dm-crypt: use __bio_add_page to add single page to clone bio
[linux-block.git] / kernel / livepatch / transition.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * transition.c - Kernel Live Patching transition functions
4  *
5  * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/cpu.h>
11 #include <linux/stacktrace.h>
12 #include <linux/static_call.h>
13 #include "core.h"
14 #include "patch.h"
15 #include "transition.h"
16
17 #define MAX_STACK_ENTRIES  100
18 DEFINE_PER_CPU(unsigned long[MAX_STACK_ENTRIES], klp_stack_entries);
19
20 #define STACK_ERR_BUF_SIZE 128
21
22 #define SIGNALS_TIMEOUT 15
23
24 struct klp_patch *klp_transition_patch;
25
26 static int klp_target_state = KLP_UNDEFINED;
27
28 static unsigned int klp_signals_cnt;
29
30 /*
31  * When a livepatch is in progress, enable klp stack checking in
32  * cond_resched().  This helps CPU-bound kthreads get patched.
33  */
34 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
35
36 #define klp_cond_resched_enable() sched_dynamic_klp_enable()
37 #define klp_cond_resched_disable() sched_dynamic_klp_disable()
38
39 #else /* !CONFIG_PREEMPT_DYNAMIC || !CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
40
41 DEFINE_STATIC_KEY_FALSE(klp_sched_try_switch_key);
42 EXPORT_SYMBOL(klp_sched_try_switch_key);
43
44 #define klp_cond_resched_enable() static_branch_enable(&klp_sched_try_switch_key)
45 #define klp_cond_resched_disable() static_branch_disable(&klp_sched_try_switch_key)
46
47 #endif /* CONFIG_PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
48
49 /*
50  * This work can be performed periodically to finish patching or unpatching any
51  * "straggler" tasks which failed to transition in the first attempt.
52  */
53 static void klp_transition_work_fn(struct work_struct *work)
54 {
55         mutex_lock(&klp_mutex);
56
57         if (klp_transition_patch)
58                 klp_try_complete_transition();
59
60         mutex_unlock(&klp_mutex);
61 }
62 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
63
64 /*
65  * This function is just a stub to implement a hard force
66  * of synchronize_rcu(). This requires synchronizing
67  * tasks even in userspace and idle.
68  */
69 static void klp_sync(struct work_struct *work)
70 {
71 }
72
73 /*
74  * We allow to patch also functions where RCU is not watching,
75  * e.g. before user_exit(). We can not rely on the RCU infrastructure
76  * to do the synchronization. Instead hard force the sched synchronization.
77  *
78  * This approach allows to use RCU functions for manipulating func_stack
79  * safely.
80  */
81 static void klp_synchronize_transition(void)
82 {
83         schedule_on_each_cpu(klp_sync);
84 }
85
86 /*
87  * The transition to the target patch state is complete.  Clean up the data
88  * structures.
89  */
90 static void klp_complete_transition(void)
91 {
92         struct klp_object *obj;
93         struct klp_func *func;
94         struct task_struct *g, *task;
95         unsigned int cpu;
96
97         pr_debug("'%s': completing %s transition\n",
98                  klp_transition_patch->mod->name,
99                  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
100
101         if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
102                 klp_unpatch_replaced_patches(klp_transition_patch);
103                 klp_discard_nops(klp_transition_patch);
104         }
105
106         if (klp_target_state == KLP_UNPATCHED) {
107                 /*
108                  * All tasks have transitioned to KLP_UNPATCHED so we can now
109                  * remove the new functions from the func_stack.
110                  */
111                 klp_unpatch_objects(klp_transition_patch);
112
113                 /*
114                  * Make sure klp_ftrace_handler() can no longer see functions
115                  * from this patch on the ops->func_stack.  Otherwise, after
116                  * func->transition gets cleared, the handler may choose a
117                  * removed function.
