Merge tag 'i2c-for-6.4-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59
60 #include <asm/sections.h>
61
62 #include "lockdep_internals.h"
63
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83         {
84                 .procname       = "prove_locking",
85                 .data           = &prove_locking,
86                 .maxlen         = sizeof(int),
87                 .mode           = 0644,
88                 .proc_handler   = proc_dointvec,
89         },
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92         {
93                 .procname       = "lock_stat",
94                 .data           = &lock_stat,
95                 .maxlen         = sizeof(int),
96                 .mode           = 0644,
97                 .proc_handler   = proc_dointvec,
98         },
99 #endif /* CONFIG_LOCK_STAT */
100         { }
101 };
102
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105         register_sysctl_init("kernel", kern_lockdep_table);
106         return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113
114 static __always_inline bool lockdep_enabled(void)
115 {
116         if (!debug_locks)
117                 return false;
118
119         if (this_cpu_read(lockdep_recursion))
120                 return false;
121
122         if (current->lockdep_recursion)
123                 return false;
124
125         return true;
126 }
127
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138
139 static inline void lockdep_lock(void)
140 {
141         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142
143         __this_cpu_inc(lockdep_recursion);
144         arch_spin_lock(&__lock);
145         __owner = current;
146 }
147
148 static inline void lockdep_unlock(void)
149 {
150         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151
152         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153                 return;
154
155         __owner = NULL;
156         arch_spin_unlock(&__lock);
157         __this_cpu_dec(lockdep_recursion);
158 }
159
160 static inline bool lockdep_assert_locked(void)
161 {
162         return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164
165 static struct task_struct *lockdep_selftest_task_struct;
166
167
168 static int graph_lock(void)
169 {
170         lockdep_lock();
171         /*
172          * Make sure that if another CPU detected a bug while
173          * walking the graph we dont change it (while the other
174          * CPU is busy printing out stuff with the graph lock
175          * dropped already)
176          */
177         if (!debug_locks) {
178                 lockdep_unlock();
179                 return 0;
180         }
181         return 1;
182 }
183
184 static inline void graph_unlock(void)
185 {
186         lockdep_unlock();
187 }
188
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195         int ret = debug_locks_off();
196
197         lockdep_unlock();
198
199         return ret;
200 }
201
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223         unsigned int class_idx = hlock->class_idx;
224
225         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226         barrier();
227
228         if (!test_bit(class_idx, lock_classes_in_use)) {
229                 /*
230                  * Someone passed in garbage, we give up.
231                  */
232                 DEBUG_LOCKS_WARN_ON(1);
233                 return NULL;
234         }
235
236         /*
237          * At this point, if the passed hlock->class_idx is still garbage,
238          * we just have to live with it
239          */
240         return lock_classes + class_idx;
241 }
242
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245
246 static inline u64 lockstat_clock(void)
247 {
248         return local_clock();
249 }
250
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253         int i;
254
255         for (i = 0; i < LOCKSTAT_POINTS; i++) {
256                 if (points[i] == 0) {
257                         points[i] = ip;
258                         break;
259                 }
260                 if (points[i] == ip)
261                         break;
262         }
263
264         return i;
265 }
266
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269         if (time > lt->max)
270                 lt->max = time;
271
272         if (time < lt->min || !lt->nr)
273                 lt->min = time;
274
275         lt->total += time;
276         lt->nr++;
277 }
278
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281         if (!src->nr)
282                 return;
283
284         if (src->max > dst->max)
285                 dst->max = src->max;
286
287         if (src->min < dst->min || !dst->nr)
288                 dst->min = src->min;
289
290         dst->total += src->total;
291         dst->nr += src->nr;
292 }
293
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296         struct lock_class_stats stats;
297         int cpu, i;
298
299         memset(&stats, 0, sizeof(struct lock_class_stats));
300         for_each_possible_cpu(cpu) {
301                 struct lock_class_stats *pcs =
302                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303
304                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305                         stats.contention_point[i] += pcs->contention_point[i];
306
307                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308                         stats.contending_point[i] += pcs->contending_point[i];
309
310                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312
313                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315
316                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317                         stats.bounces[i] += pcs->bounces[i];
318         }
319
320         return stats;
321 }
322
323 void clear_lock_stats(struct lock_class *class)
324 {
325         int cpu;
326
327         for_each_possible_cpu(cpu) {
328                 struct lock_class_stats *cpu_stats =
329                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330
331                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332         }
333         memset(class->contention_point, 0, sizeof(class->contention_point));
334         memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344         struct lock_class_stats *stats;
345         u64 holdtime;
346
347         if (!lock_stat)
348                 return;
349
350         holdtime = lockstat_clock() - hlock->holdtime_stamp;
351
352         stats = get_lock_stats(hlock_class(hlock));
353         if (hlock->read)
354                 lock_time_inc(&stats->read_holdtime, holdtime);
355         else
356                 lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *      are about to be freed.
378  */
379 struct pending_free {
380         struct list_head zapped;
381         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396         struct rcu_head         rcu_head;
397         int                     index;
398         int                     scheduled;
399         struct pending_free     pf[2];
400 } delayed_free;
401
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
409
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
420
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429
430         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446         u32 k0 = key, k1 = key >> 32;
447
448         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449
450         return k0 | (u64)k1 << 32;
451 }
452
453 void lockdep_init_task(struct task_struct *task)
454 {
455         task->lockdep_depth = 0; /* no locks held yet */
456         task->curr_chain_key = INITIAL_CHAIN_KEY;
457         task->lockdep_recursion = 0;
458 }
459
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462         __this_cpu_inc(lockdep_recursion);
463 }
464
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468                 __this_cpu_write(lockdep_recursion, 0);
469 }
470
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473         lockdep_selftest_task_struct = task;
474 }
475
476 /*
477  * Debugging switches:
478  */
479
480 #define VERBOSE                 0
481 #define VERY_VERBOSE            0
482
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE        1
485 # define SOFTIRQ_VERBOSE        1
486 #else
487 # define HARDIRQ_VERBOSE        0
488 # define SOFTIRQ_VERBOSE        0
489 #endif
490
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498         /* Example */
499         if (class->name_version == 1 &&
500                         !strcmp(class->name, "lockname"))
501                 return 1;
502         if (class->name_version == 1 &&
503                         !strcmp(class->name, "&struct->lockfield"))
504                 return 1;
505 #endif
506         /* Filter everything else. 1 would be to allow everything else */
507         return 0;
508 }
509 #endif
510
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514         return class_filter(class);
515 #endif
516         return 0;
517 }
518
519 static void print_lockdep_off(const char *bug_msg)
520 {
521         printk(KERN_DEBUG "%s\n", bug_msg);
522         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527
528 unsigned long nr_stack_trace_entries;
529
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry: Entry in a stack_trace_hash[] list.
534  * @hash:       jhash() of @entries.
535  * @nr_entries: Number of entries in @entries.
536  * @entries:    Actual stack backtrace.
537  */
538 struct lock_trace {
539         struct hlist_node       hash_entry;
540         u32                     hash;
541         u32                     nr_entries;
542         unsigned long           entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS                                \
545         (sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555                 memcmp(t1->entries, t2->entries,
556                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558
559 static struct lock_trace *save_trace(void)
560 {
561         struct lock_trace *trace, *t2;
562         struct hlist_head *hash_head;
563         u32 hash;
564         int max_entries;
565
566         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568
569         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571                 LOCK_TRACE_SIZE_IN_LONGS;
572
573         if (max_entries <= 0) {
574                 if (!debug_locks_off_graph_unlock())
575                         return NULL;
576
577                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578                 dump_stack();
579
580                 return NULL;
581         }
582         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583
584         hash = jhash(trace->entries, trace->nr_entries *
585                      sizeof(trace->entries[0]), 0);
586         trace->hash = hash;
587         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588         hlist_for_each_entry(t2, hash_head, hash_entry) {
589                 if (traces_identical(trace, t2))
590                         return t2;
591         }
592         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593         hlist_add_head(&trace->hash_entry, hash_head);
594
595         return trace;
596 }
597
598 /* Return the number of stack traces in the stack_trace[] array. */
599 u64 lockdep_stack_trace_count(void)
600 {
601         struct lock_trace *trace;
602         u64 c = 0;
603         int i;
604
605         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607                         c++;
608                 }
609         }
610
611         return c;
612 }
613
614 /* Return the number of stack hash chains that have at least one stack trace. */
615 u64 lockdep_stack_hash_count(void)
616 {
617         u64 c = 0;
618         int i;
619
620         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621                 if (!hlist_empty(&stack_trace_hash[i]))
622                         c++;
623
624         return c;
625 }
626 #endif
627
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644
645 #define __USAGE(__STATE)                                                \
646         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
647         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
648         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656         [LOCK_USED] = "INITIAL USE",
657         [LOCK_USED_READ] = "INITIAL READ USE",
658         /* abused as string storage for verify_lock_unused() */
659         [LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662
663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667
668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670         return 1UL << bit;
671 }
672
673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675         /*
676          * The usage character defaults to '.' (i.e., irqs disabled and not in
677          * irq context), which is the safest usage category.
678          */
679         char c = '.';
680
681         /*
682          * The order of the following usage checks matters, which will
683          * result in the outcome character as follows:
684          *
685          * - '+': irq is enabled and not in irq context
686          * - '-': in irq context and irq is disabled
687          * - '?': in irq context and irq is enabled
688          */
689         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690                 c = '+';
691                 if (class->usage_mask & lock_flag(bit))
692                         c = '?';
693         } else if (class->usage_mask & lock_flag(bit))
694                 c = '-';
695
696         return c;
697 }
698
699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701         int i = 0;
702
703 #define LOCKDEP_STATE(__STATE)                                          \
704         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
705         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708
709         usage[i] = '\0';
710 }
711
712 static void __print_lock_name(struct lock_class *class)
713 {
714         char str[KSYM_NAME_LEN];
715         const char *name;
716
717         name = class->name;
718         if (!name) {
719                 name = __get_key_name(class->key, str);
720                 printk(KERN_CONT "%s", name);
721         } else {
722                 printk(KERN_CONT "%s", name);
723                 if (class->name_version > 1)
724                         printk(KERN_CONT "#%d", class->name_version);
725                 if (class->subclass)
726                         printk(KERN_CONT "/%d", class->subclass);
727         }
728 }
729
730 static void print_lock_name(struct lock_class *class)
731 {
732         char usage[LOCK_USAGE_CHARS];
733
734         get_usage_chars(class, usage);
735
736         printk(KERN_CONT " (");
737         __print_lock_name(class);
738         printk(KERN_CONT "){%s}-{%d:%d}", usage,
739                         class->wait_type_outer ?: class->wait_type_inner,
740                         class->wait_type_inner);
741 }
742
743 static void print_lockdep_cache(struct lockdep_map *lock)
744 {
745         const char *name;
746         char str[KSYM_NAME_LEN];
747
748         name = lock->name;
749         if (!name)
750                 name = __get_key_name(lock->key->subkeys, str);
751
752         printk(KERN_CONT "%s", name);
753 }
754
755 static void print_lock(struct held_lock *hlock)
756 {
757         /*
758          * We can be called locklessly through debug_show_all_locks() so be
759          * extra careful, the hlock might have been released and cleared.
760          *
761          * If this indeed happens, lets pretend it does not hurt to continue
762          * to print the lock unless the hlock class_idx does not point to a
763          * registered class. The rationale here is: since we don't attempt
764          * to distinguish whether we are in this situation, if it just
765          * happened we can't count on class_idx to tell either.
766          */
767         struct lock_class *lock = hlock_class(hlock);
768
769         if (!lock) {
770                 printk(KERN_CONT "<RELEASED>\n");
771                 return;
772         }
773
774         printk(KERN_CONT "%px", hlock->instance);
775         print_lock_name(lock);
776         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
777 }
778
779 static void lockdep_print_held_locks(struct task_struct *p)
780 {
781         int i, depth = READ_ONCE(p->lockdep_depth);
782
783         if (!depth)
784                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
785         else
786                 printk("%d lock%s held by %s/%d:\n", depth,
787                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
788         /*
789          * It's not reliable to print a task's held locks if it's not sleeping
790          * and it's not the current task.
791          */
792         if (p != current && task_is_running(p))
793                 return;
794         for (i = 0; i < depth; i++) {
795                 printk(" #%d: ", i);
796                 print_lock(p->held_locks + i);
797         }
798 }
799
800 static void print_kernel_ident(void)
801 {
802         printk("%s %.*s %s\n", init_utsname()->release,
803                 (int)strcspn(init_utsname()->version, " "),
804                 init_utsname()->version,
805                 print_tainted());
806 }
807
808 static int very_verbose(struct lock_class *class)
809 {
810 #if VERY_VERBOSE
811         return class_filter(class);
812 #endif
813         return 0;
814 }
815
816 /*
817  * Is this the address of a static object:
818  */
819 #ifdef __KERNEL__
820 /*
821  * Check if an address is part of freed initmem. After initmem is freed,
822  * memory can be allocated from it, and such allocations would then have
823  * addresses within the range [_stext, _end].
824  */
825 #ifndef arch_is_kernel_initmem_freed
826 static int arch_is_kernel_initmem_freed(unsigned long addr)
827 {
828         if (system_state < SYSTEM_FREEING_INITMEM)
829                 return 0;
830
831         return init_section_contains((void *)addr, 1);
832 }
833 #endif
834
835 static int static_obj(const void *obj)
836 {
837         unsigned long start = (unsigned long) &_stext,
838                       end   = (unsigned long) &_end,
839                       addr  = (unsigned long) obj;
840
841         if (arch_is_kernel_initmem_freed(addr))
842                 return 0;
843
844         /*
845          * static variable?
846          */
847         if ((addr >= start) && (addr < end))
848                 return 1;
849
850         /*
851          * in-kernel percpu var?
852          */
853         if (is_kernel_percpu_address(addr))
854                 return 1;
855
856         /*
857          * module static or percpu var?
858          */
859         return is_module_address(addr) || is_module_percpu_address(addr);
860 }
861 #endif
862
863 /*
864  * To make lock name printouts unique, we calculate a unique
865  * class->name_version generation counter. The caller must hold the graph
866  * lock.
867  */
868 static int count_matching_names(struct lock_class *new_class)
869 {
870         struct lock_class *class;
871         int count = 0;
872
873         if (!new_class->name)
874                 return 0;
875
876         list_for_each_entry(class, &all_lock_classes, lock_entry) {
877                 if (new_class->key - new_class->subclass == class->key)
878                         return class->name_version;
879                 if (class->name && !strcmp(class->name, new_class->name))
880                         count = max(count, class->name_version);
881         }
882
883         return count + 1;
884 }
885
886 /* used from NMI context -- must be lockless */
887 static noinstr struct lock_class *
888 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
889 {
890         struct lockdep_subclass_key *key;
891         struct hlist_head *hash_head;
892         struct lock_class *class;
893
894         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
895                 instrumentation_begin();
896                 debug_locks_off();
897                 printk(KERN_ERR
898                         "BUG: looking up invalid subclass: %u\n", subclass);
899                 printk(KERN_ERR
900                         "turning off the locking correctness validator.\n");
901                 dump_stack();
902                 instrumentation_end();
903                 return NULL;
904         }
905
906         /*
907          * If it is not initialised then it has never been locked,
908          * so it won't be present in the hash table.
909          */
910         if (unlikely(!lock->key))
911                 return NULL;
912
913         /*
914          * NOTE: the class-key must be unique. For dynamic locks, a static
915          * lock_class_key variable is passed in through the mutex_init()
916          * (or spin_lock_init()) call - which acts as the key. For static
917          * locks we use the lock object itself as the key.
918          */
919         BUILD_BUG_ON(sizeof(struct lock_class_key) >
920                         sizeof(struct lockdep_map));
921
922         key = lock->key->subkeys + subclass;
923
924         hash_head = classhashentry(key);
925
926         /*
927          * We do an RCU walk of the hash, see lockdep_free_key_range().
928          */
929         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
930                 return NULL;
931
932         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
933                 if (class->key == key) {
934                         /*
935                          * Huh! same key, different name? Did someone trample
936                          * on some memory? We're most confused.
937                          */
938                         WARN_ONCE(class->name != lock->name &&
939                                   lock->key != &__lockdep_no_validate__,
940                                   "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
941                                   lock->name, lock->key, class->name);
942                         return class;
943                 }
944         }
945
946         return NULL;
947 }
948
949 /*
950  * Static locks do not have their class-keys yet - for them the key is
951  * the lock object itself. If the lock is in the per cpu area, the
952  * canonical address of the lock (per cpu offset removed) is used.
953  */
954 static bool assign_lock_key(struct lockdep_map *lock)
955 {
956         unsigned long can_addr, addr = (unsigned long)lock;
957
958 #ifdef __KERNEL__
959         /*
960          * lockdep_free_key_range() assumes that struct lock_class_key
961          * objects do not overlap. Since we use the address of lock
962          * objects as class key for static objects, check whether the
963          * size of lock_class_key objects does not exceed the size of
964          * the smallest lock object.
965          */
966         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
967 #endif
968
969         if (__is_kernel_percpu_address(addr, &can_addr))
970                 lock->key = (void *)can_addr;
971         else if (__is_module_percpu_address(addr, &can_addr))
972                 lock->key = (void *)can_addr;
973         else if (static_obj(lock))
974                 lock->key = (void *)lock;
975         else {
976                 /* Debug-check: all keys must be persistent! */
977                 debug_locks_off();
978                 pr_err("INFO: trying to register non-static key.\n");
979                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
980                 pr_err("you didn't initialize this object before use?\n");
981                 pr_err("turning off the locking correctness validator.\n");
982                 dump_stack();
983                 return false;
984         }
985
986         return true;
987 }
988
989 #ifdef CONFIG_DEBUG_LOCKDEP
990
991 /* Check whether element @e occurs in list @h */
992 static bool in_list(struct list_head *e, struct list_head *h)
993 {
994         struct list_head *f;
995
996         list_for_each(f, h) {
997                 if (e == f)
998                         return true;
999         }
1000
1001         return false;
1002 }
1003
1004 /*
1005  * Check whether entry @e occurs in any of the locks_after or locks_before
1006  * lists.
1007  */
1008 static bool in_any_class_list(struct list_head *e)
1009 {
1010         struct lock_class *class;
1011         int i;
1012
1013         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1014                 class = &lock_classes[i];
1015                 if (in_list(e, &class->locks_after) ||
1016                     in_list(e, &class->locks_before))
1017                         return true;
1018         }
1019         return false;
1020 }
1021
1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1023 {
1024         struct lock_list *e;
1025
1026         list_for_each_entry(e, h, entry) {
1027                 if (e->links_to != c) {
1028                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1029                                c->name ? : "(?)",
1030                                (unsigned long)(e - list_entries),
1031                                e->links_to && e->links_to->name ?
1032                                e->links_to->name : "(?)",
1033                                e->class && e->class->name ? e->class->name :
1034                                "(?)");
1035                         return false;
1036                 }
1037         }
1038         return true;
1039 }
1040
1041 #ifdef CONFIG_PROVE_LOCKING
1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1043 #endif
1044
1045 static bool check_lock_chain_key(struct lock_chain *chain)
1046 {
1047 #ifdef CONFIG_PROVE_LOCKING
1048         u64 chain_key = INITIAL_CHAIN_KEY;
1049         int i;
1050
1051         for (i = chain->base; i < chain->base + chain->depth; i++)
1052                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1053         /*
1054          * The 'unsigned long long' casts avoid that a compiler warning
1055          * is reported when building tools/lib/lockdep.
1056          */
1057         if (chain->chain_key != chain_key) {
1058                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1059                        (unsigned long long)(chain - lock_chains),
1060                        (unsigned long long)chain->chain_key,
1061                        (unsigned long long)chain_key);
1062                 return false;
1063         }
1064 #endif
1065         return true;
1066 }
1067
1068 static bool in_any_zapped_class_list(struct lock_class *class)
1069 {
1070         struct pending_free *pf;
1071         int i;
1072
1073         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1074                 if (in_list(&class->lock_entry, &pf->zapped))
1075                         return true;
1076         }
1077
1078         return false;
1079 }
1080
1081 static bool __check_data_structures(void)
1082 {
1083         struct lock_class *class;
1084         struct lock_chain *chain;
1085         struct hlist_head *head;
1086         struct lock_list *e;
1087         int i;
1088
1089         /* Check whether all classes occur in a lock list. */
1090         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1091                 class = &lock_classes[i];
1092                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1093                     !in_list(&class->lock_entry, &free_lock_classes) &&
1094                     !in_any_zapped_class_list(class)) {
1095                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1096                                class, class->name ? : "(?)");
1097                         return false;
1098                 }
1099         }
1100
1101         /* Check whether all classes have valid lock lists. */
1102         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1103                 class = &lock_classes[i];
1104                 if (!class_lock_list_valid(class, &class->locks_before))
1105                         return false;
1106                 if (!class_lock_list_valid(class, &class->locks_after))
1107                         return false;
1108         }
1109
1110         /* Check the chain_key of all lock chains. */
1111         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1112                 head = chainhash_table + i;
1113                 hlist_for_each_entry_rcu(chain, head, entry) {
1114                         if (!check_lock_chain_key(chain))
1115                                 return false;
1116                 }
1117         }
1118
1119         /*
1120          * Check whether all list entries that are in use occur in a class
1121          * lock list.
1122          */
1123         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1124                 e = list_entries + i;
1125                 if (!in_any_class_list(&e->entry)) {
1126                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1127                                (unsigned int)(e - list_entries),
1128                                e->class->name ? : "(?)",
1129                                e->links_to->name ? : "(?)");
1130                         return false;
1131                 }
1132         }
1133
1134         /*
1135          * Check whether all list entries that are not in use do not occur in
1136          * a class lock list.
1137          */
1138         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1139                 e = list_entries + i;
1140                 if (in_any_class_list(&e->entry)) {
1141                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1142                                (unsigned int)(e - list_entries),
1143                                e->class && e->class->name ? e->class->name :
1144                                "(?)",
1145                                e->links_to && e->links_to->name ?
1146                                e->links_to->name : "(?)");
1147                         return false;
1148                 }
1149         }
1150
1151         return true;
1152 }
1153
1154 int check_consistency = 0;
1155 module_param(check_consistency, int, 0644);
1156
1157 static void check_data_structures(void)
1158 {
1159         static bool once = false;
1160
1161         if (check_consistency && !once) {
1162                 if (!__check_data_structures()) {
1163                         once = true;
1164                         WARN_ON(once);
1165                 }
1166         }
1167 }
1168
1169 #else /* CONFIG_DEBUG_LOCKDEP */
1170
1171 static inline void check_data_structures(void) { }
1172
1173 #endif /* CONFIG_DEBUG_LOCKDEP */
1174
1175 static void init_chain_block_buckets(void);
1176
1177 /*
1178  * Initialize the lock_classes[] array elements, the free_lock_classes list
1179  * and also the delayed_free structure.
