806
807         regs = task_pt_regs(task);
808         perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
809         __perf_counter_sched_out(ctx, cpuctx);
810
811         cpuctx->task_ctx = NULL;
812 }
813
814 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
815 {
816         __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
817 }
818
819 static int
820 group_sched_in(struct perf_counter *group_counter,
821                struct perf_cpu_context *cpuctx,
822                struct perf_counter_context *ctx,
823                int cpu)
824 {
825         struct perf_counter *counter, *partial_group;
826         int ret;
827
828         if (group_counter->state == PERF_COUNTER_STATE_OFF)
829                 return 0;
830
831         ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
832         if (ret)
833                 return ret < 0 ? ret : 0;
834
835         group_counter->prev_state = group_counter->state;
836         if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
837                 return -EAGAIN;
838
839         /*
840          * Schedule in siblings as one group (if any):
841          */
842         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
843                 counter->prev_state = counter->state;
844                 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
845                         partial_group = counter;
846                         goto group_error;
847                 }
848         }
849
850         return 0;
851
852 group_error:
853         /*
854          * Groups can be scheduled in as one unit only, so undo any
855          * partial group before returning:
856          */
857         list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
858                 if (counter == partial_group)
859                         break;
860                 counter_sched_out(counter, cpuctx, ctx);
861         }
862         counter_sched_out(group_counter, cpuctx, ctx);
863
864         return -EAGAIN;
865 }
866
867 static void
868 __perf_counter_sched_in(struct perf_counter_context *ctx,
869                         struct perf_cpu_context *cpuctx, int cpu)
870 {
871         struct perf_counter *counter;
872         u64 flags;
873         int can_add_hw = 1;
874
875         spin_lock(&ctx->lock);
876         ctx->is_active = 1;
877         if (likely(!ctx->nr_counters))
878                 goto out;
879
880         ctx->timestamp = perf_clock();
881
882         flags = hw_perf_save_disable();
883
884         /*
885          * First go through the list and put on any pinned groups
886          * in order to give them the best chance of going on.
887          */
888         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
889                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
890                     !counter->hw_event.pinned)
891                         continue;
892                 if (counter->cpu != -1 && counter->cpu != cpu)
893                         continue;
894
895                 if (group_can_go_on(counter, cpuctx, 1))
896                         group_sched_in(counter, cpuctx, ctx, cpu);
897
898                 /*
899                  * If this pinned group hasn't been scheduled,
900                  * put it in error state.
901                  */
902                 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
903                         update_group_times(counter);
904                         counter->state = PERF_COUNTER_STATE_ERROR;
905                 }
906         }
907
908         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
909                 /*
910                  * Ignore counters in OFF or ERROR state, and
911                  * ignore pinned counters since we did them already.
912                  */
913                 if (counter->state <= PERF_COUNTER_STATE_OFF ||
914                     counter->hw_event.pinned)
915                         continue;
916
917                 /*
918                  * Listen to the 'cpu' scheduling filter constraint
919                  * of counters:
920                  */
921                 if (counter->cpu != -1 && counter->cpu != cpu)
922                         continue;
923
924                 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
925                         if (group_sched_in(counter, cpuctx, ctx, cpu))
926                                 can_add_hw = 0;
927                 }
928         }
929         hw_perf_restore(flags);
930  out:
931         spin_unlock(&ctx->lock);
932 }
933
934 /*
935  * Called from scheduler to add the counters of the current task
936  * with interrupts disabled.
937  *
938  * We restore the counter value and then enable it.
939  *
940  * This does not protect us against NMI, but enable()
941  * sets the enabled bit in the control field of counter _before_
942  * accessing the counter control register. If a NMI hits, then it will
943  * keep the counter running.
944  */
945 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
946 {
947         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
948         struct perf_counter_context *ctx = &task->perf_counter_ctx;
949
950         __perf_counter_sched_in(ctx, cpuctx, cpu);
951         cpuctx->task_ctx = ctx;
952 }
953
954 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
955 {
956         struct perf_counter_context *ctx = &cpuctx->ctx;
957
958         __perf_counter_sched_in(ctx, cpuctx, cpu);
959 }
960
961 int perf_counter_task_disable(void)
962 {
963         struct task_struct *curr = current;
964         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
965         struct perf_counter *counter;
966         unsigned long flags;
967         u64 perf_flags;
968         int cpu;
969
970         if (likely(!ctx->nr_counters))
971                 return 0;
972
973         local_irq_save(flags);
974         cpu = smp_processor_id();
975
976         perf_counter_task_sched_out(curr, cpu);
977
978         spin_lock(&ctx->lock);
979
980         /*
981          * Disable all the counters:
982          */
983         perf_flags = hw_perf_save_disable();
984
985         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
986                 if (counter->state != PERF_COUNTER_STATE_ERROR) {
987                         update_group_times(counter);
988                         counter->state = PERF_COUNTER_STATE_OFF;
989                 }
990         }
991
992         hw_perf_restore(perf_flags);
993
994         spin_unlock_irqrestore(&ctx->lock, flags);
995
996         return 0;
997 }
998
999 int perf_counter_task_enable(void)
1000 {
1001         struct task_struct *curr = current;
1002         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1003         struct perf_counter *counter;
1004         unsigned long flags;
1005         u64 perf_flags;
1006         int cpu;
1007
1008         if (likely(!ctx->nr_counters))
1009                 return 0;
1010
1011         local_irq_save(flags);
1012         cpu = smp_processor_id();
1013
1014         perf_counter_task_sched_out(curr, cpu);
1015
1016         spin_lock(&ctx->lock);
1017
1018         /*
1019          * Disable all the counters:
1020          */
1021         perf_flags = hw_perf_save_disable();
1022
1023         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1024                 if (counter->state > PERF_COUNTER_STATE_OFF)
1025                         continue;
1026                 counter->state = PERF_COUNTER_STATE_INACTIVE;
1027                 counter->tstamp_enabled =
1028                         ctx->time - counter->total_time_enabled;
1029                 counter->hw_event.disabled = 0;
1030         }
1031         hw_perf_restore(perf_flags);
1032
1033         spin_unlock(&ctx->lock);
1034
1035         perf_counter_task_sched_in(curr, cpu);
1036
1037         local_irq_restore(flags);
1038
1039         return 0;
1040 }
1041
1042 /*
1043  * Round-robin a context's counters:
1044  */
1045 static void rotate_ctx(struct perf_counter_context *ctx)
1046 {
1047         struct perf_counter *counter;
1048         u64 perf_flags;
1049
1050         if (!ctx->nr_counters)
1051                 return;
1052
1053         spin_lock(&ctx->lock);
1054         /*
1055          * Rotate the first entry last (works just fine for group counters too):
1056          */
1057         perf_flags = hw_perf_save_disable();
1058         list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1059                 list_move_tail(&counter->list_entry, &ctx->counter_list);
1060                 break;
1061         }
1062         hw_perf_restore(perf_flags);
1063
1064         spin_unlock(&ctx->lock);
1065 }
1066
1067 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1068 {
1069         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1070         struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1071         const int rotate_percpu = 0;
1072
1073         if (rotate_percpu)
1074                 perf_counter_cpu_sched_out(cpuctx);
1075         perf_counter_task_sched_out(curr, cpu);
1076
1077         if (rotate_percpu)
1078                 rotate_ctx(&cpuctx->ctx);
1079         rotate_ctx(ctx);
1080
1081         if (rotate_percpu)
1082                 perf_counter_cpu_sched_in(cpuctx, cpu);
1083         perf_counter_task_sched_in(curr, cpu);
1084 }
1085
1086 /*
1087  * Cross CPU call to read the hardware counter
1088  */
1089 static void __read(void *info)
1090 {
1091         struct perf_counter *counter = info;
1092         struct perf_counter_context *ctx = counter->ctx;
1093         unsigned long flags;
1094
1095         local_irq_save(flags);
1096         if (ctx->is_active)
1097                 update_context_time(ctx);
1098         counter->pmu->read(counter);
1099         update_counter_times(counter);
1100         local_irq_restore(flags);
1101 }
1102
1103 static u64 perf_counter_read(struct perf_counter *counter)
1104 {
1105         /*
1106          * If counter is enabled and currently active on a CPU, update the
1107          * value in the counter structure:
1108          */
1109         if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1110                 smp_call_function_single(counter->oncpu,
1111                                          __read, counter, 1);
1112         } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1113                 update_counter_times(counter);
1114         }
1115
1116         return atomic64_read(&counter->count);
1117 }
1118
1119 static void put_context(struct perf_counter_context *ctx)
1120 {
1121         if (ctx->task)
1122                 put_task_struct(ctx->task);
1123 }
1124
1125 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1126 {
1127         struct perf_cpu_context *cpuctx;
1128         struct perf_counter_context *ctx;
1129         struct task_struct *task;
1130
1131         /*
1132          * If cpu is not a wildcard then this is a percpu counter:
1133          */
1134         if (cpu != -1) {
1135                 /* Must be root to operate on a CPU counter: */
1136                 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1137                         return ERR_PTR(-EACCES);
1138
1139                 if (cpu < 0 || cpu > num_possible_cpus())
1140                         return ERR_PTR(-EINVAL);
1141
1142                 /*
1143                  * We could be clever and allow to attach a counter to an
1144                  * offline CPU and activate it when the CPU comes up, but
1145                  * that's for later.