118                  */
119                 klp_synchronize_transition();
120         }
121
122         klp_for_each_object(klp_transition_patch, obj)
123                 klp_for_each_func(obj, func)
124                         func->transition = false;
125
126         /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
127         if (klp_target_state == KLP_PATCHED)
128                 klp_synchronize_transition();
129
130         read_lock(&tasklist_lock);
131         for_each_process_thread(g, task) {
132                 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
133                 task->patch_state = KLP_UNDEFINED;
134         }
135         read_unlock(&tasklist_lock);
136
137         for_each_possible_cpu(cpu) {
138                 task = idle_task(cpu);
139                 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
140                 task->patch_state = KLP_UNDEFINED;
141         }
142
143         klp_for_each_object(klp_transition_patch, obj) {
144                 if (!klp_is_object_loaded(obj))
145                         continue;
146                 if (klp_target_state == KLP_PATCHED)
147                         klp_post_patch_callback(obj);
148                 else if (klp_target_state == KLP_UNPATCHED)
149                         klp_post_unpatch_callback(obj);
150         }
151
152         pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
153                   klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
154
155         klp_target_state = KLP_UNDEFINED;
156         klp_transition_patch = NULL;
157 }
158
159 /*
160  * This is called in the error path, to cancel a transition before it has
161  * started, i.e. klp_init_transition() has been called but
162  * klp_start_transition() hasn't.  If the transition *has* been started,
163  * klp_reverse_transition() should be used instead.
164  */
165 void klp_cancel_transition(void)
166 {
167         if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
168                 return;
169
170         pr_debug("'%s': canceling patching transition, going to unpatch\n",
171                  klp_transition_patch->mod->name);
172
173         klp_target_state = KLP_UNPATCHED;
174         klp_complete_transition();
175 }
176
177 /*
178  * Switch the patched state of the task to the set of functions in the target
179  * patch state.
180  *
181  * NOTE: If task is not 'current', the caller must ensure the task is inactive.
182  * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
183  */
184 void klp_update_patch_state(struct task_struct *task)
185 {
186         /*
187          * A variant of synchronize_rcu() is used to allow patching functions
188          * where RCU is not watching, see klp_synchronize_transition().
189          */
190         preempt_disable_notrace();
191
192         /*
193          * This test_and_clear_tsk_thread_flag() call also serves as a read
194          * barrier (smp_rmb) for two cases:
195          *
196          * 1) Enforce the order of the TIF_PATCH_PENDING read and the
197          *    klp_target_state read.  The corresponding write barriers are in
198          *    klp_init_transition() and klp_reverse_transition().
199          *
200          * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
201          *    of func->transition, if klp_ftrace_handler() is called later on
202          *    the same CPU.  See __klp_disable_patch().
203          */
204         if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
205                 task->patch_state = READ_ONCE(klp_target_state);
206
207         preempt_enable_notrace();
208 }
209
210 /*
211  * Determine whether the given stack trace includes any references to a
212  * to-be-patched or to-be-unpatched function.
213  */
214 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
215                                 unsigned int nr_entries)
216 {
217         unsigned long func_addr, func_size, address;
218         struct klp_ops *ops;
219         int i;
220
221         if (klp_target_state == KLP_UNPATCHED) {
222                  /*
223                   * Check for the to-be-unpatched function
224                   * (the func itself).
225                   */
226                 func_addr = (unsigned long)func->new_func;
227                 func_size = func->new_size;
228         } else {
229                 /*
230                  * Check for the to-be-patched function
231                  * (the previous func).
232                  */
233                 ops = klp_find_ops(func->old_func);
234
235                 if (list_is_singular(&ops->func_stack)) {
236                         /* original function */
237                         func_addr = (unsigned long)func->old_func;
238                         func_size = func->old_size;
239                 } else {
240                         /* previously patched function */
241                         struct klp_func *prev;
242
243                         prev = list_next_entry(func, stack_node);
244                         func_addr = (unsigned long)prev->new_func;
245                         func_size = prev->new_size;
246                 }
247         }
248
249         for (i = 0; i < nr_entries; i++) {
250                 address = entries[i];
251
252                 if (address >= func_addr && address < func_addr + func_size)
253                         return -EAGAIN;
254         }
255
256         return 0;
257 }
258
259 /*
260  * Determine whether it's safe to transition the task to the target patch state
261  * by looking for any to-be-patched or to-be-unpatched functions on its stack.