1180  */
1181 static void init_data_structures_once(void)
1182 {
1183         static bool __read_mostly ds_initialized, rcu_head_initialized;
1184         int i;
1185
1186         if (likely(rcu_head_initialized))
1187                 return;
1188
1189         if (system_state >= SYSTEM_SCHEDULING) {
1190                 init_rcu_head(&delayed_free.rcu_head);
1191                 rcu_head_initialized = true;
1192         }
1193
1194         if (ds_initialized)
1195                 return;
1196
1197         ds_initialized = true;
1198
1199         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1200         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1201
1202         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1203                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1204                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1205                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1206         }
1207         init_chain_block_buckets();
1208 }
1209
1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1211 {
1212         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1213
1214         return lock_keys_hash + hash;
1215 }
1216
1217 /* Register a dynamically allocated key. */
1218 void lockdep_register_key(struct lock_class_key *key)
1219 {
1220         struct hlist_head *hash_head;
1221         struct lock_class_key *k;
1222         unsigned long flags;
1223
1224         if (WARN_ON_ONCE(static_obj(key)))
1225                 return;
1226         hash_head = keyhashentry(key);
1227
1228         raw_local_irq_save(flags);
1229         if (!graph_lock())
1230                 goto restore_irqs;
1231         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1232                 if (WARN_ON_ONCE(k == key))
1233                         goto out_unlock;
1234         }
1235         hlist_add_head_rcu(&key->hash_entry, hash_head);
1236 out_unlock:
1237         graph_unlock();
1238 restore_irqs:
1239         raw_local_irq_restore(flags);
1240 }
1241 EXPORT_SYMBOL_GPL(lockdep_register_key);
1242
1243 /* Check whether a key has been registered as a dynamic key. */
1244 static bool is_dynamic_key(const struct lock_class_key *key)
1245 {
1246         struct hlist_head *hash_head;
1247         struct lock_class_key *k;
1248         bool found = false;
1249
1250         if (WARN_ON_ONCE(static_obj(key)))
1251                 return false;
1252
1253         /*
1254          * If lock debugging is disabled lock_keys_hash[] may contain
1255          * pointers to memory that has already been freed. Avoid triggering
1256          * a use-after-free in that case by returning early.
1257          */
1258         if (!debug_locks)
1259                 return true;
1260
1261         hash_head = keyhashentry(key);
1262
1263         rcu_read_lock();
1264         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1265                 if (k == key) {
1266                         found = true;
1267                         break;
1268                 }
1269         }
1270         rcu_read_unlock();
1271
1272         return found;
1273 }
1274
1275 /*
1276  * Register a lock's class in the hash-table, if the class is not present
1277  * yet. Otherwise we look it up. We cache the result in the lock object
1278  * itself, so actual lookup of the hash should be once per lock object.
1279  */
1280 static struct lock_class *
1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1282 {
1283         struct lockdep_subclass_key *key;
1284         struct hlist_head *hash_head;
1285         struct lock_class *class;
1286         int idx;
1287
1288         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1289
1290         class = look_up_lock_class(lock, subclass);
1291         if (likely(class))
1292                 goto out_set_class_cache;
1293
1294         if (!lock->key) {
1295                 if (!assign_lock_key(lock))
1296                         return NULL;
1297         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1298                 return NULL;
1299         }
1300
1301         key = lock->key->subkeys + subclass;
1302         hash_head = classhashentry(key);
1303
1304         if (!graph_lock()) {
1305                 return NULL;
1306         }
1307         /*
1308          * We have to do the hash-walk again, to avoid races
1309          * with another CPU:
1310          */
1311         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1312                 if (class->key == key)
1313                         goto out_unlock_set;
1314         }
1315
1316         init_data_structures_once();
1317
1318         /* Allocate a new lock class and add it to the hash. */
1319         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1320                                          lock_entry);
1321         if (!class) {
1322                 if (!debug_locks_off_graph_unlock()) {
1323                         return NULL;
1324                 }
1325
1326                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1327                 dump_stack();
1328                 return NULL;
1329         }
1330         nr_lock_classes++;
1331         __set_bit(class - lock_classes, lock_classes_in_use);
1332         debug_atomic_inc(nr_unused_locks);
1333         class->key = key;
1334         class->name = lock->name;
1335         class->subclass = subclass;
1336         WARN_ON_ONCE(!list_empty(&class->locks_before));
1337         WARN_ON_ONCE(!list_empty(&class->locks_after));
1338         class->name_version = count_matching_names(class);
1339         class->wait_type_inner = lock->wait_type_inner;
1340         class->wait_type_outer = lock->wait_type_outer;
1341         class->lock_type = lock->lock_type;
1342         /*
1343          * We use RCU's safe list-add method to make
1344          * parallel walking of the hash-list safe:
1345          */
1346         hlist_add_head_rcu(&class->hash_entry, hash_head);
1347         /*
1348          * Remove the class from the free list and add it to the global list
1349          * of classes.
1350          */
1351         list_move_tail(&class->lock_entry, &all_lock_classes);
1352         idx = class - lock_classes;
1353         if (idx > max_lock_class_idx)
1354                 max_lock_class_idx = idx;
1355
1356         if (verbose(class)) {
1357                 graph_unlock();
1358
1359                 printk("\nnew class %px: %s", class->key, class->name);
1360                 if (class->name_version > 1)
1361                         printk(KERN_CONT "#%d", class->name_version);
1362                 printk(KERN_CONT "\n");
1363                 dump_stack();
1364
1365                 if (!graph_lock()) {
1366                         return NULL;
1367                 }
1368         }
1369 out_unlock_set:
1370         graph_unlock();
1371
1372 out_set_class_cache:
1373         if (!subclass || force)
1374                 lock->class_cache[0] = class;
1375         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1376                 lock->class_cache[subclass] = class;
1377
1378         /*
1379          * Hash collision, did we smoke some? We found a class with a matching
1380          * hash but the subclass -- which is hashed in -- didn't match.
1381          */
1382         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1383                 return NULL;
1384
1385         return class;
1386 }
1387
1388 #ifdef CONFIG_PROVE_LOCKING
1389 /*
1390  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1391  * with NULL on failure)
1392  */
1393 static struct lock_list *alloc_list_entry(void)
1394 {
1395         int idx = find_first_zero_bit(list_entries_in_use,
1396                                       ARRAY_SIZE(list_entries));
1397
1398         if (idx >= ARRAY_SIZE(list_entries)) {
1399                 if (!debug_locks_off_graph_unlock())
1400                         return NULL;
1401
1402                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1403                 dump_stack();
1404                 return NULL;
1405         }
1406         nr_list_entries++;
1407         __set_bit(idx, list_entries_in_use);
1408         return list_entries + idx;
1409 }
1410
1411 /*
1412  * Add a new dependency to the head of the list:
1413  */
1414 static int add_lock_to_list(struct lock_class *this,
1415                             struct lock_class *links_to, struct list_head *head,
1416                             u16 distance, u8 dep,
1417                             const struct lock_trace *trace)
1418 {
1419         struct lock_list *entry;
1420         /*
1421          * Lock not present yet - get a new dependency struct and
1422          * add it to the list:
1423          */
1424         entry = alloc_list_entry();
1425         if (!entry)
1426                 return 0;
1427
1428         entry->class = this;
1429         entry->links_to = links_to;
1430         entry->dep = dep;
1431         entry->distance = distance;
1432         entry->trace = trace;
1433         /*
1434          * Both allocation and removal are done under the graph lock; but
1435          * iteration is under RCU-sched; see look_up_lock_class() and
1436          * lockdep_free_key_range().
1437          */
1438         list_add_tail_rcu(&entry->entry, head);
1439
1440         return 1;
1441 }
1442
1443 /*
1444  * For good efficiency of modular, we use power of 2
1445  */
1446 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1447 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1448
1449 /*
1450  * The circular_queue and helpers are used to implement graph
1451  * breadth-first search (BFS) algorithm, by which we can determine
1452  * whether there is a path from a lock to another. In deadlock checks,
1453  * a path from the next lock to be acquired to a previous held lock
1454  * indicates that adding the <prev> -> <next> lock dependency will
1455  * produce a circle in the graph. Breadth-first search instead of
1456  * depth-first search is used in order to find the shortest (circular)
1457  * path.
1458  */
1459 struct circular_queue {
1460         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1461         unsigned int  front, rear;
1462 };
1463
1464 static struct circular_queue lock_cq;
1465
1466 unsigned int max_bfs_queue_depth;
1467
1468 static unsigned int lockdep_dependency_gen_id;
1469
1470 static inline void __cq_init(struct circular_queue *cq)
1471 {
1472         cq->front = cq->rear = 0;
1473         lockdep_dependency_gen_id++;
1474 }
1475
1476 static inline int __cq_empty(struct circular_queue *cq)
1477 {
1478         return (cq->front == cq->rear);
1479 }
1480
1481 static inline int __cq_full(struct circular_queue *cq)
1482 {
1483         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1484 }
1485
1486 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1487 {
1488         if (__cq_full(cq))
1489                 return -1;
1490
1491         cq->element[cq->rear] = elem;
1492         cq->rear = (cq->rear + 1) & CQ_MASK;
1493         return 0;
1494 }
1495
1496 /*
1497  * Dequeue an element from the circular_queue, return a lock_list if
1498  * the queue is not empty, or NULL if otherwise.
1499  */
1500 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1501 {
1502         struct lock_list * lock;
1503
1504         if (__cq_empty(cq))
1505                 return NULL;
1506
1507         lock = cq->element[cq->front];
1508         cq->front = (cq->front + 1) & CQ_MASK;
1509
1510         return lock;
1511 }
1512
1513 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1514 {
1515         return (cq->rear - cq->front) & CQ_MASK;
1516 }
1517
1518 static inline void mark_lock_accessed(struct lock_list *lock)
1519 {
1520         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1521 }
1522
1523 static inline void visit_lock_entry(struct lock_list *lock,
1524                                     struct lock_list *parent)
1525 {
1526         lock->parent = parent;
1527 }
1528
1529 static inline unsigned long lock_accessed(struct lock_list *lock)
1530 {
1531         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1532 }
1533
1534 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1535 {
1536         return child->parent;
1537 }
1538
1539 static inline int get_lock_depth(struct lock_list *child)
1540 {
1541         int depth = 0;
1542         struct lock_list *parent;
1543
1544         while ((parent = get_lock_parent(child))) {
1545                 child = parent;
1546                 depth++;
1547         }
1548         return depth;
1549 }
1550
1551 /*
1552  * Return the forward or backward dependency list.
1553  *
1554  * @lock:   the lock_list to get its class's dependency list
1555  * @offset: the offset to struct lock_class to determine whether it is
1556  *          locks_after or locks_before
1557  */
1558 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1559 {
1560         void *lock_class = lock->class;
1561
1562         return lock_class + offset;
1563 }
1564 /*
1565  * Return values of a bfs search:
1566  *
1567  * BFS_E* indicates an error
1568  * BFS_R* indicates a result (match or not)
1569  *
1570  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1571  *
1572  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1573  *
1574  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1575  *             *@target_entry.
1576  *
1577  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1578  *               _unchanged_.
1579  */
1580 enum bfs_result {
1581         BFS_EINVALIDNODE = -2,
1582         BFS_EQUEUEFULL = -1,
1583         BFS_RMATCH = 0,
1584         BFS_RNOMATCH = 1,
1585 };
1586
1587 /*
1588  * bfs_result < 0 means error
1589  */
1590 static inline bool bfs_error(enum bfs_result res)
1591 {
1592         return res < 0;
1593 }
1594
1595 /*
1596  * DEP_*_BIT in lock_list::dep
1597  *
1598  * For dependency @prev -> @next:
1599  *
1600  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1601  *       (->read == 2)
1602  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1603  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1604  *   EN: @prev is exclusive locker and @next is non-recursive locker
1605  *
1606  * Note that we define the value of DEP_*_BITs so that:
1607  *   bit0 is prev->read == 0
1608  *   bit1 is next->read != 2
1609  */
1610 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1611 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1612 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1613 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1614
1615 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1616 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1617 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1618 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1619
1620 static inline unsigned int
1621 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1622 {
1623         return (prev->read == 0) + ((next->read != 2) << 1);
1624 }
1625
1626 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1627 {
1628         return 1U << __calc_dep_bit(prev, next);
1629 }
1630
1631 /*
1632  * calculate the dep_bit for backwards edges. We care about whether @prev is
1633  * shared and whether @next is recursive.
1634  */
1635 static inline unsigned int
1636 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1637 {
1638         return (next->read != 2) + ((prev->read == 0) << 1);
1639 }
1640
1641 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1642 {
1643         return 1U << __calc_dep_bitb(prev, next);
1644 }
1645
1646 /*
1647  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1648  * search.
1649  */
1650 static inline void __bfs_init_root(struct lock_list *lock,
1651                                    struct lock_class *class)
1652 {
1653         lock->class = class;
1654         lock->parent = NULL;
1655         lock->only_xr = 0;
1656 }
1657
1658 /*
1659  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1660  * root for a BFS search.
1661  *
1662  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1663  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1664  * and -(S*)->.
1665  */
1666 static inline void bfs_init_root(struct lock_list *lock,
1667                                  struct held_lock *hlock)
1668 {
1669         __bfs_init_root(lock, hlock_class(hlock));
1670         lock->only_xr = (hlock->read == 2);
1671 }
1672
1673 /*
1674  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1675  *
1676  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1677  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1678  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1679  */
1680 static inline void bfs_init_rootb(struct lock_list *lock,
1681                                   struct held_lock *hlock)
1682 {
1683         __bfs_init_root(lock, hlock_class(hlock));
1684         lock->only_xr = (hlock->read != 0);
1685 }
1686
1687 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1688 {
1689         if (!lock || !lock->parent)
1690                 return NULL;
1691
1692         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1693                                      &lock->entry, struct lock_list, entry);
1694 }
1695
1696 /*
1697  * Breadth-First Search to find a strong path in the dependency graph.
1698  *
1699  * @source_entry: the source of the path we are searching for.
1700  * @data: data used for the second parameter of @match function
1701  * @match: match function for the search
1702  * @target_entry: pointer to the target of a matched path
1703  * @offset: the offset to struct lock_class to determine whether it is
1704  *          locks_after or locks_before
1705  *
1706  * We may have multiple edges (considering different kinds of dependencies,
1707  * e.g. ER and SN) between two nodes in the dependency graph. But
1708  * only the strong dependency path in the graph is relevant to deadlocks. A
1709  * strong dependency path is a dependency path that doesn't have two adjacent
1710  * dependencies as -(*R)-> -(S*)->, please see:
1711  *
1712  *         Documentation/locking/lockdep-design.rst
1713  *
1714  * for more explanation of the definition of strong dependency paths
1715  *
1716  * In __bfs(), we only traverse in the strong dependency path:
1717  *
1718  *     In lock_list::only_xr, we record whether the previous dependency only
1719  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1720  *     filter out any -(S*)-> in the current dependency and after that, the
1721  *     ->only_xr is set according to whether we only have -(*R)-> left.
1722  */
1723 static enum bfs_result __bfs(struct lock_list *source_entry,
1724                              void *data,
1725                              bool (*match)(struct lock_list *entry, void *data),
1726                              bool (*skip)(struct lock_list *entry, void *data),
1727                              struct lock_list **target_entry,
1728                              int offset)
1729 {
1730         struct circular_queue *cq = &lock_cq;
1731         struct lock_list *lock = NULL;
1732         struct lock_list *entry;
1733         struct list_head *head;
1734         unsigned int cq_depth;
1735         bool first;
1736
1737         lockdep_assert_locked();
1738
1739         __cq_init(cq);
1740         __cq_enqueue(cq, source_entry);
1741
1742         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1743                 if (!lock->class)
1744                         return BFS_EINVALIDNODE;
1745
1746                 /*
1747                  * Step 1: check whether we already finish on this one.
1748                  *
1749                  * If we have visited all the dependencies from this @lock to
1750                  * others (iow, if we have visited all lock_list entries in
1751                  * @lock->class->locks_{after,before}) we skip, otherwise go
1752                  * and visit all the dependencies in the list and mark this
1753                  * list accessed.
1754                  */
1755                 if (lock_accessed(lock))
1756                         continue;
1757                 else
1758                         mark_lock_accessed(lock);
1759
1760                 /*
1761                  * Step 2: check whether prev dependency and this form a strong
1762                  *         dependency path.
1763                  */
1764                 if (lock->parent) { /* Parent exists, check prev dependency */
1765                         u8 dep = lock->dep;
1766                         bool prev_only_xr = lock->parent->only_xr;
1767
1768                         /*
1769                          * Mask out all -(S*)-> if we only have *R in previous
1770                          * step, because -(*R)-> -(S*)-> don't make up a strong
1771                          * dependency.
1772                          */
1773                         if (prev_only_xr)
1774                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1775
1776                         /* If nothing left, we skip */
1777                         if (!dep)
1778                                 continue;
1779
1780                         /* If there are only -(*R)-> left, set that for the next step */
1781                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1782                 }
1783
1784                 /*
1785                  * Step 3: we haven't visited this and there is a strong
1786                  *         dependency path to this, so check with @match.
1787                  *         If @skip is provide and returns true, we skip this
1788                  *         lock (and any path this lock is in).
1789                  */
1790                 if (skip && skip(lock, data))
1791                         continue;
1792
1793                 if (match(lock, data)) {
1794                         *target_entry = lock;
1795                         return BFS_RMATCH;
1796                 }
1797
1798                 /*
1799                  * Step 4: if not match, expand the path by adding the
1800                  *         forward or backwards dependencies in the search
1801                  *
1802                  */
1803                 first = true;
1804                 head = get_dep_list(lock, offset);
1805                 list_for_each_entry_rcu(entry, head, entry) {
1806                         visit_lock_entry(entry, lock);
1807
1808                         /*
1809                          * Note we only enqueue the first of the list into the
1810                          * queue, because we can always find a sibling
1811                          * dependency from one (see __bfs_next()), as a result
1812                          * the space of queue is saved.
1813                          */
1814                         if (!first)
1815                                 continue;
1816
1817                         first = false;
1818
1819                         if (__cq_enqueue(cq, entry))
1820                                 return BFS_EQUEUEFULL;
1821
1822                         cq_depth = __cq_get_elem_count(cq);
1823                         if (max_bfs_queue_depth < cq_depth)
1824                                 max_bfs_queue_depth = cq_depth;
1825                 }
1826         }
1827
1828         return BFS_RNOMATCH;
1829 }
1830
1831 static inline enum bfs_result
1832 __bfs_forwards(struct lock_list *src_entry,
1833                void *data,
1834                bool (*match)(struct lock_list *entry, void *data),
1835                bool (*skip)(struct lock_list *entry, void *data),
1836                struct lock_list **target_entry)
1837 {
1838         return __bfs(src_entry, data, match, skip, target_entry,
1839                      offsetof(struct lock_class, locks_after));
1840
1841 }
1842
1843 static inline enum bfs_result
1844 __bfs_backwards(struct lock_list *src_entry,
1845                 void *data,
1846                 bool (*match)(struct lock_list *entry, void *data),
1847                bool (*skip)(struct lock_list *entry, void *data),
1848                 struct lock_list **target_entry)
1849 {
1850         return __bfs(src_entry, data, match, skip, target_entry,
1851                      offsetof(struct lock_class, locks_before));
1852
1853 }
1854
1855 static void print_lock_trace(const struct lock_trace *trace,
1856                              unsigned int spaces)
1857 {
1858         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1859 }
1860
1861 /*
1862  * Print a dependency chain entry (this is only done when a deadlock
1863  * has been detected):
1864  */
1865 static noinline void
1866 print_circular_bug_entry(struct lock_list *target, int depth)
1867 {
1868         if (debug_locks_silent)
1869                 return;
1870         printk("\n-> #%u", depth);
1871         print_lock_name(target->class);
1872         printk(KERN_CONT ":\n");
1873         print_lock_trace(target->trace, 6);
1874 }
1875
1876 static void
1877 print_circular_lock_scenario(struct held_lock *src,
1878                              struct held_lock *tgt,
1879                              struct lock_list *prt)
1880 {
1881         struct lock_class *source = hlock_class(src);
1882         struct lock_class *target = hlock_class(tgt);
1883         struct lock_class *parent = prt->class;
1884         int src_read = src->read;
1885         int tgt_read = tgt->read;
1886
1887         /*
1888          * A direct locking problem where unsafe_class lock is taken
1889          * directly by safe_class lock, then all we need to show
1890          * is the deadlock scenario, as it is obvious that the
1891          * unsafe lock is taken under the safe lock.
1892          *
1893          * But if there is a chain instead, where the safe lock takes
1894          * an intermediate lock (middle_class) where this lock is
1895          * not the same as the safe lock, then the lock chain is
1896          * used to describe the problem. Otherwise we would need
1897          * to show a different CPU case for each link in the chain
1898          * from the safe_class lock to the unsafe_class lock.
1899          */
1900         if (parent != source) {
1901                 printk("Chain exists of:\n  ");
1902                 __print_lock_name(source);
1903                 printk(KERN_CONT " --> ");
1904                 __print_lock_name(parent);
1905                 printk(KERN_CONT " --> ");
1906                 __print_lock_name(target);
1907                 printk(KERN_CONT "\n\n");
1908         }
1909
1910         printk(" Possible unsafe locking scenario:\n\n");
1911         printk("       CPU0                    CPU1\n");
1912         printk("       ----                    ----\n");
1913         if (tgt_read != 0)
1914                 printk("  rlock(");
1915         else
1916                 printk("  lock(");
1917         __print_lock_name(target);
1918         printk(KERN_CONT ");\n");
1919         printk("                               lock(");
1920         __print_lock_name(parent);
1921         printk(KERN_CONT ");\n");
1922         printk("                               lock(");
1923         __print_lock_name(target);
1924         printk(KERN_CONT ");\n");
1925         if (src_read != 0)
1926                 printk("  rlock(");
1927         else if (src->sync)
1928                 printk("  sync(");
1929         else
1930                 printk("  lock(");
1931         __print_lock_name(source);
1932         printk(KERN_CONT ");\n");
1933         printk("\n *** DEADLOCK ***\n\n");
1934 }
1935
1936 /*
1937  * When a circular dependency is detected, print the
1938  * header first:
1939  */
1940 static noinline void
1941 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1942                         struct held_lock *check_src,
1943                         struct held_lock *check_tgt)
1944 {
1945         struct task_struct *curr = current;
1946
1947         if (debug_locks_silent)
1948                 return;
1949
1950         pr_warn("\n");
1951         pr_warn("======================================================\n");
1952         pr_warn("WARNING: possible circular locking dependency detected\n");
1953         print_kernel_ident();
1954         pr_warn("------------------------------------------------------\n");
1955         pr_warn("%s/%d is trying to acquire lock:\n",
1956                 curr->comm, task_pid_nr(curr));
1957         print_lock(check_src);
1958
1959         pr_warn("\nbut task is already holding lock:\n");
1960
1961         print_lock(check_tgt);
1962         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1963         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1964
1965         print_circular_bug_entry(entry, depth);
1966 }
1967
1968 /*
1969  * We are about to add A -> B into the dependency graph, and in __bfs() a
1970  * strong dependency path A -> .. -> B is found: hlock_class equals
1971  * entry->class.