1146                  */
1147                 if (!cpu_isset(cpu, cpu_online_map))
1148                         return ERR_PTR(-ENODEV);
1149
1150                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1151                 ctx = &cpuctx->ctx;
1152
1153                 return ctx;
1154         }
1155
1156         rcu_read_lock();
1157         if (!pid)
1158                 task = current;
1159         else
1160                 task = find_task_by_vpid(pid);
1161         if (task)
1162                 get_task_struct(task);
1163         rcu_read_unlock();
1164
1165         if (!task)
1166                 return ERR_PTR(-ESRCH);
1167
1168         ctx = &task->perf_counter_ctx;
1169         ctx->task = task;
1170
1171         /* Reuse ptrace permission checks for now. */
1172         if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1173                 put_context(ctx);
1174                 return ERR_PTR(-EACCES);
1175         }
1176
1177         return ctx;
1178 }
1179
1180 static void free_counter_rcu(struct rcu_head *head)
1181 {
1182         struct perf_counter *counter;
1183
1184         counter = container_of(head, struct perf_counter, rcu_head);
1185         kfree(counter);
1186 }
1187
1188 static void perf_pending_sync(struct perf_counter *counter);
1189
1190 static void free_counter(struct perf_counter *counter)
1191 {
1192         perf_pending_sync(counter);
1193
1194         if (counter->hw_event.mmap)
1195                 atomic_dec(&nr_mmap_tracking);
1196         if (counter->hw_event.munmap)
1197                 atomic_dec(&nr_munmap_tracking);
1198         if (counter->hw_event.comm)
1199                 atomic_dec(&nr_comm_tracking);
1200
1201         if (counter->destroy)
1202                 counter->destroy(counter);
1203
1204         call_rcu(&counter->rcu_head, free_counter_rcu);
1205 }
1206
1207 /*
1208  * Called when the last reference to the file is gone.
1209  */
1210 static int perf_release(struct inode *inode, struct file *file)
1211 {
1212         struct perf_counter *counter = file->private_data;
1213         struct perf_counter_context *ctx = counter->ctx;
1214
1215         file->private_data = NULL;
1216
1217         mutex_lock(&ctx->mutex);
1218         mutex_lock(&counter->mutex);
1219
1220         perf_counter_remove_from_context(counter);
1221
1222         mutex_unlock(&counter->mutex);
1223         mutex_unlock(&ctx->mutex);
1224
1225         free_counter(counter);
1226         put_context(ctx);
1227
1228         return 0;
1229 }
1230
1231 /*
1232  * Read the performance counter - simple non blocking version for now
1233  */
1234 static ssize_t
1235 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1236 {
1237         u64 values[3];
1238         int n;
1239
1240         /*
1241          * Return end-of-file for a read on a counter that is in
1242          * error state (i.e. because it was pinned but it couldn't be
1243          * scheduled on to the CPU at some point).
1244          */
1245         if (counter->state == PERF_COUNTER_STATE_ERROR)
1246                 return 0;
1247
1248         mutex_lock(&counter->mutex);
1249         values[0] = perf_counter_read(counter);
1250         n = 1;
1251         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1252                 values[n++] = counter->total_time_enabled +
1253                         atomic64_read(&counter->child_total_time_enabled);
1254         if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1255                 values[n++] = counter->total_time_running +
1256                         atomic64_read(&counter->child_total_time_running);
1257         mutex_unlock(&counter->mutex);
1258
1259         if (count < n * sizeof(u64))
1260                 return -EINVAL;
1261         count = n * sizeof(u64);
1262
1263         if (copy_to_user(buf, values, count))
1264                 return -EFAULT;
1265
1266         return count;
1267 }
1268
1269 static ssize_t
1270 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1271 {
1272         struct perf_counter *counter = file->private_data;
1273
1274         return perf_read_hw(counter, buf, count);
1275 }
1276
1277 static unsigned int perf_poll(struct file *file, poll_table *wait)
1278 {
1279         struct perf_counter *counter = file->private_data;
1280         struct perf_mmap_data *data;
1281         unsigned int events;
1282
1283         rcu_read_lock();
1284         data = rcu_dereference(counter->data);
1285         if (data)
1286                 events = atomic_xchg(&data->wakeup, 0);
1287         else
1288                 events = POLL_HUP;
1289         rcu_read_unlock();
1290
1291         poll_wait(file, &counter->waitq, wait);
1292
1293         return events;
1294 }
1295
1296 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1297 {
1298         struct perf_counter *counter = file->private_data;
1299         int err = 0;
1300
1301         switch (cmd) {
1302         case PERF_COUNTER_IOC_ENABLE:
1303                 perf_counter_enable_family(counter);
1304                 break;
1305         case PERF_COUNTER_IOC_DISABLE:
1306                 perf_counter_disable_family(counter);
1307                 break;
1308         case PERF_COUNTER_IOC_REFRESH:
1309                 perf_counter_refresh(counter, arg);
1310                 break;
1311         default:
1312                 err = -ENOTTY;
1313         }
1314         return err;
1315 }
1316
1317 /*
1318  * Callers need to ensure there can be no nesting of this function, otherwise
1319  * the seqlock logic goes bad. We can not serialize this because the arch
1320  * code calls this from NMI context.
1321  */
1322 void perf_counter_update_userpage(struct perf_counter *counter)
1323 {
1324         struct perf_mmap_data *data;
1325         struct perf_counter_mmap_page *userpg;
1326
1327         rcu_read_lock();
1328         data = rcu_dereference(counter->data);
1329         if (!data)
1330                 goto unlock;
1331
1332         userpg = data->user_page;
1333
1334         /*
1335          * Disable preemption so as to not let the corresponding user-space
1336          * spin too long if we get preempted.
1337          */
1338         preempt_disable();
1339         ++userpg->lock;
1340         barrier();
1341         userpg->index = counter->hw.idx;
1342         userpg->offset = atomic64_read(&counter->count);
1343         if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1344                 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1345
1346         barrier();
1347         ++userpg->lock;
1348         preempt_enable();
1349 unlock:
1350         rcu_read_unlock();
1351 }
1352
1353 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1354 {
1355         struct perf_counter *counter = vma->vm_file->private_data;
1356         struct perf_mmap_data *data;
1357         int ret = VM_FAULT_SIGBUS;
1358
1359         rcu_read_lock();
1360         data = rcu_dereference(counter->data);
1361         if (!data)
1362                 goto unlock;
1363
1364         if (vmf->pgoff == 0) {
1365                 vmf->page = virt_to_page(data->user_page);
1366         } else {
1367                 int nr = vmf->pgoff - 1;
1368
1369                 if ((unsigned)nr > data->nr_pages)
1370                         goto unlock;
1371
1372                 vmf->page = virt_to_page(data->data_pages[nr]);
1373         }
1374         get_page(vmf->page);
1375         ret = 0;
1376 unlock:
1377         rcu_read_unlock();
1378
1379         return ret;
1380 }
1381
1382 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1383 {
1384         struct perf_mmap_data *data;
1385         unsigned long size;
1386         int i;
1387
1388         WARN_ON(atomic_read(&counter->mmap_count));
1389
1390         size = sizeof(struct perf_mmap_data);
1391         size += nr_pages * sizeof(void *);
1392
1393         data = kzalloc(size, GFP_KERNEL);
1394         if (!data)
1395                 goto fail;
1396
1397         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1398         if (!data->user_page)
1399                 goto fail_user_page;
1400
1401         for (i = 0; i < nr_pages; i++) {
1402                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1403                 if (!data->data_pages[i])
1404                         goto fail_data_pages;
1405         }
1406
1407         data->nr_pages = nr_pages;
1408
1409         rcu_assign_pointer(counter->data, data);
1410
1411         return 0;
1412
1413 fail_data_pages:
1414         for (i--; i >= 0; i--)
1415                 free_page((unsigned long)data->data_pages[i]);
1416
1417         free_page((unsigned long)data->user_page);
1418
1419 fail_user_page:
1420         kfree(data);
1421
1422 fail:
1423         return -ENOMEM;
1424 }
1425
1426 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1427 {
1428         struct perf_mmap_data *data = container_of(rcu_head,
1429                         struct perf_mmap_data, rcu_head);
1430         int i;
1431
1432         free_page((unsigned long)data->user_page);
1433         for (i = 0; i < data->nr_pages; i++)
1434                 free_page((unsigned long)data->data_pages[i]);
1435         kfree(data);
1436 }
1437
1438 static void perf_mmap_data_free(struct perf_counter *counter)
1439 {
1440         struct perf_mmap_data *data = counter->data;
1441
1442         WARN_ON(atomic_read(&counter->mmap_count));
1443
1444         rcu_assign_pointer(counter->data, NULL);
1445         call_rcu(&data->rcu_head, __perf_mmap_data_free);
1446 }
1447
1448 static void perf_mmap_open(struct vm_area_struct *vma)
1449 {
1450         struct perf_counter *counter = vma->vm_file->private_data;
1451
1452         atomic_inc(&counter->mmap_count);
1453 }
1454
1455 static void perf_mmap_close(struct vm_area_struct *vma)
1456 {
1457         struct perf_counter *counter = vma->vm_file->private_data;
1458
1459         if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1460                                       &counter->mmap_mutex)) {
1461                 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1462                 perf_mmap_data_free(counter);
1463                 mutex_unlock(&counter->mmap_mutex);
1464         }
1465 }
1466
1467 static struct vm_operations_struct perf_mmap_vmops = {
1468         .open  = perf_mmap_open,
1469         .close = perf_mmap_close,
1470         .fault = perf_mmap_fault,
1471 };
1472
1473 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1474 {
1475         struct perf_counter *counter = file->private_data;
1476         unsigned long vma_size;
1477         unsigned long nr_pages;
1478         unsigned long locked, lock_limit;
1479         int ret = 0;
1480
1481         if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1482                 return -EINVAL;
1483
1484         vma_size = vma->vm_end - vma->vm_start;
1485         nr_pages = (vma_size / PAGE_SIZE) - 1;
1486
1487         /*
1488          * If we have data pages ensure they're a power-of-two number, so we
1489          * can do bitmasks instead of modulo.