262  */
263 static int klp_check_stack(struct task_struct *task, const char **oldname)
264 {
265         unsigned long *entries = this_cpu_ptr(klp_stack_entries);
266         struct klp_object *obj;
267         struct klp_func *func;
268         int ret, nr_entries;
269
270         /* Protect 'klp_stack_entries' */
271         lockdep_assert_preemption_disabled();
272
273         ret = stack_trace_save_tsk_reliable(task, entries, MAX_STACK_ENTRIES);
274         if (ret < 0)
275                 return -EINVAL;
276         nr_entries = ret;
277
278         klp_for_each_object(klp_transition_patch, obj) {
279                 if (!obj->patched)
280                         continue;
281                 klp_for_each_func(obj, func) {
282                         ret = klp_check_stack_func(func, entries, nr_entries);
283                         if (ret) {
284                                 *oldname = func->old_name;
285                                 return -EADDRINUSE;
286                         }
287                 }
288         }
289
290         return 0;
291 }
292
293 static int klp_check_and_switch_task(struct task_struct *task, void *arg)
294 {
295         int ret;
296
297         if (task_curr(task) && task != current)
298                 return -EBUSY;
299
300         ret = klp_check_stack(task, arg);
301         if (ret)
302                 return ret;
303
304         clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
305         task->patch_state = klp_target_state;
306         return 0;
307 }
308
309 /*
310  * Try to safely switch a task to the target patch state.  If it's currently
311  * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
312  * if the stack is unreliable, return false.
313  */
314 static bool klp_try_switch_task(struct task_struct *task)
315 {
316         const char *old_name;
317         int ret;
318
319         /* check if this task has already switched over */
320         if (task->patch_state == klp_target_state)
321                 return true;
322
323         /*
324          * For arches which don't have reliable stack traces, we have to rely
325          * on other methods (e.g., switching tasks at kernel exit).
326          */
327         if (!klp_have_reliable_stack())
328                 return false;
329
330         /*
331          * Now try to check the stack for any to-be-patched or to-be-unpatched
332          * functions.  If all goes well, switch the task to the target patch
333          * state.
334          */
335         if (task == current)
336                 ret = klp_check_and_switch_task(current, &old_name);
337         else
338                 ret = task_call_func(task, klp_check_and_switch_task, &old_name);
339
340         switch (ret) {
341         case 0:         /* success */
342                 break;
343
344         case -EBUSY:    /* klp_check_and_switch_task() */
345                 pr_debug("%s: %s:%d is running\n",
346                          __func__, task->comm, task->pid);
347                 break;
348         case -EINVAL:   /* klp_check_and_switch_task() */
349                 pr_debug("%s: %s:%d has an unreliable stack\n",
350                          __func__, task->comm, task->pid);
351                 break;
352         case -EADDRINUSE: /* klp_check_and_switch_task() */
353                 pr_debug("%s: %s:%d is sleeping on function %s\n",
354                          __func__, task->comm, task->pid, old_name);
355                 break;
356
357         default:
358                 pr_debug("%s: Unknown error code (%d) when trying to switch %s:%d\n",
359                          __func__, ret, task->comm, task->pid);
360                 break;
361         }
362
363         return !ret;
364 }
365
366 void __klp_sched_try_switch(void)
367 {
368         if (likely(!klp_patch_pending(current)))
369                 return;
370
371         /*
372          * This function is called from cond_resched() which is called in many
373          * places throughout the kernel.  Using the klp_mutex here might
374          * deadlock.
375          *
376          * Instead, disable preemption to prevent racing with other callers of
377          * klp_try_switch_task().  Thanks to task_call_func() they won't be
378          * able to switch this task while it's running.
379          */
380         preempt_disable();
381
382         /*
383          * Make sure current didn't get patched between the above check and
384          * preempt_disable().