1972  *
1973  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1974  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1975  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1976  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1977  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1978  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1979  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1980  *
1981  * We need to make sure both the start and the end of A -> .. -> B is not
1982  * weaker than A -> B. For the start part, please see the comment in
1983  * check_redundant(). For the end part, we need:
1984  *
1985  * Either
1986  *
1987  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1988  *
1989  * or
1990  *
1991  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1992  *
1993  */
1994 static inline bool hlock_equal(struct lock_list *entry, void *data)
1995 {
1996         struct held_lock *hlock = (struct held_lock *)data;
1997
1998         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1999                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2000                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2001 }
2002
2003 /*
2004  * We are about to add B -> A into the dependency graph, and in __bfs() a
2005  * strong dependency path A -> .. -> B is found: hlock_class equals
2006  * entry->class.
2007  *
2008  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2009  * dependency cycle, that means:
2010  *
2011  * Either
2012  *
2013  *     a) B -> A is -(E*)->
2014  *
2015  * or
2016  *
2017  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2018  *
2019  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2020  */
2021 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2022 {
2023         struct held_lock *hlock = (struct held_lock *)data;
2024
2025         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2026                (hlock->read == 0 || /* B -> A is -(E*)-> */
2027                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2028 }
2029
2030 static noinline void print_circular_bug(struct lock_list *this,
2031                                 struct lock_list *target,
2032                                 struct held_lock *check_src,
2033                                 struct held_lock *check_tgt)
2034 {
2035         struct task_struct *curr = current;
2036         struct lock_list *parent;
2037         struct lock_list *first_parent;
2038         int depth;
2039
2040         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2041                 return;
2042
2043         this->trace = save_trace();
2044         if (!this->trace)
2045                 return;
2046
2047         depth = get_lock_depth(target);
2048
2049         print_circular_bug_header(target, depth, check_src, check_tgt);
2050
2051         parent = get_lock_parent(target);
2052         first_parent = parent;
2053
2054         while (parent) {
2055                 print_circular_bug_entry(parent, --depth);
2056                 parent = get_lock_parent(parent);
2057         }
2058
2059         printk("\nother info that might help us debug this:\n\n");
2060         print_circular_lock_scenario(check_src, check_tgt,
2061                                      first_parent);
2062
2063         lockdep_print_held_locks(curr);
2064
2065         printk("\nstack backtrace:\n");
2066         dump_stack();
2067 }
2068
2069 static noinline void print_bfs_bug(int ret)
2070 {
2071         if (!debug_locks_off_graph_unlock())
2072                 return;
2073
2074         /*
2075          * Breadth-first-search failed, graph got corrupted?
2076          */
2077         WARN(1, "lockdep bfs error:%d\n", ret);
2078 }
2079
2080 static bool noop_count(struct lock_list *entry, void *data)
2081 {
2082         (*(unsigned long *)data)++;
2083         return false;
2084 }
2085
2086 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2087 {
2088         unsigned long  count = 0;
2089         struct lock_list *target_entry;
2090
2091         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2092
2093         return count;
2094 }
2095 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2096 {
2097         unsigned long ret, flags;
2098         struct lock_list this;
2099
2100         __bfs_init_root(&this, class);
2101
2102         raw_local_irq_save(flags);
2103         lockdep_lock();
2104         ret = __lockdep_count_forward_deps(&this);
2105         lockdep_unlock();
2106         raw_local_irq_restore(flags);
2107
2108         return ret;
2109 }
2110
2111 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2112 {
2113         unsigned long  count = 0;
2114         struct lock_list *target_entry;
2115
2116         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2117
2118         return count;
2119 }
2120
2121 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2122 {
2123         unsigned long ret, flags;
2124         struct lock_list this;
2125
2126         __bfs_init_root(&this, class);
2127
2128         raw_local_irq_save(flags);
2129         lockdep_lock();
2130         ret = __lockdep_count_backward_deps(&this);
2131         lockdep_unlock();
2132         raw_local_irq_restore(flags);
2133
2134         return ret;
2135 }
2136
2137 /*
2138  * Check that the dependency graph starting at <src> can lead to
2139  * <target> or not.
2140  */
2141 static noinline enum bfs_result
2142 check_path(struct held_lock *target, struct lock_list *src_entry,
2143            bool (*match)(struct lock_list *entry, void *data),
2144            bool (*skip)(struct lock_list *entry, void *data),
2145            struct lock_list **target_entry)
2146 {
2147         enum bfs_result ret;
2148
2149         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2150
2151         if (unlikely(bfs_error(ret)))
2152                 print_bfs_bug(ret);
2153
2154         return ret;
2155 }
2156
2157 /*
2158  * Prove that the dependency graph starting at <src> can not
2159  * lead to <target>. If it can, there is a circle when adding
2160  * <target> -> <src> dependency.
2161  *
2162  * Print an error and return BFS_RMATCH if it does.
2163  */
2164 static noinline enum bfs_result
2165 check_noncircular(struct held_lock *src, struct held_lock *target,
2166                   struct lock_trace **const trace)
2167 {
2168         enum bfs_result ret;
2169         struct lock_list *target_entry;
2170         struct lock_list src_entry;
2171
2172         bfs_init_root(&src_entry, src);
2173
2174         debug_atomic_inc(nr_cyclic_checks);
2175
2176         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2177
2178         if (unlikely(ret == BFS_RMATCH)) {
2179                 if (!*trace) {
2180                         /*
2181                          * If save_trace fails here, the printing might
2182                          * trigger a WARN but because of the !nr_entries it
2183                          * should not do bad things.
2184                          */
2185                         *trace = save_trace();
2186                 }
2187
2188                 print_circular_bug(&src_entry, target_entry, src, target);
2189         }
2190
2191         return ret;
2192 }
2193
2194 #ifdef CONFIG_TRACE_IRQFLAGS
2195
2196 /*
2197  * Forwards and backwards subgraph searching, for the purposes of
2198  * proving that two subgraphs can be connected by a new dependency
2199  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2200  *
2201  * A irq safe->unsafe deadlock happens with the following conditions:
2202  *
2203  * 1) We have a strong dependency path A -> ... -> B
2204  *
2205  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2206  *    irq can create a new dependency B -> A (consider the case that a holder
2207  *    of B gets interrupted by an irq whose handler will try to acquire A).
2208  *
2209  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2210  *    strong circle:
2211  *
2212  *      For the usage bits of B:
2213  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2214  *           ENABLED_IRQ usage suffices.
2215  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2216  *           ENABLED_IRQ_*_READ usage suffices.
2217  *
2218  *      For the usage bits of A:
2219  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2220  *           USED_IN_IRQ usage suffices.
2221  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2222  *           USED_IN_IRQ_*_READ usage suffices.
2223  */
2224
2225 /*
2226  * There is a strong dependency path in the dependency graph: A -> B, and now
2227  * we need to decide which usage bit of A should be accumulated to detect
2228  * safe->unsafe bugs.
2229  *
2230  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2231  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2232  *
2233  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2234  * path, any usage of A should be considered. Otherwise, we should only
2235  * consider _READ usage.
2236  */
2237 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2238 {
2239         if (!entry->only_xr)
2240                 *(unsigned long *)mask |= entry->class->usage_mask;
2241         else /* Mask out _READ usage bits */
2242                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2243
2244         return false;
2245 }
2246
2247 /*
2248  * There is a strong dependency path in the dependency graph: A -> B, and now
2249  * we need to decide which usage bit of B conflicts with the usage bits of A,
2250  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2251  *
2252  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2253  * path, any usage of B should be considered. Otherwise, we should only
2254  * consider _READ usage.
2255  */
2256 static inline bool usage_match(struct lock_list *entry, void *mask)
2257 {
2258         if (!entry->only_xr)
2259                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2260         else /* Mask out _READ usage bits */
2261                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2262 }
2263
2264 static inline bool usage_skip(struct lock_list *entry, void *mask)
2265 {
2266         /*
2267          * Skip local_lock() for irq inversion detection.
2268          *
2269          * For !RT, local_lock() is not a real lock, so it won't carry any
2270          * dependency.
2271          *
2272          * For RT, an irq inversion happens when we have lock A and B, and on
2273          * some CPU we can have:
2274          *
2275          *      lock(A);
2276          *      <interrupted>
2277          *        lock(B);
2278          *
2279          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2280          *
2281          * Now we prove local_lock() cannot exist in that dependency. First we
2282          * have the observation for any lock chain L1 -> ... -> Ln, for any
2283          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2284          * wait context check will complain. And since B is not a sleep lock,
2285          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2286          * local_lock() is 3, which is greater than 2, therefore there is no
2287          * way the local_lock() exists in the dependency B -> ... -> A.
2288          *
2289          * As a result, we will skip local_lock(), when we search for irq
2290          * inversion bugs.
2291          */
2292         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2293                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2294                         return false;
2295
2296                 return true;
2297         }
2298
2299         return false;
2300 }
2301
2302 /*
2303  * Find a node in the forwards-direction dependency sub-graph starting
2304  * at @root->class that matches @bit.
2305  *
2306  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2307  * into *@target_entry.
2308  */
2309 static enum bfs_result
2310 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2311                         struct lock_list **target_entry)
2312 {
2313         enum bfs_result result;
2314
2315         debug_atomic_inc(nr_find_usage_forwards_checks);
2316
2317         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2318
2319         return result;
2320 }
2321
2322 /*
2323  * Find a node in the backwards-direction dependency sub-graph starting
2324  * at @root->class that matches @bit.
2325  */
2326 static enum bfs_result
2327 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2328                         struct lock_list **target_entry)
2329 {
2330         enum bfs_result result;
2331
2332         debug_atomic_inc(nr_find_usage_backwards_checks);
2333
2334         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2335
2336         return result;
2337 }
2338
2339 static void print_lock_class_header(struct lock_class *class, int depth)
2340 {
2341         int bit;
2342
2343         printk("%*s->", depth, "");
2344         print_lock_name(class);
2345 #ifdef CONFIG_DEBUG_LOCKDEP
2346         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2347 #endif
2348         printk(KERN_CONT " {\n");
2349
2350         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2351                 if (class->usage_mask & (1 << bit)) {
2352                         int len = depth;
2353
2354                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2355                         len += printk(KERN_CONT " at:\n");
2356                         print_lock_trace(class->usage_traces[bit], len);
2357                 }
2358         }
2359         printk("%*s }\n", depth, "");
2360
2361         printk("%*s ... key      at: [<%px>] %pS\n",
2362                 depth, "", class->key, class->key);
2363 }
2364
2365 /*
2366  * Dependency path printing:
2367  *
2368  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2369  * printing out each lock in the dependency path will help on understanding how
2370  * the deadlock could happen. Here are some details about dependency path
2371  * printing:
2372  *
2373  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2374  *      for a lock dependency A -> B, there are two lock_lists:
2375  *
2376  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2377  *              ->links_to is A. In this case, we can say the lock_list is
2378  *              "A -> B" (forwards case).
2379  *
2380  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2381  *              and ->links_to is B. In this case, we can say the lock_list is
2382  *              "B <- A" (bacwards case).
2383  *
2384  *      The ->trace of both a) and b) point to the call trace where B was
2385  *      acquired with A held.
2386  *
2387  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2388  *      represent a certain lock dependency, it only provides an initial entry
2389  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2390  *      ->class is A, as a result BFS will search all dependencies starting with
2391  *      A, e.g. A -> B or A -> C.
2392  *
2393  *      The notation of a forwards helper lock_list is like "-> A", which means
2394  *      we should search the forwards dependencies starting with "A", e.g A -> B
2395  *      or A -> C.
2396  *
2397  *      The notation of a bacwards helper lock_list is like "<- B", which means
2398  *      we should search the backwards dependencies ending with "B", e.g.
2399  *      B <- A or B <- C.
2400  */
2401
2402 /*
2403  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2404  *
2405  * We have a lock dependency path as follow:
2406  *
2407  *    @root                                                                 @leaf
2408  *      |                                                                     |
2409  *      V                                                                     V
2410  *                ->parent                                   ->parent
2411  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2412  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2413  *
2414  * , so it's natural that we start from @leaf and print every ->class and
2415  * ->trace until we reach the @root.
2416  */
2417 static void __used
2418 print_shortest_lock_dependencies(struct lock_list *leaf,
2419                                  struct lock_list *root)
2420 {
2421         struct lock_list *entry = leaf;
2422         int depth;
2423
2424         /*compute depth from generated tree by BFS*/
2425         depth = get_lock_depth(leaf);
2426
2427         do {
2428                 print_lock_class_header(entry->class, depth);
2429                 printk("%*s ... acquired at:\n", depth, "");
2430                 print_lock_trace(entry->trace, 2);
2431                 printk("\n");
2432
2433                 if (depth == 0 && (entry != root)) {
2434                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2435                         break;
2436                 }
2437
2438                 entry = get_lock_parent(entry);
2439                 depth--;
2440         } while (entry && (depth >= 0));
2441 }
2442
2443 /*
2444  * printk the shortest lock dependencies from @leaf to @root.
2445  *
2446  * We have a lock dependency path (from a backwards search) as follow:
2447  *
2448  *    @leaf                                                                 @root
2449  *      |                                                                     |
2450  *      V                                                                     V
2451  *                ->parent                                   ->parent
2452  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2453  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2454  *
2455  * , so when we iterate from @leaf to @root, we actually print the lock
2456  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2457  *
2458  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2459  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2460  * trace of L1 in the dependency path, which is alright, because most of the
2461  * time we can figure out where L1 is held from the call trace of L2.
2462  */
2463 static void __used
2464 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2465                                            struct lock_list *root)
2466 {
2467         struct lock_list *entry = leaf;
2468         const struct lock_trace *trace = NULL;
2469         int depth;
2470
2471         /*compute depth from generated tree by BFS*/
2472         depth = get_lock_depth(leaf);
2473
2474         do {
2475                 print_lock_class_header(entry->class, depth);
2476                 if (trace) {
2477                         printk("%*s ... acquired at:\n", depth, "");
2478                         print_lock_trace(trace, 2);
2479                         printk("\n");
2480                 }
2481
2482                 /*
2483                  * Record the pointer to the trace for the next lock_list
2484                  * entry, see the comments for the function.
2485                  */
2486                 trace = entry->trace;
2487
2488                 if (depth == 0 && (entry != root)) {
2489                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2490                         break;
2491                 }
2492
2493                 entry = get_lock_parent(entry);
2494                 depth--;
2495         } while (entry && (depth >= 0));
2496 }
2497
2498 static void
2499 print_irq_lock_scenario(struct lock_list *safe_entry,
2500                         struct lock_list *unsafe_entry,
2501                         struct lock_class *prev_class,
2502                         struct lock_class *next_class)
2503 {
2504         struct lock_class *safe_class = safe_entry->class;
2505         struct lock_class *unsafe_class = unsafe_entry->class;
2506         struct lock_class *middle_class = prev_class;
2507
2508         if (middle_class == safe_class)
2509                 middle_class = next_class;
2510
2511         /*
2512          * A direct locking problem where unsafe_class lock is taken
2513          * directly by safe_class lock, then all we need to show
2514          * is the deadlock scenario, as it is obvious that the
2515          * unsafe lock is taken under the safe lock.
2516          *
2517          * But if there is a chain instead, where the safe lock takes
2518          * an intermediate lock (middle_class) where this lock is
2519          * not the same as the safe lock, then the lock chain is
2520          * used to describe the problem. Otherwise we would need
2521          * to show a different CPU case for each link in the chain
2522          * from the safe_class lock to the unsafe_class lock.
2523          */
2524         if (middle_class != unsafe_class) {
2525                 printk("Chain exists of:\n  ");
2526                 __print_lock_name(safe_class);
2527                 printk(KERN_CONT " --> ");
2528                 __print_lock_name(middle_class);
2529                 printk(KERN_CONT " --> ");
2530                 __print_lock_name(unsafe_class);
2531                 printk(KERN_CONT "\n\n");
2532         }
2533
2534         printk(" Possible interrupt unsafe locking scenario:\n\n");
2535         printk("       CPU0                    CPU1\n");
2536         printk("       ----                    ----\n");
2537         printk("  lock(");
2538         __print_lock_name(unsafe_class);
2539         printk(KERN_CONT ");\n");
2540         printk("                               local_irq_disable();\n");
2541         printk("                               lock(");
2542         __print_lock_name(safe_class);
2543         printk(KERN_CONT ");\n");
2544         printk("                               lock(");
2545         __print_lock_name(middle_class);
2546         printk(KERN_CONT ");\n");
2547         printk("  <Interrupt>\n");
2548         printk("    lock(");
2549         __print_lock_name(safe_class);
2550         printk(KERN_CONT ");\n");
2551         printk("\n *** DEADLOCK ***\n\n");
2552 }
2553
2554 static void
2555 print_bad_irq_dependency(struct task_struct *curr,
2556                          struct lock_list *prev_root,
2557                          struct lock_list *next_root,
2558                          struct lock_list *backwards_entry,
2559                          struct lock_list *forwards_entry,
2560                          struct held_lock *prev,
2561                          struct held_lock *next,
2562                          enum lock_usage_bit bit1,
2563                          enum lock_usage_bit bit2,
2564                          const char *irqclass)
2565 {
2566         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2567                 return;
2568
2569         pr_warn("\n");
2570         pr_warn("=====================================================\n");
2571         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2572                 irqclass, irqclass);
2573         print_kernel_ident();
2574         pr_warn("-----------------------------------------------------\n");
2575         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2576                 curr->comm, task_pid_nr(curr),
2577                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2578                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2579                 lockdep_hardirqs_enabled(),
2580                 curr->softirqs_enabled);
2581         print_lock(next);
2582
2583         pr_warn("\nand this task is already holding:\n");
2584         print_lock(prev);
2585         pr_warn("which would create a new lock dependency:\n");
2586         print_lock_name(hlock_class(prev));
2587         pr_cont(" ->");
2588         print_lock_name(hlock_class(next));
2589         pr_cont("\n");
2590
2591         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2592                 irqclass);
2593         print_lock_name(backwards_entry->class);
2594         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2595
2596         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2597
2598         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2599         print_lock_name(forwards_entry->class);
2600         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2601         pr_warn("...");
2602
2603         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2604
2605         pr_warn("\nother info that might help us debug this:\n\n");
2606         print_irq_lock_scenario(backwards_entry, forwards_entry,
2607                                 hlock_class(prev), hlock_class(next));
2608
2609         lockdep_print_held_locks(curr);
2610
2611         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2612         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2613
2614         pr_warn("\nthe dependencies between the lock to be acquired");
2615         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2616         next_root->trace = save_trace();
2617         if (!next_root->trace)
2618                 return;
2619         print_shortest_lock_dependencies(forwards_entry, next_root);
2620
2621         pr_warn("\nstack backtrace:\n");
2622         dump_stack();
2623 }
2624
2625 static const char *state_names[] = {
2626 #define LOCKDEP_STATE(__STATE) \
2627         __stringify(__STATE),
2628 #include "lockdep_states.h"
2629 #undef LOCKDEP_STATE
2630 };
2631
2632 static const char *state_rnames[] = {
2633 #define LOCKDEP_STATE(__STATE) \
2634         __stringify(__STATE)"-READ",
2635 #include "lockdep_states.h"
2636 #undef LOCKDEP_STATE
2637 };
2638
2639 static inline const char *state_name(enum lock_usage_bit bit)
2640 {
2641         if (bit & LOCK_USAGE_READ_MASK)
2642                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2643         else
2644                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2645 }
2646
2647 /*
2648  * The bit number is encoded like:
2649  *
2650  *  bit0: 0 exclusive, 1 read lock
2651  *  bit1: 0 used in irq, 1 irq enabled
2652  *  bit2-n: state
2653  */
2654 static int exclusive_bit(int new_bit)
2655 {
2656         int state = new_bit & LOCK_USAGE_STATE_MASK;
2657         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2658
2659         /*
2660          * keep state, bit flip the direction and strip read.
2661          */
2662         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2663 }
2664
2665 /*
2666  * Observe that when given a bitmask where each bitnr is encoded as above, a
2667  * right shift of the mask transforms the individual bitnrs as -1 and
2668  * conversely, a left shift transforms into +1 for the individual bitnrs.
2669  *
2670  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2671  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2672  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2673  *
2674  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2675  *
2676  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2677  * all bits set) and recompose with bitnr1 flipped.
2678  */
2679 static unsigned long invert_dir_mask(unsigned long mask)
2680 {
2681         unsigned long excl = 0;
2682
2683         /* Invert dir */
2684         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2685         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2686
2687         return excl;
2688 }
2689
2690 /*
2691  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2692  * usage may cause deadlock too, for example:
2693  *
2694  * P1                           P2
2695  * <irq disabled>
2696  * write_lock(l1);              <irq enabled>
2697  *                              read_lock(l2);
2698  * write_lock(l2);
2699  *                              <in irq>
2700  *                              read_lock(l1);
2701  *
2702  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2703  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2704  * deadlock.
2705  *
2706  * In fact, all of the following cases may cause deadlocks:
2707  *
2708  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2709  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2710  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2711  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2712  *
2713  * As a result, to calculate the "exclusive mask", first we invert the
2714  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2715  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2716  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2717  */
2718 static unsigned long exclusive_mask(unsigned long mask)
2719 {
2720         unsigned long excl = invert_dir_mask(mask);
2721
2722         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2723         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2724
2725         return excl;
2726 }
2727
2728 /*
2729  * Retrieve the _possible_ original mask to which @mask is
2730  * exclusive. Ie: this is the opposite of exclusive_mask().
2731  * Note that 2 possible original bits can match an exclusive
2732  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2733  * cleared. So both are returned for each exclusive bit.
2734  */
2735 static unsigned long original_mask(unsigned long mask)
2736 {
2737         unsigned long excl = invert_dir_mask(mask);
2738
2739         /* Include read in existing usages */
2740         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2741         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2742
2743         return excl;
2744 }
2745
2746 /*
2747  * Find the first pair of bit match between an original
2748  * usage mask and an exclusive usage mask.
2749  */
2750 static int find_exclusive_match(unsigned long mask,
2751                                 unsigned long excl_mask,
2752                                 enum lock_usage_bit *bitp,
2753                                 enum lock_usage_bit *excl_bitp)
2754 {
2755         int bit, excl, excl_read;
2756
2757         for_each_set_bit(bit, &mask, LOCK_USED) {
2758                 /*
2759                  * exclusive_bit() strips the read bit, however,
2760                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2761                  * to search excl | LOCK_USAGE_READ_MASK as well.
