Merge branch 'sched/core' into locking/core
[linux-2.6-block.git] / kernel / locking / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/sched/wake_q.h>
19 #include <linux/sched/debug.h>
20 #include <linux/timer.h>
21
22 #include "rtmutex_common.h"
23
24 /*
25  * lock->owner state tracking:
26  *
27  * lock->owner holds the task_struct pointer of the owner. Bit 0
28  * is used to keep track of the "lock has waiters" state.
29  *
30  * owner        bit0
31  * NULL         0       lock is free (fast acquire possible)
32  * NULL         1       lock is free and has waiters and the top waiter
33  *                              is going to take the lock*
34  * taskpointer  0       lock is held (fast release possible)
35  * taskpointer  1       lock is held and has waiters**
36  *
37  * The fast atomic compare exchange based acquire and release is only
38  * possible when bit 0 of lock->owner is 0.
39  *
40  * (*) It also can be a transitional state when grabbing the lock
41  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
42  * we need to set the bit0 before looking at the lock, and the owner may be
43  * NULL in this small time, hence this can be a transitional state.
44  *
45  * (**) There is a small time when bit 0 is set but there are no
46  * waiters. This can happen when grabbing the lock in the slow path.
47  * To prevent a cmpxchg of the owner releasing the lock, we need to
48  * set this bit before looking at the lock.
49  */
50
51 static void
52 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
53 {
54         unsigned long val = (unsigned long)owner;
55
56         if (rt_mutex_has_waiters(lock))
57                 val |= RT_MUTEX_HAS_WAITERS;
58
59         lock->owner = (struct task_struct *)val;
60 }
61
62 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
63 {
64         lock->owner = (struct task_struct *)
65                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
66 }
67
68 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
69 {
70         unsigned long owner, *p = (unsigned long *) &lock->owner;
71
72         if (rt_mutex_has_waiters(lock))
73                 return;
74
75         /*
76          * The rbtree has no waiters enqueued, now make sure that the
77          * lock->owner still has the waiters bit set, otherwise the
78          * following can happen:
79          *
80          * CPU 0        CPU 1           CPU2
81          * l->owner=T1
82          *              rt_mutex_lock(l)
83          *              lock(l->lock)
84          *              l->owner = T1 | HAS_WAITERS;
85          *              enqueue(T2)
86          *              boost()
87          *                unlock(l->lock)
88          *              block()
89          *
90          *                              rt_mutex_lock(l)
91          *                              lock(l->lock)
92          *                              l->owner = T1 | HAS_WAITERS;
93          *                              enqueue(T3)
94          *                              boost()
95          *                                unlock(l->lock)
96          *                              block()
97          *              signal(->T2)    signal(->T3)
98          *              lock(l->lock)
99          *              dequeue(T2)
100          *              deboost()
101          *                unlock(l->lock)
102          *                              lock(l->lock)
103          *                              dequeue(T3)
104          *                               ==> wait list is empty
105          *                              deboost()
106          *                               unlock(l->lock)
107          *              lock(l->lock)
108          *              fixup_rt_mutex_waiters()
109          *                if (wait_list_empty(l) {
110          *                  l->owner = owner
111          *                  owner = l->owner & ~HAS_WAITERS;
112          *                    ==> l->owner = T1
113          *                }
114          *                              lock(l->lock)
115          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
116          *                                if (wait_list_empty(l) {
117          *                                  owner = l->owner & ~HAS_WAITERS;
118          * cmpxchg(l->owner, T1, NULL)
119          *  ===> Success (l->owner = NULL)
120          *
121          *                                  l->owner = owner
122          *                                    ==> l->owner = T1
123          *                                }
124          *
125          * With the check for the waiter bit in place T3 on CPU2 will not
126          * overwrite. All tasks fiddling with the waiters bit are
127          * serialized by l->lock, so nothing else can modify the waiters
128          * bit. If the bit is set then nothing can change l->owner either
129          * so the simple RMW is safe. The cmpxchg() will simply fail if it
130          * happens in the middle of the RMW because the waiters bit is
131          * still set.
132          */
133         owner = READ_ONCE(*p);
134         if (owner & RT_MUTEX_HAS_WAITERS)
135                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
136 }
137
138 /*
139  * We can speed up the acquire/release, if there's no debugging state to be
140  * set up.
141  */
142 #ifndef CONFIG_DEBUG_RT_MUTEXES
143 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147 /*
148  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150  * relaxed semantics suffice.
151  */
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154         unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156         do {
157                 owner = *p;
158         } while (cmpxchg_relaxed(p, owner,
159                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161
162 /*
163  * Safe fastpath aware unlock:
164  * 1) Clear the waiters bit
165  * 2) Drop lock->wait_lock
166  * 3) Try to unlock the lock with cmpxchg
167  */
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169                                         unsigned long flags)
170         __releases(lock->wait_lock)
171 {
172         struct task_struct *owner = rt_mutex_owner(lock);
173
174         clear_rt_mutex_waiters(lock);
175         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176         /*
177          * If a new waiter comes in between the unlock and the cmpxchg
178          * we have two situations:
179          *
180          * unlock(wait_lock);
181          *                                      lock(wait_lock);
182          * cmpxchg(p, owner, 0) == owner
183          *                                      mark_rt_mutex_waiters(lock);
184          *                                      acquire(lock);
185          * or:
186          *
187          * unlock(wait_lock);
188          *                                      lock(wait_lock);
189          *                                      mark_rt_mutex_waiters(lock);
190          *
191          * cmpxchg(p, owner, 0) != owner
192          *                                      enqueue_waiter();
193          *                                      unlock(wait_lock);
194          * lock(wait_lock);
195          * wake waiter();
196          * unlock(wait_lock);
197          *                                      lock(wait_lock);
198          *                                      acquire(lock);
199          */
200         return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202
203 #else
204 # define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
205 # define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
206 # define rt_mutex_cmpxchg_release(l,c,n)        (0)
207
208 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
209 {
210         lock->owner = (struct task_struct *)
211                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
212 }
213
214 /*
215  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
216  */
217 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
218                                         unsigned long flags)
219         __releases(lock->wait_lock)
220 {
221         lock->owner = NULL;
222         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
223         return true;
224 }
225 #endif
226
227 static inline int
228 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
229                      struct rt_mutex_waiter *right)
230 {
231         if (left->prio < right->prio)
232                 return 1;
233
234         /*
235          * If both waiters have dl_prio(), we check the deadlines of the
236          * associated tasks.
237          * If left waiter has a dl_prio(), and we didn't return 1 above,
238          * then right waiter has a dl_prio() too.