385          */
386         if (unlikely(!klp_patch_pending(current)))
387                 goto out;
388
389         /*
390          * Enforce the order of the TIF_PATCH_PENDING read above and the
391          * klp_target_state read in klp_try_switch_task().  The corresponding
392          * write barriers are in klp_init_transition() and
393          * klp_reverse_transition().
394          */
395         smp_rmb();
396
397         klp_try_switch_task(current);
398
399 out:
400         preempt_enable();
401 }
402 EXPORT_SYMBOL(__klp_sched_try_switch);
403
404 /*
405  * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
406  * Kthreads with TIF_PATCH_PENDING set are woken up.
407  */
408 static void klp_send_signals(void)
409 {
410         struct task_struct *g, *task;
411
412         if (klp_signals_cnt == SIGNALS_TIMEOUT)
413                 pr_notice("signaling remaining tasks\n");
414
415         read_lock(&tasklist_lock);
416         for_each_process_thread(g, task) {
417                 if (!klp_patch_pending(task))
418                         continue;
419
420                 /*
421                  * There is a small race here. We could see TIF_PATCH_PENDING
422                  * set and decide to wake up a kthread or send a fake signal.
423                  * Meanwhile the task could migrate itself and the action
424                  * would be meaningless. It is not serious though.
425                  */
426                 if (task->flags & PF_KTHREAD) {
427                         /*
428                          * Wake up a kthread which sleeps interruptedly and
429                          * still has not been migrated.
430                          */
431                         wake_up_state(task, TASK_INTERRUPTIBLE);
432                 } else {
433                         /*
434                          * Send fake signal to all non-kthread tasks which are
435                          * still not migrated.
436                          */
437                         set_notify_signal(task);
438                 }
439         }
440         read_unlock(&tasklist_lock);
441 }
442
443 /*
444  * Try to switch all remaining tasks to the target patch state by walking the
445  * stacks of sleeping tasks and looking for any to-be-patched or
446  * to-be-unpatched functions.  If such functions are found, the task can't be
447  * switched yet.
448  *
449  * If any tasks are still stuck in the initial patch state, schedule a retry.
450  */
451 void klp_try_complete_transition(void)
452 {
453         unsigned int cpu;
454         struct task_struct *g, *task;
455         struct klp_patch *patch;
456         bool complete = true;
457
458         WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
459
460         /*
461          * Try to switch the tasks to the target patch state by walking their
462          * stacks and looking for any to-be-patched or to-be-unpatched
463          * functions.  If such functions are found on a stack, or if the stack
464          * is deemed unreliable, the task can't be switched yet.
465          *
466          * Usually this will transition most (or all) of the tasks on a system
467          * unless the patch includes changes to a very common function.
468          */
469         read_lock(&tasklist_lock);
470         for_each_process_thread(g, task)
471                 if (!klp_try_switch_task(task))
472                         complete = false;
473         read_unlock(&tasklist_lock);
474
475         /*
476          * Ditto for the idle "swapper" tasks.
477          */
478         cpus_read_lock();
479         for_each_possible_cpu(cpu) {
480                 task = idle_task(cpu);
481                 if (cpu_online(cpu)) {
482                         if (!klp_try_switch_task(task)) {
483                                 complete = false;
484                                 /* Make idle task go through the main loop. */
485                                 wake_up_if_idle(cpu);
486                         }
487                 } else if (task->patch_state != klp_target_state) {
488                         /* offline idle tasks can be switched immediately */
489                         clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
490                         task->patch_state = klp_target_state;
491                 }
492         }
493         cpus_read_unlock();
494
495         if (!complete) {
496                 if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
497                         klp_send_signals();
498                 klp_signals_cnt++;
499
500                 /*
501                  * Some tasks weren't able to be switched over.  Try again
502                  * later and/or wait for other methods like kernel exit
503                  * switching.