1490          */
1491         if (nr_pages != 0 && !is_power_of_2(nr_pages))
1492                 return -EINVAL;
1493
1494         if (vma_size != PAGE_SIZE * (1 + nr_pages))
1495                 return -EINVAL;
1496
1497         if (vma->vm_pgoff != 0)
1498                 return -EINVAL;
1499
1500         mutex_lock(&counter->mmap_mutex);
1501         if (atomic_inc_not_zero(&counter->mmap_count)) {
1502                 if (nr_pages != counter->data->nr_pages)
1503                         ret = -EINVAL;
1504                 goto unlock;
1505         }
1506
1507         locked = vma->vm_mm->locked_vm;
1508         locked += nr_pages + 1;
1509
1510         lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1511         lock_limit >>= PAGE_SHIFT;
1512
1513         if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1514                 ret = -EPERM;
1515                 goto unlock;
1516         }
1517
1518         WARN_ON(counter->data);
1519         ret = perf_mmap_data_alloc(counter, nr_pages);
1520         if (ret)
1521                 goto unlock;
1522
1523         atomic_set(&counter->mmap_count, 1);
1524         vma->vm_mm->locked_vm += nr_pages + 1;
1525 unlock:
1526         mutex_unlock(&counter->mmap_mutex);
1527
1528         vma->vm_flags &= ~VM_MAYWRITE;
1529         vma->vm_flags |= VM_RESERVED;
1530         vma->vm_ops = &perf_mmap_vmops;
1531
1532         return ret;
1533 }
1534
1535 static int perf_fasync(int fd, struct file *filp, int on)
1536 {
1537         struct perf_counter *counter = filp->private_data;
1538         struct inode *inode = filp->f_path.dentry->d_inode;
1539         int retval;
1540
1541         mutex_lock(&inode->i_mutex);
1542         retval = fasync_helper(fd, filp, on, &counter->fasync);
1543         mutex_unlock(&inode->i_mutex);
1544
1545         if (retval < 0)
1546                 return retval;
1547
1548         return 0;
1549 }
1550
1551 static const struct file_operations perf_fops = {
1552         .release                = perf_release,
1553         .read                   = perf_read,
1554         .poll                   = perf_poll,
1555         .unlocked_ioctl         = perf_ioctl,
1556         .compat_ioctl           = perf_ioctl,
1557         .mmap                   = perf_mmap,
1558         .fasync                 = perf_fasync,
1559 };
1560
1561 /*
1562  * Perf counter wakeup
1563  *
1564  * If there's data, ensure we set the poll() state and publish everything
1565  * to user-space before waking everybody up.
1566  */
1567
1568 void perf_counter_wakeup(struct perf_counter *counter)
1569 {
1570         struct perf_mmap_data *data;
1571
1572         rcu_read_lock();
1573         data = rcu_dereference(counter->data);
1574         if (data) {
1575                 atomic_set(&data->wakeup, POLL_IN);
1576                 /*
1577                  * Ensure all data writes are issued before updating the
1578                  * user-space data head information. The matching rmb()
1579                  * will be in userspace after reading this value.
1580                  */
1581                 smp_wmb();
1582                 data->user_page->data_head = atomic_read(&data->head);
1583         }
1584         rcu_read_unlock();
1585
1586         wake_up_all(&counter->waitq);
1587
1588         if (counter->pending_kill) {
1589                 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1590                 counter->pending_kill = 0;
1591         }
1592 }
1593
1594 /*
1595  * Pending wakeups
1596  *
1597  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1598  *
1599  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1600  * single linked list and use cmpxchg() to add entries lockless.
1601  */
1602
1603 static void perf_pending_counter(struct perf_pending_entry *entry)
1604 {
1605         struct perf_counter *counter = container_of(entry,
1606                         struct perf_counter, pending);
1607
1608         if (counter->pending_disable) {
1609                 counter->pending_disable = 0;
1610                 perf_counter_disable(counter);
1611         }
1612
1613         if (counter->pending_wakeup) {
1614                 counter->pending_wakeup = 0;
1615                 perf_counter_wakeup(counter);
1616         }
1617 }
1618
1619 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1620
1621 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1622         PENDING_TAIL,
1623 };
1624
1625 static void perf_pending_queue(struct perf_pending_entry *entry,
1626                                void (*func)(struct perf_pending_entry *))
1627 {
1628         struct perf_pending_entry **head;
1629
1630         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1631                 return;
1632
1633         entry->func = func;
1634
1635         head = &get_cpu_var(perf_pending_head);
1636
1637         do {
1638                 entry->next = *head;
1639         } while (cmpxchg(head, entry->next, entry) != entry->next);
1640
1641         set_perf_counter_pending();
1642
1643         put_cpu_var(perf_pending_head);
1644 }
1645
1646 static int __perf_pending_run(void)
1647 {
1648         struct perf_pending_entry *list;
1649         int nr = 0;
1650
1651         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1652         while (list != PENDING_TAIL) {
1653                 void (*func)(struct perf_pending_entry *);
1654                 struct perf_pending_entry *entry = list;
1655
1656                 list = list->next;
1657
1658                 func = entry->func;
1659                 entry->next = NULL;
1660                 /*
1661                  * Ensure we observe the unqueue before we issue the wakeup,
1662                  * so that we won't be waiting forever.
1663                  * -- see perf_not_pending().
1664                  */
1665                 smp_wmb();
1666
1667                 func(entry);
1668                 nr++;
1669         }
1670
1671         return nr;
1672 }
1673
1674 static inline int perf_not_pending(struct perf_counter *counter)
1675 {
1676         /*
1677          * If we flush on whatever cpu we run, there is a chance we don't
1678          * need to wait.
1679          */
1680         get_cpu();
1681         __perf_pending_run();
1682         put_cpu();
1683
1684         /*
1685          * Ensure we see the proper queue state before going to sleep
1686          * so that we do not miss the wakeup. -- see perf_pending_handle()
1687          */
1688         smp_rmb();
1689         return counter->pending.next == NULL;
1690 }
1691
1692 static void perf_pending_sync(struct perf_counter *counter)
1693 {
1694         wait_event(counter->waitq, perf_not_pending(counter));
1695 }
1696
1697 void perf_counter_do_pending(void)
1698 {
1699         __perf_pending_run();
1700 }
1701
1702 /*
1703  * Callchain support -- arch specific
1704  */
1705
1706 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1707 {
1708         return NULL;
1709 }
1710
1711 /*
1712  * Output
1713  */
1714
1715 struct perf_output_handle {
1716         struct perf_counter     *counter;
1717         struct perf_mmap_data   *data;
1718         unsigned int            offset;
1719         unsigned int            head;
1720         int                     wakeup;
1721         int                     nmi;
1722         int                     overflow;
1723 };
1724
1725 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1726 {
1727         if (handle->nmi) {
1728                 handle->counter->pending_wakeup = 1;
1729                 perf_pending_queue(&handle->counter->pending,
1730                                    perf_pending_counter);
1731         } else
1732                 perf_counter_wakeup(handle->counter);
1733 }
1734
1735 static int perf_output_begin(struct perf_output_handle *handle,
1736                              struct perf_counter *counter, unsigned int size,
1737                              int nmi, int overflow)
1738 {
1739         struct perf_mmap_data *data;
1740         unsigned int offset, head;
1741
1742         rcu_read_lock();
1743         data = rcu_dereference(counter->data);
1744         if (!data)
1745                 goto out;
1746
1747         handle->counter  = counter;
1748         handle->nmi      = nmi;
1749         handle->overflow = overflow;
1750
1751         if (!data->nr_pages)
1752                 goto fail;
1753
1754         do {
1755                 offset = head = atomic_read(&data->head);
1756                 head += size;
1757         } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1758
1759         handle->data    = data;
1760         handle->offset  = offset;
1761         handle->head    = head;
1762         handle->wakeup  = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1763
1764         return 0;
1765
1766 fail:
1767         __perf_output_wakeup(handle);
1768 out:
1769         rcu_read_unlock();
1770
1771         return -ENOSPC;
1772 }
1773
1774 static void perf_output_copy(struct perf_output_handle *handle,
1775                              void *buf, unsigned int len)
1776 {
1777         unsigned int pages_mask;
1778         unsigned int offset;
1779         unsigned int size;
1780         void **pages;
1781
1782         offset          = handle->offset;
1783         pages_mask      = handle->data->nr_pages - 1;
1784         pages           = handle->data->data_pages;
1785
1786         do {
1787                 unsigned int page_offset;
1788                 int nr;
1789
1790                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
1791                 page_offset = offset & (PAGE_SIZE - 1);
1792                 size        = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1793
1794                 memcpy(pages[nr] + page_offset, buf, size);
1795
1796                 len         -= size;
1797                 buf         += size;
1798                 offset      += size;
1799         } while (len);
1800
1801         handle->offset = offset;
1802
1803         WARN_ON_ONCE(handle->offset > handle->head);
1804 }
1805
1806 #define perf_output_put(handle, x) \
1807         perf_output_copy((handle), &(x), sizeof(x))
1808
1809 static void perf_output_end(struct perf_output_handle *handle)
1810 {
1811         int wakeup_events = handle->counter->hw_event.wakeup_events;
1812
1813         if (handle->overflow && wakeup_events) {
1814                 int events = atomic_inc_return(&handle->data->events);
1815                 if (events >= wakeup_events) {
1816                         atomic_sub(wakeup_events, &handle->data->events);
1817                         __perf_output_wakeup(handle);
1818                 }
1819         } else if (handle->wakeup)
1820                 __perf_output_wakeup(handle);
1821         rcu_read_unlock();
1822 }
1823
1824 static void perf_counter_output(struct perf_counter *counter,
1825                                 int nmi, struct pt_regs *regs, u64 addr)
1826 {
1827         int ret;
1828         u64 record_type = counter->hw_event.record_type;
1829         struct perf_output_handle handle;
1830         struct perf_event_header header;
1831         u64 ip;
1832         struct {
1833                 u32 pid, tid;
1834         } tid_entry;
1835         struct {
1836                 u64 event;
1837                 u64 counter;
1838         } group_entry;
1839         struct perf_callchain_entry *callchain = NULL;
1840         int callchain_size = 0;
1841         u64 time;
1842
1843         header.type = 0;
1844         header.size = sizeof(header);
1845
1846         header.misc = PERF_EVENT_MISC_OVERFLOW;
1847         header.misc |= user_mode(regs) ?