239          */
240         if (dl_prio(left->prio))
241                 return dl_time_before(left->task->dl.deadline,
242                                       right->task->dl.deadline);
243
244         return 0;
245 }
246
247 static void
248 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
249 {
250         struct rb_node **link = &lock->waiters.rb_node;
251         struct rb_node *parent = NULL;
252         struct rt_mutex_waiter *entry;
253         int leftmost = 1;
254
255         while (*link) {
256                 parent = *link;
257                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
258                 if (rt_mutex_waiter_less(waiter, entry)) {
259                         link = &parent->rb_left;
260                 } else {
261                         link = &parent->rb_right;
262                         leftmost = 0;
263                 }
264         }
265
266         if (leftmost)
267                 lock->waiters_leftmost = &waiter->tree_entry;
268
269         rb_link_node(&waiter->tree_entry, parent, link);
270         rb_insert_color(&waiter->tree_entry, &lock->waiters);
271 }
272
273 static void
274 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
275 {
276         if (RB_EMPTY_NODE(&waiter->tree_entry))
277                 return;
278
279         if (lock->waiters_leftmost == &waiter->tree_entry)
280                 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
281
282         rb_erase(&waiter->tree_entry, &lock->waiters);
283         RB_CLEAR_NODE(&waiter->tree_entry);
284 }
285
286 static void
287 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
288 {
289         struct rb_node **link = &task->pi_waiters.rb_node;
290         struct rb_node *parent = NULL;
291         struct rt_mutex_waiter *entry;
292         int leftmost = 1;
293
294         while (*link) {
295                 parent = *link;
296                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
297                 if (rt_mutex_waiter_less(waiter, entry)) {
298                         link = &parent->rb_left;
299                 } else {
300                         link = &parent->rb_right;
301                         leftmost = 0;
302                 }
303         }
304
305         if (leftmost)
306                 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
307
308         rb_link_node(&waiter->pi_tree_entry, parent, link);
309         rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
310 }
311
312 static void
313 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
314 {
315         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
316                 return;
317
318         if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
319                 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
320
321         rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
322         RB_CLEAR_NODE(&waiter->pi_tree_entry);
323 }
324
325 /*
326  * Calculate task priority from the waiter tree priority
327  *
328  * Return task->normal_prio when the waiter tree is empty or when
329  * the waiter is not allowed to do priority boosting
330  */
331 int rt_mutex_getprio(struct task_struct *task)
332 {
333         if (likely(!task_has_pi_waiters(task)))
334                 return task->normal_prio;
335
336         return min(task_top_pi_waiter(task)->prio,
337                    task->normal_prio);
338 }
339
340 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
341 {
342         if (likely(!task_has_pi_waiters(task)))
343                 return NULL;
344
345         return task_top_pi_waiter(task)->task;
346 }
347
348 /*
349  * Called by sched_setscheduler() to get the priority which will be
350  * effective after the change.
351  */
352 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
353 {
354         if (!task_has_pi_waiters(task))
355                 return newprio;
356
357         if (task_top_pi_waiter(task)->task->prio <= newprio)
358                 return task_top_pi_waiter(task)->task->prio;
359         return newprio;
360 }
361
362 /*
363  * Adjust the priority of a task, after its pi_waiters got modified.
364  *
365  * This can be both boosting and unboosting. task->pi_lock must be held.
366  */
367 static void __rt_mutex_adjust_prio(struct task_struct *task)
368 {
369         int prio = rt_mutex_getprio(task);
370
371         if (task->prio != prio || dl_prio(prio))
372                 rt_mutex_setprio(task, prio);
373 }
374
375 /*
376  * Adjust task priority (undo boosting). Called from the exit path of
377  * rt_mutex_slowunlock() and rt_mutex_slowlock().
378  *
379  * (Note: We do this outside of the protection of lock->wait_lock to
380  * allow the lock to be taken while or before we readjust the priority
381  * of task. We do not use the spin_xx_mutex() variants here as we are
382  * outside of the debug path.)
383  */
384 void rt_mutex_adjust_prio(struct task_struct *task)
385 {
386         unsigned long flags;
387
388         raw_spin_lock_irqsave(&task->pi_lock, flags);
389         __rt_mutex_adjust_prio(task);
390         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
391 }
392
393 /*
394  * Deadlock detection is conditional:
395  *
396  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
397  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
398  *
399  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
400  * conducted independent of the detect argument.
401  *
402  * If the waiter argument is NULL this indicates the deboost path and
403  * deadlock detection is disabled independent of the detect argument
404  * and the config settings.
405  */
406 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
407                                           enum rtmutex_chainwalk chwalk)
408 {
409         /*
410          * This is just a wrapper function for the following call,
411          * because debug_rt_mutex_detect_deadlock() smells like a magic
412          * debug feature and I wanted to keep the cond function in the
413          * main source file along with the comments instead of having
414          * two of the same in the headers.
415          */
416         return debug_rt_mutex_detect_deadlock(waiter, chwalk);
417 }
418
419 /*
420  * Max number of times we'll walk the boosting chain:
421  */
422 int max_lock_depth = 1024;
423
424 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
425 {
426         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
427 }
428
429 /*
430  * Adjust the priority chain. Also used for deadlock detection.
431  * Decreases task's usage by one - may thus free the task.
432  *
433  * @task:       the task owning the mutex (owner) for which a chain walk is
434  *              probably needed
435  * @chwalk:     do we have to carry out deadlock detection?
436  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
437  *              things for a task that has just got its priority adjusted, and
438  *              is waiting on a mutex)
439  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
440  *              we dropped its pi_lock. Is never dereferenced, only used for
441  *              comparison to detect lock chain changes.
442  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
443  *              its priority to the mutex owner (can be NULL in the case
444  *              depicted above or if the top waiter is gone away and we are
445  *              actually deboosting the owner)
446  * @top_task:   the current top waiter
447  *
448  * Returns 0 or -EDEADLK.
449  *
450  * Chain walk basics and protection scope
451  *
452  * [R] refcount on task
453  * [P] task->pi_lock held
454  * [L] rtmutex->wait_lock held
455  *
456  * Step Description                             Protected by
457  *      function arguments:
458  *      @task                                   [R]
459  *      @orig_lock if != NULL                   @top_task is blocked on it
460  *      @next_lock                              Unprotected. Cannot be
461  *                                              dereferenced. Only used for
462  *                                              comparison.