504                  */
505                 schedule_delayed_work(&klp_transition_work,
506                                       round_jiffies_relative(HZ));
507                 return;
508         }
509
510         /* Done!  Now cleanup the data structures. */
511         klp_cond_resched_disable();
512         patch = klp_transition_patch;
513         klp_complete_transition();
514
515         /*
516          * It would make more sense to free the unused patches in
517          * klp_complete_transition() but it is called also
518          * from klp_cancel_transition().
519          */
520         if (!patch->enabled)
521                 klp_free_patch_async(patch);
522         else if (patch->replace)
523                 klp_free_replaced_patches_async(patch);
524 }
525
526 /*
527  * Start the transition to the specified target patch state so tasks can begin
528  * switching to it.
529  */
530 void klp_start_transition(void)
531 {
532         struct task_struct *g, *task;
533         unsigned int cpu;
534
535         WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
536
537         pr_notice("'%s': starting %s transition\n",
538                   klp_transition_patch->mod->name,
539                   klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
540
541         /*
542          * Mark all normal tasks as needing a patch state update.  They'll
543          * switch either in klp_try_complete_transition() or as they exit the
544          * kernel.
545          */
546         read_lock(&tasklist_lock);
547         for_each_process_thread(g, task)
548                 if (task->patch_state != klp_target_state)
549                         set_tsk_thread_flag(task, TIF_PATCH_PENDING);
550         read_unlock(&tasklist_lock);
551
552         /*
553          * Mark all idle tasks as needing a patch state update.  They'll switch
554          * either in klp_try_complete_transition() or at the idle loop switch
555          * point.
556          */
557         for_each_possible_cpu(cpu) {
558                 task = idle_task(cpu);
559                 if (task->patch_state != klp_target_state)
560                         set_tsk_thread_flag(task, TIF_PATCH_PENDING);
561         }
562
563         klp_cond_resched_enable();
564
565         klp_signals_cnt = 0;
566 }
567
568 /*
569  * Initialize the global target patch state and all tasks to the initial patch
570  * state, and initialize all function transition states to true in preparation
571  * for patching or unpatching.
572  */
573 void klp_init_transition(struct klp_patch *patch, int state)
574 {
575         struct task_struct *g, *task;
576         unsigned int cpu;
577         struct klp_object *obj;
578         struct klp_func *func;
579         int initial_state = !state;
580
581         WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
582
583         klp_transition_patch = patch;
584
585         /*
586          * Set the global target patch state which tasks will switch to.  This
587          * has no effect until the TIF_PATCH_PENDING flags get set later.
588          */
589         klp_target_state = state;
590
591         pr_debug("'%s': initializing %s transition\n", patch->mod->name,
592                  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
593
594         /*
595          * Initialize all tasks to the initial patch state to prepare them for
596          * switching to the target state.
597          */
598         read_lock(&tasklist_lock);
599         for_each_process_thread(g, task) {
600                 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
601                 task->patch_state = initial_state;
602         }
603         read_unlock(&tasklist_lock);
604
605         /*
606          * Ditto for the idle "swapper" tasks.
607          */
608         for_each_possible_cpu(cpu) {
609                 task = idle_task(cpu);
610                 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
611                 task->patch_state = initial_state;
612         }
613
614         /*
615          * Enforce the order of the task->patch_state initializations and the
616          * func->transition updates to ensure that klp_ftrace_handler() doesn't
617          * see a func in transition with a task->patch_state of KLP_UNDEFINED.
618          *
619          * Also enforce the order of the klp_target_state write and future
620          * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() and
621          * __klp_sched_try_switch() don't set a task->patch_state to
622          * KLP_UNDEFINED.
623          */
624         smp_wmb();
625
626         /*
627          * Set the func transition states so klp_ftrace_handler() will know to
628          * switch to the transition logic.
629          *
630          * When patching, the funcs aren't yet in the func_stack and will be
631          * made visible to the ftrace handler shortly by the calls to
632          * klp_patch_object().
633          *
634          * When unpatching, the funcs are already in the func_stack and so are
635          * already visible to the ftrace handler.