1848                 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1849
1850         if (record_type & PERF_RECORD_IP) {
1851                 ip = instruction_pointer(regs);
1852                 header.type |= PERF_RECORD_IP;
1853                 header.size += sizeof(ip);
1854         }
1855
1856         if (record_type & PERF_RECORD_TID) {
1857                 /* namespace issues */
1858                 tid_entry.pid = current->group_leader->pid;
1859                 tid_entry.tid = current->pid;
1860
1861                 header.type |= PERF_RECORD_TID;
1862                 header.size += sizeof(tid_entry);
1863         }
1864
1865         if (record_type & PERF_RECORD_TIME) {
1866                 /*
1867                  * Maybe do better on x86 and provide cpu_clock_nmi()
1868                  */
1869                 time = sched_clock();
1870
1871                 header.type |= PERF_RECORD_TIME;
1872                 header.size += sizeof(u64);
1873         }
1874
1875         if (record_type & PERF_RECORD_ADDR) {
1876                 header.type |= PERF_RECORD_ADDR;
1877                 header.size += sizeof(u64);
1878         }
1879
1880         if (record_type & PERF_RECORD_GROUP) {
1881                 header.type |= PERF_RECORD_GROUP;
1882                 header.size += sizeof(u64) +
1883                         counter->nr_siblings * sizeof(group_entry);
1884         }
1885
1886         if (record_type & PERF_RECORD_CALLCHAIN) {
1887                 callchain = perf_callchain(regs);
1888
1889                 if (callchain) {
1890                         callchain_size = (1 + callchain->nr) * sizeof(u64);
1891
1892                         header.type |= PERF_RECORD_CALLCHAIN;
1893                         header.size += callchain_size;
1894                 }
1895         }
1896
1897         ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1898         if (ret)
1899                 return;
1900
1901         perf_output_put(&handle, header);
1902
1903         if (record_type & PERF_RECORD_IP)
1904                 perf_output_put(&handle, ip);
1905
1906         if (record_type & PERF_RECORD_TID)
1907                 perf_output_put(&handle, tid_entry);
1908
1909         if (record_type & PERF_RECORD_TIME)
1910                 perf_output_put(&handle, time);
1911
1912         if (record_type & PERF_RECORD_ADDR)
1913                 perf_output_put(&handle, addr);
1914
1915         if (record_type & PERF_RECORD_GROUP) {
1916                 struct perf_counter *leader, *sub;
1917                 u64 nr = counter->nr_siblings;
1918
1919                 perf_output_put(&handle, nr);
1920
1921                 leader = counter->group_leader;
1922                 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1923                         if (sub != counter)
1924                                 sub->pmu->read(sub);
1925
1926                         group_entry.event = sub->hw_event.config;
1927                         group_entry.counter = atomic64_read(&sub->count);
1928
1929                         perf_output_put(&handle, group_entry);
1930                 }
1931         }
1932
1933         if (callchain)
1934                 perf_output_copy(&handle, callchain, callchain_size);
1935
1936         perf_output_end(&handle);
1937 }
1938
1939 /*
1940  * comm tracking
1941  */
1942
1943 struct perf_comm_event {
1944         struct task_struct      *task;
1945         char                    *comm;
1946         int                     comm_size;
1947
1948         struct {
1949                 struct perf_event_header        header;
1950
1951                 u32                             pid;
1952                 u32                             tid;
1953         } event;
1954 };
1955
1956 static void perf_counter_comm_output(struct perf_counter *counter,
1957                                      struct perf_comm_event *comm_event)
1958 {
1959         struct perf_output_handle handle;
1960         int size = comm_event->event.header.size;
1961         int ret = perf_output_begin(&handle, counter, size, 0, 0);
1962
1963         if (ret)
1964                 return;
1965
1966         perf_output_put(&handle, comm_event->event);
1967         perf_output_copy(&handle, comm_event->comm,
1968                                    comm_event->comm_size);
1969         perf_output_end(&handle);
1970 }
1971
1972 static int perf_counter_comm_match(struct perf_counter *counter,
1973                                    struct perf_comm_event *comm_event)
1974 {
1975         if (counter->hw_event.comm &&
1976             comm_event->event.header.type == PERF_EVENT_COMM)
1977                 return 1;
1978
1979         return 0;
1980 }
1981
1982 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
1983                                   struct perf_comm_event *comm_event)
1984 {
1985         struct perf_counter *counter;
1986
1987         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1988                 return;
1989
1990         rcu_read_lock();
1991         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1992                 if (perf_counter_comm_match(counter, comm_event))
1993                         perf_counter_comm_output(counter, comm_event);
1994         }
1995         rcu_read_unlock();
1996 }
1997
1998 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
1999 {
2000         struct perf_cpu_context *cpuctx;
2001         unsigned int size;
2002         char *comm = comm_event->task->comm;
2003
2004         size = ALIGN(strlen(comm)+1, sizeof(u64));
2005
2006         comm_event->comm = comm;
2007         comm_event->comm_size = size;
2008
2009         comm_event->event.header.size = sizeof(comm_event->event) + size;
2010
2011         cpuctx = &get_cpu_var(perf_cpu_context);
2012         perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2013         put_cpu_var(perf_cpu_context);
2014
2015         perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2016 }
2017
2018 void perf_counter_comm(struct task_struct *task)
2019 {
2020         struct perf_comm_event comm_event;
2021
2022         if (!atomic_read(&nr_comm_tracking))
2023                 return;
2024        
2025         comm_event = (struct perf_comm_event){
2026                 .task   = task,
2027                 .event  = {
2028                         .header = { .type = PERF_EVENT_COMM, },
2029                         .pid    = task->group_leader->pid,
2030                         .tid    = task->pid,
2031                 },
2032         };
2033
2034         perf_counter_comm_event(&comm_event);
2035 }
2036
2037 /*
2038  * mmap tracking
2039  */
2040
2041 struct perf_mmap_event {
2042         struct file     *file;
2043         char            *file_name;
2044         int             file_size;
2045
2046         struct {
2047                 struct perf_event_header        header;
2048
2049                 u32                             pid;
2050                 u32                             tid;
2051                 u64                             start;
2052                 u64                             len;
2053                 u64                             pgoff;
2054         } event;
2055 };
2056
2057 static void perf_counter_mmap_output(struct perf_counter *counter,
2058                                      struct perf_mmap_event *mmap_event)
2059 {
2060         struct perf_output_handle handle;
2061         int size = mmap_event->event.header.size;
2062         int ret = perf_output_begin(&handle, counter, size, 0, 0);
2063
2064         if (ret)
2065                 return;
2066
2067         perf_output_put(&handle, mmap_event->event);
2068         perf_output_copy(&handle, mmap_event->file_name,
2069                                    mmap_event->file_size);
2070         perf_output_end(&handle);
2071 }
2072
2073 static int perf_counter_mmap_match(struct perf_counter *counter,
2074                                    struct perf_mmap_event *mmap_event)
2075 {
2076         if (counter->hw_event.mmap &&
2077             mmap_event->event.header.type == PERF_EVENT_MMAP)
2078                 return 1;
2079
2080         if (counter->hw_event.munmap &&
2081             mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2082                 return 1;
2083
2084         return 0;
2085 }
2086
2087 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2088                                   struct perf_mmap_event *mmap_event)
2089 {
2090         struct perf_counter *counter;
2091
2092         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2093                 return;
2094
2095         rcu_read_lock();
2096         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2097                 if (perf_counter_mmap_match(counter, mmap_event))
2098                         perf_counter_mmap_output(counter, mmap_event);
2099         }
2100         rcu_read_unlock();
2101 }
2102
2103 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2104 {
2105         struct perf_cpu_context *cpuctx;
2106         struct file *file = mmap_event->file;