2762                  */
2763                 excl = exclusive_bit(bit);
2764                 excl_read = excl | LOCK_USAGE_READ_MASK;
2765                 if (excl_mask & lock_flag(excl)) {
2766                         *bitp = bit;
2767                         *excl_bitp = excl;
2768                         return 0;
2769                 } else if (excl_mask & lock_flag(excl_read)) {
2770                         *bitp = bit;
2771                         *excl_bitp = excl_read;
2772                         return 0;
2773                 }
2774         }
2775         return -1;
2776 }
2777
2778 /*
2779  * Prove that the new dependency does not connect a hardirq-safe(-read)
2780  * lock with a hardirq-unsafe lock - to achieve this we search
2781  * the backwards-subgraph starting at <prev>, and the
2782  * forwards-subgraph starting at <next>:
2783  */
2784 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2785                            struct held_lock *next)
2786 {
2787         unsigned long usage_mask = 0, forward_mask, backward_mask;
2788         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2789         struct lock_list *target_entry1;
2790         struct lock_list *target_entry;
2791         struct lock_list this, that;
2792         enum bfs_result ret;
2793
2794         /*
2795          * Step 1: gather all hard/soft IRQs usages backward in an
2796          * accumulated usage mask.
2797          */
2798         bfs_init_rootb(&this, prev);
2799
2800         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2801         if (bfs_error(ret)) {
2802                 print_bfs_bug(ret);
2803                 return 0;
2804         }
2805
2806         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2807         if (!usage_mask)
2808                 return 1;
2809
2810         /*
2811          * Step 2: find exclusive uses forward that match the previous
2812          * backward accumulated mask.
2813          */
2814         forward_mask = exclusive_mask(usage_mask);
2815
2816         bfs_init_root(&that, next);
2817
2818         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2819         if (bfs_error(ret)) {
2820                 print_bfs_bug(ret);
2821                 return 0;
2822         }
2823         if (ret == BFS_RNOMATCH)
2824                 return 1;
2825
2826         /*
2827          * Step 3: we found a bad match! Now retrieve a lock from the backward
2828          * list whose usage mask matches the exclusive usage mask from the
2829          * lock found on the forward list.
2830          *
2831          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2832          * the follow case:
2833          *
2834          * When trying to add A -> B to the graph, we find that there is a
2835          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2836          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2837          * invert bits of M's usage_mask, we will find another lock N that is
2838          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2839          * cause a inversion deadlock.
2840          */
2841         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2842
2843         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2844         if (bfs_error(ret)) {
2845                 print_bfs_bug(ret);
2846                 return 0;
2847         }
2848         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2849                 return 1;
2850
2851         /*
2852          * Step 4: narrow down to a pair of incompatible usage bits
2853          * and report it.
2854          */
2855         ret = find_exclusive_match(target_entry->class->usage_mask,
2856                                    target_entry1->class->usage_mask,
2857                                    &backward_bit, &forward_bit);
2858         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2859                 return 1;
2860
2861         print_bad_irq_dependency(curr, &this, &that,
2862                                  target_entry, target_entry1,
2863                                  prev, next,
2864                                  backward_bit, forward_bit,
2865                                  state_name(backward_bit));
2866
2867         return 0;
2868 }
2869
2870 #else
2871
2872 static inline int check_irq_usage(struct task_struct *curr,
2873                                   struct held_lock *prev, struct held_lock *next)
2874 {
2875         return 1;
2876 }
2877
2878 static inline bool usage_skip(struct lock_list *entry, void *mask)
2879 {
2880         return false;
2881 }
2882
2883 #endif /* CONFIG_TRACE_IRQFLAGS */
2884
2885 #ifdef CONFIG_LOCKDEP_SMALL
2886 /*
2887  * Check that the dependency graph starting at <src> can lead to
2888  * <target> or not. If it can, <src> -> <target> dependency is already
2889  * in the graph.
2890  *
2891  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2892  * any error appears in the bfs search.
2893  */
2894 static noinline enum bfs_result
2895 check_redundant(struct held_lock *src, struct held_lock *target)
2896 {
2897         enum bfs_result ret;
2898         struct lock_list *target_entry;
2899         struct lock_list src_entry;
2900
2901         bfs_init_root(&src_entry, src);
2902         /*
2903          * Special setup for check_redundant().
2904          *
2905          * To report redundant, we need to find a strong dependency path that
2906          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2907          * we need to let __bfs() only search for a path starting at a -(E*)->,
2908          * we achieve this by setting the initial node's ->only_xr to true in
2909          * that case. And if <prev> is S, we set initial ->only_xr to false
2910          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2911          */
2912         src_entry.only_xr = src->read == 0;
2913
2914         debug_atomic_inc(nr_redundant_checks);
2915
2916         /*
2917          * Note: we skip local_lock() for redundant check, because as the
2918          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2919          * the same.
2920          */
2921         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2922
2923         if (ret == BFS_RMATCH)
2924                 debug_atomic_inc(nr_redundant);
2925
2926         return ret;
2927 }
2928
2929 #else
2930
2931 static inline enum bfs_result
2932 check_redundant(struct held_lock *src, struct held_lock *target)
2933 {
2934         return BFS_RNOMATCH;
2935 }
2936
2937 #endif
2938
2939 static void inc_chains(int irq_context)
2940 {
2941         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2942                 nr_hardirq_chains++;
2943         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2944                 nr_softirq_chains++;
2945         else
2946                 nr_process_chains++;
2947 }
2948
2949 static void dec_chains(int irq_context)
2950 {
2951         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2952                 nr_hardirq_chains--;
2953         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2954                 nr_softirq_chains--;
2955         else
2956                 nr_process_chains--;
2957 }
2958
2959 static void
2960 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2961 {
2962         struct lock_class *next = hlock_class(nxt);
2963         struct lock_class *prev = hlock_class(prv);
2964
2965         printk(" Possible unsafe locking scenario:\n\n");
2966         printk("       CPU0\n");
2967         printk("       ----\n");
2968         printk("  lock(");
2969         __print_lock_name(prev);
2970         printk(KERN_CONT ");\n");
2971         printk("  lock(");
2972         __print_lock_name(next);
2973         printk(KERN_CONT ");\n");
2974         printk("\n *** DEADLOCK ***\n\n");
2975         printk(" May be due to missing lock nesting notation\n\n");
2976 }
2977
2978 static void
2979 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2980                    struct held_lock *next)
2981 {
2982         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2983                 return;
2984
2985         pr_warn("\n");
2986         pr_warn("============================================\n");
2987         pr_warn("WARNING: possible recursive locking detected\n");
2988         print_kernel_ident();
2989         pr_warn("--------------------------------------------\n");
2990         pr_warn("%s/%d is trying to acquire lock:\n",
2991                 curr->comm, task_pid_nr(curr));
2992         print_lock(next);
2993         pr_warn("\nbut task is already holding lock:\n");
2994         print_lock(prev);
2995
2996         pr_warn("\nother info that might help us debug this:\n");
2997         print_deadlock_scenario(next, prev);
2998         lockdep_print_held_locks(curr);
2999
3000         pr_warn("\nstack backtrace:\n");
3001         dump_stack();
3002 }
3003
3004 /*
3005  * Check whether we are holding such a class already.
3006  *
3007  * (Note that this has to be done separately, because the graph cannot
3008  * detect such classes of deadlocks.)
3009  *
3010  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3011  * lock class is held but nest_lock is also held, i.e. we rely on the
3012  * nest_lock to avoid the deadlock.
3013  */
3014 static int
3015 check_deadlock(struct task_struct *curr, struct held_lock *next)
3016 {
3017         struct held_lock *prev;
3018         struct held_lock *nest = NULL;
3019         int i;
3020
3021         for (i = 0; i < curr->lockdep_depth; i++) {
3022                 prev = curr->held_locks + i;
3023
3024                 if (prev->instance == next->nest_lock)
3025                         nest = prev;
3026
3027                 if (hlock_class(prev) != hlock_class(next))
3028                         continue;
3029
3030                 /*
3031                  * Allow read-after-read recursion of the same
3032                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
3033                  */
3034                 if ((next->read == 2) && prev->read)
3035                         continue;
3036
3037                 /*
3038                  * We're holding the nest_lock, which serializes this lock's
3039                  * nesting behaviour.
3040                  */
3041                 if (nest)
3042                         return 2;
3043
3044                 print_deadlock_bug(curr, prev, next);
3045                 return 0;
3046         }
3047         return 1;
3048 }
3049
3050 /*
3051  * There was a chain-cache miss, and we are about to add a new dependency
3052  * to a previous lock. We validate the following rules:
3053  *
3054  *  - would the adding of the <prev> -> <next> dependency create a
3055  *    circular dependency in the graph? [== circular deadlock]
3056  *
3057  *  - does the new prev->next dependency connect any hardirq-safe lock
3058  *    (in the full backwards-subgraph starting at <prev>) with any
3059  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3060  *    <next>)? [== illegal lock inversion with hardirq contexts]
3061  *
3062  *  - does the new prev->next dependency connect any softirq-safe lock
3063  *    (in the full backwards-subgraph starting at <prev>) with any
3064  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3065  *    <next>)? [== illegal lock inversion with softirq contexts]
3066  *
3067  * any of these scenarios could lead to a deadlock.
3068  *
3069  * Then if all the validations pass, we add the forwards and backwards
3070  * dependency.
3071  */
3072 static int
3073 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3074                struct held_lock *next, u16 distance,
3075                struct lock_trace **const trace)
3076 {
3077         struct lock_list *entry;
3078         enum bfs_result ret;
3079
3080         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3081                 /*
3082                  * The warning statements below may trigger a use-after-free
3083                  * of the class name. It is better to trigger a use-after free
3084                  * and to have the class name most of the time instead of not
3085                  * having the class name available.
3086                  */
3087                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3088                           "Detected use-after-free of lock class %px/%s\n",
3089                           hlock_class(prev),
3090                           hlock_class(prev)->name);
3091                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3092                           "Detected use-after-free of lock class %px/%s\n",
3093                           hlock_class(next),
3094                           hlock_class(next)->name);
3095                 return 2;
3096         }
3097
3098         /*
3099          * Prove that the new <prev> -> <next> dependency would not
3100          * create a circular dependency in the graph. (We do this by
3101          * a breadth-first search into the graph starting at <next>,
3102          * and check whether we can reach <prev>.)
3103          *
3104          * The search is limited by the size of the circular queue (i.e.,
3105          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3106          * in the graph whose neighbours are to be checked.
3107          */
3108         ret = check_noncircular(next, prev, trace);
3109         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3110                 return 0;
3111
3112         if (!check_irq_usage(curr, prev, next))
3113                 return 0;
3114
3115         /*
3116          * Is the <prev> -> <next> dependency already present?
3117          *
3118          * (this may occur even though this is a new chain: consider
3119          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3120          *  chains - the second one will be new, but L1 already has
3121          *  L2 added to its dependency list, due to the first chain.)
3122          */
3123         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3124                 if (entry->class == hlock_class(next)) {
3125                         if (distance == 1)
3126                                 entry->distance = 1;
3127                         entry->dep |= calc_dep(prev, next);
3128
3129                         /*
3130                          * Also, update the reverse dependency in @next's
3131                          * ->locks_before list.
3132                          *
3133                          *  Here we reuse @entry as the cursor, which is fine
3134                          *  because we won't go to the next iteration of the
3135                          *  outer loop:
3136                          *
3137                          *  For normal cases, we return in the inner loop.
3138                          *
3139                          *  If we fail to return, we have inconsistency, i.e.
3140                          *  <prev>::locks_after contains <next> while
3141                          *  <next>::locks_before doesn't contain <prev>. In
3142                          *  that case, we return after the inner and indicate
3143                          *  something is wrong.
3144                          */
3145                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3146                                 if (entry->class == hlock_class(prev)) {
3147                                         if (distance == 1)
3148                                                 entry->distance = 1;
3149                                         entry->dep |= calc_depb(prev, next);
3150                                         return 1;
3151                                 }
3152                         }
3153
3154                         /* <prev> is not found in <next>::locks_before */
3155                         return 0;
3156                 }
3157         }
3158
3159         /*
3160          * Is the <prev> -> <next> link redundant?
3161          */
3162         ret = check_redundant(prev, next);
3163         if (bfs_error(ret))
3164                 return 0;
3165         else if (ret == BFS_RMATCH)
3166                 return 2;
3167
3168         if (!*trace) {
3169                 *trace = save_trace();
3170                 if (!*trace)
3171                         return 0;
3172         }
3173
3174         /*
3175          * Ok, all validations passed, add the new lock
3176          * to the previous lock's dependency list:
3177          */
3178         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3179                                &hlock_class(prev)->locks_after, distance,
3180                                calc_dep(prev, next), *trace);
3181
3182         if (!ret)
3183                 return 0;
3184
3185         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3186                                &hlock_class(next)->locks_before, distance,
3187                                calc_depb(prev, next), *trace);
3188         if (!ret)
3189                 return 0;
3190
3191         return 2;
3192 }
3193
3194 /*
3195  * Add the dependency to all directly-previous locks that are 'relevant'.
3196  * The ones that are relevant are (in increasing distance from curr):
3197  * all consecutive trylock entries and the final non-trylock entry - or
3198  * the end of this context's lock-chain - whichever comes first.
3199  */
3200 static int
3201 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3202 {
3203         struct lock_trace *trace = NULL;
3204         int depth = curr->lockdep_depth;
3205         struct held_lock *hlock;
3206
3207         /*
3208          * Debugging checks.
3209          *
3210          * Depth must not be zero for a non-head lock:
3211          */
3212         if (!depth)
3213                 goto out_bug;
3214         /*
3215          * At least two relevant locks must exist for this
3216          * to be a head:
3217          */
3218         if (curr->held_locks[depth].irq_context !=
3219                         curr->held_locks[depth-1].irq_context)
3220                 goto out_bug;
3221
3222         for (;;) {
3223                 u16 distance = curr->lockdep_depth - depth + 1;
3224                 hlock = curr->held_locks + depth - 1;
3225
3226                 if (hlock->check) {
3227                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3228                         if (!ret)
3229                                 return 0;
3230
3231                         /*
3232                          * Stop after the first non-trylock entry,
3233                          * as non-trylock entries have added their
3234                          * own direct dependencies already, so this
3235                          * lock is connected to them indirectly:
3236                          */
3237                         if (!hlock->trylock)
3238                                 break;
3239                 }
3240
3241                 depth--;
3242                 /*
3243                  * End of lock-stack?
3244                  */
3245                 if (!depth)
3246                         break;
3247                 /*
3248                  * Stop the search if we cross into another context:
3249                  */
3250                 if (curr->held_locks[depth].irq_context !=
3251                                 curr->held_locks[depth-1].irq_context)
3252                         break;
3253         }
3254         return 1;
3255 out_bug:
3256         if (!debug_locks_off_graph_unlock())
3257                 return 0;
3258
3259         /*
3260          * Clearly we all shouldn't be here, but since we made it we
3261          * can reliable say we messed up our state. See the above two
3262          * gotos for reasons why we could possibly end up here.
3263          */
3264         WARN_ON(1);
3265
3266         return 0;
3267 }
3268
3269 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3270 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3271 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3272 unsigned long nr_zapped_lock_chains;
3273 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3274 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3275 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3276
3277 /*
3278  * The first 2 chain_hlocks entries in the chain block in the bucket
3279  * list contains the following meta data:
3280  *
3281  *   entry[0]:
3282  *     Bit    15 - always set to 1 (it is not a class index)
3283  *     Bits 0-14 - upper 15 bits of the next block index
3284  *   entry[1]    - lower 16 bits of next block index
3285  *
3286  * A next block index of all 1 bits means it is the end of the list.
3287  *
3288  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3289  * the chain block size:
3290  *
3291  *   entry[2] - upper 16 bits of the chain block size
3292  *   entry[3] - lower 16 bits of the chain block size
3293  */
3294 #define MAX_CHAIN_BUCKETS       16
3295 #define CHAIN_BLK_FLAG          (1U << 15)
3296 #define CHAIN_BLK_LIST_END      0xFFFFU
3297
3298 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3299
3300 static inline int size_to_bucket(int size)
3301 {
3302         if (size > MAX_CHAIN_BUCKETS)
3303                 return 0;
3304
3305         return size - 1;
3306 }
3307
3308 /*
3309  * Iterate all the chain blocks in a bucket.
3310  */
3311 #define for_each_chain_block(bucket, prev, curr)                \
3312         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3313              (curr) >= 0;                                       \
3314              (prev) = (curr), (curr) = chain_block_next(curr))
3315
3316 /*
3317  * next block or -1
3318  */
3319 static inline int chain_block_next(int offset)
3320 {
3321         int next = chain_hlocks[offset];
3322
3323         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3324
3325         if (next == CHAIN_BLK_LIST_END)
3326                 return -1;
3327
3328         next &= ~CHAIN_BLK_FLAG;
3329         next <<= 16;
3330         next |= chain_hlocks[offset + 1];
3331
3332         return next;
3333 }
3334
3335 /*
3336  * bucket-0 only
3337  */
3338 static inline int chain_block_size(int offset)
3339 {
3340         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3341 }
3342
3343 static inline void init_chain_block(int offset, int next, int bucket, int size)
3344 {
3345         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3346         chain_hlocks[offset + 1] = (u16)next;
3347
3348         if (size && !bucket) {
3349                 chain_hlocks[offset + 2] = size >> 16;
3350                 chain_hlocks[offset + 3] = (u16)size;
3351         }
3352 }
3353
3354 static inline void add_chain_block(int offset, int size)
3355 {
3356         int bucket = size_to_bucket(size);
3357         int next = chain_block_buckets[bucket];
3358         int prev, curr;
3359
3360         if (unlikely(size < 2)) {
3361                 /*
3362                  * We can't store single entries on the freelist. Leak them.
3363                  *
3364                  * One possible way out would be to uniquely mark them, other
3365                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3366                  * the block before it is re-added.
3367                  */
3368                 if (size)
3369                         nr_lost_chain_hlocks++;
3370                 return;
3371         }
3372
3373         nr_free_chain_hlocks += size;
3374         if (!bucket) {
3375                 nr_large_chain_blocks++;
3376
3377                 /*
3378                  * Variable sized, sort large to small.
3379                  */
3380                 for_each_chain_block(0, prev, curr) {
3381                         if (size >= chain_block_size(curr))
3382                                 break;
3383                 }
3384                 init_chain_block(offset, curr, 0, size);
3385                 if (prev < 0)
3386                         chain_block_buckets[0] = offset;
3387                 else
3388                         init_chain_block(prev, offset, 0, 0);
3389                 return;
3390         }
3391         /*
3392          * Fixed size, add to head.
3393          */
3394         init_chain_block(offset, next, bucket, size);
3395         chain_block_buckets[bucket] = offset;
3396 }
3397
3398 /*
3399  * Only the first block in the list can be deleted.
3400  *
3401  * For the variable size bucket[0], the first block (the largest one) is
3402  * returned, broken up and put back into the pool. So if a chain block of
3403  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3404  * queued up after the primordial chain block and never be used until the
3405  * hlock entries in the primordial chain block is almost used up. That
3406  * causes fragmentation and reduce allocation efficiency. That can be
3407  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3408  */
3409 static inline void del_chain_block(int bucket, int size, int next)
3410 {
3411         nr_free_chain_hlocks -= size;
3412         chain_block_buckets[bucket] = next;
3413
3414         if (!bucket)
3415                 nr_large_chain_blocks--;
3416 }
3417
3418 static void init_chain_block_buckets(void)
3419 {
3420         int i;
3421
3422         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3423                 chain_block_buckets[i] = -1;
3424
3425         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3426 }
3427
3428 /*
3429  * Return offset of a chain block of the right size or -1 if not found.
3430  *
3431  * Fairly simple worst-fit allocator with the addition of a number of size
3432  * specific free lists.
3433  */
3434 static int alloc_chain_hlocks(int req)
3435 {
3436         int bucket, curr, size;
3437
3438         /*
3439          * We rely on the MSB to act as an escape bit to denote freelist
3440          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3441          */
3442         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3443
3444         init_data_structures_once();
3445
3446         if (nr_free_chain_hlocks < req)
3447                 return -1;
3448
3449         /*
3450          * We require a minimum of 2 (u16) entries to encode a freelist
3451          * 'pointer'.
3452          */
3453         req = max(req, 2);
3454         bucket = size_to_bucket(req);
3455         curr = chain_block_buckets[bucket];
3456
3457         if (bucket) {
3458                 if (curr >= 0) {
3459                         del_chain_block(bucket, req, chain_block_next(curr));
3460                         return curr;
3461                 }
3462                 /* Try bucket 0 */
3463                 curr = chain_block_buckets[0];
3464         }
3465
3466         /*
3467          * The variable sized freelist is sorted by size; the first entry is
3468          * the largest. Use it if it fits.
3469          */
3470         if (curr >= 0) {
3471                 size = chain_block_size(curr);
3472                 if (likely(size >= req)) {
3473                         del_chain_block(0, size, chain_block_next(curr));
3474                         add_chain_block(curr + req, size - req);
3475                         return curr;
3476                 }
3477         }
3478
3479         /*
3480          * Last resort, split a block in a larger sized bucket.
3481          */
3482         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3483                 bucket = size_to_bucket(size);
3484                 curr = chain_block_buckets[bucket];
3485                 if (curr < 0)
3486                         continue;
3487
3488                 del_chain_block(bucket, size, chain_block_next(curr));
3489                 add_chain_block(curr + req, size - req);
3490                 return curr;
3491         }
3492
3493         return -1;
3494 }
3495
3496 static inline void free_chain_hlocks(int base, int size)
3497 {
3498         add_chain_block(base, max(size, 2));
3499 }
3500
3501 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3502 {
3503         u16 chain_hlock = chain_hlocks[chain->base + i];
3504         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3505
3506         return lock_classes + class_idx;
3507 }
3508
3509 /*
3510  * Returns the index of the first held_lock of the current chain
3511  */
3512 static inline int get_first_held_lock(struct task_struct *curr,
3513                                         struct held_lock *hlock)
3514 {
3515         int i;
3516         struct held_lock *hlock_curr;
3517
3518         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3519                 hlock_curr = curr->held_locks + i;
3520                 if (hlock_curr->irq_context != hlock->irq_context)
3521                         break;
3522
3523         }
3524
3525         return ++i;
3526 }
3527
3528 #ifdef CONFIG_DEBUG_LOCKDEP
3529 /*
3530  * Returns the next chain_key iteration
3531  */
3532 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3533 {
3534         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3535
3536         printk(" hlock_id:%d -> chain_key:%016Lx",
3537                 (unsigned int)hlock_id,
3538                 (unsigned long long)new_chain_key);
3539         return new_chain_key;
3540 }
3541
3542 static void
3543 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3544 {
3545         struct held_lock *hlock;
3546         u64 chain_key = INITIAL_CHAIN_KEY;
3547         int depth = curr->lockdep_depth;
3548         int i = get_first_held_lock(curr, hlock_next);
3549
3550         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3551                 hlock_next->irq_context);
3552         for (; i < depth; i++) {
3553                 hlock = curr->held_locks + i;
3554                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3555
3556                 print_lock(hlock);
3557         }
3558
3559         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3560         print_lock(hlock_next);
3561 }
3562
3563 static void print_chain_keys_chain(struct lock_chain *chain)
3564 {
3565         int i;
3566         u64 chain_key = INITIAL_CHAIN_KEY;
3567         u16 hlock_id;
3568
3569         printk("depth: %u\n", chain->depth);
3570         for (i = 0; i < chain->depth; i++) {
3571                 hlock_id = chain_hlocks[chain->base + i];
3572                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3573
3574                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3575                 printk("\n");
3576         }
3577 }
3578
3579 static void print_collision(struct task_struct *curr,
3580                         struct held_lock *hlock_next,
3581                         struct lock_chain *chain)
3582 {
3583         pr_warn("\n");
3584         pr_warn("============================\n");
3585         pr_warn("WARNING: chain_key collision\n");
3586         print_kernel_ident();
3587         pr_warn("----------------------------\n");
3588         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3589         pr_warn("Hash chain already cached but the contents don't match!\n");
3590
3591         pr_warn("Held locks:");
3592         print_chain_keys_held_locks(curr, hlock_next);
3593
3594         pr_warn("Locks in cached chain:");
3595         print_chain_keys_chain(chain);
3596
3597         pr_warn("\nstack backtrace:\n");
3598         dump_stack();
3599 }
3600 #endif
3601
3602 /*
3603  * Checks whether the chain and the current held locks are consistent
3604  * in depth and also in content. If they are not it most likely means
3605  * that there was a collision during the calculation of the chain_key.