463  *      @orig_waiter if != NULL                 @top_task is blocked on it
464  *      @top_task                               current, or in case of proxy
465  *                                              locking protected by calling
466  *                                              code
467  *      again:
468  *        loop_sanity_check();
469  *      retry:
470  * [1]    lock(task->pi_lock);                  [R] acquire [P]
471  * [2]    waiter = task->pi_blocked_on;         [P]
472  * [3]    check_exit_conditions_1();            [P]
473  * [4]    lock = waiter->lock;                  [P]
474  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
475  *          unlock(task->pi_lock);              release [P]
476  *          goto retry;
477  *        }
478  * [6]    check_exit_conditions_2();            [P] + [L]
479  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
480  * [8]    unlock(task->pi_lock);                release [P]
481  *        put_task_struct(task);                release [R]
482  * [9]    check_exit_conditions_3();            [L]
483  * [10]   task = owner(lock);                   [L]
484  *        get_task_struct(task);                [L] acquire [R]
485  *        lock(task->pi_lock);                  [L] acquire [P]
486  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
487  * [12]   check_exit_conditions_4();            [P] + [L]
488  * [13]   unlock(task->pi_lock);                release [P]
489  *        unlock(lock->wait_lock);              release [L]
490  *        goto again;
491  */
492 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
493                                       enum rtmutex_chainwalk chwalk,
494                                       struct rt_mutex *orig_lock,
495                                       struct rt_mutex *next_lock,
496                                       struct rt_mutex_waiter *orig_waiter,
497                                       struct task_struct *top_task)
498 {
499         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
500         struct rt_mutex_waiter *prerequeue_top_waiter;
501         int ret = 0, depth = 0;
502         struct rt_mutex *lock;
503         bool detect_deadlock;
504         bool requeue = true;
505
506         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
507
508         /*
509          * The (de)boosting is a step by step approach with a lot of
510          * pitfalls. We want this to be preemptible and we want hold a
511          * maximum of two locks per step. So we have to check
512          * carefully whether things change under us.
513          */
514  again:
515         /*
516          * We limit the lock chain length for each invocation.
517          */
518         if (++depth > max_lock_depth) {
519                 static int prev_max;
520
521                 /*
522                  * Print this only once. If the admin changes the limit,
523                  * print a new message when reaching the limit again.
524                  */
525                 if (prev_max != max_lock_depth) {
526                         prev_max = max_lock_depth;
527                         printk(KERN_WARNING "Maximum lock depth %d reached "
528                                "task: %s (%d)\n", max_lock_depth,
529                                top_task->comm, task_pid_nr(top_task));
530                 }
531                 put_task_struct(task);
532
533                 return -EDEADLK;
534         }
535
536         /*
537          * We are fully preemptible here and only hold the refcount on
538          * @task. So everything can have changed under us since the
539          * caller or our own code below (goto retry/again) dropped all
540          * locks.
541          */
542  retry:
543         /*
544          * [1] Task cannot go away as we did a get_task() before !
545          */
546         raw_spin_lock_irq(&task->pi_lock);
547
548         /*
549          * [2] Get the waiter on which @task is blocked on.
550          */
551         waiter = task->pi_blocked_on;
552
553         /*
554          * [3] check_exit_conditions_1() protected by task->pi_lock.
555          */
556
557         /*
558          * Check whether the end of the boosting chain has been
559          * reached or the state of the chain has changed while we
560          * dropped the locks.
561          */
562         if (!waiter)
563                 goto out_unlock_pi;
564
565         /*
566          * Check the orig_waiter state. After we dropped the locks,
567          * the previous owner of the lock might have released the lock.
568          */
569         if (orig_waiter && !rt_mutex_owner(orig_lock))
570                 goto out_unlock_pi;
571
572         /*
573          * We dropped all locks after taking a refcount on @task, so
574          * the task might have moved on in the lock chain or even left
575          * the chain completely and blocks now on an unrelated lock or
576          * on @orig_lock.
577          *
578          * We stored the lock on which @task was blocked in @next_lock,
579          * so we can detect the chain change.
580          */
581         if (next_lock != waiter->lock)
582                 goto out_unlock_pi;
583
584         /*
585          * Drop out, when the task has no waiters. Note,
586          * top_waiter can be NULL, when we are in the deboosting
587          * mode!
588          */
589         if (top_waiter) {
590                 if (!task_has_pi_waiters(task))
591                         goto out_unlock_pi;
592                 /*
593                  * If deadlock detection is off, we stop here if we
594                  * are not the top pi waiter of the task. If deadlock
595                  * detection is enabled we continue, but stop the
596                  * requeueing in the chain walk.
597                  */
598                 if (top_waiter != task_top_pi_waiter(task)) {
599                         if (!detect_deadlock)
600                                 goto out_unlock_pi;
601                         else
602                                 requeue = false;
603                 }
604         }
605
606         /*
607          * If the waiter priority is the same as the task priority
608          * then there is no further priority adjustment necessary.  If
609          * deadlock detection is off, we stop the chain walk. If its
610          * enabled we continue, but stop the requeueing in the chain
611          * walk.
612          */
613         if (waiter->prio == task->prio) {
614                 if (!detect_deadlock)
615                         goto out_unlock_pi;
616                 else
617                         requeue = false;
618         }
619
620         /*
621          * [4] Get the next lock
622          */
623         lock = waiter->lock;
624         /*
625          * [5] We need to trylock here as we are holding task->pi_lock,
626          * which is the reverse lock order versus the other rtmutex
627          * operations.
628          */
629         if (!raw_spin_trylock(&lock->wait_lock)) {
630                 raw_spin_unlock_irq(&task->pi_lock);
631                 cpu_relax();
632                 goto retry;
633         }
634
635         /*
636          * [6] check_exit_conditions_2() protected by task->pi_lock and
637          * lock->wait_lock.
638          *
639          * Deadlock detection. If the lock is the same as the original
640          * lock which caused us to walk the lock chain or if the
641          * current lock is owned by the task which initiated the chain
642          * walk, we detected a deadlock.
643          */
644         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
645                 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
646                 raw_spin_unlock(&lock->wait_lock);
647                 ret = -EDEADLK;
648                 goto out_unlock_pi;
649         }
650
651         /*
652          * If we just follow the lock chain for deadlock detection, no
653          * need to do all the requeue operations. To avoid a truckload
654          * of conditionals around the various places below, just do the
655          * minimum chain walk checks.
656          */
657         if (!requeue) {
658                 /*
659                  * No requeue[7] here. Just release @task [8]
660                  */
661                 raw_spin_unlock(&task->pi_lock);
662                 put_task_struct(task);
663
664                 /*
665                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
666                  * If there is no owner of the lock, end of chain.
667                  */
668                 if (!rt_mutex_owner(lock)) {
669                         raw_spin_unlock_irq(&lock->wait_lock);
670                         return 0;
671                 }
672
673                 /* [10] Grab the next task, i.e. owner of @lock */
674                 task = rt_mutex_owner(lock);
675                 get_task_struct(task);
676                 raw_spin_lock(&task->pi_lock);
677
678                 /*
679                  * No requeue [11] here. We just do deadlock detection.
680                  *
681                  * [12] Store whether owner is blocked
682                  * itself. Decision is made after dropping the locks
683                  */
684                 next_lock = task_blocked_on_lock(task);
685                 /*
686                  * Get the top waiter for the next iteration
687                  */
688                 top_waiter = rt_mutex_top_waiter(lock);
689
690                 /* [13] Drop locks */
691                 raw_spin_unlock(&task->pi_lock);
692                 raw_spin_unlock_irq(&lock->wait_lock);
693
694                 /* If owner is not blocked, end of chain. */
695                 if (!next_lock)
696                         goto out_put_task;
697                 goto again;
698         }
699
700         /*
701          * Store the current top waiter before doing the requeue
702          * operation on @lock. We need it for the boost/deboost
703          * decision below.