2107         unsigned int size;
2108         char tmp[16];
2109         char *buf = NULL;
2110         char *name;
2111
2112         if (file) {
2113                 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2114                 if (!buf) {
2115                         name = strncpy(tmp, "//enomem", sizeof(tmp));
2116                         goto got_name;
2117                 }
2118                 name = d_path(&file->f_path, buf, PATH_MAX);
2119                 if (IS_ERR(name)) {
2120                         name = strncpy(tmp, "//toolong", sizeof(tmp));
2121                         goto got_name;
2122                 }
2123         } else {
2124                 name = strncpy(tmp, "//anon", sizeof(tmp));
2125                 goto got_name;
2126         }
2127
2128 got_name:
2129         size = ALIGN(strlen(name)+1, sizeof(u64));
2130
2131         mmap_event->file_name = name;
2132         mmap_event->file_size = size;
2133
2134         mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2135
2136         cpuctx = &get_cpu_var(perf_cpu_context);
2137         perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2138         put_cpu_var(perf_cpu_context);
2139
2140         perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2141
2142         kfree(buf);
2143 }
2144
2145 void perf_counter_mmap(unsigned long addr, unsigned long len,
2146                        unsigned long pgoff, struct file *file)
2147 {
2148         struct perf_mmap_event mmap_event;
2149
2150         if (!atomic_read(&nr_mmap_tracking))
2151                 return;
2152
2153         mmap_event = (struct perf_mmap_event){
2154                 .file   = file,
2155                 .event  = {
2156                         .header = { .type = PERF_EVENT_MMAP, },
2157                         .pid    = current->group_leader->pid,
2158                         .tid    = current->pid,
2159                         .start  = addr,
2160                         .len    = len,
2161                         .pgoff  = pgoff,
2162                 },
2163         };
2164
2165         perf_counter_mmap_event(&mmap_event);
2166 }
2167
2168 void perf_counter_munmap(unsigned long addr, unsigned long len,
2169                          unsigned long pgoff, struct file *file)
2170 {
2171         struct perf_mmap_event mmap_event;
2172
2173         if (!atomic_read(&nr_munmap_tracking))
2174                 return;
2175
2176         mmap_event = (struct perf_mmap_event){
2177                 .file   = file,
2178                 .event  = {
2179                         .header = { .type = PERF_EVENT_MUNMAP, },
2180                         .pid    = current->group_leader->pid,
2181                         .tid    = current->pid,
2182                         .start  = addr,
2183                         .len    = len,
2184                         .pgoff  = pgoff,
2185                 },
2186         };
2187
2188         perf_counter_mmap_event(&mmap_event);
2189 }
2190
2191 /*
2192  * Generic counter overflow handling.
2193  */
2194
2195 int perf_counter_overflow(struct perf_counter *counter,
2196                           int nmi, struct pt_regs *regs, u64 addr)
2197 {
2198         int events = atomic_read(&counter->event_limit);
2199         int ret = 0;
2200
2201         counter->pending_kill = POLL_IN;
2202         if (events && atomic_dec_and_test(&counter->event_limit)) {
2203                 ret = 1;
2204                 counter->pending_kill = POLL_HUP;
2205                 if (nmi) {
2206                         counter->pending_disable = 1;
2207                         perf_pending_queue(&counter->pending,
2208                                            perf_pending_counter);
2209                 } else
2210                         perf_counter_disable(counter);
2211         }
2212
2213         perf_counter_output(counter, nmi, regs, addr);
2214         return ret;
2215 }
2216
2217 /*
2218  * Generic software counter infrastructure
2219  */
2220
2221 static void perf_swcounter_update(struct perf_counter *counter)
2222 {
2223         struct hw_perf_counter *hwc = &counter->hw;
2224         u64 prev, now;
2225         s64 delta;
2226
2227 again:
2228         prev = atomic64_read(&hwc->prev_count);
2229         now = atomic64_read(&hwc->count);
2230         if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2231                 goto again;
2232
2233         delta = now - prev;
2234
2235         atomic64_add(delta, &counter->count);
2236         atomic64_sub(delta, &hwc->period_left);
2237 }
2238
2239 static void perf_swcounter_set_period(struct perf_counter *counter)
2240 {
2241         struct hw_perf_counter *hwc = &counter->hw;
2242         s64 left = atomic64_read(&hwc->period_left);
2243         s64 period = hwc->irq_period;
2244
2245         if (unlikely(left <= -period)) {
2246                 left = period;
2247                 atomic64_set(&hwc->period_left, left);
2248         }
2249
2250         if (unlikely(left <= 0)) {
2251                 left += period;
2252                 atomic64_add(period, &hwc->period_left);
2253         }
2254
2255         atomic64_set(&hwc->prev_count, -left);
2256         atomic64_set(&hwc->count, -left);
2257 }
2258
2259 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2260 {
2261         enum hrtimer_restart ret = HRTIMER_RESTART;
2262         struct perf_counter *counter;
2263         struct pt_regs *regs;
2264
2265         counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2266         counter->pmu->read(counter);
2267
2268         regs = get_irq_regs();
2269         /*
2270          * In case we exclude kernel IPs or are somehow not in interrupt
2271          * context, provide the next best thing, the user IP.
2272          */
2273         if ((counter->hw_event.exclude_kernel || !regs) &&
2274                         !counter->hw_event.exclude_user)
2275                 regs = task_pt_regs(current);
2276
2277         if (regs) {
2278                 if (perf_counter_overflow(counter, 0, regs, 0))
2279                         ret = HRTIMER_NORESTART;
2280         }
2281
2282         hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2283
2284         return ret;
2285 }
2286
2287 static void perf_swcounter_overflow(struct perf_counter *counter,
2288                                     int nmi, struct pt_regs *regs, u64 addr)
2289 {
2290         perf_swcounter_update(counter);
2291         perf_swcounter_set_period(counter);
2292         if (perf_counter_overflow(counter, nmi, regs, addr))
2293                 /* soft-disable the counter */
2294                 ;
2295
2296 }
2297
2298 static int perf_swcounter_match(struct perf_counter *counter,
2299                                 enum perf_event_types type,
2300                                 u32 event, struct pt_regs *regs)
2301 {
2302         if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2303                 return 0;
2304
2305         if (perf_event_raw(&counter->hw_event))
2306                 return 0;
2307
2308         if (perf_event_type(&counter->hw_event) != type)
2309                 return 0;
2310
2311         if (perf_event_id(&counter->hw_event) != event)
2312                 return 0;
2313
2314         if (counter->hw_event.exclude_user && user_mode(regs))
2315                 return 0;
2316
2317         if (counter->hw_event.exclude_kernel && !user_mode(regs))
2318                 return 0;
2319
2320         return 1;
2321 }
2322
2323 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2324                                int nmi, struct pt_regs *regs, u64 addr)
2325 {
2326         int neg = atomic64_add_negative(nr, &counter->hw.count);
2327         if (counter->hw.irq_period && !neg)
2328                 perf_swcounter_overflow(counter, nmi, regs, addr);
2329 }
2330
2331 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2332                                      enum perf_event_types type, u32 event,
2333                                      u64 nr, int nmi, struct pt_regs *regs,
2334                                      u64 addr)
2335 {
2336         struct perf_counter *counter;
2337
2338         if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2339                 return;
2340
2341         rcu_read_lock();
2342         list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2343                 if (perf_swcounter_match(counter, type, event, regs))
2344                         perf_swcounter_add(counter, nr, nmi, regs, addr);
2345         }
2346         rcu_read_unlock();
2347 }
2348
2349 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2350 {
2351         if (in_nmi())
2352                 return &cpuctx->recursion[3];
2353
2354         if (in_irq())
2355                 return &cpuctx->recursion[2];
2356
2357         if (in_softirq())
2358                 return &cpuctx->recursion[1];
2359
2360         return &cpuctx->recursion[0];
2361 }
2362
2363 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2364                                    u64 nr, int nmi, struct pt_regs *regs,