3606  * Returns: 0 not passed, 1 passed
3607  */
3608 static int check_no_collision(struct task_struct *curr,
3609                         struct held_lock *hlock,
3610                         struct lock_chain *chain)
3611 {
3612 #ifdef CONFIG_DEBUG_LOCKDEP
3613         int i, j, id;
3614
3615         i = get_first_held_lock(curr, hlock);
3616
3617         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3618                 print_collision(curr, hlock, chain);
3619                 return 0;
3620         }
3621
3622         for (j = 0; j < chain->depth - 1; j++, i++) {
3623                 id = hlock_id(&curr->held_locks[i]);
3624
3625                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3626                         print_collision(curr, hlock, chain);
3627                         return 0;
3628                 }
3629         }
3630 #endif
3631         return 1;
3632 }
3633
3634 /*
3635  * Given an index that is >= -1, return the index of the next lock chain.
3636  * Return -2 if there is no next lock chain.
3637  */
3638 long lockdep_next_lockchain(long i)
3639 {
3640         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3641         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3642 }
3643
3644 unsigned long lock_chain_count(void)
3645 {
3646         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3647 }
3648
3649 /* Must be called with the graph lock held. */
3650 static struct lock_chain *alloc_lock_chain(void)
3651 {
3652         int idx = find_first_zero_bit(lock_chains_in_use,
3653                                       ARRAY_SIZE(lock_chains));
3654
3655         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3656                 return NULL;
3657         __set_bit(idx, lock_chains_in_use);
3658         return lock_chains + idx;
3659 }
3660
3661 /*
3662  * Adds a dependency chain into chain hashtable. And must be called with
3663  * graph_lock held.
3664  *
3665  * Return 0 if fail, and graph_lock is released.
3666  * Return 1 if succeed, with graph_lock held.
3667  */
3668 static inline int add_chain_cache(struct task_struct *curr,
3669                                   struct held_lock *hlock,
3670                                   u64 chain_key)
3671 {
3672         struct hlist_head *hash_head = chainhashentry(chain_key);
3673         struct lock_chain *chain;
3674         int i, j;
3675
3676         /*
3677          * The caller must hold the graph lock, ensure we've got IRQs
3678          * disabled to make this an IRQ-safe lock.. for recursion reasons
3679          * lockdep won't complain about its own locking errors.
3680          */
3681         if (lockdep_assert_locked())
3682                 return 0;
3683
3684         chain = alloc_lock_chain();
3685         if (!chain) {
3686                 if (!debug_locks_off_graph_unlock())
3687                         return 0;
3688
3689                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3690                 dump_stack();
3691                 return 0;
3692         }
3693         chain->chain_key = chain_key;
3694         chain->irq_context = hlock->irq_context;
3695         i = get_first_held_lock(curr, hlock);
3696         chain->depth = curr->lockdep_depth + 1 - i;
3697
3698         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3699         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3700         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3701
3702         j = alloc_chain_hlocks(chain->depth);
3703         if (j < 0) {
3704                 if (!debug_locks_off_graph_unlock())
3705                         return 0;
3706
3707                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3708                 dump_stack();
3709                 return 0;
3710         }
3711
3712         chain->base = j;
3713         for (j = 0; j < chain->depth - 1; j++, i++) {
3714                 int lock_id = hlock_id(curr->held_locks + i);
3715
3716                 chain_hlocks[chain->base + j] = lock_id;
3717         }
3718         chain_hlocks[chain->base + j] = hlock_id(hlock);
3719         hlist_add_head_rcu(&chain->entry, hash_head);
3720         debug_atomic_inc(chain_lookup_misses);
3721         inc_chains(chain->irq_context);
3722
3723         return 1;
3724 }
3725
3726 /*
3727  * Look up a dependency chain. Must be called with either the graph lock or
3728  * the RCU read lock held.
3729  */
3730 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3731 {
3732         struct hlist_head *hash_head = chainhashentry(chain_key);
3733         struct lock_chain *chain;
3734
3735         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3736                 if (READ_ONCE(chain->chain_key) == chain_key) {
3737                         debug_atomic_inc(chain_lookup_hits);
3738                         return chain;
3739                 }
3740         }
3741         return NULL;
3742 }
3743
3744 /*
3745  * If the key is not present yet in dependency chain cache then
3746  * add it and return 1 - in this case the new dependency chain is
3747  * validated. If the key is already hashed, return 0.
3748  * (On return with 1 graph_lock is held.)
3749  */
3750 static inline int lookup_chain_cache_add(struct task_struct *curr,
3751                                          struct held_lock *hlock,
3752                                          u64 chain_key)
3753 {
3754         struct lock_class *class = hlock_class(hlock);
3755         struct lock_chain *chain = lookup_chain_cache(chain_key);
3756
3757         if (chain) {
3758 cache_hit:
3759                 if (!check_no_collision(curr, hlock, chain))
3760                         return 0;
3761
3762                 if (very_verbose(class)) {
3763                         printk("\nhash chain already cached, key: "
3764                                         "%016Lx tail class: [%px] %s\n",
3765                                         (unsigned long long)chain_key,
3766                                         class->key, class->name);
3767                 }
3768
3769                 return 0;
3770         }
3771
3772         if (very_verbose(class)) {
3773                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3774                         (unsigned long long)chain_key, class->key, class->name);
3775         }
3776
3777         if (!graph_lock())
3778                 return 0;
3779
3780         /*
3781          * We have to walk the chain again locked - to avoid duplicates:
3782          */
3783         chain = lookup_chain_cache(chain_key);
3784         if (chain) {
3785                 graph_unlock();
3786                 goto cache_hit;
3787         }
3788
3789         if (!add_chain_cache(curr, hlock, chain_key))
3790                 return 0;
3791
3792         return 1;
3793 }
3794
3795 static int validate_chain(struct task_struct *curr,
3796                           struct held_lock *hlock,
3797                           int chain_head, u64 chain_key)
3798 {
3799         /*
3800          * Trylock needs to maintain the stack of held locks, but it
3801          * does not add new dependencies, because trylock can be done
3802          * in any order.
3803          *
3804          * We look up the chain_key and do the O(N^2) check and update of
3805          * the dependencies only if this is a new dependency chain.
3806          * (If lookup_chain_cache_add() return with 1 it acquires
3807          * graph_lock for us)
3808          */
3809         if (!hlock->trylock && hlock->check &&
3810             lookup_chain_cache_add(curr, hlock, chain_key)) {
3811                 /*
3812                  * Check whether last held lock:
3813                  *
3814                  * - is irq-safe, if this lock is irq-unsafe
3815                  * - is softirq-safe, if this lock is hardirq-unsafe
3816                  *
3817                  * And check whether the new lock's dependency graph
3818                  * could lead back to the previous lock:
3819                  *
3820                  * - within the current held-lock stack
3821                  * - across our accumulated lock dependency records
3822                  *
3823                  * any of these scenarios could lead to a deadlock.
3824                  */
3825                 /*
3826                  * The simple case: does the current hold the same lock
3827                  * already?
3828                  */
3829                 int ret = check_deadlock(curr, hlock);
3830
3831                 if (!ret)
3832                         return 0;
3833                 /*
3834                  * Add dependency only if this lock is not the head
3835                  * of the chain, and if the new lock introduces no more
3836                  * lock dependency (because we already hold a lock with the
3837                  * same lock class) nor deadlock (because the nest_lock
3838                  * serializes nesting locks), see the comments for
3839                  * check_deadlock().
3840                  */
3841                 if (!chain_head && ret != 2) {
3842                         if (!check_prevs_add(curr, hlock))
3843                                 return 0;
3844                 }
3845
3846                 graph_unlock();
3847         } else {
3848                 /* after lookup_chain_cache_add(): */
3849                 if (unlikely(!debug_locks))
3850                         return 0;
3851         }
3852
3853         return 1;
3854 }
3855 #else
3856 static inline int validate_chain(struct task_struct *curr,
3857                                  struct held_lock *hlock,
3858                                  int chain_head, u64 chain_key)
3859 {
3860         return 1;
3861 }
3862
3863 static void init_chain_block_buckets(void)      { }
3864 #endif /* CONFIG_PROVE_LOCKING */
3865
3866 /*
3867  * We are building curr_chain_key incrementally, so double-check
3868  * it from scratch, to make sure that it's done correctly:
3869  */
3870 static void check_chain_key(struct task_struct *curr)
3871 {
3872 #ifdef CONFIG_DEBUG_LOCKDEP
3873         struct held_lock *hlock, *prev_hlock = NULL;
3874         unsigned int i;
3875         u64 chain_key = INITIAL_CHAIN_KEY;
3876
3877         for (i = 0; i < curr->lockdep_depth; i++) {
3878                 hlock = curr->held_locks + i;
3879                 if (chain_key != hlock->prev_chain_key) {
3880                         debug_locks_off();
3881                         /*
3882                          * We got mighty confused, our chain keys don't match
3883                          * with what we expect, someone trample on our task state?
3884                          */
3885                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3886                                 curr->lockdep_depth, i,
3887                                 (unsigned long long)chain_key,
3888                                 (unsigned long long)hlock->prev_chain_key);
3889                         return;
3890                 }
3891
3892                 /*
3893                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3894                  * it registered lock class index?
3895                  */
3896                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3897                         return;
3898
3899                 if (prev_hlock && (prev_hlock->irq_context !=
3900                                                         hlock->irq_context))
3901                         chain_key = INITIAL_CHAIN_KEY;
3902                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3903                 prev_hlock = hlock;
3904         }
3905         if (chain_key != curr->curr_chain_key) {
3906                 debug_locks_off();
3907                 /*
3908                  * More smoking hash instead of calculating it, damn see these
3909                  * numbers float.. I bet that a pink elephant stepped on my memory.
3910                  */
3911                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3912                         curr->lockdep_depth, i,
3913                         (unsigned long long)chain_key,
3914                         (unsigned long long)curr->curr_chain_key);
3915         }
3916 #endif
3917 }
3918
3919 #ifdef CONFIG_PROVE_LOCKING
3920 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3921                      enum lock_usage_bit new_bit);
3922
3923 static void print_usage_bug_scenario(struct held_lock *lock)
3924 {
3925         struct lock_class *class = hlock_class(lock);
3926
3927         printk(" Possible unsafe locking scenario:\n\n");
3928         printk("       CPU0\n");
3929         printk("       ----\n");
3930         printk("  lock(");
3931         __print_lock_name(class);
3932         printk(KERN_CONT ");\n");
3933         printk("  <Interrupt>\n");
3934         printk("    lock(");
3935         __print_lock_name(class);
3936         printk(KERN_CONT ");\n");
3937         printk("\n *** DEADLOCK ***\n\n");
3938 }
3939
3940 static void
3941 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3942                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3943 {
3944         if (!debug_locks_off() || debug_locks_silent)
3945                 return;
3946
3947         pr_warn("\n");
3948         pr_warn("================================\n");
3949         pr_warn("WARNING: inconsistent lock state\n");
3950         print_kernel_ident();
3951         pr_warn("--------------------------------\n");
3952
3953         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3954                 usage_str[prev_bit], usage_str[new_bit]);
3955
3956         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3957                 curr->comm, task_pid_nr(curr),
3958                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3959                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3960                 lockdep_hardirqs_enabled(),
3961                 lockdep_softirqs_enabled(curr));
3962         print_lock(this);
3963
3964         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3965         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3966
3967         print_irqtrace_events(curr);
3968         pr_warn("\nother info that might help us debug this:\n");
3969         print_usage_bug_scenario(this);
3970
3971         lockdep_print_held_locks(curr);
3972
3973         pr_warn("\nstack backtrace:\n");
3974         dump_stack();
3975 }
3976
3977 /*
3978  * Print out an error if an invalid bit is set:
3979  */
3980 static inline int
3981 valid_state(struct task_struct *curr, struct held_lock *this,
3982             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3983 {
3984         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3985                 graph_unlock();
3986                 print_usage_bug(curr, this, bad_bit, new_bit);
3987                 return 0;
3988         }
3989         return 1;
3990 }
3991
3992
3993 /*
3994  * print irq inversion bug:
3995  */
3996 static void
3997 print_irq_inversion_bug(struct task_struct *curr,
3998                         struct lock_list *root, struct lock_list *other,
3999                         struct held_lock *this, int forwards,
4000                         const char *irqclass)
4001 {
4002         struct lock_list *entry = other;
4003         struct lock_list *middle = NULL;
4004         int depth;
4005
4006         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4007                 return;
4008
4009         pr_warn("\n");
4010         pr_warn("========================================================\n");
4011         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4012         print_kernel_ident();
4013         pr_warn("--------------------------------------------------------\n");
4014         pr_warn("%s/%d just changed the state of lock:\n",
4015                 curr->comm, task_pid_nr(curr));
4016         print_lock(this);
4017         if (forwards)
4018                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4019         else
4020                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4021         print_lock_name(other->class);
4022         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4023
4024         pr_warn("\nother info that might help us debug this:\n");
4025
4026         /* Find a middle lock (if one exists) */
4027         depth = get_lock_depth(other);
4028         do {
4029                 if (depth == 0 && (entry != root)) {
4030                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4031                         break;
4032                 }
4033                 middle = entry;
4034                 entry = get_lock_parent(entry);
4035                 depth--;
4036         } while (entry && entry != root && (depth >= 0));
4037         if (forwards)
4038                 print_irq_lock_scenario(root, other,
4039                         middle ? middle->class : root->class, other->class);
4040         else
4041                 print_irq_lock_scenario(other, root,
4042                         middle ? middle->class : other->class, root->class);
4043
4044         lockdep_print_held_locks(curr);
4045
4046         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4047         root->trace = save_trace();
4048         if (!root->trace)
4049                 return;
4050         print_shortest_lock_dependencies(other, root);
4051
4052         pr_warn("\nstack backtrace:\n");
4053         dump_stack();
4054 }
4055
4056 /*
4057  * Prove that in the forwards-direction subgraph starting at <this>
4058  * there is no lock matching <mask>:
4059  */
4060 static int
4061 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4062                      enum lock_usage_bit bit)
4063 {
4064         enum bfs_result ret;
4065         struct lock_list root;
4066         struct lock_list *target_entry;
4067         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4068         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4069
4070         bfs_init_root(&root, this);
4071         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4072         if (bfs_error(ret)) {
4073                 print_bfs_bug(ret);
4074                 return 0;
4075         }
4076         if (ret == BFS_RNOMATCH)
4077                 return 1;
4078
4079         /* Check whether write or read usage is the match */
4080         if (target_entry->class->usage_mask & lock_flag(bit)) {
4081                 print_irq_inversion_bug(curr, &root, target_entry,
4082                                         this, 1, state_name(bit));
4083         } else {
4084                 print_irq_inversion_bug(curr, &root, target_entry,
4085                                         this, 1, state_name(read_bit));
4086         }
4087
4088         return 0;
4089 }
4090
4091 /*
4092  * Prove that in the backwards-direction subgraph starting at <this>
4093  * there is no lock matching <mask>:
4094  */
4095 static int
4096 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4097                       enum lock_usage_bit bit)
4098 {
4099         enum bfs_result ret;
4100         struct lock_list root;
4101         struct lock_list *target_entry;
4102         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4103         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4104
4105         bfs_init_rootb(&root, this);
4106         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4107         if (bfs_error(ret)) {
4108                 print_bfs_bug(ret);
4109                 return 0;
4110         }
4111         if (ret == BFS_RNOMATCH)
4112                 return 1;
4113
4114         /* Check whether write or read usage is the match */
4115         if (target_entry->class->usage_mask & lock_flag(bit)) {
4116                 print_irq_inversion_bug(curr, &root, target_entry,
4117                                         this, 0, state_name(bit));
4118         } else {
4119                 print_irq_inversion_bug(curr, &root, target_entry,
4120                                         this, 0, state_name(read_bit));
4121         }
4122
4123         return 0;
4124 }
4125
4126 void print_irqtrace_events(struct task_struct *curr)
4127 {
4128         const struct irqtrace_events *trace = &curr->irqtrace;
4129
4130         printk("irq event stamp: %u\n", trace->irq_events);
4131         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4132                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4133                 (void *)trace->hardirq_enable_ip);
4134         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4135                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4136                 (void *)trace->hardirq_disable_ip);
4137         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4138                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4139                 (void *)trace->softirq_enable_ip);
4140         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4141                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4142                 (void *)trace->softirq_disable_ip);
4143 }
4144
4145 static int HARDIRQ_verbose(struct lock_class *class)
4146 {
4147 #if HARDIRQ_VERBOSE
4148         return class_filter(class);
4149 #endif
4150         return 0;
4151 }
4152
4153 static int SOFTIRQ_verbose(struct lock_class *class)
4154 {
4155 #if SOFTIRQ_VERBOSE
4156         return class_filter(class);
4157 #endif
4158         return 0;
4159 }
4160
4161 static int (*state_verbose_f[])(struct lock_class *class) = {
4162 #define LOCKDEP_STATE(__STATE) \
4163         __STATE##_verbose,
4164 #include "lockdep_states.h"
4165 #undef LOCKDEP_STATE
4166 };
4167
4168 static inline int state_verbose(enum lock_usage_bit bit,
4169                                 struct lock_class *class)
4170 {
4171         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4172 }
4173
4174 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4175                              enum lock_usage_bit bit, const char *name);
4176
4177 static int
4178 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4179                 enum lock_usage_bit new_bit)
4180 {
4181         int excl_bit = exclusive_bit(new_bit);
4182         int read = new_bit & LOCK_USAGE_READ_MASK;
4183         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4184
4185         /*
4186          * Validate that this particular lock does not have conflicting
4187          * usage states.
4188          */
4189         if (!valid_state(curr, this, new_bit, excl_bit))
4190                 return 0;
4191
4192         /*
4193          * Check for read in write conflicts
4194          */
4195         if (!read && !valid_state(curr, this, new_bit,
4196                                   excl_bit + LOCK_USAGE_READ_MASK))
4197                 return 0;
4198
4199
4200         /*
4201          * Validate that the lock dependencies don't have conflicting usage
4202          * states.
4203          */
4204         if (dir) {
4205                 /*
4206                  * mark ENABLED has to look backwards -- to ensure no dependee
4207                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4208                  */
4209                 if (!check_usage_backwards(curr, this, excl_bit))
4210                         return 0;
4211         } else {
4212                 /*
4213                  * mark USED_IN has to look forwards -- to ensure no dependency
4214                  * has ENABLED state, which would allow recursion deadlocks.
4215                  */
4216                 if (!check_usage_forwards(curr, this, excl_bit))
4217                         return 0;
4218         }
4219
4220         if (state_verbose(new_bit, hlock_class(this)))
4221                 return 2;
4222
4223         return 1;
4224 }
4225
4226 /*
4227  * Mark all held locks with a usage bit:
4228  */
4229 static int
4230 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4231 {
4232         struct held_lock *hlock;
4233         int i;
4234
4235         for (i = 0; i < curr->lockdep_depth; i++) {
4236                 enum lock_usage_bit hlock_bit = base_bit;
4237                 hlock = curr->held_locks + i;
4238
4239                 if (hlock->read)
4240                         hlock_bit += LOCK_USAGE_READ_MASK;
4241
4242                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4243
4244                 if (!hlock->check)
4245                         continue;
4246
4247                 if (!mark_lock(curr, hlock, hlock_bit))
4248                         return 0;
4249         }
4250
4251         return 1;
4252 }
4253
4254 /*
4255  * Hardirqs will be enabled:
4256  */
4257 static void __trace_hardirqs_on_caller(void)
4258 {
4259         struct task_struct *curr = current;
4260
4261         /*
4262          * We are going to turn hardirqs on, so set the
4263          * usage bit for all held locks:
4264          */
4265         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4266                 return;
4267         /*
4268          * If we have softirqs enabled, then set the usage
4269          * bit for all held locks. (disabled hardirqs prevented
4270          * this bit from being set before)
4271          */
4272         if (curr->softirqs_enabled)
4273                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4274 }
4275
4276 /**
4277  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4278  *
4279  * Invoked before a possible transition to RCU idle from exit to user or
4280  * guest mode. This ensures that all RCU operations are done before RCU
4281  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4282  * invoked to set the final state.
4283  */
4284 void lockdep_hardirqs_on_prepare(void)
4285 {
4286         if (unlikely(!debug_locks))
4287                 return;
4288
4289         /*
4290          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4291          */
4292         if (unlikely(in_nmi()))
4293                 return;
4294
4295         if (unlikely(this_cpu_read(lockdep_recursion)))
4296                 return;
4297
4298         if (unlikely(lockdep_hardirqs_enabled())) {
4299                 /*
4300                  * Neither irq nor preemption are disabled here
4301                  * so this is racy by nature but losing one hit
4302                  * in a stat is not a big deal.
4303                  */
4304                 __debug_atomic_inc(redundant_hardirqs_on);
4305                 return;
4306         }
4307
4308         /*
4309          * We're enabling irqs and according to our state above irqs weren't
4310          * already enabled, yet we find the hardware thinks they are in fact
4311          * enabled.. someone messed up their IRQ state tracing.
4312          */
4313         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4314                 return;
4315
4316         /*
4317          * See the fine text that goes along with this variable definition.
4318          */
4319         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4320                 return;
4321
4322         /*
4323          * Can't allow enabling interrupts while in an interrupt handler,
4324          * that's general bad form and such. Recursion, limited stack etc..