704          */
705         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
706
707         /* [7] Requeue the waiter in the lock waiter tree. */
708         rt_mutex_dequeue(lock, waiter);
709         waiter->prio = task->prio;
710         rt_mutex_enqueue(lock, waiter);
711
712         /* [8] Release the task */
713         raw_spin_unlock(&task->pi_lock);
714         put_task_struct(task);
715
716         /*
717          * [9] check_exit_conditions_3 protected by lock->wait_lock.
718          *
719          * We must abort the chain walk if there is no lock owner even
720          * in the dead lock detection case, as we have nothing to
721          * follow here. This is the end of the chain we are walking.
722          */
723         if (!rt_mutex_owner(lock)) {
724                 /*
725                  * If the requeue [7] above changed the top waiter,
726                  * then we need to wake the new top waiter up to try
727                  * to get the lock.
728                  */
729                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
730                         wake_up_process(rt_mutex_top_waiter(lock)->task);
731                 raw_spin_unlock_irq(&lock->wait_lock);
732                 return 0;
733         }
734
735         /* [10] Grab the next task, i.e. the owner of @lock */
736         task = rt_mutex_owner(lock);
737         get_task_struct(task);
738         raw_spin_lock(&task->pi_lock);
739
740         /* [11] requeue the pi waiters if necessary */
741         if (waiter == rt_mutex_top_waiter(lock)) {
742                 /*
743                  * The waiter became the new top (highest priority)
744                  * waiter on the lock. Replace the previous top waiter
745                  * in the owner tasks pi waiters tree with this waiter
746                  * and adjust the priority of the owner.
747                  */
748                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
749                 rt_mutex_enqueue_pi(task, waiter);
750                 __rt_mutex_adjust_prio(task);
751
752         } else if (prerequeue_top_waiter == waiter) {
753                 /*
754                  * The waiter was the top waiter on the lock, but is
755                  * no longer the top prority waiter. Replace waiter in
756                  * the owner tasks pi waiters tree with the new top
757                  * (highest priority) waiter and adjust the priority
758                  * of the owner.
759                  * The new top waiter is stored in @waiter so that
760                  * @waiter == @top_waiter evaluates to true below and
761                  * we continue to deboost the rest of the chain.
762                  */
763                 rt_mutex_dequeue_pi(task, waiter);
764                 waiter = rt_mutex_top_waiter(lock);
765                 rt_mutex_enqueue_pi(task, waiter);
766                 __rt_mutex_adjust_prio(task);
767         } else {
768                 /*
769                  * Nothing changed. No need to do any priority
770                  * adjustment.
771                  */
772         }
773
774         /*
775          * [12] check_exit_conditions_4() protected by task->pi_lock
776          * and lock->wait_lock. The actual decisions are made after we
777          * dropped the locks.
778          *
779          * Check whether the task which owns the current lock is pi
780          * blocked itself. If yes we store a pointer to the lock for
781          * the lock chain change detection above. After we dropped
782          * task->pi_lock next_lock cannot be dereferenced anymore.
783          */
784         next_lock = task_blocked_on_lock(task);
785         /*
786          * Store the top waiter of @lock for the end of chain walk
787          * decision below.
788          */
789         top_waiter = rt_mutex_top_waiter(lock);
790
791         /* [13] Drop the locks */
792         raw_spin_unlock(&task->pi_lock);
793         raw_spin_unlock_irq(&lock->wait_lock);
794
795         /*
796          * Make the actual exit decisions [12], based on the stored
797          * values.
798          *
799          * We reached the end of the lock chain. Stop right here. No
800          * point to go back just to figure that out.
801          */
802         if (!next_lock)
803                 goto out_put_task;
804
805         /*
806          * If the current waiter is not the top waiter on the lock,
807          * then we can stop the chain walk here if we are not in full
808          * deadlock detection mode.
809          */
810         if (!detect_deadlock && waiter != top_waiter)
811                 goto out_put_task;
812
813         goto again;
814
815  out_unlock_pi:
816         raw_spin_unlock_irq(&task->pi_lock);
817  out_put_task:
818         put_task_struct(task);
819
820         return ret;
821 }
822
823 /*
824  * Try to take an rt-mutex
825  *
826  * Must be called with lock->wait_lock held and interrupts disabled
827  *
828  * @lock:   The lock to be acquired.
829  * @task:   The task which wants to acquire the lock
830  * @waiter: The waiter that is queued to the lock's wait tree if the
831  *          callsite called task_blocked_on_lock(), otherwise NULL
832  */
833 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
834                                 struct rt_mutex_waiter *waiter)
835 {
836         /*
837          * Before testing whether we can acquire @lock, we set the
838          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
839          * other tasks which try to modify @lock into the slow path
840          * and they serialize on @lock->wait_lock.
841          *
842          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
843          * as explained at the top of this file if and only if:
844          *
845          * - There is a lock owner. The caller must fixup the
846          *   transient state if it does a trylock or leaves the lock
847          *   function due to a signal or timeout.
848          *
849          * - @task acquires the lock and there are no other
850          *   waiters. This is undone in rt_mutex_set_owner(@task) at
851          *   the end of this function.
852          */
853         mark_rt_mutex_waiters(lock);
854
855         /*
856          * If @lock has an owner, give up.
857          */
858         if (rt_mutex_owner(lock))
859                 return 0;
860
861         /*
862          * If @waiter != NULL, @task has already enqueued the waiter
863          * into @lock waiter tree. If @waiter == NULL then this is a
864          * trylock attempt.
865          */
866         if (waiter) {
867                 /*
868                  * If waiter is not the highest priority waiter of
869                  * @lock, give up.
870                  */
871                 if (waiter != rt_mutex_top_waiter(lock))
872                         return 0;
873
874                 /*
875                  * We can acquire the lock. Remove the waiter from the
876                  * lock waiters tree.
877                  */
878                 rt_mutex_dequeue(lock, waiter);
879
880         } else {
881                 /*
882                  * If the lock has waiters already we check whether @task is
883                  * eligible to take over the lock.
884                  *
885                  * If there are no other waiters, @task can acquire
886                  * the lock.  @task->pi_blocked_on is NULL, so it does
887                  * not need to be dequeued.
888                  */
889                 if (rt_mutex_has_waiters(lock)) {
890                         /*
891                          * If @task->prio is greater than or equal to
892                          * the top waiter priority (kernel view),
893                          * @task lost.
894                          */
895                         if (task->prio >= rt_mutex_top_waiter(lock)->prio)
896                                 return 0;
897
898                         /*
899                          * The current top waiter stays enqueued. We
900                          * don't have to change anything in the lock
901                          * waiters order.
902                          */
903                 } else {
904                         /*
905                          * No waiters. Take the lock without the
906                          * pi_lock dance.@task->pi_blocked_on is NULL
907                          * and we have no waiters to enqueue in @task
908                          * pi waiters tree.