2365                                    u64 addr)
2366 {
2367         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2368         int *recursion = perf_swcounter_recursion_context(cpuctx);
2369
2370         if (*recursion)
2371                 goto out;
2372
2373         (*recursion)++;
2374         barrier();
2375
2376         perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2377                                  nr, nmi, regs, addr);
2378         if (cpuctx->task_ctx) {
2379                 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2380                                          nr, nmi, regs, addr);
2381         }
2382
2383         barrier();
2384         (*recursion)--;
2385
2386 out:
2387         put_cpu_var(perf_cpu_context);
2388 }
2389
2390 void
2391 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2392 {
2393         __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2394 }
2395
2396 static void perf_swcounter_read(struct perf_counter *counter)
2397 {
2398         perf_swcounter_update(counter);
2399 }
2400
2401 static int perf_swcounter_enable(struct perf_counter *counter)
2402 {
2403         perf_swcounter_set_period(counter);
2404         return 0;
2405 }
2406
2407 static void perf_swcounter_disable(struct perf_counter *counter)
2408 {
2409         perf_swcounter_update(counter);
2410 }
2411
2412 static const struct pmu perf_ops_generic = {
2413         .enable         = perf_swcounter_enable,
2414         .disable        = perf_swcounter_disable,
2415         .read           = perf_swcounter_read,
2416 };
2417
2418 /*
2419  * Software counter: cpu wall time clock
2420  */
2421
2422 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2423 {
2424         int cpu = raw_smp_processor_id();
2425         s64 prev;
2426         u64 now;
2427
2428         now = cpu_clock(cpu);
2429         prev = atomic64_read(&counter->hw.prev_count);
2430         atomic64_set(&counter->hw.prev_count, now);
2431         atomic64_add(now - prev, &counter->count);
2432 }
2433
2434 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2435 {
2436         struct hw_perf_counter *hwc = &counter->hw;
2437         int cpu = raw_smp_processor_id();
2438
2439         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2440         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2441         hwc->hrtimer.function = perf_swcounter_hrtimer;
2442         if (hwc->irq_period) {
2443                 __hrtimer_start_range_ns(&hwc->hrtimer,
2444                                 ns_to_ktime(hwc->irq_period), 0,
2445                                 HRTIMER_MODE_REL, 0);
2446         }
2447
2448         return 0;
2449 }
2450
2451 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2452 {
2453         hrtimer_cancel(&counter->hw.hrtimer);
2454         cpu_clock_perf_counter_update(counter);
2455 }
2456
2457 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2458 {
2459         cpu_clock_perf_counter_update(counter);
2460 }
2461
2462 static const struct pmu perf_ops_cpu_clock = {
2463         .enable         = cpu_clock_perf_counter_enable,
2464         .disable        = cpu_clock_perf_counter_disable,
2465         .read           = cpu_clock_perf_counter_read,
2466 };
2467
2468 /*
2469  * Software counter: task time clock
2470  */
2471
2472 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2473 {
2474         u64 prev;
2475         s64 delta;
2476
2477         prev = atomic64_xchg(&counter->hw.prev_count, now);
2478         delta = now - prev;
2479         atomic64_add(delta, &counter->count);
2480 }
2481
2482 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2483 {
2484         struct hw_perf_counter *hwc = &counter->hw;
2485         u64 now;
2486
2487         now = counter->ctx->time;
2488
2489         atomic64_set(&hwc->prev_count, now);
2490         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2491         hwc->hrtimer.function = perf_swcounter_hrtimer;
2492         if (hwc->irq_period) {
2493                 __hrtimer_start_range_ns(&hwc->hrtimer,
2494                                 ns_to_ktime(hwc->irq_period), 0,
2495                                 HRTIMER_MODE_REL, 0);
2496         }
2497
2498         return 0;
2499 }
2500
2501 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2502 {
2503         hrtimer_cancel(&counter->hw.hrtimer);
2504         task_clock_perf_counter_update(counter, counter->ctx->time);
2505
2506 }
2507
2508 static void task_clock_perf_counter_read(struct perf_counter *counter)
2509 {
2510         u64 time;
2511
2512         if (!in_nmi()) {
2513                 update_context_time(counter->ctx);
2514                 time = counter->ctx->time;
2515         } else {
2516                 u64 now = perf_clock();
2517                 u64 delta = now - counter->ctx->timestamp;
2518                 time = counter->ctx->time + delta;
2519         }
2520
2521         task_clock_perf_counter_update(counter, time);
2522 }
2523
2524 static const struct pmu perf_ops_task_clock = {
2525         .enable         = task_clock_perf_counter_enable,
2526         .disable        = task_clock_perf_counter_disable,
2527         .read           = task_clock_perf_counter_read,
2528 };
2529
2530 /*
2531  * Software counter: cpu migrations
2532  */
2533
2534 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2535 {
2536         struct task_struct *curr = counter->ctx->task;
2537
2538         if (curr)
2539                 return curr->se.nr_migrations;
2540         return cpu_nr_migrations(smp_processor_id());
2541 }
2542
2543 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2544 {
2545         u64 prev, now;
2546         s64 delta;
2547
2548         prev = atomic64_read(&counter->hw.prev_count);
2549         now = get_cpu_migrations(counter);
2550
2551         atomic64_set(&counter->hw.prev_count, now);
2552
2553         delta = now - prev;
2554
2555         atomic64_add(delta, &counter->count);
2556 }
2557
2558 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2559 {
2560         cpu_migrations_perf_counter_update(counter);
2561 }
2562
2563 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2564 {
2565         if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2566                 atomic64_set(&counter->hw.prev_count,
2567                              get_cpu_migrations(counter));
2568         return 0;
2569 }
2570
2571 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2572 {
2573         cpu_migrations_perf_counter_update(counter);
2574 }
2575
2576 static const struct pmu perf_ops_cpu_migrations = {
2577         .enable         = cpu_migrations_perf_counter_enable,
2578         .disable        = cpu_migrations_perf_counter_disable,
2579         .read           = cpu_migrations_perf_counter_read,
2580 };
2581
2582 #ifdef CONFIG_EVENT_PROFILE
2583 void perf_tpcounter_event(int event_id)
2584 {
2585         struct pt_regs *regs = get_irq_regs();
2586
2587         if (!regs)
2588                 regs = task_pt_regs(current);
2589
2590         __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2591 }
2592 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2593
2594 extern int ftrace_profile_enable(int);
2595 extern void ftrace_profile_disable(int);
2596
2597 static void tp_perf_counter_destroy(struct perf_counter *counter)
2598 {
2599         ftrace_profile_disable(perf_event_id(&counter->hw_event));
2600 }
2601
2602 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2603 {
2604         int event_id = perf_event_id(&counter->hw_event);
2605         int ret;
2606
2607         ret = ftrace_profile_enable(event_id);
2608         if (ret)
2609                 return NULL;
2610
2611         counter->destroy = tp_perf_counter_destroy;
2612         counter->hw.irq_period = counter->hw_event.irq_period;
2613
2614         return &perf_ops_generic;
2615 }
2616 #else
2617 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2618 {
2619         return NULL;
2620 }
2621 #endif
2622
2623 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2624 {
2625         struct perf_counter_hw_event *hw_event = &counter->hw_event;
2626         const struct pmu *pmu = NULL;
2627         struct hw_perf_counter *hwc = &counter->hw;
2628
2629         /*
2630          * Software counters (currently) can't in general distinguish
2631          * between user, kernel and hypervisor events.
2632          * However, context switches and cpu migrations are considered
2633          * to be kernel events, and page faults are never hypervisor
2634          * events.
2635          */
2636         switch (perf_event_id(&counter->hw_event)) {
2637         case PERF_COUNT_CPU_CLOCK:
2638                 pmu = &perf_ops_cpu_clock;
2639
2640                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2641                         hw_event->irq_period = 10000;
2642                 break;
2643         case PERF_COUNT_TASK_CLOCK:
2644                 /*
2645                  * If the user instantiates this as a per-cpu counter,
2646                  * use the cpu_clock counter instead.