4325          */
4326         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4327                 return;
4328
4329         current->hardirq_chain_key = current->curr_chain_key;
4330
4331         lockdep_recursion_inc();
4332         __trace_hardirqs_on_caller();
4333         lockdep_recursion_finish();
4334 }
4335 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4336
4337 void noinstr lockdep_hardirqs_on(unsigned long ip)
4338 {
4339         struct irqtrace_events *trace = &current->irqtrace;
4340
4341         if (unlikely(!debug_locks))
4342                 return;
4343
4344         /*
4345          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4346          * tracking state and hardware state are out of sync.
4347          *
4348          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4349          * and not rely on hardware state like normal interrupts.
4350          */
4351         if (unlikely(in_nmi())) {
4352                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4353                         return;
4354
4355                 /*
4356                  * Skip:
4357                  *  - recursion check, because NMI can hit lockdep;
4358                  *  - hardware state check, because above;
4359                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4360                  */
4361                 goto skip_checks;
4362         }
4363
4364         if (unlikely(this_cpu_read(lockdep_recursion)))
4365                 return;
4366
4367         if (lockdep_hardirqs_enabled()) {
4368                 /*
4369                  * Neither irq nor preemption are disabled here
4370                  * so this is racy by nature but losing one hit
4371                  * in a stat is not a big deal.
4372                  */
4373                 __debug_atomic_inc(redundant_hardirqs_on);
4374                 return;
4375         }
4376
4377         /*
4378          * We're enabling irqs and according to our state above irqs weren't
4379          * already enabled, yet we find the hardware thinks they are in fact
4380          * enabled.. someone messed up their IRQ state tracing.
4381          */
4382         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4383                 return;
4384
4385         /*
4386          * Ensure the lock stack remained unchanged between
4387          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4388          */
4389         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4390                             current->curr_chain_key);
4391
4392 skip_checks:
4393         /* we'll do an OFF -> ON transition: */
4394         __this_cpu_write(hardirqs_enabled, 1);
4395         trace->hardirq_enable_ip = ip;
4396         trace->hardirq_enable_event = ++trace->irq_events;
4397         debug_atomic_inc(hardirqs_on_events);
4398 }
4399 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4400
4401 /*
4402  * Hardirqs were disabled:
4403  */
4404 void noinstr lockdep_hardirqs_off(unsigned long ip)
4405 {
4406         if (unlikely(!debug_locks))
4407                 return;
4408
4409         /*
4410          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4411          * they will restore the software state. This ensures the software
4412          * state is consistent inside NMIs as well.
4413          */
4414         if (in_nmi()) {
4415                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4416                         return;
4417         } else if (__this_cpu_read(lockdep_recursion))
4418                 return;
4419
4420         /*
4421          * So we're supposed to get called after you mask local IRQs, but for
4422          * some reason the hardware doesn't quite think you did a proper job.
4423          */
4424         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4425                 return;
4426
4427         if (lockdep_hardirqs_enabled()) {
4428                 struct irqtrace_events *trace = &current->irqtrace;
4429
4430                 /*
4431                  * We have done an ON -> OFF transition:
4432                  */
4433                 __this_cpu_write(hardirqs_enabled, 0);
4434                 trace->hardirq_disable_ip = ip;
4435                 trace->hardirq_disable_event = ++trace->irq_events;
4436                 debug_atomic_inc(hardirqs_off_events);
4437         } else {
4438                 debug_atomic_inc(redundant_hardirqs_off);
4439         }
4440 }
4441 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4442
4443 /*
4444  * Softirqs will be enabled:
4445  */
4446 void lockdep_softirqs_on(unsigned long ip)
4447 {
4448         struct irqtrace_events *trace = &current->irqtrace;
4449
4450         if (unlikely(!lockdep_enabled()))
4451                 return;
4452
4453         /*
4454          * We fancy IRQs being disabled here, see softirq.c, avoids
4455          * funny state and nesting things.
4456          */
4457         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4458                 return;
4459
4460         if (current->softirqs_enabled) {
4461                 debug_atomic_inc(redundant_softirqs_on);
4462                 return;
4463         }
4464
4465         lockdep_recursion_inc();
4466         /*
4467          * We'll do an OFF -> ON transition:
4468          */
4469         current->softirqs_enabled = 1;
4470         trace->softirq_enable_ip = ip;
4471         trace->softirq_enable_event = ++trace->irq_events;
4472         debug_atomic_inc(softirqs_on_events);
4473         /*
4474          * We are going to turn softirqs on, so set the
4475          * usage bit for all held locks, if hardirqs are
4476          * enabled too:
4477          */
4478         if (lockdep_hardirqs_enabled())
4479                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4480         lockdep_recursion_finish();
4481 }
4482
4483 /*
4484  * Softirqs were disabled:
4485  */
4486 void lockdep_softirqs_off(unsigned long ip)
4487 {
4488         if (unlikely(!lockdep_enabled()))
4489                 return;
4490
4491         /*
4492          * We fancy IRQs being disabled here, see softirq.c
4493          */
4494         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4495                 return;
4496
4497         if (current->softirqs_enabled) {
4498                 struct irqtrace_events *trace = &current->irqtrace;
4499
4500                 /*
4501                  * We have done an ON -> OFF transition:
4502                  */
4503                 current->softirqs_enabled = 0;
4504                 trace->softirq_disable_ip = ip;
4505                 trace->softirq_disable_event = ++trace->irq_events;
4506                 debug_atomic_inc(softirqs_off_events);
4507                 /*
4508                  * Whoops, we wanted softirqs off, so why aren't they?
4509                  */
4510                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4511         } else
4512                 debug_atomic_inc(redundant_softirqs_off);
4513 }
4514
4515 static int
4516 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4517 {
4518         if (!check)
4519                 goto lock_used;
4520
4521         /*
4522          * If non-trylock use in a hardirq or softirq context, then
4523          * mark the lock as used in these contexts:
4524          */
4525         if (!hlock->trylock) {
4526                 if (hlock->read) {
4527                         if (lockdep_hardirq_context())
4528                                 if (!mark_lock(curr, hlock,
4529                                                 LOCK_USED_IN_HARDIRQ_READ))
4530                                         return 0;
4531                         if (curr->softirq_context)
4532                                 if (!mark_lock(curr, hlock,
4533                                                 LOCK_USED_IN_SOFTIRQ_READ))
4534                                         return 0;
4535                 } else {
4536                         if (lockdep_hardirq_context())
4537                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4538                                         return 0;
4539                         if (curr->softirq_context)
4540                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4541                                         return 0;
4542                 }
4543         }
4544
4545         /*
4546          * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4547          * creates no critical section and no extra dependency can be introduced
4548          * by interrupts
4549          */
4550         if (!hlock->hardirqs_off && !hlock->sync) {
4551                 if (hlock->read) {
4552                         if (!mark_lock(curr, hlock,
4553                                         LOCK_ENABLED_HARDIRQ_READ))
4554                                 return 0;
4555                         if (curr->softirqs_enabled)
4556                                 if (!mark_lock(curr, hlock,
4557                                                 LOCK_ENABLED_SOFTIRQ_READ))
4558                                         return 0;
4559                 } else {
4560                         if (!mark_lock(curr, hlock,
4561                                         LOCK_ENABLED_HARDIRQ))
4562                                 return 0;
4563                         if (curr->softirqs_enabled)
4564                                 if (!mark_lock(curr, hlock,
4565                                                 LOCK_ENABLED_SOFTIRQ))
4566                                         return 0;
4567                 }
4568         }
4569
4570 lock_used:
4571         /* mark it as used: */
4572         if (!mark_lock(curr, hlock, LOCK_USED))
4573                 return 0;
4574
4575         return 1;
4576 }
4577
4578 static inline unsigned int task_irq_context(struct task_struct *task)
4579 {
4580         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4581                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4582 }
4583
4584 static int separate_irq_context(struct task_struct *curr,
4585                 struct held_lock *hlock)
4586 {
4587         unsigned int depth = curr->lockdep_depth;
4588
4589         /*
4590          * Keep track of points where we cross into an interrupt context:
4591          */
4592         if (depth) {
4593                 struct held_lock *prev_hlock;
4594
4595                 prev_hlock = curr->held_locks + depth-1;
4596                 /*
4597                  * If we cross into another context, reset the
4598                  * hash key (this also prevents the checking and the
4599                  * adding of the dependency to 'prev'):
4600                  */
4601                 if (prev_hlock->irq_context != hlock->irq_context)
4602                         return 1;
4603         }
4604         return 0;
4605 }
4606
4607 /*
4608  * Mark a lock with a usage bit, and validate the state transition:
4609  */
4610 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4611                              enum lock_usage_bit new_bit)
4612 {
4613         unsigned int new_mask, ret = 1;
4614
4615         if (new_bit >= LOCK_USAGE_STATES) {
4616                 DEBUG_LOCKS_WARN_ON(1);
4617                 return 0;
4618         }
4619
4620         if (new_bit == LOCK_USED && this->read)
4621                 new_bit = LOCK_USED_READ;
4622
4623         new_mask = 1 << new_bit;
4624
4625         /*
4626          * If already set then do not dirty the cacheline,
4627          * nor do any checks:
4628          */
4629         if (likely(hlock_class(this)->usage_mask & new_mask))
4630                 return 1;
4631
4632         if (!graph_lock())
4633                 return 0;
4634         /*
4635          * Make sure we didn't race:
4636          */
4637         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4638                 goto unlock;
4639
4640         if (!hlock_class(this)->usage_mask)
4641                 debug_atomic_dec(nr_unused_locks);
4642
4643         hlock_class(this)->usage_mask |= new_mask;
4644
4645         if (new_bit < LOCK_TRACE_STATES) {
4646                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4647                         return 0;
4648         }
4649
4650         if (new_bit < LOCK_USED) {
4651                 ret = mark_lock_irq(curr, this, new_bit);
4652                 if (!ret)
4653                         return 0;
4654         }
4655
4656 unlock:
4657         graph_unlock();
4658
4659         /*
4660          * We must printk outside of the graph_lock:
4661          */
4662         if (ret == 2) {
4663                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4664                 print_lock(this);
4665                 print_irqtrace_events(curr);
4666                 dump_stack();
4667         }
4668
4669         return ret;
4670 }
4671
4672 static inline short task_wait_context(struct task_struct *curr)
4673 {
4674         /*
4675          * Set appropriate wait type for the context; for IRQs we have to take
4676          * into account force_irqthread as that is implied by PREEMPT_RT.
4677          */
4678         if (lockdep_hardirq_context()) {
4679                 /*
4680                  * Check if force_irqthreads will run us threaded.
4681                  */
4682                 if (curr->hardirq_threaded || curr->irq_config)
4683                         return LD_WAIT_CONFIG;
4684
4685                 return LD_WAIT_SPIN;
4686         } else if (curr->softirq_context) {
4687                 /*
4688                  * Softirqs are always threaded.
4689                  */
4690                 return LD_WAIT_CONFIG;
4691         }
4692
4693         return LD_WAIT_MAX;
4694 }
4695
4696 static int
4697 print_lock_invalid_wait_context(struct task_struct *curr,
4698                                 struct held_lock *hlock)
4699 {
4700         short curr_inner;
4701
4702         if (!debug_locks_off())
4703                 return 0;
4704         if (debug_locks_silent)
4705                 return 0;
4706
4707         pr_warn("\n");
4708         pr_warn("=============================\n");
4709         pr_warn("[ BUG: Invalid wait context ]\n");
4710         print_kernel_ident();
4711         pr_warn("-----------------------------\n");
4712
4713         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4714         print_lock(hlock);
4715
4716         pr_warn("other info that might help us debug this:\n");
4717
4718         curr_inner = task_wait_context(curr);
4719         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4720
4721         lockdep_print_held_locks(curr);
4722
4723         pr_warn("stack backtrace:\n");
4724         dump_stack();
4725
4726         return 0;
4727 }
4728
4729 /*
4730  * Verify the wait_type context.
4731  *
4732  * This check validates we take locks in the right wait-type order; that is it
4733  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4734  * acquire spinlocks inside raw_spinlocks and the sort.
4735  *
4736  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4737  * can be taken from (pretty much) any context but also has constraints.
4738  * However when taken in a stricter environment the RCU lock does not loosen
4739  * the constraints.
4740  *
4741  * Therefore we must look for the strictest environment in the lock stack and
4742  * compare that to the lock we're trying to acquire.
4743  */
4744 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4745 {
4746         u8 next_inner = hlock_class(next)->wait_type_inner;
4747         u8 next_outer = hlock_class(next)->wait_type_outer;
4748         u8 curr_inner;
4749         int depth;
4750
4751         if (!next_inner || next->trylock)
4752                 return 0;
4753
4754         if (!next_outer)
4755                 next_outer = next_inner;
4756
4757         /*
4758          * Find start of current irq_context..
4759          */
4760         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4761                 struct held_lock *prev = curr->held_locks + depth;
4762                 if (prev->irq_context != next->irq_context)
4763                         break;
4764         }
4765         depth++;
4766
4767         curr_inner = task_wait_context(curr);
4768
4769         for (; depth < curr->lockdep_depth; depth++) {
4770                 struct held_lock *prev = curr->held_locks + depth;
4771                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4772
4773                 if (prev_inner) {
4774                         /*
4775                          * We can have a bigger inner than a previous one
4776                          * when outer is smaller than inner, as with RCU.
4777                          *
4778                          * Also due to trylocks.
4779                          */
4780                         curr_inner = min(curr_inner, prev_inner);
4781                 }
4782         }
4783
4784         if (next_outer > curr_inner)
4785                 return print_lock_invalid_wait_context(curr, next);
4786
4787         return 0;
4788 }
4789
4790 #else /* CONFIG_PROVE_LOCKING */
4791
4792 static inline int
4793 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4794 {
4795         return 1;
4796 }
4797
4798 static inline unsigned int task_irq_context(struct task_struct *task)
4799 {
4800         return 0;
4801 }
4802
4803 static inline int separate_irq_context(struct task_struct *curr,
4804                 struct held_lock *hlock)
4805 {
4806         return 0;
4807 }
4808
4809 static inline int check_wait_context(struct task_struct *curr,
4810                                      struct held_lock *next)
4811 {
4812         return 0;
4813 }
4814
4815 #endif /* CONFIG_PROVE_LOCKING */
4816
4817 /*
4818  * Initialize a lock instance's lock-class mapping info:
4819  */
4820 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4821                             struct lock_class_key *key, int subclass,
4822                             u8 inner, u8 outer, u8 lock_type)
4823 {
4824         int i;
4825
4826         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4827                 lock->class_cache[i] = NULL;
4828
4829 #ifdef CONFIG_LOCK_STAT
4830         lock->cpu = raw_smp_processor_id();
4831 #endif
4832
4833         /*
4834          * Can't be having no nameless bastards around this place!
4835          */
4836         if (DEBUG_LOCKS_WARN_ON(!name)) {
4837                 lock->name = "NULL";
4838                 return;
4839         }
4840
4841         lock->name = name;
4842
4843         lock->wait_type_outer = outer;
4844         lock->wait_type_inner = inner;
4845         lock->lock_type = lock_type;
4846
4847         /*
4848          * No key, no joy, we need to hash something.
4849          */
4850         if (DEBUG_LOCKS_WARN_ON(!key))
4851                 return;
4852         /*
4853          * Sanity check, the lock-class key must either have been allocated
4854          * statically or must have been registered as a dynamic key.
4855          */
4856         if (!static_obj(key) && !is_dynamic_key(key)) {
4857                 if (debug_locks)
4858                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4859                 DEBUG_LOCKS_WARN_ON(1);
4860                 return;
4861         }
4862         lock->key = key;
4863
4864         if (unlikely(!debug_locks))
4865                 return;
4866
4867         if (subclass) {
4868                 unsigned long flags;
4869
4870                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4871                         return;
4872
4873                 raw_local_irq_save(flags);
4874                 lockdep_recursion_inc();
4875                 register_lock_class(lock, subclass, 1);
4876                 lockdep_recursion_finish();
4877                 raw_local_irq_restore(flags);
4878         }
4879 }
4880 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4881
4882 struct lock_class_key __lockdep_no_validate__;
4883 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4884
4885 static void
4886 print_lock_nested_lock_not_held(struct task_struct *curr,
4887                                 struct held_lock *hlock)
4888 {
4889         if (!debug_locks_off())
4890                 return;
4891         if (debug_locks_silent)
4892                 return;
4893
4894         pr_warn("\n");
4895         pr_warn("==================================\n");
4896         pr_warn("WARNING: Nested lock was not taken\n");
4897         print_kernel_ident();
4898         pr_warn("----------------------------------\n");
4899
4900         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4901         print_lock(hlock);
4902
4903         pr_warn("\nbut this task is not holding:\n");
4904         pr_warn("%s\n", hlock->nest_lock->name);
4905
4906         pr_warn("\nstack backtrace:\n");
4907         dump_stack();
4908
4909         pr_warn("\nother info that might help us debug this:\n");
4910         lockdep_print_held_locks(curr);
4911
4912         pr_warn("\nstack backtrace:\n");
4913         dump_stack();
4914 }
4915
4916 static int __lock_is_held(const struct lockdep_map *lock, int read);
4917
4918 /*
4919  * This gets called for every mutex_lock*()/spin_lock*() operation.
4920  * We maintain the dependency maps and validate the locking attempt:
4921  *
4922  * The callers must make sure that IRQs are disabled before calling it,
4923  * otherwise we could get an interrupt which would want to take locks,
4924  * which would end up in lockdep again.
4925  */
4926 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4927                           int trylock, int read, int check, int hardirqs_off,
4928                           struct lockdep_map *nest_lock, unsigned long ip,
4929                           int references, int pin_count, int sync)
4930 {
4931         struct task_struct *curr = current;
4932         struct lock_class *class = NULL;
4933         struct held_lock *hlock;
4934         unsigned int depth;
4935         int chain_head = 0;
4936         int class_idx;
4937         u64 chain_key;
4938
4939         if (unlikely(!debug_locks))
4940                 return 0;
4941
4942         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4943                 check = 0;
4944
4945         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4946                 class = lock->class_cache[subclass];
4947         /*
4948          * Not cached?
4949          */
4950         if (unlikely(!class)) {
4951                 class = register_lock_class(lock, subclass, 0);
4952                 if (!class)
4953                         return 0;
4954         }
4955
4956         debug_class_ops_inc(class);
4957
4958         if (very_verbose(class)) {
4959                 printk("\nacquire class [%px] %s", class->key, class->name);
4960                 if (class->name_version > 1)
4961                         printk(KERN_CONT "#%d", class->name_version);
4962                 printk(KERN_CONT "\n");
4963                 dump_stack();
4964         }
4965
4966         /*
4967          * Add the lock to the list of currently held locks.
4968          * (we dont increase the depth just yet, up until the
4969          * dependency checks are done)
4970          */
4971         depth = curr->lockdep_depth;
4972         /*
4973          * Ran out of static storage for our per-task lock stack again have we?
4974          */
4975         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4976                 return 0;
4977
4978         class_idx = class - lock_classes;
4979
4980         if (depth && !sync) {
4981                 /* we're holding locks and the new held lock is not a sync */
4982                 hlock = curr->held_locks + depth - 1;
4983                 if (hlock->class_idx == class_idx && nest_lock) {
4984                         if (!references)
4985                                 references++;
4986
4987                         if (!hlock->references)
4988                                 hlock->references++;
4989
4990                         hlock->references += references;
4991
4992                         /* Overflow */
4993                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4994                                 return 0;
4995
4996                         return 2;
4997                 }
4998         }
4999
5000         hlock = curr->held_locks + depth;
5001         /*
5002          * Plain impossible, we just registered it and checked it weren't no
5003          * NULL like.. I bet this mushroom I ate was good!
5004          */
5005         if (DEBUG_LOCKS_WARN_ON(!class))
5006                 return 0;
5007         hlock->class_idx = class_idx;
5008         hlock->acquire_ip = ip;
5009         hlock->instance = lock;
5010         hlock->nest_lock = nest_lock;
5011         hlock->irq_context = task_irq_context(curr);
5012         hlock->trylock = trylock;
5013         hlock->read = read;
5014         hlock->check = check;
5015         hlock->sync = !!sync;
5016         hlock->hardirqs_off = !!hardirqs_off;
5017         hlock->references = references;
5018 #ifdef CONFIG_LOCK_STAT
5019         hlock->waittime_stamp = 0;
5020         hlock->holdtime_stamp = lockstat_clock();
5021 #endif
5022         hlock->pin_count = pin_count;
5023
5024         if (check_wait_context(curr, hlock))
5025                 return 0;
5026
5027         /* Initialize the lock usage bit */
5028         if (!mark_usage(curr, hlock, check))
5029                 return 0;
5030
5031         /*
5032          * Calculate the chain hash: it's the combined hash of all the
5033          * lock keys along the dependency chain. We save the hash value
5034          * at every step so that we can get the current hash easily
5035          * after unlock. The chain hash is then used to cache dependency
5036          * results.
5037          *
5038          * The 'key ID' is what is the most compact key value to drive
5039          * the hash, not class->key.
5040          */
5041         /*
5042          * Whoops, we did it again.. class_idx is invalid.
5043          */
5044         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5045                 return 0;
5046
5047         chain_key = curr->curr_chain_key;
5048         if (!depth) {
5049                 /*
5050                  * How can we have a chain hash when we ain't got no keys?!
5051                  */
5052                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5053                         return 0;
5054                 chain_head = 1;
5055         }
5056
5057         hlock->prev_chain_key = chain_key;
5058         if (separate_irq_context(curr, hlock)) {
5059                 chain_key = INITIAL_CHAIN_KEY;
5060                 chain_head = 1;
5061         }
5062         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5063
5064         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5065                 print_lock_nested_lock_not_held(curr, hlock);
5066                 return 0;
5067         }
5068
5069         if (!debug_locks_silent) {
5070                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5071                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5072         }
5073
5074         if (!validate_chain(curr, hlock, chain_head, chain_key))
5075                 return 0;
5076
5077         /* For lock_sync(), we are done here since no actual critical section */
5078         if (hlock->sync)
5079                 return 1;
5080
5081         curr->curr_chain_key = chain_key;
5082         curr->lockdep_depth++;
5083         check_chain_key(curr);
5084 #ifdef CONFIG_DEBUG_LOCKDEP
5085         if (unlikely(!debug_locks))
5086                 return 0;
5087 #endif
5088         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5089                 debug_locks_off();
5090                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5091                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5092                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5093
5094                 lockdep_print_held_locks(current);
5095                 debug_show_all_locks();
5096                 dump_stack();
5097
5098                 return 0;
5099         }
5100
5101         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5102                 max_lockdep_depth = curr->lockdep_depth;
5103
5104         return 1;
5105 }
5106
5107 static void print_unlock_imbalance_bug(struct task_struct *curr,
5108                                        struct lockdep_map *lock,
5109                                        unsigned long ip)
5110 {
5111         if (!debug_locks_off())
5112                 return;
5113         if (debug_locks_silent)
5114                 return;
5115
5116         pr_warn("\n");
5117         pr_warn("=====================================\n");
5118         pr_warn("WARNING: bad unlock balance detected!\n");
5119         print_kernel_ident();
5120         pr_warn("-------------------------------------\n");
5121         pr_warn("%s/%d is trying to release lock (",
5122                 curr->comm, task_pid_nr(curr));
5123         print_lockdep_cache(lock);
5124         pr_cont(") at:\n");
5125         print_ip_sym(KERN_WARNING, ip);
5126         pr_warn("but there are no more locks to release!\n");
5127         pr_warn("\nother info that might help us debug this:\n");
5128         lockdep_print_held_locks(curr);
5129
5130         pr_warn("\nstack backtrace:\n");
5131         dump_stack();
5132 }
5133
5134 static noinstr int match_held_lock(const struct held_lock *hlock,
5135                                    const struct lockdep_map *lock)
5136 {
5137         if (hlock->instance == lock)
5138                 return 1;
5139
5140         if (hlock->references) {
5141                 const struct lock_class *class = lock->class_cache[0];
5142
5143                 if (!class)
5144                         class = look_up_lock_class(lock, 0);
5145
5146                 /*
5147                  * If look_up_lock_class() failed to find a class, we're trying
5148                  * to test if we hold a lock that has never yet been acquired.