636          */
637         klp_for_each_object(patch, obj)
638                 klp_for_each_func(obj, func)
639                         func->transition = true;
640 }
641
642 /*
643  * This function can be called in the middle of an existing transition to
644  * reverse the direction of the target patch state.  This can be done to
645  * effectively cancel an existing enable or disable operation if there are any
646  * tasks which are stuck in the initial patch state.
647  */
648 void klp_reverse_transition(void)
649 {
650         unsigned int cpu;
651         struct task_struct *g, *task;
652
653         pr_debug("'%s': reversing transition from %s\n",
654                  klp_transition_patch->mod->name,
655                  klp_target_state == KLP_PATCHED ? "patching to unpatching" :
656                                                    "unpatching to patching");
657
658         /*
659          * Clear all TIF_PATCH_PENDING flags to prevent races caused by
660          * klp_update_patch_state() or __klp_sched_try_switch() running in
661          * parallel with the reverse transition.
662          */
663         read_lock(&tasklist_lock);
664         for_each_process_thread(g, task)
665                 clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
666         read_unlock(&tasklist_lock);
667
668         for_each_possible_cpu(cpu)
669                 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
670
671         /*
672          * Make sure all existing invocations of klp_update_patch_state() and
673          * __klp_sched_try_switch() see the cleared TIF_PATCH_PENDING before
674          * starting the reverse transition.
675          */
676         klp_synchronize_transition();
677
678         /*
679          * All patching has stopped, now re-initialize the global variables to
680          * prepare for the reverse transition.
681          */
682         klp_transition_patch->enabled = !klp_transition_patch->enabled;
683         klp_target_state = !klp_target_state;
684
685         /*
686          * Enforce the order of the klp_target_state write and the
687          * TIF_PATCH_PENDING writes in klp_start_transition() to ensure
688          * klp_update_patch_state() and __klp_sched_try_switch() don't set
689          * task->patch_state to the wrong value.
690          */
691         smp_wmb();
692
693         klp_start_transition();
694 }
695
696 /* Called from copy_process() during fork */
697 void klp_copy_process(struct task_struct *child)
698 {
699
700         /*
701          * The parent process may have gone through a KLP transition since
702          * the thread flag was copied in setup_thread_stack earlier. Bring
703          * the task flag up to date with the parent here.
704          *
705          * The operation is serialized against all klp_*_transition()
706          * operations by the tasklist_lock. The only exceptions are
707          * klp_update_patch_state(current) and __klp_sched_try_switch(), but we
708          * cannot race with them because we are current.
709          */
710         if (test_tsk_thread_flag(current, TIF_PATCH_PENDING))
711                 set_tsk_thread_flag(child, TIF_PATCH_PENDING);
712         else
713                 clear_tsk_thread_flag(child, TIF_PATCH_PENDING);
714
715         child->patch_state = current->patch_state;
716 }
717
718 /*
719  * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
720  * existing transition to finish.
721  *
722  * NOTE: klp_update_patch_state(task) requires the task to be inactive or
723  * 'current'. This is not the case here and the consistency model could be
724  * broken. Administrator, who is the only one to execute the
725  * klp_force_transitions(), has to be aware of this.
726  */
727 void klp_force_transition(void)
728 {
729         struct klp_patch *patch;
730         struct task_struct *g, *task;
731         unsigned int cpu;
732
733         pr_warn("forcing remaining tasks to the patched state\n");
734
735         read_lock(&tasklist_lock);
736         for_each_process_thread(g, task)
737                 klp_update_patch_state(task);
738         read_unlock(&tasklist_lock);
739
740         for_each_possible_cpu(cpu)
741                 klp_update_patch_state(idle_task(cpu));
742
743         /* Set forced flag for patches being removed. */
744         if (klp_target_state == KLP_UNPATCHED)
745                 klp_transition_patch->forced = true;
746         else if (klp_transition_patch->replace) {
747                 klp_for_each_patch(patch) {
748                         if (patch != klp_transition_patch)
749                                 patch->forced = true;
750                 }
751         }
752 }