2647                  */
2648                 if (counter->ctx->task)
2649                         pmu = &perf_ops_task_clock;
2650                 else
2651                         pmu = &perf_ops_cpu_clock;
2652
2653                 if (hw_event->irq_period && hw_event->irq_period < 10000)
2654                         hw_event->irq_period = 10000;
2655                 break;
2656         case PERF_COUNT_PAGE_FAULTS:
2657         case PERF_COUNT_PAGE_FAULTS_MIN:
2658         case PERF_COUNT_PAGE_FAULTS_MAJ:
2659         case PERF_COUNT_CONTEXT_SWITCHES:
2660                 pmu = &perf_ops_generic;
2661                 break;
2662         case PERF_COUNT_CPU_MIGRATIONS:
2663                 if (!counter->hw_event.exclude_kernel)
2664                         pmu = &perf_ops_cpu_migrations;
2665                 break;
2666         }
2667
2668         if (pmu)
2669                 hwc->irq_period = hw_event->irq_period;
2670
2671         return pmu;
2672 }
2673
2674 /*
2675  * Allocate and initialize a counter structure
2676  */
2677 static struct perf_counter *
2678 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2679                    int cpu,
2680                    struct perf_counter_context *ctx,
2681                    struct perf_counter *group_leader,
2682                    gfp_t gfpflags)
2683 {
2684         const struct pmu *pmu;
2685         struct perf_counter *counter;
2686         long err;
2687
2688         counter = kzalloc(sizeof(*counter), gfpflags);
2689         if (!counter)
2690                 return ERR_PTR(-ENOMEM);
2691
2692         /*
2693          * Single counters are their own group leaders, with an
2694          * empty sibling list:
2695          */
2696         if (!group_leader)
2697                 group_leader = counter;
2698
2699         mutex_init(&counter->mutex);
2700         INIT_LIST_HEAD(&counter->list_entry);
2701         INIT_LIST_HEAD(&counter->event_entry);
2702         INIT_LIST_HEAD(&counter->sibling_list);
2703         init_waitqueue_head(&counter->waitq);
2704
2705         mutex_init(&counter->mmap_mutex);
2706
2707         INIT_LIST_HEAD(&counter->child_list);
2708
2709         counter->cpu                    = cpu;
2710         counter->hw_event               = *hw_event;
2711         counter->group_leader           = group_leader;
2712         counter->pmu                    = NULL;
2713         counter->ctx                    = ctx;
2714
2715         counter->state = PERF_COUNTER_STATE_INACTIVE;
2716         if (hw_event->disabled)
2717                 counter->state = PERF_COUNTER_STATE_OFF;
2718
2719         pmu = NULL;
2720
2721         if (perf_event_raw(hw_event)) {
2722                 pmu = hw_perf_counter_init(counter);
2723                 goto done;
2724         }
2725
2726         switch (perf_event_type(hw_event)) {
2727         case PERF_TYPE_HARDWARE:
2728                 pmu = hw_perf_counter_init(counter);
2729                 break;
2730
2731         case PERF_TYPE_SOFTWARE:
2732                 pmu = sw_perf_counter_init(counter);
2733                 break;
2734
2735         case PERF_TYPE_TRACEPOINT:
2736                 pmu = tp_perf_counter_init(counter);
2737                 break;
2738         }
2739 done:
2740         err = 0;
2741         if (!pmu)
2742                 err = -EINVAL;
2743         else if (IS_ERR(pmu))
2744                 err = PTR_ERR(pmu);
2745
2746         if (err) {
2747                 kfree(counter);
2748                 return ERR_PTR(err);
2749         }
2750
2751         counter->pmu = pmu;
2752
2753         if (counter->hw_event.mmap)
2754                 atomic_inc(&nr_mmap_tracking);
2755         if (counter->hw_event.munmap)
2756                 atomic_inc(&nr_munmap_tracking);
2757         if (counter->hw_event.comm)
2758                 atomic_inc(&nr_comm_tracking);
2759
2760         return counter;
2761 }
2762
2763 /**
2764  * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2765  *
2766  * @hw_event_uptr:      event type attributes for monitoring/sampling
2767  * @pid:                target pid
2768  * @cpu:                target cpu
2769  * @group_fd:           group leader counter fd
2770  */
2771 SYSCALL_DEFINE5(perf_counter_open,
2772                 const struct perf_counter_hw_event __user *, hw_event_uptr,
2773                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2774 {
2775         struct perf_counter *counter, *group_leader;
2776         struct perf_counter_hw_event hw_event;
2777         struct perf_counter_context *ctx;
2778         struct file *counter_file = NULL;
2779         struct file *group_file = NULL;
2780         int fput_needed = 0;
2781         int fput_needed2 = 0;
2782         int ret;
2783
2784         /* for future expandability... */
2785         if (flags)
2786                 return -EINVAL;
2787
2788         if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2789                 return -EFAULT;
2790
2791         /*
2792          * Get the target context (task or percpu):
2793          */
2794         ctx = find_get_context(pid, cpu);
2795         if (IS_ERR(ctx))
2796                 return PTR_ERR(ctx);
2797
2798         /*
2799          * Look up the group leader (we will attach this counter to it):
2800          */
2801         group_leader = NULL;
2802         if (group_fd != -1) {
2803                 ret = -EINVAL;
2804                 group_file = fget_light(group_fd, &fput_needed);
2805                 if (!group_file)
2806                         goto err_put_context;
2807                 if (group_file->f_op != &perf_fops)
2808                         goto err_put_context;
2809
2810                 group_leader = group_file->private_data;
2811                 /*
2812                  * Do not allow a recursive hierarchy (this new sibling
2813                  * becoming part of another group-sibling):
2814                  */
2815                 if (group_leader->group_leader != group_leader)
2816                         goto err_put_context;
2817                 /*
2818                  * Do not allow to attach to a group in a different
2819                  * task or CPU context:
2820                  */
2821                 if (group_leader->ctx != ctx)
2822                         goto err_put_context;
2823                 /*
2824                  * Only a group leader can be exclusive or pinned
2825                  */
2826                 if (hw_event.exclusive || hw_event.pinned)
2827                         goto err_put_context;
2828         }
2829
2830         counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2831                                      GFP_KERNEL);
2832         ret = PTR_ERR(counter);
2833         if (IS_ERR(counter))
2834                 goto err_put_context;
2835
2836         ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2837         if (ret < 0)
2838                 goto err_free_put_context;
2839
2840         counter_file = fget_light(ret, &fput_needed2);
2841         if (!counter_file)
2842                 goto err_free_put_context;
2843
2844         counter->filp = counter_file;
2845         mutex_lock(&ctx->mutex);
2846         perf_install_in_context(ctx, counter, cpu);
2847         mutex_unlock(&ctx->mutex);
2848
2849         fput_light(counter_file, fput_needed2);
2850
2851 out_fput:
2852         fput_light(group_file, fput_needed);
2853
2854         return ret;
2855
2856 err_free_put_context:
2857         kfree(counter);
2858
2859 err_put_context:
2860         put_context(ctx);
2861
2862         goto out_fput;
2863 }
2864
2865 /*
2866  * Initialize the perf_counter context in a task_struct:
2867  */
2868 static void
2869 __perf_counter_init_context(struct perf_counter_context *ctx,
2870                             struct task_struct *task)
2871 {
2872         memset(ctx, 0, sizeof(*ctx));
2873         spin_lock_init(&ctx->lock);
2874         mutex_init(&ctx->mutex);
2875         INIT_LIST_HEAD(&ctx->counter_list);
2876         INIT_LIST_HEAD(&ctx->event_list);
2877         ctx->task = task;
2878 }
2879
2880 /*
2881  * inherit a counter from parent task to child task:
2882  */
2883 static struct perf_counter *
2884 inherit_counter(struct perf_counter *parent_counter,
2885               struct task_struct *parent,
2886               struct perf_counter_context *parent_ctx,
2887               struct task_struct *child,
2888               struct perf_counter *group_leader,
2889               struct perf_counter_context *child_ctx)
2890 {
2891         struct perf_counter *child_counter;
2892
2893         /*
2894          * Instead of creating recursive hierarchies of counters,
2895          * we link inherited counters back to the original parent,
2896          * which has a filp for sure, which we use as the reference
2897          * count:
2898          */
2899         if (parent_counter->parent)
2900                 parent_counter = parent_counter->parent;
2901
2902         child_counter = perf_counter_alloc(&parent_counter->hw_event,
2903                                            parent_counter->cpu, child_ctx,
2904                                            group_leader, GFP_KERNEL);
2905         if (IS_ERR(child_counter))
2906                 return child_counter;
2907
2908         /*
2909          * Link it up in the child's context:
2910          */
2911         child_counter->task = child;
2912         add_counter_to_ctx(child_counter, child_ctx);
2913
2914         child_counter->parent = parent_counter;
2915         /*
2916          * inherit into child's child as well:
2917          */
2918         child_counter->hw_event.inherit = 1;
2919
2920         /*
2921          * Get a reference to the parent filp - we will fput it
2922          * when the child counter exits. This is safe to do because
2923          * we are in the parent and we know that the filp still
2924          * exists and has a nonzero count:
2925          */
2926         atomic_long_inc(&parent_counter->filp->f_count);
2927
2928         /*
2929          * Link this into the parent counter's child list
2930          */
2931         mutex_lock(&parent_counter->mutex);
2932         list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2933
2934         /*
2935          * Make the child state follow the state of the parent counter,
2936          * not its hw_event.disabled bit.  We hold the parent's mutex,
2937          * so we won't race with perf_counter_{en,dis}able_family.
2938          */
2939         if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2940                 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2941         else
2942                 child_counter->state = PERF_COUNTER_STATE_OFF;
2943
2944         mutex_unlock(&parent_counter->mutex);
2945
2946         return child_counter;
2947 }
2948
2949 static int inherit_group(struct perf_counter *parent_counter,
2950               struct task_struct *parent,
2951               struct perf_counter_context *parent_ctx,
2952               struct task_struct *child,
2953               struct perf_counter_context *child_ctx)
2954 {
2955         struct perf_counter *leader;
2956         struct perf_counter *sub;
2957         struct perf_counter *child_ctr;
2958
2959         leader = inherit_counter(parent_counter, parent, parent_ctx,
2960                                  child, NULL, child_ctx);
2961         if (IS_ERR(leader))
2962                 return PTR_ERR(leader);
2963         list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2964                 child_ctr = inherit_counter(sub, parent, parent_ctx,
2965                                             child, leader, child_ctx);
2966                 if (IS_ERR(child_ctr))
2967                         return PTR_ERR(child_ctr);
2968         }
2969         return 0;
2970 }
2971
2972 static void sync_child_counter(struct perf_counter *child_counter,
2973                                struct perf_counter *parent_counter)
2974 {
2975         u64 parent_val, child_val;
2976
2977         parent_val = atomic64_read(&parent_counter->count);
2978         child_val = atomic64_read(&child_counter->count);
2979
2980         /*
2981          * Add back the child's count to the parent's count:
2982          */
2983         atomic64_add(child_val, &parent_counter->count);
2984         atomic64_add(child_counter->total_time_enabled,
2985                      &parent_counter->child_total_time_enabled);
2986         atomic64_add(child_counter->total_time_running,
2987                      &parent_counter->child_total_time_running);
2988
2989         /*
2990          * Remove this counter from the parent's list
2991          */
2992         mutex_lock(&parent_counter->mutex);
2993         list_del_init(&child_counter->child_list);
2994         mutex_unlock(&parent_counter->mutex);
2995
2996         /*
2997          * Release the parent counter, if this was the last
2998          * reference to it.