909                          */
910                         goto takeit;
911                 }
912         }
913
914         /*
915          * Clear @task->pi_blocked_on. Requires protection by
916          * @task->pi_lock. Redundant operation for the @waiter == NULL
917          * case, but conditionals are more expensive than a redundant
918          * store.
919          */
920         raw_spin_lock(&task->pi_lock);
921         task->pi_blocked_on = NULL;
922         /*
923          * Finish the lock acquisition. @task is the new owner. If
924          * other waiters exist we have to insert the highest priority
925          * waiter into @task->pi_waiters tree.
926          */
927         if (rt_mutex_has_waiters(lock))
928                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
929         raw_spin_unlock(&task->pi_lock);
930
931 takeit:
932         /* We got the lock. */
933         debug_rt_mutex_lock(lock);
934
935         /*
936          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
937          * are still waiters or clears it.
938          */
939         rt_mutex_set_owner(lock, task);
940
941         return 1;
942 }
943
944 /*
945  * Task blocks on lock.
946  *
947  * Prepare waiter and propagate pi chain
948  *
949  * This must be called with lock->wait_lock held and interrupts disabled
950  */
951 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
952                                    struct rt_mutex_waiter *waiter,
953                                    struct task_struct *task,
954                                    enum rtmutex_chainwalk chwalk)
955 {
956         struct task_struct *owner = rt_mutex_owner(lock);
957         struct rt_mutex_waiter *top_waiter = waiter;
958         struct rt_mutex *next_lock;
959         int chain_walk = 0, res;
960
961         /*
962          * Early deadlock detection. We really don't want the task to
963          * enqueue on itself just to untangle the mess later. It's not
964          * only an optimization. We drop the locks, so another waiter
965          * can come in before the chain walk detects the deadlock. So
966          * the other will detect the deadlock and return -EDEADLOCK,
967          * which is wrong, as the other waiter is not in a deadlock
968          * situation.
969          */
970         if (owner == task)
971                 return -EDEADLK;
972
973         raw_spin_lock(&task->pi_lock);
974         __rt_mutex_adjust_prio(task);
975         waiter->task = task;
976         waiter->lock = lock;
977         waiter->prio = task->prio;
978
979         /* Get the top priority waiter on the lock */
980         if (rt_mutex_has_waiters(lock))
981                 top_waiter = rt_mutex_top_waiter(lock);
982         rt_mutex_enqueue(lock, waiter);
983
984         task->pi_blocked_on = waiter;
985
986         raw_spin_unlock(&task->pi_lock);
987
988         if (!owner)
989                 return 0;
990
991         raw_spin_lock(&owner->pi_lock);
992         if (waiter == rt_mutex_top_waiter(lock)) {
993                 rt_mutex_dequeue_pi(owner, top_waiter);
994                 rt_mutex_enqueue_pi(owner, waiter);
995
996                 __rt_mutex_adjust_prio(owner);
997                 if (owner->pi_blocked_on)
998                         chain_walk = 1;
999         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1000                 chain_walk = 1;
1001         }
1002
1003         /* Store the lock on which owner is blocked or NULL */
1004         next_lock = task_blocked_on_lock(owner);
1005
1006         raw_spin_unlock(&owner->pi_lock);
1007         /*
1008          * Even if full deadlock detection is on, if the owner is not
1009          * blocked itself, we can avoid finding this out in the chain
1010          * walk.
1011          */
1012         if (!chain_walk || !next_lock)
1013                 return 0;
1014
1015         /*
1016          * The owner can't disappear while holding a lock,
1017          * so the owner struct is protected by wait_lock.
1018          * Gets dropped in rt_mutex_adjust_prio_chain()!
1019          */
1020         get_task_struct(owner);
1021
1022         raw_spin_unlock_irq(&lock->wait_lock);
1023
1024         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1025                                          next_lock, waiter, task);
1026
1027         raw_spin_lock_irq(&lock->wait_lock);
1028
1029         return res;
1030 }
1031
1032 /*
1033  * Remove the top waiter from the current tasks pi waiter tree and
1034  * queue it up.
1035  *
1036  * Called with lock->wait_lock held and interrupts disabled.
1037  */
1038 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1039                                     struct rt_mutex *lock)
1040 {
1041         struct rt_mutex_waiter *waiter;
1042
1043         raw_spin_lock(&current->pi_lock);
1044
1045         waiter = rt_mutex_top_waiter(lock);
1046
1047         /*
1048          * Remove it from current->pi_waiters. We do not adjust a
1049          * possible priority boost right now. We execute wakeup in the
1050          * boosted mode and go back to normal after releasing
1051          * lock->wait_lock.
1052          */
1053         rt_mutex_dequeue_pi(current, waiter);
1054
1055         /*
1056          * As we are waking up the top waiter, and the waiter stays
1057          * queued on the lock until it gets the lock, this lock
1058          * obviously has waiters. Just set the bit here and this has
1059          * the added benefit of forcing all new tasks into the
1060          * slow path making sure no task of lower priority than
1061          * the top waiter can steal this lock.
1062          */
1063         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1064
1065         raw_spin_unlock(&current->pi_lock);
1066
1067         wake_q_add(wake_q, waiter->task);
1068 }
1069
1070 /*
1071  * Remove a waiter from a lock and give up
1072  *
1073  * Must be called with lock->wait_lock held and interrupts disabled. I must
1074  * have just failed to try_to_take_rt_mutex().
1075  */
1076 static void remove_waiter(struct rt_mutex *lock,
1077                           struct rt_mutex_waiter *waiter)
1078 {
1079         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1080         struct task_struct *owner = rt_mutex_owner(lock);
1081         struct rt_mutex *next_lock;
1082
1083         raw_spin_lock(&current->pi_lock);
1084         rt_mutex_dequeue(lock, waiter);
1085         current->pi_blocked_on = NULL;
1086         raw_spin_unlock(&current->pi_lock);
1087
1088         /*
1089          * Only update priority if the waiter was the highest priority
1090          * waiter of the lock and there is an owner to update.
1091          */
1092         if (!owner || !is_top_waiter)
1093                 return;
1094
1095         raw_spin_lock(&owner->pi_lock);
1096
1097         rt_mutex_dequeue_pi(owner, waiter);
1098
1099         if (rt_mutex_has_waiters(lock))
1100                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1101
1102         __rt_mutex_adjust_prio(owner);
1103
1104         /* Store the lock on which owner is blocked or NULL */
1105         next_lock = task_blocked_on_lock(owner);
1106
1107         raw_spin_unlock(&owner->pi_lock);
1108
1109         /*
1110          * Don't walk the chain, if the owner task is not blocked
1111          * itself.