5149                  * Clearly if the lock hasn't been acquired _ever_, we're not
5150                  * holding it either, so report failure.
5151                  */
5152                 if (!class)
5153                         return 0;
5154
5155                 /*
5156                  * References, but not a lock we're actually ref-counting?
5157                  * State got messed up, follow the sites that change ->references
5158                  * and try to make sense of it.
5159                  */
5160                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5161                         return 0;
5162
5163                 if (hlock->class_idx == class - lock_classes)
5164                         return 1;
5165         }
5166
5167         return 0;
5168 }
5169
5170 /* @depth must not be zero */
5171 static struct held_lock *find_held_lock(struct task_struct *curr,
5172                                         struct lockdep_map *lock,
5173                                         unsigned int depth, int *idx)
5174 {
5175         struct held_lock *ret, *hlock, *prev_hlock;
5176         int i;
5177
5178         i = depth - 1;
5179         hlock = curr->held_locks + i;
5180         ret = hlock;
5181         if (match_held_lock(hlock, lock))
5182                 goto out;
5183
5184         ret = NULL;
5185         for (i--, prev_hlock = hlock--;
5186              i >= 0;
5187              i--, prev_hlock = hlock--) {
5188                 /*
5189                  * We must not cross into another context:
5190                  */
5191                 if (prev_hlock->irq_context != hlock->irq_context) {
5192                         ret = NULL;
5193                         break;
5194                 }
5195                 if (match_held_lock(hlock, lock)) {
5196                         ret = hlock;
5197                         break;
5198                 }
5199         }
5200
5201 out:
5202         *idx = i;
5203         return ret;
5204 }
5205
5206 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5207                                 int idx, unsigned int *merged)
5208 {
5209         struct held_lock *hlock;
5210         int first_idx = idx;
5211
5212         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5213                 return 0;
5214
5215         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5216                 switch (__lock_acquire(hlock->instance,
5217                                     hlock_class(hlock)->subclass,
5218                                     hlock->trylock,
5219                                     hlock->read, hlock->check,
5220                                     hlock->hardirqs_off,
5221                                     hlock->nest_lock, hlock->acquire_ip,
5222                                     hlock->references, hlock->pin_count, 0)) {
5223                 case 0:
5224                         return 1;
5225                 case 1:
5226                         break;
5227                 case 2:
5228                         *merged += (idx == first_idx);
5229                         break;
5230                 default:
5231                         WARN_ON(1);
5232                         return 0;
5233                 }
5234         }
5235         return 0;
5236 }
5237
5238 static int
5239 __lock_set_class(struct lockdep_map *lock, const char *name,
5240                  struct lock_class_key *key, unsigned int subclass,
5241                  unsigned long ip)
5242 {
5243         struct task_struct *curr = current;
5244         unsigned int depth, merged = 0;
5245         struct held_lock *hlock;
5246         struct lock_class *class;
5247         int i;
5248
5249         if (unlikely(!debug_locks))
5250                 return 0;
5251
5252         depth = curr->lockdep_depth;
5253         /*
5254          * This function is about (re)setting the class of a held lock,
5255          * yet we're not actually holding any locks. Naughty user!
5256          */
5257         if (DEBUG_LOCKS_WARN_ON(!depth))
5258                 return 0;
5259
5260         hlock = find_held_lock(curr, lock, depth, &i);
5261         if (!hlock) {
5262                 print_unlock_imbalance_bug(curr, lock, ip);
5263                 return 0;
5264         }
5265
5266         lockdep_init_map_type(lock, name, key, 0,
5267                               lock->wait_type_inner,
5268                               lock->wait_type_outer,
5269                               lock->lock_type);
5270         class = register_lock_class(lock, subclass, 0);
5271         hlock->class_idx = class - lock_classes;
5272
5273         curr->lockdep_depth = i;
5274         curr->curr_chain_key = hlock->prev_chain_key;
5275
5276         if (reacquire_held_locks(curr, depth, i, &merged))
5277                 return 0;
5278
5279         /*
5280          * I took it apart and put it back together again, except now I have
5281          * these 'spare' parts.. where shall I put them.
5282          */
5283         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5284                 return 0;
5285         return 1;
5286 }
5287
5288 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5289 {
5290         struct task_struct *curr = current;
5291         unsigned int depth, merged = 0;
5292         struct held_lock *hlock;
5293         int i;
5294
5295         if (unlikely(!debug_locks))
5296                 return 0;
5297
5298         depth = curr->lockdep_depth;
5299         /*
5300          * This function is about (re)setting the class of a held lock,
5301          * yet we're not actually holding any locks. Naughty user!
5302          */
5303         if (DEBUG_LOCKS_WARN_ON(!depth))
5304                 return 0;
5305
5306         hlock = find_held_lock(curr, lock, depth, &i);
5307         if (!hlock) {
5308                 print_unlock_imbalance_bug(curr, lock, ip);
5309                 return 0;
5310         }
5311
5312         curr->lockdep_depth = i;
5313         curr->curr_chain_key = hlock->prev_chain_key;
5314
5315         WARN(hlock->read, "downgrading a read lock");
5316         hlock->read = 1;
5317         hlock->acquire_ip = ip;
5318
5319         if (reacquire_held_locks(curr, depth, i, &merged))
5320                 return 0;
5321
5322         /* Merging can't happen with unchanged classes.. */
5323         if (DEBUG_LOCKS_WARN_ON(merged))
5324                 return 0;
5325
5326         /*
5327          * I took it apart and put it back together again, except now I have
5328          * these 'spare' parts.. where shall I put them.
5329          */
5330         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5331                 return 0;
5332
5333         return 1;
5334 }
5335
5336 /*
5337  * Remove the lock from the list of currently held locks - this gets
5338  * called on mutex_unlock()/spin_unlock*() (or on a failed
5339  * mutex_lock_interruptible()).
5340  */
5341 static int
5342 __lock_release(struct lockdep_map *lock, unsigned long ip)
5343 {
5344         struct task_struct *curr = current;
5345         unsigned int depth, merged = 1;
5346         struct held_lock *hlock;
5347         int i;
5348
5349         if (unlikely(!debug_locks))
5350                 return 0;
5351
5352         depth = curr->lockdep_depth;
5353         /*
5354          * So we're all set to release this lock.. wait what lock? We don't
5355          * own any locks, you've been drinking again?
5356          */
5357         if (depth <= 0) {
5358                 print_unlock_imbalance_bug(curr, lock, ip);
5359                 return 0;
5360         }
5361
5362         /*
5363          * Check whether the lock exists in the current stack
5364          * of held locks:
5365          */
5366         hlock = find_held_lock(curr, lock, depth, &i);
5367         if (!hlock) {
5368                 print_unlock_imbalance_bug(curr, lock, ip);
5369                 return 0;
5370         }
5371
5372         if (hlock->instance == lock)
5373                 lock_release_holdtime(hlock);
5374
5375         WARN(hlock->pin_count, "releasing a pinned lock\n");
5376
5377         if (hlock->references) {
5378                 hlock->references--;
5379                 if (hlock->references) {
5380                         /*
5381                          * We had, and after removing one, still have
5382                          * references, the current lock stack is still
5383                          * valid. We're done!
5384                          */
5385                         return 1;
5386                 }
5387         }
5388
5389         /*
5390          * We have the right lock to unlock, 'hlock' points to it.
5391          * Now we remove it from the stack, and add back the other
5392          * entries (if any), recalculating the hash along the way:
5393          */
5394
5395         curr->lockdep_depth = i;
5396         curr->curr_chain_key = hlock->prev_chain_key;
5397
5398         /*
5399          * The most likely case is when the unlock is on the innermost
5400          * lock. In this case, we are done!
5401          */
5402         if (i == depth-1)
5403                 return 1;
5404
5405         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5406                 return 0;
5407
5408         /*
5409          * We had N bottles of beer on the wall, we drank one, but now
5410          * there's not N-1 bottles of beer left on the wall...
5411          * Pouring two of the bottles together is acceptable.
5412          */
5413         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5414
5415         /*
5416          * Since reacquire_held_locks() would have called check_chain_key()
5417          * indirectly via __lock_acquire(), we don't need to do it again
5418          * on return.
5419          */
5420         return 0;
5421 }
5422
5423 static __always_inline
5424 int __lock_is_held(const struct lockdep_map *lock, int read)
5425 {
5426         struct task_struct *curr = current;
5427         int i;
5428
5429         for (i = 0; i < curr->lockdep_depth; i++) {
5430                 struct held_lock *hlock = curr->held_locks + i;
5431
5432                 if (match_held_lock(hlock, lock)) {
5433                         if (read == -1 || !!hlock->read == read)
5434                                 return LOCK_STATE_HELD;
5435
5436                         return LOCK_STATE_NOT_HELD;
5437                 }
5438         }
5439
5440         return LOCK_STATE_NOT_HELD;
5441 }
5442
5443 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5444 {
5445         struct pin_cookie cookie = NIL_COOKIE;
5446         struct task_struct *curr = current;
5447         int i;
5448
5449         if (unlikely(!debug_locks))
5450                 return cookie;
5451
5452         for (i = 0; i < curr->lockdep_depth; i++) {
5453                 struct held_lock *hlock = curr->held_locks + i;
5454
5455                 if (match_held_lock(hlock, lock)) {
5456                         /*
5457                          * Grab 16bits of randomness; this is sufficient to not
5458                          * be guessable and still allows some pin nesting in
5459                          * our u32 pin_count.
5460                          */
5461                         cookie.val = 1 + (sched_clock() & 0xffff);
5462                         hlock->pin_count += cookie.val;
5463                         return cookie;
5464                 }
5465         }
5466
5467         WARN(1, "pinning an unheld lock\n");
5468         return cookie;
5469 }
5470
5471 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5472 {
5473         struct task_struct *curr = current;
5474         int i;
5475
5476         if (unlikely(!debug_locks))
5477                 return;
5478
5479         for (i = 0; i < curr->lockdep_depth; i++) {
5480                 struct held_lock *hlock = curr->held_locks + i;
5481
5482                 if (match_held_lock(hlock, lock)) {
5483                         hlock->pin_count += cookie.val;
5484                         return;
5485                 }
5486         }
5487
5488         WARN(1, "pinning an unheld lock\n");
5489 }
5490
5491 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5492 {
5493         struct task_struct *curr = current;
5494         int i;
5495
5496         if (unlikely(!debug_locks))
5497                 return;
5498
5499         for (i = 0; i < curr->lockdep_depth; i++) {
5500                 struct held_lock *hlock = curr->held_locks + i;
5501
5502                 if (match_held_lock(hlock, lock)) {
5503                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5504                                 return;
5505
5506                         hlock->pin_count -= cookie.val;
5507
5508                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5509                                 hlock->pin_count = 0;
5510
5511                         return;
5512                 }
5513         }
5514
5515         WARN(1, "unpinning an unheld lock\n");
5516 }
5517
5518 /*
5519  * Check whether we follow the irq-flags state precisely:
5520  */
5521 static noinstr void check_flags(unsigned long flags)
5522 {
5523 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5524         if (!debug_locks)
5525                 return;
5526
5527         /* Get the warning out..  */
5528         instrumentation_begin();
5529
5530         if (irqs_disabled_flags(flags)) {
5531                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5532                         printk("possible reason: unannotated irqs-off.\n");
5533                 }
5534         } else {
5535                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5536                         printk("possible reason: unannotated irqs-on.\n");
5537                 }
5538         }
5539
5540 #ifndef CONFIG_PREEMPT_RT
5541         /*
5542          * We dont accurately track softirq state in e.g.
5543          * hardirq contexts (such as on 4KSTACKS), so only
5544          * check if not in hardirq contexts:
5545          */
5546         if (!hardirq_count()) {
5547                 if (softirq_count()) {
5548                         /* like the above, but with softirqs */
5549                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5550                 } else {
5551                         /* lick the above, does it taste good? */
5552                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5553                 }
5554         }
5555 #endif
5556
5557         if (!debug_locks)
5558                 print_irqtrace_events(current);
5559
5560         instrumentation_end();
5561 #endif
5562 }
5563
5564 void lock_set_class(struct lockdep_map *lock, const char *name,
5565                     struct lock_class_key *key, unsigned int subclass,
5566                     unsigned long ip)
5567 {
5568         unsigned long flags;
5569
5570         if (unlikely(!lockdep_enabled()))
5571                 return;
5572
5573         raw_local_irq_save(flags);
5574         lockdep_recursion_inc();
5575         check_flags(flags);
5576         if (__lock_set_class(lock, name, key, subclass, ip))
5577                 check_chain_key(current);
5578         lockdep_recursion_finish();
5579         raw_local_irq_restore(flags);
5580 }
5581 EXPORT_SYMBOL_GPL(lock_set_class);
5582
5583 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5584 {
5585         unsigned long flags;
5586
5587         if (unlikely(!lockdep_enabled()))
5588                 return;
5589
5590         raw_local_irq_save(flags);
5591         lockdep_recursion_inc();
5592         check_flags(flags);
5593         if (__lock_downgrade(lock, ip))
5594                 check_chain_key(current);
5595         lockdep_recursion_finish();
5596         raw_local_irq_restore(flags);
5597 }
5598 EXPORT_SYMBOL_GPL(lock_downgrade);
5599
5600 /* NMI context !!! */
5601 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5602 {
5603 #ifdef CONFIG_PROVE_LOCKING
5604         struct lock_class *class = look_up_lock_class(lock, subclass);
5605         unsigned long mask = LOCKF_USED;
5606
5607         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5608         if (!class)
5609                 return;
5610
5611         /*
5612          * READ locks only conflict with USED, such that if we only ever use
5613          * READ locks, there is no deadlock possible -- RCU.
5614          */
5615         if (!hlock->read)
5616                 mask |= LOCKF_USED_READ;
5617
5618         if (!(class->usage_mask & mask))
5619                 return;
5620
5621         hlock->class_idx = class - lock_classes;
5622
5623         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5624 #endif
5625 }
5626
5627 static bool lockdep_nmi(void)
5628 {
5629         if (raw_cpu_read(lockdep_recursion))
5630                 return false;
5631
5632         if (!in_nmi())
5633                 return false;
5634
5635         return true;
5636 }
5637
5638 /*
5639  * read_lock() is recursive if:
5640  * 1. We force lockdep think this way in selftests or
5641  * 2. The implementation is not queued read/write lock or
5642  * 3. The locker is at an in_interrupt() context.
5643  */
5644 bool read_lock_is_recursive(void)
5645 {
5646         return force_read_lock_recursive ||
5647                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5648                in_interrupt();
5649 }
5650 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5651
5652 /*
5653  * We are not always called with irqs disabled - do that here,
5654  * and also avoid lockdep recursion:
5655  */
5656 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5657                           int trylock, int read, int check,
5658                           struct lockdep_map *nest_lock, unsigned long ip)
5659 {
5660         unsigned long flags;
5661
5662         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5663
5664         if (!debug_locks)
5665                 return;
5666
5667         if (unlikely(!lockdep_enabled())) {
5668                 /* XXX allow trylock from NMI ?!? */
5669                 if (lockdep_nmi() && !trylock) {
5670                         struct held_lock hlock;
5671
5672                         hlock.acquire_ip = ip;
5673                         hlock.instance = lock;
5674                         hlock.nest_lock = nest_lock;
5675                         hlock.irq_context = 2; // XXX
5676                         hlock.trylock = trylock;
5677                         hlock.read = read;
5678                         hlock.check = check;
5679                         hlock.hardirqs_off = true;
5680                         hlock.references = 0;
5681
5682                         verify_lock_unused(lock, &hlock, subclass);
5683                 }
5684                 return;
5685         }
5686
5687         raw_local_irq_save(flags);
5688         check_flags(flags);
5689
5690         lockdep_recursion_inc();
5691         __lock_acquire(lock, subclass, trylock, read, check,
5692                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5693         lockdep_recursion_finish();
5694         raw_local_irq_restore(flags);
5695 }
5696 EXPORT_SYMBOL_GPL(lock_acquire);
5697
5698 void lock_release(struct lockdep_map *lock, unsigned long ip)
5699 {
5700         unsigned long flags;
5701
5702         trace_lock_release(lock, ip);
5703
5704         if (unlikely(!lockdep_enabled()))
5705                 return;
5706
5707         raw_local_irq_save(flags);
5708         check_flags(flags);
5709
5710         lockdep_recursion_inc();
5711         if (__lock_release(lock, ip))
5712                 check_chain_key(current);
5713         lockdep_recursion_finish();
5714         raw_local_irq_restore(flags);
5715 }
5716 EXPORT_SYMBOL_GPL(lock_release);
5717
5718 /*
5719  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5720  *
5721  * No actual critical section is created by the APIs annotated with this: these
5722  * APIs are used to wait for one or multiple critical sections (on other CPUs
5723  * or threads), and it means that calling these APIs inside these critical
5724  * sections is potential deadlock.
5725  */
5726 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5727                int check, struct lockdep_map *nest_lock, unsigned long ip)
5728 {
5729         unsigned long flags;
5730
5731         if (unlikely(!lockdep_enabled()))
5732                 return;
5733
5734         raw_local_irq_save(flags);
5735         check_flags(flags);
5736
5737         lockdep_recursion_inc();
5738         __lock_acquire(lock, subclass, 0, read, check,
5739                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5740         check_chain_key(current);
5741         lockdep_recursion_finish();
5742         raw_local_irq_restore(flags);
5743 }
5744 EXPORT_SYMBOL_GPL(lock_sync);
5745
5746 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5747 {
5748         unsigned long flags;
5749         int ret = LOCK_STATE_NOT_HELD;
5750
5751         /*
5752          * Avoid false negative lockdep_assert_held() and
5753          * lockdep_assert_not_held().
5754          */
5755         if (unlikely(!lockdep_enabled()))
5756                 return LOCK_STATE_UNKNOWN;
5757
5758         raw_local_irq_save(flags);
5759         check_flags(flags);
5760
5761         lockdep_recursion_inc();
5762         ret = __lock_is_held(lock, read);
5763         lockdep_recursion_finish();
5764         raw_local_irq_restore(flags);
5765
5766         return ret;
5767 }
5768 EXPORT_SYMBOL_GPL(lock_is_held_type);
5769 NOKPROBE_SYMBOL(lock_is_held_type);
5770
5771 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5772 {
5773         struct pin_cookie cookie = NIL_COOKIE;
5774         unsigned long flags;
5775
5776         if (unlikely(!lockdep_enabled()))
5777                 return cookie;
5778
5779         raw_local_irq_save(flags);
5780         check_flags(flags);
5781
5782         lockdep_recursion_inc();
5783         cookie = __lock_pin_lock(lock);
5784         lockdep_recursion_finish();
5785         raw_local_irq_restore(flags);
5786
5787         return cookie;
5788 }
5789 EXPORT_SYMBOL_GPL(lock_pin_lock);
5790
5791 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5792 {
5793         unsigned long flags;
5794
5795         if (unlikely(!lockdep_enabled()))
5796                 return;
5797
5798         raw_local_irq_save(flags);
5799         check_flags(flags);
5800
5801         lockdep_recursion_inc();
5802         __lock_repin_lock(lock, cookie);
5803         lockdep_recursion_finish();
5804         raw_local_irq_restore(flags);
5805 }
5806 EXPORT_SYMBOL_GPL(lock_repin_lock);
5807
5808 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5809 {
5810         unsigned long flags;
5811
5812         if (unlikely(!lockdep_enabled()))
5813                 return;
5814
5815         raw_local_irq_save(flags);
5816         check_flags(flags);
5817
5818         lockdep_recursion_inc();
5819         __lock_unpin_lock(lock, cookie);
5820         lockdep_recursion_finish();
5821         raw_local_irq_restore(flags);
5822 }
5823 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5824
5825 #ifdef CONFIG_LOCK_STAT
5826 static void print_lock_contention_bug(struct task_struct *curr,
5827                                       struct lockdep_map *lock,
5828                                       unsigned long ip)
5829 {
5830         if (!debug_locks_off())
5831                 return;
5832         if (debug_locks_silent)
5833                 return;
5834
5835         pr_warn("\n");
5836         pr_warn("=================================\n");
5837         pr_warn("WARNING: bad contention detected!\n");
5838         print_kernel_ident();
5839         pr_warn("---------------------------------\n");
5840         pr_warn("%s/%d is trying to contend lock (",
5841                 curr->comm, task_pid_nr(curr));
5842         print_lockdep_cache(lock);
5843         pr_cont(") at:\n");
5844         print_ip_sym(KERN_WARNING, ip);
5845         pr_warn("but there are no locks held!\n");
5846         pr_warn("\nother info that might help us debug this:\n");
5847         lockdep_print_held_locks(curr);
5848
5849         pr_warn("\nstack backtrace:\n");
5850         dump_stack();
5851 }
5852
5853 static void
5854 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5855 {
5856         struct task_struct *curr = current;
5857         struct held_lock *hlock;
5858         struct lock_class_stats *stats;
5859         unsigned int depth;
5860         int i, contention_point, contending_point;
5861
5862         depth = curr->lockdep_depth;
5863         /*
5864          * Whee, we contended on this lock, except it seems we're not
5865          * actually trying to acquire anything much at all..
5866          */
5867         if (DEBUG_LOCKS_WARN_ON(!depth))
5868                 return;
5869
5870         hlock = find_held_lock(curr, lock, depth, &i);
5871         if (!hlock) {
5872                 print_lock_contention_bug(curr, lock, ip);
5873                 return;
5874         }
5875
5876         if (hlock->instance != lock)
5877                 return;
5878
5879         hlock->waittime_stamp = lockstat_clock();
5880
5881         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5882         contending_point = lock_point(hlock_class(hlock)->contending_point,
5883                                       lock->ip);
5884
5885         stats = get_lock_stats(hlock_class(hlock));
5886         if (contention_point < LOCKSTAT_POINTS)
5887                 stats->contention_point[contention_point]++;
5888         if (contending_point < LOCKSTAT_POINTS)
5889                 stats->contending_point[contending_point]++;
5890         if (lock->cpu != smp_processor_id())
5891                 stats->bounces[bounce_contended + !!hlock->read]++;
5892 }
5893
5894 static void
5895 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5896 {
5897         struct task_struct *curr = current;
5898         struct held_lock *hlock;
5899         struct lock_class_stats *stats;
5900         unsigned int depth;
5901         u64 now, waittime = 0;
5902         int i, cpu;
5903
5904         depth = curr->lockdep_depth;
5905         /*
5906          * Yay, we acquired ownership of this lock we didn't try to
5907          * acquire, how the heck did that happen?