2999          */
3000         fput(parent_counter->filp);
3001 }
3002
3003 static void
3004 __perf_counter_exit_task(struct task_struct *child,
3005                          struct perf_counter *child_counter,
3006                          struct perf_counter_context *child_ctx)
3007 {
3008         struct perf_counter *parent_counter;
3009         struct perf_counter *sub, *tmp;
3010
3011         /*
3012          * If we do not self-reap then we have to wait for the
3013          * child task to unschedule (it will happen for sure),
3014          * so that its counter is at its final count. (This
3015          * condition triggers rarely - child tasks usually get
3016          * off their CPU before the parent has a chance to
3017          * get this far into the reaping action)
3018          */
3019         if (child != current) {
3020                 wait_task_inactive(child, 0);
3021                 list_del_init(&child_counter->list_entry);
3022                 update_counter_times(child_counter);
3023         } else {
3024                 struct perf_cpu_context *cpuctx;
3025                 unsigned long flags;
3026                 u64 perf_flags;
3027
3028                 /*
3029                  * Disable and unlink this counter.
3030                  *
3031                  * Be careful about zapping the list - IRQ/NMI context
3032                  * could still be processing it:
3033                  */
3034                 local_irq_save(flags);
3035                 perf_flags = hw_perf_save_disable();
3036
3037                 cpuctx = &__get_cpu_var(perf_cpu_context);
3038
3039                 group_sched_out(child_counter, cpuctx, child_ctx);
3040                 update_counter_times(child_counter);
3041
3042                 list_del_init(&child_counter->list_entry);
3043
3044                 child_ctx->nr_counters--;
3045
3046                 hw_perf_restore(perf_flags);
3047                 local_irq_restore(flags);
3048         }
3049
3050         parent_counter = child_counter->parent;
3051         /*
3052          * It can happen that parent exits first, and has counters
3053          * that are still around due to the child reference. These
3054          * counters need to be zapped - but otherwise linger.
3055          */
3056         if (parent_counter) {
3057                 sync_child_counter(child_counter, parent_counter);
3058                 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3059                                          list_entry) {
3060                         if (sub->parent) {
3061                                 sync_child_counter(sub, sub->parent);
3062                                 free_counter(sub);
3063                         }
3064                 }
3065                 free_counter(child_counter);
3066         }
3067 }
3068
3069 /*
3070  * When a child task exits, feed back counter values to parent counters.
3071  *
3072  * Note: we may be running in child context, but the PID is not hashed
3073  * anymore so new counters will not be added.
3074  */
3075 void perf_counter_exit_task(struct task_struct *child)
3076 {
3077         struct perf_counter *child_counter, *tmp;
3078         struct perf_counter_context *child_ctx;
3079
3080         child_ctx = &child->perf_counter_ctx;
3081
3082         if (likely(!child_ctx->nr_counters))
3083                 return;
3084
3085         list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3086                                  list_entry)
3087                 __perf_counter_exit_task(child, child_counter, child_ctx);
3088 }
3089
3090 /*
3091  * Initialize the perf_counter context in task_struct
3092  */
3093 void perf_counter_init_task(struct task_struct *child)
3094 {
3095         struct perf_counter_context *child_ctx, *parent_ctx;
3096         struct perf_counter *counter;
3097         struct task_struct *parent = current;
3098
3099         child_ctx  =  &child->perf_counter_ctx;
3100         parent_ctx = &parent->perf_counter_ctx;
3101
3102         __perf_counter_init_context(child_ctx, child);
3103
3104         /*
3105          * This is executed from the parent task context, so inherit
3106          * counters that have been marked for cloning:
3107          */
3108
3109         if (likely(!parent_ctx->nr_counters))
3110                 return;
3111
3112         /*
3113          * Lock the parent list. No need to lock the child - not PID
3114          * hashed yet and not running, so nobody can access it.
3115          */
3116         mutex_lock(&parent_ctx->mutex);
3117
3118         /*
3119          * We dont have to disable NMIs - we are only looking at
3120          * the list, not manipulating it:
3121          */
3122         list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3123                 if (!counter->hw_event.inherit)
3124                         continue;
3125
3126                 if (inherit_group(counter, parent,
3127                                   parent_ctx, child, child_ctx))
3128                         break;
3129         }
3130
3131         mutex_unlock(&parent_ctx->mutex);
3132 }
3133
3134 static void __cpuinit perf_counter_init_cpu(int cpu)
3135 {
3136         struct perf_cpu_context *cpuctx;
3137
3138         cpuctx = &per_cpu(perf_cpu_context, cpu);
3139         __perf_counter_init_context(&cpuctx->ctx, NULL);
3140
3141         mutex_lock(&perf_resource_mutex);
3142         cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3143         mutex_unlock(&perf_resource_mutex);
3144
3145         hw_perf_counter_setup(cpu);
3146 }
3147
3148 #ifdef CONFIG_HOTPLUG_CPU
3149 static void __perf_counter_exit_cpu(void *info)
3150 {
3151         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3152         struct perf_counter_context *ctx = &cpuctx->ctx;
3153         struct perf_counter *counter, *tmp;
3154
3155         list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3156                 __perf_counter_remove_from_context(counter);
3157 }
3158 static void perf_counter_exit_cpu(int cpu)
3159 {
3160         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3161         struct perf_counter_context *ctx = &cpuctx->ctx;
3162
3163         mutex_lock(&ctx->mutex);
3164         smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3165         mutex_unlock(&ctx->mutex);
3166 }
3167 #else
3168 static inline void perf_counter_exit_cpu(int cpu) { }
3169 #endif
3170
3171 static int __cpuinit
3172 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3173 {
3174         unsigned int cpu = (long)hcpu;
3175
3176         switch (action) {
3177
3178         case CPU_UP_PREPARE:
3179         case CPU_UP_PREPARE_FROZEN:
3180                 perf_counter_init_cpu(cpu);
3181                 break;
3182
3183         case CPU_DOWN_PREPARE:
3184         case CPU_DOWN_PREPARE_FROZEN:
3185                 perf_counter_exit_cpu(cpu);
3186                 break;
3187
3188         default:
3189                 break;
3190         }
3191
3192         return NOTIFY_OK;
3193 }
3194
3195 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3196         .notifier_call          = perf_cpu_notify,
3197 };
3198
3199 static int __init perf_counter_init(void)
3200 {
3201         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3202                         (void *)(long)smp_processor_id());
3203         register_cpu_notifier(&perf_cpu_nb);
3204
3205         return 0;
3206 }
3207 early_initcall(perf_counter_init);
3208
3209 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3210 {
3211         return sprintf(buf, "%d\n", perf_reserved_percpu);
3212 }
3213
3214 static ssize_t
3215 perf_set_reserve_percpu(struct sysdev_class *class,
3216                         const char *buf,
3217                         size_t count)
3218 {
3219         struct perf_cpu_context *cpuctx;
3220         unsigned long val;
3221         int err, cpu, mpt;
3222
3223         err = strict_strtoul(buf, 10, &val);
3224         if (err)
3225                 return err;
3226         if (val > perf_max_counters)
3227                 return -EINVAL;
3228
3229         mutex_lock(&perf_resource_mutex);
3230         perf_reserved_percpu = val;
3231         for_each_online_cpu(cpu) {
3232                 cpuctx = &per_cpu(perf_cpu_context, cpu);
3233                 spin_lock_irq(&cpuctx->ctx.lock);
3234                 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3235                           perf_max_counters - perf_reserved_percpu);
3236                 cpuctx->max_pertask = mpt;
3237                 spin_unlock_irq(&cpuctx->ctx.lock);
3238         }
3239         mutex_unlock(&perf_resource_mutex);
3240
3241         return count;
3242 }
3243
3244 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3245 {
3246         return sprintf(buf, "%d\n", perf_overcommit);
3247 }
3248
3249 static ssize_t
3250 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3251 {
3252         unsigned long val;
3253         int err;
3254
3255         err = strict_strtoul(buf, 10, &val);
3256         if (err)
3257                 return err;
3258         if (val > 1)
3259                 return -EINVAL;
3260
3261         mutex_lock(&perf_resource_mutex);
3262         perf_overcommit = val;
3263         mutex_unlock(&perf_resource_mutex);
3264
3265         return count;
3266 }
3267
3268 static SYSDEV_CLASS_ATTR(
3269                                 reserve_percpu,
3270                                 0644,
3271                                 perf_show_reserve_percpu,
3272                                 perf_set_reserve_percpu
3273                         );
3274
3275 static SYSDEV_CLASS_ATTR(
3276                                 overcommit,
3277                                 0644,
3278                                 perf_show_overcommit,
3279                                 perf_set_overcommit
3280                         );
3281
3282 static struct attribute *perfclass_attrs[] = {
3283         &attr_reserve_percpu.attr,
3284         &attr_overcommit.attr,
3285         NULL
3286 };
3287
3288 static struct attribute_group perfclass_attr_group = {
3289         .attrs                  = perfclass_attrs,
3290         .name                   = "perf_counters",
3291 };
3292
3293 static int __init perf_counter_sysfs_init(void)
3294 {
3295         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3296                                   &perfclass_attr_group);
3297 }
3298 device_initcall(perf_counter_sysfs_init);