1112          */
1113         if (!next_lock)
1114                 return;
1115
1116         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1117         get_task_struct(owner);
1118
1119         raw_spin_unlock_irq(&lock->wait_lock);
1120
1121         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1122                                    next_lock, NULL, current);
1123
1124         raw_spin_lock_irq(&lock->wait_lock);
1125 }
1126
1127 /*
1128  * Recheck the pi chain, in case we got a priority setting
1129  *
1130  * Called from sched_setscheduler
1131  */
1132 void rt_mutex_adjust_pi(struct task_struct *task)
1133 {
1134         struct rt_mutex_waiter *waiter;
1135         struct rt_mutex *next_lock;
1136         unsigned long flags;
1137
1138         raw_spin_lock_irqsave(&task->pi_lock, flags);
1139
1140         waiter = task->pi_blocked_on;
1141         if (!waiter || (waiter->prio == task->prio &&
1142                         !dl_prio(task->prio))) {
1143                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1144                 return;
1145         }
1146         next_lock = waiter->lock;
1147         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1148
1149         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1150         get_task_struct(task);
1151
1152         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1153                                    next_lock, NULL, task);
1154 }
1155
1156 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1157 {
1158         debug_rt_mutex_init_waiter(waiter);
1159         RB_CLEAR_NODE(&waiter->pi_tree_entry);
1160         RB_CLEAR_NODE(&waiter->tree_entry);
1161         waiter->task = NULL;
1162 }
1163
1164 /**
1165  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1166  * @lock:                the rt_mutex to take
1167  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1168  *                       or TASK_UNINTERRUPTIBLE)
1169  * @timeout:             the pre-initialized and started timer, or NULL for none
1170  * @waiter:              the pre-initialized rt_mutex_waiter
1171  *
1172  * Must be called with lock->wait_lock held and interrupts disabled
1173  */
1174 static int __sched
1175 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1176                     struct hrtimer_sleeper *timeout,
1177                     struct rt_mutex_waiter *waiter)
1178 {
1179         int ret = 0;
1180
1181         for (;;) {
1182                 /* Try to acquire the lock: */
1183                 if (try_to_take_rt_mutex(lock, current, waiter))
1184                         break;
1185
1186                 /*
1187                  * TASK_INTERRUPTIBLE checks for signals and
1188                  * timeout. Ignored otherwise.
1189                  */
1190                 if (likely(state == TASK_INTERRUPTIBLE)) {
1191                         /* Signal pending? */
1192                         if (signal_pending(current))
1193                                 ret = -EINTR;
1194                         if (timeout && !timeout->task)
1195                                 ret = -ETIMEDOUT;
1196                         if (ret)
1197                                 break;
1198                 }
1199
1200                 raw_spin_unlock_irq(&lock->wait_lock);
1201
1202                 debug_rt_mutex_print_deadlock(waiter);
1203
1204                 schedule();
1205
1206                 raw_spin_lock_irq(&lock->wait_lock);
1207                 set_current_state(state);
1208         }
1209
1210         __set_current_state(TASK_RUNNING);
1211         return ret;
1212 }
1213
1214 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1215                                      struct rt_mutex_waiter *w)
1216 {
1217         /*
1218          * If the result is not -EDEADLOCK or the caller requested
1219          * deadlock detection, nothing to do here.
1220          */
1221         if (res != -EDEADLOCK || detect_deadlock)
1222                 return;
1223
1224         /*
1225          * Yell lowdly and stop the task right here.
1226          */
1227         rt_mutex_print_deadlock(w);
1228         while (1) {
1229                 set_current_state(TASK_INTERRUPTIBLE);
1230                 schedule();
1231         }
1232 }
1233
1234 /*
1235  * Slow path lock function:
1236  */
1237 static int __sched
1238 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1239                   struct hrtimer_sleeper *timeout,
1240                   enum rtmutex_chainwalk chwalk)
1241 {
1242         struct rt_mutex_waiter waiter;
1243         unsigned long flags;
1244         int ret = 0;
1245
1246         rt_mutex_init_waiter(&waiter);
1247
1248         /*
1249          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1250          * be called in early boot if the cmpxchg() fast path is disabled
1251          * (debug, no architecture support). In this case we will acquire the
1252          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1253          * enable interrupts in that early boot case. So we need to use the
1254          * irqsave/restore variants.
1255          */
1256         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1257
1258         /* Try to acquire the lock again: */
1259         if (try_to_take_rt_mutex(lock, current, NULL)) {
1260                 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1261                 return 0;
1262         }
1263
1264         set_current_state(state);
1265
1266         /* Setup the timer, when timeout != NULL */
1267         if (unlikely(timeout))
1268                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1269
1270         ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1271
1272         if (likely(!ret))
1273                 /* sleep on the mutex */
1274                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1275
1276         if (unlikely(ret)) {
1277                 __set_current_state(TASK_RUNNING);
1278                 if (rt_mutex_has_waiters(lock))
1279                         remove_waiter(lock, &waiter);
1280                 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1281         }
1282
1283         /*
1284          * try_to_take_rt_mutex() sets the waiter bit
1285          * unconditionally. We might have to fix that up.
1286          */
1287         fixup_rt_mutex_waiters(lock);
1288
1289         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1290
1291         /* Remove pending timer: */
1292         if (unlikely(timeout))
1293                 hrtimer_cancel(&timeout->timer);
1294
1295         debug_rt_mutex_free_waiter(&waiter);
1296
1297         return ret;
1298 }
1299
1300 /*
1301  * Slow path try-lock function:
1302  */
1303 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1304 {
1305         unsigned long flags;
1306         int ret;
1307
1308         /*
1309          * If the lock already has an owner we fail to get the lock.
1310          * This can be done without taking the @lock->wait_lock as
1311          * it is only being read, and this is a trylock anyway.
1312          */
1313         if (rt_mutex_owner(lock))
1314                 return 0;
1315
1316         /*
1317          * The mutex has currently no owner. Lock the wait lock and try to
1318          * acquire the lock. We use irqsave here to support early boot calls.
1319          */
1320         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1321
1322         ret = try_to_take_rt_mutex(lock, current, NULL);
1323
1324         /*
1325          * try_to_take_rt_mutex() sets the lock waiters bit
1326          * unconditionally. Clean this up.
1327          */
1328         fixup_rt_mutex_waiters(lock);
1329
1330         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1331
1332         return ret;
1333 }
1334
1335 /*
1336  * Slow path to release a rt-mutex.
1337  * Return whether the current task needs to undo a potential priority boosting.