5908          */
5909         if (DEBUG_LOCKS_WARN_ON(!depth))
5910                 return;
5911
5912         hlock = find_held_lock(curr, lock, depth, &i);
5913         if (!hlock) {
5914                 print_lock_contention_bug(curr, lock, _RET_IP_);
5915                 return;
5916         }
5917
5918         if (hlock->instance != lock)
5919                 return;
5920
5921         cpu = smp_processor_id();
5922         if (hlock->waittime_stamp) {
5923                 now = lockstat_clock();
5924                 waittime = now - hlock->waittime_stamp;
5925                 hlock->holdtime_stamp = now;
5926         }
5927
5928         stats = get_lock_stats(hlock_class(hlock));
5929         if (waittime) {
5930                 if (hlock->read)
5931                         lock_time_inc(&stats->read_waittime, waittime);
5932                 else
5933                         lock_time_inc(&stats->write_waittime, waittime);
5934         }
5935         if (lock->cpu != cpu)
5936                 stats->bounces[bounce_acquired + !!hlock->read]++;
5937
5938         lock->cpu = cpu;
5939         lock->ip = ip;
5940 }
5941
5942 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5943 {
5944         unsigned long flags;
5945
5946         trace_lock_contended(lock, ip);
5947
5948         if (unlikely(!lock_stat || !lockdep_enabled()))
5949                 return;
5950
5951         raw_local_irq_save(flags);
5952         check_flags(flags);
5953         lockdep_recursion_inc();
5954         __lock_contended(lock, ip);
5955         lockdep_recursion_finish();
5956         raw_local_irq_restore(flags);
5957 }
5958 EXPORT_SYMBOL_GPL(lock_contended);
5959
5960 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5961 {
5962         unsigned long flags;
5963
5964         trace_lock_acquired(lock, ip);
5965
5966         if (unlikely(!lock_stat || !lockdep_enabled()))
5967                 return;
5968
5969         raw_local_irq_save(flags);
5970         check_flags(flags);
5971         lockdep_recursion_inc();
5972         __lock_acquired(lock, ip);
5973         lockdep_recursion_finish();
5974         raw_local_irq_restore(flags);
5975 }
5976 EXPORT_SYMBOL_GPL(lock_acquired);
5977 #endif
5978
5979 /*
5980  * Used by the testsuite, sanitize the validator state
5981  * after a simulated failure:
5982  */
5983
5984 void lockdep_reset(void)
5985 {
5986         unsigned long flags;
5987         int i;
5988
5989         raw_local_irq_save(flags);
5990         lockdep_init_task(current);
5991         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5992         nr_hardirq_chains = 0;
5993         nr_softirq_chains = 0;
5994         nr_process_chains = 0;
5995         debug_locks = 1;
5996         for (i = 0; i < CHAINHASH_SIZE; i++)
5997                 INIT_HLIST_HEAD(chainhash_table + i);
5998         raw_local_irq_restore(flags);
5999 }
6000
6001 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6002 static void remove_class_from_lock_chain(struct pending_free *pf,
6003                                          struct lock_chain *chain,
6004                                          struct lock_class *class)
6005 {
6006 #ifdef CONFIG_PROVE_LOCKING
6007         int i;
6008
6009         for (i = chain->base; i < chain->base + chain->depth; i++) {
6010                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6011                         continue;
6012                 /*
6013                  * Each lock class occurs at most once in a lock chain so once
6014                  * we found a match we can break out of this loop.
6015                  */
6016                 goto free_lock_chain;
6017         }
6018         /* Since the chain has not been modified, return. */
6019         return;
6020
6021 free_lock_chain:
6022         free_chain_hlocks(chain->base, chain->depth);
6023         /* Overwrite the chain key for concurrent RCU readers. */
6024         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6025         dec_chains(chain->irq_context);
6026
6027         /*
6028          * Note: calling hlist_del_rcu() from inside a
6029          * hlist_for_each_entry_rcu() loop is safe.
6030          */
6031         hlist_del_rcu(&chain->entry);
6032         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6033         nr_zapped_lock_chains++;
6034 #endif
6035 }
6036
6037 /* Must be called with the graph lock held. */
6038 static void remove_class_from_lock_chains(struct pending_free *pf,
6039                                           struct lock_class *class)
6040 {
6041         struct lock_chain *chain;
6042         struct hlist_head *head;
6043         int i;
6044
6045         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6046                 head = chainhash_table + i;
6047                 hlist_for_each_entry_rcu(chain, head, entry) {
6048                         remove_class_from_lock_chain(pf, chain, class);
6049                 }
6050         }
6051 }
6052
6053 /*
6054  * Remove all references to a lock class. The caller must hold the graph lock.
6055  */
6056 static void zap_class(struct pending_free *pf, struct lock_class *class)
6057 {
6058         struct lock_list *entry;
6059         int i;
6060
6061         WARN_ON_ONCE(!class->key);
6062
6063         /*
6064          * Remove all dependencies this lock is
6065          * involved in:
6066          */
6067         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6068                 entry = list_entries + i;
6069                 if (entry->class != class && entry->links_to != class)
6070                         continue;
6071                 __clear_bit(i, list_entries_in_use);
6072                 nr_list_entries--;
6073                 list_del_rcu(&entry->entry);
6074         }
6075         if (list_empty(&class->locks_after) &&
6076             list_empty(&class->locks_before)) {
6077                 list_move_tail(&class->lock_entry, &pf->zapped);
6078                 hlist_del_rcu(&class->hash_entry);
6079                 WRITE_ONCE(class->key, NULL);
6080                 WRITE_ONCE(class->name, NULL);
6081                 nr_lock_classes--;
6082                 __clear_bit(class - lock_classes, lock_classes_in_use);
6083                 if (class - lock_classes == max_lock_class_idx)
6084                         max_lock_class_idx--;
6085         } else {
6086                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6087                           class->name);
6088         }
6089
6090         remove_class_from_lock_chains(pf, class);
6091         nr_zapped_classes++;
6092 }
6093
6094 static void reinit_class(struct lock_class *class)
6095 {
6096         WARN_ON_ONCE(!class->lock_entry.next);
6097         WARN_ON_ONCE(!list_empty(&class->locks_after));
6098         WARN_ON_ONCE(!list_empty(&class->locks_before));
6099         memset_startat(class, 0, key);
6100         WARN_ON_ONCE(!class->lock_entry.next);
6101         WARN_ON_ONCE(!list_empty(&class->locks_after));
6102         WARN_ON_ONCE(!list_empty(&class->locks_before));
6103 }
6104
6105 static inline int within(const void *addr, void *start, unsigned long size)
6106 {
6107         return addr >= start && addr < start + size;
6108 }
6109
6110 static bool inside_selftest(void)
6111 {
6112         return current == lockdep_selftest_task_struct;
6113 }
6114
6115 /* The caller must hold the graph lock. */
6116 static struct pending_free *get_pending_free(void)
6117 {
6118         return delayed_free.pf + delayed_free.index;
6119 }
6120
6121 static void free_zapped_rcu(struct rcu_head *cb);
6122
6123 /*
6124  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6125  * the graph lock held.
6126  */
6127 static void call_rcu_zapped(struct pending_free *pf)
6128 {
6129         WARN_ON_ONCE(inside_selftest());
6130
6131         if (list_empty(&pf->zapped))
6132                 return;
6133
6134         if (delayed_free.scheduled)
6135                 return;
6136
6137         delayed_free.scheduled = true;
6138
6139         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6140         delayed_free.index ^= 1;
6141
6142         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6143 }
6144
6145 /* The caller must hold the graph lock. May be called from RCU context. */
6146 static void __free_zapped_classes(struct pending_free *pf)
6147 {
6148         struct lock_class *class;
6149
6150         check_data_structures();
6151
6152         list_for_each_entry(class, &pf->zapped, lock_entry)
6153                 reinit_class(class);
6154
6155         list_splice_init(&pf->zapped, &free_lock_classes);
6156
6157 #ifdef CONFIG_PROVE_LOCKING
6158         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6159                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6160         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6161 #endif
6162 }
6163
6164 static void free_zapped_rcu(struct rcu_head *ch)
6165 {
6166         struct pending_free *pf;
6167         unsigned long flags;
6168
6169         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6170                 return;
6171
6172         raw_local_irq_save(flags);
6173         lockdep_lock();
6174
6175         /* closed head */
6176         pf = delayed_free.pf + (delayed_free.index ^ 1);
6177         __free_zapped_classes(pf);
6178         delayed_free.scheduled = false;
6179
6180         /*
6181          * If there's anything on the open list, close and start a new callback.
6182          */
6183         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6184
6185         lockdep_unlock();
6186         raw_local_irq_restore(flags);
6187 }
6188
6189 /*
6190  * Remove all lock classes from the class hash table and from the
6191  * all_lock_classes list whose key or name is in the address range [start,
6192  * start + size). Move these lock classes to the zapped_classes list. Must
6193  * be called with the graph lock held.
6194  */
6195 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6196                                      unsigned long size)
6197 {
6198         struct lock_class *class;
6199         struct hlist_head *head;
6200         int i;
6201
6202         /* Unhash all classes that were created by a module. */
6203         for (i = 0; i < CLASSHASH_SIZE; i++) {
6204                 head = classhash_table + i;
6205                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6206                         if (!within(class->key, start, size) &&
6207                             !within(class->name, start, size))
6208                                 continue;
6209                         zap_class(pf, class);
6210                 }
6211         }
6212 }
6213
6214 /*
6215  * Used in module.c to remove lock classes from memory that is going to be
6216  * freed; and possibly re-used by other modules.
6217  *
6218  * We will have had one synchronize_rcu() before getting here, so we're
6219  * guaranteed nobody will look up these exact classes -- they're properly dead
6220  * but still allocated.
6221  */
6222 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6223 {
6224         struct pending_free *pf;
6225         unsigned long flags;
6226
6227         init_data_structures_once();
6228
6229         raw_local_irq_save(flags);
6230         lockdep_lock();
6231         pf = get_pending_free();
6232         __lockdep_free_key_range(pf, start, size);
6233         call_rcu_zapped(pf);
6234         lockdep_unlock();
6235         raw_local_irq_restore(flags);
6236
6237         /*
6238          * Wait for any possible iterators from look_up_lock_class() to pass
6239          * before continuing to free the memory they refer to.
6240          */
6241         synchronize_rcu();
6242 }
6243
6244 /*
6245  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6246  * Ignores debug_locks. Must only be used by the lockdep selftests.
6247  */
6248 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6249 {
6250         struct pending_free *pf = delayed_free.pf;
6251         unsigned long flags;
6252
6253         init_data_structures_once();
6254
6255         raw_local_irq_save(flags);
6256         lockdep_lock();
6257         __lockdep_free_key_range(pf, start, size);
6258         __free_zapped_classes(pf);
6259         lockdep_unlock();
6260         raw_local_irq_restore(flags);
6261 }
6262
6263 void lockdep_free_key_range(void *start, unsigned long size)
6264 {
6265         init_data_structures_once();
6266
6267         if (inside_selftest())
6268                 lockdep_free_key_range_imm(start, size);
6269         else
6270                 lockdep_free_key_range_reg(start, size);
6271 }
6272
6273 /*
6274  * Check whether any element of the @lock->class_cache[] array refers to a
6275  * registered lock class. The caller must hold either the graph lock or the
6276  * RCU read lock.
6277  */
6278 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6279 {
6280         struct lock_class *class;
6281         struct hlist_head *head;
6282         int i, j;
6283
6284         for (i = 0; i < CLASSHASH_SIZE; i++) {
6285                 head = classhash_table + i;
6286                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6287                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6288                                 if (lock->class_cache[j] == class)
6289                                         return true;
6290                 }
6291         }
6292         return false;
6293 }
6294
6295 /* The caller must hold the graph lock. Does not sleep. */
6296 static void __lockdep_reset_lock(struct pending_free *pf,
6297                                  struct lockdep_map *lock)
6298 {
6299         struct lock_class *class;
6300         int j;
6301
6302         /*
6303          * Remove all classes this lock might have:
6304          */
6305         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6306                 /*
6307                  * If the class exists we look it up and zap it:
6308                  */
6309                 class = look_up_lock_class(lock, j);
6310                 if (class)
6311                         zap_class(pf, class);
6312         }
6313         /*
6314          * Debug check: in the end all mapped classes should
6315          * be gone.
6316          */
6317         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6318                 debug_locks_off();
6319 }
6320
6321 /*
6322  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6323  * released data structures from RCU context.
6324  */
6325 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6326 {
6327         struct pending_free *pf;
6328         unsigned long flags;
6329         int locked;
6330
6331         raw_local_irq_save(flags);
6332         locked = graph_lock();
6333         if (!locked)
6334                 goto out_irq;
6335
6336         pf = get_pending_free();
6337         __lockdep_reset_lock(pf, lock);
6338         call_rcu_zapped(pf);
6339
6340         graph_unlock();
6341 out_irq:
6342         raw_local_irq_restore(flags);
6343 }
6344
6345 /*
6346  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6347  * lockdep selftests.
6348  */
6349 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6350 {
6351         struct pending_free *pf = delayed_free.pf;
6352         unsigned long flags;
6353
6354         raw_local_irq_save(flags);
6355         lockdep_lock();
6356         __lockdep_reset_lock(pf, lock);
6357         __free_zapped_classes(pf);
6358         lockdep_unlock();
6359         raw_local_irq_restore(flags);
6360 }
6361
6362 void lockdep_reset_lock(struct lockdep_map *lock)
6363 {
6364         init_data_structures_once();
6365
6366         if (inside_selftest())
6367                 lockdep_reset_lock_imm(lock);
6368         else
6369                 lockdep_reset_lock_reg(lock);
6370 }
6371
6372 /*
6373  * Unregister a dynamically allocated key.
6374  *
6375  * Unlike lockdep_register_key(), a search is always done to find a matching
6376  * key irrespective of debug_locks to avoid potential invalid access to freed
6377  * memory in lock_class entry.
6378  */
6379 void lockdep_unregister_key(struct lock_class_key *key)
6380 {
6381         struct hlist_head *hash_head = keyhashentry(key);
6382         struct lock_class_key *k;
6383         struct pending_free *pf;
6384         unsigned long flags;
6385         bool found = false;
6386
6387         might_sleep();
6388
6389         if (WARN_ON_ONCE(static_obj(key)))
6390                 return;
6391
6392         raw_local_irq_save(flags);
6393         lockdep_lock();
6394
6395         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6396                 if (k == key) {
6397                         hlist_del_rcu(&k->hash_entry);
6398                         found = true;
6399                         break;
6400                 }
6401         }
6402         WARN_ON_ONCE(!found && debug_locks);
6403         if (found) {
6404                 pf = get_pending_free();
6405                 __lockdep_free_key_range(pf, key, 1);
6406                 call_rcu_zapped(pf);
6407         }
6408         lockdep_unlock();
6409         raw_local_irq_restore(flags);
6410
6411         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6412         synchronize_rcu();
6413 }
6414 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6415
6416 void __init lockdep_init(void)
6417 {
6418         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6419
6420         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6421         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6422         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6423         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6424         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6425         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6426         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6427
6428         printk(" memory used by lock dependency info: %zu kB\n",
6429                (sizeof(lock_classes) +
6430                 sizeof(lock_classes_in_use) +
6431                 sizeof(classhash_table) +
6432                 sizeof(list_entries) +
6433                 sizeof(list_entries_in_use) +
6434                 sizeof(chainhash_table) +
6435                 sizeof(delayed_free)
6436 #ifdef CONFIG_PROVE_LOCKING
6437                 + sizeof(lock_cq)
6438                 + sizeof(lock_chains)
6439                 + sizeof(lock_chains_in_use)
6440                 + sizeof(chain_hlocks)
6441 #endif
6442                 ) / 1024
6443                 );
6444
6445 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6446         printk(" memory used for stack traces: %zu kB\n",
6447                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6448                );
6449 #endif
6450
6451         printk(" per task-struct memory footprint: %zu bytes\n",
6452                sizeof(((struct task_struct *)NULL)->held_locks));
6453 }
6454
6455 static void
6456 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6457                      const void *mem_to, struct held_lock *hlock)
6458 {
6459         if (!debug_locks_off())
6460                 return;
6461         if (debug_locks_silent)
6462                 return;
6463
6464         pr_warn("\n");
6465         pr_warn("=========================\n");
6466         pr_warn("WARNING: held lock freed!\n");
6467         print_kernel_ident();
6468         pr_warn("-------------------------\n");
6469         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6470                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6471         print_lock(hlock);
6472         lockdep_print_held_locks(curr);
6473
6474         pr_warn("\nstack backtrace:\n");
6475         dump_stack();
6476 }
6477
6478 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6479                                 const void* lock_from, unsigned long lock_len)
6480 {
6481         return lock_from + lock_len <= mem_from ||
6482                 mem_from + mem_len <= lock_from;
6483 }
6484
6485 /*
6486  * Called when kernel memory is freed (or unmapped), or if a lock
6487  * is destroyed or reinitialized - this code checks whether there is
6488  * any held lock in the memory range of <from> to <to>:
6489  */
6490 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6491 {
6492         struct task_struct *curr = current;
6493         struct held_lock *hlock;
6494         unsigned long flags;
6495         int i;
6496
6497         if (unlikely(!debug_locks))
6498                 return;
6499
6500         raw_local_irq_save(flags);
6501         for (i = 0; i < curr->lockdep_depth; i++) {
6502                 hlock = curr->held_locks + i;
6503
6504                 if (not_in_range(mem_from, mem_len, hlock->instance,
6505                                         sizeof(*hlock->instance)))
6506                         continue;
6507
6508                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6509                 break;
6510         }
6511         raw_local_irq_restore(flags);
6512 }
6513 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6514
6515 static void print_held_locks_bug(void)
6516 {
6517         if (!debug_locks_off())
6518                 return;
6519         if (debug_locks_silent)
6520                 return;
6521
6522         pr_warn("\n");
6523         pr_warn("====================================\n");
6524         pr_warn("WARNING: %s/%d still has locks held!\n",
6525                current->comm, task_pid_nr(current));
6526         print_kernel_ident();
6527         pr_warn("------------------------------------\n");
6528         lockdep_print_held_locks(current);
6529         pr_warn("\nstack backtrace:\n");
6530         dump_stack();
6531 }
6532
6533 void debug_check_no_locks_held(void)
6534 {
6535         if (unlikely(current->lockdep_depth > 0))
6536                 print_held_locks_bug();
6537 }
6538 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6539
6540 #ifdef __KERNEL__
6541 void debug_show_all_locks(void)
6542 {
6543         struct task_struct *g, *p;
6544
6545         if (unlikely(!debug_locks)) {
6546                 pr_warn("INFO: lockdep is turned off.\n");
6547                 return;
6548         }
6549         pr_warn("\nShowing all locks held in the system:\n");
6550
6551         rcu_read_lock();
6552         for_each_process_thread(g, p) {
6553                 if (!p->lockdep_depth)
6554                         continue;
6555                 lockdep_print_held_locks(p);
6556                 touch_nmi_watchdog();
6557                 touch_all_softlockup_watchdogs();
6558         }
6559         rcu_read_unlock();
6560
6561         pr_warn("\n");
6562         pr_warn("=============================================\n\n");
6563 }
6564 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6565 #endif
6566
6567 /*
6568  * Careful: only use this function if you are sure that
6569  * the task cannot run in parallel!
6570  */
6571 void debug_show_held_locks(struct task_struct *task)
6572 {
6573         if (unlikely(!debug_locks)) {
6574                 printk("INFO: lockdep is turned off.\n");
6575                 return;
6576         }
6577         lockdep_print_held_locks(task);
6578 }
6579 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6580
6581 asmlinkage __visible void lockdep_sys_exit(void)
6582 {
6583         struct task_struct *curr = current;
6584
6585         if (unlikely(curr->lockdep_depth)) {
6586                 if (!debug_locks_off())
6587                         return;
6588                 pr_warn("\n");
6589                 pr_warn("================================================\n");
6590                 pr_warn("WARNING: lock held when returning to user space!\n");
6591                 print_kernel_ident();
6592                 pr_warn("------------------------------------------------\n");
6593                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6594                                 curr->comm, curr->pid);
6595                 lockdep_print_held_locks(curr);
6596         }
6597
6598         /*
6599          * The lock history for each syscall should be independent. So wipe the
6600          * slate clean on return to userspace.
6601          */
6602         lockdep_invariant_state(false);
6603 }
6604
6605 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6606 {
6607         struct task_struct *curr = current;
6608         int dl = READ_ONCE(debug_locks);
6609         bool rcu = warn_rcu_enter();
6610
6611         /* Note: the following can be executed concurrently, so be careful. */
6612         pr_warn("\n");
6613         pr_warn("=============================\n");
6614         pr_warn("WARNING: suspicious RCU usage\n");
6615         print_kernel_ident();
6616         pr_warn("-----------------------------\n");
6617         pr_warn("%s:%d %s!\n", file, line, s);
6618         pr_warn("\nother info that might help us debug this:\n\n");
6619         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6620                !rcu_lockdep_current_cpu_online()
6621                         ? "RCU used illegally from offline CPU!\n"
6622                         : "",
6623                rcu_scheduler_active, dl,
6624                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6625
6626         /*
6627          * If a CPU is in the RCU-free window in idle (ie: in the section
6628          * between ct_idle_enter() and ct_idle_exit(), then RCU
6629          * considers that CPU to be in an "extended quiescent state",
6630          * which means that RCU will be completely ignoring that CPU.
6631          * Therefore, rcu_read_lock() and friends have absolutely no
6632          * effect on a CPU running in that state. In other words, even if
6633          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6634          * delete data structures out from under it.  RCU really has no
6635          * choice here: we need to keep an RCU-free window in idle where
6636          * the CPU may possibly enter into low power mode. This way we can
6637          * notice an extended quiescent state to other CPUs that started a grace
6638          * period. Otherwise we would delay any grace period as long as we run
6639          * in the idle task.
6640          *
6641          * So complain bitterly if someone does call rcu_read_lock(),
6642          * rcu_read_lock_bh() and so on from extended quiescent states.
6643          */
6644         if (!rcu_is_watching())
6645                 pr_warn("RCU used illegally from extended quiescent state!\n");
6646
6647         lockdep_print_held_locks(curr);
6648         pr_warn("\nstack backtrace:\n");
6649         dump_stack();
6650         warn_rcu_exit(rcu);
6651 }
6652 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);