1338  */
1339 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1340                                         struct wake_q_head *wake_q)
1341 {
1342         unsigned long flags;
1343
1344         /* irqsave required to support early boot calls */
1345         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1346
1347         debug_rt_mutex_unlock(lock);
1348
1349         /*
1350          * We must be careful here if the fast path is enabled. If we
1351          * have no waiters queued we cannot set owner to NULL here
1352          * because of:
1353          *
1354          * foo->lock->owner = NULL;
1355          *                      rtmutex_lock(foo->lock);   <- fast path
1356          *                      free = atomic_dec_and_test(foo->refcnt);
1357          *                      rtmutex_unlock(foo->lock); <- fast path
1358          *                      if (free)
1359          *                              kfree(foo);
1360          * raw_spin_unlock(foo->lock->wait_lock);
1361          *
1362          * So for the fastpath enabled kernel:
1363          *
1364          * Nothing can set the waiters bit as long as we hold
1365          * lock->wait_lock. So we do the following sequence:
1366          *
1367          *      owner = rt_mutex_owner(lock);
1368          *      clear_rt_mutex_waiters(lock);
1369          *      raw_spin_unlock(&lock->wait_lock);
1370          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1371          *              return;
1372          *      goto retry;
1373          *
1374          * The fastpath disabled variant is simple as all access to
1375          * lock->owner is serialized by lock->wait_lock:
1376          *
1377          *      lock->owner = NULL;
1378          *      raw_spin_unlock(&lock->wait_lock);
1379          */
1380         while (!rt_mutex_has_waiters(lock)) {
1381                 /* Drops lock->wait_lock ! */
1382                 if (unlock_rt_mutex_safe(lock, flags) == true)
1383                         return false;
1384                 /* Relock the rtmutex and try again */
1385                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1386         }
1387
1388         /*
1389          * The wakeup next waiter path does not suffer from the above
1390          * race. See the comments there.
1391          *
1392          * Queue the next waiter for wakeup once we release the wait_lock.
1393          */
1394         mark_wakeup_next_waiter(wake_q, lock);
1395
1396         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1397
1398         /* check PI boosting */
1399         return true;
1400 }
1401
1402 /*
1403  * debug aware fast / slowpath lock,trylock,unlock
1404  *
1405  * The atomic acquire/release ops are compiled away, when either the
1406  * architecture does not support cmpxchg or when debugging is enabled.
1407  */
1408 static inline int
1409 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1410                   int (*slowfn)(struct rt_mutex *lock, int state,
1411                                 struct hrtimer_sleeper *timeout,
1412                                 enum rtmutex_chainwalk chwalk))
1413 {
1414         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1415                 return 0;
1416
1417         return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1418 }
1419
1420 static inline int
1421 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1422                         struct hrtimer_sleeper *timeout,
1423                         enum rtmutex_chainwalk chwalk,
1424                         int (*slowfn)(struct rt_mutex *lock, int state,
1425                                       struct hrtimer_sleeper *timeout,
1426                                       enum rtmutex_chainwalk chwalk))
1427 {
1428         if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1429             likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1430                 return 0;
1431
1432         return slowfn(lock, state, timeout, chwalk);
1433 }
1434
1435 static inline int
1436 rt_mutex_fasttrylock(struct rt_mutex *lock,
1437                      int (*slowfn)(struct rt_mutex *lock))
1438 {
1439         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1440                 return 1;
1441
1442         return slowfn(lock);
1443 }
1444
1445 static inline void
1446 rt_mutex_fastunlock(struct rt_mutex *lock,
1447                     bool (*slowfn)(struct rt_mutex *lock,
1448                                    struct wake_q_head *wqh))
1449 {
1450         DEFINE_WAKE_Q(wake_q);
1451         bool deboost;
1452
1453         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1454                 return;
1455
1456         deboost = slowfn(lock, &wake_q);
1457
1458         wake_up_q(&wake_q);
1459
1460         /* Undo pi boosting if necessary: */
1461         if (deboost)
1462                 rt_mutex_adjust_prio(current);
1463 }
1464
1465 /**
1466  * rt_mutex_lock - lock a rt_mutex
1467  *
1468  * @lock: the rt_mutex to be locked
1469  */
1470 void __sched rt_mutex_lock(struct rt_mutex *lock)
1471 {
1472         might_sleep();
1473
1474         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1475 }
1476 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1477
1478 /**
1479  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1480  *
1481  * @lock:               the rt_mutex to be locked
1482  *
1483  * Returns:
1484  *  0           on success
1485  * -EINTR       when interrupted by a signal
1486  */
1487 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1488 {
1489         might_sleep();
1490
1491         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1492 }
1493 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1494
1495 /*
1496  * Futex variant, must not use fastpath.
1497  */
1498 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1499 {
1500         return rt_mutex_slowtrylock(lock);
1501 }
1502
1503 /**
1504  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1505  *                      the timeout structure is provided
1506  *                      by the caller
1507  *
1508  * @lock:               the rt_mutex to be locked
1509  * @timeout:            timeout structure or NULL (no timeout)
1510  *
1511  * Returns:
1512  *  0           on success
1513  * -EINTR       when interrupted by a signal
1514  * -ETIMEDOUT   when the timeout expired
1515  */
1516 int
1517 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1518 {
1519         might_sleep();
1520
1521         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1522                                        RT_MUTEX_MIN_CHAINWALK,
1523                                        rt_mutex_slowlock);
1524 }
1525 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1526
1527 /**
1528  * rt_mutex_trylock - try to lock a rt_mutex
1529  *
1530  * @lock:       the rt_mutex to be locked
1531  *
1532  * This function can only be called in thread context. It's safe to
1533  * call it from atomic regions, but not from hard interrupt or soft
1534  * interrupt context.
1535  *
1536  * Returns 1 on success and 0 on contention
1537  */
1538 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1539 {
1540         if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1541                 return 0;
1542
1543         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1544 }
1545 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1546
1547 /**
1548  * rt_mutex_unlock - unlock a rt_mutex
1549  *
1550  * @lock: the rt_mutex to be unlocked
1551  */
1552 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1553 {
1554         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1555 }
1556 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1557
1558 /**
1559  * Futex variant, that since futex variants do not use the fast-path, can be
1560  * simple and will not need to retry.
1561  */
1562 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1563                                     struct wake_q_head *wake_q)
1564 {
1565         lockdep_assert_held(&lock->wait_lock);
1566
1567         debug_rt_mutex_unlock(lock);
1568
1569         if (!rt_mutex_has_waiters(lock)) {
1570                 lock->owner = NULL;
1571                 return false; /* done */
1572         }
1573
1574         mark_wakeup_next_waiter(wake_q, lock);
1575         return true; /* deboost and wakeups */
1576 }
1577
1578 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1579 {
1580         DEFINE_WAKE_Q(wake_q);
1581         bool deboost;
1582
1583         raw_spin_lock_irq(&lock->wait_lock);
1584         deboost = __rt_mutex_futex_unlock(lock, &wake_q);
1585         raw_spin_unlock_irq(&lock->wait_lock);
1586
1587         if (deboost) {
1588                 wake_up_q(&wake_q);
1589                 rt_mutex_adjust_prio(current);
1590         }
1591 }
1592
1593 /**
1594  * rt_mutex_destroy - mark a mutex unusable
1595  * @lock: the mutex to be destroyed
1596  *
1597  * This function marks the mutex uninitialized, and any subsequent
1598  * use of the mutex is forbidden. The mutex must not be locked when
1599  * this function is called.
1600  */
1601 void rt_mutex_destroy(struct rt_mutex *lock)
1602 {
1603         WARN_ON(rt_mutex_is_locked(lock));
1604 #ifdef CONFIG_DEBUG_RT_MUTEXES
1605         lock->magic = NULL;
1606 #endif
1607 }
1608
1609 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1610
1611 /**
1612  * __rt_mutex_init - initialize the rt lock
1613  *
1614  * @lock: the rt lock to be initialized
1615  *
1616  * Initialize the rt lock to unlocked state.
1617  *
1618  * Initializing of a locked rt lock is not allowed
1619  */
1620 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1621 {
1622         lock->owner = NULL;
1623         raw_spin_lock_init(&lock->wait_lock);
1624         lock->waiters = RB_ROOT;
1625         lock->waiters_leftmost = NULL;
1626
1627         debug_rt_mutex_init(lock, name);
1628 }
1629 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1630
1631 /**
1632  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1633  *                              proxy owner
1634  *
1635  * @lock:       the rt_mutex to be locked
1636  * @proxy_owner:the task to set as owner
1637  *
1638  * No locking. Caller has to do serializing itself
1639  *
1640  * Special API call for PI-futex support. This initializes the rtmutex and
1641  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1642  * possible at this point because the pi_state which contains the rtmutex
1643  * is not yet visible to other tasks.
1644  */
1645 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1646                                 struct task_struct *proxy_owner)
1647 {
1648         __rt_mutex_init(lock, NULL);
1649         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1650         rt_mutex_set_owner(lock, proxy_owner);
1651 }
1652
1653 /**
1654  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1655  *
1656  * @lock:       the rt_mutex to be locked
1657  *
1658  * No locking. Caller has to do serializing itself
1659  *
1660  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1661  * (debugging) state. Concurrent operations on this rt_mutex are not
1662  * possible because it belongs to the pi_state which is about to be freed
1663  * and it is not longer visible to other tasks.
1664  */
1665 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1666                            struct task_struct *proxy_owner)
1667 {
1668         debug_rt_mutex_proxy_unlock(lock);
1669         rt_mutex_set_owner(lock, NULL);
1670 }
1671
1672 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1673                               struct rt_mutex_waiter *waiter,
1674                               struct task_struct *task)
1675 {
1676         int ret;
1677
1678         if (try_to_take_rt_mutex(lock, task, NULL))
1679                 return 1;
1680
1681         /* We enforce deadlock detection for futexes */
1682         ret = task_blocks_on_rt_mutex(lock, waiter, task,
1683                                       RT_MUTEX_FULL_CHAINWALK);
1684
1685         if (ret && !rt_mutex_owner(lock)) {
1686                 /*
1687                  * Reset the return value. We might have
1688                  * returned with -EDEADLK and the owner
1689                  * released the lock while we were walking the
1690                  * pi chain.  Let the waiter sort it out.
1691                  */
1692                 ret = 0;
1693         }
1694
1695         if (unlikely(ret))
1696                 remove_waiter(lock, waiter);
1697
1698         debug_rt_mutex_print_deadlock(waiter);
1699
1700         return ret;
1701 }
1702
1703 /**
1704  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1705  * @lock:               the rt_mutex to take
1706  * @waiter:             the pre-initialized rt_mutex_waiter
1707  * @task:               the task to prepare
1708  *
1709  * Returns:
1710  *  0 - task blocked on lock
1711  *  1 - acquired the lock for task, caller should wake it up
1712  * <0 - error
1713  *
1714  * Special API call for FUTEX_REQUEUE_PI support.
1715  */
1716 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1717                               struct rt_mutex_waiter *waiter,
1718                               struct task_struct *task)
1719 {
1720         int ret;
1721
1722         raw_spin_lock_irq(&lock->wait_lock);
1723         ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1724         raw_spin_unlock_irq(&lock->wait_lock);
1725
1726         return ret;
1727 }
1728
1729 /**
1730  * rt_mutex_next_owner - return the next owner of the lock
1731  *
1732  * @lock: the rt lock query
1733  *
1734  * Returns the next owner of the lock or NULL
1735  *
1736  * Caller has to serialize against other accessors to the lock
1737  * itself.
1738  *
1739  * Special API call for PI-futex support
1740  */
1741 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1742 {
1743         if (!rt_mutex_has_waiters(lock))
1744                 return NULL;
1745
1746         return rt_mutex_top_waiter(lock)->task;
1747 }
1748
1749 /**
1750  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1751  * @lock:               the rt_mutex we were woken on
1752  * @to:                 the timeout, null if none. hrtimer should already have
1753  *                      been started.
1754  * @waiter:             the pre-initialized rt_mutex_waiter
1755  *
1756  * Wait for the the lock acquisition started on our behalf by
1757  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1758  * rt_mutex_cleanup_proxy_lock().
1759  *
1760  * Returns:
1761  *  0 - success
1762  * <0 - error, one of -EINTR, -ETIMEDOUT
1763  *
1764  * Special API call for PI-futex support
1765  */
1766 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1767                                struct hrtimer_sleeper *to,
1768                                struct rt_mutex_waiter *waiter)
1769 {
1770         int ret;
1771
1772         raw_spin_lock_irq(&lock->wait_lock);
1773
1774         set_current_state(TASK_INTERRUPTIBLE);
1775
1776         /* sleep on the mutex */
1777         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1778
1779         raw_spin_unlock_irq(&lock->wait_lock);
1780
1781         return ret;
1782 }
1783
1784 /**
1785  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1786  * @lock:               the rt_mutex we were woken on
1787  * @waiter:             the pre-initialized rt_mutex_waiter
1788  *
1789  * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1790  *
1791  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1792  * in fact still be granted ownership until we're removed. Therefore we can
1793  * find we are in fact the owner and must disregard the
1794  * rt_mutex_wait_proxy_lock() failure.
1795  *
1796  * Returns:
1797  *  true  - did the cleanup, we done.
1798  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1799  *          caller should disregards its return value.
1800  *
1801  * Special API call for PI-futex support
1802  */
1803 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1804                                  struct rt_mutex_waiter *waiter)
1805 {
1806         bool cleanup = false;
1807
1808         raw_spin_lock_irq(&lock->wait_lock);
1809         /*
1810          * Unless we're the owner; we're still enqueued on the wait_list.
1811          * So check if we became owner, if not, take us off the wait_list.
1812          */
1813         if (rt_mutex_owner(lock) != current) {
1814                 remove_waiter(lock, waiter);
1815                 fixup_rt_mutex_waiters(lock);
1816                 cleanup = true;
1817         }
1818
1819         /*
1820          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1821          * have to fix that up.
1822          */
1823         fixup_rt_mutex_waiters(lock);
1824
1825         raw_spin_unlock_irq(&lock->wait_lock);
1826
1827         return cleanup;
1828 }